1
|
Emond C, DeVito MJ, Birnbaum LS. A physiologically based pharmacokinetic (PBPK) model describing the kinetics of a commercial mixture α-, β-, and γ-hexabromocyclododecane exposure in mice. Arch Toxicol 2025:10.1007/s00204-024-03939-4. [PMID: 39847078 DOI: 10.1007/s00204-024-03939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
Hexabromocyclododecane (HBCD) is a brominated flame retardant, that is added, but not chemically bonded, to consumer products. HBCD is sold as a commercial-grade HBCD mixture containing three major stereoisomers: alpha (α), beta (β), and gamma (γ), with relative amounts of 12% for α-HBCD, 6% for β-HBCD, and 82% for γ-HBCD. HBCDs are widely measured in the environment and in biological matrices. The toxicological effects of its exposure in humans are not clearly understood. A recent reassessment pointed out potential thyroid disruption as a primary effect. This current work aims to update a physiologically based pharmacokinetic (PBPK) model for γ-HBCD in C57BL/6 mice and incorporate equations and codes for α-HBCD and β-HBCD isomers and simulate them as a mixture. Physiological parameters were taken from the literature, calculated based on the log Kow or optimized with the dataset. The elimination of HBCDs in urine and feces was optimized to reflect the percent dose excreted, as published in the literature. Compared with data from the literature for α-HBCD, β-HBCD, and γ-HBCD in multiple tissues, the model simulations accurately described the pharmacokinetics of HBCDs in the mouse. The utility of the model was demonstrated by predicting blood concentrations from three studies in adult mice evaluating dopaminergic changes in the brain. Although this PBPK model for the mixture explicitly describes α-HBCD, β-HBCD, and γ-HBCD as individual exposures, but also as a mixture, more experimental data with commercial HBCD mixtures is still needed to improve the model.
Collapse
Affiliation(s)
- Claude Emond
- BioSimulation Consulting Inc., Crabtree, QC, Canada.
- School of Public Health, Department of Environmental and Occupational Health, University of Montreal, Montreal, QC, Canada.
| | - Michael J DeVito
- Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Linda S Birnbaum
- Scientist Emeritus, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Romero-Serrano R, Arnaiz C, Torres-Enamorado D, Lancharro-Tavero I, Arroyo-Rodríguez A. Occupational Health Injuries and Illness Among Women Workers in the Chemical Industry: A Scoping Review. Workplace Health Saf 2024:21650799241302501. [PMID: 39713920 DOI: 10.1177/21650799241302501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
BACKGROUND The number of women in the chemical industry has recently increased due to more women pursuing science careers. It is necessary, therefore, to analyze the emerging health risks for female workers in the chemical industry. This study examines the relationship between occupational health and sex/gender in the chemical industry, with a gender perspective. METHODS We present a scoping review (n = 97). After removing duplicates and applying eligibility criteria, we selected 27 articles published in the last decade that explored the industry's occupational risks. FINDINGS Most of the papers include predominantly male samples and describe adult populations, mainly from developed countries. The studies focus on various employment contexts of chemical industries. We identified health risks in oncology, dermatology, and the respiratory system, among others. We found that particular emphasis was given to the relationship between occupational exposure and cancer, especially breast cancer. Furthermore, we observed sex/gender differences in the prevalence of respiratory and dermatological disorders. These results highlight the need to consider specific sex/gender-based health risk factors in the chemical industry. CONCLUSIONS/APPLICATION TO PRACTICE The chemical industry is considered a crucial health determinant, however, the studies focused on sex/gender-based differences without considering gender-specific physiology and work circumstances. Although some studies do mention sex/gender disparities, such as occupational rhinitis, which is more frequent in women, studies are scarce. The absence of a segregated analysis with a gender perspective could lead to the ignorance of emerging health risks for female workers, highlighting the urgent need to include a gender perspective in future research.
Collapse
Affiliation(s)
- Rocío Romero-Serrano
- Department of Nursing, San Juan de Dios University Nursing Center, Universidad de Sevilla
| | - Carmen Arnaiz
- Department of Chemical and Environmental Engineering, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla
| | | | | | | |
Collapse
|
3
|
Rose NR, Bailey J, Anderson JD, Chalamalla AR, Ryan KJ, Acosta EP, Guimbellot JS. Pilot and feasibility study of dietary composition with elexacaftor-tezacaftor-ivacaftor concentrations in people with cystic fibrosis. Pharmacotherapy 2024; 44:920-926. [PMID: 39716404 DOI: 10.1002/phar.4630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Nutritional support for people with cystic fibrosis (PwCF) after the implementation of novel drug therapies is shifting from managing malnutrition through a high-fat, high-calorie diet to managing emerging incidences of obesity in this population. Additionally, dietary recommendations prescribed with elexacaftor/tezacaftor/ivacaftor (ETI) recommend taking this drug with a fat-containing meal, which is variably interpreted by patients. This pilot and feasibility study was conducted to assess dietary fat intake and body composition on ETI plasma concentrations. METHODS Ten participants were enrolled in a 1:1 crossover design by dietary recommendations. To mimic recommendations made during routine clinical care, participants were instructed to consume either a general healthful diet (no more than 30% calories from fat) or a high-fat diet (>40% calories from fat) for a week before crossing over to the alternative diet. RESULTS This pilot study was acceptable to and feasible for study participants. Most participants increased fat intake calories when following a high-fat diet. Body composition measurements showed a trending correlation between lean mass and fat-free mass with ETI plasma concentrations. ETI compounds were quantified in plasma at 0 h (prior to the ETI morning dose) and 6 h after ingestion, and consuming a high-fat diet did not significantly impact ETI concentrations. CONCLUSIONS Consuming a higher-fat diet did not significantly impact ETI plasma concentrations, and all participants were in range for clinical effectiveness of ETI regardless of fat intake. This work provides vital pilot data to design larger studies to clarify dietary composition for optimal ETI exposure for PwCF on this therapy.
Collapse
Affiliation(s)
- Natalie R Rose
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Julianna Bailey
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Justin D Anderson
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Ashritha R Chalamalla
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin J Ryan
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, Birmingham, Alabama, USA
| | - Edward P Acosta
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, Birmingham, Alabama, USA
| | - Jennifer S Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Visciano P. Environmental Contaminants in Fish Products: Food Safety Issues and Remediation Strategies. Foods 2024; 13:3511. [PMID: 39517295 PMCID: PMC11544809 DOI: 10.3390/foods13213511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The intentional or accidental presence of environmental contaminants, such as persistent organic pollutants, metals, and microplastics, can harm the aquatic ecosystem and their living organisms, as well as consumers of seafood. This study provides an overview of marine pollution caused by various chemicals and their toxicity to both the environment and humans. In addition to regulatory limits established for some contaminants, monitoring and management policies should mandate activities such as bioremediation and the use of carbon-based composite photocatalysts to reduce or eliminate these compounds.
Collapse
Affiliation(s)
- Pierina Visciano
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
5
|
Antonelli P, Grizard S, Tran FH, Lejon D, Bellemain A, Van, Mavingui P, Roiz D, Simard F, Martin E, Abrouk D, Vigneron A, Minard G, Valiente Moro C. Bioaccumulation of polycyclic aromatic hydrocarbons and microbiota dynamics across developmental stages of the Asian tiger mosquito, Aedes albopictus exposed to urban pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117214. [PMID: 39447296 DOI: 10.1016/j.ecoenv.2024.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Aedes albopictus mosquitoes face numerous anthropic stressors in urban areas. These xenobiotics not only impact mosquito physiology but also shape the composition of their microbiota, which play important roles in host physiological traits. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants known to alter mosquito metabolism, but no studies have yet investigated their impact on microbiota. Using a bespoke indoor mesocosm tailored for Ae. albopictus mosquitoes, we investigated the dynamics of bacterial communities in both mosquitoes and their larval breeding sites following chronic exposure to a cocktail of PAHs consisting of benzo[a]pyrene, benz[a]anthracene, chrysene and benzo[b]fluoranthene. Our findings showed that PAHs have a stage-specific effect on mosquito microbiota, with a higher impact in larvae than in adults, contributing to 12.5 % and 4.5 % of the PAHs-induced variations, respectively. The presence of PAHs in the treated mesocosm led to the enrichment of bacterial families and genera known for their ability to catabolize PAHs, such as Comamonadaceae and Raoultella (increasing from 19 % to 30 % and from 1.2 % to 5.6 %, respectively). Conversely, prevalent taxa found in mosquito microbiota like Wolbachia and Cedecea exhibited a reduction (decreasing from 4 % to 0.8 % and from 12.8 % to 6.4 %, respectively). This reduction could be attributed to the competitive advantage gained by PAH-degrading taxa, or it could reflect a direct sensitivity to PAH exposure. Overall, this indicates a shift in microbiota composition favoring bacteria that can thrive in a PAH-contaminated environment. PAHs persisted in the water of breeding sites only the first 45 days of the experiment. Benzo[a]pyrene and benzo[b]fluoranthene were more susceptible to bioaccumulation in larval tissues over time. Overall, this study enhances our understanding of the impact of pollution on mosquitoes and could facilitate future research on the importance of symbiosis in urban-dwelling insect disease vectors. Given the recent advancements in the generation of axenic (microbe-free) and gnotobiotic (mosquitoes with a defined or specific microbiota) mosquitoes, further studies are needed to explore how changes in microbiota composition could influence mosquito responses to pollution, particularly in relation to host fitness, immunity, and vector competence.
Collapse
Affiliation(s)
- Pierre Antonelli
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgrop Sup, 69622 Villeurbanne, France
| | - Stéphanie Grizard
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgrop Sup, 69622 Villeurbanne, France
| | - Florence Hélène Tran
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgrop Sup, 69622 Villeurbanne, France
| | | | | | - Van
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgrop Sup, 69622 Villeurbanne, France
| | - Patrick Mavingui
- UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - David Roiz
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | | | - Edwige Martin
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgrop Sup, 69622 Villeurbanne, France
| | - Danis Abrouk
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgrop Sup, 69622 Villeurbanne, France
| | - Aurélien Vigneron
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgrop Sup, 69622 Villeurbanne, France
| | - Guillaume Minard
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgrop Sup, 69622 Villeurbanne, France
| | - Claire Valiente Moro
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgrop Sup, 69622 Villeurbanne, France.
| |
Collapse
|
6
|
Zha X, Elsabagh M, Zheng Y, Zhang B, Wang H, Bai Y, Zhao J, Wang M, Zhang H. Impact of Bisphenol A exposure on maternal gut microbial homeostasis, placental function, and fetal development during pregnancy. Reprod Toxicol 2024; 129:108677. [PMID: 39067774 DOI: 10.1016/j.reprotox.2024.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Pregnancy is extremely vulnerable to external environmental influences. Bisphenol A, an endocrine-disrupting chemical, poses a significant environmental hazard to individuals of all ages and stages, particularly during pregnancy. The placenta is a temporary organ facilitating the connection between the mother and fetus. While it can detoxify certain exogenous substances, it is also vulnerable to the impacts of endocrine disruptors. Likewise, the intestinal flora is highly sensitive to exogenous stresses and environmental pollutants. The regulation of gut microbiota plays a crucial role in ensuring the health of both the mother and the fetus. The gut-placental axis connects the gut, gut microbes, placenta, and fetus. Exploring possible effects on placental function and fetal development involves analyzing changes in gut microbiota composition. Given that bisphenol A may cross the intestine and affect intestinal function, gut microorganisms, and their metabolites, as well as its potential impact on the placenta, resulting in impaired placental function and fetal development, this study aims to establish a link between bisphenol A exposure, intestinal microorganisms, placental function, and fetal development. This paper seeks to analyze the effects of maternal exposure to bisphenol A during pregnancy on the balance of the maternal gut microbiota, placental function, and fetal development, considering the key role of the gut-placental axis. Additionally, this paper proposes potential directions for future research emphasizing the importance of mitigating the adverse outcomes of bisphenol A exposure during pregnancy in both human and animal studies.
Collapse
Affiliation(s)
- Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Nĭgde ¨Omer Halisdemir University, Nigde 51240, Turkey; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yila Bai
- Xilin Gol League Animal Husbandry Xilinhot 026000, PR China
| | - Jingwen Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi 832000, PR China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi 832000, PR China.
| |
Collapse
|
7
|
Helm-Kwasny BK, Bullert A, Wang H, Chimenti MS, Adamcakova-Dodd A, Jing X, Li X, Meyerholz DK, Thorne PS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Upregulation of fatty acid synthesis genes in the livers of adolescent female rats caused by inhalation exposure to PCB52 (2,2',5,5'-Tetrachlorobiphenyl). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104520. [PMID: 39067718 PMCID: PMC11377153 DOI: 10.1016/j.etap.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Elevated airborne PCB levels in older schools are concerning due to their health impacts, including cancer, metabolic dysfunction-associated steatotic liver disease (MASLD), cardiovascular issues, neurodevelopmental diseases, and diabetes. During a four-week inhalation exposure to PCB52, an air pollutant commonly found in school environments, adolescent rats exhibited notable presence of PCB52 and its hydroxylated forms in their livers, alongside changes in gene expression. Female rats exhibited more pronounced changes in gene expression compared to males, particularly in fatty acid synthesis genes regulated by the transcription factor SREBP1. In vitro studies with human liver cells showed that the hydroxylated metabolite of PCB52, 4-OH-PCB52, but not the parent compound, upregulated genes involved in fatty acid biosynthesis similar to in vivo exposure. These findings highlight the sex-specific effects of PCB52 exposure on livers, particularly in females, suggesting a potential pathway for increased MASLD susceptibility.
