1
|
Bradley PM, Romanok KM, Smalling KL, Gordon SE, Huffman BJ, Paul Friedman K, Villeneuve DL, Blackwell BR, Fitzpatrick SC, Focazio MJ, Medlock-Kakaley E, Meppelink SM, Navas-Acien A, Nigra AE, Schreiner ML. Private, public, and bottled drinking water: Shared contaminant-mixture exposures and effects challenge. ENVIRONMENT INTERNATIONAL 2025; 195:109220. [PMID: 39736175 DOI: 10.1016/j.envint.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Humans are primary drivers of environmental-contaminant exposures worldwide, including in drinking-water (DW). In the United States, point-of-use DW (POU-DW) is supplied via private tapwater (TW), public-supply TW, and bottled water (BW). Differences in management, monitoring, and messaging and lack of directly-intercomparable exposure data influence the actual and perceived quality and safety of different DW supplies and directly impact consumer decision-making. OBJECTIVES The purpose of this paper is to provide a meta-analysis (quantitative synthesis) of POU-DW contaminant-mixture exposures and corresponding potential human-health effects of private-TW, public-TW, and BW by aggregating exposure results and harmonizing apical-health-benchmark-weighted and bioactivity-weighted effects predictions across previous studies by this research group. DISCUSSION Simultaneous exposures to multiple inorganic and organic contaminants of known or suspected human-health concern are common across all three DW supplies, with substantial variability observed in each and no systematic difference in predicted cumulative risk between supplies. Differences in contaminant or contaminant-class exposures, with important implications for DW-quality improvements, were observed and attributed to corresponding differences in regulation and compliance monitoring. CONCLUSION The results indicate that human-health risks from contaminant exposures are common to and comparable in all three DW-supplies, including BW. Importantly, this study's target analytical coverage, which exceeds that currently feasible for water purveyors or homeowners, nevertheless is a substantial underestimation of the breadth of contaminant mixtures in the environment and potentially present in DW. Thus, the results emphasize the need for improved understanding of the adverse human-health implications of long-term exposures to low-level inorganic-/organic-contaminant mixtures across all three distribution pipelines and do not support commercial messaging of BW as a systematically safer alternative to public-TW. Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment is necessary to reduce risks associated with long-term DW-contaminant exposures, especially in vulnerable populations, and to reduce environmental waste and plastics contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
2
|
Ankley GT, Corsi SR, Custer CM, Ekman DR, Hummel SL, Kimbrough KL, Schoenfuss HL, Villeneuve DL. Assessing Contaminants of Emerging Concern in the Great Lakes Ecosystem: A Decade of Method Development and Practical Application. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2506-2518. [PMID: 37642300 PMCID: PMC10935577 DOI: 10.1002/etc.5740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 08/27/2023] [Indexed: 08/31/2023]
Abstract
Assessing the ecological risk of contaminants in the field typically involves consideration of a complex mixture of compounds which may or may not be detected via instrumental analyses. Further, there are insufficient data to predict the potential biological effects of many detected compounds, leading to their being characterized as contaminants of emerging concern (CECs). Over the past several years, advances in chemistry, toxicology, and bioinformatics have resulted in a variety of concepts and tools that can enhance the pragmatic assessment of the ecological risk of CECs. The present Focus article describes a 10+- year multiagency effort supported through the U.S. Great Lakes Restoration Initiative to assess the occurrence and implications of CECs in the North American Great Lakes. State-of-the-science methods and models were used to evaluate more than 700 sites in about approximately 200 tributaries across lakes Ontario, Erie, Huron, Michigan, and Superior, sometimes on multiple occasions. Studies featured measurement of up to 500 different target analytes in different environmental matrices, coupled with evaluation of biological effects in resident species, animals from in situ and laboratory exposures, and in vitro systems. Experimental taxa included birds, fish, and a variety of invertebrates, and measured endpoints ranged from molecular to apical responses. Data were integrated and evaluated using a diversity of curated knowledgebases and models with the goal of producing actionable insights for risk assessors and managers charged with evaluating and mitigating the effects of CECs in the Great Lakes. This overview is based on research and data captured in approximately about 90 peer-reviewed journal articles and reports, including approximately about 30 appearing in a virtual issue comprised of highlighted papers published in Environmental Toxicology and Chemistry or Integrated Environmental Assessment and Management. Environ Toxicol Chem 2023;42:2506-2518. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Steven R Corsi
- Upper Midwest Water Science Center, US Geological Survey, Madison, Wisconsin
| | - Christine M Custer
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Drew R Ekman
- Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Stephanie L Hummel
- Great Lakes Regional Office, US Fish and Wildlife Service, Bloomington, Minnesota
| | - Kimani L Kimbrough
- National Oceanic and Atmospheric Administration, Silver Spring, Maryland, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| |
Collapse
|
3
|
Feshuk M, Kolaczkowski L, Dunham K, Davidson-Fritz SE, Carstens KE, Brown J, Judson RS, Paul Friedman K. The ToxCast pipeline: updates to curve-fitting approaches and database structure. FRONTIERS IN TOXICOLOGY 2023; 5:1275980. [PMID: 37808181 PMCID: PMC10552852 DOI: 10.3389/ftox.2023.1275980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: The US Environmental Protection Agency Toxicity Forecaster (ToxCast) program makes in vitro medium- and high-throughput screening assay data publicly available for prioritization and hazard characterization of thousands of chemicals. The assays employ a variety of technologies to evaluate the effects of chemical exposure on diverse biological targets, from distinct proteins to more complex cellular processes like mitochondrial toxicity, nuclear receptor signaling, immune responses, and developmental toxicity. The ToxCast data pipeline (tcpl) is an open-source R package that stores, manages, curve-fits, and visualizes ToxCast data and populates the linked MySQL Database, invitrodb. Methods: Herein we describe major updates to tcpl and invitrodb to accommodate a new curve-fitting approach. The original tcpl curve-fitting models (constant, Hill, and gain-loss models) have been expanded to include Polynomial 1 (Linear), Polynomial 2 (Quadratic), Power, Exponential 2, Exponential 3, Exponential 4, and Exponential 5 based on BMDExpress and encoded by the R package dependency, tcplfit2. Inclusion of these models impacted invitrodb (beta version v4.0) and tcpl v3 in several ways: (1) long-format storage of generic modeling parameters to permit additional curve-fitting models; (2) updated logic for winning model selection; (3) continuous hit calling logic; and (4) removal of redundant endpoints as a result of bidirectional fitting. Results and discussion: Overall, the hit call and potency estimates were largely consistent between invitrodb v3.5 and 4.0. Tcpl and invitrodb provide a standard for consistent and reproducible curve-fitting and data management for diverse, targeted in vitro assay data with readily available documentation, thus enabling sharing and use of these data in myriad toxicology applications. The software and database updates described herein promote comparability across multiple tiers of data within the US Environmental Protection Agency CompTox Blueprint.
Collapse
Affiliation(s)
- M. Feshuk
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - L. Kolaczkowski
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
- National Student Services Contractor, Oak Ridge Associated Universities, Oak Ridge, TN, United States
| | - K. Dunham
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
- National Student Services Contractor, Oak Ridge Associated Universities, Oak Ridge, TN, United States
| | - S. E. Davidson-Fritz
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - K. E. Carstens
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - J. Brown
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - R. S. Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - K. Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
4
|
Smalling KL, Romanok KM, Bradley PM, Morriss MC, Gray JL, Kanagy LK, Gordon SE, Williams BM, Breitmeyer SE, Jones DK, DeCicco LA, Eagles-Smith CA, Wagner T. Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. ENVIRONMENT INTERNATIONAL 2023; 178:108033. [PMID: 37356308 DOI: 10.1016/j.envint.2023.108033] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater at the point-of-use, especially from private-wells. We conducted a national reconnaissance to compare human PFAS exposures in unregulated private-well and regulated public-supply tapwater. Tapwater from 716 locations (269 private-wells; 447 public supply) across the US was collected during 2016-2021 including three locations where temporal sampling was conducted. Concentrations of PFAS were assessed by three laboratories and compared with land-use and potential-source metrics to explore drivers of contamination. The number of individual PFAS observed ranged from 1 to 9 (median: 2) with corresponding cumulative concentrations (sum of detected PFAS) ranging from 0.348 to 346 ng/L. Seventeen PFAS were observed at least once with PFBS, PFHxS and PFOA observed most frequently in approximately 15% of the samples. Across the US, PFAS profiles and estimated median cumulative concentrations were similar among private wells and public-supply tapwater. We estimate that at least one PFAS could be detected in about 45% of US drinking-water samples. These detection probabilities varied spatially with limited temporal variation in concentrations/numbers of PFAS detected. Benchmark screening approaches indicated potential human exposure risk was dominated by PFOA and PFOS, when detected. Potential source and land-use information was related to cumulative PFAS concentrations, and the number of PFAS detected; however, corresponding relations with specific PFAS were limited likely due to low detection frequencies and higher detection limits. Information generated supports the need for further assessments of cumulative health risks of PFAS as a class and in combination with other co-occurring contaminants, particularly in unmonitored private-wells where information is limited or not available.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Maloney E, Villeneuve D, Jensen K, Blackwell B, Kahl M, Poole S, Vitense K, Feifarek D, Patlewicz G, Dean K, Tilton C, Randolph E, Cavallin J, LaLone C, Blatz D, Schaupp C, Ankley G. Evaluation of Complex Mixture Toxicity in the Milwaukee Estuary (WI, USA) Using Whole-Mixture and Component-Based Evaluation Methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1229-1256. [PMID: 36715369 PMCID: PMC10775314 DOI: 10.1002/etc.5571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/13/2022] [Accepted: 01/22/2023] [Indexed: 05/27/2023]
Abstract
Anthropogenic activities introduce complex mixtures into aquatic environments, necessitating mixture toxicity evaluation during risk assessment. There are many alternative approaches that can be used to complement traditional techniques for mixture assessment. Our study aimed to demonstrate how these approaches could be employed for mixture evaluation in a target watershed. Evaluations were carried out over 2 years (2017-2018) across 8-11 study sites in the Milwaukee Estuary (WI, USA). Whole mixtures were evaluated on a site-specific basis by deploying caged fathead minnows (Pimephales promelas) alongside composite samplers for 96 h and characterizing chemical composition, in vitro bioactivity of collected water samples, and in vivo effects in whole organisms. Chemicals were grouped based on structure/mode of action, bioactivity, and pharmacological activity. Priority chemicals and mixtures were identified based on their relative contributions to estimated mixture pressure (based on cumulative toxic units) and via predictive assessments (random forest regression). Whole mixture assessments identified target sites for further evaluation including two sites targeted for industrial/urban chemical mixture effects assessment; three target sites for pharmaceutical mixture effects assessment; three target sites for further mixture characterization; and three low-priority sites. Analyses identified 14 mixtures and 16 chemicals that significantly contributed to cumulative effects, representing high or medium priority targets for further ecotoxicological evaluation, monitoring, or regulatory assessment. Overall, our study represents an important complement to single-chemical prioritizations, providing a comprehensive evaluation of the cumulative effects of mixtures detected in a target watershed. Furthermore, it demonstrates how different tools and techniques can be used to identify diverse facets of mixture risk and highlights strategies that can be considered in future complex mixture assessments. Environ Toxicol Chem 2023;42:1229-1256. © 2023 SETAC.
