1
|
Hildebrand T, Ma Q, Loca D, Rubenis K, Locs J, Nogueira LP, Haugen HJ. Improved visualisation of ACP-engineered osteoblastic spheroids: a comparative study of contrast-enhanced micro-CT and traditional imaging techniques. Biofabrication 2024; 17:015016. [PMID: 39467387 DOI: 10.1088/1758-5090/ad8bf5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
This study investigates osteoblastic cell spheroid cultivation methods, exploring flat-bottom, U-bottom, and rotary flask techniques with and without amorphous calcium phosphate (ACP) supplementation to replicate the 3D bone tissue microenvironment. ACP particles derived from eggshell waste exhibit enhanced osteogenic activity in 3D models. However, representative imaging of intricate 3D tissue-engineered constructs poses challenges in conventional imaging techniques due to notable scattering and absorption effects in light microscopy, and hence limited penetration depth. We investigated contrast-enhanced micro-CT as a methodological approach for comprehensive morphological 3D-analysis of thein-vitromodel and compared the technique with confocal laser scanning microscopy, scanning electron microscopy and classical histology. Phosphotungstic acid and iodine-based contrast agents were employed for micro-CT imaging in laboratory and synchrotron micro-CT imaging. Results revealed spheroid shape variations and structural integrity influenced by cultivation methods and ACP particles. The study underscores the advantage of 3D spheroid models over traditional 2D cultures in mimicking bone tissue architecture and cellular interactions, emphasising the growing demand for novel imaging techniques to visualise 3D tissue-engineered models. Contrast-enhanced micro-CT emerges as a promising non-invasive imaging method for tissue-engineered constructs containing ACP particles, offering insights into sample morphology, enabling virtual histology before further analysis.
Collapse
Affiliation(s)
- Torben Hildebrand
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Kristaps Rubenis
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Liebert Parreiras Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| |
Collapse
|
2
|
Watanabe A, Arqam I, Taylor MJ, Molnar JL. Revisiting Old Questions With New Methods: The Effect of Embryonic Motility on Skull Development in the Domestic Chick. J Morphol 2024; 285:e21785. [PMID: 39434454 DOI: 10.1002/jmor.21785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Muscle loading is known to influence skeletal morphology. Therefore, modification of the biomechanical environment is expected to cause coordinated morphological changes to the bony and cartilaginous tissues. Understanding how this musculoskeletal coordination contributes to morphological variation has relevance to health sciences, developmental biology, and evolutionary biology. To investigate how muscle loading influences skeletal morphology, we replicate a classic in ovo embryology experiment in the domestic chick (Gallus gallus domesticus) while harnessing modern methodologies that allow us to quantify skeletal anatomy more precisely and in situ. We induced rigid muscle paralysis in developing chicks mid-incubation, then compared the morphology of the cranium and mandible between immobilized and untreated embryos using microcomputed tomography and landmark-based geometric morphometric methods. Like earlier studies, we found predictable differences in the size and shape of the cranium and mandible in paralyzed chicks. These differences were concentrated in areas known to experience high strains during feeding, including the jaw joint and jaw muscle attachment sites. These results highlight specific areas of the skull that appear to be mechanosensitive and suggest muscles that could produce the biomechanical stimuli necessary for normal hatchling morphology. Interestingly, these same areas correspond to areas that show the greatest disparity and fastest evolutionary rates across the avian diversity, which suggests that the musculoskeletal integration observed during development extends to macroevolutionary scales. Thus, selection and evolutionary changes to muscle physiology and architecture could generate large and predictable changes to skull morphology. Building upon previous work, the adoption of modern imaging and morphometric techniques allows richer characterization of musculoskeletal integration that empowers researchers to understand how tissue-to-tissue interactions contribute to overall phenotypic variation.
Collapse
Affiliation(s)
- Akinobu Watanabe
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York, USA
- Division of Paleontology, American Museum of Natural History, New York, New York, USA
- Life Sciences Department, Natural History Museum, London, UK
| | - Izza Arqam
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Meredith J Taylor
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Julia L Molnar
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
3
|
Ziadi-Künzli F, Maeda K, Puchenkov P, Bandi MM. Anatomical insights into fish terrestrial locomotion: A study of barred mudskipper (Periophthalmus argentilineatus) fins based on μCT 3D reconstructions. J Anat 2024; 245:593-624. [PMID: 38845054 PMCID: PMC11424826 DOI: 10.1111/joa.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/11/2024] [Accepted: 05/15/2024] [Indexed: 09/27/2024] Open
Abstract
Mudskippers are a group of extant ray-finned fishes with an amphibious lifestyle and serve as exemplars for understanding the evolution of amphibious capabilities in teleosts. A comprehensive anatomical profile of both the soft and hard tissues within their propulsive fins is essential for advancing our understanding of terrestrial locomotor adaptations in fish. Despite the ecological significance of mudskippers, detailed data on their musculoskeletal anatomy remains limited. In the present research, we utilized contrast-enhanced high-resolution microcomputed tomography (μCT) imaging to investigate the barred mudskipper, Periophthalmus argentilineatus. This technique enabled detailed reconstruction and quantification of the morphological details of the pectoral, pelvic, and caudal fins of this terrestrial mudskipper, facilitating comparison with its aquatic relatives. Our findings reveal that P. argentilineatus has undergone complex musculoskeletal adaptations for terrestrial movement, including an increase in muscle complexity and muscle volume, as well as the development of specialized structures like aponeuroses for pectoral fin extension. Skeletal modifications are also evident, with features such as a reinforced shoulder-pelvic joint and thickened fin rays. These evolutionary modifications suggest biomechanically advanced fins capable of overcoming the gravitational challenges of terrestrial habitats, indicating a strong selective advantage for these features in land-based environments. The unique musculoskeletal modifications in the fins of mudskippers like P. argentilineatus, compared with their aquatic counterparts, mark a critical evolutionary shift toward terrestrial adaptations. This study not only sheds light on the specific anatomical changes facilitating this transition but also offers broader insights into the early evolutionary mechanisms of terrestrial locomotion, potentially mirroring the transformative journey from aquatic to terrestrial life in the lineage leading to tetrapods.
Collapse
Affiliation(s)
- Fabienne Ziadi-Künzli
- Nonlinear and Non-equilibrium Physics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ken Maeda
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Pavel Puchenkov
- Scientific Computing & Data Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mahesh M Bandi
- Nonlinear and Non-equilibrium Physics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
4
|
Hogan AVC, Cerio DG, Bever GS. Patterns of early embryogenesis and growth in the olfactory system of chick (Gallus gallus domesticus) based on iodine-enhanced micro-computed tomography. Dev Dyn 2024. [PMID: 39344770 DOI: 10.1002/dvdy.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The vertebrate olfactory system entails a complex set of neural/support structures that bridge morphogenetic regions. The developmental mechanisms coordinating this bridge remain unclear, even for model organisms such as chick, Gallus gallus. Here, we combine previous growth data on the chick olfactory apparatus with new samples targeting its early embryogenesis. The purpose is to illuminate how early developmental dynamics integrate with scaling relationships to produce adult form and, potentially, evolutionary patterns. Olfactory structures, including epithelium, turbinate, nerve, and olfactory bulb, are considered in the context of neighboring nasal and brain structures. RESULTS Axonal outgrowth from the olfactory epithelium, which eventually connects receptor neurons with the brain, begins earlier than previously established. This dynamic marks the beginning of a complex pattern of early differential growth wherein the olfactory bulbs scale with positive allometry relative to both brain volume and turbinate area, which in turn scale isometrically with one another. CONCLUSIONS The mechanisms driving observed patterns of organogenesis and growth remain unclear awaiting experimental evidence. We discuss competing hypotheses, including the possibility that broad-based isometry of olfactory components reflects constraints imposed by high levels of functional/structural integration. Such integration would include the frontonasal prominence having a strong influence on telencephalic patterning.
Collapse
Affiliation(s)
- Aneila V C Hogan
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donald G Cerio
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabriel S Bever
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Costello LF, Richards HL, Evans AR, Adams JW. Experimental assessment of diffusible iodine-based contrast-enhanced computed tomography (diceCT) protocols. PeerJ 2024; 12:e17919. [PMID: 39247550 PMCID: PMC11380835 DOI: 10.7717/peerj.17919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Diffusible iodine-based contrast-enhanced computed tomography (diceCT) is an increasingly used digital complement, supplement, or alternative to traditional dissection-based anatomical research. The diceCT protocol, which has evolved and expanded over the past decade, employs passive diffusion of Lugol's iodine (KI3) to increase soft tissue radiodensity and improve structure contrast in the CT or microCT imaging of specimens. The development and application of diceCT has focused largely on specimens under 1 kg, and the varying reporting of methods on studies of both small and large specimens has initiated, but not yet established, an effective diceCT protocol for larger specimens based on monitored experiments of several fundamental variables (e.g., Lugol's iodine concentration, duration, and impacts of Lugol's iodine on tissues). In this study, we have experimentally assessed the efficacy of diceCT protocols for imaging whole-body specimens of the 1-4.5 kg Australian brushtail possum (Trichosurus vulpecula) using sequential CT imaging assessment across experimental conditions. We assessed the impact of varying Lugol's iodine concentration, the presence/absence of skin, solution volume and agitation on tissue radiodensity changes through weekly CT-based monitoring of tissue radiodensities over an 8-week experimental period. We have also quantified tissue volumetric changes across our experiment to assess the impact of diceCT applications on subsequent analyses of imaging datasets. Our results indicate that substantial changes in both soft-tissue radiodensity and soft-tissue volume occur within the first 28 days of Lugol's iodine treatment, followed by a slower rate of progressive soft-tissue radiodensity and volume changes across the experiment duration. Our results demonstrate the negligible benefit of skinning larger specimens to improve solution diffusion, and document significant soft-tissue volumetric changes with high concentration solutions (e.g., 10%) and long-duration exposure (e.g., beyond 5 weeks) that should guide individual diceCT protocol design and/or quantification and analysis for mammal specimens above 1 kg.