Collapse
Affiliation(s)
| | - Amanda Bullert
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, The University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Mahfouz M, Mahfouz Y, Harmouche-Karaki M, Matta J, Younes H, Helou K, Finan R, Abi-Tayeh G, Meslimani M, Moussa G, Chahrour N, Osseiran C, Skaiki F, Narbonne JF. Utilizing machine learning to classify persistent organic pollutants in the serum of pregnant women: a predictive modeling approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52980-52995. [PMID: 39168932 DOI: 10.1007/s11356-024-34684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), and per- and poly-fluoroalkyl substances (PFAS) are persistent organic pollutants (POPs) that remain detrimental to critical subpopulations, namely pregnant women. Required tests for biomonitoring are quite expensive. Moreover, statistical models aiming to discover the relationships between pollutants levels and human characteristics have their limitations. Therefore, the objective of this study is to use machine learning predictive models to further examine the pollutants' predictors, while comparing them. Levels of 33 congeners were measured in the serum of 269 pregnant women, from whom data was collected regarding sociodemographic, dietary, environmental, and anthropometric characteristics. Several machine learning algorithms were compared using "Python" for each pollutant: support vector machine (SVM), random forest, XGBoost, and neural networks. The aforementioned characteristics were included in the model as features. Prediction, accuracy, precision, recall, F1-score, area under the ROC curve (AUC), sensitivity, and specificity were retrieved to compare the models between them and among pollutants. The highest performing model for all pollutants was Random Forest. Results showed a moderate to acceptable performance and discriminative power among all POPs, with OCPs' model performing slightly better than all other models. Top related features for each model were also presented using SHAP analysis, detailing the predictors' negative or positive impact on the model. In conclusion, developing such a tool is of major importance in a context of limited financial and research resources. Nevertheless, machine learning models should always be interpreted with caution by exploring all evaluation metrics.
Collapse
Affiliation(s)
- Maya Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Medical Sciences Campus, Saint Joseph University of Beirut, Damascus RoadRiad Solh, P.O. Box 115076, Beirut, 1107 2180, Lebanon.
| | - Yara Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Medical Sciences Campus, Saint Joseph University of Beirut, Damascus RoadRiad Solh, P.O. Box 115076, Beirut, 1107 2180, Lebanon
| | - Mireille Harmouche-Karaki
- Department of Nutrition, Faculty of Pharmacy, Medical Sciences Campus, Saint Joseph University of Beirut, Damascus RoadRiad Solh, P.O. Box 115076, Beirut, 1107 2180, Lebanon
| | - Joseph Matta
- Industrial Research Institute, Lebanese University Campus, Baabda, Hadath, Lebanon, P.O. Box 112806
| | - Hassan Younes
- Institut Polytechnique UniLaSalle, Collège Santé, Equipe PANASH, Membre de l'ULR 7519, Université d'Artois, 19 Rue Pierre Waguet, 60026, Beauvais, France
| | - Khalil Helou
- Department of Nutrition, Faculty of Pharmacy, Medical Sciences Campus, Saint Joseph University of Beirut, Damascus RoadRiad Solh, P.O. Box 115076, Beirut, 1107 2180, Lebanon
| | - Ramzi Finan
- Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, Beirut, Lebanon, P.O. Box 166830
| | - Georges Abi-Tayeh
- Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, Beirut, Lebanon, P.O. Box 166830
| | | | - Ghada Moussa
- Department of Obstetrics and Gynecology, Chtoura Hospital, Beqaa, Lebanon
| | - Nada Chahrour
- Department of Obstetrics and Gynecology, SRH University Hospital, Nabatieh, Lebanon
| | - Camille Osseiran
- Department of Obstetrics and Gynecology, Kassab Hospital, Saida, Lebanon
| | - Farouk Skaiki
- Department of Molecular Biology, General Management, Al Karim Medical Laboratories, Saida, Lebanon
| | - Jean-François Narbonne
- Laboratoire de Physico-Toxico Chimie Des Systèmes Naturels, University of Bordeaux, 33405, Talence, CEDEX, France
| |
Collapse
|
9
|
Stojchevski R, Chandrasekaran P, Hadzi-Petrushev N, Mladenov M, Avtanski D. Adipose Tissue Dysfunction Related to Climate Change and Air Pollution: Understanding the Metabolic Consequences. Int J Mol Sci 2024; 25:7849. [PMID: 39063092 PMCID: PMC11277516 DOI: 10.3390/ijms25147849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator, interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue (BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function in the presence of uncoupled protein 1 (UCP1). Recently, studies on climate change and the influence of environmental pollutants on energy homeostasis and obesity have drawn increasing attention. The reciprocal relationship between increasing adiposity and increasing temperatures results in reduced adaptive thermogenesis, decreased physical activity, and increased carbon footprint production. In addition, the impact of climate change makes obese individuals more prone to developing type 2 diabetes mellitus (T2DM). An impaired response to heat stress, compromised vasodilation, and sweating increase the risk of diabetes-related comorbidities. This comprehensive review provides information about the effects of climate change on obesity and adipose tissue, the risk of T2DM development, and insights into the environmental pollutants causing adipose tissue dysfunction and obesity. The effects of altered dietary patterns on adiposity and adaptation strategies to mitigate the detrimental effects of climate change are also discussed.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
10
|
Sun P, Guo X, Ding E, Li C, Ren H, Xu Y, Qian J, Deng F, Shi W, Dong H, Lin EZ, Guo P, Fang J, Zhang Q, Zhao W, Tong S, Lu X, Pollitt KJG, Shi X, Tang S. Association between Personal Abiotic Airborne Exposures and Body Composition Changes among Healthy Adults (60-69 Years Old): A Combined Exposome-Wide and Lipidome Mediation Approach from the China BAPE Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:77005. [PMID: 39028628 PMCID: PMC11259245 DOI: 10.1289/ehp13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/25/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Evidence suggested that abiotic airborne exposures may be associated with changes in body composition. However, more evidence is needed to identify key pollutants linked to adverse health effects and their underlying biomolecular mechanisms, particularly in sensitive older adults. OBJECTIVES Our research aimed to systematically assess the relationship between abiotic airborne exposures and changes in body composition among healthy older adults, as well as the potential mediating mechanisms through the serum lipidome. METHODS From September 2018 to January 2019, we conducted a monthly survey among 76 healthy adults (60-69 years old) in the China Biomarkers of Air Pollutant Exposure (BAPE) study, measuring their personal exposures to 632 abiotic airborne pollutions using MicroPEM and the Fresh Air wristband, 18 body composition indicators from the InBody 770 device, and lipidomics from venous blood samples. We used an exposome-wide association study (ExWAS) and deletion/substitution/addition (DSA) model to unravel complex associations between exposure to contaminant mixtures and body composition, a Bayesian kernel machine regression (BKMR) model to assess the overall effect of key exposures on body composition, and mediation analysis to identify lipid intermediators. RESULTS The ExWAS and DSA model identified that 2,4,5-T methyl ester (2,4,5-TME), 9,10-Anthracenedione (ATQ), 4b,8-dimethyl-2-isopropylphenanthrene, and 4b,5,6,7,8,8a,9,10-octahydro-(DMIP) were associated with increased body fat mass (BFM), fat mass indicators (FMI), percent body fat (PBF), and visceral fat area (VFA) in healthy older adults [Bonferroni-Hochberg false discovery rate ( FD R BH ) < 0.05 ]. The BKMR model demonstrated a positive correlation between contaminants (anthracene, ATQ, copaene, di-epi-α -cedrene, and DMIP) with VFA. Mediation analysis revealed that phosphatidylcholine [PC, PC(16:1e/18:1), PC(16:2e/18:0)] and sphingolipid [SM, SM(d18:2/24:1)] mediated a significant portion, ranging from 12.27% to 26.03% (p-value < 0.05 ), of the observed increase in VFA. DISCUSSION Based on the evidence from multiple model results, ATQ and DMIP were statistically significantly associated with the increased VFA levels of healthy older adults, potentially regulated through lipid intermediators. These findings may have important implications for identifying potentially harmful environmental chemicals and developing targeted strategies for the control and prevention of chronic diseases in the future, particularly as the global population is rapidly aging. https://doi.org/10.1289/EHP13865.
Collapse
Affiliation(s)
- Peijie Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaojie Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Huimin Ren
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yibo Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Jiankun Qian
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wanying Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Elizabeth Z. Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Wenhua Zhao
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Krystal J. Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
12
|
Mahé C, de la Riviere MEL, Lasserre O, Tsikis G, Tomas D, Labas V, Elis S, Saint-Dizier M. Oral exposure to bisphenol S is associated with alterations in the oviduct proteome of an ovine model, with aggravated effects in overfed females. BMC Genomics 2024; 25:589. [PMID: 38867150 PMCID: PMC11167748 DOI: 10.1186/s12864-024-10510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Bisphenol S (BPS) is a substitute for bisphenol A in plastic manufacturing and, as a potential endocrine disruptor, may alter the physiology of the oviduct, in which fertilization and early embryo development take place in mammals. The objective of this study was to assess the effect of a daily dietary exposure to BPS combined with a contrasted diet on the oviduct fluid proteome using an ovine model. RESULTS Eighty adult cyclic ewes were allotted to four groups (20/group): overfed (OF) consuming 50 µg/kg/day of BPS in their diet, underfed (UF) consuming 50 µg/kg/day of BPS, and non-exposed controls in each diet group. After three months, the mean body condition score, plasma levels of glucose and non-esterified fatty acids were significantly higher in OF than in UF females. The proteins in collected OF samples (50 µg) were analyzed by nanoliquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS). Overall, 1563 proteins were identified, among which 848 were quantified. Principal component analysis of the data revealed a clear discrimination of samples according to the diet and a segregation between BPS-exposed and non-exposed females in overfed ewes. Hierarchical clustering of differentially abundant proteins (DAPs) identified two clusters of 101 and 78 DAPs according to the diet. Pairwise comparisons between groups revealed a stronger effect of BPS in OF than in UF females (70 vs. 24 DAPs) and a stronger effect of the diet in BPS-exposed than non-exposed females (56 vs. 36 DAPs). Functional analysis of DAPs showed an enrichment in metabolic processes, immune system, cell response to stress, and reproductive processes. CONCLUSIONS This work highlights for the first time the important impact of BPS on the oviduct proteome, with larger effects seen in OF than UF females. These results, together with previous ones, raise health concerns for everyone and call for a greater regulation of BPS in the food industry.
