1
|
Diaz O, Legrand AF, El-Orch W, Jacolin F, Lotteau V, Ramière C, Vidalain PO, Perrin-Cocon L. [Role of cellular metabolism in the control of chronic viral hepatitis]. Med Sci (Paris) 2023; 39:754-762. [PMID: 37943136 DOI: 10.1051/medsci/2023125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Hepatitis viruses modify the cellular metabolism of hepatocytes by interacting with specific enzymes such as glucokinase. The metabolic changes induced by viruses can have a direct impact on the innate antiviral response. The complex interactions between viral components, innate immunity, and hepatocyte metabolism explain why chronic hepatitis infections lead to liver inflammation, progressing to cirrhosis, fibrosis, and hepatocellular carcinoma. Metabolic regulators could be used in innovative therapies to deprive viruses of key metabolites and induce an antiviral defense.
Collapse
Affiliation(s)
- Olivier Diaz
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Anne-Flore Legrand
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Walid El-Orch
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Florentine Jacolin
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Christophe Ramière
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France - Service de virologie, hospices civils de Lyon, hôpital de la Croix-Rousse, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| |
Collapse
|
2
|
Colasanti O, Burm R, Huang HE, Riedl T, Traut J, Gillich N, Li TF, Corneillie L, Faure-Dupuy S, Grünvogel O, Heide D, Lee JY, Tran CS, Merle U, Chironna M, Vondran FFW, Esser-Nobis K, Binder M, Bartenschlager R, Heikenwälder M, Meuleman P, Lohmann V. Comparison of HAV and HCV infections in vivo and in vitro reveals distinct patterns of innate immune evasion and activation. J Hepatol 2023; 79:645-656. [PMID: 37121436 DOI: 10.1016/j.jhep.2023.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND & AIMS Hepatitis A virus (HAV) infections are considered not to trigger innate immunity in vivo, in contrast to hepatitis C virus (HCV). This lack of induction has been imputed to strong interference by HAV proteases 3CD and 3ABC. We aimed to elucidate the mechanisms of immune activation and counteraction by HAV and HCV in vivo and in vitro. METHODS Albumin-urokinase-type plasminogen activator/severe combined immunodeficiency (Alb/uPA-SCID) mice with humanised livers were infected with HAV and HCV. Hepatic cell culture models were used to assess HAV and HCV sensing by Toll-like receptor 3 and retinoic acid-inducible gene I/melanoma differentiation-associated protein 5 (RIG-I/MDA5), respectively. Cleavage of the adaptor proteins TIR-domain-containing adapter-inducing interferon-β (TRIF) and mitochondrial antiviral-signalling protein (MAVS) was analysed by transient and stable expression of HAV and HCV proteases and virus infection. RESULTS We detected similar levels of interferon-stimulated gene induction in hepatocytes of HAV- and HCV-infected mice with humanised liver. In cell culture, HAV induced interferon-stimulated genes exclusively upon MDA5 sensing and depended on LGP2 (laboratory of genetics and physiology 2). TRIF and MAVS were only partially cleaved by HAV 3ABC and 3CD, not sufficiently to abrogate signalling. In contrast, HCV NS3-4A efficiently degraded MAVS, as previously reported, whereas TRIF cleavage was not detected. CONCLUSIONS HAV induces an innate immune response in hepatocytes via MDA5/LGP2, with limited control of both pathways by proteolytic cleavage. HCV activates Toll-like receptor 3 and lacks TRIF cleavage, suggesting that this pathway mainly contributes to HCV-induced antiviral responses in hepatocytes. Our results shed new light on the induction of innate immunity and counteraction by HAV and HCV. IMPACT AND IMPLICATIONS Understanding the mechanisms that determine the differential outcomes of HAV and HCV infections is crucial for the development of effective therapies. Our study provides insights into the interplay between these viruses and the host innate immune response in vitro and in vivo, shedding light on previously controversial or only partially investigated aspects. This knowledge could tailor the development of new strategies to combat HCV persistence, as well as improve our understanding of the factors underlying successful HAV clearance.
