1
|
Nitschke S, Montalbano AP, Whiting ME, Smith BH, Mukherjee-Roy N, Marchioni CR, Sullivan MA, Zhao X, Wang P, Mount H, Verma M, Minassian BA, Nitschke F. Glycogen synthase GYS1 overactivation contributes to glycogen insolubility and malto-oligoglucan-associated neurodegenerative disease. EMBO J 2025:10.1038/s44318-024-00339-3. [PMID: 39806098 DOI: 10.1038/s44318-024-00339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Polyglucosans are glycogen molecules with overlong chains, which are hyperphosphorylated in the neurodegenerative Lafora disease (LD). Brain polyglucosan bodies (PBs) cause fatal neurodegenerative diseases including Lafora disease and adult polyglucosan body disease (ABPD), for which treatments, biomarkers, and good understanding of their pathogenesis are currently missing. Mutations in the genes for the phosphatase laforin or the E3 ubiquitin ligase malin can cause LD. By depleting PTG, an activator of the glycogen chain-elongating enzyme glycogen synthase (GYS1), in laforin- and malin-deficient LD mice, we show that abnormal glycogen chain lengths and not hyperphosphorylation underlie polyglucosan formation, and that polyglucosan bodies induce neuroinflammation. We provide evidence indicating that a small pool of overactive GYS1 contributes to glycogen insolubility in LD and APBD. In contrast to previous findings, metabolomics experiments using in situ-fixed brains reveal only modest metabolic changes in laforin-deficient mice. These changes are not replicated in malin-deficient or APBD mice, and are not normalized in rescued LD mice. Finally, we identify a pool of metabolically volatile malto-oligoglucans as a polyglucosan body- and neuroinflammation-associated brain energy source, and promising candidate biomarkers for LD and APBD, including malto-oligoglucans and the neurodegeneration marker CHI3L1/YKL40.
Collapse
Affiliation(s)
- Silvia Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alina P Montalbano
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Megan E Whiting
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Brandon H Smith
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Neije Mukherjee-Roy
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charlotte R Marchioni
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Biochemistry and Molecular Genetics Department, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mitchell A Sullivan
- Glycation and Diabetes Complications, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Howard Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Psychiatry and Physiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Sakamoto I, Shibuya S, Nojiri H, Takeno K, Nishimune H, Yaku K, Nakagawa T, Ishijima M, Shimizu T. Mitochondrial Redox Status Regulates Glycogen Metabolism via Glycogen Phosphorylase Activity. Antioxidants (Basel) 2024; 13:1421. [PMID: 39594562 PMCID: PMC11590902 DOI: 10.3390/antiox13111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Mitochondria and glycogen are co-distributed in skeletal muscles to regulate the metabolic status. Mitochondria are also redox centers that regulate the muscle function during exercise. However, the pathophysiological relationship between the mitochondrial redox status and glycogen metabolism in the muscle remains unclear. In the present study, we examined the pathological effects of mitochondrial dysfunction induced by mitochondrial superoxide dismutase (SOD2) depletion on glycogen metabolism. We found that muscle glycogen was significantly accumulated in association with motor dysfunction in mice with a muscle-specific SOD2 deficiency. Muscle glycogen phosphorylase (GP-M) activity, which is a key enzyme for glycogen degradation at times when energy is needed (e.g., during exercise), was significantly decreased in the mutant muscle. Moreover, the GP-M activity on normal muscle sections decreased after treatment with paraquat, a superoxide generator. In contrast, treatment with antioxidants reversed the GP-M activity and motor disturbance of the mutant mice, indicating that GP-M activity was reversibly regulated by the redox balance. These results demonstrate that the maintenance of the mitochondrial redox balance regulates glycogen metabolism via GP-M activity.
Collapse
Affiliation(s)
- Ikko Sakamoto
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-0034, Japan; (I.S.); (H.N.); (M.I.)
| | - Shuichi Shibuya
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan;
- Department of Regenerative Medicine, Faculty of Pharmacy, Sanyo-Onoda City University, Yamaguchi 756-0884, Japan
| | - Hidetoshi Nojiri
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-0034, Japan; (I.S.); (H.N.); (M.I.)
| | - Kotaro Takeno
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; (K.T.); (H.N.)
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; (K.T.); (H.N.)
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan; (K.Y.); (T.N.)
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan; (K.Y.); (T.N.)
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-0034, Japan; (I.S.); (H.N.); (M.I.)
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan;
- Department of Food and Reproductive Function Advanced Research, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
3
|
Murphy RD, Troublefield CA, Miracle JS, Young LE, Tripathi A, Brizzee CO, Dhara A, Patwardhan A, Sun RC, Kooi CWV, Gentry MS, Sinai AP. TgLaforin, a glucan phosphatase, reveals the dynamic role of storage polysaccharides in Toxoplasma gondii tachyzoites and bradyzoites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560185. [PMID: 37808860 PMCID: PMC10557770 DOI: 10.1101/2023.09.29.560185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The asexual stages of Toxoplasma gondii are defined by the rapidly growing tachyzoite during the acute infection and by the slow growing bradyzoite housed within tissue cysts during the chronic infection. These stages represent unique physiological states, each with distinct glucans reflecting differing metabolic needs. A defining feature of T. gondii bradyzoites is the presence of insoluble storage glucans known as amylopectin granules (AGs), the function of which remains largely unexplored during the chronic infection. The presence of storage glucans has more recently been established in tachyzoites, a finding corroborated by specific labeling with the anti-glycogen antibody IV58B6. The T. gondii genome encodes activities needed for glucan turnover inlcuding: a glucan phosphatase (TgLaforin; TGME49_205290) and a glucan kinase (TgGWD; TGME49_214260) that catalyze a cycle of reversible glucan phosphorylation required for glucan degradation by amylases. Disruption of TgLaforin in tachyzoites had no impact on growth under nutrient-replete conditions. Growth of TgLaforin-KO tachyzoites was however severely stunted when starved of glutamine despite being glucose replete. Loss of TgLaforin attenuated acute virulence in mice and was accompanied by a lower tissue cyst burden, without a direct impact on tissue cyst size. Quantification of relative AG levels using AmyloQuant, an imaging based application, revealed the starch-excess phenotype associated with the loss of TgLaforin is heterogeneous and linked to an emerging AG cycle in bradyzoites. Excessive AG accumulation TgLaforin-KO bradyzoites promoted intra-cyst bradyzoite death implicating reversible glucan phosphorylation as a legitimate target for the development of new drugs against chronic T. gondii infections.
Collapse
Affiliation(s)
- Robert D. Murphy
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Cortni A. Troublefield
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Joy S. Miracle
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Aashutosh Tripathi
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Corey O. Brizzee
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Animesh Dhara
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Abhijit Patwardhan
- F. Joseph Halcomb III, MD. Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington KY 40506, USA
| | - Ramon C. Sun
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anthony P. Sinai
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Shichkova P, Coggan JS, Markram H, Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024; 13:1714. [PMID: 39451233 PMCID: PMC11506225 DOI: 10.3390/cells13201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The regulation of energy in the brain has garnered substantial attention in recent years due to its significant implications in various disorders and aging. The brain's energy metabolism is a dynamic and tightly regulated network that balances energy demand and supply by engaging complementary molecular pathways. The crosstalk among these pathways enables the system to switch its preferred fuel source based on substrate availability, activity levels, and cell state-related factors such as redox balance. Brain energy production relies on multi-cellular cooperation and is continuously supplied by fuel from the blood due to limited internal energy stores. Astrocytes, which interface with neurons and blood vessels, play a crucial role in coordinating the brain's metabolic activity, and their dysfunction can have detrimental effects on brain health. This review characterizes the major energy substrates (glucose, lactate, glycogen, ketones and lipids) in astrocyte metabolism and their role in brain health, focusing on recent developments in the field.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| |
Collapse
|
5
|
Santucci L, Bernardi S, Vivarelli R, Santorelli FM, Marchese M. Glucose metabolism impairment as a hallmark of progressive myoclonus epilepsies: a focus on neuronal ceroid lipofuscinoses. Front Cell Neurosci 2024; 18:1445003. [PMID: 39364042 PMCID: PMC11447523 DOI: 10.3389/fncel.2024.1445003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024] Open
Abstract
Glucose is the brain's main fuel source, used in both energy and molecular production. Impaired glucose metabolism is associated with adult and pediatric neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), GLUT1 deficiency syndrome, and progressive myoclonus epilepsies (PMEs). PMEs, a group of neurological disorders typical of childhood and adolescence, account for 1% of all epileptic diseases in this population worldwide. Diffuse glucose hypometabolism is observed in the brains of patients affected by PMEs such as Lafora disease (LD), dentatorubral-pallidoluysian (DRPLA) atrophy, Unverricht-Lundborg disease (ULD), and myoclonus epilepsy with ragged red fibers (MERRFs). PMEs also include neuronal ceroid lipofuscinoses (NCLs), a subgroup in which lysosomal and autophagy dysfunction leads to progressive loss of vision, brain atrophy, and cognitive decline. We examine the role of impaired glucose metabolism in neurodegenerative diseases, particularly in the NCLs. Our literature review, which includes findings from case reports and animal studies, reveals that glucose hypometabolism is still poorly characterized both in vitro and in vivo in the different NCLs. Better identification of the glucose metabolism pathway impaired in the NCLs may open new avenues for evaluating the therapeutic potential of anti-diabetic agents in this population and thus raise the prospect of a therapeutic approach able to delay or even halt disease progression.
Collapse
Affiliation(s)
- Lorenzo Santucci
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | - Sara Bernardi
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Rachele Vivarelli
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | | | - Maria Marchese
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| |
Collapse
|
6
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Colpaert M, Singh PK, Donohue KJ, Pires NT, Fuller DD, Corti M, Byrne BJ, Sun RC, Vander Kooi CW, Gentry MS. Neurological glycogen storage diseases and emerging therapeutics. Neurotherapeutics 2024; 21:e00446. [PMID: 39277505 PMCID: PMC11581880 DOI: 10.1016/j.neurot.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.