Collapse
Affiliation(s)
- Coline Mahé
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France.
| | | | | | | | - Daniel Tomas
- INRAE, Université de Tours, CHU de Tours, Plateforme de Phénotypage Par Imagerie in/eX Vivo de L'ANImal À La Molécule (PIXANIM), Nouzilly, 37380, France
| | - Valérie Labas
- INRAE, Université de Tours, CHU de Tours, Plateforme de Phénotypage Par Imagerie in/eX Vivo de L'ANImal À La Molécule (PIXANIM), Nouzilly, 37380, France
| | - Sébastien Elis
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France
| | | |
Collapse
|
13
|
Agarwal M, Roth K, Yang Z, Sharma R, Maddipati K, Westrick J, Petriello MC. Loss of flavin-containing monooxygenase 3 modulates dioxin-like polychlorinated biphenyl 126-induced oxidative stress and hepatotoxicity. ENVIRONMENTAL RESEARCH 2024; 250:118492. [PMID: 38373550 PMCID: PMC11102846 DOI: 10.1016/j.envres.2024.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Rahul Sharma
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Krishnarao Maddipati
- Department of Pathology, Lipidomic Core Facility, Wayne State University, Detroit, MI, 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI, 48202, USA
| | - Michael C Petriello
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
14
|
Kim MJ, Heo M, Kim SJ, Song HE, Lee H, Kim NE, Shin H, Do AR, Kim J, Cho YM, Hong YS, Kim WJ, Won S, Yoo HJ. Associations between plasma metabolites and heavy metal exposure in residents of environmentally polluted areas. ENVIRONMENT INTERNATIONAL 2024; 187:108709. [PMID: 38723457 DOI: 10.1016/j.envint.2024.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Heavy metals are commonly released into the environment through industrial processes such as mining and refining. The rapid industrialization that occurred in South Korea during the 1960s and 1970s contributed significantly to the economy of the country; however, the associated mining and refining led to considerable environmental pollution, and although mining is now in decline in South Korea, the detrimental effects on residents inhabiting the surrounding areas remain. The bioaccumulation of toxic heavy metals leads to metabolic alterations in human homeostasis, with disruptions in this balance leading to various health issues. This study used metabolomics to explore metabolomic alterations in the plasma samples of residents living in mining and refining areas. The results showed significant increases in metabolites involved in glycolysis and the surrounding metabolic pathways, such as glucose-6-phosphate, phosphoenolpyruvate, lactate, and inosine monophosphate, in those inhabiting polluted areas. An investigation of the associations between metabolites and blood clinical parameters through meet-in-the-middle analysis indicated that female residents were more affected by heavy metal exposure, resulting in more metabolomic alterations. For women, inhabiting the abandoned mine area, metabolites in the glycolysis and pentose phosphate pathways, such as ribose-5-phosphate and 3-phosphoglycerate, have shown a negative correlation with albumin and calcium. Finally, Mendelian randomization(MR) was used to determine the causal effects of these heavy metal exposure-related metabolites on heavy metal exposure-related clinical parameters. Metabolite biomarkers could provide insights into altered metabolic pathways related to exposure to toxic heavy metals and improve our understanding of the molecular mechanisms underlying the health effects of toxic heavy metal exposure.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Min Heo
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Su Jung Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Ha Eun Song
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hyoyeong Lee
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Nam-Eun Kim
- Department of Public Health Sciences, Seoul National University, Seoul, South Korea
| | - Hyeongyu Shin
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Ah Ra Do
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea; RexSoft Corp, Seoul, South Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Yong Min Cho
- Department of Nano Chemical and Biological Engineering, Seokyeong University, Seoul, Republic of Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, 32, Daesin Gongwon-ro, Seo-gu, Busan 49201, Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea; Department of Public Health Sciences, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea; RexSoft Corp, Seoul, South Korea.
| | - Hyun Ju Yoo
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea; Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea; Department of Digital Medicine, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
15
|
Neagu AN, Bruno P, Johnson KR, Ballestas G, Darie CC. Biological Basis of Breast Cancer-Related Disparities in Precision Oncology Era. Int J Mol Sci 2024; 25:4113. [PMID: 38612922 PMCID: PMC11012526 DOI: 10.3390/ijms25074113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Precision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Gabriella Ballestas
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| |
Collapse
|
16
|
Chirivi M, Contreras GA. Endotoxin-induced alterations of adipose tissue function: a pathway to bovine metabolic stress. J Anim Sci Biotechnol 2024; 15:53. [PMID: 38581064 PMCID: PMC10998405 DOI: 10.1186/s40104-024-01013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 04/07/2024] Open
Abstract
During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expenditure puts cows in a state of metabolic stress characterized by excessive lipolysis in white adipose tissues (AT), increased production of reactive oxygen species, and immune cell dysfunction. Metabolic stress, especially in AT, increases the risk for metabolic and inflammatory diseases. Around parturition, cows are also susceptible to endotoxemia. Bacterial-derived toxins cause endotoxemia by promoting inflammatory processes and immune cell infiltration in different organs and systems while impacting metabolic function by altering lipolysis, mitochondrial activity, and insulin sensitivity. In dairy cows, endotoxins enter the bloodstream after overcoming the defense mechanisms of the epithelial barriers, particularly during common periparturient conditions such as mastitis, metritis, and pneumonia, or after abrupt changes in the gut microbiome. In the bovine AT, endotoxins induce a pro-inflammatory response and stimulate lipolysis in AT, leading to the release of free fatty acids into the bloodstream. When excessive and protracted, endotoxin-induced lipolysis can impair adipocyte's insulin signaling pathways and lipid synthesis. Endotoxin exposure can also induce oxidative stress in AT through the production of reactive oxygen species by inflammatory cells and other cellular components. This review provides insights into endotoxins' impact on AT function, highlighting the gaps in our knowledge of the mechanisms underlying AT dysfunction, its connection with periparturient cows' disease risk, and the need to develop effective interventions to prevent and treat endotoxemia-related inflammatory conditions in dairy cattle.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
17
|
Martínez-Ibarra A, Cerbón M, Martínez-Razo LD, Morales-Pacheco M, Torre-Villalvazo I, Kawa S, Rodríguez-Dorantes M. Impact of DEHP exposure on female reproductive health: Insights into uterine effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104391. [PMID: 38367918 DOI: 10.1016/j.etap.2024.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Several endocrine disrupting compounds released from plastics, including polyfluoroalkyl substances, bisphenols, flame retardants, phthalates and others, are of great concern to human health due to their high toxicity. This review discusses the effects of di-(2-ethylhexyl) phthalate (DEHP), the most common member of the phthalate family, on female reproduction. In vitro and in vivo studies link DEHP exposure to impaired hypothalamic-pituitary-ovarian s (HPO) axis function, alteration of steroid-hormone levels and dysregulation of their receptors, and changes in uterine morphophysiology. In addition, high urinary DEPH levels have been associated with several reproductive disorders in women, including endometriosis, fibromyoma, fetal growth restriction and pregnancy loss. These data suggest that DEHP may be involved in the pathophysiology of various female reproductive diseases. Therefore, exposure to these compounds should be considered a concern in clinician surveillance practices for women at reproductive age and should be regulated to protect their health and that of their progeny.
Collapse
Affiliation(s)
| | - Marco Cerbón
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | | | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Iván Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Simón Kawa
- Dirección General del Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | | |
Collapse
|
18
|
Tahir A, Ijaz MU, Naz H, Afsar T, Almajwal A, Amor H, Razak S. Protective effect of didymin against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced reproductive toxicity in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2203-2214. [PMID: 37801147 DOI: 10.1007/s00210-023-02763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) is one of the most potent environmental toxicants, which causes oxidative stress and adversely affects the male reproductive system. The current study aimed to evaluate the ameliorative role of didymin (DDM) against TCDD-induced testicular toxicity. METHODS Forty-eight male Sprague-Dawley rats were divided into four equal groups (n=12). (i) Control group, (ii) TCDD-induced group was provided with 10 μg/kg/day of TCDD, (iii) TCDD + DDM group received 10 μg/kg/day of TCDD and 2 mg/kg/day of DDM, and (iv) DDM-treated group was administered with 2 mg/kg/day of DDM. After 56 days of treatment, biochemical, steroidogenic, hormonal, spermatogenic, apoptotic, and histopathological parameters were estimated. RESULTS TCDD affected the biochemical profile by reducing the activities of antioxidant enzymes, while increasing the levels of malondialdehyde (MDA) and reactive oxygen species (ROS). Furthermore, it decreased the expressions of steroidogenic enzymes, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (CYP11A1), and 17α-hydroxylase/17, 20-lyase (CYP17A1), as well as reduced the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and plasma testosterone. Besides, epididymal sperm count, viability, and motility were decreased, while sperm morphological anomalies were increased. Moreover, TCDD altered the apoptotic profile by up-regulating the expressions of Bax and caspase-3, while downregulated the Bcl-2 expression. Additionally, histopathological damages were prompted due to TCDD administration. However, DDM restored all the TCDD-induced damages owing to its antioxidant, anti-apoptotic, and androgenic potential. CONCLUSION Our data suggested that DDM might play its role as a therapeutic agent against TCDD-prompted testicular toxicity.
Collapse
Affiliation(s)
- Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Huma Naz
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Houda Amor
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, Homburg, Germany
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
19
|
Warger J, Lucas M, Lucas A. Assessing the contribution of plastic-associated obesogenic compounds to cardiometabolic diseases. Curr Opin Endocrinol Diabetes Obes 2024; 31:98-103. [PMID: 38054472 PMCID: PMC10911259 DOI: 10.1097/med.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE OF REVIEW To present recent evidence that strengthens the concept that exogenous pollutants contribute to adipose dysfunction and increased rates of disease and to highlight the ineffective regulation of this risk as industry switches to related but similarly toxic variants. RECENT FINDINGS Substitutes for common phthalates and the highly regulated bisphenol A (BPA) show similar deleterious effects on adipocytes. The well tolerated limit for BPA exposure has been reduced in Europe to below the level detected in recent population studies. Additionally, the role for BPA-induced inflammation mediated by interleukin 17a has been described in animal and human studies. SUMMARY Despite experimental and associative evidence that supports plastics and plastic associated chemicals deleteriously influencing adipose homeostatasis and contributing to metabolic diseases, structurally related alternate chemicals are being substituted by manufacturers to circumvent trailing regulatory actions.
Collapse
Affiliation(s)
- Jacob Warger
- Medical School, The University of Western Australia
| | - Michaela Lucas
- Medical School, The University of Western Australia
- Department of Immunology PathWest
- Department of Immunology, Sir Charles Gairdner Hospital & Perth Childrens Hospital
| | - Andrew Lucas
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
20
|
Nzabanita D, Shen H, Grist S, Lewis PJ, Hampton JO, Firestone SM, Hufschmid J, Nugegoda D. Exposure to Persistent Organic Pollutants in Australian Waterbirds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:736-747. [PMID: 38085117 DOI: 10.1002/etc.5804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/30/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
There is growing worldwide recognition of the threat posed by persistent organic pollutants (POPs) to wildlife populations. We aimed to measure exposure levels to POPs in a Southern Hemisphere aquatic waterbird species, the nomadic gray teal (Anas gracilis), which is found across Australia. We collected wings from 39 ducks harvested by recreational hunters at two sites (one coastal, one inland) in Victoria, southeastern Australia, in 2021. We examined three groups of POPs: nine congeners of polychlorinated biphenyls (PCBs), 13 organochlorine pesticides (OCPs), and 12 polycyclic aromatic hydrocarbons (PAHs). The PCBs, OCPs, and PAHs were detected at quantifiable levels in 13%, 72%, and 100% of birds, respectively. Of the congeners we tested for in PCBs, OCPs, and PAHs, 33%, 38%, and 100% were detected at quantifiable levels, respectively. The highest levels of exposure to POPs that we found were to the PAH benzo[b]fluoranthene, occurring at a concentration range of 1.78 to 161.05 ng/g wet weight. There were some trends detected relating to differences between geographical sites, with higher levels of several PAHs at the coastal versus inland site. There were several strong, positive associations among PAHs found. We discuss potential sources for the POPs detected, including industrial and agricultural sources, and the likely role of large-scale forest fires in PAH levels. Our results confirm that while Australian waterbirds are exposed to a variety of POPs, exposure levels are currently relatively low. Additional future investigations are required to further characterize POPs within Australian waterbird species. Environ Toxicol Chem 2024;43:736-747. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Damien Nzabanita
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Hao Shen
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Stephen Grist
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Phoebe J Lewis
- Applied Sciences Division, Environment Protection Authority Victoria, Macleod, Victoria, Australia
| | - Jordan O Hampton
- Faculty of Science, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Simon M Firestone
- Faculty of Science, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| | - Jasmin Hufschmid
- Faculty of Science, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| | - Dayanthi Nugegoda
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Neagu AN, Jayaweera T, Corrice L, Johnson K, Darie CC. Breast Cancer Exposomics. Life (Basel) 2024; 14:402. [PMID: 38541726 PMCID: PMC10971462 DOI: 10.3390/life14030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 12/15/2024] Open
Abstract
We are exposed to a mixture of environmental man-made and natural xenobiotics. We experience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting point of individual development and, moreover, in utero exposure, which can itself cause the first somatic or germline mutation necessary for breast cancer (BC) initiation. Most xenobiotics are metabolized or/and bioaccumulate and biomagnify in our tissues and cells, including breast tissues, so the xenobiotic metabolism plays an important role in BC initiation and progression. Many considerations necessitate a more valuable explanation regarding the molecular mechanisms of action of xenobiotics which act as genotoxic and epigenetic carcinogens. Thus, exposomics and the exposome concept are based on the diversity and range of exposures to physical factors, synthetic chemicals, dietary components, and psychosocial stressors, as well as their associated biologic processes and molecular pathways. Existing evidence for BC risk (BCR) suggests that food-borne chemical carcinogens, air pollution, ionizing radiation, and socioeconomic status are closely related to breast carcinogenesis. The aim of this review was to depict the dynamics and kinetics of several xenobiotics involved in BC development, emphasizing the role of new omics fields related to BC exposomics, such as environmental toxicogenomics, epigenomics and interactomics, metagenomics, nutrigenomics, nutriproteomics, and nutrimiRomics. We are mainly focused on food and nutrition, as well as endocrine-disrupting chemicals (EDCs), involved in BC development. Overall, cell and tissue accumulation and xenobiotic metabolism or biotransformation can lead to modifications in breast tissue composition and breast cell morphology, DNA damage and genomic instability, epimutations, RNA-mediated and extracellular vesicle effects, aberrant blood methylation, stimulation of epithelial-mesenchymal transition (EMT), disruption of cell-cell junctions, reorganization of the actin cytoskeleton, metabolic reprogramming, and overexpression of mesenchymal genes. Moreover, the metabolism of xenobiotics into BC cells impacts almost all known carcinogenic pathways. Conversely, in our food, there are many bioactive compounds with anti-cancer potential, exerting pro-apoptotic roles, inhibiting cell cycle progression and proliferation, migration, invasion, DNA damage, and cell stress conditions. We can conclude that exposomics has a high potential to demonstrate how environmental exposure to xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis in BC.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Lilian Corrice
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Kaya Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| |
Collapse
|
22
|
Zhang Y, Gao Y, Liu QS, Zhou Q, Jiang G. Chemical contaminants in blood and their implications in chronic diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133511. [PMID: 38262316 DOI: 10.1016/j.jhazmat.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Artificial chemical products are widely used and ubiquitous worldwide and pose a threat to the environment and human health. Accumulating epidemiological and toxicological evidence has elucidated the contributions of environmental chemical contaminants to the incidence and development of chronic diseases that have a negative impact on quality of life or may be life-threatening. However, the pathways of exposure to these chemicals and their involvements in chronic diseases remain unclear. We comprehensively reviewed the research progress on the exposure risks of humans to environmental contaminants, their body burden as indicated by blood monitoring, and the correlation of blood chemical contaminants with chronic diseases. After entering the human body through various routes of exposure, environmental contaminants are transported to target organs through blood circulation. The application of the modern analytical techniques based on human plasma or serum specimens is promising for determining the body burden of environmental contaminants, including legacy persistent organic pollutants, emerging pollutants, and inorganic elements. Furthermore, their body burden, as indicated by blood monitoring correlates with the incidence and development of metabolic syndromes, cancers, chronic nervous system diseases, cardiovascular diseases, and reproductive disorders. On this basis, we highlight the urgent need for further research on environmental pollution causing health problems in humans.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| |
Collapse
|
23
|
Jandacek R, Liu M, Tso P. Interactions of Body Weight Loss with Lipophilic Toxin Storage: Commentary. J Nutr 2024; 154:801-803. [PMID: 38244860 PMCID: PMC10942849 DOI: 10.1016/j.tjnut.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
A high incidence of obesity and surplus body fat has been observed in wealthy countries for many decades. It is generally recognized that these excesses contribute to serious disease states, including type 2 diabetes and cardiovascular diseases. On the other hand, the adipose tissue stores relatively safely many environmental lipophilic toxins. However, rapid weight loss mobilizes these toxins to the blood to be exposed to vital organs, such as the brain, lungs, and others. With the introduction of potent diabetic drugs causing rapid weight reduction, the question of mobilization of lipophilic toxins to the blood should be considered. In this commentary, we raised this mobilization of adipose tissue toxins to the readers. Also, we discussed how these toxins may be eliminated from the body through the use of nondigestible fat, such as olestra or lipase inhibitors, such as Xenical.