Collapse
Affiliation(s)
- Ombretta Colasanti
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host-Interactions, University of Heidelberg, Heidelberg, Germany
| | - Rani Burm
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Hao-En Huang
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host-Interactions, University of Heidelberg, Heidelberg, Germany
| | - Tobias Riedl
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jannik Traut
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host-Interactions, University of Heidelberg, Heidelberg, Germany
| | - Nadine Gillich
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Teng-Feng Li
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host-Interactions, University of Heidelberg, Heidelberg, Germany
| | - Laura Corneillie
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Suzanne Faure-Dupuy
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Grünvogel
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host-Interactions, University of Heidelberg, Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host-Interactions, University of Heidelberg, Heidelberg, Germany
| | - Cong Si Tran
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host-Interactions, University of Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Internal Medicine IV, Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Chironna
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Florian F W Vondran
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover, Hannover, Germany
| | - Katharina Esser-Nobis
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host-Interactions, University of Heidelberg, Heidelberg, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division "Virus-Associated Carcinogenesis", German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Ralf Bartenschlager
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; The M3 Research Institute, Medical Faculty Tuebingen (MTF), Tuebingen, Germany
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host-Interactions, University of Heidelberg, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Bhat S, Ahanger IA, Kazim SN. Forthcoming Developments in Models to Study the Hepatitis B Virus Replication Cycle, Pathogenesis, and Pharmacological Advancements. ACS OMEGA 2023; 8:14273-14289. [PMID: 37125123 PMCID: PMC10134252 DOI: 10.1021/acsomega.2c07154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/08/2023] [Indexed: 05/03/2023]
Abstract
Hepatitis, liver cirrhosis, and hepatocellular carcinoma are all manifestations of chronic hepatitis B. Its pathogenesis and molecular mechanism remain mysterious. As medical science progresses, different models are being used to study the disease from the physiological and molecular levels. Animal models have played an unprecedented role in achieving in-depth knowledge of the disease while posing no risk of harming humans throughout the study. The scarcity of acceptable animal models has slowed progress in hepatitis B virus (HBV) research and preclinical testing of antiviral medicines since HBV has a narrow species tropism and exclusively infects humans and higher primates. The development of human chimeric mice was supported by a better understanding of the obstacles to interspecies transmission, which has substantially opened the way for HBV research in vivo and the evaluation of possible chronic hepatitis B therapeutics. Animal models are cumbersome to handle, not accessible, and expensive. Hence, it is herculean to investigate the HBV replication cycle in animal models. Therefore, it becomes essential to build a splendid in vitro cell culture system to demonstrate the mechanisms attained by the HBV for its multiplication and sustenance. We also addressed the advantages and caveats associated with different models in examining HBV.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ishfaq Ahmad Ahanger
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Clinical
Biochemistry University of Kashmir, Srinagar, India
| | - Syed Naqui Kazim
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Phone: +91 9953621758.
| |
Collapse
|
4
|
Diaz O, Vidalain PO, Ramière C, Lotteau V, Perrin-Cocon L. What role for cellular metabolism in the control of hepatitis viruses? Front Immunol 2022; 13:1033314. [PMID: 36466918 PMCID: PMC9713817 DOI: 10.3389/fimmu.2022.1033314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2023] Open
Abstract
Hepatitis B, C and D viruses (HBV, HCV, HDV, respectively) specifically infect human hepatocytes and often establish chronic viral infections of the liver, thus escaping antiviral immunity for years. Like other viruses, hepatitis viruses rely on the cellular machinery to meet their energy and metabolite requirements for replication. Although this was initially considered passive parasitism, studies have shown that hepatitis viruses actively rewire cellular metabolism through molecular interactions with specific enzymes such as glucokinase, the first rate-limiting enzyme of glycolysis. As part of research efforts in the field of immunometabolism, it has also been shown that metabolic changes induced by viruses could have a direct impact on the innate antiviral response. Conversely, detection of viral components by innate immunity receptors not only triggers the activation of the antiviral defense but also induces in-depth metabolic reprogramming that is essential to support immunological functions. Altogether, these complex triangular interactions between viral components, innate immunity and hepatocyte metabolism may explain why chronic hepatitis infections progressively lead to liver inflammation and progression to cirrhosis, fibrosis and hepatocellular carcinoma (HCC). In this manuscript, we first present a global overview of known connections between the innate antiviral response and cellular metabolism. We then report known molecular mechanisms by which hepatitis viruses interfere with cellular metabolism in hepatocytes and discuss potential consequences on the innate immune response. Finally, we present evidence that drugs targeting hepatocyte metabolism could be used as an innovative strategy not only to deprive viruses of key metabolites, but also to restore the innate antiviral response that is necessary to clear infection.