Collapse
Affiliation(s)
| | - D.L. Villeneuve
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - K.M. Jensen
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - B.R. Blackwell
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - M.D. Kahl
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - S.T. Poole
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - K. Vitense
- Scientific Computing and Data Curation Division, US EPA,
Duluth, MN, USA
| | - D.J. Feifarek
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - G. Patlewicz
- Centre for Computational Toxicology and Exposure, US EPA,
Research Triangle Park, NC, USA
| | - K. Dean
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C. Tilton
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - E.C. Randolph
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - J.E. Cavallin
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C.A. LaLone
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - D. Blatz
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C. Schaupp
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - G.T. Ankley
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| |
Collapse
|
6
|
Bradley PM, Kolpin DW, Thompson DA, Romanok KM, Smalling KL, Breitmeyer SE, Cardon MC, Cwiertny DM, Evans N, Field RW, Focazio MJ, Beane Freeman LE, Givens CE, Gray JL, Hager GL, Hladik ML, Hofmann JN, Jones RR, Kanagy LK, Lane RF, McCleskey RB, Medgyesi D, Medlock-Kakaley EK, Meppelink SM, Meyer MT, Stavreva DA, Ward MH. Juxtaposition of intensive agriculture, vulnerable aquifers, and mixed chemical/microbial exposures in private-well tapwater in northeast Iowa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161672. [PMID: 36657670 PMCID: PMC9976626 DOI: 10.1016/j.scitotenv.2023.161672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
In the United States and globally, contaminant exposure in unregulated private-well point-of-use tapwater (TW) is a recognized public-health data gap and an obstacle to both risk-management and homeowner decision making. To help address the lack of data on broad contaminant exposures in private-well TW from hydrologically-vulnerable (alluvial, karst) aquifers in agriculturally-intensive landscapes, samples were collected in 2018-2019 from 47 northeast Iowa farms and analyzed for 35 inorganics, 437 unique organics, 5 in vitro bioassays, and 11 microbial assays. Twenty-six inorganics and 51 organics, dominated by pesticides and related transformation products (35 herbicide-, 5 insecticide-, and 2 fungicide-related), were observed in TW. Heterotrophic bacteria detections were near ubiquitous (94 % of the samples), with detection of total coliform bacteria in 28 % of the samples and growth on at least one putative-pathogen selective media across all TW samples. Health-based hazard index screening levels were exceeded frequently in private-well TW and attributed primarily to inorganics (nitrate, uranium). Results support incorporation of residential treatment systems to protect against contaminant exposure and the need for increased monitoring of rural private-well homes. Continued assessment of unmonitored and unregulated private-supply TW is needed to model contaminant exposures and human-health risks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary C Cardon
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | - Rena R Jones
- National Cancer Institute/NIH, Rockville, MD, USA
| | | | | | | | | | | | | | | | | | - Mary H Ward
- National Cancer Institute/NIH, Rockville, MD, USA
| |
Collapse
|
7
|
Lizano-Fallas V, Carrasco del Amor A, Cristobal S. Prediction of Molecular Initiating Events for Adverse Outcome Pathways Using High-Throughput Identification of Chemical Targets. TOXICS 2023; 11:189. [PMID: 36851063 PMCID: PMC9965981 DOI: 10.3390/toxics11020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The impact of exposure to multiple chemicals raises concerns for human and environmental health. The adverse outcome pathway method offers a framework to support mechanism-based assessment in environmental health starting by describing which mechanisms are triggered upon interaction with different stressors. The identification of the molecular initiating event and the molecular interaction between a chemical and a protein target is still a challenge for the development of adverse outcome pathways. The cellular response to chemical exposure studied with omics could not directly identify the protein targets. However, recent mass spectrometry-based methods are offering a proteome-wide identification of protein targets interacting with s but unrevealing a molecular initiating event from a set of targets is still dependent on available knowledge. Here, we directly coupled the target identification findings from the proteome integral solubility alteration assay with an analytical hierarchy process for the prediction of a prioritized molecular initiating event. We demonstrate the applicability of this combination of methodologies with a test compound (TCDD), and it could be further studied and integrated into AOPs. From the eight protein targets identified by the proteome integral solubility alteration assay after analyzing 2824 human hepatic proteins, the analytical hierarchy process can select the most suitable protein for an AOP. Our combined method solves the missing links between high-throughput target identification and prediction of the molecular initiating event. We anticipate its utility to decipher new molecular initiating events and support more sustainable methodologies to gain time and resources in chemical assessment.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Ana Carrasco del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
- Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country (UPV/EHU), 489 40 Leioa, Spain
| |
Collapse
|
8
|
Arcega RD, Chen RJ, Chih PS, Huang YH, Chang WH, Kong TK, Lee CC, Mahmudiono T, Tsui CC, Hou WC, Hsueh HT, Chen HL. Toxicity prediction: An application of alternative testing and computational toxicology in contaminated groundwater sites in Taiwan. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116982. [PMID: 36502707 DOI: 10.1016/j.jenvman.2022.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Groundwater contamination remains a global threat due to its toxic effects to humans and the environment. The remediation of contaminated groundwater sites can be costly, thus, identifying the priority areas of concern is important to reduce money spent on resources. In this study, we aimed to identify and rank the priority groundwater sites in a contaminated petrochemical district by combining alternative, non-animal approaches - chemical analysis, cell-based high throughput screening (HTS), and Toxicological Priority Index (ToxPi) computational toxicology tool. Groundwater samples collected from ten different sites in a contaminated district showed pollutant levels below the detection limit, however, hepatotoxic bioactivity was demonstrated in human hepatoma HepaRG cells. Integrating the pollutants information (i.e., pollutant characteristics and concentration data) with the bioactivity data of the groundwater samples, an evidence-based ranking of the groundwater sites for future remediation was established using ToxPi analysis. The currently presented combinatorial approach of screening groundwater sites for remediation purposes can further be refined by including relevant parameters, which can boost the utility of this approach for groundwater screening and future remediation.
Collapse
Affiliation(s)
- Rachelle D Arcega
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Shan Chih
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Hsuan Huang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ting-Khai Kong
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ching-Chang Lee
- Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chun-Chih Tsui
- Toxic and Chemical Substances Bureau, Environmental Protection Administration Executive Yuan, Taipei City,106, Taiwan
| | - Wen-Che Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City,701, Taiwan
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Laboratories, National Cheng Kung University, Tainan City,701, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
9
|
Oliver SK, Corsi SR, Baldwin AK, Nott MA, Ankley GT, Blackwell BR, Villeneuve DL, Hladik ML, Kolpin DW, Loken L, DeCicco LA, Meyer MT, Loftin KA. Pesticide Prioritization by Potential Biological Effects in Tributaries of the Laurentian Great Lakes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:367-384. [PMID: 36562491 PMCID: PMC10107260 DOI: 10.1002/etc.5522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/16/2022] [Accepted: 11/07/2022] [Indexed: 05/09/2023]
Abstract
Watersheds of the Great Lakes Basin (USA/Canada) are highly modified and impacted by human activities including pesticide use. Despite labeling restrictions intended to minimize risks to nontarget organisms, concerns remain that environmental exposures to pesticides may be occurring at levels negatively impacting nontarget organisms. We used a combination of organismal-level toxicity estimates (in vivo aquatic life benchmarks) and data from high-throughput screening (HTS) assays (in vitro benchmarks) to prioritize pesticides and sites of concern in streams at 16 tributaries to the Great Lakes Basin. In vivo or in vitro benchmark values were exceeded at 15 sites, 10 of which had exceedances throughout the year. Pesticides had the greatest potential biological impact at the site with the greatest proportion of agricultural land use in its basin (the Maumee River, Toledo, OH, USA), with 72 parent compounds or transformation products being detected, 47 of which exceeded at least one benchmark value. Our risk-based screening approach identified multiple pesticide parent compounds of concern in tributaries of the Great Lakes; these compounds included: eight herbicides (metolachlor, acetochlor, 2,4-dichlorophenoxyacetic acid, diuron, atrazine, alachlor, triclopyr, and simazine), three fungicides (chlorothalonil, propiconazole, and carbendazim), and four insecticides (diazinon, fipronil, imidacloprid, and clothianidin). We present methods for reducing the volume and complexity of potential biological effects data that result from combining contaminant surveillance with HTS (in vitro) and traditional (in vivo) toxicity estimates. Environ Toxicol Chem 2023;42:367-384. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Samantha K. Oliver
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Steven R. Corsi
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | | | - Michele A. Nott
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Gerald T. Ankley
- US Environmental Protection AgencyGreat Lakes Ecology and Toxicology DivisionDuluthMinnesotaUSA
| | - Brett R. Blackwell
- US Environmental Protection AgencyGreat Lakes Ecology and Toxicology DivisionDuluthMinnesotaUSA
| | - Daniel L. Villeneuve
- US Environmental Protection AgencyGreat Lakes Ecology and Toxicology DivisionDuluthMinnesotaUSA
| | - Michelle L. Hladik
- US Geological SurveySacramento, California Water Science CenterCaliforniaUSA
| | | | - Luke Loken
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Laura A. DeCicco
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Michael T. Meyer
- US Geological SurveyKansas Water Science CenterLawrenceKansasUSA
| | - Keith A. Loftin
- US Geological SurveyKansas Water Science CenterLawrenceKansasUSA
| |
Collapse
|
10
|
Bradley PM, Romanok KM, Smalling KL, Focazio MJ, Evans N, Fitzpatrick SC, Givens CE, Gordon SE, Gray JL, Green EM, Griffin DW, Hladik ML, Kanagy LK, Lisle JT, Loftin KA, Blaine McCleskey R, Medlock-Kakaley EK, Navas-Acien A, Roth DA, South P, Weis CP. Bottled water contaminant exposures and potential human effects. ENVIRONMENT INTERNATIONAL 2023; 171:107701. [PMID: 36542998 PMCID: PMC10123854 DOI: 10.1016/j.envint.2022.107701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.
Collapse
Affiliation(s)
| | | | | | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | - Emily M Green
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | - John T Lisle
- U.S. Geological Survey, Saint Petersburg, Florida, USA
| | | | | | | | | | | | - Paul South
- U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Christopher P Weis
- National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| |
Collapse
|
11
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
12
|
Bradley PM, Romanok KM, Smalling KL, Focazio MJ, Charboneau R, George CM, Navas-Acien A, O’Leary M, Red Cloud R, Zacher T, Breitmeyer SE, Cardon MC, Cuny CK, Ducheneaux G, Enright K, Evans N, Gray JL, Harvey DE, Hladik ML, Kanagy LK, Loftin KA, McCleskey RB, Medlock-Kakaley EK, Meppelink SM, Valder JF, Weis CP. Tapwater Exposures, Effects Potential, and Residential Risk Management in Northern Plains Nations. ACS ES&T WATER 2022; 2:1772-1788. [PMID: 36277121 PMCID: PMC9578051 DOI: 10.1021/acsestwater.2c00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 05/10/2023]
Abstract
In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interventions include expansion of small community water systems and POU adsorptive-media treatment for Strong Heart Water Study participants. Samples from 34 private-well and 22 public-supply sites were analyzed for 476 organics, 34 inorganics, and 3 in vitro bioactivities. 63 organics and 30 inorganics were detected. Arsenic, uranium (U), and lead (Pb) were detected in 54%, 43%, and 20% of samples, respectively. Concentrations equivalent to public-supply maximum contaminant level(s) (MCL) were exceeded only in untreated private-well samples (As 47%, U 3%). Precautionary health-based screening levels were exceeded frequently, due to inorganics in private supplies and chlorine-based disinfection byproducts in public supplies. The results indicate that simultaneous exposures to co-occurring TW contaminants are common, warranting consideration of expanded source, point-of-entry, or POU treatment(s). This study illustrates the importance of increased monitoring of private-well TW, employing a broad, environmentally informative analytical scope, to reduce the risks of unrecognized contaminant exposures.
Collapse
Affiliation(s)
- Paul M. Bradley
- U.S.
Geological Survey, Columbia, South Carolina 29210, United States
| | | | - Kelly L. Smalling
- U.S.
Geological Survey, Lawrenceville, New Jersey 08648, United States
| | | | - Robert Charboneau
- Spirit
Lake Tribe Office of Environmental Health, Fort Totten, North Dakota 58335, United States
| | - Christine Marie George
- Johns
Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Ana Navas-Acien
- Columbia
University Mailman School of Public Health, New York, New York 10032, United States
| | - Marcia O’Leary
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Reno Red Cloud
- Oglala
Sioux Tribe Natural Resources Regulatory Agency, Pine Ridge, South Dakota 57770, United States
| | - Tracy Zacher
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | | | - Mary C. Cardon
- U.S.
Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Christa K. Cuny
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Guthrie Ducheneaux
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Kendra Enright
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Nicola Evans
- U.S.
Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - James L. Gray
- U.S.
Geological Survey, Lakewood, Colorado 80228-3742, United States
| | - David E. Harvey
- Indian Health Service/HHS, Rockville, Maryland 20857, United States
| | | | - Leslie K. Kanagy
- U.S.
Geological Survey, Lakewood, Colorado 80228-3742, United States
| | - Keith A. Loftin
- U.S.
Geological Survey, Lawrence, Kansas 66049, United States
| | | | | | | | - Joshua F. Valder
- U.S. Geological
Survey, Rapid City, South Dakota 57702, United States
| | - Christopher P. Weis
- National Institute of Environmental Health
Sciences/NIH, Bethesda, Maryland 20814, United
States
| |
Collapse
|
13
|
Jeong J, Kim D, Choi J. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals: Perspective and limitations. Toxicol In Vitro 2022; 84:105451. [PMID: 35921976 DOI: 10.1016/j.tiv.2022.105451] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
In response to the need to minimize the use of experimental animals, new approach methodologies (NAMs) using advanced technology have emerged in the 21st century. ToxCast/Tox21 aims to evaluate the adverse effects of chemicals quickly and efficiently using a high-throughput screening and to transform the paradigm of toxicity assessment into mechanism-based toxicity prediction. The ToxCast/Tox21 database, which contains extensive data from over 1400 assays with numerous biological targets and activity data for over 9000 chemicals, can be used for various purposes in the field of chemical prioritization and toxicity prediction. In this study, an overview of the database was explored to aid mechanism-based chemical prioritization and toxicity prediction. Implications for the utilization of the ToxCast/Tox21 database in chemical prioritization and toxicity prediction were derived. The research trends in ToxCast/Tox21 assay data were reviewed in the context of toxicity mechanism identification, chemical priority, environmental monitoring, assay development, and toxicity prediction. Finally, the potential applications and limitations of using ToxCast/Tox21 assay data in chemical risk assessment were discussed. The analysis of the toxicity mechanism-based assays of ToxCast/Tox21 will help in chemical prioritization and regulatory applications without the use of laboratory animals.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Donghyeon Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
14
|
Jankowski MD, Fairbairn DJ, Baller JA, Westerhoff BM, Schoenfuss HL. Using the Daphnia magna Transcriptome to Distinguish Water Source: Wetland and Stormwater Case Studies. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2107-2123. [PMID: 35622010 PMCID: PMC9545677 DOI: 10.1002/etc.5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
A major challenge in ecotoxicology is accurately and sufficiently measuring chemical exposures and biological effects given the presence of complex and dynamic contaminant mixtures in surface waters. It is impractical to quantify all chemicals in such matrices over space and time, and even if it were practical, concomitant biological effects would not be elucidated. Our study examined the performance of the Daphnia magna transcriptome to detect distinct responses across three water sources in Minnesota: laboratory (well) waters, wetland waters, and storm waters. Pyriproxyfen was included as a gene expression and male neonate production positive control to examine whether gene expression resulting from exposure to this well-studied juvenoid hormone analog can be detected in complex matrices. Laboratory-reared (<24 h) D. magna were exposed to a water source and/or pyriproxyfen for 16 days to monitor phenotypic changes or 96 h to examine gene expression responses using Illumina HiSeq 2500 (10 million reads per library, 50-bp paired end [2 × 50]). The results indicated that a unique gene expression profile was produced for each water source. At 119 ng/L pyriproxyfen (~25% effect concentration) for male neonate production, as expected, the Doublesex1 gene was up-regulated. In descending order, gene expression patterns were most discernable with respect to pyriproxyfen exposure status, season of stormwater sample collection, and wetland quality, as indicated by the index of biological integrity. However, the biological implications of the affected genes were not broadly clear given limited genome resources for invertebrates. Our study provides support for the utility of short-term whole-organism transcriptomic testing in D. magna to discern sample type, but highlights the need for further work on invertebrate genomics. Environ Toxicol Chem 2022;41:2107-2123. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mark D. Jankowski
- Minnesota Pollution Control AgencySt. PaulMinnesotaUSA
- Veterinary Population Medicine DepartmentUniversity of Minnesota—Twin CitiesSt. PaulMinnesotaUSA
- US Environmental Protection AgencySeattleWashingtonUSA
| | | | - Joshua A. Baller
- Minnesota Supercomputing InstituteUniversity of Minnesota—Twin CitiesMinneapolisMinnesotaUSA
| | | | - Heiko L. Schoenfuss
- Aquatic Toxicology LaboratorySt. Cloud State UniversitySt. CloudMinnesotaUSA
| |
Collapse
|
15
|
El-Masri H, Paul Friedman K, Isaacs K, Wetmore BA. Advances in computational methods along the exposure to toxicological response paradigm. Toxicol Appl Pharmacol 2022; 450:116141. [PMID: 35777528 PMCID: PMC9619339 DOI: 10.1016/j.taap.2022.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Human health risk assessment is a function of chemical toxicity, bioavailability to reach target biological tissues, and potential environmental exposure. These factors are complicated by many physiological, biochemical, physical and lifestyle factors. Furthermore, chemical health risk assessment is challenging in view of the large, and continually increasing, number of chemicals found in the environment. These challenges highlight the need to prioritize resources for the efficient and timely assessment of those environmental chemicals that pose greatest health risks. Computational methods, either predictive or investigative, are designed to assist in this prioritization in view of the lack of cost prohibitive in vivo experimental data. Computational methods provide specific and focused toxicity information using in vitro high throughput screening (HTS) assays. Information from the HTS assays can be converted to in vivo estimates of chemical levels in blood or target tissue, which in turn are converted to in vivo dose estimates that can be compared to exposure levels of the screened chemicals. This manuscript provides a review for the landscape of computational methods developed and used at the U.S. Environmental Protection Agency (EPA) highlighting their potentials and challenges.