Collapse
Affiliation(s)
- Ronald Jandacek
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center Reading Campus, Cincinnati, OH, United States
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center Reading Campus, Cincinnati, OH, United States
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center Reading Campus, Cincinnati, OH, United States.
| |
Collapse
|
24
|
Ng MY, Song ZJ, Venkatesan G, Rodriguez-Cuenca S, West JA, Yang S, Tan CH, Ho PCL, Griffin JL, Vidal-Puig A, Bassetto M, Hagen T. Conjugating uncoupler compounds with hydrophobic hydrocarbon chains to achieve adipose tissue selective drug accumulation. Sci Rep 2024; 14:4932. [PMID: 38418847 PMCID: PMC10901892 DOI: 10.1038/s41598-024-54466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
One potential approach for treating obesity is to increase energy expenditure in brown and white adipose tissue. Here we aimed to achieve this outcome by targeting mitochondrial uncoupler compounds selectively to adipose tissue, thus avoiding side effects from uncoupling in other tissues. Selective drug accumulation in adipose tissue has been observed with many lipophilic compounds and dyes. Hence, we explored the feasibility of conjugating uncoupler compounds with a lipophilic C8-hydrocarbon chain via an ether bond. We found that substituting the trifluoromethoxy group in the uncoupler FCCP with a C8-hydrocarbon chain resulted in potent uncoupling activity. Nonetheless, the compound did not elicit therapeutic effects in mice, likely as a consequence of metabolic instability resulting from rapid ether bond cleavage. A lipophilic analog of the uncoupler compound 2,6-dinitrophenol, in which a C8-hydrocarbon chain was conjugated via an ether bond in the para-position (2,6-dinitro-4-(octyloxy)phenol), exhibited increased uncoupling activity compared to the parent compound. However, in vivo pharmacokinetics studies suggested that 2,6-dinitro-4-(octyloxy)phenol was also metabolically unstable. In conclusion, conjugation of a hydrophobic hydrocarbon chain to uncoupler compounds resulted in sustained or improved uncoupling activity. However, an ether bond linkage led to metabolic instability, indicating the need to conjugate lipophilic groups via other chemical bonds.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zhi Jian Song
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, Singapore
| | | | - Sergio Rodriguez-Cuenca
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, The University of Cambridge, Cambridge, UK
| | - James A West
- Department of Biochemistry, The University of Cambridge, Cambridge, UK
| | - Shili Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Choon Hong Tan
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| | - Julian L Griffin
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Aberdeen, UK
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, The University of Cambridge, Cambridge, UK
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
25
|
Burkhardt P, Palma-Duran SA, Tuck ARR, Norgren K, Li X, Nikiforova V, Griffin JL, Munic Kos V. Environmental chemicals change extracellular lipidome of mature human white adipocytes. CHEMOSPHERE 2024; 349:140852. [PMID: 38048832 DOI: 10.1016/j.chemosphere.2023.140852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Certain environmental chemicals affect the body's energy balance and are known as metabolism disrupting chemicals (MDCs). MDCs have been implicated in the development of metabolic diseases, such as obesity and type 2 diabetes. In contrast to their well-known impact on developing adipocytes, MDC effects leading to altered energy balance and development of insulin resistance in mature white adipocytes, constituents of adult adipose tissue, are largely unclear. Here, we investigated the effects of six well-established environmental MDCs (bisphenol A (BPA), perfluorooctanoic acid (PFOA), triclosan (TCS), p,p-dichlorodiphenyl-dichloroethylene (ppDDE), tributyltin chloride (TBT) and triphenyl phosphate (TPP)) on mature human white adipocytes derived from mesenchymal stem cells in vitro. We aimed to identify biomarkers and sensitive endpoints of their metabolism disrupting effects. While most of the tested exposures had no effect on adipocyte glucose consumption, lipid storage and assessed gene expression endpoints, the highest concentration of triclosan affected the total lipid storage and adipocyte size, as well as glucose consumption and mRNA expression of the glucose transporter GLUT1, leptin and adiponectin. Additionally, an increased expression of adiponectin was observed with TPP and the positive control PPARγ agonist rosiglitazone. In contrast, the lipidomic analysis of the cell culture medium after a 3-day exposure was extremely sensitive and revealed concentration-dependent changes in the extracellular lipidome of adipocytes exposed to nearly all studied chemicals. While some of the extracellular lipidome changes were specific for the MDC used, some effects were found common to several tested chemicals and included increases in lysophosphatidylcholines, glycerophospholipids and ceramides and a decrease in fatty acids, with possible implications in inflammation, lipid and glucose uptake. This study points to early signs of metabolic disruption and likely systemic effects of mature adipocyte exposure to environmental chemicals, as well as to the need to include lipidomic endpoints in the assessment of adverse effects of MDCs.
Collapse
Affiliation(s)
- Paula Burkhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Susana Alejandra Palma-Duran
- Metabolomics STP, The Francis Crick Institute, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Department of Food Science, Research Center in Food and Development A.C., Hermosillo, Mexico
| | - Astrud R R Tuck
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kalle Norgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xinyi Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Violetta Nikiforova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Julian L Griffin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Mesnage R, Benbrook C. Use of the concept ‘environmentally relevant level’ in linking the results of pesticide toxicity studies to public health outcomes. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2167872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, King's College London, London, UK
- Buchinger Wilhelmi Clinic, Überlingen, Germany
| | - Charles Benbrook
- Heartland Health Research Alliance and Benbrook Consulting Services, Port Orchard, WA, USA
| |
Collapse
|
27
|
Zeidan RS, McElroy T, Rathor L, Martenson MS, Lin Y, Mankowski RT. Sex differences in frailty among older adults. Exp Gerontol 2023; 184:112333. [PMID: 37993077 DOI: 10.1016/j.exger.2023.112333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
By definition, aging is a natural, gradual and continuous process. On the other hand, frailty reflects the increase in vulnerability to stressors and shortens the time without disease (health span) while longevity refers to the length of life (lifespan). The average life expectancy has significantly increased during the last few decades. A longer lifespan has been accompanied by an increase in frailty and decreased independence in older adults, with major differences existing between men and women. For example, women tend to live longer than men but also experience higher rates of frailty and disability. Sex differences prevent optimization of lifestyle interventions and therapies to effectively prevent frailty. Sex differences in frailty and aging are rooted in a complex interplay between uncontrollable (genetic, epigenetic, physiological), and controllable factors (psychosocial and lifestyle factors). Thus, understanding the underlying causes of sex differences in frailty and aging is essential for developing personalized interventions to promote healthy aging and improve quality of life in older men and women. In this review, we have discussed the key contributors and knowledge gaps related to sex differences in aging and frailty.
Collapse
Affiliation(s)
- Rola S Zeidan
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Taylor McElroy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Laxmi Rathor
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Matthew S Martenson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Yi Lin
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Robert T Mankowski
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
28
|
Gao X, Yan D, Li G, Wei Y, He H, Zhai J. Polychlorinated biphenyls and risk of metabolic syndrome and comparison with the risk of diabetes: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165773. [PMID: 37506918 DOI: 10.1016/j.scitotenv.2023.165773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/07/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
With the increasing incidence of metabolic syndrome (MetS) worldwide and no consistent results on PCBs and MetS. A meta-analysis to explore their relationship was conducted. Given the high correlation and overlap of MetS with diabetes, analysis of diabetes risk, was used as a supplement to compare with MetS. Seven studies included MetS, 15 studies for diabetes, and one study included both outcomes. It was found that PCBs may not be a risk factor for MetS, but their high heterogeneity indicates that they are under-represented. In addition, our results showed that total PCBs might be a protective factor against diabetes. In the whole blood subgroup, which can reflect the accumulation of more than one body load, heterogeneity was reduced, and its OR value suggested that PCBs increased the risk of MetS in the whole blood biomaterial. DL-PCBs were positively associated with MetS and diabetes, while NDL-PCBs were negatively associated with diabetes. In the subgroup analysis of PCBs homologs, DL-PCB-126 and DL-PCB-118 were risk factors for MetS and diabetes, respectively. In addition, PCB-153 and 180 showed a dose-response relationship between them and diabetes mellitus, respectively. The results of total analysis of MetS and diabetes mellitus and subgroup analysis of PCBs were mixed, and this reason might be attributed to the different mechanisms of action and effect sizes of different PCBs, so based on subgroup results and in vivo and in vitro experiments, we considered PCBs to be a risk factor for MetS and diabetes. Due to various reasons, there are still many shortcomings in the evaluation of PCBs impact on human health, and more high-quality research are needed to further explore the role of PCBs of different species and congeners in MetS and diabetes.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China.