Collapse
Affiliation(s)
- Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Christophe Ramière
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
5
|
Zhang WJ, Li KY, Huang BH, Wang H, Wan SG, Zhou SC. The hepatocyte in the innate immunity. Virology 2022; 576:111-116. [DOI: 10.1016/j.virol.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
|
6
|
Descoeudres N, Jouneau L, Henry C, Gorrichon K, Derré-Bobillot A, Serror P, Gillespie LL, Archambaud C, Pagliuso A, Bierne H. An Immunomodulatory Transcriptional Signature Associated With Persistent Listeria Infection in Hepatocytes. Front Cell Infect Microbiol 2021; 11:761945. [PMID: 34858876 PMCID: PMC8631403 DOI: 10.3389/fcimb.2021.761945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes causes severe foodborne illness in pregnant women and immunocompromised individuals. After the intestinal phase of infection, the liver plays a central role in the clearance of this pathogen through its important functions in immunity. However, recent evidence suggests that during long-term infection of hepatocytes, a subpopulation of Listeria may escape eradication by entering a persistence phase in intracellular vacuoles. Here, we examine whether this long-term infection alters hepatocyte defense pathways, which may be instrumental for bacterial persistence. We first optimized cell models of persistent infection in human hepatocyte cell lines HepG2 and Huh7 and primary mouse hepatocytes (PMH). In these cells, Listeria efficiently entered the persistence phase after three days of infection, while inducing a potent interferon response, of type I in PMH and type III in HepG2, while Huh7 remained unresponsive. RNA-sequencing analysis identified a common signature of long-term Listeria infection characterized by the overexpression of a set of genes involved in antiviral immunity and the under-expression of many acute phase protein (APP) genes, particularly involved in the complement and coagulation systems. Infection also altered the expression of cholesterol metabolism-associated genes in HepG2 and Huh7 cells. The decrease in APP transcripts was correlated with lower protein abundance in the secretome of infected cells, as shown by proteomics, and also occurred in the presence of APP inducers (IL-6 or IL-1β). Collectively, these results reveal that long-term infection with Listeria profoundly deregulates the innate immune functions of hepatocytes, which could generate an environment favorable to the establishment of persistent infection.
Collapse
Affiliation(s)
- Natalie Descoeudres
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Céline Henry
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Kevin Gorrichon
- Université Paris-Saclay, Institut de Biologie Intégrative de la Cellule, CEA, CNRS UMR 9198, Université Paris-Sud, Gif-sur-Yvette, France
| | | | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Laura Lee Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Cristel Archambaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
7
|
Xu C, Chen J, Chen X. Host Innate Immunity Against Hepatitis Viruses and Viral Immune Evasion. Front Microbiol 2021; 12:740464. [PMID: 34803956 PMCID: PMC8598044 DOI: 10.3389/fmicb.2021.740464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatitis viruses are primary causative agents of hepatitis and represent a major source of public health problems in the world. The host innate immune system forms the first line of defense against hepatitis viruses. Hepatitis viruses are sensed by specific pathogen recognition receptors (PRRs) that subsequently trigger the innate immune response and interferon (IFN) production. However, hepatitis viruses evade host immune surveillance via multiple strategies, which help compromise the innate immune response and create a favorable environment for viral replication. Therefore, this article reviews published findings regarding host innate immune sensing and response against hepatitis viruses. Furthermore, we also focus on how hepatitis viruses abrogate the antiviral effects of the host innate immune system.