Collapse
Affiliation(s)
- Lucy F Costello
- Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | - Alistair R Evans
- Geosciences, Museums Victoria, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Justin W Adams
- Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Geosciences, Museums Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Berigei SR, Nandy S, Yamamoto S, Raphaely RA, DeCoursey A, Lee J, Sharma A, Auchincloss HG, Gaissert H, Lanuti M, Ott HC, Sachdeva UM, Wright CD, Zhao SH, Hallowell RW, Shea BS, Muniappan A, Keyes CM, Hariri LP. Microscopic Small Airway Abnormalities Identified in Early Idiopathic Pulmonary Fibrosis In Vivo Using Endobronchial Optical Coherence Tomography. Am J Respir Crit Care Med 2024; 210:473-483. [PMID: 38747674 PMCID: PMC11351792 DOI: 10.1164/rccm.202401-0249oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/15/2024] [Indexed: 08/16/2024] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) affects the subpleural lung but is considered to spare small airways. Micro-computed tomography (micro-CT) studies demonstrated small airway reduction in end-stage IPF explanted lungs, raising questions about small airway involvement in early-stage disease. Endobronchial optical coherence tomography (EB-OCT) is a volumetric imaging modality that detects microscopic features from subpleural to proximal airways. Objectives: In this study, EB-OCT was used to evaluate small airways in early IPF and control subjects in vivo. Methods: EB-OCT was performed in 12 subjects with IPF and 5 control subjects (matched by age, sex, smoking history, height, and body mass index). Subjects with IPF had early disease with mild restriction (FVC: 83.5% predicted), which was diagnosed per current guidelines and confirmed by surgical biopsy. EB-OCT volumetric imaging was acquired bronchoscopically in multiple, distinct, bilateral lung locations (total: 97 sites). IPF imaging sites were classified by severity into affected (all criteria for usual interstitial pneumonia present) and less affected (some but not all criteria for usual interstitial pneumonia present). Bronchiole count and small airway stereology metrics were measured for each EB-OCT imaging site. Measurements and Main Results: Compared with the number of bronchioles in control subjects (mean = 11.2/cm3; SD = 6.2), there was significant bronchiole reduction in subjects with IPF (42% loss; mean = 6.5/cm3; SD = 3.4; P = 0.0039), including in IPF affected (48% loss; mean: 5.8/cm3; SD: 2.8; P < 0.00001) and IPF less affected (33% loss; mean: 7.5/cm3; SD: 4.1; P = 0.024) sites. Stereology metrics showed that IPF-affected small airways were significantly larger, more distorted, and more irregular than in IPF-less affected sites and control subjects. IPF less affected and control airways were statistically indistinguishable for all stereology parameters (P = 0.36-1.0). Conclusions: EB-OCT demonstrated marked bronchiolar loss in early IPF (between 30% and 50%), even in areas minimally affected by disease, compared with matched control subjects. These findings support small airway disease as a feature of early IPF, providing novel insight into pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
| | - Sreyankar Nandy
- Division of Pulmonary and Critical Care Medicine
- Wellman Center for Photomedicine
- Harvard Medical School, Boston, Massachusetts
| | - Satomi Yamamoto
- Division of Pulmonary and Critical Care Medicine
- Wellman Center for Photomedicine
- Harvard Medical School, Boston, Massachusetts
| | - Rebecca A. Raphaely
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | | | - Jaeyul Lee
- Division of Pulmonary and Critical Care Medicine
- Wellman Center for Photomedicine
- Harvard Medical School, Boston, Massachusetts
| | - Amita Sharma
- Department of Radiology
- Harvard Medical School, Boston, Massachusetts
| | | | - Henning Gaissert
- Division of Thoracic Surgery
- Harvard Medical School, Boston, Massachusetts
| | - Michael Lanuti
- Division of Thoracic Surgery
- Harvard Medical School, Boston, Massachusetts
| | - Harald C. Ott
- Division of Thoracic Surgery
- Harvard Medical School, Boston, Massachusetts
| | - Uma M. Sachdeva
- Division of Thoracic Surgery
- Harvard Medical School, Boston, Massachusetts
| | - Cameron D. Wright
- Division of Thoracic Surgery
- Harvard Medical School, Boston, Massachusetts
| | | | - Robert W. Hallowell
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Barry S. Shea
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Ashok Muniappan
- Division of Thoracic Surgery
- Harvard Medical School, Boston, Massachusetts
| | - Colleen M. Keyes
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine
- Wellman Center for Photomedicine
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts; and
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Adachi U, Koita R, Seto A, Maeno A, Ishizu A, Oikawa S, Tani T, Ishizaka M, Yamada K, Satoh K, Nakazawa H, Furudate H, Kawakami K, Iwanami N, Matsuda M, Kawamura A. Teleost Hox code defines regional identities competent for the formation of dorsal and anal fins. Proc Natl Acad Sci U S A 2024; 121:e2403809121. [PMID: 38861596 PMCID: PMC11194558 DOI: 10.1073/pnas.2403809121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
The dorsal and anal fins can vary widely in position and length along the anterior-posterior axis in teleost fishes. However, the molecular mechanisms underlying the diversification of these fins remain unknown. Here, we used genetic approaches in zebrafish and medaka, in which the relative positions of the dorsal and anal fins are opposite, to demonstrate the crucial role of hox genes in the patterning of the teleost posterior body, including the dorsal and anal fins. By the CRISPR-Cas9-induced frameshift mutations and positional cloning of spontaneous dorsalfinless medaka, we show that various hox mutants exhibit the absence of dorsal or anal fins, or a stepwise posterior extension of these fins, with vertebral abnormalities. Our results indicate that multiple hox genes, primarily from hoxc-related clusters, encompass the regions responsible for the dorsal and anal fin formation along the anterior-posterior axis. These results further suggest that shifts in the anterior boundaries of hox expression which vary among fish species, lead to diversification in the position and size of the dorsal and anal fins, similar to how modulations in Hox expression can alter the number of anatomically distinct vertebrae in tetrapods. Furthermore, we show that hox genes responsible for dorsal fin formation are different between zebrafish and medaka. Our results suggest that a novel mechanism has occurred during teleost evolution, in which the gene network responsible for fin formation might have switched to the regulation downstream of other hox genes, leading to the remarkable diversity in the dorsal fin position.
Collapse
Affiliation(s)
- Urara Adachi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Rina Koita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Akira Seto
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya321-8505, Japan
| | - Akiteru Maeno
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
| | - Atsuki Ishizu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Sae Oikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Taisei Tani
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Mizuki Ishizaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Koumi Satoh
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Hidemichi Nakazawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Hiroyuki Furudate
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya321-8505, Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya321-8505, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| |
Collapse
|
8
|
Gignac PM, Valdez D, Morhardt AC, Lynch LM. Buffered Lugol's Iodine Preserves DNA Fragment Lengths. Integr Org Biol 2024; 6:obae017. [PMID: 38887427 PMCID: PMC11182668 DOI: 10.1093/iob/obae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Museum collections play a pivotal role in the advancement of biological science by preserving phenotypic and genotypic history and variation. Recently, contrast-enhanced X-ray computed tomography (CT) has aided these advances by allowing improved visualization of internal soft tissues. However, vouchered specimens could be at risk if staining techniques are destructive. For instance, the pH of unbuffered Lugol's iodine (I2KI) may be low enough to damage deoxyribonucleic acid (DNA). The extent of this risk is unknown due to a lack of rigorous evaluation of DNA quality between control and experimental samples. Here, we used formalin-fixed mice to document DNA concentrations and fragment lengths in nonstained, ethanol-preserved controls and 3 iodine-based staining preparations: (1) 1.25% weight-by-volume (wt/vol.) alcoholic iodine (I2E); (2) 3.75% wt/vol. I2KI; and (3) 3.75% wt/vol. buffered I2KI. We tested a null hypothesis of no significant difference in DNA concentrations and fragment lengths between control and treatment samples. We found that DNA concentration decreases because of staining-potentially an effect of measuring intact double-stranded DNA only. Fragment lengths, however, were significantly higher for buffered I2KI and control samples, which were not, themselves, significantly different. Our results implicate buffered I2KI as the appropriate choice for contrast-enhanced CT imaging of museum wet collections to safely maximize their potential for understanding genetic and phenotypic diversity.
Collapse
Affiliation(s)
- P M Gignac
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - D Valdez
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| | - A C Morhardt
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - L M Lynch
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
9
|
Ikenaga T, Kobayashi A, Takeuchi A, Uesugi K, Maezawa T, Shibata N, Sakamoto T, Sakamoto H. Volume X-Ray Micro-Computed Tomography Analysis of the Early Cephalized Central Nervous System in a Marine Flatworm, Stylochoplana pusilla. Zoolog Sci 2024; 41:281-289. [PMID: 38809867 DOI: 10.2108/zs230082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/29/2023] [Indexed: 05/31/2024]
Abstract
Platyhelminthes are a phylum of simple bilaterian invertebrates with prototypic body systems. Compared with non-bilaterians such as cnidarians, the bilaterians are likely to exhibit integrated free-moving behaviors, which require a concentrated nervous system "brain" rather than the distributed nervous system of radiatans. Marine flatworms have an early cephalized 'central' nervous system compared not only with non-bilaterians but also with parasitic flatworms or freshwater planarians. In this study, we used the marine flatworm Stylochoplana pusilla as an excellent model organism in Platyhelminthes because of the early cephalized central nervous system. Here, we investigated the three-dimensional structures of the flatworm central nervous system by the use of X-ray micro-computed tomography (micro-CT) in a synchrotron radiation facility. We found that the obtained tomographic images were sufficient to discriminate some characteristic structures of the nervous system, including nerve cords around the cephalic ganglion, mushroom body-like structures, and putative optic nerves forming an optic commissure-like structure. Through the micro-CT imaging, we could obtain undistorted serial section images, permitting us to visualize precise spatial relationships of neuronal subpopulations and nerve tracts. 3-D micro-CT is very effective in the volume analysis of the nervous system at the cellular level; the methodology is straightforward and could be applied to many other non-model organisms.
Collapse
Affiliation(s)
- Takanori Ikenaga
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Aoshi Kobayashi
- Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Akihisa Takeuchi
- Japan Synchrotron Radiation Research Institute/SPring-8, Hyogo 679-5198, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute/SPring-8, Hyogo 679-5198, Japan
| | - Takanobu Maezawa
- Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, Tsuyama, Okayama 708-8509, Japan
| | - Norito Shibata
- Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, Tsuyama, Okayama 708-8509, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan,
- Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Kita-ku, Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Ditton DM, Marchus CR, Bozeman AL, Martes AC, Brumley MR, Schiele NR. Visualization of rat tendon in three dimensions using micro-Computed Tomography. MethodsX 2024; 12:102565. [PMID: 38292310 PMCID: PMC10825692 DOI: 10.1016/j.mex.2024.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Micro-computed tomography (CT) is an X-ray-based imaging modality that produces three-dimensional (3D), high-resolution images of whole-mount tissues, but is typically limited to dense tissues, such as bone. The X-rays readily pass-through tendons, rendering them transparent. Contrast-enhancing chemical stains have been explored, but their use to improve contrast in different tendon types and across developmental stages for micro-CT imaging has not been systematically evaluated. Therefore, we investigated how phosphotungstic acid (PTA) staining and tissue hydration impacts tendon contrast for micro-CT imaging. We showed that PTA staining increased X-ray absorption of tendon to enhance tissue contrast and obtain 3D micro-CT images of immature (postnatal day 21) and sexually mature (postnatal day 50) rat tendons within the tail and hindlimb. Further, we demonstrated that tissue hydration state following PTA staining significantly impacts soft tissue contrast. Using this method, we also found that tail tendon fascicles appear to cross between fascicle bundles. Ultimately, contrast-enhanced 3D micro-CT imaging will lead to better understanding of tendon structure, and relationships between the bone and soft tissues.•Simple tissue fixation and staining technique enhances soft tissue contrast for tendon visualization using micro-CT.•3D tendon visualization in situ advances understanding of musculoskeletal tissue structure and organization.
Collapse
Affiliation(s)
- Destinee M. Ditton
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Colin R. Marchus
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Aimee L. Bozeman
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Alleyna C. Martes
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Michele R. Brumley
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Nathan R. Schiele
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| |
Collapse
|
11
|
Nadkarni R, Han ZY, Anderson RJ, Allphin AJ, Clark DP, Badea A, Badea CT. High-resolution hybrid micro-CT imaging pipeline for mouse brain region segmentation and volumetric morphometry. PLoS One 2024; 19:e0303288. [PMID: 38781243 PMCID: PMC11115241 DOI: 10.1371/journal.pone.0303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Brain region segmentation and morphometry in humanized apolipoprotein E (APOE) mouse models with a human NOS2 background (HN) contribute to Alzheimer's disease (AD) research by demonstrating how various risk factors affect the brain. Photon-counting detector (PCD) micro-CT provides faster scan times than MRI, with superior contrast and spatial resolution to energy-integrating detector (EID) micro-CT. This paper presents a pipeline for mouse brain imaging, segmentation, and morphometry from PCD micro-CT. METHODS We used brains of 26 mice from 3 genotypes (APOE22HN, APOE33HN, APOE44HN). The pipeline included PCD and EID micro-CT scanning, hybrid (PCD and EID) iterative reconstruction, and brain region segmentation using the Small Animal Multivariate Brain Analysis (SAMBA) tool. We applied SAMBA to transfer brain region labels from our new PCD CT atlas to individual PCD brains via diffeomorphic registration. Region-based and voxel-based analyses were used for comparisons by genotype and sex. RESULTS Together, PCD and EID scanning take ~5 hours to produce images with a voxel size of 22 μm, which is faster than MRI protocols for mouse brain morphometry with voxel size above 40 μm. Hybrid iterative reconstruction generates PCD images with minimal artifacts and higher spatial resolution and contrast than EID images. Our PCD atlas is qualitatively and quantitatively similar to the prior MRI atlas and successfully transfers labels to PCD brains in SAMBA. Male and female mice had significant volume differences in 26 regions, including parts of the entorhinal cortex and cingulate cortex. APOE22HN brains were larger than APOE44HN brains in clusters from the hippocampus, a region where atrophy is associated with AD. CONCLUSIONS This work establishes a pipeline for mouse brain analysis using PCD CT, from staining to imaging and labeling brain images. Our results validate the effectiveness of the approach, setting a foundation for research on AD mouse models while reducing scanning durations.