Collapse
Affiliation(s)
- Hisham El-Masri
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kristin Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Barbara A Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Hubbard LE, Kolpin DW, Givens CE, Blackwell BR, Bradley PM, Gray JL, Lane RF, Masoner JR, McCleskey RB, Romanok KM, Sandstrom MW, Smalling KL, Villeneuve DL. Food, Beverage, and Feedstock Processing Facility Wastewater: a Unique and Underappreciated Source of Contaminants to U.S. Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1028-1040. [PMID: 34967600 PMCID: PMC9219000 DOI: 10.1021/acs.est.1c06821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 μg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 μg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 μg L-1; clothianidin TMG, 2.02 μg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.
Collapse
Affiliation(s)
| | - Dana W. Kolpin
- U.S. Geological Survey, Iowa City, Iowa 52240, United States
| | | | - Brett R. Blackwell
- U.S. Environmental Protection Agency, Duluth, Minnesota 55084, United States
| | - Paul M. Bradley
- U.S. Geological Survey, Columbia, South Carolina 29210, United States
| | - James L. Gray
- U.S. Geological Survey, Lakewood, Colorado 80225, United States
| | - Rachael F. Lane
- U.S. Geological Survey, Lawrence, Kansas 66049, United States
| | - Jason R. Masoner
- U.S. Geological Survey, Oklahoma City, Oklahoma 73116, United States
| | | | | | | | - Kelly L. Smalling
- U.S. Geological Survey, Lawrenceville, New Jersey 08648, United States
| | | |
Collapse
|
17
|
Scholz S, Nichols JW, Escher BI, Ankley GT, Altenburger R, Blackwell B, Brack W, Burkhard L, Collette TW, Doering JA, Ekman D, Fay K, Fischer F, Hackermüller J, Hoffman JC, Lai C, Leuthold D, Martinovic-Weigelt D, Reemtsma T, Pollesch N, Schroeder A, Schüürmann G, von Bergen M. The Eco-Exposome Concept: Supporting an Integrated Assessment of Mixtures of Environmental Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:30-45. [PMID: 34714945 PMCID: PMC9104394 DOI: 10.1002/etc.5242] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 05/04/2023]
Abstract
Organisms are exposed to ever-changing complex mixtures of chemicals over the course of their lifetime. The need to more comprehensively describe this exposure and relate it to adverse health effects has led to formulation of the exposome concept in human toxicology. Whether this concept has utility in the context of environmental hazard and risk assessment has not been discussed in detail. In this Critical Perspective, we propose-by analogy to the human exposome-to define the eco-exposome as the totality of the internal exposure (anthropogenic and natural chemicals, their biotransformation products or adducts, and endogenous signaling molecules that may be sensitive to an anthropogenic chemical exposure) over the lifetime of an ecologically relevant organism. We describe how targeted and nontargeted chemical analyses and bioassays can be employed to characterize this exposure and discuss how the adverse outcome pathway concept could be used to link this exposure to adverse effects. Available methods, their limitations, and/or requirement for improvements for practical application of the eco-exposome concept are discussed. Even though analysis of the eco-exposome can be resource-intensive and challenging, new approaches and technologies make this assessment increasingly feasible. Furthermore, an improved understanding of mechanistic relationships between external chemical exposure(s), internal chemical exposure(s), and biological effects could result in the development of proxies, that is, relatively simple chemical and biological measurements that could be used to complement internal exposure assessment or infer the internal exposure when it is difficult to measure. Environ Toxicol Chem 2022;41:30-45. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Stefan Scholz
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Address correspondence to
| | - John W. Nichols
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Beate I. Escher
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tubingen, Tubingen, Germany
| | - Gerald T. Ankley
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Institute for Environmental Research, Biologie V, RWTH Aachen University, Aachen, Germany
| | - Brett Blackwell
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Werner Brack
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lawrence Burkhard
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Timothy W. Collette
- Office of Research and Development, Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Jon A. Doering
- National Research Council, US Environmental Protection Agency, Duluth, Minnesota
| | - Drew Ekman
- Office of Research and Development, Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Kellie Fay
- Office of Pollution Prevention and Toxics, Risk Assessment Division, US Environmental Protection Agency, Washington, DC
| | - Fabian Fischer
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | | | - Joel C. Hoffman
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Chih Lai
- College of Arts and Sciences, University of Saint Thomas, St. Paul, Minnesota, USA
| | - David Leuthold
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | | | | | - Nathan Pollesch
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | | | - Gerrit Schüürmann
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Institute of Organic Chemistry, Technische Universitat Bergakademie Freiberg, Freiberg, Germany
| | | |
Collapse
|
18
|
Bradley PM, Padilla IY, Romanok KM, Smalling KL, Focazio MJ, Breitmeyer SE, Cardon MC, Conley JM, Evans N, Givens CE, Gray JL, Gray LE, Hartig PC, Higgins CP, Hladik ML, Iwanowicz LR, Lane RF, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meppelink S, Weis CP, Wilson VS. Pilot-scale expanded assessment of inorganic and organic tapwater exposures and predicted effects in Puerto Rico, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147721. [PMID: 34134358 PMCID: PMC8504685 DOI: 10.1016/j.scitotenv.2021.147721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 05/10/2023]
Abstract
A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary C Cardon
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | - L Earl Gray
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | - Christopher P Weis
- National Institute of Environmental Health Sciences/National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
19
|
Mahler BJ, Nowell LH, Sandstrom MW, Bradley PM, Romanok KM, Konrad CP, Van Metre PC. Inclusion of Pesticide Transformation Products Is Key to Estimating Pesticide Exposures and Effects in Small U.S. Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4740-4752. [PMID: 33689310 DOI: 10.1021/acs.est.0c06625] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Improved analytical methods can quantify hundreds of pesticide transformation products (TPs), but understanding of TP occurrence and potential toxicity in aquatic ecosystems remains limited. We quantified 108 parent pesticides and 116 TPs in more than 3 700 samples from 442 small streams in mostly urban basins across five major regions of the United States. TPs were detected nearly as frequently as parents (90 and 95% of streams, respectively); 102 TPs were detected at least once and 28 were detected in >20% samples in at least one region-TPs of 9 herbicides, 2 fungicides (chlorothalonil and thiophanate-methyl), and 1 insecticide (fipronil) were the most frequently detected. TPs occurred commonly during baseflow conditions, indicating chronic environmental TP exposures to aquatic organisms and the likely importance of groundwater as a TP source. Hazard quotients based on acute aquatic-life benchmarks for invertebrates and nonvascular plants and vertebrate-centric molecular endpoints (sublethal effects) quantify the range of the potential contribution of TPs to environmental risk and highlight several TP exposure-response data gaps. A precautionary approach using equimolar substitution of parent benchmarks or endpoints for missing TP benchmarks indicates that potential aquatic effects of pesticide TPs could be underestimated by an order of magnitude or more.
Collapse
Affiliation(s)
- Barbara J Mahler
- U.S. Geological Survey, Oklahoma-Texas Water Science Center, 1505 Ferguson Lane, Austin, Texas 78754, United States
| | - Lisa H Nowell
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Placer Hall, Sacramento, California 95819, United States
| | - Mark W Sandstrom
- U.S. Geological Survey, Strategic Laboratory Science Branch, P.O. Box 25585, Denver, Colorado 80225-0585, United States
| | - Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, 720 Gracern, Columbia, South Carolina 29210, United States
| | - Kristin M Romanok
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Lawrenceville, New Jersey 08648, United States
| | - Christopher P Konrad
- U.S. Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma, Washington 98467, United States
| | - Peter C Van Metre
- U.S. Geological Survey, Oklahoma-Texas Water Science Center, 1505 Ferguson Lane, Austin, Texas 78754, United States
| |
Collapse
|
20
|
Schüttler A, Jakobs G, Fix J, Krauss M, Krüger J, Leuthold D, Altenburger R, Busch W. Transcriptome-Wide Prediction and Measurement of Combined Effects Induced by Chemical Mixture Exposure in Zebrafish Embryos. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47006. [PMID: 33826412 PMCID: PMC8041271 DOI: 10.1289/ehp7773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Humans and environmental organisms are constantly exposed to complex mixtures of chemicals. Extending our knowledge about the combined effects of chemicals is thus essential for assessing the potential consequences of these exposures. In this context, comprehensive molecular readouts as retrieved by omics techniques are advancing our understanding of the diversity of effects upon chemical exposure. This is especially true for effects induced by chemical concentrations that do not instantaneously lead to mortality, as is commonly the case for environmental exposures. However, omics profiles induced by chemical exposures have rarely been systematically considered in mixture contexts. OBJECTIVES In this study, we aimed to investigate the predictability of chemical mixture effects on the whole-transcriptome scale. METHODS We predicted and measured the toxicogenomic effects of a synthetic mixture on zebrafish embryos. The mixture contained the compounds diuron, diclofenac, and naproxen. To predict concentration- and time-resolved whole-transcriptome responses to the mixture exposure, we adopted the mixture concept of concentration addition. Predictions were based on the transcriptome profiles obtained for the individual mixture components in a previous study. Finally, concentration- and time-resolved mixture exposures and subsequent toxicogenomic measurements were performed and the results were compared with the predictions. RESULTS This comparison of the predictions with the observations showed that the concept of concentration addition provided reasonable estimates for the effects induced by the mixture exposure on the whole transcriptome. Although nonadditive effects were observed only occasionally, combined, that is, multicomponent-driven, effects were found for mixture components with anticipated similar, as well as dissimilar, modes of action. DISCUSSION Overall, this study demonstrates that using a concentration- and time-resolved approach, the occurrence and size of combined effects of chemicals may be predicted at the whole-transcriptome scale. This allows improving effect assessment of mixture exposures on the molecular scale that might not only be of relevance in terms of risk assessment but also for pharmacological applications. https://doi.org/10.1289/EHP7773.