Collapse
Affiliation(s)
- Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Nicolay W, Moeller R, Kahl S, Vondran FWR, Pietschmann T, Kunz S, Gerold G. Characterization of RNA Sensing Pathways in Hepatoma Cell Lines and Primary Human Hepatocytes. Cells 2021; 10:3019. [PMID: 34831243 PMCID: PMC8616302 DOI: 10.3390/cells10113019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
The liver is targeted by several human pathogenic RNA viruses for viral replication and dissemination; despite this, the extent of innate immune sensing of RNA viruses by human hepatocytes is insufficiently understood to date. In particular, for highly human tropic viruses such as hepatitis C virus, cell culture models are needed to study immune sensing. However, several human hepatoma cell lines have impaired RNA sensing pathways and fail to mimic innate immune responses in the human liver. Here we compare the RNA sensing properties of six human hepatoma cell lines, namely Huh-6, Huh-7, HepG2, HepG2-HFL, Hep3B, and HepaRG, with primary human hepatocytes. We show that primary liver cells sense RNA through retinoic acid-inducible gene I (RIG-I) like receptor (RLR) and Toll-like receptor 3 (TLR3) pathways. Of the tested cell lines, Hep3B cells most closely mimicked the RLR and TLR3 mediated sensing in primary hepatocytes. This was shown by the expression of RLRs and TLR3 as well as the expression and release of bioactive interferon in primary hepatocytes and Hep3B cells. Our work shows that Hep3B cells partially mimic RNA sensing in primary hepatocytes and thus can serve as in vitro model to study innate immunity to RNA viruses in hepatocytes.
Collapse
Affiliation(s)
- Wiebke Nicolay
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
| | - Rebecca Moeller
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
- Center for Emerging Infections and Zoonoses (RIZ), Institute of Biochemistry & Research, University of Veterinary Medicine Hannover, 30625 Hannover, Germany
| | - Sina Kahl
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany;
- German Centre for Infection Research (DZIF), 30100 Braunschweig, Germany
| | - Thomas Pietschmann
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital, CH-1011 Lausanne, Switzerland;
| | - Gisa Gerold
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
- Center for Emerging Infections and Zoonoses (RIZ), Institute of Biochemistry & Research, University of Veterinary Medicine Hannover, 30625 Hannover, Germany
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
9
|
Brinkmeyer-Langford C, Amstalden K, Konganti K, Hillhouse A, Lawley K, Perez-Gomez A, Young CR, Welsh CJ, Threadgill DW. Resilience in Long-Term Viral Infection: Genetic Determinants and Interactions. Int J Mol Sci 2021; 22:ijms222111379. [PMID: 34768809 PMCID: PMC8584141 DOI: 10.3390/ijms222111379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-induced neurological sequelae resulting from infection by Theiler's murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included "resistant" and "susceptible," as before, as well as a "resilient" TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.
Collapse
Affiliation(s)
- Candice Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Correspondence:
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Koedi Lawley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Aracely Perez-Gomez
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - David W. Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
IFN-λ Modulates the Migratory Capacity of Canine Mammary Tumor Cells via Regulation of the Expression of Matrix Metalloproteinases and Their Inhibitors. Cells 2021; 10:cells10050999. [PMID: 33922837 PMCID: PMC8145483 DOI: 10.3390/cells10050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
Interactions between neoplastic and immune cells taking place in tumors drive cancer regulatory mechanisms both in humans and animals. IFN-λ, a potent antiviral factor, is also secreted in the tumor; however, its role in tumor development is still unclear. In our study, we investigate the influence of IFN-λ on the canine mammary tumor (CMT) cell survival and their metastatic potential in vitro. First, we examined, by Western blot, the expression of the IFN-λ receptor complex in three CMT cell lines (P114, CMT-U27 and CMT-U309). We showed that only two cell lines (P114 and CMT-U27) express both (IL-28RA and IL-10Rb) receptor subunits and respond to IFN-λ treatment by STAT phosphorylation and the expression of interferon-stimulated genes. Using MTT, crystal violet and annexin-V assays, we showed a minimal role of IFN-λ in CMT viability. However, IFN-λ administration had a contradictory effect on cell migration in the scratch test, namely, it increased P114 and decreased CMT-U27 motility. Moreover, we demonstrated that this process is related to the expression of extracellular matrix metalloproteinases and their inhibitors; furthermore, it is independent of Akt and ERK signaling pathways. To conclude, we showed that IFN-λ activity is reliant on the expression of two receptor subunits and tumor type, but further investigations are needed.