Collapse
Affiliation(s)
- Matthieu Colpaert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - David D Fuller
- Department of Physical Therapy and Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
York EM, Miller A, Stopka SA, Martínez-François JR, Hossain MA, Baquer G, Regan MS, Agar NYR, Yellen G. The dentate gyrus differentially metabolizes glucose and alternative fuels during rest and stimulation. J Neurochem 2024; 168:533-554. [PMID: 37929637 PMCID: PMC11070451 DOI: 10.1111/jnc.16004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
The metabolic demands of neuronal activity are both temporally and spatially dynamic, and neurons are particularly sensitive to disruptions in fuel and oxygen supply. Glucose is considered an obligate fuel for supporting brain metabolism. Although alternative fuels are often available, the extent of their contribution to central carbon metabolism remains debated. Differential fuel metabolism likely depends on cell type, location, and activity state, complicating its study. While biosensors provide excellent spatial and temporal information, they are limited to observations of only a few metabolites. On the other hand, mass spectrometry is rich in chemical information, but traditionally relies on cell culture or homogenized tissue samples. Here, we use mass spectrometry imaging (MALDI-MSI) to focus on the fuel metabolism of the dentate granule cell (DGC) layer in murine hippocampal slices. Using stable isotopes, we explore labeling dynamics at baseline, as well as in response to brief stimulation or fuel competition. We find that at rest, glucose is the predominant fuel metabolized through glycolysis, with little to no measurable contribution from glycerol or fructose. However, lactate/pyruvate, β-hydroxybutyrate (βHB), octanoate, and glutamine can contribute to TCA metabolism to varying degrees. In response to brief depolarization with 50 mM KCl, glucose metabolism was preferentially increased relative to the metabolism of alternative fuels. With an increased supply of alternative fuels, both lactate/pyruvate and βHB can outcompete glucose for TCA cycle entry. While lactate/pyruvate modestly reduced glucose contribution to glycolysis, βHB caused little change in glycolysis. This approach achieves broad metabolite coverage from a spatially defined region of physiological tissue, in which metabolic states are rapidly preserved following experimental manipulation. Using this powerful methodology, we investigated metabolism within the dentate gyrus not only at rest, but also in response to the energetic demand of activation, and in states of fuel competition.
Collapse
Affiliation(s)
- Elisa M. York
- Department of Neurobiology, Harvard Medical School,
Boston, MA 02115 USA
| | - Anne Miller
- Department of Neurobiology, Harvard Medical School,
Boston, MA 02115 USA
| | - Sylwia A. Stopka
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | | | - Md Amin Hossain
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Gerard Baquer
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Michael S. Regan
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Nathalie Y. R. Agar
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School,
Boston, MA 02115 USA
| |
Collapse
|
9
|
Dienel GA, Schousboe A, McKenna MC, Rothman DL. A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies. J Neurochem 2024; 168:461-495. [PMID: 36928655 DOI: 10.1111/jnc.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Leif Hertz, M.D., D.Sc. (honōris causā) (1930-2018), was one of the original and noteworthy participants in the International Conference on Brain Energy Metabolism (ICBEM) series since its inception in 1993. The biennial ICBEM conferences are organized by neuroscientists interested in energetics and metabolism underlying neural functions; they have had a high impact on conceptual and experimental advances in these fields and on promoting collaborative interactions among neuroscientists. Leif made major contributions to ICBEM discussions and understanding of metabolic and signaling characteristics of astrocytes and their roles in brain function. His studies ranged from uptake of K+ from extracellular fluid and its stimulation of astrocytic respiration, identification, and regulation of enzymes specifically or preferentially expressed in astrocytes in the glutamate-glutamine cycle of excitatory neurotransmission, a requirement for astrocytic glycogenolysis for fueling K+ uptake, involvement of glycogen in memory consolidation in the chick, and pharmacology of astrocytes. This tribute to Leif Hertz highlights his major discoveries, the high impact of his work on astrocyte-neuron interactions, and his unparalleled influence on understanding the cellular basis of brain energy metabolism. His work over six decades has helped integrate the roles of astrocytes into neurotransmission where oxidative and glycogenolytic metabolism during neurotransmitter glutamate turnover are key aspects of astrocytic energetics. Leif recognized that brain astrocytic metabolism is greatly underestimated unless the volume fraction of astrocytes is taken into account. Adjustment for pathway rates expressed per gram tissue for volume fraction indicates that astrocytes have much higher oxidative rates than neurons and astrocytic glycogen concentrations and glycogenolytic rates during sensory stimulation in vivo are similar to those in resting and exercising muscle, respectively. These novel insights are typical of Leif's astute contributions to the energy metabolism field, and his publications have identified unresolved topics that provide the neuroscience community with challenges and opportunities for future research.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Douglas L Rothman
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
10
|
Markussen KH, Corti M, Byrne BJ, Kooi CWV, Sun RC, Gentry MS. The multifaceted roles of the brain glycogen. J Neurochem 2024; 168:728-743. [PMID: 37554056 PMCID: PMC10901277 DOI: 10.1111/jnc.15926] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Glycogen is a biologically essential macromolecule that is directly involved in multiple human diseases. While its primary role in carbohydrate storage and energy metabolism in the liver and muscle is well characterized, recent research has highlighted critical metabolic and non-metabolic roles for glycogen in the brain. In this review, the emerging roles of glycogen homeostasis in the healthy and diseased brain are discussed with a focus on advancing our understanding of the role of glycogen in the brain. Innovative technologies that have led to novel insights into glycogen functions are detailed. Key insights into how cellular localization impacts neuronal and glial function are discussed. Perturbed glycogen functions are observed in multiple disorders of the brain, including where it serves as a disease driver in the emerging category of neurological glycogen storage diseases (n-GSDs). n-GSDs include Lafora disease (LD), adult polyglucosan body disease (APBD), Cori disease, Glucose transporter type 1 deficiency syndrome (G1D), GSD0b, and late-onset Pompe disease (PD). They are neurogenetic disorders characterized by aberrant glycogen which results in devastating neurological and systemic symptoms. In the most severe cases, rapid neurodegeneration coupled with dementia results in death soon after diagnosis. Finally, we discuss current treatment strategies that are currently being developed and have the potential to be of great benefit to patients with n-GSD. Taken together, novel technologies and biological insights have resulted in a renaissance in brain glycogen that dramatically advanced our understanding of both biology and disease. Future studies are needed to expand our understanding and the multifaceted roles of glycogen and effectively apply these insights to human disease.
Collapse
Affiliation(s)
- Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, USA
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, USA
| | - Craig W. Vander Kooi
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| | - Ramon C. Sun
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| | - Matthew S. Gentry
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| |
Collapse
|
11
|
Brewer MK, Torres P, Ayala V, Portero-Otin M, Pamplona R, Andrés-Benito P, Ferrer I, Guinovart JJ, Duran J. Glycogen accumulation modulates life span in a mouse model of amyotrophic lateral sclerosis. J Neurochem 2024; 168:744-759. [PMID: 37401737 PMCID: PMC10764643 DOI: 10.1111/jnc.15906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord. Glial cells, including astrocytes and microglia, have been shown to contribute to neurodegeneration in ALS, and metabolic dysfunction plays an important role in the progression of the disease. Glycogen is a soluble polymer of glucose found at low levels in the central nervous system that plays an important role in memory formation, synaptic plasticity, and the prevention of seizures. However, its accumulation in astrocytes and/or neurons is associated with pathological conditions and aging. Importantly, glycogen accumulation has been reported in the spinal cord of human ALS patients and mouse models. In the present work, using the SOD1G93A mouse model of ALS, we show that glycogen accumulates in the spinal cord and brainstem during symptomatic and end stages of the disease and that the accumulated glycogen is associated with reactive astrocytes. To study the contribution of glycogen to ALS progression, we generated SOD1G93A mice with reduced glycogen synthesis (SOD1G93A GShet mice). SOD1G93A GShet mice had a significantly longer life span than SOD1G93A mice and showed lower levels of the astrocytic pro-inflammatory cytokine Cxcl10, suggesting that the accumulation of glycogen is associated with an inflammatory response. Supporting this, inducing an increase in glycogen synthesis reduced life span in SOD1G93A mice. Altogether, these results suggest that glycogen in reactive astrocytes contributes to neurotoxicity and disease progression in ALS.
Collapse
Affiliation(s)
- M. Kathryn Brewer
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pascual Torres
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRB Lleida, Lleida, Spain
| | - Victòria Ayala
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRB Lleida, Lleida, Spain
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRB Lleida, Lleida, Spain
| | - Reinald Pamplona
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRB Lleida, Lleida, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Hospitalet de Llobregat, Spain
| | - Joan J. Guinovart
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
12
|
Hirayama Y, Le HPN, Hashimoto H, Ishii I, Koizumi S, Anzai N. Preconditioning-Induced Facilitation of Lactate Release from Astrocytes Is Essential for Brain Ischemic Tolerance. eNeuro 2024; 11:ENEURO.0494-23.2024. [PMID: 38604775 PMCID: PMC11064122 DOI: 10.1523/eneuro.0494-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
A sublethal ischemic episode [termed preconditioning (PC)] protects neurons in the brain against a subsequent severe ischemic injury. This phenomenon is known as brain ischemic tolerance and has received much attention from researchers because of its robust neuroprotective effects. We have previously reported that PC activates astrocytes and subsequently upregulates P2X7 receptors, thereby leading to ischemic tolerance. However, the downstream signals of P2X7 receptors that are responsible for PC-induced ischemic tolerance remain unknown. Here, we show that PC-induced P2X7 receptor-mediated lactate release from astrocytes has an indispensable role in this event. Using a transient focal cerebral ischemia model caused by middle cerebral artery occlusion, extracellular lactate levels during severe ischemia were significantly increased in mice who experienced PC; this increase was dependent on P2X7 receptors. In addition, the intracerebroventricular injection of lactate protected against cerebral ischemic injury. In in vitro experiments, although stimulation of astrocytes with the P2X7 receptor agonist BzATP had no effect on the protein levels of monocarboxylate transporter (MCT) 1 and MCT4 (which are responsible for lactate release from astrocytes), BzATP induced the plasma membrane translocation of these MCTs via their chaperone CD147. Importantly, CD147 was increased in activated astrocytes after PC, and CD147-blocking antibody abolished the PC-induced facilitation of astrocytic lactate release and ischemic tolerance. Taken together, our findings suggest that astrocytes induce ischemic tolerance via P2X7 receptor-mediated lactate release.