Collapse
Affiliation(s)
- A. Schüttler
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Institute for Environmental Research, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - G. Jakobs
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - J.M. Fix
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - M. Krauss
- Department Effect-Directed Analysis, UFZ, Leipzig, Germany
| | - J. Krüger
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - D. Leuthold
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - R. Altenburger
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Institute for Environmental Research, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - W. Busch
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
21
|
Ankley GT, Berninger JP, Blackwell BR, Cavallin JE, Collette TW, Ekman DR, Fay KA, Feifarek DJ, Jensen KM, Kahl MD, Mosley JD, Poole ST, Randolph EC, Rearick D, Schroeder AL, Swintek J, Villeneuve DL. Pathway-Based Approaches for Assessing Biological Hazards of Complex Mixtures of Contaminants: A Case Study in the Maumee River. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1098-1122. [PMID: 33270248 PMCID: PMC9554926 DOI: 10.1002/etc.4949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 05/07/2023]
Abstract
Assessment of ecological risks of chemicals in the field usually involves complex mixtures of known and unknown compounds. We describe the use of pathway-based chemical and biological approaches to assess the risk of chemical mixtures in the Maumee River (OH, USA), which receives a variety of agricultural and urban inputs. Fathead minnows (Pimephales promelas) were deployed in cages for 4 d at a gradient of sites along the river and adjoining tributaries in 2012 and during 2 periods (April and June) in 2016, in conjunction with an automated system to collect composite water samples. More than 100 industrial chemicals, pharmaceuticals, and pesticides were detected in water at some of the study sites, with the greatest number typically found near domestic wastewater treatment plants. In 2016, there was an increase in concentrations of several herbicides from April to June at upstream agricultural sites. A comparison of chemical concentrations in site water with single chemical data from vitro high-throughput screening (HTS) assays suggested the potential for perturbation of multiple biological pathways, including several associated with induction or inhibition of different cytochrome P450 (CYP) isozymes. This was consistent with direct effects of water extracts in an HTS assay and induction of hepatic CYPs in caged fish. Targeted in vitro assays and measurements in the caged fish suggested minimal effects on endocrine function (e.g., estrogenicity). A nontargeted mass spectroscopy-based analysis suggested that hepatic endogenous metabolite profiles in caged fish covaried strongly with the occurrence of pesticides and pesticide degradates. These studies demonstrate the application of an integrated suite of measurements to help understand the effects of complex chemical mixtures in the field. Environ Toxicol Chem 2021;40:1098-1122. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- GT Ankley
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
- Corresponding Author: Gerald Ankley;
| | - JP Berninger
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - BR Blackwell
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - JE Cavallin
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - TW Collette
- US Environmental Protection Agency, Ecosystem Processes Division, Athens, Georgia, USA
| | - DR Ekman
- US Environmental Protection Agency, Ecosystem Processes Division, Athens, Georgia, USA
| | - KA Fay
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - DJ Feifarek
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - KM Jensen
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - MD Kahl
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - JD Mosley
- US Environmental Protection Agency, Ecosystem Processes Division, Athens, Georgia, USA
| | - ST Poole
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - EC Randolph
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - D Rearick
- General Dynamics Information Technology, Great Lakes Toxicology and Ecology Division Duluth, Minnesota, USA
| | - AL Schroeder
- University of Minnesota – Crookston, Math, Science, and Technology Department, Crookston, Minnesota, USA
| | - J Swintek
- Badger Technical Services, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota. USA
| | - DL Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| |
Collapse
|
22
|
Mehinto AC, Thornton Hampton LM, Vidal-Dorsch DE, Garcia-Reyero N, Arick MA, Maruya KA, Lao W, Vulpe CD, Brown-Augustine M, Loguinov A, Bay SM. Transcriptomic response patterns of hornyhead turbot (Pleuronichthys verticalis) dosed with polychlorinated biphenyls and polybrominated diphenyl ethers. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100822. [PMID: 33684654 DOI: 10.1016/j.cbd.2021.100822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/04/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
To evaluate the impact of environmental contaminants on aquatic health, extensive surveys of fish populations have been conducted using bioaccumulation as an indicator of impairment. While these studies have reported mixtures of chemicals in fish tissues, the relationship between specific contaminants and observed adverse impacts remains poorly understood. The present study aimed to characterize the toxicological responses induced by persistent organic pollutants in wild-caught hornyhead turbot (P. verticalis). To do so, hornyhead turbot were interperitoneally injected with a single dose of PCB or PBDE congeners prepared using environmentally realistic mixture proportions. After 96-hour exposure, the livers were excised and analyzed using transcriptomic approaches and analytical chemistry. Concentrations of PCBs and PBDEs measured in the livers indicated clear differences across treatments, and congener profiles closely mirrored our expectations. Distinct gene profiles were characterized for PCB and PBDE exposed fish, with significant differences observed in the expression of genes associated with immune responses, endocrine-related functions, and lipid metabolism. Our findings highlight the key role that transcriptomics can play in monitoring programs to assess chemical-induced toxicity in heterogeneous group of fish (mixed gender and life stage) as is typically found during field surveys. Altogether, the present study provides further evidence of the potential of transcriptomic tools to improve aquatic health assessment and identify causative agents.
Collapse
Affiliation(s)
- Alvine C Mehinto
- Department of Toxicology, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA; Department of Chemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA.
| | - Leah M Thornton Hampton
- Department of Toxicology, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Doris E Vidal-Dorsch
- Department of Toxicology, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS 39762, USA
| | - Keith A Maruya
- Department of Chemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Wenjian Lao
- Department of Chemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Christopher D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Marianna Brown-Augustine
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Steven M Bay
- Department of Toxicology, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| |
Collapse
|
23
|
Kimura Y, Fujimura C, Imagawa T, Lupisan SP, Saito-Obata M, Saito M, Oshitani H, Aiba S. Development of a novel in vitro assay to evaluate environmental water using an IL-8 reporter cell line. EXCLI JOURNAL 2020; 19:1054-1063. [PMID: 33013263 PMCID: PMC7527499 DOI: 10.17179/excli2020-2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022]
Abstract
The IL-8 luciferase reporter cell line, THP-G8 cells, used in the in vitro sensitization test, OECD442E, can respond to a variety of stimuli other than haptens, such as lipopolysaccharide (LPS), other bacterial toxins, and detergents. Considering these characteristics, we examined the ability of the IL-8 luciferase assay using THP-G8 cells to evaluate water pollution. We first stimulated THP-G8 cell with various Toll-like receptor (TLR) agonists and nucleotide-binding oligomerization domain-like receptor (NLR) agonists, and found that TLR1, 2, 4, 5, 6 agonists and NOD 1, 2 agonists significantly augmented IL-8 luciferase activity (IL8LA). Then, we examined the detection threshold of LPS by THP-G8 cells, and found it 0.4 EU/ml. Next, we examined whether THP-G8 cells can differently respond to a variety of sources of environmental water around Sendai, Japan and Manila, Philippine and whether there is a correlation between the IL8LA of different sources of water and their level of endotoxin assessed by the LAL assay. There was a clear trend that the IL8LA was lower in the upper stream and higher in the downstream in both Japan and Philippine. Moreover, there was a strong correlation between the IL8LA of the environmental water and its endotoxin level. Finally, using N-acetyl-L-cysteine, an antioxidant/radical scavenger, and polymyxin B that neutralizes endotoxin, we demonstrated that there was a difference in the suppressive effects by them between the water from Japan and that from Philippine. These data suggest the potential of the IL-8 luciferase assay for evaluating environmental water pollution both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Yutaka Kimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Chizu Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Toshifumi Imagawa
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Socorro P Lupisan
- Research Institute for Tropical Medicine, FCC, Alabang, Muntinlupa 1781, Philippines
| | - Mariko Saito-Obata
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
24
|
Bradley PM, Argos M, Kolpin DW, Meppelink SM, Romanok KM, Smalling KL, Focazio MJ, Allen JM, Dietze JE, Devito MJ, Donovan AR, Evans N, Givens CE, Gray JL, Higgins CP, Hladik ML, Iwanowicz LR, Journey CA, Lane RF, Laughrey ZR, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meyer MT, Putz AR, Richardson SD, Stark AE, Weis CP, Wilson VS, Zehraoui A. Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020. [PMID: 32126404 DOI: 10.5066/p9voobwt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.
Collapse
Affiliation(s)
| | - Maria Argos
- University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | - Michael J Devito
- U.S. National Institute of Environmental Health Sciences/NIH, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea R Putz
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | | | - Alan E Stark
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | - Christopher P Weis
- U.S. National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
25
|
Bradley PM, Argos M, Kolpin DW, Meppelink SM, Romanok KM, Smalling KL, Focazio MJ, Allen JM, Dietze JE, Devito MJ, Donovan AR, Evans N, Givens CE, Gray JL, Higgins CP, Hladik ML, Iwanowicz LR, Journey CA, Lane RF, Laughrey ZR, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meyer MT, Putz AR, Richardson SD, Stark AE, Weis CP, Wilson VS, Zehraoui A. Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137236. [PMID: 32126404 PMCID: PMC9140060 DOI: 10.1016/j.scitotenv.2020.137236] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 05/20/2023]
Abstract
Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.
Collapse
Affiliation(s)
| | - Maria Argos
- University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | - Michael J Devito
- U.S. National Institute of Environmental Health Sciences/NIH, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea R Putz
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | | | - Alan E Stark
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | - Christopher P Weis
- U.S. National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
26
|
Bradley PM, Romanok KM, Duncan JR, Battaglin WA, Clark JM, Hladik ML, Huffman BJ, Iwanowicz LR, Journey CA, Smalling KL. Exposure and potential effects of pesticides and pharmaceuticals in protected streams of the US National park Service southeast region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135431. [PMID: 31896231 DOI: 10.1016/j.scitotenv.2019.135431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 05/14/2023]
Abstract
Globally, protected areas offer refugia for a broad range of taxa including threatened and endangered species. In the United States (US), the National Park Service (NPS) manages public lands to preserve biodiversity, but increasing park visitation and development of surrounding landscapes increase exposure to and effects from bioactive contaminants. The risk (exposure and hazard) to NPS protected-stream ecosystems within the highly urbanized southeast region (SER) from bioactive contaminants was assessed in five systems based on 334 pesticide and pharmaceutical analytes in water and 119 pesticides in sediment. Contaminant mixtures were common across all sampled systems, with approximately 24% of the unique analytes (80/334) detected at least once and 15% (49/334) detected in half of the surface-water samples. Pharmaceuticals were observed more frequently than pesticides, consistent with riparian buffers and concomitant spatial separation from non-point pesticide sources in four of the systems. To extrapolate exposure data to biological effects space, site-specific cumulative exposure-activity ratios (ΣEAR) were calculated for detected surface-water contaminants with available ToxCast data; common exceedances of a 0.001 ΣEAR effects-screening threshold raise concerns for molecular toxicity and possible, sub-lethal effects to non-target, aquatic vertebrates. The results illustrate the need for continued management of protected resources to reduce contaminant exposure and preserve habitat quality, including prioritization of conservation practices (riparian buffers) near stream corridors and increased engagement with upstream/up-gradient property owners and municipal wastewater facilities.
Collapse
Affiliation(s)
- Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA.
| | - Kristin M Romanok
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ USA
| | | | | | - Jimmy M Clark
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA USA
| | - Bradley J Huffman
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center , Kearneysville, WV USA
| | - Celeste A Journey
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ USA
| |
Collapse
|
27
|
van der Oost R, McKenzie DJ, Verweij F, Satumalay C, van der Molen N, Winter MJ, Chipman JK. Identifying adverse outcome pathways (AOP) for Amsterdam city fish by integrated field monitoring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103301. [PMID: 31794920 DOI: 10.1016/j.etap.2019.103301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 05/23/2023]
Abstract
The European City Fish project aimed to develop a generic methodology for ecological risk assessment for urban rivers. Since traditional methods only consider a small fraction of substances present in the water cycle, biological effect monitoring is required for a more reliable assessment of the pollution status. A major challenge for environmental risk assessment (ERA) is the application of adverse outcome pathways (AOP), i.e. the linking of pollutant exposure via early molecular and biochemical changes to physiological effects and, ultimately, effects on populations and ecosystems. We investigated the linkage between responses at these different levels. Many AOP aspects were investigated, from external and internal exposure to different classes of micropollutants, via molecular key events (MKE) the impacts on organs and organisms (fish physiology), to changes in the population dynamics of fish. Risk assessment procedures were evaluated by comparing environmental quality standards, bioassay responses, biomarkers in caged and feral fish, and the impact on fish populations. Although no complete AOP was observed, indirect relationships linking pollutant exposure via MKE to impaired locomotion were demonstrated at the most polluted site near a landfill for chemical waste. The pathway indicated that several upstream key events requiring energy for stress responses and toxic defence are likely to converge at a single common MKE: increased metabolic demands. Both fish biomarkers and the bioanalytical SIMONI strategy are valuable indicators for micropollutant risks to fish communities.
Collapse
Affiliation(s)
- Ron van der Oost
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands.
| | - David J McKenzie
- UMR Marbec (CNRS-IRD-Ifremer-Université Montpellier), Montpellier, France
| | - Frank Verweij
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - Carl Satumalay
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - Natascha van der Molen
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - J Kevin Chipman
- Biosciences, University of Birmingham, B15 2TT, Birmingham, United Kingdom
| |
Collapse
|
28
|
Bradley PM, Journey CA, Button DT, Carlisle DM, Huffman BJ, Qi SL, Romanok KM, Van Metre PC. Multi-region assessment of pharmaceutical exposures and predicted effects in USA wadeable urban-gradient streams. PLoS One 2020; 15:e0228214. [PMID: 31999738 PMCID: PMC6992211 DOI: 10.1371/journal.pone.0228214] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/09/2020] [Indexed: 12/31/2022] Open
Abstract
Human-use pharmaceuticals in urban streams link aquatic-ecosystem health to human health. Pharmaceutical mixtures have been widely reported in larger streams due to historical emphasis on wastewater-treatment plant (WWTP) sources, with limited investigation of pharmaceutical exposures and potential effects in smaller headwater streams. In 2014-2017, the United States Geological Survey measured 111 pharmaceutical compounds in 308 headwater streams (261 urban-gradient sites sampled 3-5 times, 47 putative low-impact sites sampled once) in 4 regions across the US. Simultaneous exposures to multiple pharmaceutical compounds (pharmaceutical mixtures) were observed in 91% of streams (248 urban-gradient, 32 low-impact), with 88 analytes detected across all sites and cumulative maximum concentrations up to 36,142 ng/L per site. Cumulative detections and concentrations correlated to urban land use and presence/absence of permitted WWTP discharges, but pharmaceutical mixtures also were common in the 75% of sampled streams without WWTP. Cumulative exposure-activity ratios (EAR) indicated widespread transient exposures with high probability of molecular effects to vertebrates. Considering the potential individual and interactive effects of the detected pharmaceuticals and the recognized analytical underestimation of the pharmaceutical-contaminant (unassessed parent compounds, metabolites, degradates) space, these results demonstrate a nation-wide environmental concern and the need for watershed-scale mitigation of in-stream pharmaceutical contamination.