Collapse
Affiliation(s)
- Rohan Nadkarni
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Zay Yar Han
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Robert J. Anderson
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Alex J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Darin P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Alexandra Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
12
|
Salg GA, Steinle V, Labode J, Wagner W, Studier-Fischer A, Reiser J, Farjallah E, Guettlein M, Albers J, Hilgenfeld T, Giese NA, Stiller W, Nickel F, Loos M, Michalski CW, Kauczor HU, Hackert T, Dullin C, Mayer P, Kenngott HG. Multiscale and multimodal imaging for three-dimensional vascular and histomorphological organ structure analysis of the pancreas. Sci Rep 2024; 14:10136. [PMID: 38698049 PMCID: PMC11065985 DOI: 10.1038/s41598-024-60254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
Exocrine and endocrine pancreas are interconnected anatomically and functionally, with vasculature facilitating bidirectional communication. Our understanding of this network remains limited, largely due to two-dimensional histology and missing combination with three-dimensional imaging. In this study, a multiscale 3D-imaging process was used to analyze a porcine pancreas. Clinical computed tomography, digital volume tomography, micro-computed tomography and Synchrotron-based propagation-based imaging were applied consecutively. Fields of view correlated inversely with attainable resolution from a whole organism level down to capillary structures with a voxel edge length of 2.0 µm. Segmented vascular networks from 3D-imaging data were correlated with tissue sections stained by immunohistochemistry and revealed highly vascularized regions to be intra-islet capillaries of islets of Langerhans. Generated 3D-datasets allowed for three-dimensional qualitative and quantitative organ and vessel structure analysis. Beyond this study, the method shows potential for application across a wide range of patho-morphology analyses and might possibly provide microstructural blueprints for biotissue engineering.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Verena Steinle
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jonas Labode
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Willi Wagner
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Alexander Studier-Fischer
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Johanna Reiser
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Elyes Farjallah
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Michelle Guettlein
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Jonas Albers
- Hamburg Unit, European Molecular Biology Laboratory, c/o Deutsches Elektronen-Synchrotron DESY Hamburg, Notkestr. 85, 22607, Hamburg, Germany
| | - Tim Hilgenfeld
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Nathalia A Giese
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Wolfram Stiller
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Felix Nickel
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Loos
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Christoph W Michalski
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Thilo Hackert
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Dullin
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Str. 40, Goettingen, Germany
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, Göttingen, Germany
| | - Philipp Mayer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Hannes Goetz Kenngott
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Kairišs K, Sokolova N, Zilova L, Schlagheck C, Reinhardt R, Baumbach T, Faragó T, van de Kamp T, Wittbrodt J, Weinhardt V. Visualisation of gene expression within the context of tissues using an X-ray computed tomography-based multimodal approach. Sci Rep 2024; 14:8543. [PMID: 38609416 PMCID: PMC11015006 DOI: 10.1038/s41598-024-58766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The development of an organism is orchestrated by the spatial and temporal expression of genes. Accurate visualisation of gene expression patterns in the context of the surrounding tissues offers a glimpse into the mechanisms that drive morphogenesis. We developed correlative light-sheet fluorescence microscopy and X-ray computed tomography approach to map gene expression patterns to the whole organism`s 3D anatomy. We show that this multimodal approach is applicable to gene expression visualized by protein-specific antibodies and fluorescence RNA in situ hybridisation offering a detailed understanding of individual phenotypic variations in model organisms. Furthermore, the approach offers a unique possibility to identify tissues together with their 3D cellular and molecular composition in anatomically less-defined in vitro models, such as organoids. We anticipate that the visual and quantitative insights into the 3D distribution of gene expression within tissue architecture, by multimodal approach developed here, will be equally valuable for reference atlases of model organisms development, as well as for comprehensive screens, and morphogenesis studies of in vitro models.
Collapse
Affiliation(s)
- Kristaps Kairišs
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- HeiKa Graduate School On "Functional Materials", Heidelberg, Germany
| | - Natalia Sokolova
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
| | - Lucie Zilova
- Centre for Organismal Studies, 69120, Heidelberg, Germany
| | - Christina Schlagheck
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- HeiKa Graduate School On "Functional Materials", Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
| | - Robert Reinhardt
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tomáš Faragó
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | |
Collapse
|
14
|
Son R, Yamazawa K, Oguchi A, Suga M, Tamura M, Yanagita M, Murakawa Y, Kume S. Morphomics via next-generation electron microscopy. J Mol Cell Biol 2024; 15:mjad081. [PMID: 38148118 PMCID: PMC11167312 DOI: 10.1093/jmcb/mjad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/02/2022] [Accepted: 12/23/2023] [Indexed: 12/28/2023] Open
Abstract
The living body is composed of innumerable fine and complex structures. Although these structures have been studied in the past, a vast amount of information pertaining to them still remains unknown. When attempting to observe these ultra-structures, the use of electron microscopy (EM) has become indispensable. However, conventional EM settings are limited to a narrow tissue area, which can bias observations. Recently, new trends in EM research have emerged, enabling coverage of far broader, nano-scale fields of view for two-dimensional wide areas and three-dimensional large volumes. Moreover, cutting-edge bioimage informatics conducted via deep learning has accelerated the quantification of complex morphological bioimages. Taken together, these technological and analytical advances have led to the comprehensive acquisition and quantification of cellular morphology, which now arises as a new omics science termed 'morphomics'.
Collapse
Affiliation(s)
- Raku Son
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kenji Yamazawa
- Advanced Manufacturing Support Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
| | - Akiko Oguchi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mitsuo Suga
- Multimodal Microstructure Analysis Unit, RIKEN–JEOL Collaboration Center, Kobe 650-0047, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Yasuhiro Murakawa
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- IFOM—The FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Satoshi Kume
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
- Center for Health Science Innovation, Osaka City University, Osaka 530-0011, Japan
- Osaka Electro-Communication University, Neyagawa 572-8530, Japan
| |
Collapse
|
15
|
Agrawal K, Prabhakar S, Bakthavachalu B, Chaturvedi D. Distinct developmental patterns in Anopheles stephensi organ systems. Dev Biol 2024; 508:107-122. [PMID: 38272285 PMCID: PMC7615899 DOI: 10.1016/j.ydbio.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Anatomical profiles of insects inform vector biology, comparative development and evolutionary studies with applications in forensics, agriculture and disease control. This study presents a comprehensive, high-resolution developmental profile of Anopheles stephensi, encompassing larval, pupal, and adult stages, obtained through microCT scanning. The results indicate in situ anatomical changes in most organ systems, including the central nervous system, eyes, musculature, alimentary canal, salivary glands, and ovaries, among other organ systems, except for the developing heart. We find significant differences in the mosquito gut, body-wall, and flight muscle development during metamorphosis from other dipterans like Drosophila. Specifically, indirect flight muscle specification and growth can be traced back at least to the 4th instar A. stephensi larvae, as opposed to post-puparial development in other Dipterans like Drosophila and Calliphora. Further, while Drosophila larval body-wall muscles and gut undergo histolysis, changes to these organs during mosquito metamorphosis are less pronounced. These observations, and raw data therein may serve as a reference for studies on the development and the genetics of mosquitoes. Overall, the detailed developmental profile of A. stephensi presented here illuminates the unique anatomy and developmental processes of Culicidae, with important implications for vector biology, disease control, and comparative evolutionary studies.
Collapse
Affiliation(s)
- Khushboo Agrawal
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, 560065, India; School of Biotechnology, Amrita University, Kollam, 690525, Kerala, India
| | - Sunil Prabhakar
- Centre for Cellular and Molecular Platforms, Bellary Road, Bangalore, 560065, India
| | - Baskar Bakthavachalu
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, 560065, India; School of Basic Sciences, Indian Institute of Technology, Mandi, 175005, India.
| | - Dhananjay Chaturvedi
- National Centre for Biological Sciences, TIFR, Bangalore, 560065, India; CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.
| |
Collapse
|
16
|
Vu MAT, Brown EH, Wen MJ, Noggle CA, Zhang Z, Monk KJ, Bouabid S, Mroz L, Graham BM, Zhuo Y, Li Y, Otchy TM, Tian L, Davison IG, Boas DA, Howe MW. Targeted micro-fiber arrays for measuring and manipulating localized multi-scale neural dynamics over large, deep brain volumes during behavior. Neuron 2024; 112:909-923.e9. [PMID: 38242115 PMCID: PMC10957316 DOI: 10.1016/j.neuron.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Neural population dynamics relevant to behavior vary over multiple spatial and temporal scales across three-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice, enabling the investigation of cell-type- and neurotransmitter-specific signals over arbitrary 3D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum, revealing distinct, modality-specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and the spatial localization of behavioral function across large circuits.
Collapse
Affiliation(s)
- Mai-Anh T Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eleanor H Brown
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Michelle J Wen
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Christian A Noggle
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zicheng Zhang
- Department of Biology, Boston University, Boston, MA, USA
| | - Kevin J Monk
- Department of Biology, Boston University, Boston, MA, USA
| | - Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lydia Mroz
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Northeastern University, Boston, MA, USA
| | - Benjamin M Graham
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yulong Li
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | | | - Lin Tian
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Max Planck Florida Institute of Neuroscience, Jupiter, FL, USA
| | - Ian G Davison
- Department of Biology, Boston University, Boston, MA, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark W Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
17
|
Kapoor K. 3D visualization and printing: An "Anatomical Engineering" trend revealing underlying morphology via innovation and reconstruction towards future of veterinary anatomy. Anat Sci Int 2024; 99:159-182. [PMID: 38236439 DOI: 10.1007/s12565-023-00755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
The amalgamation of veterinary anatomy, technology and innovation has led to development of latest technological advancement in the field of veterinary medicine, i.e., three-dimensional (3D) imaging and reconstruction. 3D visualization technique followed by 3D reconstruction has been proven to enhance non-destructive 3D visualization grossly or microscopically, e.g., skeletal muscle, smooth muscle, ligaments, cartilage, connective tissue, blood vessels, nerves, lymph nodes, and glands. The core aim of this manuscript is to document non-invasive 3D visualization methods being adopted currently in veterinary anatomy to reveal underlying morphology and to reconstruct them by 3D softwares followed by printing, its applications, current challenges, trends and future opportunities. 3D visualization methods such as MRI, CT scans and micro-CT scans are utilised in revealing volumetric data and underlying morphology at microscopic levels as well. This will pave a way to transform and re-invent the future of teaching in veterinary medicine, in clinical cases as well as in exploring wildlife anatomy. This review provides novel insights into 3D visualization and printing as it is the future of veterinary anatomy, thus making it spread to become the plethora of opportunities for whole veterinary science.
Collapse
Affiliation(s)
- Kritima Kapoor
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India.
| |
Collapse
|
18
|
Fu SJ, Yang EC. Neuroplasticity in honey bee brains: An enhanced micro-computed tomography protocol for precise mushroom body volume measurement. J Neurosci Methods 2024; 403:110040. [PMID: 38135123 DOI: 10.1016/j.jneumeth.2023.110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND In insect brains, mushroom bodies are associated with memory and learning behavior. It has been demonstrated that the volume of the mushroom bodies in the brain of a worker honey bee changes during the adult stage. Changes in mushroom body volume imply high neuroplasticity in the brains and may be related to the age polyethism of honey bees. A suitable volume measurement method is needed to understand the correlation between behavioral changes and mushroom body volume changes in honey bees. NEW METHOD We developed a new protocol for insect micro-computed tomography by modifying a previously reported method. Permount™ mounting medium was used as the embedding medium for micro-computed tomography scanning. RESULTS This protocol can generate images with high contrast inside the brain and reduce the marked shape changes during specimen processing. From the resulting high-contrast images, we used freeware to generate a three-dimensional model and calculate the volumes of the mushroom bodies in honey bees. The measured volumes of the mushroom bodies were larger than the values reported in most previous studies. There was no significant difference between the left and right mushroom body volumes, but the volumes of honey bee mushroom bodies significantly increased with age. COMPARISON WITH EXISTING METHODS Previous protocols for micro-computed tomography using dried samples would cause brain shrinkage; protocols using ethanol-preserved or resin-embedded samples generated images with lower contrast. CONCLUSIONS The embedding protocol for micro-computed tomography is suitable for calculating volume of the mushroom bodies in honey bee brains.