Collapse
Affiliation(s)
- Yuri Hirayama
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Ha Pham Ngoc Le
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hirofumi Hashimoto
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Itsuko Ishii
- Division of Pharmacy, Chiba University Hospital, Chiba 260-8677, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
13
|
Bar S, Wilson KA, Hilsabeck TA, Alderfer S, Dammer EB, Burton JB, Shah S, Holtz A, Carrera EM, Beck JN, Chen JH, Kauwe G, Tracy TE, Seyfried NT, Schilling B, Ellerby LM, Kapahi P. Neuronal Glycogen Breakdown Mitigates Tauopathy via Pentose Phosphate Pathway-Mediated Oxidative Stress Reduction. RESEARCH SQUARE 2023:rs.3.rs-3526342. [PMID: 37986935 PMCID: PMC10659530 DOI: 10.21203/rs.3.rs-3526342/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Tauopathies encompass a range of neurodegenerative disorders, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). Unfortunately, current treatment approaches for tauopathies have yielded limited success, underscoring the pressing need for novel therapeutic strategies. We observed distinct signatures of impaired glycogen metabolism in the Drosophila brain of the tauopathy model and the brain of AD patients, indicating a link between tauopathies and glycogen metabolism. We demonstrate that the breakdown of neuronal glycogen by activating glycogen phosphorylase (GlyP) ameliorates the tauopathy phenotypes in flies and induced pluripotent stem cell (iPSC) derived neurons from FTD patients. We observed that glycogen breakdown redirects the glucose flux to the pentose phosphate pathway to alleviate oxidative stress. Our findings uncover a critical role for increased GlyP activity in mediating the neuroprotection benefit of dietary restriction (DR) through the cAMP-mediated protein kinase A (PKA) activation. Our studies identify impaired glycogen metabolism as a key hallmark for tauopathies and offer a promising therapeutic target in tauopathy treatment.
Collapse
Affiliation(s)
- Sudipta Bar
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | | | | | | | - Eric B. Dammer
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory University, School of Medicine Core Labs, Atlanta, GA 30322, USA
| | | | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Anja Holtz
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | | | | | - Jackson H Chen
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Tara E. Tracy
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| |
Collapse
|
14
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Chen S, Bouchibti Y, Xie Y, Chen Y, Chang V, Lebrilla CB. Analysis of Cell Glycogen with Quantitation and Determination of Branching Using Liquid Chromatography-Mass Spectrometry. Anal Chem 2023; 95:12884-12892. [PMID: 37584460 PMCID: PMC11672122 DOI: 10.1021/acs.analchem.3c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Glycogen is a highly branched biomacromolecule that functions as a glucose buffer. It is involved in multiple diseases such as glycogen storage disorders, diabetes, and even liver cancer, where the imbalance between biosynthetic and catabolic enzymes results in structural alterations and abnormal accumulation of glycogen that can be toxic to cells. Accurate and sensitive glycogen quantification and structural determination are prerequisites for understanding the phenotypes and biological functions of glycogen under these conditions. In this research, we furthered cell glycogen characterization by presenting a highly sensitive method to measure the glycogen content and degree of branching. The method employed a novel fructose density gradient as an alternative to the traditional sucrose gradient to fractionate glycogen from cell mixtures using ultracentrifugation. Fructose was used to avoid the large glucose background, allowing the method to be highly quantitative. The glycogen content was determined by quantifying 1-phenyl-3-methyl-5-pyrazolone (PMP)-derivatized glucose residues obtained from acid-hydrolyzed glycogen using ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry (UHPLC/QqQ-MS). The degree of branching was determined through linkage analysis where the glycogen underwent permethylation, hydrolysis, PMP derivatization, and UHPLC/QqQ-MS analysis. The new approach was used to study the effect of insulin on the glycogen phenotypes of human hepatocellular carcinoma (Hep G2) cells. We observed that cells produced greater amounts of glycogen with less branching under increasing insulin levels before reaching the cell's insulin-resistant state, where the trend reversed and the cells produced less but higher-branched glycogen. The advantage of this method lies in its high sensitivity in characterizing both the glycogen level and the structure of biological samples.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yasmine Bouchibti
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ye Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Vincent Chang
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, California 95616, United States
- Department of Biochemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
16
|
Cullen PF, Sun D. Astrocytes of the eye and optic nerve: heterogeneous populations with unique functions mediate axonal resilience and vulnerability to glaucoma. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1217137. [PMID: 37829657 PMCID: PMC10569075 DOI: 10.3389/fopht.2023.1217137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The role of glia, particularly astrocytes, in mediating the central nervous system's response to injury and neurodegenerative disease is an increasingly well studied topic. These cells perform myriad support functions under physiological conditions but undergo behavioral changes - collectively referred to as 'reactivity' - in response to the disruption of neuronal homeostasis from insults, including glaucoma. However, much remains unknown about how reactivity alters disease progression - both beneficially and detrimentally - and whether these changes can be therapeutically modulated to improve outcomes. Historically, the heterogeneity of astrocyte behavior has been insufficiently addressed under both physiological and pathological conditions, resulting in a fragmented and often contradictory understanding of their contributions to health and disease. Thanks to increased focus in recent years, we now know this heterogeneity encompasses both intrinsic variation in physiological function and insult-specific changes that vary between pathologies. Although previous studies demonstrate astrocytic alterations in glaucoma, both in human disease and animal models, generally these findings do not conclusively link astrocytes to causative roles in neuroprotection or degeneration, rather than a subsequent response. Efforts to bolster our understanding by drawing on knowledge of brain astrocytes has been constrained by the primacy in the literature of findings from peri-synaptic 'gray matter' astrocytes, whereas much early degeneration in glaucoma occurs in axonal regions populated by fibrous 'white matter' astrocytes. However, by focusing on findings from astrocytes of the anterior visual pathway - those of the retina, unmyelinated optic nerve head, and myelinated optic nerve regions - we aim to highlight aspects of their behavior that may contribute to axonal vulnerability and glaucoma progression, including roles in mitochondrial turnover and energy provisioning. Furthermore, we posit that astrocytes of the retina, optic nerve head and myelinated optic nerve, although sharing developmental origins and linked by a network of gap junctions, may be best understood as distinct populations residing in markedly different niches with accompanying functional specializations. A closer investigation of their behavioral repertoires may elucidate not only their role in glaucoma, but also mechanisms to induce protective behaviors that can impede the progressive axonal damage and retinal ganglion cell death that drive vision loss in this devastating condition.
Collapse
Affiliation(s)
- Paul F. Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Sun H, Lin W, Tang Y, Tu H, Chen T, Zhou J, Wang D, Xu Q, Niu J, Dong W, Liu S, Ni X, Yang W, Zhao Y, Ying L, Zhang J, Li X, Mohammadi M, Shen WL, Huang Z. Sustained remission of type 2 diabetes in rodents by centrally administered fibroblast growth factor 4. Cell Metab 2023:S1550-4131(23)00172-9. [PMID: 37167965 DOI: 10.1016/j.cmet.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 09/30/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Type 2 diabetes (T2D) is a major health and economic burden worldwide. Despite the availability of multiple drugs for short-term management, sustained remission of T2D is currently not achievable pharmacologically. Intracerebroventricular administration of fibroblast growth factor 1 (icvFGF1) induces sustained remission in T2D rodents, propelling intense research efforts to understand its mechanism of action. Whether other FGFs possess similar therapeutic benefits is currently unknown. Here, we show that icvFGF4 also elicits a sustained antidiabetic effect in both male db/db mice and diet-induced obese mice by activating FGF receptor 1 (FGFR1) expressed in glucose-sensing neurons within the mediobasal hypothalamus. Specifically, FGF4 excites glucose-excited (GE) neurons while inhibiting glucose-inhibited (GI) neurons. Moreover, icvFGF4 restores the percentage of GI neurons in db/db mice. Importantly, intranasal delivery of FGF4 alleviates hyperglycemia in db/db mice, paving the way for non-invasive therapy. We conclude that icvFGF4 holds significant therapeutic potential for achieving sustained remission of T2D.