| |
Collapse
|
29
|
Dueñas-Moreno J, Mora A, Kumar M, Meng XZ, Mahlknecht J. Worldwide risk assessment of phthalates and bisphenol A in humans: The need for updating guidelines. ENVIRONMENT INTERNATIONAL 2023; 181:108294. [PMID: 37935082 DOI: 10.1016/j.envint.2023.108294] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Phthalates and bisphenol A (BPA) are compounds widely used as raw materials in the production of plastics, making them ubiquitous in our daily lives. This results in widespread human exposure and human health hazards. Although efforts have been conducted to evaluate the risk of these compounds in diverse regions around the world, data scattering may mask important trends that could be useful for updating current guidelines and regulations. This study offers a comprehensive global assessment of human exposure levels to these chemicals, considering dietary and nondietary ingestion, and evaluates the associated risk. Overall, the exposure daily intake (EDI) values of phthalates and BPA reported worldwide ranged from 1.11 × 10-7 to 3 700 µg kg bw-1 d-1 and from 3.00 × 10-5 to 6.56 µg kg bw-1 d-1, respectively. Nevertheless, the dose-additive effect of phthalates has been shown to increase the EDI up to 5 100 µg kg bw-1 d-1, representing a high risk in terms of noncarcinogenic (HQ) and carcinogenic (CR) effects. The worldwide HQ values of phthalates and BPA ranged from 2.25 × 10-7 to 3.66 and from 2.74 × 10-7 to 9.72 × 10-2, respectively. Meanwhile, a significant number of studies exhibit high CR values for benzyl butyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP). Moreover, DEHP has shown the highest maximum mean CR values for humans in numerous studies, up to 179-fold higher than BBP. Despite mounting evidence of the harmful effects of these chemicals at low-dose exposure on animals and humans, most regulations have not been updated. Thus, this article emphasizes the need for updating guidelines and public policies considering compelling evidence for the adverse effects of low-dose exposure, and it cautions against the use of alternative plasticizers as substitutes for phthalates and BPA because of the significant gaps in their safety.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico.
| |
Collapse
|
30
|
Camacho-Jiménez L, González-Ruiz R, Yepiz-Plascencia G. Persistent organic pollutants (POPs) in marine crustaceans: Bioaccumulation, physiological and cellular responses. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106184. [PMID: 37769555 DOI: 10.1016/j.marenvres.2023.106184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Persistent organic pollutants (POPs) are ubiquitous in marine ecosystems. These compounds can be accumulated in water, sediments and organisms, persist in time, and have toxic effects in human and wildlife. POPs can be uptaken and bioaccumulated by crustaceans, affecting different physiological processes, including energy metabolism, immunity, osmoregulation, excretion, growth, and reproduction. Nonetheless, animals have evolved sub-cellular mechanisms for detoxification and protection from chemical stress. POPs induce the activity of enzymes involved in xenobiotic metabolism and antioxidant systems, that in vertebrates are importantly regulated at gene expression (transcriptional) level. However, the activation and control of these enzyme systems upon the exposure to POPs have been scarcely studied in invertebrate species, including crustaceans. Herein, we summarize various aspects of the bioaccumulation of POPs in marine crustaceans and their physiological effects. We specially focus on the regulation of xenobiotics metabolism and antioxidant enzymes as key sub-cellular mechanisms for detoxification and protection from chemical stress.
Collapse
Affiliation(s)
- Laura Camacho-Jiménez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, Mexico.
| | - Ricardo González-Ruiz
- Instituto Potosino de Investigación Científica y Tecnológica A.C. (IPICYT A.C.), Camino a La Presa de San José 2055, San Luis Potosí, San Luis Potosí, 78216, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, Mexico
| |
Collapse
|
31
|
Lam G, Noirez P, Djemai H, Youssef L, Blanc E, Audouze K, Kim MJ, Coumoul X, Li SFY. The effects of pollutant mixture released from grafted adipose tissues on fatty acid and lipid metabolism in the skeletal muscles, kidney, heart, and lungs of male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122387. [PMID: 37591324 DOI: 10.1016/j.envpol.2023.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Persistent organic pollutants (POPs) accumulated in the adipose tissue can affect the fatty acid and lipid metabolism in the body. Gas chromatography-mass spectrometry (GC-MS) metabolomics analysis was carried out to study the metabolic changes induced by internal exposure to the POPs in mouse skeletal muscle (soleus, plantaris, and gastrocnemius), kidney, heart, and lungs. Male donor mice were injected with a mixture of 10 POPs at concentrations of 0 × and 5 × lowest-observed-adverse-effect level (LOAEL). Their adipose tissue (AT) containing the POP was then grafted onto the host mice and the metabolic change of the host mice was monitored for 3 or 21 days. The metabolites related to fatty acid and lipid metabolism were studied. For the host mice engrafted with POP-containing fat pad, there was dysregulation of the fatty acids and glycerides observed in all the organs studied 3 days after the graft. However, there was no longer a significant change in the metabolites 21 days after the graft. The difference in significant values and metabolite regulation in each of the skeletal muscles showed that the POP mixture affects different types of skeletal muscle in a heterogeneous manner. Fold change analysis showed that certain metabolites in the kidney of host mice exposed to POPs for 3 days were greatly affected. Using multivariate analysis, apart from the plantaris, most treated groups exposed to POPs for 3 days are well distinguished from the control groups. However, for host mice exposed to POPs for 21 days, apart from the kidney and heart, groups are not well-distinguished from the control group. This study helps bring new insight into the effects of the pollutants mixture released from AT on fatty acid and lipid metabolism at different periods and how the dysregulation of metabolites might result in diseases associated with the organs.
Collapse
Affiliation(s)
- Gideon Lam
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Phillipe Noirez
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France; PSMS, Performance Santé Métrologie Société, Université de Reims Champagne-Ardenne, Reims, France
| | - Haidar Djemai
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Layale Youssef
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Etienne Blanc
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Karine Audouze
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Min Ji Kim
- UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France; Université Sorbonne Paris Nord, Bobigny, France
| | - Xavier Coumoul
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 117543, Singapore.
| |
Collapse
|
32
|
Barrios-Rodríguez R, Garde C, Pérez-Carrascosa FM, Expósito J, Peinado FM, Fernández Rodríguez M, Requena P, Salcedo-Bellido I, Arrebola JP. Associations of accumulated persistent organic pollutants in breast adipose tissue with the evolution of breast cancer after surgery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165373. [PMID: 37419338 DOI: 10.1016/j.scitotenv.2023.165373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
Chronic exposure to persistent organic pollutants (POPs) is suspected to contribute to the onset of breast cancer, but the impact on the evolution of patients after diagnosis is unclear. We aimed to analyze the contribution of long-term exposure to five POPs to overall mortality, cancer recurrence, metastasis, and development of second primary tumors over a global follow-up of 10 years after surgery in breast cancer patients in a cohort study. Between 2012 and 2014, a total of 112 newly diagnosed breast cancer patients were recruited from a public hospital in Granada, Southern Spain. Historical exposure to POPs was estimated by analyzing their concentrations in breast adipose tissue samples. Sociodemographic data were collected through face-to-face interviews, while data on evolution tumor were retrieved from clinical records. Statistical analyses were performed using Cox regression (overall survival, breast cancer recurrence or metastasis) and binary logistic regression models (joint outcome variable). We also tested for statistical interactions of POPs with age, residence, and prognostic markers. The third vs first tertile of hexachlorobenzene concentrations was associated with a lower risk of all-cause mortality (Hazard Ratio, HR = 0.26; 95 % Confidence Interval, CI = 0.07-0.92) and of the appearance of any of the four events (Odds Ratio = 0.37; 95 % CI = 0.14-1.03). Polychlorinated biphenyl 138 concentrations were significantly and inversely associated with risk of metastasis (HR = 0.65; 95 % CI = 0.44-0.97) and tumor recurrence (HR = 0.69; 95 % CI = 0.49-0.98). Additionally, p,p'-dichlorodiphenyldichloroethylene showed inverse associations with risk of metastasis in women with ER-positive tumors (HR = 0.49; 95 % CI = 0.25-0.93) and in those with a tumor size <2.0 cm (HR = 0.39; 95 % CI = 0.18-0.87). The observed paradoxical inverse associations of POP exposure with breast cancer evolution might be related to either a better prognosis of hormone-dependent tumors, which have an approachable pharmacological target, or an effect of sequestration of circulating POPs by adipose tissue.
Collapse
Affiliation(s)
- R Barrios-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - C Garde
- San Cecilio University Hospital, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - F M Pérez-Carrascosa
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - J Expósito
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Virgen de las Nieves University Hospital, Radiation Oncology Department, Oncology Unit, Granada, Spain
| | - F M Peinado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - M Fernández Rodríguez
- Universidad de Granada, Facultad de Farmacia, Departamento de Farmacia y Tecnología Farmacéutica, Granada, Spain
| | - P Requena
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - I Salcedo-Bellido
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - J P Arrebola
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
33
|
Kim J, Kim NH, Youn I, Seo EK, Kim CY. Effects of Allium macrostemon Bunge Extract on Adipose Tissue Inflammation and Hepatic Endoplasmic Reticulum Stress in High-Fat Diet-Fed and Bisphenol A-Treated C57BL/6N Mice. Foods 2023; 12:3777. [PMID: 37893670 PMCID: PMC10606828 DOI: 10.3390/foods12203777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The simultaneous exposure to a high-fat (HF) diet and to bisphenol A (BPA) from delivered foods and food-delivery containers is on the rise in humans, according to the increased frequency of food delivery during the COVID-19 pandemic. This co-exposure could cause harmful tissue toxicity in the human body. Here, the preventive effect of Allium macrostemon Bunge (AM) extract against dysfunction in adipose tissue and the liver under co-exposure to BPA and an HF diet was examined using mice. C57BL/6N mice were divided into four groups (n = 6 or 7/group) according to diet and treatment: control diet with vehicle (CON), HF diet with vehicle (HF), HF diet with an oral injection of BPA (HF + BP), and HF diet with an oral injection of BPA and AM extract (HF + BP + AM). HF feeding increased body weight gain compared to CON feeding, while BP + HF and BP + HF + AM feeding suppressed body weight gain compared with HF feeding. The BP + HF group had lower body weight than the HF group, but the two groups had similar epididymal fat mass. The HF + BP + AM group showed lower pro-inflammatory gene expression levels in adipose tissue and epididymal fat mass compared to the HF + BP group. Altered endoplasmic reticulum (ER) stress response in the liver was partly observed in the HF + BP group, as shown by increased total phosphorylated Jun N-terminal kinase protein levels compared to those in the HF group. In addition, ecdysterone 25-O-β-D-glucopyranoside and 6-gingerol were identified in AM extract by mass spectrometry and molecular networking analysis. In summary, the AM extract diminished adipose tissue inflammation and hepatic ER stress in an HF diet and BPA co-exposure condition. To utilize AM as a potential food component to alleviate the harmful effect of an HF diet and BPA exposure, further research investigating the specific impact of AM extract supplementation using additional experimental groups or various treatment doses is warranted.
Collapse
Affiliation(s)
- Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.K.); (N.-H.K.)
| | - Na-Hyung Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.K.); (N.-H.K.)
| | - Isoo Youn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (I.Y.); (E.K.S.)
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (I.Y.); (E.K.S.)
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.K.); (N.-H.K.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
34
|
Chronister BN, Yang K, Yang AR, Lin T, Tu XM, Lopez-Paredes D, Checkoway H, Suarez-Torres J, Gahagan S, Martinez D, Barr D, Moore RC, Suarez-Lopez JR. Urinary Glyphosate, 2,4-D and DEET Biomarkers in Relation to Neurobehavioral Performance in Ecuadorian Adolescents in the ESPINA Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107007. [PMID: 37819080 PMCID: PMC10566341 DOI: 10.1289/ehp11383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Herbicides are the most used class of pesticides worldwide, and insect repellents are widely used globally. Yet, there is a dearth of studies characterizing the associations between these chemical groups and human neurobehavior. Experimental studies suggest that glyphosate and 2,4-dichlorophenoxyacetic acid (2,4-D) herbicides can affect neurobehavior and the cholinergic and glutamatergic pathways in the brain. We aim to assess whether herbicides and insect repellents are associated with neurobehavioral performance in adolescents. METHODS We assessed 519 participants (11-17 years of age) living in agricultural communities in Ecuador. We quantified urinary concentrations of glyphosate, 2,4-D, and two N,N-diethyl-meta-toluamide (DEET) insect repellent metabolites [3-(diethylcarbamoyl)benzoic acid (DCBA) and 3-(ethylcarbamoyl)benzoic acid (ECBA)] using isotope-dilution mass spectrometry. We assessed neurobehavioral performance using 9 subtests across 5 domains (attention/inhibitory control, memory/learning, language, visuospatial processing, and social perception). We characterized the associations using generalized estimating equations and multiple imputation for metabolites below detection limits. Models were adjusted for demographic and anthropometric characteristics, urinary creatinine, and sexual maturation. Mediation by salivary cortisol, dehydroepiandrosterone, 17 β -estradiol , and testosterone was assessed using structural equation modeling. RESULTS The mean of each neurobehavioral domain score was between 7.0 and 8.7 [standard deviation (SD) range: 2.0-2.3]. Glyphosate was detected in 98.3% of participants, 2,4-D in 66.2%, DCBA in 63.3%, and ECBA in 33.4%. 2,4-D was negatively associated with all neurobehavioral domains, but statistically significant associations were observed with attention/inhibition [score difference per 50% higher metabolite concentration ( β ) = - 0.19 95% confidence interval (CI): - 0.31 , - 0.07 ], language [β = - 0.12 (95% CI: - 0.23 , - 0.01 )], and memory/learning [β = - 0.11 (95% CI: - 0.22 , 0.01)]. Glyphosate had a statistically significant negative association only with social perception [β = - 0.08 (95% CI: - 0.14 , - 0.01 )]. DEET metabolites were not associated with neurobehavioral performance. Mediation by gender and adrenal hormones was not observed. CONCLUSION This study describes worse neurobehavioral performance associated with herbicide exposures in adolescents, particularly with 2,4-D. Replication of these findings among other pediatric and adult populations is needed. https://doi.org/10.1289/EHP11383.