Collapse
Affiliation(s)
- Paul M. Bradley
- U.S. Geological Survey, Columbia, South Carolina, United States of America
| | - Celeste A. Journey
- U.S. Geological Survey, Columbia, South Carolina, United States of America
| | - Daniel T. Button
- U.S. Geological Survey, Columbus, Ohio, United States of America
| | | | - Bradley J. Huffman
- U.S. Geological Survey, Columbia, South Carolina, United States of America
| | - Sharon L. Qi
- U.S. Geological Survey, Beaverton, Oregon, United States of America
| | - Kristin M. Romanok
- U.S. Geological Survey, Lawrenceville, New Jersey, United States of America
| | | |
Collapse
|
29
|
Mayasich SA, Clarke BL. Vasotocin and the origins of the vasopressin/oxytocin receptor gene family. VITAMINS AND HORMONES 2020; 113:1-27. [DOI: 10.1016/bs.vh.2019.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
30
|
Corsi SR, De Cicco LA, Villeneuve DL, Blackwell BR, Fay KA, Ankley GT, Baldwin AK. Prioritizing chemicals of ecological concern in Great Lakes tributaries using high-throughput screening data and adverse outcome pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:995-1009. [PMID: 31412529 DOI: 10.1016/j.scitotenv.2019.05.457] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 04/15/2023]
Abstract
Chemical monitoring data were collected in surface waters from 57 Great Lakes tributaries from 2010 to 13 to identify chemicals of potential biological relevance and sites at which these chemicals occur. Traditional water-quality benchmarks for aquatic life based on in vivo toxicity data were available for 34 of 67 evaluated chemicals. To expand evaluation of potential biological effects, measured chemical concentrations were compared to chemical-specific biological activities determined in high-throughput (ToxCast) in vitro assays. Resulting exposure-activity ratios (EARs) were used to prioritize the chemicals of greatest potential concern: 4‑nonylphenol, bisphenol A, metolachlor, atrazine, DEET, caffeine, tris(2‑butoxyethyl) phosphate, tributyl phosphate, triphenyl phosphate, benzo(a)pyrene, fluoranthene, and benzophenone. Water-quality benchmarks were unavailable for five of these chemicals, but for the remaining seven, EAR-based prioritization was consistent with that based on toxicity quotients calculated from benchmarks. Water-quality benchmarks identified three additional PAHs (anthracene, phenanthrene, and pyrene) not prioritized using EARs. Through this analysis, an EAR of 10-3 was identified as a reasonable threshold above which a chemical might be of potential concern. To better understand apical hazards potentially associated with biological activities captured in ToxCast assays, in vitro bioactivity data were matched with available adverse outcome pathway (AOP) information. The 49 ToxCast assays prioritized via EAR analysis aligned with 23 potentially-relevant AOPs present in the AOP-Wiki. Mixture effects at monitored sites were estimated by summation of EAR values for multiple chemicals by individual assay or individual AOP. Commonly predicted adverse outcomes included impacts on reproduction and mitochondrial function. The EAR approach provided a screening-level assessment for evidence-based prioritization of chemicals and sites with potential for adverse biological effects. The approach aids prioritization of future monitoring activities and provides testable hypotheses to help focus those efforts. This also expands the fraction of detected chemicals for which biologically-based benchmark concentrations are available to help contextualize chemical monitoring results.
Collapse
Affiliation(s)
- Steven R Corsi
- U.S. Geological Survey, Middleton, WI 53562, United States.
| | | | - Daniel L Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, United States
| | - Brett R Blackwell
- U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, United States
| | - Kellie A Fay
- General Dynamics Information Technology, Duluth, MN 55804, United States
| | - Gerald T Ankley
- U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, United States
| | | |
Collapse
|
31
|
Rose LD, Akob DM, Tuberty SR, Corsi SR, DeCicco LA, Colby JD, Martin DJ. Use of high-throughput screening results to prioritize chemicals for potential adverse biological effects within a West Virginia watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:362-372. [PMID: 31059879 DOI: 10.1016/j.scitotenv.2019.04.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Organic chemicals from industrial, agricultural, and residential activities can enter surface waters through regulated and unregulated discharges, combined sewer overflows, stormwater runoff, accidental spills, and leaking septic-conveyance systems on a daily basis. The impact of point and nonpoint contaminant sources can result in adverse biological effects for organisms living in or near surface waters. Assessing the adverse or toxic effects that may result when exposure occurs is complicated by the fact that many commonly used chemicals lack toxicity information or water quality standards. To address these challenges, an exposure-activity ratio (EAR) screening approach was used to prioritize environmental chemistry data in a West Virginia watershed (Wolf Creek). Wolf Creek is a drinking water source and recreation resource with documented water quality impacts from point and nonpoint sources. The EAR screening approach uses high-throughput screening (HTS) data from ToxCast as a method of integrating environmental chemical occurrence and biological effects data. Using water quality schedule 4433, which targets 69 organic waste compounds typically found in domestic and industrial wastewater, chemicals were screened for potential adverse biological affects at multiple sites in the Wolf Creek watershed. Cumulative EAR mixture values were greatest at Sites 2 and 3, where bisphenol A (BPA) and pentachlorophenol exhibited maximum EAR values of 0.05 and 0.002, respectively. Site 2 is downstream of an unconventional oil and gas (UOG) wastewater disposal facility with documented water quality impacts. Low-level organic contaminants were found at all sample sites in Wolf Creek, except Site 10, where Wolf Creek enters the New River. The application of an EAR screening approach allowed our study to extend beyond traditional environmental monitoring methods to identify multiple sites and chemicals that warrant further investigation.
Collapse
Affiliation(s)
- Levi D Rose
- Appalachian State University, Department of Geography and Planning, NC 28607, USA.
| | | | - Shea R Tuberty
- Appalachian State University, Department of Biology, NC 28607, USA
| | | | | | - Jeffrey D Colby
- Appalachian State University, Department of Geography and Planning, NC 28607, USA
| | - Derek J Martin
- Appalachian State University, Department of Geography and Planning, NC 28607, USA
| |
Collapse
|
32
|
Berninger JP, DeMarini DM, Warren SH, Simmons JE, Wilson VS, Conley JM, Armstrong MD, Iwanowicz LR, Kolpin DW, Kuivila KM, Reilly TJ, Romanok KM, Villeneuve DL, Bradley PM. Predictive Analysis Using Chemical-Gene Interaction Networks Consistent with Observed Endocrine Activity and Mutagenicity of U.S. Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8611-8620. [PMID: 31287672 PMCID: PMC6770991 DOI: 10.1021/acs.est.9b02990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In a recent U.S. Geological Survey/U.S. Environmental Protection Agency study assessing more than 700 organic compounds in 38 streams, in vitro assays indicated generally low estrogen, androgen, and glucocorticoid receptor activities, with 13 surface waters with 17β-estradiol-equivalent (E2Eq) activities greater than a 1-ng/L estimated effects-based trigger value for estrogenic effects in male fish. Among the 36 samples assayed for mutagenicity in the Salmonella bioassay (reported here), 25% had low mutagenic activity and 75% were not mutagenic. Endocrine and mutagenic activities of the water samples were well correlated with each other and with the total number and cumulative concentrations of detected chemical contaminants. To test the predictive utility of knowledge-base-leveraging approaches, site-specific predicted chemical-gene (pCGA) and predicted analogous pathway-linked (pPLA) association networks identified in the Comparative Toxicogenomics Database were compared with observed endocrine/mutagenic bioactivities. We evaluated pCGA/pPLA patterns among sites by cluster analysis and principal component analysis and grouped the pPLA into broad mode-of-action classes. Measured E2eq and mutagenic activities correlated well with predicted pathways. The pPLA analysis also revealed correlations with signaling, metabolic, and regulatory groups, suggesting that other effects pathways may be associated with chemical contaminants in these waters and indicating the need for broader bioassay coverage to assess potential adverse impacts.
Collapse
Affiliation(s)
- Jason P. Berninger
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri 65201, United States
| | - David M. DeMarini
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Sarah H. Warren
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Jane Ellen Simmons
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Vickie S. Wilson
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Justin M. Conley
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Mikayla D. Armstrong
- Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Luke R. Iwanowicz
- Leetown Science Center, U.S. Geological Survey, Kearneysville, West Virginia 25430, United States
| | - Dana W. Kolpin
- Central Midwest Water Science Center, U.S. Geological Survey, Iowa City, Iowa 52240, United States
| | - Kathryn M. Kuivila
- Oregon Water Science Center, U.S. Geological Survey, Portland, Oregon 97201, United States
| | - Timothy J. Reilly
- New Jersey Water Science Center, U.S. Geological Survey, Lawrenceville, New Jersey 08648, United States
| | - Kristin M. Romanok
- New Jersey Water Science Center, U.S. Geological Survey, Lawrenceville, New Jersey 08648, United States
| | - Daniel L. Villeneuve
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Paul M. Bradley
- South Atlantic Water Science Center, U.S. Geological Survey, Columbia, South Carolina 29210, United States
- Corresponding author: Phone 803-727-9046;
| |
Collapse
|
33
|
Fairbrother A, Muir D, Solomon KR, Ankley GT, Rudd MA, Boxall AB, Apell JN, Armbrust KL, Blalock BJ, Bowman SR, Campbell LM, Cobb GP, Connors KA, Dreier DA, Evans MS, Henry CJ, Hoke RA, Houde M, Klaine SJ, Klaper RD, Kullik SA, Lanno RP, Meyer C, Ottinger MA, Oziolor E, Petersen EJ, Poynton HC, Rice PJ, Rodriguez‐Fuentes G, Samel A, Shaw JR, Steevens JA, Verslycke TA, Vidal‐Dorsch DE, Weir SM, Wilson P, Brooks BW. Toward Sustainable Environmental Quality: Priority Research Questions for North America. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1606-1624. [PMID: 31361364 PMCID: PMC6852658 DOI: 10.1002/etc.4502] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/19/2019] [Accepted: 05/16/2019] [Indexed: 05/19/2023]
Abstract
Anticipating, identifying, and prioritizing strategic needs represent essential activities by research organizations. Decided benefits emerge when these pursuits engage globally important environment and health goals, including the United Nations Sustainable Development Goals. To this end, horizon scanning efforts can facilitate identification of specific research needs to address grand challenges. We report and discuss 40 priority research questions following engagement of scientists and engineers in North America. These timely questions identify the importance of stimulating innovation and developing new methods, tools, and concepts in environmental chemistry and toxicology to improve assessment and management of chemical contaminants and other diverse environmental stressors. Grand challenges to achieving sustainable management of the environment are becoming increasingly complex and structured by global megatrends, which collectively challenge existing sustainable environmental quality efforts. Transdisciplinary, systems-based approaches will be required to define and avoid adverse biological effects across temporal and spatial gradients. Similarly, coordinated research activities among organizations within and among countries are necessary to address the priority research needs reported here. Acquiring answers to these 40 research questions will not be trivial, but doing so promises to advance sustainable environmental quality in the 21st century. Environ Toxicol Chem 2019;38:1606-1624. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
| | - Derek Muir
- Aquatic Contaminants Research DivisionEnvironment and Climate Change Canada, Burlington ONCanada
| | - Keith R. Solomon
- School of Environmental SciencesUniversity of Guelph, GuelphOntarioCanada
| | | | | | | | - Jennifer N. Apell
- Department of Civil & Environmental EngineeringMassachusetts Institute of Technology, CambridgeMAUSA
| | - Kevin L. Armbrust
- Department of Environmental Sciences, College of the Coast and EnvironmentLouisiana State University, Baton RougeLouisianaUSA
| | - Bonnie J. Blalock
- School for the EnvironmentUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Sarah R. Bowman
- Michigan Department of Environmental QualityDetroitMichiganUSA
| | - Linda M. Campbell
- Environmental Science, Saint Mary's University, HalifaxNova ScotiaCanada
| | - George P. Cobb
- Department of Environmental ScienceBaylor UniversityWacoTexasUSA
| | | | - David A. Dreier
- Center for Environmental & Human ToxicologyUniversity of FloridaGainesvilleFloridaUSA
| | - Marlene S. Evans
- Aquatic Contaminants Research DivisionEnvironment and Climate Change Canada, Burlington ONCanada
| | | | | | - Magali Houde
- Aquatic Contaminants Research DivisionEnvironment and Climate Change Canada, Burlington ONCanada
| | | | | | | | | | | | - Mary Ann Ottinger
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Elias Oziolor
- Department of Environmental ScienceBaylor UniversityWacoTexasUSA
| | - Elijah J. Petersen
- Material Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgMarylandUSA
| | - Helen C. Poynton
- School for the EnvironmentUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Pamela J. Rice
- US Department of AgricultureAgricultural Research ServiceWashington, DC
| | | | | | - Joseph R. Shaw
- School of Public and Environmental Affairs, Indiana UniversityBloomingtonIndianaUSA
| | | | | | | | - Scott M. Weir
- Queen's University of CharlotteCharlotteNorth CarolinaUSA
| | | | - Bryan W. Brooks
- Procter and GambleCincinnatiOhioUSA
- Institute of Biomedical Studies, Baylor UniversityWacoTexasUSA
| |
Collapse
|
34
|
Coady K, Browne P, Embry M, Hill T, Leinala E, Steeger T, Maślankiewicz L, Hutchinson T. When Are Adverse Outcome Pathways and Associated Assays "Fit for Purpose" for Regulatory Decision-Making and Management of Chemicals? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:633-647. [PMID: 30908812 PMCID: PMC6771501 DOI: 10.1002/ieam.4153] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/07/2019] [Accepted: 03/22/2019] [Indexed: 05/11/2023]
Abstract
There have been increasing demands for chemical hazard and risk assessments in recent years. Chemical companies have expanded internal product stewardship initiatives, and jurisdictions have increased the regulatory requirements for the manufacture and sale of chemicals. There has also been a shift in chemical toxicity evaluations within the same time frame, with new methodologies being developed to improve chemical safety assessments for both human health and the environment. With increased needs for chemical assessments coupled with more diverse data streams from new technologies, regulators and others tasked with chemical management activities are faced with increasing workloads and more diverse types of data to consider. The Adverse Outcome Pathway (AOP) framework can be applied in different scenarios to integrate data and guide chemical assessment and management activities. In this paper, scenarios of how AOPs can be used to guide chemical management decisions during research and development, chemical registration, and subsequent regulatory activities such as prioritization and risk assessment are considered. Furthermore, specific criteria (e.g., the type and level of AOP complexity, confidence in the AOP, as well as external review and assay validation) are proposed to examine whether AOPs and associated tools are fit for purpose when applied in different contexts. Certain toxicity pathways are recommended as priority areas for AOP research and development, and the continued use of AOPs and defined approaches in regulatory activities are recommended. Furthermore, a call for increased outreach, education, and enhanced use of AOP databases is proposed to increase their utility in chemicals management. Integr Environ Assess Manag 2019;15:633-647. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Katie Coady
- Toxicology & Environmental Research & ConsultingDow Chemical CompanyMidlandMichiganUSA
| | - Patience Browne
- Environment, Health and Safety Division, Environment DirectorateOrganisation for Economic and Cooperative DevelopmentParisFrance
| | - Michelle Embry
- Health and Environmental Sciences InstituteWashingtonDCUSA
| | - Thomas Hill
- US Environmental Protection AgencyNational Health and Environmental Effects Research Laboratory, Research Triangle ParkNorth Carolina
| | - Eeva Leinala
- Environment, Health and Safety Division, Environment DirectorateOrganisation for Economic and Cooperative DevelopmentParisFrance
| | - Thomas Steeger
- US Environmental Protection Agency, Office of Pesticide ProgramsWashingtonDC
| | - Lidka Maślankiewicz
- National Institute of Public Health and the Environment (RIVM)Centre for Safety of Substances and Products, BilthovenThe Netherlands
| | | |
Collapse
|
35
|
Thomas RS, Bahadori T, Buckley TJ, Cowden J, Deisenroth C, Dionisio KL, Frithsen JB, Grulke CM, Gwinn MR, Harrill JA, Higuchi M, Houck KA, Hughes MF, Hunter ES, Isaacs KK, Judson RS, Knudsen TB, Lambert JC, Linnenbrink M, Martin TM, Newton SR, Padilla S, Patlewicz G, Paul-Friedman K, Phillips KA, Richard AM, Sams R, Shafer TJ, Setzer RW, Shah I, Simmons JE, Simmons SO, Singh A, Sobus JR, Strynar M, Swank A, Tornero-Valez R, Ulrich EM, Villeneuve DL, Wambaugh JF, Wetmore BA, Williams AJ. The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicol Sci 2019; 169:317-332. [PMID: 30835285 PMCID: PMC6542711 DOI: 10.1093/toxsci/kfz058] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA's Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.