Collapse
Affiliation(s)
- Hongbin Sun
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Wei Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Tang
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Department of Physiology, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Hongqing Tu
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Ting Chen
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Jie Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dezhong Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingqing Xu
- Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China
| | - Jianlou Niu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenliya Dong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sidan Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinyan Ni
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Wen Yang
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Yingzheng Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lei Ying
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jie Zhang
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Department of Physiology, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Moosa Mohammadi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei L Shen
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China.
| | - Zhifeng Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
18
|
Fessel J. Cure of Alzheimer's Dementia in Many Patients by Using Intranasal Insulin to Augment an Inadequate Counter-Reaction, Edaravone to Scavenge ROS, and 1 or 2 Other Drugs to Address Affected Brain Cells. J Clin Med 2023; 12:jcm12093151. [PMID: 37176592 PMCID: PMC10178959 DOI: 10.3390/jcm12093151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The goal of treatment for Alzheimer's dementia (AD) is the restoration of normal cognition. No drug regimen has ever achieved this. This article suggests that curing AD may be achieved by combination therapy as follows. First, with intranasal insulin to augment the body's natural counter-reaction to the changes in brain cell-types that produced the dementia. Second, with edaravone to decrease free radicals, which are increased and causal in AD. Third, as described elsewhere, with one or two drugs from among pioglitazone, fluoxetine, and lithium, which address the brain cell-types whose changed functions cause the dementia. Insulin restores cerebral glucose, which is the main nutrient for brain neurons whose depletion is responsible for the dementia; and edaravone decreases ROS, which are intrinsic causes of neuropathology in AD. This combination of drugs is a potential cure for many patients with AD, and should be tested in a clinical trial.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California San Francisco, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
19
|
Stulczewski D, Zgorzynska E, Dziedzic B, Wieczorek-Szukala K, Szafraniec K, Walczewska A. EPA stronger than DHA increases the mitochondrial membrane potential and cardiolipin levels but does not change the ATP level in astrocytes. Exp Cell Res 2023; 424:113491. [PMID: 36708860 DOI: 10.1016/j.yexcr.2023.113491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/22/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Astrocytes are highly energy-consuming glial cells critical for metabolic support to neurons. A growing body of evidence suggests that mitochondrial dysfunction in astrocytes is involved in age-related neurodegenerative disorders and that fish oil, rich in docosahexaenoic (DHA) and eicosapentaenoic (EPA) fatty acids, may alleviate cognition impairment in Parkinson's and Alzheimer's diseases. The present study examines the effect of DHA and EPA on mitochondrial membrane potential (MMP), apoptosis activation and ATP levels in astrocytes cultured in medium containing glucose or galactose, which limits oxidative phosphorylation (OXPHOS). MMP, expressed as the ratio of red to green JC-10 and MitoTracker fluorescence, increased in EPA-incubated cells in a dose dependent manner and was higher than in DHA-incubated astrocytes, also after uncoupling of OXPHOS by carbonyl cyanide 3-chlorophenylhydrazone (CCCP). In cells cultured in glucose and galactose medium mitochondrial hyperpolarization had no impact on intracellular ATP level. Furthermore, both EPA and DHA elevated mitochondrial cardiolipin content, however only EPA did so in a dose-dependent manner and reduced apoptosis which was analyzed by flow cytometry.
Collapse
Affiliation(s)
- Dawid Stulczewski
- Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Emilia Zgorzynska
- Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Barbara Dziedzic
- Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | | | - Kacper Szafraniec
- Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Anna Walczewska
- Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
20
|
Duran J. Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders. Cells 2023; 12:cells12050722. [PMID: 36899857 PMCID: PMC10000527 DOI: 10.3390/cells12050722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Lafora disease is a rare disorder caused by loss of function mutations in either the EPM2A or NHLRC1 gene. The initial symptoms of this condition are most commonly epileptic seizures, but the disease progresses rapidly with dementia, neuropsychiatric symptoms, and cognitive deterioration and has a fatal outcome within 5-10 years after onset. The hallmark of the disease is the accumulation of poorly branched glycogen in the form of aggregates known as Lafora bodies in the brain and other tissues. Several reports have demonstrated that the accumulation of this abnormal glycogen underlies all the pathologic traits of the disease. For decades, Lafora bodies were thought to accumulate exclusively in neurons. However, it was recently identified that most of these glycogen aggregates are present in astrocytes. Importantly, astrocytic Lafora bodies have been shown to contribute to pathology in Lafora disease. These results identify a primary role of astrocytes in the pathophysiology of Lafora disease and have important implications for other conditions in which glycogen abnormally accumulates in astrocytes, such as Adult Polyglucosan Body disease and the buildup of Corpora amylacea in aged brains.
Collapse
Affiliation(s)
- Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
21
|
Borbor M, Yin D, Brockmeier U, Wang C, Doeckel M, Pillath-Eilers M, Kaltwasser B, Hermann DM, Dzyubenko E. Neurotoxicity of ischemic astrocytes involves STAT3-mediated metabolic switching and depends on glycogen usage. Glia 2023; 71:1553-1569. [PMID: 36810803 DOI: 10.1002/glia.24357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
Astrocytic responses are critical for the maintenance of neuronal networks in health and disease. In stroke, reactive astrocytes undergo functional changes potentially contributing to secondary neurodegeneration, but the mechanisms of astrocyte-mediated neurotoxicity remain elusive. Here, we investigated metabolic reprogramming in astrocytes following ischemia-reperfusion in vitro, explored their role in synaptic degeneration, and verified the key findings in a mouse model of stroke. Using indirect cocultures of primary mouse astrocytes and neurons, we demonstrate that transcription factor STAT3 controls metabolic switching in ischemic astrocytes promoting lactate-directed glycolysis and hindering mitochondrial function. Upregulation of astrocytic STAT3 signaling associated with nuclear translocation of pyruvate kinase isoform M2 and hypoxia response element activation. Reprogrammed thereby, the ischemic astrocytes induced mitochondrial respiration failure in neurons and triggered glutamatergic synapse loss, which was prevented by inhibiting astrocytic STAT3 signaling with Stattic. The rescuing effect of Stattic relied on the ability of astrocytes to utilize glycogen bodies as an alternative metabolic source supporting mitochondrial function. After focal cerebral ischemia in mice, astrocytic STAT3 activation was associated with secondary synaptic degeneration in the perilesional cortex. Inflammatory preconditioning with LPS increased astrocytic glycogen content, reduced synaptic degeneration, and promoted neuroprotection post stroke. Our data indicate the central role of STAT3 signaling and glycogen usage in reactive astrogliosis and suggest novel targets for restorative stroke therapy.
Collapse
Affiliation(s)
- Mina Borbor
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Dongpei Yin
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Ulf Brockmeier
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Chen Wang
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Marius Doeckel
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Matthias Pillath-Eilers
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Egor Dzyubenko
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| |
Collapse
|
22
|
Köhler S, Winkler U, Junge T, Lippmann K, Eilers J, Hirrlinger J. Gray and white matter astrocytes differ in basal metabolism but respond similarly to neuronal activity. Glia 2023; 71:229-244. [PMID: 36063073 DOI: 10.1002/glia.24268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Astrocytes are a heterogeneous population of glial cells in the brain, which adapt their properties to the requirements of the local environment. Two major groups of astrocytes are protoplasmic astrocytes residing in gray matter as well as fibrous astrocytes of white matter. Here, we compared the energy metabolism of astrocytes in the cortex and corpus callosum as representative gray matter and white matter regions, in acute brain slices taking advantage of genetically encoded fluorescent nanosensors for the NADH/NAD+ redox ratio and for ATP. Astrocytes of the corpus callosum presented a more reduced basal NADH/NAD+ redox ratio, and a lower cytosolic concentration of ATP compared to cortical astrocytes. In cortical astrocytes, the neurotransmitter glutamate and increased extracellular concentrations of K+ , typical correlates of neuronal activity, induced a more reduced NADH/NAD+ redox ratio. While application of glutamate decreased [ATP], K+ as well as the combination of glutamate and K+ resulted in an increase of ATP levels. Strikingly, a very similar regulation of metabolism by K+ and glutamate was observed in astrocytes in the corpus callosum. Finally, strong intrinsic neuronal activity provoked by application of bicuculline and withdrawal of Mg2+ caused a shift of the NADH/NAD+ redox ratio to a more reduced state as well as a slight reduction of [ATP] in gray and white matter astrocytes. In summary, the metabolism of astrocytes in cortex and corpus callosum shows distinct basal properties, but qualitatively similar responses to neuronal activity, probably reflecting the different environment and requirements of these brain regions.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Tabea Junge
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Kristina Lippmann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
23
|
Affiliation(s)
- Gerald A. Dienel
- Department of Neurology University of Arkansas for Medical Sciences Little Rock Arkansas USA
- Department of Cell Biology and Physiology University of New Mexico School of Medicine Albuquerque New Mexico USA
| | - Lisa Gillinder
- Mater Hospital South Brisbane Queensland Australia
- Faculty of Medicine Mater Research Institute, University of Queensland St Lucia Queensland Australia
| | - Aileen McGonigal
- Mater Hospital South Brisbane Queensland Australia
- Faculty of Medicine Mater Research Institute, University of Queensland St Lucia Queensland Australia
| | - Karin Borges
- Faculty of Medicine School of Biomedical Sciences, University of Queensland St Lucia Queensland Australia
| |
Collapse
|
24
|
Dienel GA, Gillinder L, McGonigal A, Borges K. Potential new roles for glycogen in epilepsy. Epilepsia 2023; 64:29-53. [PMID: 36117414 PMCID: PMC10952408 DOI: 10.1111/epi.17412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Seizures often originate in epileptogenic foci. Between seizures (interictally), these foci and some of the surrounding tissue often show low signals with 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) in many epileptic patients, even when there are no radiologically detectable structural abnormalities. Low FDG-PET signals are thought to reflect glucose hypometabolism. Here, we review knowledge about metabolism of glucose and glycogen and oxidative stress in people with epilepsy and in acute and chronic rodent seizure models. Interictal brain glucose levels are normal and do not cause apparent glucose hypometabolism, which remains unexplained. During seizures, high amounts of fuel are needed to satisfy increased energy demands. Astrocytes consume glycogen as an additional emergency fuel to supplement glucose during high metabolic demand, such as during brain stimulation, stress, and seizures. In rodents, brain glycogen levels drop during induced seizures and increase to higher levels thereafter. Interictally, in people with epilepsy and in chronic epilepsy models, normal glucose but high glycogen levels have been found in the presumed brain areas involved in seizure generation. We present our new hypothesis that as an adaptive response to repeated episodes of high metabolic demand, high interictal glycogen levels in epileptogenic brain areas are used to support energy metabolism and potentially interictal neuronal activity. Glycogenolysis, which can be triggered by stress or oxidative stress, leads to decreased utilization of plasma glucose in epileptogenic brain areas, resulting in low FDG signals that are related to functional changes underlying seizure onset and propagation. This is (partially) reversible after successful surgery. Last, we propose that potential interictal glycogen depletion in epileptogenic and surrounding areas may cause energy shortages in astrocytes, which may impair potassium buffering and contribute to seizure generation. Based on these hypotheses, auxiliary fuels or treatments that support glycogen metabolism may be useful to treat epilepsy.