Collapse
Affiliation(s)
- Shang-Jui Fu
- Department of Entomology, National Taiwan University, Taiwan
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taiwan.
| |
Collapse
|
19
|
Nojiri T, Takechi M, Furutera T, Brualla NLM, Iseki S, Fukui D, Tu VT, Meguro F, Koyabu D. Development of the hyolaryngeal architecture in horseshoe bats: insights into the evolution of the pulse generation for laryngeal echolocation. EvoDevo 2024; 15:2. [PMID: 38326924 PMCID: PMC10851524 DOI: 10.1186/s13227-024-00221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The hyolaryngeal apparatus generates biosonar pulses in the laryngeally echolocating bats. The cartilage and muscles comprising the hyolarynx of laryngeally echolocating bats are morphologically modified compared to those of non-bat mammals, as represented by the hypertrophied intrinsic laryngeal muscle. Despite its crucial contribution to laryngeal echolocation, how the development of the hyolarynx in bats differs from that of other mammals is poorly documented. The genus Rhinolophus is one of the most sophisticated laryngeal echolocators, with the highest pulse frequency in bats. The present study provides the first detailed description of the three-dimensional anatomy and development of the skeleton, cartilage, muscle, and innervation patterns of the hyolaryngeal apparatus in two species of rhinolophid bats using micro-computed tomography images and serial tissue sections and compares them with those of laboratory mice. Furthermore, we measured the peak frequency of the echolocation pulse in active juvenile and adult individuals to correspond to echolocation pulses with hyolaryngeal morphology at each postnatal stage. RESULTS We found that the sagittal crests of the cricoid cartilage separated the dorsal cricoarytenoid muscle in horseshoe bats, indicating that this unique morphology may be required to reinforce the repeated closure movement of the glottis during biosonar pulse emission. We also found that the cricothyroid muscle is ventrally hypertrophied throughout ontogeny, and that the cranial laryngeal nerve has a novel branch supplying the hypertrophied region of this muscle. Our bioacoustic analyses revealed that the peak frequency shows negative allometry against skull growth, and that the volumetric growth of all laryngeal cartilages is correlated with the pulse peak frequency. CONCLUSIONS The unique patterns of muscle and innervation revealed in this study appear to have been obtained concomitantly with the acquisition of tracheal chambers in rhinolophids and hipposiderids, improving sound intensity during laryngeal echolocation. In addition, significant protrusion of the sagittal crest of the cricoid cartilage and the separated dorsal cricoarytenoid muscle may contribute to the sophisticated biosonar in this laryngeally echolocating lineage. Furthermore, our bioacoustic data suggested that the mineralization of these cartilages underpins the ontogeny of echolocation pulse generation. The results of the present study provide crucial insights into how the anatomy and development of the hyolaryngeal apparatus shape the acoustic diversity in bats.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Masaki Takechi
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Toshiko Furutera
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Nicolas L M Brualla
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Dai Fukui
- The University of Tokyo Fuji Iyashinomori Woodland Study Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 341-2 Yamanaka, Yamanakako, Yamanashi, 401-05013, Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Fumiya Meguro
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-Shi, Ibaraki, 305-8550, Japan
| | - Daisuke Koyabu
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan.
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China.
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-Shi, Ibaraki, 305-8550, Japan.
| |
Collapse
|
20
|
Iwasaki N, Karali A, Roldo M, Blunn G. Full-Field Strain Measurements of the Muscle-Tendon Junction Using X-ray Computed Tomography and Digital Volume Correlation. Bioengineering (Basel) 2024; 11:162. [PMID: 38391648 PMCID: PMC10886230 DOI: 10.3390/bioengineering11020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
We report, for the first time, the full-field 3D strain distribution of the muscle-tendon junction (MTJ). Understanding the strain distribution at the junction is crucial for the treatment of injuries and to predict tear formation at this location. Three-dimensional full-field strain distribution of mouse MTJ was measured using X-ray computer tomography (XCT) combined with digital volume correlation (DVC) with the aim of understanding the mechanical behavior of the junction under tensile loading. The interface between the Achilles tendon and the gastrocnemius muscle was harvested from adult mice and stained using 1% phosphotungstic acid in 70% ethanol. In situ XCT combined with DVC was used to image and compute strain distribution at the MTJ under a tensile load (2.4 N). High strain measuring 120,000 µε, 160,000 µε, and 120,000 µε for the first principal stain (εp1), shear strain (γ), and von Mises strain (εVM), respectively, was measured at the MTJ and these values reduced into the body of the muscle or into the tendon. Strain is concentrated at the MTJ, which is at risk of being damaged in activities associated with excessive physical activity.
Collapse
Affiliation(s)
- Nodoka Iwasaki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
21
|
Olejnickova V, Hamor PU, Janacek J, Bartos M, Zabrodska E, Sankova B, Kvasilova A, Kolesova H, Sedmera D. Development of ventricular trabeculae affects electrical conduction in the early endothermic heart. Dev Dyn 2024; 253:78-90. [PMID: 36400745 DOI: 10.1002/dvdy.552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The ventricular trabeculae play a role, among others, in the impulse spreading in ectothermic hearts. Despite the morphological similarity with the early developing hearts of endotherms, this trabecular function in mammalian and avian embryos was poorly addressed. RESULTS We simulated impulse propagation inside the looping ventricle and revealed delayed apical activation in the heart with inhibited trabecular growth. This finding was corroborated by direct imaging of the endocardial surface showing early activation within the trabeculae implying preferential spreading of depolarization along with them. Targeting two crucial pathways of trabecular formation (Neuregulin/ErbB and Nkx2.5), we showed that trabecular development is also essential for proper conduction patterning. Persistence of the slow isotropic conduction likely contributed to the pumping failure in the trabeculae-deficient hearts. CONCLUSIONS Our results showed the essential role of trabeculae in intraventricular impulse spreading and conduction patterning in the early endothermic heart. Lack of trabeculae leads to the failure of conduction parameters differentiation resulting in primitive ventricular activation with consequent impact on the cardiac pumping function.
Collapse
Affiliation(s)
- Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Uriel Hamor
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Janacek
- Laboratory of Biomathematics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Bartos
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Stomatology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Zabrodska
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Sankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
22
|
Albers J, Nikolova M, Svetlove A, Darif N, Lawson MJ, Schneider TR, Schwab Y, Bourenkov G, Duke E. High Throughput Tomography (HiTT) on EMBL beamline P14 on PETRA III. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:186-194. [PMID: 37971957 PMCID: PMC10833423 DOI: 10.1107/s160057752300944x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Here, high-throughput tomography (HiTT), a fast and versatile phase-contrast imaging platform for life-science samples on the EMBL beamline P14 at DESY in Hamburg, Germany, is presented. A high-photon-flux undulator beamline is used to perform tomographic phase-contrast acquisition in about two minutes which is linked to an automated data processing pipeline that delivers a 3D reconstructed data set less than a minute and a half after the completion of the X-ray scan. Combining this workflow with a sophisticated robotic sample changer enables the streamlined collection and reconstruction of X-ray imaging data from potentially hundreds of samples during a beam-time shift. HiTT permits optimal data collection for many different samples and makes possible the imaging of large sample cohorts thus allowing population studies to be attempted. The successful application of HiTT on various soft tissue samples in both liquid (hydrated and also dehydrated) and paraffin-embedded preparations is demonstrated. Furthermore, the feasibility of HiTT to be used as a targeting tool for volume electron microscopy, as well as using HiTT to study plant morphology, is demonstrated. It is also shown how the high-throughput nature of the work has allowed large numbers of `identical' samples to be imaged to enable statistically relevant sample volumes to be studied.
Collapse
Affiliation(s)
- Jonas Albers
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marina Nikolova
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Angelika Svetlove
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Nedal Darif
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Collaboration for joint PhD degree between the European Molecular Biology Laboratory and the Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Matthew J. Lawson
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas R. Schneider
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Elizabeth Duke
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
23
|
Nakata MT, Takahara M, Yamada T, Demura T. Simultaneous analysis of shape and internal structure of a curved Hibiscus cannabinus pulvinus: X-ray microtomography and semi-automated quantification. JOURNAL OF PLANT RESEARCH 2024; 137:79-94. [PMID: 37812342 DOI: 10.1007/s10265-023-01498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
In the Malvaceae family, dynamic solar tracking by leaves is actuated by the deformation of the pulvinus, a thickened region at the leaf blade-petiole junction. While the internal structure is believed to play a crucial role in this process, experimental verification has been challenging due to technical limitations. To address this gap, we developed a semi-automated workflow, which integrates data analysis and image processing to simultaneously analyze the shape and internal structure of a Malvaceae pulvinus using X-ray microtomography. Firstly, we found that kenaf (Hibiscus cannabinus L.), a Malvaceae species with curved pulvini, exhibited solar-tracking leaf movement and selected it as a model system. We employed diffusible iodine-based contrast-enhanced computed tomography to visualize the internal structure of the kenaf pulvinus. Analysis of the pulvini's shape revealed variations in pulvinus morphology, yet plausible prediction of the centerline was accomplished using polar polynomial regression. Upon slicing the pulvini perpendicular to the centerline, we observed distinct gray value gradients along the proximo-distal and adaxial-abaxial axes, challenging threshold-based tissue segmentation. This workflow successfully generated three modified 3D images and derived quantitative parameters. Using these quantitative parameters, we conducted network analysis and found the linkage between the size-normalized cortex cross-sectional area and curvature. Polynomial least absolute shrinkage and selection operator (LASSO) regression revealed the relationship between the size-normalized cortex cross-sectional area and curvature commonly in all three tested samples. This workflow enables simultaneous analysis of the shape and internal structure, significantly improving the reproducibility of Malvaceae leaf pulvinus characterization.
Collapse
Affiliation(s)
- Miyuki T Nakata
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan.
- Center for Digital Green-Innovation, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan.
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chūō-ku, Kumamoto, 860-8555, Japan.
| | | | - Toshihiro Yamada
- The Botanical Gardens, Osaka Metropolitan University, Katano, Osaka, Japan
- Department of Earth and Planetary Sciences, Faculty of Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| |
Collapse
|
24
|
Lamouroux A, Cardoso M, Bottero C, Gallo M, Duraes M, Salerno J, Bertrand M, Rigau V, Fuchs F, Mousty E, Genevieve D, Subsol G, Goze-Bac C, Captier G. Micro-CT and high-field MRI for studying very early post-mortem human fetal anatomy at 8 weeks of gestation. Prenat Diagn 2024; 44:3-14. [PMID: 38161284 DOI: 10.1002/pd.6489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/19/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study involved very early post-mortem (PM) examination of human fetal anatomy at 8 weeks of gestation (WG) using whole-body multimodal micro-imaging: micro-CT and high-field MRI (HF-MRI). We discuss the potential place of this imaging in early first-trimester virtual autopsy. METHODS We performed micro-CT after different contrast-bath protocols including diffusible iodine-based contrast-enhanced (dice) and HF-MRI with a 9.4 T machine with qualitative and quantitative evaluation and obtained histological sections. RESULTS Nine fetuses were included: the crown-rump length was 10-24 mm and corresponded to 7 and 9 WG according to the Robinson formula. The Carnegie stages were 17-21. Dice micro-CT and HF-MRI presented high signal to noise ratio, >5, according to the Rose criterion, and for allowed anatomical phenotyping in these specimens. Imaging did not alter the histology, allowing immunostaining and pathological examination. CONCLUSION PM non-destructive whole-body multimodal micro-imaging: dice micro-CT and HF-MRI allows for PM human fetal anatomy study as early as 8 WG. It paves the way to virtual autopsy in the very early first trimester. Obtaining a precision phenotype, even regarding miscarriage products, allows a reverse phenotyping to select variants of interest in genome-wide analysis, offering potential genetic counseling for bereaved parents.