Collapse
Affiliation(s)
- Russell S. Thomas
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Tina Bahadori
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency
| | - Timothy J. Buckley
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - John Cowden
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Chad Deisenroth
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Kathie L. Dionisio
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Jeffrey B. Frithsen
- Chemical Safety for Sustainability National Research Program, Office of Research and Development, US Environmental Protection Agency
| | - Christopher M. Grulke
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Maureen R. Gwinn
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Joshua A. Harrill
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Mark Higuchi
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Keith A. Houck
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Michael F. Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - E. Sidney Hunter
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Kristin K. Isaacs
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Richard S. Judson
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Thomas B. Knudsen
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jason C. Lambert
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency
| | - Monica Linnenbrink
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Todd M. Martin
- National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Seth R. Newton
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Grace Patlewicz
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Katie Paul-Friedman
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Katherine A. Phillips
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Ann M. Richard
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Reeder Sams
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Timothy J. Shafer
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - R. Woodrow Setzer
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Imran Shah
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jane E. Simmons
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Steven O. Simmons
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Amar Singh
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jon R. Sobus
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Mark Strynar
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Adam Swank
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Rogelio Tornero-Valez
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Elin M. Ulrich
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Daniel L Villeneuve
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - John F. Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Barbara A. Wetmore
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Antony J. Williams
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| |
Collapse
|
36
|
Bradley PM, Journey CA, Berninger JP, Button DT, Clark JM, Corsi SR, DeCicco LA, Hopkins KG, Huffman BJ, Nakagaki N, Norman JE, Nowell LH, Qi SL, VanMetre PC, Waite IR. Mixed-chemical exposure and predicted effects potential in wadeable southeastern USA streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:70-83. [PMID: 30469070 DOI: 10.1016/j.scitotenv.2018.11.186] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 05/19/2023]
Abstract
Complex chemical mixtures have been widely reported in larger streams but relatively little work has been done to characterize them and assess their potential effects in headwater streams. In 2014, the United States Geological Survey (USGS) sampled 54 Piedmont streams over ten weeks and measured 475 unique organic compounds using five analytical methods. Maximum and median exposure conditions were evaluated in relation to watershed characteristics and for potential biological effects using multiple lines of evidence. Results demonstrate that mixed-contaminant exposures are ubiquitous and varied in sampled headwater streams. Approximately 56% (264) of the 475 compounds were detected at least once across all sites. Cumulative maximum concentrations ranged 1,922-162,346ngL-1 per site. Chemical occurrence significantly correlated to urban land use but was not related to presence/absence of wastewater treatment facility discharges. Designed bioactive chemicals represent about 2/3rd of chemicals detected, notably pharmaceuticals and pesticides, qualitative evidence for possible adverse biological effects. Comparative Toxicogenomics Database chemical-gene associations applied to maximum exposure conditions indicate >12,000 and 2,900 potential gene targets were predicted at least once across all sites for fish and invertebrates, respectively. Analysis of cumulative exposure-activity ratios provided additional evidence that, at a minimum, transient exposures with high probability of molecular effects to vertebrates were common. Finally, cumulative detections and concentrations correlated inversely with invertebrate metrics from in-stream surveys. The results demonstrate widespread instream exposure to extensive contaminant mixtures and compelling multiple lines of evidence for adverse effects on aquatic communities.
Collapse
|
37
|
Villeneuve DL, Coady K, Escher BI, Mihaich E, Murphy CA, Schlekat T, Garcia-Reyero N. High-throughput screening and environmental risk assessment: State of the science and emerging applications. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:12-26. [PMID: 30570782 PMCID: PMC6698360 DOI: 10.1002/etc.4315] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/26/2018] [Accepted: 11/09/2018] [Indexed: 05/20/2023]
Abstract
In 2007 the United States National Research Council (NRC) published a vision for toxicity testing in the 21st century that emphasized the use of in vitro high-throughput screening (HTS) methods and predictive models as an alternative to in vivo animal testing. In the present study we examine the state of the science of HTS and the progress that has been made in implementing and expanding on the NRC vision, as well as challenges to implementation that remain. Overall, significant progress has been made with regard to the availability of HTS data, aggregation of chemical property and toxicity information into online databases, and the development of various models and frameworks to support extrapolation of HTS data. However, HTS data and associated predictive models have not yet been widely applied in risk assessment. Major barriers include the disconnect between the endpoints measured in HTS assays and the assessment endpoints considered in risk assessments as well as the rapid pace at which new tools and models are evolving in contrast with the slow pace at which regulatory structures change. Nonetheless, there are opportunities for environmental scientists and policymakers alike to take an impactful role in the ongoing development and implementation of the NRC vision. Six specific areas for scientific coordination and/or policy engagement are identified. Environ Toxicol Chem 2019;38:12-26. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Daniel L. Villeneuve
- U.S. Environmental Protection Agency, Mid-Continent Ecology Division, Duluth, MN, USA
| | - Katie Coady
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, USA
| | - Beate I. Escher
- Hemholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ellen Mihaich
- Environmental and Regulatory Resources (ER), Durham, NC, USA
| | - Cheryl A. Murphy
- Michigan State University, Fisheries and Wildlife, Lymann Briggs College, East Lansing, MI, USA
| | - Tamar Schlekat
- Society of Environmental Toxicology and Chemistry, Durham, NC, USA
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| |
Collapse
|
38
|
Bradley PM, Kolpin DW, Romanok KM, Smalling KL, Focazio MJ, Brown JB, Cardon MC, Carpenter KD, Corsi SR, DeCicco LA, Dietze JE, Evans N, Furlong ET, Givens CE, Gray JL, Griffin DW, Higgins CP, Hladik ML, Iwanowicz LR, Journey CA, Kuivila KM, Masoner JR, McDonough CA, Meyer MT, Orlando JL, Strynar MJ, Weis CP, Wilson VS. Reconnaissance of Mixed Organic and Inorganic Chemicals in Private and Public Supply Tapwaters at Selected Residential and Workplace Sites in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13972-13985. [PMID: 30460851 PMCID: PMC6742431 DOI: 10.1021/acs.est.8b04622] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Safe drinking water at the point-of-use (tapwater, TW) is a United States public health priority. Multiple lines of evidence were used to evaluate potential human health concerns of 482 organics and 19 inorganics in TW from 13 (7 public supply, 6 private well self-supply) home and 12 (public supply) workplace locations in 11 states. Only uranium (61.9 μg L-1, private well) exceeded a National Primary Drinking Water Regulation maximum contaminant level (MCL: 30 μg L-1). Lead was detected in 23 samples (MCL goal: zero). Seventy-five organics were detected at least once, with median detections of 5 and 17 compounds in self-supply and public supply samples, respectively (corresponding maxima: 12 and 29). Disinfection byproducts predominated in public supply samples, comprising 21% of all detected and 6 of the 10 most frequently detected. Chemicals designed to be bioactive (26 pesticides, 10 pharmaceuticals) comprised 48% of detected organics. Site-specific cumulative exposure-activity ratios (∑EAR) were calculated for the 36 detected organics with ToxCast data. Because these detections are fractional indicators of a largely uncharacterized contaminant space, ∑EAR in excess of 0.001 and 0.01 in 74 and 26% of public supply samples, respectively, provide an argument for prioritized assessment of cumulative effects to vulnerable populations from trace-level TW exposures.
Collapse
Affiliation(s)
- Paul M. Bradley
- United States Geological Survey, Columbia, South Carolina 29210, United States
| | - Dana W. Kolpin
- United States Geological Survey, Iowa City, Iowa 52240, United States
| | - Kristin M. Romanok
- United States Geological Survey, Lawrenceville, New Jersey 08648, United States
| | - Kelly L. Smalling
- United States Geological Survey, Lawrenceville, New Jersey 08648, United States
| | | | | | - Mary C. Cardon
- United States Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Kurt D. Carpenter
- United States Geological Survey, Portland, Oregon 97201, United States
| | - Steven R. Corsi
- United States Geological Survey, Middleton, Wisconsin 53562, United States
| | - Laura A. DeCicco
- United States Geological Survey, Middleton, Wisconsin 53562, United States
| | - Julie E. Dietze
- United States Geological Survey, Lawrence, Kansas 66049, United States
| | - Nicola Evans
- United States Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Edward T. Furlong
- United States Geological Survey, Lakewood, Colorado 80225, United States
| | - Carrie E. Givens
- United States Geological Survey, Lansing, Michigan 48911, United States
| | - James L. Gray
- United States Geological Survey, Lakewood, Colorado 80225, United States
| | - Dale W. Griffin
- United States Geological Survey, St. Petersburg, Florida 33701, United States
| | | | - Michelle L. Hladik
- United States Geological Survey, Sacramento, California 95819, United States
| | - Luke R. Iwanowicz
- United States Geological Survey, Kearneysville, West Virginia 25430, United States
| | - Celeste A. Journey
- United States Geological Survey, Columbia, South Carolina 29210, United States
| | | | - Jason R. Masoner
- United States Geological Survey, Oklahoma City, Oklahoma 73159, United States
| | | | - Michael T. Meyer
- United States Geological Survey, Lawrence, Kansas 66049, United States
| | - James L. Orlando
- United States Geological Survey, Sacramento, California 95819, United States
| | - Mark J. Strynar
- United States Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Christopher P. Weis
- United States National Institute of Environmental Health Sciences/NIH, Bethesda, Maryland 20892, United States
| | - Vickie S. Wilson
- United States Environmental Protection Agency, Durham, North Carolina 27709, United States
| |
Collapse
|
39
|
Babić S, Barišić J, Stipaničev D, Repec S, Lovrić M, Malev O, Martinović-Weigelt D, Čož-Rakovac R, Klobučar G. Assessment of river sediment toxicity: Combining empirical zebrafish embryotoxicity testing with in silico toxicity characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:435-450. [PMID: 29945079 DOI: 10.1016/j.scitotenv.2018.06.124] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/29/2018] [Accepted: 06/10/2018] [Indexed: 05/25/2023]
Abstract
Quantitative chemical analyses of 428 organic contaminants (OCs) indicated the presence of 313 OCs in the sediment extracts from Sava River, Croatia. Pharmaceuticals were present in higher concentrations than pesticides thus confirming their increasing threat to freshwater ecosystems. Toxicity evaluation of the sediment extracts from four locations (Jesenice, Rugvica, Galdovo and Lukavec) using zebrafish embryotoxicity test (ZET) accompanied with semi-quantitative histopathological analyses exhibited correlation with cumulative number and concentrations of OCs at the investigated sites (10.05, 15.22, 1.25, and 9.13 μg/g respectively). Toxicity of sediment extracts and sediment was predicted using toxic unit (TU) approach and persistence, bioaccumulation and toxicity (PBT) ranking. Additionally, influential OCs and genes were identified by graph mining of the prior knowledge informed, site-specific chemical-gene interaction models. Predicted toxicity of sediment extracts (TUext) was similar to the results obtained by ZET and associated histopathology with Rugvica sediment being the most toxic, followed by Jesenice, Lukavec and Galdovo. Sediment TU (TUsed) favoured OCs with low octanol-water partition coefficients like herbicide glyphosate and antibiotics ciprofloxacin and sulfamethazine thus indicating locations containing higher concentrations of these OCs (Galdovo and Rugvica) as the most toxic. Results suggest that comprehensive in silico sediment toxicity predictions advocate providing equal attention to organic contaminants with either very low or very high log Kow.
Collapse
Affiliation(s)
- Sanja Babić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia; Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Josip Barišić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia; Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia
| | - Mario Lovrić
- Know-Center, Inffeldgasse 13/6, A-8010 Graz, Austria; NMR Centre, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Olga Malev
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia; Department for Translational Medicine, Children's Hospital Srebrnjak, Srebrnjak 100, Zagreb, Croatia
| | - Dalma Martinović-Weigelt
- University of St. Thomas, Department of Biology, Mail OWS 390, 2115 Summit Ave, Saint Paul, MN 55105, USA
| | - Rozelindra Čož-Rakovac
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia; Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Göran Klobučar
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| |
Collapse
|
40
|
McGuire JT, Cozzarelli IM, Bekins BA, Link H, Martinović-Weigelt D. Toxicity Assessment of Groundwater Contaminated by Petroleum Hydrocarbons at a Well-Characterized, Aged, Crude Oil Release Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12172-12178. [PMID: 30272965 DOI: 10.1021/acs.est.8b03657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Management of petroleum-impacted waters by monitored natural attenuation requires an understanding of the toxicology of both the original compounds released and the transformation products formed during natural breakdown. Here, we report data from a groundwater plume consisting of a mixture of crude oil compounds and transformation products in an effort to bridge the gap between groundwater quality information and potential biological effects of human exposures. Groundwater samples were characterized for redox processes, concentrations of nonvolatile dissolved organic carbon (NVDOC) and total petroleum hydrocarbons in the diesel range, as well as for activation of human nuclear receptors (hNR) and toxicologically relevant transcriptional pathways. Results show upregulation of several biological pathways, including peroxisome proliferator-activated receptor gamma and alpha, estrogen receptor alpha, and pregnane X receptor (PXR) with higher levels of hNR activity observed in more contaminated samples. Our study of affected groundwater contaminated by a crude-oil release 39 years ago shows these types of waters may have the potential to cause adverse impacts on development, endocrine, and liver functioning in exposed populations. Additionally, positive trends in activation of some of the molecular targets (e.g., PXR) with increasing NVDOC concentrations (including polar transformation products) demonstrate the importance of improving our understanding of the toxicity associated with the unknown transformation products present in hydrocarbon-impacted waters. Our results begin to provide insight into the potential toxicity of petroleum-impacted waters, which is particularly timely given the ubiquitous nature of waters impacted by petroleum contamination not only recently but also in the past and the need to protect drinking-water quality.