Collapse
Affiliation(s)
- Gerald A. Dienel
- Department of NeurologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of Cell Biology and PhysiologyUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Lisa Gillinder
- Mater HospitalSouth BrisbaneQueenslandAustralia
- Faculty of MedicineMater Research Institute, University of QueenslandSt LuciaQueenslandAustralia
| | - Aileen McGonigal
- Mater HospitalSouth BrisbaneQueenslandAustralia
- Faculty of MedicineMater Research Institute, University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- Faculty of MedicineSchool of Biomedical Sciences, University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
25
|
Vaccari-Cardoso B, Antipina M, Teschemacher AG, Kasparov S. Lactate-Mediated Signaling in the Brain-An Update. Brain Sci 2022; 13:brainsci13010049. [PMID: 36672031 PMCID: PMC9856103 DOI: 10.3390/brainsci13010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Lactate is a universal metabolite produced and released by all cells in the body. Traditionally it was viewed as energy currency that is generated from pyruvate at the end of the glycolytic pathway and sent into the extracellular space for other cells to take up and consume. In the brain, such a mechanism was postulated to operate between astrocytes and neurons many years ago. Later, the discovery of lactate receptors opened yet another chapter in the quest to understand lactate actions. Other ideas, such as modulation of NMDA receptors were also proposed. Up to this day, we still do not have a consensus view on the relevance of any of these mechanisms to brain functions or their contribution to human or animal physiology. While the field develops new ideas, in this brief review we analyze some recently published studies in order to focus on some unresolved controversies and highlight the limitations that need to be addressed in future work. Clearly, only by using similar and overlapping methods, cross-referencing experiments, and perhaps collaborative efforts, we can finally understand what the role of lactate in the brain is and why this ubiquitous molecule is so important.
Collapse
Affiliation(s)
- Barbara Vaccari-Cardoso
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Maria Antipina
- MEDBIO, Immanuel Kant Baltic Federal University, Universitetskaya Str., 2, 236041 Kaliningrad, Russia
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
- Correspondence:
| |
Collapse
|
26
|
St-Pierre MK, Carrier M, González Ibáñez F, Šimončičová E, Wallman MJ, Vallières L, Parent M, Tremblay MÈ. Ultrastructural characterization of dark microglia during aging in a mouse model of Alzheimer's disease pathology and in human post-mortem brain samples. J Neuroinflammation 2022; 19:235. [PMID: 36167544 PMCID: PMC9513936 DOI: 10.1186/s12974-022-02595-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
A diverse heterogeneity of microglial cells was previously described in Alzheimer's disease (AD) pathology, including dark microglia, a state characterized by ultrastructural markers of cellular stress. To provide novel insights into the roles of dark microglia during aging in the context of AD pathology, we performed a quantitative density and ultrastructural analysis of these cells using high-throughput scanning electron microscopy in the ventral hippocampus CA1 stratum lacunosum-moleculare of 20-month-old APP-PS1 vs C57BL/6J male mice. The density of dark microglia was significantly higher in APP-PS1 vs C57BL/6J mice, with these cells accounting for nearly half of all microglia observed near amyloid-beta (Aβ) plaques. This dark microglial state interacted more with dystrophic neurites compared to other APP-PS1 microglia and possessed glycogen granules, associated with a metabolic shift toward glycolysis, which provides the first ultrastructural evidence of their presence in microglia. Dark microglia were further observed in aging human post-mortem brain samples showing similar ultrastructural features as in mouse. Overall, our results provide a quantitative ultrastructural characterization of a microglial state associated with cellular stress (i.e., dark microglia) that is primarily restricted near Aβ plaques and dystrophic neurites. The presence of this microglial state in the aging human post-mortem brain is further revealed.
Collapse
Affiliation(s)
- Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Fernando González Ibáñez
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - Marie-Josée Wallman
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Quebec, QC, Canada.,CERVO Brain Research Center, Quebec, QC, Canada
| | - Luc Vallières
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| | - Martin Parent
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Quebec, QC, Canada.,CERVO Brain Research Center, Quebec, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada. .,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada. .,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada. .,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada. .,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
27
|
Recent behavioral findings of pathophysiological involvement of lactate in the central nervous system. Biochim Biophys Acta Gen Subj 2022; 1866:130137. [DOI: 10.1016/j.bbagen.2022.130137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
28
|
Jesmin S, Shima T, Soya M, Takahashi K, Omura K, Ogura K, Koizumi H, Soya H. Long-term light and moderate exercise intervention similarly prevent both hippocampal and glycemic dysfunction in presymptomatic type 2 diabetic rats. Am J Physiol Endocrinol Metab 2022; 322:E219-E230. [PMID: 34957860 DOI: 10.1152/ajpendo.00326.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A prediabetic population has an increased risk of cognitive decline and type 2 diabetes mellitus (T2DM). This study investigated whether the progression of memory dysfunction and dysregulated brain glycogen metabolism is prevented with 4 mo of exercise intervention from the presymptomatic stage in a T2DM rat model. Memory function and biochemical and molecular profiles were assessed in the presymptomatic stage of Otsuka-Long-Evans-Tokushima fatty (OLETF) rats, a T2DM model, with Long-Evans Tokushima (LETO) rats as genetic control. These rats were subjected to light- or moderate-intensity treadmill running for 4 mo with repetition of the same experiments. Significant hippocampal-dependent memory dysfunction was observed in the presymptomatic stage of OLETF rats, accompanied by downregulated levels of hippocampal monocarboxylate transporter 2 (MCT2), a neuronal lactate-transporter, without alteration in hippocampal glycogen levels. Four months of light or moderate exercise from the presymptomatic stage of T2DM normalized glycemic parameters and hippocampal molecular normalization through MCT2, glycogen, and brain-derived neurotrophic factor (BDNF) levels with the improvement of memory dysfunction in OLETF rats. A 4-mo exercise regimen from the presymptomatic stage of T2DM at a light and moderate intensities contributed to the prevention of the development of T2DM and the progression of cognitive decline with hippocampal lactate-transport and BDNF improvement.NEW & NOTEWORTHY Type 2 diabetes mellitus is an independent risk factor for hippocampal memory dysfunction, which would progress since the prediabetic stage. We found that 4 mo of exercise both at the light and moderate intensity prevented the progression of memory dysfunction with an improvement of hippocampal MCT2 expression in presymptomatic diabetes, implying that light intensity exercise could be a therapeutic approach, and the alteration of hippocampal MCT2 would be a therapeutic target of memory dysfunction from presymptomatic diabetes.
Collapse
Affiliation(s)
- Subrina Jesmin
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan
| | - Takeru Shima
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Health and Physical Education, Cooperative Faculty of Education, Gunma University, Maebashi, Japan
| | - Mariko Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kanako Takahashi
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan
| | - Koki Omura
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kasane Ogura
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan
| | - Hikaru Koizumi
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
29
|
Mulkey DK, Olsen ML, Ou M, Cleary CM, Du G. Putative Roles of Astrocytes in General Anesthesia. Curr Neuropharmacol 2022; 20:5-15. [PMID: 33588730 PMCID: PMC9199541 DOI: 10.2174/1570159x19666210215120755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a mainstay of modern medicine, and although much progress has been made towards identifying molecular targets of anesthetics and neural networks contributing to endpoints of general anesthesia, our understanding of how anesthetics work remains unclear. Reducing this knowledge gap is of fundamental importance to prevent unwanted and life-threatening side-effects associated with general anesthesia. General anesthetics are chemically diverse, yet they all have similar behavioral endpoints, and so for decades, research has sought to identify a single underlying mechanism to explain how anesthetics work. However, this effort has given way to the 'multiple target hypothesis' as it has become clear that anesthetics target many cellular proteins, including GABAA receptors, glutamate receptors, voltage-independent K+ channels, and voltagedependent K+, Ca2+ and Na+ channels, to name a few. Yet, despite evidence that astrocytes are capable of modulating multiple aspects of neural function and express many anesthetic target proteins, they have been largely ignored as potential targets of anesthesia. The purpose of this brief review is to highlight the effects of anesthetic on astrocyte processes and identify potential roles of astrocytes in behavioral endpoints of anesthesia (hypnosis, amnesia, analgesia, and immobilization).
Collapse
Affiliation(s)
- Daniel K. Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, StorrsCT, USA;,Address correspondence to this author at the Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, USA; E-mail:
| | | | | | - Colin M. Cleary
- Department of Physiology and Neurobiology, University of Connecticut, StorrsCT, USA
| | | |
Collapse
|
30
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
31
|
Napoli E, Panoutsopoulos AA, Kysar P, Satriya N, Sterling K, Shibata B, Imai D, Ruskin DN, Zarbalis KS, Giulivi C. Wdfy3 regulates glycophagy, mitophagy, and synaptic plasticity. J Cereb Blood Flow Metab 2021; 41:3213-3231. [PMID: 34187232 PMCID: PMC8669292 DOI: 10.1177/0271678x211027384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autophagy is essential to cell function, as it enables the recycling of intracellular constituents during starvation and in addition functions as a quality control mechanism by eliminating spent organelles and proteins that could cause cellular damage if not properly removed. Recently, we reported on Wdfy3's role in mitophagy, a clinically relevant macroautophagic scaffold protein that is linked to intellectual disability, neurodevelopmental delay, and autism spectrum disorder. In this study, we confirm our previous report that Wdfy3 haploinsufficiency in mice results in decreased mitophagy with accumulation of mitochondria with altered morphology, but expanding on that observation, we also note decreased mitochondrial localization at synaptic terminals and decreased synaptic density, which may contribute to altered synaptic plasticity. These changes are accompanied by defective elimination of glycogen particles and a shift to increased glycogen synthesis over glycogenolysis and glycophagy. This imbalance leads to an age-dependent higher incidence of brain glycogen deposits with cerebellar hypoplasia. Our results support and further extend Wdfy3's role in modulating both brain bioenergetics and synaptic plasticity by including glycogen as a target of macroautophagic degradation.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Alexios A Panoutsopoulos
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Patricia Kysar
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Nathaniel Satriya
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kira Sterling
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Bradley Shibata
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Denise Imai
- Anatomic Pathology Service, Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, USA
| | - Konstantinos S Zarbalis
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA, USA
| |
Collapse
|
32
|
Jurga AM, Paleczna M, Kadluczka J, Kuter KZ. Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules 2021; 11:biom11091361. [PMID: 34572572 PMCID: PMC8468264 DOI: 10.3390/biom11091361] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The idea of central nervous system as one-man band favoring neurons is long gone. Now we all are aware that neurons and neuroglia are team players and constant communication between those various cell types is essential to maintain functional efficiency and a quick response to danger. Here, we summarize and discuss known and new markers of astroglial multiple functions, their natural heterogeneity, cellular interactions, aging and disease-induced dysfunctions. This review is focused on newly reported facts regarding astrocytes, which are beyond the old stereotypes. We present an up-to-date list of marker proteins used to identify a broad spectrum of astroglial phenotypes related to the various physiological and pathological nervous system conditions. The aim of this review is to help choose markers that are well-tailored for specific needs of further experimental studies, precisely recognizing differential glial phenotypes, or for diagnostic purposes. We hope it will help to categorize the functional and structural diversity of the astroglial population and ease a clear readout of future experimental results.