Collapse
Affiliation(s)
- Briana N.C. Chronister
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Kun Yang
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Audrey R. Yang
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Tuo Lin
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Xin M. Tu
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | | | - Harvey Checkoway
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | | | - Sheila Gahagan
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | | | - Dana Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Raeanne C. Moore
- Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Jose R. Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| |
Collapse
|
35
|
Serdaroğlu G, Uludag N, Üstün E. An efficient new method of ytterbium(III) triflate catalysis approach to the synthesis of substituted pyrroles: DFT, ADMET, and molecular docking investigations. Comput Biol Chem 2023; 106:107930. [PMID: 37542846 DOI: 10.1016/j.compbiolchem.2023.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 08/07/2023]
Abstract
In this study, the one-pot synthetic methodology for the preparation of substituted pyrroles with diethyl acetylene-dicarboxylate is reported for the various pyrrole derivatives via the Trifimow synthesis process from oximes. This method also offers the literature as a cyclization pathway using a ytterbium triflate catalyst. Another importance of this study is the use of pyrrole derivatives in pharmaceuticals, biological processes, and agrochemicals. From this point of view, the development of a new catalyst in synthetic organic chemistry and the difference in the method is also important. The syntheses of the target substituted pyrroles are accomplished in high yields. Also, all synthesized structures were confirmed by 1H NMR, 13C NMR, and IR spectra. The DFT computations were leveraged for structural and spectroscopic validation of the compounds. Then, FMO and NBO analyses were subsequently employed to elucidate the reactivity characteristics and intramolecular interactions within these compounds. Also, ADMET indices were ascertained to assess potential pharmacokinetic properties, drug-like qualities, and possible adverse effects of these compounds. Last, optimized molecules were analyzed by molecular docking methods against crystal structures of Bovine Serum Albumin and Leukemia Inhibitory Factor, and their binding affinities, interaction details, and inhibition constants were determined.
Collapse
Affiliation(s)
- Goncagül Serdaroğlu
- Sivas Cumhuriyet University, Faculty of Education, Math. and Sci. Edu., 58140, Sivas, Turkey.
| | - Nesimi Uludag
- Department of Chemistry, Faculty of Arts and Sciences, Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, Ordu University, 52200 Ordu, Turkey
| |
Collapse
|
36
|
Wang F, Liu J, Hernandez R, Park SH, Lai YJ, Wang S, Blumberg B, Zhou C. Adipocyte-Derived PXR Signaling Is Dispensable for Diet-Induced Obesity and Metabolic Disorders in Mice. Drug Metab Dispos 2023; 51:1207-1215. [PMID: 37230767 PMCID: PMC10449100 DOI: 10.1124/dmd.123.001311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Pregnane X receptor (PXR) is a xenobiotic receptor that can be activated by numerous chemicals including endogenous hormones, dietary steroids, pharmaceutical agents, and environmental chemicals. PXR has been established to function as a xenobiotic sensor to coordinately regulate xenobiotic metabolism by regulating the expression of many enzymes and transporters required for xenobiotic metabolism. Recent studies have implicated a potentially important role for PXR in obesity and metabolic disease beyond xenobiotic metabolism, but how PXR action in different tissues or cell types contributes to obesity and metabolic disorders remains elusive. To investigate the role of adipocyte PXR in obesity, we generated a novel adipocyte-specific PXR deficient mouse model (PXRΔAd). Notably, we found that loss of adipocyte PXR did not affect food intake, energy expenditure, and obesity in high-fat diet-fed male mice. PXRΔAd mice also had similar obesity-associated metabolic disorders including insulin resistance and hepatic steatosis as control littermates. PXR deficiency in adipocytes did not affect expression of key adipose genes in PXRΔAd mice. Our findings suggest that adipocyte PXR signaling may be dispensable in diet-induced obesity and metabolic disorders in mice. Further studies are needed to understand the role of PXR signaling in obesity and metabolic disorders in the future. SIGNIFICANCE STATEMENT: The authors demonstrate that deficiency of adipocyte pregnane X receptor (PXR) does not affect diet-induced obesity or metabolic disorders in mice and infers that adipocyte PXR signaling may not play a key role in diet-induced obesity. More studies are needed to understand the tissue-specific role of PXR in obesity.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Jingwei Liu
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Rebecca Hernandez
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Ying-Jing Lai
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Bruce Blumberg
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| |
Collapse
|
37
|
Weis KE, Thompson LM, Streifer M, Guardado I, Flaws JA, Gore AC, Raetzman LT. Pre- and postnatal developmental exposure to the polychlorinated biphenyl mixture aroclor 1221 alters female rat pituitary gonadotropins and estrogen receptor alpha levels. Reprod Toxicol 2023; 118:108388. [PMID: 37127253 PMCID: PMC10228234 DOI: 10.1016/j.reprotox.2023.108388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated-biphenyls (PCBs) are industrial compounds, which were widely used in manufacturing of electrical parts and transformers. Despite being banned in 1979 due to human health concerns, they persist in the environment. In humans and experimental model systems, PCBs elicit toxicity in part by acting as endocrine-disrupting chemicals (EDCs). Aroclor 1221 (A1221) is a weakly estrogenic PCB mixture known to alter reproductive function in rodents. EDCs can impact hormone signaling at any level of the hypothalamic-pituitary-gonadal (HPG) axis, and we investigated the effects of A1221 exposure during the prenatal and postnatal developmental periods on pituitary hormone and steroid receptor expression in female rats. Examining offspring at 3 ages, postnatal day 8 (P8), P32 and P60, we found that prenatal exposure to A1221 increased P8 neonate pituitary luteinizing hormone beta (Lhb) mRNA and LHβ gonadotrope cell number while decreasing LH serum hormone concentration. No changes in pituitary hormone or hormone receptor gene expression were observed peri-puberty at P32. In reproductively mature rats at P60, we found pituitary follicle stimulating hormone beta (Fshb) mRNA levels increased by prenatal A1221 exposure with no corresponding alterations in FSH hormone or FSHβ expressing cell number. Estrogen receptor alpha (ERα) mRNA and protein levels were also increased at P60, but only following postnatal A1221 dosing. Together, these data illustrate that exposure to the PCB A1221, during critical developmental windows, alters pituitary gonadotropin hormone subunits and ERα levels in offspring at different phases of maturation, potentially impacting reproductive function in concert with other components of the HPG axis.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Madeline Streifer
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Isabella Guardado
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois College of Veterinary Medicine, United States
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States.
| |
Collapse
|
38
|
Gourronc FA, Chimenti MS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Hydroxylation markedly alters how the polychlorinated biphenyl (PCB) congener, PCB52, affects gene expression in human preadipocytes. Toxicol In Vitro 2023; 89:105568. [PMID: 36804509 PMCID: PMC10081964 DOI: 10.1016/j.tiv.2023.105568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) accumulate in adipose tissue and are linked to obesity and diabetes. The congener, PCB52 (2,2',5,5'-tetrachorobiphenyl), is found at high levels in school air. Hydroxylation of PCB52 to 4-OH-PCB52 (4-hydroxy-2,2',5,5'-tetrachorobiphenyl) may increase its toxicity. To understand PCB52's role in causing adipose dysfunction, we exposed human preadipocytes to PCB52 or 4-OH-PCB52 across a time course and assessed transcript changes using RNAseq. 4-OH-PCB52 caused considerably more changes in the number of differentially expressed genes as compared to PCB52. Both PCB52 and 4-OH-PCB52 upregulated transcript levels of the sulfotransferase SULT1E1 at early time points, but cytochrome P450 genes were generally not affected. A set of genes known to be transcriptionally regulated by PPARα were consistently downregulated by PCB52 at all time points. In contrast, 4-OH-PCB52 affected a variety of pathways, including those involving cytokine responses, hormone responses, focal adhesion, Hippo, and Wnt signaling. Sets of genes known to be transcriptionally regulated by IL17A or parathyroid hormone (PTH) were found to be consistently downregulated by 4-OH-PCB52. Most of the genes affected by PCB52 and 4-OH-PCB52 were different and, of those that were the same, many were changed in an opposite direction. These studies provide insight into how PCB52 or its metabolites may cause adipose dysfunction to cause disease.
Collapse
Affiliation(s)
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States.
| |
Collapse
|
39
|
González-Casanova JE, Bermúdez V, Caro Fuentes NJ, Angarita LC, Caicedo NH, Rivas Muñoz J, Rojas-Gómez DM. New Evidence on BPA's Role in Adipose Tissue Development of Proinflammatory Processes and Its Relationship with Obesity. Int J Mol Sci 2023; 24:ijms24098231. [PMID: 37175934 PMCID: PMC10179730 DOI: 10.3390/ijms24098231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a xenobiotic with endocrine disruptor properties which interacts with various receptors, eliciting a cellular response. In the plastic industry, BPA is widely used in the production of polycarbonate and epoxy-phenolic resins to provide elastic properties. It can be found in the lining of canned foods, certain plastic containers, thermal printing papers, composite dental fillings, and medical devices, among other things. Therefore, it is a compound that, directly or indirectly, is in daily contact with the human organism. BPA is postulated to be a factor responsible for the global epidemic of obesity and non-communicable chronic diseases, belonging to the obesogenic and diabetogenic group of compounds. Hence, this endocrine disruptor may be responsible for the development of metabolic disorders, promoting in fat cells an increase in proinflammatory pathways and upregulating the expression and release of certain cytokines, such as IL6, IL1β, and TNFα. These, in turn, at a systemic and local level, are associated with a chronic low-grade inflammatory state, which allows the perpetuation of the typical physiological complications of obesity.
Collapse
Affiliation(s)
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Nelson Javier Caro Fuentes
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avda. Ejército 146, Santiago 8320000, Chile
| | - Lissé Chiquinquirá Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción, Talcahuano 4260000, Chile
| | - Nelson Hernando Caicedo
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali 760031, Colombia
| | - Jocelyn Rivas Muñoz
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile
| | - Diana Marcela Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile
| |
Collapse
|
40
|
Dauwe Y, Mary L, Oliviero F, Grimaldi M, Balaguer P, Gayrard V, Mselli-Lakhal L. Steatosis and Metabolic Disorders Associated with Synergistic Activation of the CAR/RXR Heterodimer by Pesticides. Cells 2023; 12:cells12081201. [PMID: 37190111 DOI: 10.3390/cells12081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
The nuclear receptor, constitutive androstane receptor (CAR), which forms a heterodimer with the retinoid X receptor (RXR), was initially reported as a transcription factor that regulates hepatic genes involved in detoxication and energy metabolism. Different studies have shown that CAR activation results in metabolic disorders, including non-alcoholic fatty liver disease, by activating lipogenesis in the liver. Our objective was to determine whether synergistic activations of the CAR/RXR heterodimer could occur in vivo as described in vitro by other authors, and to assess the metabolic consequences. For this purpose, six pesticides, ligands of CAR, were selected, and Tri-butyl-tin (TBT) was used as an RXR agonist. In mice, CAR's synergic activation was induced by dieldrin associated with TBT, and combined effects were induced by propiconazole, bifenox, boscalid, and bupirimate. Moreover, a steatosis, characterized by increased triglycerides, was observed when TBT was combined with dieldrin, propiconazole, bifenox, boscalid, and bupirimate. Metabolic disruption appeared in the form of increased cholesterol and lowered free fatty acid plasma levels. An in-depth analysis revealed increased expression of genes involved in lipid synthesis and lipid import. These results contribute to the growing understanding of how environmental contaminants can influence nuclear receptor activity and associated health risks.