Collapse
Affiliation(s)
- Jennifer T McGuire
- Department of Biology , University of St. Thomas , St. Paul , Minnesota 55105 , United States
| | | | - Barbara A Bekins
- U.S. Geological Survey , Menlo Park , California 94025 , United States
| | - Hannah Link
- Department of Biology , University of St. Thomas , St. Paul , Minnesota 55105 , United States
| | | |
Collapse
|
41
|
Neale PA, Leusch FDL, Escher BI. What is driving the NF-κB response in environmental water extracts? CHEMOSPHERE 2018; 210:645-652. [PMID: 30031348 DOI: 10.1016/j.chemosphere.2018.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In vitro bioassays are increasingly applied for water quality monitoring, with assays indicative of adaptive stress responses commonly included in test batteries. The NF-κB assay is responsive to surface water and wastewater extracts, but the causative compounds are unknown and micropollutants typically found in water do not activate the NF-κB assay. The current study aimed to investigate if co-extracted organic matter and/or endotoxins could cause the NF-κB response in surface water extracts. The effect of model bacterial lipopolysaccharides (LPS) and dissolved organic carbon (DOC) was evaluated in the NF-κB assay both before and after solid-phase extraction (SPE), with 7% effect recovery for LPS and between 7 and 52% effect recovery for DOC observed. The NF-κB response, endotoxin activity, micropollutant concentration and total organic carbon concentration was measured in four surface water extracts. All water extracts showed a response in the NF-κB assay, but the detected micropollutants could not explain the effect. Comparison of predicted bioanalytical equivalent concentrations based on micropollutant, DOC and endotoxin concentrations in surface water with experimental bioanalytical equivalent concentrations suggest that co-extracted endotoxins are the most important drivers of the observed effect, with DOC only having a minor contribution. While in vitro bioassays typically detect mixtures of organic micropollutants, the current study shows that the NF-κB assay can integrate the effects of co-extracted endotoxins. Given that endotoxins can pose a risk for human health, the NF-κB assay is a valuable inclusion in bioanalytical test batteries used for water quality monitoring.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba QLD 4102, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba QLD 4102, Australia; UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geoscience, 72074 Tübingen, Germany
| |
Collapse
|
42
|
Van den Brink PJ, Boxall AB, Maltby L, Brooks BW, Rudd MA, Backhaus T, Spurgeon D, Verougstraete V, Ajao C, Ankley GT, Apitz SE, Arnold K, Brodin T, Cañedo-Argüelles M, Chapman J, Corrales J, Coutellec MA, Fernandes TF, Fick J, Ford AT, Papiol GG, Groh KJ, Hutchinson TH, Kruger H, Kukkonen JV, Loutseti S, Marshall S, Muir D, Ortiz-Santaliestra ME, Paul KB, Rico A, Rodea-Palomares I, Römbke J, Rydberg T, Segner H, Smit M, van Gestel CA, Vighi M, Werner I, Zimmer EI, van Wensem J. Toward sustainable environmental quality: Priority research questions for Europe. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2281-2295. [PMID: 30027629 PMCID: PMC6214210 DOI: 10.1002/etc.4205] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/28/2018] [Accepted: 06/11/2018] [Indexed: 05/05/2023]
Abstract
The United Nations' Sustainable Development Goals have been established to end poverty, protect the planet, and ensure prosperity for all. Delivery of the Sustainable Development Goals will require a healthy and productive environment. An understanding of the impacts of chemicals which can negatively impact environmental health is therefore essential to the delivery of the Sustainable Development Goals. However, current research on and regulation of chemicals in the environment tend to take a simplistic view and do not account for the complexity of the real world, which inhibits the way we manage chemicals. There is therefore an urgent need for a step change in the way we study and communicate the impacts and control of chemicals in the natural environment. To do this requires the major research questions to be identified so that resources are focused on questions that really matter. We present the findings of a horizon-scanning exercise to identify research priorities of the European environmental science community around chemicals in the environment. Using the key questions approach, we identified 22 questions of priority. These questions covered overarching questions about which chemicals we should be most concerned about and where, impacts of global megatrends, protection goals, and sustainability of chemicals; the development and parameterization of assessment and management frameworks; and mechanisms to maximize the impact of the research. The research questions identified provide a first-step in the path forward for the research, regulatory, and business communities to better assess and manage chemicals in the natural environment. Environ Toxicol Chem 2018;37:2281-2295. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Paul J. Van den Brink
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen Environmental Research (Alterra), P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Alistair B.A. Boxall
- Environment Department, University of York, Heslington, York, YO10 5NG, UK
- Corresponding author:
| | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | | | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22 B, 40530 Gothenburg, Sweden
| | - David Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | | | - Charmaine Ajao
- European Chemicals Agency (ECHA), Annankatu 18, 00120 Helsinki, Finland
| | - Gerald T. Ankley
- US Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Sabine E. Apitz
- SEA Environmental Decisions, Ltd., 1 South Cottages, The Ford; Little Hadham, Hertfordshire SG11 2AT, UK
| | - Kathryn Arnold
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Miguel Cañedo-Argüelles
- Freshwater Ecology and Management (FEM) Research Group, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Aquatic Ecology Group, BETA Tecnio Centre, University of Vic - Central University of Catalonia, Vic, Catalonia, Spain
| | - Jennifer Chapman
- Environment Department, University of York, Heslington, York, YO10 5NG, UK
| | - Jone Corrales
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | | | - Teresa F. Fernandes
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Jerker Fick
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Alex T. Ford
- Institute of Marine Sciences, University of Portsmouth, Ferry Road, Portsmouth, England, PO4 9LY, UK
| | - Gemma Giménez Papiol
- Environmental Engineering Laboratory, Chemical Engineering Department, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona, Spain
| | - Ksenia J. Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf Switzerland
| | - Thomas H. Hutchinson
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Hank Kruger
- Wildlife International Ltd., Easton, Maryland, USA
| | - Jussi V.K. Kukkonen
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Jyväskylä, Finland
| | - Stefania Loutseti
- DuPont De Nemours, Agriculture & Nutrition Crop Protection, Hellas S.A. Halandri Ydras 2& Kifisias Avenue 280r. 15232 Athens, Greece
| | - Stuart Marshall
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK441LQ, UK. (Retired)
| | - Derek Muir
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1 Canada
| | - Manuel E. Ortiz-Santaliestra
- Spanish Institute of Game and Wildlife Resources (IREC) CSIC-UCLM-JCCM. Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Kai B. Paul
- Blue Frog Scientific Limited, Quantum House, 91 George St., EH2 3ES, Edinburgh, UK
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Ismael Rodea-Palomares
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, D-65439 Flörsheim, Germany
| | - Tomas Rydberg
- IVL Swedish Environmental Research Institute, PO Box 5302, 40014 Göteborg, Sweden
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, 3012 Bern, Switzerland
| | - Mathijs Smit
- Shell Global Solutions, Carel van Bylandtlaan 30, 2596 HR The Hague, The Netherlands
| | - Cornelis A.M. van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| | | | - Joke van Wensem
- Ministry of Infrastructure and the Environment, P.O. Box 20901, 2500 EX The Hague, The Netherlands
| |
Collapse
|
43
|
Carusi A, Davies MR, De Grandis G, Escher BI, Hodges G, Leung KMY, Whelan M, Willett C, Ankley GT. Harvesting the promise of AOPs: An assessment and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1542-1556. [PMID: 30045572 PMCID: PMC5888775 DOI: 10.1016/j.scitotenv.2018.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 05/22/2023]
Abstract
The Adverse Outcome Pathway (AOP) concept is a knowledge assembly and communication tool to facilitate the transparent translation of mechanistic information into outcomes meaningful to the regulatory assessment of chemicals. The AOP framework and associated knowledgebases (KBs) have received significant attention and use in the regulatory toxicology community. However, it is increasingly apparent that the potential stakeholder community for the AOP concept and AOP KBs is broader than scientists and regulators directly involved in chemical safety assessment. In this paper we identify and describe those stakeholders who currently-or in the future-could benefit from the application of the AOP framework and knowledge to specific problems. We also summarize the challenges faced in implementing pathway-based approaches such as the AOP framework in biological sciences, and provide a series of recommendations to meet critical needs to ensure further progression of the framework as a useful, sustainable and dependable tool supporting assessments of both human health and the environment. Although the AOP concept has the potential to significantly impact the organization and interpretation of biological information in a variety of disciplines/applications, this promise can only be fully realized through the active engagement of, and input from multiple stakeholders, requiring multi-pronged substantive long-term planning and strategies.
Collapse
Affiliation(s)
- Annamaria Carusi
- Medical Humanities Sheffield, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| | | | - Giovanni De Grandis
- Science, Technology, Engineering and Public Policy (STEaPP), Boston House, 36-37 Fitzroy Square, London W1T 6EY, UK.
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geosciences, 72074 Tübingen, Germany.
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK.
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Catherine Willett
- The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD, 20879, USA.
| | - Gerald T Ankley
- US Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA.
| |
Collapse
|
44
|
Ankley GT, Edwards SW. The Adverse Outcome Pathway: A Multifaceted Framework Supporting 21 st Century Toxicology. CURRENT OPINION IN TOXICOLOGY 2018; 9:1-7. [PMID: 29682628 DOI: 10.1016/j.cotox.2018.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The adverse outcome pathway (AOP) framework serves as a knowledge assembly, interpretation, and communication tool designed to support the translation of pathway-specific mechanistic data into responses relevant to assessing and managing risks of chemicals to human health and the environment. As such, AOPs facilitate the use of data streams often not employed by risk assessors, including information from in silico models, in vitro assays and short-term in vivo tests with molecular/biochemical endpoints. This translational capability can increase the capacity and efficiency of safety assessments both for single chemicals and chemical mixtures. Our mini-review describes the conceptual basis of the AOP framework and aspects of its current status relative to use by toxicologists and risk assessors, including four illustrative applications of the framework to diverse assessment scenarios.