Collapse
|
33
|
Semyanov A, Verkhratsky A. Astrocytic processes: from tripartite synapses to the active milieu. Trends Neurosci 2021; 44:781-792. [PMID: 34479758 DOI: 10.1016/j.tins.2021.07.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
We define a new concept of 'active milieu' that unifies all components of nervous tissue (neuronal and glial compartments, extracellular space, extracellular matrix, and vasculature) into a dynamic information processing system. Within this framework, we focus on the role of astrocytic processes, classified into organelle-containing branches and organelle-free leaflets. We argue that astrocytic branches with emanating leaflets are homologous to dendritic shafts with spines. Within the active milieu, astrocytic processes are engaged in reciprocal interactions with neuronal compartments and communication with other cellular and non-cellular elements of the nervous tissue.
Collapse
Affiliation(s)
- Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Alexei Verkhratsky
- Sechenov First Moscow State Medical University, Moscow, Russia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| |
Collapse
|
34
|
Yatsuhashi H, Furuyashiki T, Vo PHT, Kamasaka H, Kuriki T. Effects of Glycogen on Ceramide Production in Cultured Human Keratinocytes via Acid Sphingomyelinase Activation. J Appl Glycosci (1999) 2021; 68:41-46. [PMID: 34429698 PMCID: PMC8367632 DOI: 10.5458/jag.jag.jag-2020_0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/23/2021] [Indexed: 11/07/2022] Open
Abstract
Glycogen is a highly branched storage polysaccharide found mainly in the liver and the muscles. Glycogen is also present in the skin, but its functional role is poorly understood. Recently, it has been reported that glycogen plays an important role in intracellular signal transduction. In the epidermis of the skin, keratinocytes are the predominant cells that produce ceramide. Ceramides are lipids composed of sphingosine, and prevent water loss, as well as protecting the skin against environmental stressors. In this study, we investigated the effects of glycogen on ceramide production in cultured keratinocytes. Thin-layer chromatography revealed that incubation of keratinocytes with 2 % glycogen enhanced the cellular amount of ceramide NS (ceramide 2) by 3.4-fold compared to the control. We also found that glycogen regulated the mRNA expression levels of signaling molecules of the sphingomyelin-ceramide pathway by quantitative real-time PCR. The activity of sphingomyelinase was also significantly enhanced by 2.5-fold in cultures with 1 % glycogen compared to the control. Moreover, glycogen increased the ATP production by 1.5-fold compared to the control, while glucose did not affect the production. Western blotting showed that phosphorylation of Akt, a cellular signaling molecule, was inhibited in the presence of glycogen in cultured keratinocytes. This study shows that glycogen upregulates the ceramide production pathway from sphingomyelin in epidermal keratinocytes, and provides new insights into the role of glycogen in cellular signal transduction.
Collapse
|
35
|
Byman E, Martinsson I, Haukedal H, Gouras G, Freude KK, Wennström M. Neuronal α-amylase is important for neuronal activity and glycogenolysis and reduces in presence of amyloid beta pathology. Aging Cell 2021; 20:e13433. [PMID: 34261192 PMCID: PMC8373367 DOI: 10.1111/acel.13433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies indicate a crucial role for neuronal glycogen storage and degradation in memory formation. We have previously identified alpha-amylase (α-amylase), a glycogen degradation enzyme, located within synaptic-like structures in CA1 pyramidal neurons and shown that individuals with a high copy number variation of α-amylase perform better on the episodic memory test. We reported that neuronal α-amylase was absent in patients with Alzheimer's disease (AD) and that this loss corresponded to increased AD pathology. In the current study, we verified these findings in a larger patient cohort and determined a similar reduction in α-amylase immunoreactivity in the molecular layer of hippocampus in AD patients. Next, we demonstrated reduced α-amylase concentrations in oligomer amyloid beta 42 (Aβ42 ) stimulated SH-SY5Y cells and neurons derived from human-induced pluripotent stem cells (hiPSC) with PSEN1 mutation. Reduction of α-amylase production and activity, induced by siRNA and α-amylase inhibitor Tendamistat, respectively, was further shown to enhance glycogen load in SH-SY5Y cells. Both oligomer Aβ42 stimulated SH-SY5Y cells and hiPSC neurons with PSEN1 mutation showed, however, reduced load of glycogen. Finally, we demonstrate the presence of α-amylase within synapses of isolated primary neurons and show that inhibition of α-amylase activity with Tendamistat alters neuronal activity measured by calcium imaging. In view of these findings, we hypothesize that α-amylase has a glycogen degrading function within synapses, potentially important in memory formation. Hence, a loss of α-amylase, which can be induced by Aβ pathology, may in part underlie the disrupted memory formation seen in AD patients.
Collapse
Affiliation(s)
- Elin Byman
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityMalmöSweden
| | - Isak Martinsson
- Experimental Dementia Research UnitDepartment of Experimental Medical ScienceBMC B11Lund UniversityLundSweden
| | - Henriette Haukedal
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | | - Gunnar Gouras
- Experimental Dementia Research UnitDepartment of Experimental Medical ScienceBMC B11Lund UniversityLundSweden
| | - Kristine K. Freude
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Malin Wennström
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityMalmöSweden
| |
Collapse
|
36
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
37
|
Kambe Y, Yamauchi Y, Thanh Nguyen T, Thi Nguyen T, Ago Y, Shintani N, Hashimoto H, Yoshitake S, Yoshitake T, Kehr J, Kawamura N, Katsuura G, Kurihara T, Miyata A. The pivotal role of pituitary adenylate cyclase-activating polypeptide for lactate production and secretion in astrocytes during fear memory. Pharmacol Rep 2021; 73:1109-1121. [PMID: 33835466 DOI: 10.1007/s43440-021-00222-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) plays an essential role in the modulation of astrocyte functions. Although lactate secretion from astrocytes contributes to many forms of neuronal plasticity in the central nervous system, including fear learning and memory, the role of PACAP in lactate secretion from astrocytes is unclear. METHODS The amygdala and hippocampus of PACAP (+ / +) and PACAP (-/-) mice were acquired 1 h after memory acquisition and recall in the passive avoidance test. The concentration of glycogen and lactate in these regions was measured. The concentration of lactate in the hippocampus's extracellular fluid was also measured by microdialysis during memory acquisition or intracerebroventricular administration of PACAP. RESULTS We observed that memory acquisition caused a significant decrease in glycogen concentration and increased lactate concentration in the PACAP (+ / +) mice's hippocampus. However, memory acquisition did not increase in the lactate concentration in PACAP (-/-) mice's hippocampus. Further, memory retrieval evoked lactate production in the amygdala and the hippocampus of PACAP (+ / +) mice. Still, there was no significant increase in lactate concentration in the same regions of PACAP (-/-) mice. In vivo microdialysis in rats revealed that the hippocampus's extracellular lactate concentration increased after a single PACAP intracerebroventricular injection. Additionally, the hippocampus's extracellular lactate concentration increased with the memory acquisition in PACAP (+ / +) mice, but not in PACAP (-/-) mice. CONCLUSIONS PACAP may enhance lactate production and secretion in astrocytes during the acquisition and recall of fear memories.
Collapse
Affiliation(s)
- Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Yu Yamauchi
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Trung Thanh Nguyen
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Thu Thi Nguyen
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Norihito Shintani
- Laboratories of Molecular Neuropharmacology and Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University Medical School, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratories of Molecular Neuropharmacology and Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University Medical School, Osaka University, Suita, Osaka, 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan.,Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shimako Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan.,Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Namiko Kawamura
- Department of Drug Discovery of Next-Generation GcMAF, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Goro Katsuura
- Department of Drug Discovery of Next-Generation GcMAF, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan.
| |
Collapse
|
38
|
D'Adamo P, Horvat A, Gurgone A, Mignogna ML, Bianchi V, Masetti M, Ripamonti M, Taverna S, Velebit J, Malnar M, Muhič M, Fink K, Bachi A, Restuccia U, Belloli S, Moresco RM, Mercalli A, Piemonti L, Potokar M, Bobnar ST, Kreft M, Chowdhury HH, Stenovec M, Vardjan N, Zorec R. Inhibiting glycolysis rescues memory impairment in an intellectual disability Gdi1-null mouse. Metabolism 2021; 116:154463. [PMID: 33309713 PMCID: PMC7871014 DOI: 10.1016/j.metabol.2020.154463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES GDI1 gene encodes for αGDI, a protein controlling the cycling of small GTPases, reputed to orchestrate vesicle trafficking. Mutations in human GDI1 are responsible for intellectual disability (ID). In mice with ablated Gdi1, a model of ID, impaired working and associative short-term memory was recorded. This cognitive phenotype worsens if the deletion of αGDI expression is restricted to neurons. However, whether astrocytes, key homeostasis providing neuroglial cells, supporting neurons via aerobic glycolysis, contribute to this cognitive impairment is unclear. METHODS We carried out proteomic analysis and monitored [18F]-fluoro-2-deoxy-d-glucose uptake into brain slices of Gdi1 knockout and wild type control mice. d-Glucose utilization at single astrocyte level was measured by the Förster Resonance Energy Transfer (FRET)-based measurements of cytosolic cyclic AMP, d-glucose and L-lactate, evoked by agonists selective for noradrenaline and L-lactate receptors. To test the role of astrocyte-resident processes in disease phenotype, we generated an inducible Gdi1 knockout mouse carrying the Gdi1 deletion only in adult astrocytes and conducted behavioural tests. RESULTS Proteomic analysis revealed significant changes in astrocyte-resident glycolytic enzymes. Imaging [18F]-fluoro-2-deoxy-d-glucose revealed an increased d-glucose uptake in Gdi1 knockout tissue versus wild type control mice, consistent with the facilitated d-glucose uptake determined by FRET measurements. In mice with Gdi1 deletion restricted to astrocytes, a selective and significant impairment in working memory was recorded, which was rescued by inhibiting glycolysis by 2-deoxy-d-glucose injection. CONCLUSIONS These results reveal a new astrocyte-based mechanism in neurodevelopmental disorders and open a novel therapeutic opportunity of targeting aerobic glycolysis, advocating a change in clinical practice.