Collapse
Affiliation(s)
- Yannick Dauwe
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Lucile Mary
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-Université Montpellier-Institut régional du Cancer Montpellier, CEDEX 5, F-34298 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-Université Montpellier-Institut régional du Cancer Montpellier, CEDEX 5, F-34298 Montpellier, France
| | - Véronique Gayrard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Laïla Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| |
Collapse
|
41
|
Mohan S, Barel LA, Benrahla DE, Do B, Mao Q, Kitagishi H, Rivard M, Motterlini R, Foresti R. Development of carbon monoxide-releasing molecules conjugated to polysaccharides (glyco-CORMs) for delivering CO during obesity. Pharmacol Res 2023; 191:106770. [PMID: 37068532 DOI: 10.1016/j.phrs.2023.106770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Metal carbonyls have been developed as carbon monoxide-releasing molecules (CO-RMs) to deliver CO for therapeutic purposes. The manganese-based CORM-401 has been recently reported to exert beneficial effects in obese animals by reducing body weight gain, improving glucose metabolism and reprogramming adipose tissue towards a healthy phenotype. Here, we report on the synthesis and characterization of glyco-CORMs, obtained by grafting manganese carbonyls on dextrans (70 and 40kDa), based on the fact that polysaccharides facilitate the targeting of drugs to adipose tissue. We found that glyco-CORMs efficiently deliver CO to cells in vitro with higher CO accumulation in adipocytes compared to other cell types. Oral administration of two selected glyco-CORMs (5b and 6b) resulted in CO accumulation in various organs, including adipose tissue. In addition, glyco-CORM 6b administered for eight weeks elicited anti-obesity and positive metabolic effects in mice fed a high fat diet. Our study highlights the feasibility of creating carriers with multiple functionalized CO-RMs.
Collapse
Affiliation(s)
- Shruti Mohan
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France.
| | | | | | - Bernard Do
- Materials and Health, University Paris-Saclay, 91400 Orsay, France; Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France.
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Michael Rivard
- ICMPE (UMR 7182), CNRS, UPEC, University Paris Est, F-94320 Thiais, France.
| | | | - Roberta Foresti
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France.
| |
Collapse
|
42
|
Kong Y, Wen Y, Su G, Peng Y, Cui X. Tissue-specific uptake and distribution of liquid crystal monomers (LCMs) in mice. ENVIRONMENT INTERNATIONAL 2023; 174:107894. [PMID: 37003217 DOI: 10.1016/j.envint.2023.107894] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Increasing evidence indicated that liquid crystal monomers (LCMs) in liquid crystal displays can be released into the environment, and ubiquitously detected in environmental matrices and even human bodies. Yet databases regarding its uptake and distribution in mammals are lacking. In this study, four LCMs (namely 3dFB, 2OdF3B, 2teFT, and 6OCB) with various physiochemical properties and structures were selected as the target compounds. The LCMs were in vivo and in vitro exposed to mice and rat liver microsomes (RLM). LCMs were found in all mouse tissues, including brain. Pharmacokinetics parameters, Cmax-tissue/Cmax-blood, ranged from 27.5 to 214, indicating the preferential deposition of LCMs to tissues rather than blood. The LCMs distributed preferentially to lipophilic tissues, and relative mass contribution of LCMs from liver and adipose was 43-98 %. The physicochemical properties (i.e., Kow, molecular weight, and functional groups) had pronounced effect on distribution and accumulation of LCMs. The 2teFT with the highest Kow and molecular weight showed the relatively higher accumulation potential and half elimination time in all the tissues. The 6OCB containing cyano-group was more accumulative than the fluorinated 3dFB with the comparable Kow. In RLM assays, 2teFT and 6OCB were resistant to metabolic degradation. While 3dFB and 2OdF3B underwent rapid degradation with 93.7 % and 72.4 % being metabolized at 360 min. Findings in this study bear significant implications for the biomonitoring and overall risk evaluation of LCMs.
Collapse
Affiliation(s)
- Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
43
|
Reina-Pérez I, Artacho-Cordón F, Mustieles V, Castellano-Castillo D, Cardona F, Jiménez-Díaz I, López-Medina JA, Alcaide J, Ocaña-Wilhelmi L, Iribarne-Durán LM, Arrebola JP, Olea N, Tinahones FJ, Fernández MF. Cross-sectional associations of persistent organic pollutants measured in adipose tissue and metabolic syndrome in clinically diagnosed middle-aged adults. ENVIRONMENTAL RESEARCH 2023; 222:115350. [PMID: 36709023 DOI: 10.1016/j.envres.2023.115350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/27/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Although often overlooked in clinical settings, accumulation of persistent organic pollutants (POPs) in visceral adipose tissue (VAT) is thought to be a relevant risk factor for metabolic syndrome (MetS). METHODS One hundred and seventeen patients undergoing non-oncological surgery were randomly recruited and classified as MetS + if presented 3 out of the 5 MetS components: waist circumference (WC), systolic and diastolic blood pressure (SBP and DBP, respectively), serum glucose, insulin, triglycerides (TG) and high-density lipoprotein (HDL) cholesterol levels, according International Diabetes Federation (IDF) criteria. Seventeen organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were measured in adipose tissue samples. Linear, logistic and weighted quantile sum (WQS) regression models, adjusted for age and sex, were performed. RESULTS One third of the participants were males (36.8%) with a median age of 44 years, showing clinical evidences of MetS (35.0%). Adjusted linear regression models showed that WC correlated positively with all OCP concentrations. Higher fasting serum glucose levels were related to higher HCB and γ-HCH concentrations. The remaining OCPs and PCBs were not associated with this MetS component. HCB was inversely associated with HDL cholesterol levels, while PCB-180 was positively associated. HCB and γ-HCH concentrations were also positively correlated with DBP and SBP levels. PCB-138 was also positively associated with SBP. Adjusted logistic models revealed that exposure to HCB and γ-HCH were associated with increased odds of MetS [ORs (95%CI) 1.53 (1.22-1.92) and 1.39 (1.10-1.76) respectively; p < 0.01]. No associations were observed for the remaining POPs. WQS models showed a positive and significant mixture effect of POPs on the odds of MetS (exp [beta] = 2.34; p < 0.001), with γ-HCH (52.9%), o,p'-DDT (26.9%) and HCB (19.7%) driving the association. CONCLUSIONS Our findings support that POPs accumulated in VAT, specifically HCB and (gamma)-HCH, are associated with both isolated components and clinically diagnosed SMT.
Collapse
Affiliation(s)
- Iris Reina-Pérez
- Centro de Investigación Biomédica y Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain
| | - Francisco Artacho-Cordón
- Centro de Investigación Biomédica y Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), E-28029 Madrid, Spain
| | - Vicente Mustieles
- Centro de Investigación Biomédica y Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), E-28029 Madrid, Spain
| | - Daniel Castellano-Castillo
- Unidad de Gestión Clínica Intercentro de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA-29010 Málaga, Spain
| | - Fernando Cardona
- Department of Surgical Specialties, Biochemistry and Immunology School of Medicine, University of Malaga, 29010 Málaga, Spain; Unidad de Gestión Clínica de Pediatría, Hospital Universitario Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
| | | | - Jose A López-Medina
- Unidad de Gestión Clínica de Endocrinología, Hospital Universitario Virgen de la Victoria. Instituto de Investigación Biomédica de Málaga (IBIMA), E-29010 Málaga, Spain
| | - Juan Alcaide
- Unidad de Gestión Clínica de Endocrinología, Hospital Universitario Virgen de la Victoria. Instituto de Investigación Biomédica de Málaga (IBIMA), E-29010 Málaga, Spain
| | - Luis Ocaña-Wilhelmi
- Unidad de Cirugía Metabólica, Hospital Clínico Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | | | - Juan P Arrebola
- Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), E-28029 Madrid, Spain; Departmento de Medicina Preventiva y Salud Pública, Facultad de Medicina Universidad de Granada, E-18016 Granada, Spain
| | - Nicolás Olea
- Centro de Investigación Biomédica y Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), E-28029 Madrid, Spain
| | - Francisco J Tinahones
- Unidad de Gestión Clínica de Pediatría, Hospital Universitario Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, (CIBERobn), E-28029 Madrid, Spain.
| | - Mariana F Fernández
- Centro de Investigación Biomédica y Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), E-28029 Madrid, Spain.
| |
Collapse
|
44
|
Mahfouz Y, Harmouche-Karaki M, Matta J, Mahfouz M, Salameh P, Younes H, Helou K, Finan R, Abi-Tayeh G, Meslimani M, Moussa G, Chahrour N, Osseiran C, Skaiky F, Narbonne JF. Serum levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in a sample of Lebanese pregnant women: The role of dietary, anthropometric, and environmental factors. ENVIRONMENTAL RESEARCH 2023; 216:114647. [PMID: 36367504 DOI: 10.1016/j.envres.2022.114647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are unintentionally produced, toxic environmental chemicals that persist for long years and bioaccumulate along the food chain, contaminating humans through diet. A particularly critical population subgroup is pregnant women given the adverse health effects on fetuses and newborns. Several anthropogenic sources of exposure to PCDD/Fs exist in Lebanon. Therefore, the aim of the present cross-sectional study is to measure the levels of PCDD/Fs in a sample of pregnant women in Lebanon and to explore potential associated factors. In this study, we measured serum concentrations of seven dioxins and ten furans, among 423 pregnant women recruited at delivery, using gas chromatography MS/MS. Among 269 participants, maternal sociodemographic information was collected including vicinity to landfills, incineration, pesticide use, industrial activity, and smoking. Anthropometric data were registered regarding pre-pregnancy body mass index (BMI), pre-pregnancy weight loss from restrictive diet, and gestational weight gain. Intake of major food groups generally related to PCDD/Fs was reported (fish, red meat, poultry, and dairy). Bivariate and multivariate analyses were performed to identify associations. PCDD/Fs were detected in 0 to 56.1% of the sample. Geometric mean concentrations were 75.5 (2.35) pg/g lipid and 2.25 (1.39) TEQ2005 pg/g lipid for total dioxins, and 2.66 (1.76) pg/g lipid and 0.34 (1.78) TEQ2005 pg/g lipid for total furans. Levels were relatively lower than levels previously observed in France, Germany, Mexico, Ghana, and Japan. Red meat consumption was the most consistently associated factor with a 2.38-2.57 fold increase in PCDD/F levels. Pre-pregnancy weight loss showed inverse associations with PCDD/F congeners. Vicinity to illegal incineration was also associated with a 2.32-2.43 fold increase in PCDD/F levels. In conclusion, results showed the importance of dietary, anthropometric, and environmental factors in the present sample's exposure to PCDD/Fs, in a region that contains anthropogenic sources of contamination.
Collapse
Affiliation(s)
- Yara Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Mireille Harmouche-Karaki
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Joseph Matta
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon; Industrial Research Institute, Lebanese University Campus, Hadath Baabda, Lebanon.
| | - Maya Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Pascale Salameh
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadath, Lebanon; School of Medicine, Lebanese American University, Byblos, Lebanon; Institut National de Santé Publique d'Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Lebanon; Department of Primary Care and Population Health, University of Nicosia Medical School, 2417, Nicosia, Cyprus.
| | - Hassan Younes
- UniLaSalle University, 19 Pierre Waguet Street, 60026 Beauvais, France.
| | - Khalil Helou
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Ramzi Finan
- Lebanese Society of Obstetrics and Gynecology, Adliye, Beit El- Tabib - 3rd Floor, Beirut, Lebanon; Faculty of Medicine, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, Beirut, Lebanon; Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, P.O.B. 166830, Beirut, Lebanon.
| | - Georges Abi-Tayeh
- Faculty of Medicine, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, Beirut, Lebanon; Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, P.O.B. 166830, Beirut, Lebanon; Lebanese Fertility Society, Adliye, Beit El- Tabib, Beirut, Lebanon.
| | | | - Ghada Moussa
- Department of Obstetrics and Gynecology, Chtoura Hospital, Zahle, Beqaa, Lebanon.
| | - Nada Chahrour
- Department of Obstetrics and Gynecology, SRH University Hospital, Nabatieh, Lebanon.
| | - Camille Osseiran
- Department of Obstetrics and Gynecology, Kassab Hospital, Saida, Lebanon.
| | - Farouk Skaiky
- Department of Molecular Biology, General Management, Al Karim Medical Laboratories, Saida, Lebanon; Faculty of Public Health, Lebanese University, Saida, Lebanon.