Collapse
Affiliation(s)
- Gerald T Ankley
- US Environmental Protection Agency, Office of Research and Development, Mid-Continent Ecology Division, Duluth, MN, USA
| | - Stephen W Edwards
- US Environmental Protection Agency, Office of Research and Development, Integrated Systems Toxicology Division, RTP, NC, USA
| |
Collapse
|
45
|
Furley TH, Brodeur J, Silva de Assis HC, Carriquiriborde P, Chagas KR, Corrales J, Denadai M, Fuchs J, Mascarenhas R, Miglioranza KSB, Miguez Caramés DM, Navas JM, Nugegoda D, Planes E, Rodriguez‐Jorquera IA, Orozco‐Medina M, Boxall ABA, Rudd MA, Brooks BW. Toward sustainable environmental quality: Identifying priority research questions for Latin America. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2018; 14:344-357. [PMID: 29469193 PMCID: PMC5947661 DOI: 10.1002/ieam.2023] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/14/2017] [Accepted: 11/14/2017] [Indexed: 05/19/2023]
Abstract
The Global Horizon Scanning Project (GHSP) is an innovative initiative that aims to identify important global environmental quality research needs. Here we report 20 key research questions from Latin America (LA). Members of the Society of Environmental Toxicology and Chemistry (SETAC) LA and other scientists from LA were asked to submit research questions that would represent priority needs to address in the region. One hundred questions were received, then partitioned among categories, examined, and some rearranged during a workshop in Buenos Aires, Argentina. Twenty priority research questions were subsequently identified. These research questions included developing, improving, and harmonizing across LA countries methods for 1) identifying contaminants and degradation products in complex matrices (including biota); 2) advancing prediction of contaminant risks and effects in ecosystems, addressing lab-to-field extrapolation challenges, and understanding complexities of multiple stressors (including chemicals and climate change); and 3) improving management and regulatory tools toward achieving sustainable development. Whereas environmental contaminants frequently identified in these key questions were pesticides, pharmaceuticals, endocrine disruptors or modulators, plastics, and nanomaterials, commonly identified environmental challenges were related to agriculture, urban effluents, solid wastes, pulp and paper mills, and natural extraction activities. Several interesting research topics included assessing and preventing pollution impacts on conservation protected areas, integrating environment and health assessments, and developing strategies for identification, substitution, and design of less hazardous chemicals (e.g., green chemistry). Finally, a recurrent research need included developing an understanding of differential sensitivity of regional species and ecosystems to environmental contaminants and other stressors. Addressing these critical questions will support development of long-term strategic research efforts to advance more sustainable environmental quality and protect public health and the environment in LA. Integr Environ Assess Manag 2018;14:344-357. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Julie Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN)Instituto Nacional de Tecnología Agropecuaria (INTA)Buenos AiresArgentina
| | | | | | | | - Jone Corrales
- Department of Environmental ScienceBaylor UniversityWacoTexasUSA
| | - Marina Denadai
- Department of ChemistryFederal University of São CarlosSão CarlosBrazil
| | - Julio Fuchs
- IQUIBICEN‐CONICETUniversidad de Buenos AiresBuenos AiresArgentina
| | | | | | - Diana Margarita Miguez Caramés
- Laboratorio Ecotoxicología y Contaminación Ambiental, IIMyC, CONICET‐UNMDPArgentina
- Laboratorio Tecnológico del Uruguay (LATU)MontevideoUruguay
| | | | | | - Estela Planes
- National Institute of Industrial TechnologyChemistry CenterBuenos AiresArgentina
| | | | | | | | - Murray A Rudd
- Department of Environmental SciencesEmory UniversityAtlantaGeorgiaUSA
| | - Bryan W Brooks
- Department of Environmental ScienceBaylor UniversityWacoTexasUSA
| |
Collapse
|
46
|
Neale PA, Altenburger R, Aït-Aïssa S, Brion F, Busch W, de Aragão Umbuzeiro G, Denison MS, Du Pasquier D, Hilscherová K, Hollert H, Morales DA, Novák J, Schlichting R, Seiler TB, Serra H, Shao Y, Tindall AJ, Tollefsen KE, Williams TD, Escher BI. Development of a bioanalytical test battery for water quality monitoring: Fingerprinting identified micropollutants and their contribution to effects in surface water. WATER RESEARCH 2017; 123:734-750. [PMID: 28728110 DOI: 10.1016/j.watres.2017.07.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/04/2017] [Accepted: 07/07/2017] [Indexed: 05/18/2023]
Abstract
Surface waters can contain a diverse range of organic pollutants, including pesticides, pharmaceuticals and industrial compounds. While bioassays have been used for water quality monitoring, there is limited knowledge regarding the effects of individual micropollutants and their relationship to the overall mixture effect in water samples. In this study, a battery of in vitro bioassays based on human and fish cell lines and whole organism assays using bacteria, algae, daphnids and fish embryos was assembled for use in water quality monitoring. The selection of bioassays was guided by the principles of adverse outcome pathways in order to cover relevant steps in toxicity pathways known to be triggered by environmental water samples. The effects of 34 water pollutants, which were selected based on hazard quotients, available environmental quality standards and mode of action information, were fingerprinted in the bioassay test battery. There was a relatively good agreement between the experimental results and available literature effect data. The majority of the chemicals were active in the assays indicative of apical effects, while fewer chemicals had a response in the specific reporter gene assays, but these effects were typically triggered at lower concentrations. The single chemical effect data were used to improve published mixture toxicity modeling of water samples from the Danube River. While there was a slight increase in the fraction of the bioanalytical equivalents explained for the Danube River samples, for some endpoints less than 1% of the observed effect could be explained by the studied chemicals. The new mixture models essentially confirmed previous findings from many studies monitoring water quality using both chemical analysis and bioanalytical tools. In short, our results indicate that many more chemicals contribute to the biological effect than those that are typically quantified by chemical monitoring programs or those regulated by environmental quality standards. This study not only demonstrates the utility of fingerprinting single chemicals for an improved understanding of the biological effect of pollutants, but also highlights the need to apply bioassays for water quality monitoring in order to prevent underestimation of the overall biological effect.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD, 4222, Australia; The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD, 4108, Australia
| | - Rolf Altenburger
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - Wibke Busch
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | | | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, United States
| | - David Du Pasquier
- WatchFrog, Bâtiment Genavenir 3, 1 rue Pierre Fontaine, 91000 Evry, France
| | - Klára Hilscherová
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Daniel A Morales
- School of Technology, University of Campinas, Limeira, SP, 13484-332, Brazil
| | - Jiří Novák
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Rita Schlichting
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Helene Serra
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - Ying Shao
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Andrew J Tindall
- WatchFrog, Bâtiment Genavenir 3, 1 rue Pierre Fontaine, 91000 Evry, France
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research NIVA, Gaustadalléen 21, 0349 Oslo, Norway
| | - Timothy D Williams
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Beate I Escher
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD, 4108, Australia; UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany.
| |
Collapse
|
47
|
Brockmeier EK, Hodges G, Hutchinson TH, Butler E, Hecker M, Tollefsen KE, Garcia-Reyero N, Kille P, Becker D, Chipman K, Colbourne J, Collette TW, Cossins A, Cronin M, Graystock P, Gutsell S, Knapen D, Katsiadaki I, Lange A, Marshall S, Owen SF, Perkins EJ, Plaistow S, Schroeder A, Taylor D, Viant M, Ankley G, Falciani F. The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment. Toxicol Sci 2017; 158:252-262. [PMID: 28525648 PMCID: PMC5837273 DOI: 10.1093/toxsci/kfx097] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In conjunction with the second International Environmental Omics Symposium (iEOS) conference, held at the University of Liverpool (United Kingdom) in September 2014, a workshop was held to bring together experts in toxicology and regulatory science from academia, government and industry. The purpose of the workshop was to review the specific roles that high-content omics datasets (eg, transcriptomics, metabolomics, lipidomics, and proteomics) can hold within the adverse outcome pathway (AOP) framework for supporting ecological and human health risk assessments. In light of the growing number of examples of the application of omics data in the context of ecological risk assessment, we considered how omics datasets might continue to support the AOP framework. In particular, the role of omics in identifying potential AOP molecular initiating events and providing supportive evidence of key events at different levels of biological organization and across taxonomic groups was discussed. Areas with potential for short and medium-term breakthroughs were also discussed, such as providing mechanistic evidence to support chemical read-across, providing weight of evidence information for mode of action assignment, understanding biological networks, and developing robust extrapolations of species-sensitivity. Key challenges that need to be addressed were considered, including the need for a cohesive approach towards experimental design, the lack of a mutually agreed framework to quantitatively link genes and pathways to key events, and the need for better interpretation of chemically induced changes at the molecular level. This article was developed to provide an overview of ecological risk assessment process and a perspective on how high content molecular-level datasets can support the future of assessment procedures through the AOP framework.
Collapse
Affiliation(s)
- Erica K. Brockmeier
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Thomas H. Hutchinson
- School of Biological Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK
| | - Emma Butler
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Markus Hecker
- Toxicology Centre and School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | | | - Natalia Garcia-Reyero
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
- Mississippi State University, Institute for Genomics, Biocomputing and Biotechnology, Starkville, Mississippi
| | - Peter Kille
- Cardiff School of Biosciences, University of Cardiff, Cardiff CF10 3AT, UK
| | - Dörthe Becker
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kevin Chipman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - John Colbourne
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Timothy W. Collette
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605-2700
| | - Andrew Cossins
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Peter Graystock
- Department of Entomology, University of California, Riverside, California 92521
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Dries Knapen
- Zebrafishlab, University of Antwerp, Universiteitsplein 1, Belgium
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Anke Lange
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Stuart Marshall
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Stewart F. Owen
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TF, UK
| | - Edward J. Perkins
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Stewart Plaistow
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Anthony Schroeder
- Water Resources Center (Office: Mid-Continent Ecology Division), University of Minnesota, Minnesota 55108
| | - Daisy Taylor
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Mark Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gerald Ankley
- U.S. Environmental Protection Agency, Duluth, Minnesota 55804
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
48
|
Perkins EJ, Habib T, Escalon BL, Cavallin JE, Thomas L, Weberg M, Hughes MN, Jensen KM, Kahl MD, Villeneuve DL, Ankley GT, Garcia-Reyero N. Prioritization of Contaminants of Emerging Concern in Wastewater Treatment Plant Discharges Using Chemical:Gene Interactions in Caged Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51. [PMID: 28651047 PMCID: PMC6126926 DOI: 10.1021/acs.est.7b01567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two different wastewater treatment plant discharge sites in the Saint Louis Bay, Duluth, MN and one upstream reference site. The biological impact of 51 chemicals detected in the surface water of 133 targeted chemicals was determined using biochemical endpoints, exposure activity ratios for biological and estrogenic responses, known chemical:gene interactions from biological pathways and knowledge bases, and analysis of the covariance of ovary gene expression with surface water chemistry. Thirty-two chemicals were significantly linked by covariance with expressed genes. No estrogenic impact on biochemical endpoints was observed in male or female minnows. However, bisphenol A (BPA) was identified by chemical:gene covariation as the most impactful estrogenic chemical across all exposure sites. This was consistent with identification of estrogenic effects on gene expression, high BPA exposure activity ratios across all test sites, and historical analysis of the study area. Gene expression analysis also indicated the presence of nontargeted chemicals including chemotherapeutics consistent with a local hospital waste stream. Overall impacts on gene expression appeared to be related to changes in treatment plant function during rain events. This approach appears useful in examining the impacts of complex mixtures on fish and offers a potential route in linking chemical exposure to adverse outcomes that may reduce population sustainability.
Collapse
Affiliation(s)
- Edward J. Perkins
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, USA
- Corresponding author: ; ERDC, 3909 Halls Ferry Rd,Vicksburg, MS 39180; phone: +1-601-634-2872
| | - Tanwir Habib
- Badger Technical Services, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - Barbara L. Escalon
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - Jenna E. Cavallin
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Linnea Thomas
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Matthew Weberg
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Megan N. Hughes
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Kathleen M. Jensen
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Michael D. Kahl
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Daniel L. Villeneuve
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Gerald T. Ankley
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Natàlia Garcia-Reyero
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, USA
| |
Collapse
|
49
|
Blackwell BR, Ankley GT, Corsi SR, DeCicco LA, Houck K, Judson R, Li S, Martin M, Murphy E, Schroeder AL, Smith ET, Swintek J, Villeneuve DL. An "EAR" on Environmental Surveillance and Monitoring: A Case Study on the Use of Exposure-Activity Ratios (EARs) to Prioritize Sites, Chemicals, and Bioactivities of Concern in Great Lakes Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8713-8724. [PMID: 28671818 PMCID: PMC6132252 DOI: 10.1021/acs.est.7b01613] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Current environmental monitoring approaches focus primarily on chemical occurrence. However, based on concentration alone, it can be difficult to identify which compounds may be of toxicological concern and should be prioritized for further monitoring, in-depth testing, or management. This can be problematic because toxicological characterization is lacking for many emerging contaminants. New sources of high-throughput screening (HTS) data, such as the ToxCast database, which contains information for over 9000 compounds screened through up to 1100 bioassays, are now available. Integrated analysis of chemical occurrence data with HTS data offers new opportunities to prioritize chemicals, sites, or biological effects for further investigation based on concentrations detected in the environment linked to relative potencies in pathway-based bioassays. As a case study, chemical occurrence data from a 2012 study in the Great Lakes Basin along with the ToxCast effects database were used to calculate exposure-activity ratios (EARs) as a prioritization tool. Technical considerations of data processing and use of the ToxCast database are presented and discussed. EAR prioritization identified multiple sites, biological pathways, and chemicals that warrant further investigation. Prioritized bioactivities from the EAR analysis were linked to discrete adverse outcome pathways to identify potential adverse outcomes and biomarkers for use in subsequent monitoring efforts.
Collapse
Affiliation(s)
- Brett R. Blackwell
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, USA 55804
- Corresponding author: 6201 Congdon Blvd, Duluth, MN 55804; ; T: (218) 529-5078; Fax: (218) 529-5003
| | - Gerald T. Ankley
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, USA 55804
| | - Steve R. Corsi
- US Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI, USA 53562
| | - Laura A. DeCicco
- US Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI, USA 53562
| | - Keith Houck
- US EPA, National Center for Computational Toxicology, 109 T.W. Alexander Dr, Research Triangle Park, NC, USA 27711
| | - Richard Judson
- US EPA, National Center for Computational Toxicology, 109 T.W. Alexander Dr, Research Triangle Park, NC, USA 27711
| | - Shibin Li
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, USA 55804
- National Research Council, US EPA, 6201 Congdon Blvd, Duluth, MN, USA 55804
| | - Matt Martin
- US EPA, National Center for Computational Toxicology, 109 T.W. Alexander Dr, Research Triangle Park, NC, USA 27711
| | - Elizabeth Murphy
- US EPA, Great Lakes National Program Office, 77 West Jackson Blvd, Chicago, IL, USA 60604
| | - Anthony L. Schroeder
- University of Minnesota Crookston, Math, Science, and Technology Department, 2900 University Ave, Crookston, MN, USA 56716
| | - Edwin T. Smith
- US EPA, Great Lakes National Program Office, 77 West Jackson Blvd, Chicago, IL, USA 60604
| | - Joe Swintek
- Badger Technical Services, 6201 Congdon Blvd, Duluth, MN, USA 55804
| | - Daniel L. Villeneuve
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, USA 55804
| |
Collapse
|
50
|
Johnson AC, Chen Y. Does exposure to domestic wastewater effluent (including steroid estrogens) harm fish populations in the UK? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 589:89-96. [PMID: 28273597 DOI: 10.1016/j.scitotenv.2017.02.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Historic fisheries data collected from locations across the UK over several years were compared with predicted estrogen exposure derived from the resident human population. This estrogen exposure could be viewed as a proxy for general sewage (wastewater) exposure. With the assistance of the Environment Agency in the UK, fisheries abundance data for Rutilis rutilis (roach), Alburnus alburnus (bleak), Leuciscus leuciscus (dace) and Perca fluviatilis (perch) from 38 separate sites collected over 7 to 17year periods were retrieved. From these data the average density (fish/m2/year) were compared against average and peak predicted estrogen (wastewater) exposure for these sites. Estrogen concentrations were predicted using the LF2000-WQX model. No correlation between estrogen/wastewater exposure and fish density could be found for any of the species. Year on year temporal changes in roach population abundance at 3 sites on the middle River Thames and 4 sites on the Great Ouse were compared against estrogen exposure over the preceding year. In this case the estrogen prediction was calculated based on the upstream human population providing the estrogen load and the daily flow value allowing concentration to be estimated over time. At none of the sites on these rivers were temporal declines in abundance associated with preceding estrogen (effluent) exposure. The results indicate that, over the past decade, wastewater and estrogen exposure has not led to a catastrophic decline in these four species of cyprinid fish.
Collapse
Affiliation(s)
- Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK.
| | - Yihong Chen
- Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|