Collapse
Affiliation(s)
- Audrey Lamouroux
- Clinical Genetics Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
- Obstetrical Gynaecology Department, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Charles Coulomb Laboratory, UMR 5221 CNRS-UM, BNIF User Facility Imaging, University of Montpellier, CNRS, Montpellier, France
- ICAR Research Team, LIRMM, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
| | - Maïda Cardoso
- Charles Coulomb Laboratory, UMR 5221 CNRS-UM, BNIF User Facility Imaging, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
| | - Célia Bottero
- Obstetrical Gynaecology Department, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Univ. Montpellier, Montpellier, France
| | - Mathieu Gallo
- Univ. Montpellier, Montpellier, France
- Pathology Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Martha Duraes
- ICAR Research Team, LIRMM, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
- Anatomy Laboratory, Faculty of Medicine Montpellier-Nimes, University of Montpellier, Montpellier, France
- Obstetrical Gynaecology Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Jennifer Salerno
- Obstetrical Gynaecology Department, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Univ. Montpellier, Montpellier, France
- Gynaecology and Gynaecology Surgery Department, Clinique Beau Soleil, Montpellier, France
| | - Martin Bertrand
- Univ. Montpellier, Montpellier, France
- Experimental Anatomy Department, Faculty of Medicine Montpellier-Nimes, University Montpellier, Nîmes, France
- Digestive Surgery Department, Nimes University Hospital, Nîmes, France
| | - Valérie Rigau
- Univ. Montpellier, Montpellier, France
- Pathology Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Florent Fuchs
- Univ. Montpellier, Montpellier, France
- Obstetrical Gynaecology Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
- Inserm, CESP Center for Research in Epidemiology and Population Health, U1018, Reproduction and Child Development, Villejuif, France
- Desbrest Institute of Epidemiology and Public Health (IDESP), University of Montpellier, INSERM, Montpellier, France
| | - Eve Mousty
- Obstetrical Gynaecology Department, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Univ. Montpellier, Montpellier, France
| | - David Genevieve
- Clinical Genetics Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
- Univ. Montpellier, Montpellier, France
- Center for Rare Disease Development Anomaly and Malformative Syndromes, Montpellier University Hospital, Montpellier, France
| | - Gérard Subsol
- ICAR Research Team, LIRMM, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
| | - Christophe Goze-Bac
- Charles Coulomb Laboratory, UMR 5221 CNRS-UM, BNIF User Facility Imaging, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
| | - Guillaume Captier
- ICAR Research Team, LIRMM, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
- Anatomy Laboratory, Faculty of Medicine Montpellier-Nimes, University of Montpellier, Montpellier, France
- Paediatric Surgery Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
| |
Collapse
|
25
|
Glancy SB, Morris HD, Ho VB, Klarmann GJ. Optimal Agents for Visualizing Collagen Tissue Microarchitecture Using Contrast-Enhanced MicroCT. Pharmaceuticals (Basel) 2023; 16:1719. [PMID: 38139845 PMCID: PMC10747128 DOI: 10.3390/ph16121719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Micro-computed tomography (microCT) is a common tool for the visualization of the internal composition of organic tissues. Collagen comprises approximately 25-35% of the whole-body protein content in mammals, and the structure and arrangement of collagen fibers contribute significantly to the integrity of tissues. Collagen type I is also frequently used as a key structural component in tissue-engineered and bioprinted tissues. However, the imaging of collagenous tissues is limited by their inherently low X-ray attenuation, which makes them indistinguishable from most other soft tissues. An imaging contrast agent that selectively alters X-ray attenuation is thus essential to properly visualize collagenous tissue using a standard X-ray tube microCT scanner. This review compares various contrast-enhanced techniques reported in the literature for MicroCT visualization of collagen-based tissues. An ideal microCT contrast agent would meet the following criteria: (1) it diffuses through the tissue quickly; (2) it does not deform or impair the object being imaged; and (3) it provides sufficient image contrast for reliable visualization of the orientation of individual fibers within the collagen network. The relative benefits and disadvantages of each method are discussed. Lugol's solution (I3K), phosphotungstic acid (H3PW12O40), mercury(II) chloride (HgCl2), and Wells-Dawson polyoxometalates came closest to fitting the criteria. While none of the contrast agents discussed in the literature met all criteria, each one has advantages to consider in the context of specific lab capabilities and imaging priorities.
Collapse
Affiliation(s)
- Spencer B. Glancy
- San Antonio Uniformed Services Health Education Consortium, San Antonio, TX 78234, USA;
| | - Herman Douglas Morris
- School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (H.D.M.); (V.B.H.)
| | - Vincent B. Ho
- School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (H.D.M.); (V.B.H.)
- 4D Bio3 Center for Biotechnology, Uniformed Services University, Bethesda, MD 20814, USA
| | - George J. Klarmann
- 4D Bio3 Center for Biotechnology, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| |
Collapse
|
26
|
Vu MAT, Brown EH, Wen MJ, Noggle CA, Zhang Z, Monk KJ, Bouabid S, Mroz L, Graham BM, Zhuo Y, Li Y, Otchy TM, Tian L, Davison IG, Boas DA, Howe MW. Targeted micro-fiber arrays for measuring and manipulating localized multi-scale neural dynamics over large, deep brain volumes during behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567425. [PMID: 38014018 PMCID: PMC10680831 DOI: 10.1101/2023.11.17.567425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Neural population dynamics relevant for behavior vary over multiple spatial and temporal scales across 3-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array and imaging approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice. We developed a semi-automated micro-CT based strategy to precisely localize positions of each optical fiber. This highly-customizable approach enables investigation of multi-scale spatial and temporal patterns of cell-type and neurotransmitter specific signals over arbitrary 3-D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum volume which revealed distinct, modality specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics through our fiber arrays enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and spatial localization of behavioral function across large circuits.
Collapse
Affiliation(s)
- Mai-Anh T. Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eleanor H. Brown
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Michelle J. Wen
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Christian A. Noggle
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zicheng Zhang
- Department of Biology, Boston University, Boston, MA, USA
| | - Kevin J. Monk
- Department of Biology, Boston University, Boston, MA, USA
| | - Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Lydia Mroz
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Northeastern University, Boston, MA, USA
| | - Benjamin M. Graham
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | | | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA
| | - Ian G. Davison
- Department of Biology, Boston University, Boston, MA, USA
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark W. Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
27
|
Morikawa K, Morita S, Sakura K, Maeno A, Gotoh H, Niimi T, Inoue Y. Unveiling the role of differential growth in 3D morphogenesis: An inference method to analyze area expansion rate distribution in biological systems. J Theor Biol 2023; 575:111650. [PMID: 37884223 DOI: 10.1016/j.jtbi.2023.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
The three-dimensional (3D) morphologies of many organs in organisms, such as the curved shapes of leaves and flowers, the branching structure of lungs, and the exoskeletal shape of insects, are formed through surface growth. Although differential growth, a mode of surface growth, has been qualitatively identified as 3D morphogenesis, a quantitative understanding of the mechanical contribution of differential growth is lacking. To address this, we developed a quantitative inference method to analyze the distribution of the area expansion rate, which governs the growth of surfaces into 3D morphology. To validate the accuracy of our method, we tested it on a basic 3D morphology that allowed for the theoretical derivation of the area expansion rate distribution, and then assessed the difference between the predicted outcome and the theoretical solution. We also applied this method to complex 3D shapes and evaluated its accuracy through numerical experiments. The findings of the study revealed a linear decrease in error on a log-log scale with an increase in the number of meshes in both evaluations. This affirmed the reliability of the predictions for meshes that are sufficiently refined. Moreover, we employed our methodology to analyze the developmental process of the Japanese rhinoceros beetle Trypoxylus dichotomus, which is characterized by differential growth regulating 3D morphogenesis. The results indicated a notably high rate of area expansion on the left and right edges of the horn primordium, which is consistent with the experimental evidence of a higher rate of cell division in these regions. Hence, these findings confirm the efficacy of the proposed method in analyzing biological systems.
Collapse
Affiliation(s)
- Kentaro Morikawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Japan.
| | - Shinichi Morita
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Japan; Basic Biology Program, Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies, SOKENDAI, Japan
| | - Kazuki Sakura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Japan
| | | | - Hiroki Gotoh
- Department of Biological Science, Faculty of Science, Shizuoka University, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Japan; Basic Biology Program, Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies, SOKENDAI, Japan
| | - Yasuhiro Inoue
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Japan.
| |
Collapse
|
28
|
Longren LL, Eigen L, Shubitidze A, Lieschnegg O, Baum D, Nyakatura JA, Hildebrandt T, Brecht M. Dense reconstruction of elephant trunk musculature. Curr Biol 2023; 33:4713-4720.e3. [PMID: 37757829 DOI: 10.1016/j.cub.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
The elephant trunk operates as a muscular hydrostat1,2 and is actuated by the most complex musculature known in animals.3,4 Because the number of trunk muscles is unclear,5 we performed dense reconstructions of trunk muscle fascicles, elementary muscle units, from microCT scans of an Asian baby elephant trunk. Muscle architecture changes markedly across the trunk. Trunk tip and finger consist of about 8,000 extraordinarily filigree fascicles. The dexterous finger consists exclusively of microscopic radial fascicles pointing to a role of muscle miniaturization in elephant dexterity. Radial fascicles also predominate (at 82% volume) the remainder of the trunk tip, and we wonder if radial muscle fascicles are of particular significance for fine motor control of the dexterous trunk tip. By volume, trunk-shaft muscles6 comprise one-third of the numerous, small radial muscle fascicles; two-thirds of the three subtypes of large longitudinal fascicles (dorsal longitudinals, ventral outer obliques, and ventral inner obliques);7,8,9 and a small fraction of transversal fascicles. Shaft musculature is laterally, but not radially, symmetric. A predominance of dorsal over ventral radial muscles and of ventral over dorsal longitudinal muscles may result in a larger ability of the shaft to extend dorsally than ventrally10 and to bend inward rather than outward. There are around 90,000 trunk muscle fascicles. While primate hand control is based on fine control of contraction by the convergence of many motor neurons on a small set of relatively large muscles, evolution of elephant grasping has led to thousands of microscopic fascicles, which probably outnumber facial motor neurons.
Collapse
Affiliation(s)
- Luke L Longren
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Lennart Eigen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Ani Shubitidze
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Oliver Lieschnegg
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Daniel Baum
- Zuse-Institut Berlin, Takustraße 7, 14195 Berlin, Germany
| | - John A Nyakatura
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Thomas Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
29
|
Hildebrand T, Novak J, Nogueira LP, Boccaccini AR, Haugen HJ. Durability assessment of hydrogel mountings for contrast-enhanced micro-CT. Micron 2023; 174:103533. [PMID: 37660476 DOI: 10.1016/j.micron.2023.103533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Micro-computed tomography (micro-CT) provides valuable data for studying soft tissue, though it is often affected by sample movement during scans and low contrast in X-ray absorption. This can result in lower image quality and geometric inaccuracies, collectively known as 'artefacts'. To mitigate these issues, samples can be embedded in hydrogels and enriched with heavy metals for contrast enhancement. However, the long-term durability of these enhancements remains largely unexplored. In this study, we examine the effects of two contrast enhancement agents - iodine and phosphotungstic acid (PTA) - and two hydrogels - agarose and Poloxamer 407 - over a 14-day period. We used Drosophila melanogaster as a test model for our investigation. Our findings reveal that PTA and agarose are highly durable, while iodine and poloxamer hydrogel exhibits higher leakage rates. These observations lay the foundation for estimating contrast stabilities in contrast-enhanced micro-CT with hydrogel embedding and serve to inform future research in this field.
Collapse
Affiliation(s)
- Torben Hildebrand
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway.
| | - Jan Novak
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway; Department of Materials Science and Engineering, Friedrich-Alexander-Universität, 91054 Erlangen, Germany
| | - Liebert Parreiras Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Aldo Roberto Boccaccini
- Department of Materials Science and Engineering, Friedrich-Alexander-Universität, 91054 Erlangen, Germany
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| |
Collapse
|
30
|
Clark EG, Cornara D, Brodersen CR, McElrone AJ, Parkinson DY, Almeida RPP. Anatomy of an agricultural antagonist: Feeding complex structure and function of three xylem sap-feeding insects illuminated with synchrotron-based 3D imaging. J Morphol 2023; 284:e21639. [PMID: 37708508 DOI: 10.1002/jmor.21639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
Many insects feed on xylem or phloem sap of vascular plants. Although physical damage to the plant is minimal, the process of insect feeding can transmit lethal viruses and bacterial pathogens. Disparities between insect-mediated pathogen transmission efficiency have been identified among xylem sap-feeding insects; however, the mechanistic drivers of these trends are unclear. Identifying and understanding the structural factors and associated integrated functional components that may ultimately determine these disparities are critical for managing plant diseases. Here, we applied synchrotron-based X-ray microcomputed tomography to digitally reconstruct the morphology of three xylem sap-feeding insect vectors of plant pathogens: Graphocephala atropunctata (blue-green sharpshooter; Hemiptera, Cicadellidae) and Homalodisca vitripennis (glassy-winged sharpshooter; Hemiptera, Cicadellidae), and the spittlebug Philaenus spumarius (meadow spittlebug; Hemiptera, Aphrophoridae). The application of this technique revealed previously undescribed anatomical features of these organisms, such as key components of the salivary complex. The visualization of the 3D structure of the precibarial valve led to new insights into the mechanism of how this structure functions. Morphological disparities with functional implications between taxa were highlighted as well, including the morphology and volume of the cibarial dilator musculature responsible for extracting xylem sap, which has implications for force application capabilities. These morphological insights will be used to target analyses illuminating functional differences in feeding behavior.