Collapse
|
11
|
Yang S, Yao B, Wu L, Liu Y, Liu K, Xu P, Zheng Y, Deng Y, Zhai Z, Wu Y, Li N, Zhang D, Kang H, Dai Z. Ubiquitin-related molecular classification and risk stratification of hepatocellular carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:207-219. [PMID: 34095460 PMCID: PMC8138213 DOI: 10.1016/j.omto.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022]
Abstract
The roles of ubiquitin-related genes in hepatocellular carcinoma (HCC) have not been thoroughly investigated. This study aimed to systematically examine ubiquitin-related genes and identify subtypes and stratify prognosis of HCC by using ubiquitin-related signatures. Survival, biological processes, tumor microenvironment (TME), and genomic alterations of the HCC subtypes were investigated. Patients with HCC were classified into two subtypes (clusters 1 and 2) with distinct survival outcomes, pathways, and genomic alterations. Cluster 2 had better prognosis than did cluster 1. Hepatitis B, hepatitis C, Janus tyrosine kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, and natural killer cell-mediated cytotoxicity were enriched in cluster 1. Moreover, cluster 2 had a higher immune score and immune cell infiltrations, whereas cluster 1 had a lower immune score and immune infiltrations. Additionally, mutations, amplifications, and deletions among the phosphatidylinositol 3-kinase (PI3K)-AKT, p53, and receptor tyrosine kinase (RTK)-RAS pathways more frequently occurred in cluster 1, while those among the Hippo, MYC, and Notch signaling pathways were found in cluster 2. Finally, a prognostic signature, consisting of eight ubiquitin-related genes, was established and validated. In brief, our study established a new classification and developed a prognostic signature for HCC.
Collapse
Affiliation(s)
- Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuanxing Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Peng Xu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yi Zheng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhen Zhai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Na Li
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Dai Zhang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Corresponding author Huafeng Kang, Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Corresponding author Zhijun Dai, Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
12
|
Sepulveda-Crespo D, Resino S, Martinez I. Innate Immune Response against Hepatitis C Virus: Targets for Vaccine Adjuvants. Vaccines (Basel) 2020; 8:vaccines8020313. [PMID: 32560440 PMCID: PMC7350220 DOI: 10.3390/vaccines8020313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Despite successful treatments, hepatitis C virus (HCV) infections continue to be a significant world health problem. High treatment costs, the high number of undiagnosed individuals, and the difficulty to access to treatment, particularly in marginalized susceptible populations, make it improbable to achieve the global control of the virus in the absence of an effective preventive vaccine. Current vaccine development is mostly focused on weakly immunogenic subunits, such as surface glycoproteins or non-structural proteins, in the case of HCV. Adjuvants are critical components of vaccine formulations that increase immunogenic performance. As we learn more information about how adjuvants work, it is becoming clear that proper stimulation of innate immunity is crucial to achieving a successful immunization. Several hepatic cell types participate in the early innate immune response and the subsequent inflammation and activation of the adaptive response, principally hepatocytes, and antigen-presenting cells (Kupffer cells, and dendritic cells). Innate pattern recognition receptors on these cells, mainly toll-like receptors, are targets for new promising adjuvants. Moreover, complex adjuvants that stimulate different components of the innate immunity are showing encouraging results and are being incorporated in current vaccines. Recent studies on HCV-vaccine adjuvants have shown that the induction of a strong T- and B-cell immune response might be enhanced by choosing the right adjuvant.
Collapse
Affiliation(s)
| | - Salvador Resino
- Correspondence: (S.R.); (I.M.); Tel.: +34-91-8223266 (S.R.); +34-91-8223272 (I.M.); Fax: +34-91-5097919 (S.R. & I.M.)
| | - Isidoro Martinez
- Correspondence: (S.R.); (I.M.); Tel.: +34-91-8223266 (S.R.); +34-91-8223272 (I.M.); Fax: +34-91-5097919 (S.R. & I.M.)
| |
Collapse
|
13
|
Liu D, Ndongwe TP, Puray-Chavez M, Casey MC, Izumi T, Pathak VK, Tedbury PR, Sarafianos SG. Effect of P-body component Mov10 on HCV virus production and infectivity. FASEB J 2020; 34:9433-9449. [PMID: 32496609 DOI: 10.1096/fj.201800641r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 03/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Mov10 is a processing body (P-body) protein and an interferon-stimulated gene that can affect replication of retroviruses, hepatitis B virus, and hepatitis C virus (HCV). The mechanism of HCV inhibition by Mov10 is unknown. Here, we investigate the effect of Mov10 on HCV infection and determine the virus life cycle steps affected by changes in Mov10 overexpression. Mov10 overexpression suppresses HCV RNA in both infectious virus and subgenomic replicon systems. Additionally, Mov10 overexpression decreases the infectivity of released virus, unlike control P-body protein DCP1a that has no effect on HCV RNA production or infectivity of progeny virus. Confocal imaging of uninfected cells shows endogenous Mov10 localized at P-bodies. However, in HCV-infected cells, Mov10 localizes in circular structures surrounding cytoplasmic lipid droplets with NS5A and core protein. Mutagenesis experiments show that the RNA binding activity of Mov10 is required for HCV inhibition, while its P-body localization, helicase, and ATP-binding functions are not required. Unexpectedly, endogenous Mov10 promotes HCV replication, as CRISPR-Cas9-based Mov10 depletion decreases HCV replication and infection levels. Our data reveal an important and complex role for Mov10 in HCV replication, which can be perturbed by excess or insufficient Mov10.