Collapse
Affiliation(s)
- Patrizia D'Adamo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia.
| | - Anemari Horvat
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Antonia Gurgone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Veronica Bianchi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Masetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Ripamonti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Taverna
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jelena Velebit
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Maja Malnar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia
| | - Marko Muhič
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia
| | - Katja Fink
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia
| | - Angela Bachi
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Sara Belloli
- Institute of Bioimaging and Physiology, CNR, Segrate (MI), Italy; Experimental Imaging Center (EIC), San Raffaele Scientific Institute, Milan, Italy
| | - Rosa Maria Moresco
- Experimental Imaging Center (EIC), San Raffaele Scientific Institute, Milan, Italy; Medicine and Surgery Department, University of Milano-Bicocca, Monza (MB), Italy
| | - Alessia Mercalli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Maja Potokar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Saša Trkov Bobnar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Marko Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Helena H Chowdhury
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Matjaž Stenovec
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Nina Vardjan
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia.
| | - Robert Zorec
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia.
| |
Collapse
|
39
|
Dienel GA. Stop the rot. Enzyme inactivation at brain harvest prevents artifacts: A guide for preservation of the in vivo concentrations of brain constituents. J Neurochem 2021; 158:1007-1031. [PMID: 33636013 DOI: 10.1111/jnc.15293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022]
Abstract
Post-mortem metabolism is widely recognized to cause rapid and prolonged changes in the concentrations of multiple classes of compounds in brain, that is, they are labile. Post-mortem changes from levels in living brain include components of pathways of metabolism of glucose and energy compounds, amino acids, lipids, signaling molecules, neuropeptides, phosphoproteins, and proteins. Methods that stop enzyme activity at brain harvest were developed almost 50 years ago and have been extensively used in studies of brain functions and diseases. Unfortunately, these methods are not commonly used to harvest brain tissue for mass spectrometry-based metabolomic studies or for imaging mass spectrometry studies (IMS, also called mass spectrometry imaging, MSI, or matrix-assisted laser desorption/ionization-MSI, MALDI-MSI). Instead these studies commonly kill animals, decapitate, dissect out brain and regions of interest if needed, then 'snap' freeze the tissue to stop enzymatic activity after harvest, with post-mortem intervals typically ranging from ~0.5 to 3 min. To increase awareness of the importance of stopping metabolism at harvest and preventing the unnecessary complications of not doing so, this commentary provides examples of labile metabolites and the magnitudes of their post-mortem changes in concentrations during brain harvest. Brain harvest methods that stop metabolism at harvest eliminate post-mortem enzymatic activities and can improve characterization of normal and diseased brain. In addition, metabolomic studies would be improved by reporting absolute units of concentration along with normalized peak areas or fold changes. Then reported values can be evaluated and compared with the extensive neurochemical literature to help prevent reporting of artifactual data.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
40
|
Horvat A, Muhič M, Smolič T, Begić E, Zorec R, Kreft M, Vardjan N. Ca 2+ as the prime trigger of aerobic glycolysis in astrocytes. Cell Calcium 2021; 95:102368. [PMID: 33621899 DOI: 10.1016/j.ceca.2021.102368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Astroglial aerobic glycolysis, a process during which d-glucose is converted to l-lactate, a brain fuel and signal, is regulated by the plasmalemmal receptors, including adrenergic receptors (ARs) and purinergic receptors (PRs), modulating intracellular Ca2+ and cAMP signals. However, the extent to which the two signals regulate astroglial aerobic glycolysis is poorly understood. By using agonists to stimulate intracellular α1-/β-AR-mediated Ca2+/cAMP signals, β-AR-mediated cAMP and P2R-mediated Ca2+ signals and genetically encoded fluorescence resonance energy transfer-based glucose and lactate nanosensors in combination with real-time microscopy, we show that intracellular Ca2+, but not cAMP, initiates a robust increase in the concentration of intracellular free d-glucose ([glc]i) and l-lactate ([lac]i), both depending on extracellular d-glucose, suggesting Ca2+-triggered glucose uptake and aerobic glycolysis in astrocytes. When the glycogen shunt, a process of glycogen remodelling, was inhibited, the α1-/β-AR-mediated increases in [glc]i and [lac]i were reduced by ∼65 % and ∼30 %, respectively, indicating that at least ∼30 % of the utilization of d-glucose is linked to glycogen remodelling and aerobic glycolysis. Additional activation of β-AR/cAMP signals aided to α1-/β-AR-triggered [lac]i increase, whereas the [glc]i increase was unaltered. Taken together, an increase in intracellular Ca2+ is the prime mechanism of augmented aerobic glycolysis in astrocytes, while cAMP has only a moderate role. The results provide novel information on the signals regulating brain metabolism and open new avenues to explore whether astroglial Ca2+ signals are dysregulated and contribute to neuropathologies with impaired brain metabolism.
Collapse
Affiliation(s)
- Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Marko Muhič
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Smolič
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ena Begić
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.
| |
Collapse
|
41
|
Ravi K, Paidas MJ, Saad A, Jayakumar AR. Astrocytes in rare neurological conditions: Morphological and functional considerations. J Comp Neurol 2021; 529:2676-2705. [PMID: 33496339 DOI: 10.1002/cne.25118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Astrocytes are a population of central nervous system (CNS) cells with distinctive morphological and functional characteristics that differ within specific areas of the brain and are widely distributed throughout the CNS. There are mainly two types of astrocytes, protoplasmic and fibrous, which differ in morphologic appearance and location. Astrocytes are important cells of the CNS that not only provide structural support, but also modulate synaptic activity, regulate neuroinflammatory responses, maintain the blood-brain barrier, and supply energy to neurons. As a result, astrocytic disruption can lead to widespread detrimental effects and can contribute to the pathophysiology of several neurological conditions. The characteristics of astrocytes in more common neuropathologies such as Alzheimer's and Parkinson's disease have significantly been described and continue to be widely studied. However, there still exist numerous rare neurological conditions in which astrocytic involvement is unknown and needs to be explored. Accordingly, this review will summarize functional and morphological changes of astrocytes in various rare neurological conditions based on current knowledge thus far and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.
Collapse
Affiliation(s)
- Karthik Ravi
- University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA
| | - Ali Saad
- Pathology and Laboratory Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA.,South Florida VA Foundation for Research and Education Inc, Miami, Florida, USA.,General Medical Research Neuropathology Section, R&D Service, Veterans Affairs Medical Centre, Miami, Florida, USA
| |
Collapse
|
42
|
Petit JM, Eren-Koçak E, Karatas H, Magistretti P, Dalkara T. Brain glycogen metabolism: A possible link between sleep disturbances, headache and depression. Sleep Med Rev 2021; 59:101449. [PMID: 33618186 DOI: 10.1016/j.smrv.2021.101449] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
The functions of sleep and its links with neuropsychiatric diseases have long been questioned. Among the numerous hypotheses on sleep function, early studies proposed that sleep helps to replenish glycogen stores consumed during waking. Later studies found increased brain glycogen after sleep deprivation, leading to "glycogenetic" hypothesis, which states that there is a parallel increase in synthesis and utilization of glycogen during wakefulness, whereas decrease in the excitatory transmission creates an imbalance causing accumulation of glycogen during sleep. Glycogen is a vital energy reservoir to match the synaptic demand particularly for re-uptake of potassium and glutamate during intense glutamatergic transmission. Therefore, sleep deprivation-induced transcriptional changes may trigger migraine by reducing glycogen availability, which slows clearance of extracellular potassium and glutamate, hence, creates susceptibility to cortical spreading depolarization, the electrophysiological correlate of migraine aura. Interestingly, chronic stress accompanied by increased glucocorticoid levels and locus coeruleus activity and leading to mood disorders in which sleep disturbances are prevalent, also affects brain glycogen turnover via glucocorticoids, noradrenaline, serotonin and adenosine. These observations altogether suggest that inadequate astrocytic glycogen turnover may be one of the mechanisms linking migraine, mood disorders and sleep.