Collapse
Affiliation(s)
- Elizabeth G Clark
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
| | - Daniele Cornara
- Department of Soil, Plant, and Food Sciences (DiSSPA), University of Bari, Bari, Italy
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | | | - Dilworth Y Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
31
|
Davis S, Karali A, Zekonyte J, Roldo M, Blunn G. Development of a method to investigate strain distribution across the cartilage-bone interface in guinea pig model of spontaneous osteoarthritis using lab-based contrast enhanced X-ray-computed tomography and digital volume correlation. J Mech Behav Biomed Mater 2023; 144:105999. [PMID: 37406483 DOI: 10.1016/j.jmbbm.2023.105999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVE Strain changes at the cartilage-bone interface play a crucial role in osteoarthritis (OA) development. Contrast-Enhanced X-ray Computed Tomography (CECT) and Digital Volume Correlation (DVC) can measure 3D strain changes at the osteochondral interface. Using lab-based CT systems it is often difficult to visualise soft tissues such as articular cartilage without staining to enhance contrast. Contrast-Enhancing Staining Agents (CESAs), such as Phosphotungstic Acid (PTA) in 70% ethanol, can cause tissue shrinkage and alter tissue mechanics. The aims of this study were, firstly, to assess changes to the mechanical properties of osteochondral tissue after staining with a PTA/PBS solution, and secondly, to visualise articular cartilage during loading and with CECT imaging in order to compare strain across the interface in both healthy and OA joints using DVC. DESIGN Nanoindentation was used to assess changes to mechanical properties in articular cartilage and subchondral bone before and after staining. Hindlimbs from Dunkin-Hartley guinea pigs were stained with 1% PTA/PBS at room temperature for 6 days. Two consecutive CECT datasets were acquired for DVC error analysis. In-situ compression with a load corresponding to 2x body weight was applied, the specimen was re-imaged, and DVC was performed between the pre- and post-load tomograms. RESULTS Nanoindentation before and after PTA/PBS staining showed similar cartilage stiffness (p < 0.05), however, staining significantly decreased the stiffness of subchondral bone (∼9-fold; p = 0.0012). In severe OA specimens, third principal/compressive (εp3) strain was 141.7% higher and shear strain (γ) was 98.2% higher in tibial articular cartilage compared to non-OA (2 - month) specimens. A 23.1% increase in third principal stain strain and a 54.5% significant increase in the shear (γ) strain (p = 0.0027) was transferred into the mineralised regions of calcified cartilage and subchondral bone in severe OA specimens. CONCLUSIONS These results indicate the suitability of PTA in PBS as a contrast agent for the visualisation of cartilage during CECT imaging and allowed DVC computation of strain across the cartilage-bone interface. However, further research is needed to address the reduction in stiffness of subchondral bone after incubation in PBS.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK; School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK.
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK
| |
Collapse
|
32
|
Ishii R, Yoshida M, Suzuki N, Ogino H, Suzuki M. X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration. Dev Growth Differ 2023; 65:300-310. [PMID: 37477433 DOI: 10.1111/dgd.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Xenopus tadpoles serve as an exceptional model organism for studying post-embryonic development in vertebrates. During post-embryonic development, large-scale changes in tissue morphology, including organ regeneration and metamorphosis, occur at the organ level. However, understanding these processes in a three-dimensional manner remains challenging. In this study, the use of X-ray micro-computed tomography (microCT) for the three-dimensional observation of the soft tissues of Xenopus tadpoles was explored. The findings revealed that major organs, such as the brain, heart, and kidneys, could be visualized with high contrast by phosphotungstic acid staining following fixation with Bouin's solution. Then, the changes in brain shape during telencephalon regeneration were analyzed as the first example of utilizing microCT to study organ regeneration in Xenopus tadpoles, and it was found that the size of the amputated telencephalon recovered to >80% of its original length within approximately 1 week. It was also observed that the ventricles tended to shrink after amputation and maintained this state for at least 3 days. This shrinkage was transient, as the ventricles expanded to exceed their original size within the following week. Temporary shrinkage and expansion of the ventricles, which were also observed in transgenic or fluorescent dye-injected tadpoles with telencephalon amputation, may be significant in tissue homeostasis in response to massive brain injury and subsequent repair and regeneration. This established method will improve experimental analyses in developmental biology and medical science using Xenopus tadpoles.
Collapse
Affiliation(s)
- Riona Ishii
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Mana Yoshida
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Nanoka Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
33
|
Stundl J, Martik ML, Chen D, Raja DA, Franěk R, Pospisilova A, Pšenička M, Metscher BD, Braasch I, Haitina T, Cerny R, Ahlberg PE, Bronner ME. Ancient vertebrate dermal armor evolved from trunk neural crest. Proc Natl Acad Sci U S A 2023; 120:e2221120120. [PMID: 37459514 PMCID: PMC10372632 DOI: 10.1073/pnas.2221120120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/26/2023] [Indexed: 07/20/2023] Open
Abstract
Bone is an evolutionary novelty of vertebrates, likely to have first emerged as part of ancestral dermal armor that consisted of osteogenic and odontogenic components. Whether these early vertebrate structures arose from mesoderm or neural crest cells has been a matter of considerable debate. To examine the developmental origin of the bony part of the dermal armor, we have performed in vivo lineage tracing in the sterlet sturgeon, a representative of nonteleost ray-finned fish that has retained an extensive postcranial dermal skeleton. The results definitively show that sterlet trunk neural crest cells give rise to osteoblasts of the scutes. Transcriptional profiling further reveals neural crest gene signature in sterlet scutes as well as bichir scales. Finally, histological and microCT analyses of ray-finned fish dermal armor show that their scales and scutes are formed by bone, dentin, and hypermineralized covering tissues, in various combinations, that resemble those of the first armored vertebrates. Taken together, our results support a primitive skeletogenic role for the neural crest along the entire body axis, that was later progressively restricted to the cranial region during vertebrate evolution. Thus, the neural crest was a crucial evolutionary innovation driving the origin and diversification of dermal armor along the entire body axis.
Collapse
Affiliation(s)
- Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925Vodnany, Czech Republic
| | - Megan L. Martik
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Donglei Chen
- Department of Organismal Biology, Uppsala University, SE-75236Uppsala, Sweden
| | - Desingu Ayyappa Raja
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Roman Franěk
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925Vodnany, Czech Republic
| | - Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00Prague, Czech Republic
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925Vodnany, Czech Republic
| | - Brian D. Metscher
- Department of Evolutionary Biology, Theoretical Biology Unit, University of Vienna, 1010Vienna, Austria
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI48824
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI48824
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, SE-75236Uppsala, Sweden
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00Prague, Czech Republic
| | - Per E. Ahlberg
- Department of Organismal Biology, Uppsala University, SE-75236Uppsala, Sweden
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
34
|
Windfelder AG, Steinbart J, Flögel U, Scherberich J, Kampschulte M, Krombach GA, Vilcinskas A. A quantitative micro-tomographic gut atlas of the lepidopteran model insect Manduca sexta. iScience 2023; 26:106801. [PMID: 37378344 PMCID: PMC10291339 DOI: 10.1016/j.isci.2023.106801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/26/2023] [Accepted: 04/28/2023] [Indexed: 06/29/2023] Open
Abstract
The tobacco hornworm is used extensively as a model system for ecotoxicology, immunology and gut physiology. Here, we established a micro-computed tomography approach based on the oral application of the clinical contrast agent iodixanol, allowing for a high-resolution quantitative analysis of the Manduca sexta gut. This technique permitted the identification of previously unknown and understudied structures, such as the crop or gastric ceca, and revealed the underlying complexity of the hindgut folding pattern, which is involved in fecal pellet formation. The acquired data enabled the volume rendering of all gut parts, the reliable calculation of their volumes, and the virtual endoscopy of the entire alimentary tract. It can provide information for accurate orientation in histology uses, enable quantitative anatomical phenotyping in three dimensions, and allow the calculation of locally effective midgut concentrations of applied chemicals. This atlas will provide critical insights into the evolution of the alimentary tract in lepidopterans.
Collapse
Affiliation(s)
- Anton G. Windfelder
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Jessica Steinbart
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Scherberich
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Marian Kampschulte
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Gabriele A. Krombach
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Andreas Vilcinskas
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
35
|
Väänänen V, Christensen MM, Suhonen H, Jernvall J. Gene expression detection in developing mouse tissue using in situ hybridization and µCT imaging. Proc Natl Acad Sci U S A 2023; 120:e2301876120. [PMID: 37279266 PMCID: PMC10268296 DOI: 10.1073/pnas.2301876120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/07/2023] [Indexed: 06/08/2023] Open
Abstract
High resolution and noninvasiveness have made soft-tissue X-ray microtomography (µCT) a widely applicable three-dimensional (3D) imaging method in studies of morphology and development. However, scarcity of molecular probes to visualize gene activity with µCT has remained a challenge. Here, we apply horseradish peroxidase-assisted reduction of silver and catalytic gold enhancement of the silver deposit to in situ hybridization in order to detect gene expression in developing tissues with µCT (here called GECT, gene expression CT). We show that GECT detects expression patterns of collagen type II alpha 1 and sonic hedgehog in developing mouse tissues comparably with an alkaline phosphatase-based detection method. After detection, expression patterns are visualized with laboratory µCT, demonstrating that GECT is compatible with varying levels of gene expression and varying sizes of expression regions. Additionally, we show that the method is compatible with prior phosphotungstic acid staining, a conventional contrast staining approach in µCT imaging of soft tissues. Overall, GECT is a method that can be integrated with existing laboratory routines to obtain spatially accurate 3D detection of gene expression.
Collapse
Affiliation(s)
- Vilma Väänänen
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
| | - Mona M. Christensen
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
| | - Heikki Suhonen
- Department of Physics, University of Helsinki, HelsinkiFI-00014, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
- Department of Geosciences and Geography, University of Helsinki, HelsinkiFI-00014, Finland
| |
Collapse
|
36
|
Li-Villarreal N, Rasmussen TL, Christiansen AE, Dickinson ME, Hsu CW. Three-dimensional microCT imaging of mouse heart development from early post-implantation to late fetal stages. Mamm Genome 2023; 34:156-165. [PMID: 36595063 PMCID: PMC10290591 DOI: 10.1007/s00335-022-09976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
Comprehensive detailed characterization of new mouse models can be challenging due to the individual focus involved in developing these models. Often models are engineered to test a specific hypothesis in a limited number of tissues, stages, and/or other contexts. Whether or not the model produces the desired phenotypes, phenotyping beyond the desired context can be extremely work intensive and these studies are often not undertaken. However, the general information resulting from broader phenotyping can be invaluable to the wider scientific community. The International Mouse Phenotyping Consortium (IMPC) and its subsidiaries, like the Knockout Mouse Project (KOMP), has made great strides in streamlining this process. In particular, the use of microCT has been an invaluable resource in examining internal organ systems throughout fetal/developmental stages. Here, we provide several novel vignettes demonstrating the utility of microCT in uncovering cardiac phenotypes both based on human disease correlations and those that are unpredicted.
Collapse
Affiliation(s)
- Nanbing Li-Villarreal
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Tara L Rasmussen
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Audrey E Christiansen
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mary E Dickinson
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chih-Wei Hsu
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Education, Innovation and Technology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Yakovlev MA, Liang K, Zaino CR, Vanselow DJ, Sugarman AL, Lin AY, La Riviere PJ, Zheng Y, Silverman JD, Leichty JC, Huang SX, Cheng KC. Quantitative Geometric Modeling of Blood Cells from X-ray Histotomograms of Whole Zebrafish Larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541939. [PMID: 37292910 PMCID: PMC10245913 DOI: 10.1101/2023.05.23.541939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tissue phenotyping is foundational to understanding and assessing the cellular aspects of disease in organismal context and an important adjunct to molecular studies in the dissection of gene function, chemical effects, and disease. As a first step toward computational tissue phenotyping, we explore the potential of cellular phenotyping from 3-Dimensional (3D), 0.74 µm isotropic voxel resolution, whole zebrafish larval images derived from X-ray histotomography, a form of micro-CT customized for histopathology. As proof of principle towards computational tissue phenotyping of cells, we created a semi-automated mechanism for the segmentation of blood cells in the vascular spaces of zebrafish larvae, followed by modeling and extraction of quantitative geometric parameters. Manually segmented cells were used to train a random forest classifier for blood cells, enabling the use of a generalized cellular segmentation algorithm for the accurate segmentation of blood cells. These models were used to create an automated data segmentation and analysis pipeline to guide the steps in a 3D workflow including blood cell region prediction, cell boundary extraction, and statistical characterization of 3D geometric and cytological features. We were able to distinguish blood cells at two stages in development (4- and 5-days-post-fertilization) and wild-type vs. polA2 huli hutu ( hht ) mutants. The application of geometric modeling across cell types to and across organisms and sample types may comprise a valuable foundation for computational phenotyping that is more open, informative, rapid, objective, and reproducible.