| | | |
Collapse
|
45
|
Wang B, Steinberg GR. Environmental toxicants, brown adipose tissue, and potential links to obesity and metabolic disease. Curr Opin Pharmacol 2022; 67:102314. [PMID: 36334331 DOI: 10.1016/j.coph.2022.102314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
Rates of human obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) have risen faster than anticipated and cannot solely be explained by excessive caloric intake or physical inactivity. Importantly, this effect is also observed in many other domesticated and non-domesticated mammals, which has led to the hypothesis that synthetic environmental pollutants may be contributing to disease development. While the impact of these chemicals on appetite and adipogenesis has been extensively studied, their potential role in reducing energy expenditure is less studied. An important component of whole-body energy expenditure is adaptive and diet-induced thermogenesis in human brown adipose tissue (BAT). This review summarizes recent evidence that environmental pollutants such as the pesticide chlorpyrifos inhibit BAT function, diet-induced thermogenesis and the potential signaling pathways mediating these effects. Lastly, we discuss the importance of housing experimental mice at thermoneutrality, rather than room temperature, to maximize the translation of findings to humans.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Canada; Division of Endocrinology and Metabolism, Department of Medicine, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
| |
Collapse
|
46
|
Pérez-Carrascosa FM, Barrios-Rodríguez R, Gómez-Peña C, Salcedo-Bellido I, Velasco-García ME, Jiménez-Moleón JJ, García-Ruiz A, Navarro-Espigares JL, Requena P, Muñoz-Sánchez C, Arrebola JP. Public healthcare costs associated with long-term exposure to mixtures of persistent organic pollutants in two areas of Southern Spain: A longitudinal analysis. ENVIRONMENTAL RESEARCH 2022; 213:113609. [PMID: 35667403 DOI: 10.1016/j.envres.2022.113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polychlorinated biphenyls and organochlorine pesticides are persistent organic pollutants (POPs) that had been banned or restricted in many countries, including Spain. However, their ubiquity still poses environmental and human health threats. OBJECTIVE To longitudinally explore public healthcare costs associated with long-term exposure to a mixture of 8 POPs in a cohort of residents of two areas of Granada Province, Southern Spain. METHODS Longitudinal study in a subsample (n = 385) of GraMo adult cohort. Exposure assessment was performed by analyzing adipose tissue POP concentrations at recruitment. Average primary care (APC) and average hospital care (AHC) expenditures of each participant over 14 years were estimated using the data from their medical records. Data analyses were performed by robust MM regression, weighted quantile sum regression (WQS) and G-computation analysis. RESULTS In the adjusted robust MM models for APC, most POPs showed positive beta coefficients, being Hexachlorobenzene (HCB) significantly associated (β: 1.87; 95% Confidence interval (95%CI): 0.17, 3.57). The magnitude of this association increased (β: 3.72; 95%CI: 0.80, 6.64) when the analyses were restricted to semi-rural residents, where β-HCH was also marginally-significantly associated to APC (β: 3.40; 95%CI: -0.10, 6.90). WQS revealed a positive but non-significant mixture association with APC (β: 0.14; 95%CI: -0.06, 0.34), mainly accounted for by β-HCH (54%) and HCB (43%), that was borderline-significant in the semi-rural residents (β: 0.23; 95%CI: -0.01, 0.48). No significant results were observed in G-Computation analyses. CONCLUSION Long-term exposure to POP mixtures might represent a modifiable factor increasing healthcare costs, thus affecting the efficiency of the healthcare systems. However, and owing the complexity of the potential causal pathways and the limitations of the present study, further research is warranted to fully elucidate ascertain whether interventions to reduce human exposure should be considered in healthcare policies.
Collapse
Affiliation(s)
- Francisco Miguel Pérez-Carrascosa
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; Servicio de Oncología Radioterápica, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Rocío Barrios-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Celia Gómez-Peña
- Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; Servicio de Farmacia Hospitalaria, Hospital Universitario San Cecilio, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - José Juan Jiménez-Moleón
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Antonio García-Ruiz
- Departamento de Farmacología y Pediatría, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - José Luis Navarro-Espigares
- Universidad de Granada, Departamento de Economía Internacional y de España, Granada, Spain; Dirección Económica y Servicios Generales, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Pilar Requena
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carmen Muñoz-Sánchez
- Unidad de Tecnologías de La Información y Comunicaciones, Hospital Universitario San Cecilio, Granada, Spain
| | - Juan Pedro Arrebola
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
47
|
Migliaccio V, Putti R, Scudiero R. Metallothionein gene expression in rat tissues: response to dietary restriction after orally dichlorodiphenyldichloroethylene (DDE) exposure and high-fat feeding. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:859-864. [PMID: 36173099 DOI: 10.1080/03601234.2022.2127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dichlorodiphenyldichloroethylene (DDE) is an environmental pollutant that accumulates in adipose tissue through the food chain. Hypercaloric, high-fat diet is considered to promote the accumulation of toxic lipophilic substances in tissues, whereas the loss of body fat through caloric restriction results in a recirculation of these substances. In rats, oral administration of DDE causes the onset of tissues damage; the concomitant intake of a high-fat diet ameliorates tissues status, probably because of the entrapment of the lipophilic substance in fat depots. Recent evidence demonstrates that DDE alters the expression of metallothioneins, proteins involved in cellular defense from oxidative stress, in a diet- and tissue-specific manner. This study is aimed to verify if 2 weeks of caloric restriction after the oral DDE treatment can modify metallothionein gene expression in tissues of high-fat fed rats. Real-time PCR analysis demonstrates that metallothionein gene expression after calorie restriction is tissue-specific and strongly influenced by both previous dietary conditions and DDE exposure. To avoid misleading conclusions on the interference of toxic xenobiotics on metallothionein gene expression is particularly important to consider the tissue, the cellular conditions, and the nutritional status of the animals, especially when the protein is used as an index of cells health.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Fisciano (Sa), Italy
| | - Rosalba Putti
- Department of Biology, University Federico II, Napoli, Italy
| | | |
Collapse
|
48
|
Salazar-Flores J, Lomelí-Martínez SM, Ceja-Gálvez HR, Torres-Jasso JH, Torres-Reyes LA, Torres-Sánchez ED. Impacts of Pesticides on Oral Cavity Health and Ecosystems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11257. [PMID: 36141526 PMCID: PMC9517265 DOI: 10.3390/ijerph191811257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Pesticides are chemical substances used to control, prevent, or destroy agricultural, domestic, and livestock pests. These compounds produce adverse changes in health, and they have been associated with the development of multiple chronic diseases. This study aimed to present a detailed review of the effect of pesticides on the oral cavity and the oral microbiome. In the oral cavity, pesticides alter and/or modify tissues and the microbiome, thereby triggering imbalance in the ecosystem, generating an inflammatory response, and activating hydrolytic enzymes. In particular, the imbalance in the oral microbiome creates a dysbiosis that modifies the number, composition, and/or functions of the constituent microorganisms and the local response of the host. Pesticide exposure alters epithelial cells, and oral microbiota, and disrupts the homeostasis of the oral environment. The presence of pesticides in the oral cavity predisposes the appearance of pathologies such as caries, periodontal diseases, oral cancer, and odontogenic infections. In this study, we analyzed the effect of organochlorines, organophosphates, pyrethroids, carbamates, bipyridyls, and triazineson oral cavity health and ecosystems.
Collapse
Affiliation(s)
- Joel Salazar-Flores
- Department of Medical and Life Sciences, University Center of La Cienega (CUCIENEGA), University of Guadalajara, Ocotlan 47810, Jalisco, Mexico
| | - Sarah M. Lomelí-Martínez
- Department of Medical and Life Sciences, University Center of La Cienega (CUCIENEGA), University of Guadalajara, Ocotlan 47810, Jalisco, Mexico
- Department of Integral Dental Clinics, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Hazael R. Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Juan H. Torres-Jasso
- Department of Biological Sciences, University Center of La Costa (CUCOSTA), University of Guadalajara, Puerto Vallarta 48280, Jalisco, Mexico
| | - Luis A. Torres-Reyes
- Department of Molecular Biology and Genomics, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Erandis D. Torres-Sánchez
- Department of Medical and Life Sciences, University Center of La Cienega (CUCIENEGA), University of Guadalajara, Ocotlan 47810, Jalisco, Mexico
| |
Collapse
|
49
|
Li W, Bischel HN. Are resource recovery insects safe for feed and food? A screening approach for bioaccumulative trace organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155850. [PMID: 35568168 DOI: 10.1016/j.scitotenv.2022.155850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Most bioaccumulation assessments select one or several compound classes a priori for analysis performed by either liquid or gas chromatography coupled with mass spectrometry (LC-MS or GC-MS). When organisms are exposed to complex mixtures of trace organic contaminants (TOrCs), targeted chemical assays limit understanding of contaminant profiles in biological tissues and associated risks. We used a semi-quantitative suspect-screening approach to assess the bioaccumulation potential of diverse TOrCs in black soldier fly larvae (BSFL) using almond hulls (by-products of the booming almond industry in California) as test substrates. BSFL digestion is gaining traction as a resource recovery strategy to generate animal feed from low-value organic wastes. We screened almond hulls from six California farms for the presence of 5728 TOrCs using high resolution mass spectrometry. We then categorized the risk potential of 46 TOrCs detected in the hulls based on their predicted bioaccumulation, persistence, and toxicity in order to select two hulls for an in situ BSFL bioaccumulation screening study. We analyzed larvae tissues and feeding substrate initially and after 14 days of growth using targeted, suspect-screening, and nontarget-screening methods. The survival rate of BSFL in all rearing reactors was greater than 90%, indicating low toxicity of the substrates to BSFL. Esfenvalerate, cyhalothrin, and bifenthrin were the most abundant pyrethroids quantified (81.7 to 381.6 ng/g-dw) in the hulls. Bifenthrin bioaccumulated in BSFL tissues (14-day bioaccumulation factor, BAF, of 2.17 ± 0.24). For nontarget analysis, kendrick mass defect (KMD) analysis of PFAS homologous series revealed hydrogen-substituted perfluoroalkyl carboxylic acids (H-PFCAs) in the hulls and BSFL tissues after growth. Our approach demonstrates the utility of suspect-screening in chemical safety assessments when organic wastes with highly diverse and variable contaminant profiles are used in resource recovery pipelines.
Collapse
Affiliation(s)
- Wenting Li
- Department of Civil and Environmental Engineering, University of California Davis, California 95616, United States
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, California 95616, United States.
| |
Collapse
|
50
|
Glover F, Eisenberg ML, Belladelli F, Del Giudice F, Chen T, Mulloy E, Caudle WM. The association between organophosphate insecticides and blood pressure dysregulation: NHANES 2013-2014. Environ Health 2022; 21:74. [PMID: 35934697 PMCID: PMC9358881 DOI: 10.1186/s12940-022-00887-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/29/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Organophosphate (OP) insecticides represent one of the largest classes of sprayed insecticides in the U.S., and their use has been associated with various adverse health outcomes, including disorders of blood pressure regulation such as hypertension (HTN). METHODS In a study of 935 adults from the NHANES 2013-2014 cycle, we examined the relationship between systolic and diastolic blood pressure changes and urinary concentrations of three OP insecticides metabolites, including 3,5,6-trichloro-2-pyridinol (TCPy), oxypyrimidine, and para-nitrophenol. These metabolites correspond to the parent compounds chlorpyrifos, diazinon, and methyl parathion, respectively. Weighted, multivariable linear regression analysis while adjusting for potential confounders were used to model the relationship between OP metabolites and blood pressure. Weighted, multivariable logistic regression analysis was used to model the odds of HTN for quartile of metabolites. RESULTS We observed significant, inverse association between TCPy on systolic blood pressure (β-estimate = -0.16, p < 0.001) and diastolic blood pressure (β-estimate = -0.15, p < 0.001). Analysis with para-nitrophenol revealed a significant, positive association with systolic blood pressure (β-estimate = 0.03, p = 0.02), and an inverse association with diastolic blood pressure (β-estimate = -0.09, p < 0.001). For oxypyrimidine, we observed significant, positive associations between systolic blood pressure (β-estimate = 0.58, p = 0.03) and diastolic blood pressure (β-estimate = 0.31, p < 0.001). Furthermore, we observed significant interactions between TCPy and ethnicity on systolic blood pressure (β-estimate = 1.46, p = 0.0036). Significant interaction terms were observed between oxypyrimidine and ethnicity (β-estimate = -1.73, p < 0.001), as well as oxypyrimidine and BMI (β-estimate = 1.51 p < 0.001) on systolic blood pressure, and between oxypyrimidine and age (β-estimate = 1.96, p = 0.02), race (β-estimate = -3.81 p = 0.004), and BMI on diastolic blood pressure (β-estimate = 0.72, p = 0.02). A significant interaction was observed between para-nitrophenol and BMI for systolic blood pressure (β-estimate = 0.43, p = 0.01), and between para-nitrophenol and ethnicity on diastolic blood pressure (β-estimate = 2.19, p = 0.006). Lastly, we observed a significant association between the odds of HTN and TCPy quartiles (OR = 0.65, 95% CI [0.43,0.99]). CONCLUSION Our findings support previous studies suggesting a role for organophosphate insecticides in the etiology of blood pressure dysregulation and HTN. Future studies are warranted to corroborate these findings, evaluate dose-response relationships between organophosphate insecticides and blood pressure, determine clinical significance, and elucidate biological mechanisms underlying this association.
Collapse
Affiliation(s)
- Frank Glover
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Michael L. Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Federico Belladelli
- Department of Maternal-Infant and Urological Sciences, “Sapienza” Rome University, Policlinico Umberto I Hospital, Rome, Italy
| | - Francesco Del Giudice
- Department of Maternal-Infant and Urological Sciences, “Sapienza” Rome University, Policlinico Umberto I Hospital, Rome, Italy
| | - Tony Chen
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Evan Mulloy
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - W. Michael Caudle
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|