Collapse
Affiliation(s)
- J-M Petit
- Lausanne University Hospital, Center for Psychiatric Neuroscience, Prilly, Switzerland.
| | - E Eren-Koçak
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Department of Psychiatry, Ankara, Turkey.
| | - H Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| | - P Magistretti
- King Abdullah University of Science and Technology, Saudi Arabia.
| | - T Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| |
Collapse
|
43
|
Howarth C, Mishra A, Hall CN. More than just summed neuronal activity: how multiple cell types shape the BOLD response. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190630. [PMID: 33190598 PMCID: PMC7116385 DOI: 10.1098/rstb.2019.0630] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Functional neuroimaging techniques are widely applied to investigations of human cognition and disease. The most commonly used among these is blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. The BOLD signal occurs because neural activity induces an increase in local blood supply to support the increased metabolism that occurs during activity. This supply usually outmatches demand, resulting in an increase in oxygenated blood in an active brain region, and a corresponding decrease in deoxygenated blood, which generates the BOLD signal. Hence, the BOLD response is shaped by an integration of local oxygen use, through metabolism, and supply, in the blood. To understand what information is carried in BOLD signals, we must understand how several cell types in the brain-local excitatory neurons, inhibitory neurons, astrocytes and vascular cells (pericytes, vascular smooth muscle and endothelial cells), and their modulation by ascending projection neurons-contribute to both metabolism and haemodynamic changes. Here, we review the contributions of each cell type to the regulation of cerebral blood flow and metabolism, and discuss situations where a simplified interpretation of the BOLD response as reporting local excitatory activity may misrepresent important biological phenomena, for example with regards to arousal states, ageing and neurological disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Clare Howarth
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
44
|
Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying metabolites. Cell Rep 2021; 34:108642. [PMID: 33472059 DOI: 10.1016/j.celrep.2020.108642] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Thalamic astrocytes and oligodendrocytes are coupled via gap junctions and form panglial networks. Here, we show that these networks have a key role in energy supply of neurons. Filling an astrocyte or an oligodendrocyte in acute slices with glucose or lactate is sufficient to rescue the decline of stimulation-induced field post-synaptic potential (fPSP) amplitudes during extracellular glucose deprivation (EGD). In mice lacking oligodendroglial coupling, loading an astrocyte with glucose does not rescue the EGD-mediated loss of fPSPs. Monocarboxylate and glucose transporters are required for rescuing synaptic activity during EGD. In mice deficient in astrocyte coupling, filling of an oligodendrocyte with glucose does not rescue fPSPs during EGD. Our results demonstrate that, in the thalamus, astrocytes and oligodendrocytes are jointly engaged in delivering energy substrates for sustaining neuronal activity and suggest that oligodendrocytes exert their effect mainly by assisting astrocytes in metabolite transfer to the postsynapse.
Collapse
|
45
|
Dynamic Variations in Brain Glycogen are Involved in Modulating Isoflurane Anesthesia in Mice. Neurosci Bull 2020; 36:1513-1523. [PMID: 33048310 PMCID: PMC7719152 DOI: 10.1007/s12264-020-00587-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
General anesthesia severely affects the metabolites in the brain. Glycogen, principally stored in astrocytes and providing the short-term delivery of substrates to neurons, has been implicated as an affected molecule. However, whether glycogen plays a pivotal role in modulating anesthesia–arousal remains unclear. Here, we demonstrated that isoflurane-anesthetized mice exhibited dynamic changes in the glycogen levels in various brain regions. Glycogen synthase (GS) and glycogen phosphorylase (GP), key enzymes of glycogen metabolism, showed increased activity after isoflurane exposure. Upon blocking glycogenolysis with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), a GP antagonist, we found a prolonged time of emergence from anesthesia and an enhanced δ frequency in the EEG (electroencephalogram). In addition, augmented expression of glycogenolysis genes in glycogen phosphorylase, brain (Pygb) knock-in (PygbH11/H11) mice resulted in delayed induction of anesthesia, a shortened emergence time, and a lower ratio of EEG-δ. Our findings revealed a role of brain glycogen in regulating anesthesia–arousal, providing a potential target for modulating anesthesia.
Collapse
|
46
|
Araki T, Ikegaya Y, Koyama R. The effects of microglia‐ and astrocyte‐derived factors on neurogenesis in health and disease. Eur J Neurosci 2020; 54:5880-5901. [PMID: 32920880 PMCID: PMC8451940 DOI: 10.1111/ejn.14969] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Hippocampal neurogenesis continues throughout life and has been suggested to play an essential role in maintaining spatial cognitive function under physiological conditions. An increasing amount of evidence has indicated that adult neurogenesis is tightly controlled by environmental conditions in the neurogenic niche, which consists of multiple types of cells including microglia and astrocytes. Microglia maintain the environment of neurogenic niche through their phagocytic capacity and interaction with neurons via fractalkine‐CX3CR1 signaling. In addition, microglia release growth factors such as brain‐derived neurotrophic factor (BDNF) and cytokines such as tumor necrosis factor (TNF)‐α to support the development of adult born neurons. Astrocytes also manipulate neurogenesis by releasing various soluble factors including adenosine triphosphate and lactate. Whereas, under pathological conditions such as Alzheimer's disease, depression, and epilepsy, microglia and astrocytes play a leading role in inflammation and are involved in attenuating the normal process of neurogenesis. The modulation of glial functions on neurogenesis in these brain diseases are attracting attention as a new therapeutic target. This review describes how these glial cells play a role in adult hippocampal neurogenesis in both health and disease, especially focusing glia‐derived factors.
Collapse
Affiliation(s)
- Tasuku Araki
- Laboratory of Chemical Pharmacology Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo Japan
- Center for Information and Neural Networks Suita City Osaka Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo Japan
| |
Collapse
|
47
|
Metabolomic and Imaging Mass Spectrometric Assays of Labile Brain Metabolites: Critical Importance of Brain Harvest Procedures. Neurochem Res 2020; 45:2586-2606. [PMID: 32949339 DOI: 10.1007/s11064-020-03124-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Metabolomic technologies including imaging mass spectrometry (IMS; also called mass spectrometry imaging, MSI, or matrix-assisted laser desorption/ionization-mass spectrometry imaging, MALDI MSI) are important methods to evaluate levels of many compounds in brain with high spatial resolution, characterize metabolic phenotypes of brain disorders, and identify disease biomarkers. ATP is central to brain energetics, and reports of its heterogeneous distribution in brain and regional differences in ATP/ADP ratios reported in IMS studies conflict with earlier studies. These discordant data were, therefore, analyzed and compared with biochemical literature that used rigorous methods to preserve labile metabolites. Unequal, very low regional ATP levels and low ATP/ADP ratios are explained by rapid metabolism during postmortem ischemia. A critical aspect of any analysis of brain components is their stability during and after tissue harvest so measured concentrations closely approximate their physiological levels in vivo. Unfortunately, the requirement for inactivation of brain enzymes by freezing or heating is not widely recognized outside the neurochemistry discipline, and procedures that do not prevent postmortem autolysis, including decapitation, brain removal/dissection, and 'snap freezing' are commonly used. Strong emphasis is placed on use of supplementary approaches to calibrate metabolite abundance in units of concentration in IMS studies and comparison of IMS results with biochemical data obtained by different methods to help identify potential artifacts.
Collapse
|
48
|
Reevaluation of Astrocyte-Neuron Energy Metabolism with Astrocyte Volume Fraction Correction: Impact on Cellular Glucose Oxidation Rates, Glutamate-Glutamine Cycle Energetics, Glycogen Levels and Utilization Rates vs. Exercising Muscle, and Na +/K + Pumping Rates. Neurochem Res 2020; 45:2607-2630. [PMID: 32948935 DOI: 10.1007/s11064-020-03125-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Accurate quantification of cellular contributions to rates of substrate utilization in resting, activated, and diseased brain is essential for interpretation of data from studies using [18F]fluorodeoxyglucose-positron-emission tomography (FDG-PET) and [13C]glucose/magnetic resonance spectroscopy (MRS). A generally-accepted dogma is that neurons have the highest energy demands of all brain cells, and calculated neuronal rates of glucose oxidation in awake, resting brain accounts for 70-80%, with astrocytes 20-30%. However, these proportions do not take cell type volume fractions into account. To evaluate the conclusion that neuron-astrocyte glucose oxidation rates are similar when adjusted for astrocytic volume fraction (Hertz, Magn Reson Imaging 2011; 29, 1319), the present study analyzed data from 31 studies. On average, astrocytes occupy 6.1, 9.6, and 15% of tissue volume in hippocampus, cerebral cortex, and cerebellum, respectively, and regional astrocytic metabolic rates are adjusted for volume fraction by multiplying by 17.6, 11.4, and 6.8, respectively. After adjustment, astrocytic glucose oxidation rates in resting awake rat brain are 4-10 fold higher than neuronal oxidation rates. Volume-fraction adjustment also increases brain glycogen concentrations and utilization rates to be similar to or exceed exercising muscle. Ion flux calculations to evaluate sodium/potassium homeostasis during neurotransmission are not correct if astrocyte-neuron volume fractions are assumed to be equal. High rates of glucose and glycogen utilization after adjustment for volume fraction indicate that astrocytic energy demands are much greater than recognized, with most of the ATP being used for functions other than glutamate processing in the glutamate-glutamine cycle, challenging the notion that astrocytes 'feed hungry neurons'.
Collapse
|
49
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
50
|
Wilton DK, Stevens B. The contribution of glial cells to Huntington's disease pathogenesis. Neurobiol Dis 2020; 143:104963. [PMID: 32593752 DOI: 10.1016/j.nbd.2020.104963] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Glial cells play critical roles in the normal development and function of neural circuits, but in many neurodegenerative diseases, they become dysregulated and may contribute to the development of brain pathology. In Huntington's disease (HD), glial cells both lose normal functions and gain neuropathic phenotypes. In addition, cell-autonomous dysfunction elicited by mutant huntingtin (mHTT) expression in specific glial cell types is sufficient to induce both pathology and Huntington's disease-related impairments in motor and cognitive performance, suggesting that these cells may drive the development of certain aspects of Huntington's disease pathogenesis. In support of this imaging studies in pre-symptomatic HD patients and work on mouse models have suggested that glial cell dysfunction occurs at a very early stage of the disease, prior to the onset of motor and cognitive deficits. Furthermore, selectively ablating mHTT from specific glial cells or correcting for HD-induced changes in their transcriptional profile rescues some HD-related phenotypes, demonstrating the potential of targeting these cells for therapeutic intervention. Here we review emerging research focused on understanding the involvement of different glial cell types in specific aspects of HD pathogenesis. This work is providing new insight into how HD impacts biological functions of glial cells in the healthy brain as well as how HD induced dysfunction in these cells might change the way they integrate into biological circuits.
Collapse
Affiliation(s)
- Daniel K Wilton
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center, Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|