Collapse
|
38
|
Geier B, Gil-Mansilla E, Liutkevičiūtė Z, Hellinger R, Vanden Broeck J, Oetjen J, Liebeke M, Gruber CW. Multiplexed neuropeptide mapping in ant brains integrating microtomography and three-dimensional mass spectrometry imaging. PNAS NEXUS 2023; 2:pgad144. [PMID: 37215633 PMCID: PMC10194420 DOI: 10.1093/pnasnexus/pgad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
Neuropeptides are important regulators of animal physiology and behavior. Hitherto the gold standard for the localization of neuropeptides have been immunohistochemical methods that require the synthesis of antibody panels, while another limiting factor has been the brain's opacity for subsequent in situ light or fluorescence microscopy. To address these limitations, we explored the integration of high-resolution mass spectrometry imaging (MSI) with microtomography for a multiplexed mapping of neuropeptides in two evolutionary distant ant species, Atta sexdens and Lasius niger. For analyzing the spatial distribution of chemically diverse peptide molecules across the brain in each species, the acquisition of serial mass spectrometry images was essential. As a result, we have comparatively mapped the three-dimensional (3D) distributions of eight conserved neuropeptides throughout the brain microanatomy. We demonstrate that integrating the 3D MSI data into high-resolution anatomy models can be critical for studying organs with high plasticity such as brains of social insects. Several peptides, like the tachykinin-related peptides (TK) 1 and 4, were widely distributed in many brain areas of both ant species, whereas others, for instance myosuppressin, were restricted to specific regions only. Also, we detected differences at the species level; many peptides were identified in the optic lobe of L. niger, but only one peptide (ITG-like) was found in this region in A. sexdens. Building upon MS imaging studies on neuropeptides in invertebrate model systems, our approach leverages correlative MSI and computed microtomography for investigating fundamental neurobiological processes by visualizing the unbiased 3D neurochemistry in its complex anatomic environment.
Collapse
Affiliation(s)
| | | | - Zita Liutkevičiūtė
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Group, Zoological Institute, KU Leuven, Leuven 3000, Belgium
| | - Janina Oetjen
- To whom correspondence should be addressed: (J.O.); (M.L.); (C.W.G.)
| | - Manuel Liebeke
- To whom correspondence should be addressed: (J.O.); (M.L.); (C.W.G.)
| | | |
Collapse
|
39
|
Brunet J, Walsh CL, Wagner WL, Bellier A, Werlein C, Marussi S, Jonigk DD, Verleden SE, Ackermann M, Lee PD, Tafforeau P. Preparation of large biological samples for high-resolution, hierarchical, synchrotron phase-contrast tomography with multimodal imaging compatibility. Nat Protoc 2023; 18:1441-1461. [PMID: 36859614 DOI: 10.1038/s41596-023-00804-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/12/2022] [Indexed: 03/03/2023]
Abstract
Imaging across different scales is essential for understanding healthy organ morphology and pathophysiological changes. The macro- and microscale three-dimensional morphology of large samples, including intact human organs, is possible with X-ray microtomography (using laboratory or synchrotron sources). Preparation of large samples for high-resolution imaging, however, is challenging due to limitations such as sample shrinkage, insufficient contrast, movement of the sample and bubble formation during mounting or scanning. Here, we describe the preparation, stabilization, dehydration and mounting of large soft-tissue samples for X-ray microtomography. We detail the protocol applied to whole human organs and hierarchical phase-contrast tomography at the European Synchrotron Radiation Facility, yet it is applicable to a range of biological samples, including complete organisms. The protocol enhances the contrast when using X-ray imaging, while preventing sample motion during the scan, even with different sample orientations. Bubbles trapped during mounting and those formed during scanning (in the case of synchrotron X-ray imaging) are mitigated by multiple degassing steps. The sample preparation is also compatible with magnetic resonance imaging, computed tomography and histological observation. The sample preparation and mounting require 24-36 d for a large organ such as a whole human brain or heart. The preparation time varies depending on the composition, size and fragility of the tissue. Use of the protocol enables scanning of intact organs with a diameter of 150 mm with a local voxel size of 1 μm. The protocol requires users with expertise in handling human or animal organs, laboratory operation and X-ray imaging.
Collapse
Affiliation(s)
- J Brunet
- Department of Mechanical Engineering, University College London, London, UK.
- European Synchrotron Radiation Facility, Grenoble, France.
| | - C L Walsh
- Department of Mechanical Engineering, University College London, London, UK.
| | - W L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), Heidelberg, Germany
| | - A Bellier
- Laboratoire d'Anatomie des Alpes Françaises (LADAF), Université Grenoble Alpes, Grenoble, France
| | - C Werlein
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - S Marussi
- Department of Mechanical Engineering, University College London, London, UK
| | - D D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Lung Research Centre (DZL), Hannover, Germany
| | - S E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Antwerp, Belgium
| | - M Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London, UK.
- Research Complex at Harwell, Didcot, UK.
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| |
Collapse
|
40
|
Ritter C, Eigen L, Deiringer N, Laubscher L, Brecht M. Coevolution of rostrum and brain in pig species. J Comp Neurol 2023; 531:775-789. [PMID: 36843325 DOI: 10.1002/cne.25461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/28/2023]
Abstract
Domestic pigs have a prominent cortical gyrus (the rostrum gyrus) isomorphic to the contralateral hemirostrum. It is unclear, however, if the size and shape of the rostrum gyrus are of evolutionary/functional relevance. Here, we address this question by assessing the relationship of rostrum and rostrum gyrus across eight pig species. To this end, we quantified rostrum morphology in fresh and alcohol-preserved pig specimens by surface scans, microfocus computed tomography scans, and photography. We establish that the size and shape of the rostrum gyrus can be precisely inferred from endocasts. We then took advantage of the accessibility of pig skulls and endocasts to assess features of the rostrum gyrus across species. Our investigation led to the following results: (i) The rostra of pig species show basic similarities. (ii) A cortical rostrum gyrus is apparent in all pigs. (iii) The size of the rostrum gyrus differs across species and outgroups of the evolutionary dominant suinae (i.e., peccaries and the babirusa) have a noticeably smaller rostrum gyrus. (iv) Warthogs have a derived rostrum morphology with an extra fold and a very wide rostrum; the warthog rostrum gyrus recapitulates these rostrum features. (v) Domestic pigs have relatively smaller rostrum gyrus than wild boars. We also provide indications for a conserved cytoarchitectonic patterning of the rostrum gyrus. We conclude that the rostrum gyrus is a neural module that was putatively present in the common ancestor of pigs and that this neural module is conserved across pig species. Natural selection maintains the rostrum gyrus' size and its exact isomorphism to the rostrum.
Collapse
Affiliation(s)
- Cindy Ritter
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lennart Eigen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nora Deiringer
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Liesel Laubscher
- Wildlife Pharmaceuticals Wildlife Research Facility, Wildlife Pharmaceuticals (Pty) Ltd, White River, South Africa
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
41
|
Docter D, Dawood Y, Jacobs K, Hagoort J, Oostra RJ, van den Hoff MJB, Arthurs OJ, de Bakker BS. Microfocus computed tomography for fetal postmortem imaging: an overview. Pediatr Radiol 2023; 53:632-639. [PMID: 36169668 PMCID: PMC10027643 DOI: 10.1007/s00247-022-05517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Over the last few years, fetal postmortem microfocus computed tomography (micro-CT) imaging has increased in popularity for both diagnostic and research purposes. Micro-CT imaging could be a substitute for autopsy, particularly in very early gestation fetuses for whom autopsy can be technically challenging and is often unaccepted by parents. This article provides an overview of the latest research in fetal postmortem micro-CT imaging with a focus on diagnostic accuracy, endovascular staining approaches, placental studies and the reversibility of staining. It also discusses new methods that could prove helpful for micro-CT of larger fetuses. While more research is needed, contrast-enhanced micro-CT has the potential to become a suitable alternative to fetal autopsy. Further research using this novel imaging tool could yield wider applications, such as its practise in imaging rare museum specimens.
Collapse
Affiliation(s)
- Daniël Docter
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Yousif Dawood
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC at University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Karl Jacobs
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
- Department of Oral Pain and Dysfunction, Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Jaco Hagoort
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Roelof-Jan Oostra
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice J B van den Hoff
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Owen J Arthurs
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- National Institute for Health Research, Great Ormond Street Hospital Biomedical Research Center, London, UK
| | - Bernadette S de Bakker
- Department of Obstetrics and Gynecology, Amsterdam UMC at University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands.
- Department of Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
42
|
Kolmann MA, Nagesan RS, Andrews JV, Borstein SR, Figueroa RT, Singer RA, Friedman M, López-Fernández H. DiceCT for fishes: recommendations for pairing iodine contrast agents with μCT to visualize soft tissues in fishes. JOURNAL OF FISH BIOLOGY 2023; 102:893-903. [PMID: 36647819 DOI: 10.1111/jfb.15320] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Computed tomography (CT) scanning and other high-throughput three-dimensional (3D) visualization tools are transforming the ways we study morphology, ecology and evolutionary biology research beyond generating vast digital repositories of anatomical data. Contrast-enhanced chemical staining methods, which render soft tissues radio-opaque when coupled with CT scanning, encompass several approaches that are growing in popularity and versatility. Of these, the various diceCT techniques that use an iodine-based solution like Lugol's have provided access to an array of morphological data sets spanning extant vertebrate lineages. This contribution outlines straightforward means for applying diceCT techniques to preserved museum specimens of cartilaginous and bony fishes, collectively representing half of vertebrate species diversity. This study contrasts the benefits of using either aqueous or ethylic Lugol's solutions and reports few differences between these methods with respect to the time required to achieve optimal tissue contrast. It also explores differences in minimum stain duration required for different body sizes and shapes and provides recommendations for staining specimens individually or in small batches. As reported by earlier studies, the authors note a decrease in pH during staining with either aqueous or ethylic Lugol's. Nonetheless, they could not replicate the drastic declines in pH reported elsewhere. They provide recommendations for researchers and collections staff on how to incorporate diceCT into existing curatorial practices, while offsetting risk to specimens. Finally, they outline how diceCT with Lugol's can aid ichthyologists of all kinds in visualizing anatomical structures of interest: from brains and gizzards to gas bladders and pharyngeal jaw muscles.
Collapse
Affiliation(s)
- Matthew A Kolmann
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Ramon S Nagesan
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - James V Andrews
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel R Borstein
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rodrigo Tinoco Figueroa
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Randal A Singer
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matt Friedman
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Hernán López-Fernández
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Wang M, Rücklin M, Poelmann RE, de Mooij CL, Fokkema M, Lamers GEM, de Bakker MAG, Chin E, Bakos LJ, Marone F, Wisse BJ, de Ruiter MC, Cheng S, Nurhidayat L, Vijver MG, Richardson MK. Nanoplastics causes extensive congenital malformations during embryonic development by passively targeting neural crest cells. ENVIRONMENT INTERNATIONAL 2023; 173:107865. [PMID: 36907039 DOI: 10.1016/j.envint.2023.107865] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials are widespread in the human environment as pollutants, and are being actively developed for use in human medicine. We have investigated how the size and dose of polystyrene nanoparticles affects malformations in chicken embryos, and have characterized the mechanisms by which they interfere with normal development. We find that nanoplastics can cross the embryonic gut wall. When injected into the vitelline vein, nanoplastics become distributed in the circulation to multiple organs. We find that the exposure of embryos to polystyrene nanoparticles produces malformations that are far more serious and extensive than has been previously reported. These malformations include major congenital heart defects that impair cardiac function. We show that the mechanism of toxicity is the selective binding of polystyrene nanoplastics nanoparticles to neural crest cells, leading to the death and impaired migration of those cells. Consistent with our new model, most of the malformations seen in this study are in organs that depend for their normal development on neural crest cells. These results are a matter of concern given the large and growing burden of nanoplastics in the environment. Our findings suggest that nanoplastics may pose a health risk to the developing embryo.
Collapse
Affiliation(s)
- Meiru Wang
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Martin Rücklin
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Robert E Poelmann
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, The Netherlands
| | - Carmen L de Mooij
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Marjolein Fokkema
- Institute of Psychology, Methodology and Statistics, Pieter de la Court Building, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
| | - Gerda E M Lamers
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Merijn A G de Bakker
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ernest Chin
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Lilla J Bakos
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, Photon Science Department, Forschungsstrasse 111, CH-5232 Villigen, Switzerland
| | - Bert J Wisse
- Department of Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Marco C de Ruiter
- Department of Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Shixiong Cheng
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Luthfi Nurhidayat
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University (CML), Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Michael K Richardson
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
44
|
Gutnick T, Neef A, Cherninskyi A, Ziadi-Künzli F, Di Cosmo A, Lipp HP, Kuba MJ. Recording electrical activity from the brain of behaving octopus. Curr Biol 2023; 33:1171-1178.e4. [PMID: 36827988 DOI: 10.1016/j.cub.2023.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Octopuses, which are among the most intelligent invertebrates,1,2,3,4 have no skeleton and eight flexible arms whose sensory and motor activities are at once autonomous and coordinated by a complex central nervous system.5,6,7,8 The octopus brain contains a very large number of neurons, organized into numerous distinct lobes, the functions of which have been proposed based largely on the results of lesioning experiments.9,10,11,12,13 In other species, linking brain activity to behavior is done by implanting electrodes and directly correlating electrical activity with observed animal behavior. However, because the octopus lacks any hard structure to which recording equipment can be anchored, and because it uses its eight flexible arms to remove any foreign object attached to the outside of its body, in vivo recording of electrical activity from untethered, behaving octopuses has thus far not been possible. Here, we describe a novel technique for inserting a portable data logger into the octopus and implanting electrodes into the vertical lobe system, such that brain activity can be recorded for up to 12 h from unanesthetized, untethered octopuses and can be synchronized with simultaneous video recordings of behavior. In the brain activity, we identified several distinct patterns that appeared consistently in all animals. While some resemble activity patterns in mammalian neural tissue, others, such as episodes of 2 Hz, large amplitude oscillations, have not been reported. By providing an experimental platform for recording brain activity in behaving octopuses, our study is a critical step toward understanding how the brain controls behavior in these remarkable animals.
Collapse
Affiliation(s)
- Tamar Gutnick
- Okinawa Institute of Science and Technology, Graduate University, Physics and Biology Unit, 904 0495 Okinawa, Japan; Department of Biology, University of Naples Federico II, Via Cintia 26, 80126 Napoli, Italy.
| | - Andreas Neef
- Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, 37073 Göttingen, Germany; Institute for the Dynamics of Complex Systems, University of Göttingen, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, 37075 Göttingen, Germany
| | | | - Fabienne Ziadi-Künzli
- Okinawa Institute of Science and Technology, Graduate University, Nonlinear and Non-equilibrium Physics Unit, Okinawa 904-0495, Japan
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126 Napoli, Italy
| | - Hans-Peter Lipp
- Institute of Evolutionary Medicine, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Michael J Kuba
- Okinawa Institute of Science and Technology, Graduate University, Physics and Biology Unit, 904 0495 Okinawa, Japan; Department of Biology, University of Naples Federico II, Via Cintia 26, 80126 Napoli, Italy
| |
Collapse
|
45
|
Morphological and Chemical Investigation of Ovarian Structures in a Bovine Model by Contrast-Enhanced X-ray Imaging and Microscopy. Int J Mol Sci 2023; 24:ijms24043545. [PMID: 36834956 PMCID: PMC9963314 DOI: 10.3390/ijms24043545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
An improved understanding of an ovary's structures is highly desirable to support advances in folliculogenesis knowledge and reproductive medicine, with particular attention to fertility preservation options for prepubertal girls with malignant tumors. Although currently the golden standard for structural analysis is provided by combining histological sections, staining, and visible 2D microscopic inspection, synchrotron radiation phase-contrast microtomography is becoming a new challenge for three-dimensional studies at micrometric resolution. To this aim, the proper use of contrast agents can improve the visualization of internal structures in ovary tissues, which normally present a low radiopacity. In this study, we report a comparison of four staining protocols, based on iodine or tungsten containing agents, applied to bovine ovarian tissues fixed in Bouin's solution. The microtomography (microCT) analyses at two synchrotron facilities under different set-ups were performed at different energies in order to maximize the image contrast. While tungsten-based agents allow large structures to be well identified, Iodine ones better highlight smaller features, especially when acquired above the K-edge energy of the specific metal. Further scans performed at lower energy where the setup was optimized for overall quality and sensitivity from phase-contrast still provided highly resolved visualization of follicular and intrafollicular structures at different maturation stages, independent of the staining protocol. The analyses were complemented by X-ray Fluorescence mapping on 2D sections, showing that the tungsten-based agent has a higher penetration in this type of tissues.
Collapse
|
46
|
Hanly A, Johnston RD, Lemass C, Jose A, Tornifoglio B, Lally C. Phosphotungstic acid (PTA) preferentially binds to collagen- rich regions of porcine carotid arteries and human atherosclerotic plaques observed using contrast enhanced micro-computed tomography (CE-µCT). Front Physiol 2023; 14:1057394. [PMID: 36818446 PMCID: PMC9932683 DOI: 10.3389/fphys.2023.1057394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aims: Atherosclerotic plaque rupture in the carotid artery can cause small emboli to travel to cerebral arteries, causing blockages and preventing blood flow leading to stroke. Contrast enhanced micro computed tomography (CEμCT) using a novel stain, phosphotungstic acid (PTA) can provide insights into the microstructure of the vessel wall and atherosclerotic plaque, and hence their likelihood to rupture. Furthermore, it has been suggested that collagen content and orientation can be related to mechanical integrity. This study aims to build on existing literature and establish a robust and reproducible staining and imaging technique to non-destructively quantify the collagen content within arteries and plaques as an alternative to routine histology. Methods: Porcine carotid arteries and human atherosclerotic plaques were stained with a concentration of 1% PTA staining solution and imaged using MicroCT to establish the in situ architecture of the tissue and measure collagen content. A histological assessment of the collagen content was also performed from picrosirius red (PSR) staining. Results: PTA stained arterial samples highlight the reproducibility of the PTA staining and MicroCT imaging technique used with a quantitative analysis showing a positive correlation between the collagen content measured from CEμCT and histology. Furthermore, collagen-rich areas can be clearly visualised in both the vessel wall and atherosclerotic plaque. 3D reconstruction was also performed showing that different layers of the vessel wall and various atherosclerotic plaque components can be differentiated using Hounsfield Unit (HU) values. Conclusion: The work presented here is unique as it offers a quantitative method of segmenting the vessel wall into its individual components and non-destructively quantifying the collagen content within these tissues, whilst also delivering a visual representation of the fibrous structure using a single contrast agent.
Collapse
Affiliation(s)
- A. Hanly
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R. D. Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - C. Lemass
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A. Jose
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - B. Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - C. Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland,*Correspondence: C. Lally,
| |
Collapse
|
47
|
Warr R, Handschuh S, Glösmann M, Cernik RJ, Withers PJ. Quantifying multiple stain distributions in bioimaging by hyperspectral X-ray tomography. Sci Rep 2022; 12:21945. [PMID: 36535963 PMCID: PMC9763266 DOI: 10.1038/s41598-022-23592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Chemical staining of biological specimens is commonly utilised to boost contrast in soft tissue structures, but unambiguous identification of staining location and distribution is difficult without confirmation of the elemental signature, especially for chemicals of similar density contrast. Hyperspectral X-ray computed tomography (XCT) enables the non-destructive identification, segmentation and mapping of elemental composition within a sample. With the availability of hundreds of narrow, high resolution (~ 1 keV) energy channels, the technique allows the simultaneous detection of multiple contrast agents across different tissue structures. Here we describe a hyperspectral imaging routine for distinguishing multiple chemical agents, regardless of contrast similarity. Using a set of elemental calibration phantoms, we perform a first instance of direct stain concentration measurement using spectral absorption edge markers. Applied to a set of double- and triple-stained biological specimens, the study analyses the extent of stain overlap and uptake regions for commonly used contrast markers. An improved understanding of stain concentration as a function of position, and the interaction between multiple stains, would help inform future studies on multi-staining procedures, as well as enable future exploration of heavy metal uptake across medical, agricultural and ecological fields.
Collapse
Affiliation(s)
- Ryan Warr
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| | - Stephan Handschuh
- grid.6583.80000 0000 9686 6466VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Glösmann
- grid.6583.80000 0000 9686 6466VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Robert J. Cernik
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| | - Philip J. Withers
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| |
Collapse
|
48
|
Schwarzenberg FL, Schütz P, Hammel JU, Riedel M, Bartl J, Bordbari S, Frank SC, Walkenfort B, Busse M, Herzen J, Lohr C, Wülfing C, Henne S. Three-dimensional analyses of vascular network morphology in a murine lymph node by X-ray phase-contrast tomography with a 2D Talbot array. Front Immunol 2022; 13:947961. [PMID: 36524111 PMCID: PMC9745095 DOI: 10.3389/fimmu.2022.947961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
With growing molecular evidence for correlations between spatial arrangement of blood vasculature and fundamental immunological functions, carried out in distinct compartments of the subdivided lymph node, there is an urgent need for three-dimensional models that can link these aspects. We reconstructed such models at a 1.84 µm resolution by the means of X-ray phase-contrast imaging with a 2D Talbot array in a short time without any staining. In addition reconstructions are verified in immunohistochemistry staining as well as in ultrastructural analyses. While conventional illustrations of mammalian lymph nodes depict the hilus as a definite point of blood and lymphatic vessel entry and exit, our method revealed that multiple branches enter and emerge from an area that extends up to one third of the organ's surface. This could be a prerequisite for the drastic and location-dependent remodeling of vascularization, which is necessary for lymph node expansion during inflammation. Contrary to corrosion cast studies we identified B-cell follicles exhibiting a two times denser capillary network than the deep cortical units of the T-cell zone. In addition to our observation of high endothelial venules spatially surrounding the follicles, this suggests a direct connection between morphology and B-cell homing. Our findings will deepen the understanding of functional lymph node composition and lymphocyte migration on a fundamental basis.
Collapse
Affiliation(s)
- Florian L. Schwarzenberg
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Paul Schütz
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Mirko Riedel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Jasmin Bartl
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Sharareh Bordbari
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Svea-Celina Frank
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Madleen Busse
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Julia Herzen
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Clemens Wülfing
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Stephan Henne
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
49
|
OCT Meets micro-CT: A Subject-Specific Correlative Multimodal Imaging Workflow for Early Chick Heart Development Modeling. J Cardiovasc Dev Dis 2022; 9:jcdd9110379. [DOI: 10.3390/jcdd9110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Structural and Doppler velocity data collected from optical coherence tomography have already provided crucial insights into cardiac morphogenesis. X-ray microtomography and other ex vivo methods have elucidated structural details of developing hearts. However, by itself, no single imaging modality can provide comprehensive information allowing to fully decipher the inner workings of an entire developing organ. Hence, we introduce a specimen-specific correlative multimodal imaging workflow combining OCT and micro-CT imaging which is applicable for modeling of early chick heart development—a valuable model organism in cardiovascular development research. The image acquisition and processing employ common reagents, lab-based micro-CT imaging, and software that is free for academic use. Our goal is to provide a step-by-step guide on how to implement this workflow and to demonstrate why those two modalities together have the potential to provide new insight into normal cardiac development and heart malformations leading to congenital heart disease.
Collapse
|
50
|
Ando N, Kono T, Ogihara N, Nakamura S, Yokota H, Kanzaki R. Modeling the musculoskeletal system of an insect thorax for flapping flight. BIOINSPIRATION & BIOMIMETICS 2022; 17:066010. [PMID: 36044880 DOI: 10.1088/1748-3190/ac8e40] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Indirect actuation of the wings via thoracic deformation is a unique mechanism widely observed in flying insect species. The physical properties of the thorax have been intensively studied in terms of their ability to efficiently generate wingbeats. The basic mechanism of indirect wing actuation is generally explained as a lever model on a cross-sectional plane, where the dorsoventral movement of the mesonotum (dorsal exoskeleton of the mesothorax) generated by contractions of indirect muscles actuates the wing. However, the model considers the mesonotum as an ideal flat plane, whereas the mesonotum is hemispherical and becomes locally deformed during flight. Furthermore, the conventional model is two-dimensional; therefore, three-dimensional wing kinematics by indirect muscles have not been studied to date. In this study, we develop structural models of the mesonotum and mesothorax of the hawkmothAgrius convolvuli, reconstructed from serial cross-sectional images. External forces are applied to the models to mimic muscle contraction, and mesonotum deformation and wing trajectories are analyzed using finite element analysis. We find that applying longitudinal strain to the mesonotum to mimic strain by depressor muscle contraction reproduces local deformation comparable to that of the thorax during flight. Furthermore, the phase difference of the forces applied to the depressor and elevator muscles changes the wing trajectory from a figure eight to a circle, which is qualitatively consistent with the tethered flight experiment. These results indicate that the local deformation of the mesonotum due to its morphology and the thoracic deformation via indirect power muscles can modulate three-dimensional wing trajectories.
Collapse
Affiliation(s)
- Noriyasu Ando
- Department of Life Engineering, Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tokuro Kono
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Naomichi Ogihara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Hideo Yokota
- Center for Advanced Photonics, RIKEN, Wako, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|