Collapse
Affiliation(s)
- Dandan Liu
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Tanyaradzwa P Ndongwe
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Maritza Puray-Chavez
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Mary C Casey
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Taisuke Izumi
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Eller C, Heydmann L, Colpitts CC, El Saghire H, Piccioni F, Jühling F, Majzoub K, Pons C, Bach C, Lucifora J, Lupberger J, Nassal M, Cowley GS, Fujiwara N, Hsieh SY, Hoshida Y, Felli E, Pessaux P, Sureau C, Schuster C, Root DE, Verrier ER, Baumert TF. A genome-wide gain-of-function screen identifies CDKN2C as a HBV host factor. Nat Commun 2020; 11:2707. [PMID: 32483149 PMCID: PMC7264273 DOI: 10.1038/s41467-020-16517-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 05/03/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic HBV infection is a major cause of liver disease and cancer worldwide. Approaches for cure are lacking, and the knowledge of virus-host interactions is still limited. Here, we perform a genome-wide gain-of-function screen using a poorly permissive hepatoma cell line to uncover host factors enhancing HBV infection. Validation studies in primary human hepatocytes identified CDKN2C as an important host factor for HBV replication. CDKN2C is overexpressed in highly permissive cells and HBV-infected patients. Mechanistic studies show a role for CDKN2C in inducing cell cycle G1 arrest through inhibition of CDK4/6 associated with the upregulation of HBV transcription enhancers. A correlation between CDKN2C expression and disease progression in HBV-infected patients suggests a role in HBV-induced liver disease. Taken together, we identify a previously undiscovered clinically relevant HBV host factor, allowing the development of improved infectious model systems for drug discovery and the study of the HBV life cycle.
Collapse
Affiliation(s)
- Carla Eller
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Che C Colpitts
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Houssein El Saghire
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Federica Piccioni
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Frank Jühling
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Karim Majzoub
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Caroline Pons
- Inserm, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Julie Lucifora
- Inserm, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Joachim Lupberger
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Glenn S Cowley
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emanuele Felli
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000, Strasbourg, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000, Strasbourg, France
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, INTS, Paris, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France.
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000, Strasbourg, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
15
|
Interferon Response in Hepatitis C Virus-Infected Hepatocytes: Issues to Consider in the Era of Direct-Acting Antivirals. Int J Mol Sci 2020; 21:ijms21072583. [PMID: 32276399 PMCID: PMC7177520 DOI: 10.3390/ijms21072583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
When interferons (IFNs) bind to their receptors, they upregulate numerous IFN-stimulated genes (ISGs) with antiviral and immune regulatory activities. Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus that affects over 71 million people in the global population. Hepatocytes infected with HCV produce types I and III IFNs. These endogenous IFNs upregulate a set of ISGs that negatively impact the outcome of pegylated IFN-α and ribavirin treatments, which were previously used to treat HCV. In addition, the IFNL4 genotype was the primary polymorphism responsible for a suboptimal treatment response to pegylated IFN-α and ribavirin. However, recently developed direct-acting antivirals have demonstrated a high rate of sustained virological response without pegylated IFN-α. Herein, we review recent studies on types I and III IFN responses to in HCV-infected hepatocytes. In particular, we focused on open issues related to IFN responses in the direct-acting antiviral era.
Collapse
|
16
|
Megahed FAK, Zhou X, Sun P. The Interactions between HBV and the Innate Immunity of Hepatocytes. Viruses 2020; 12:v12030285. [PMID: 32151000 PMCID: PMC7150781 DOI: 10.3390/v12030285] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection affects ~350 million people and poses a major public health problem worldwide. HBV is a major cause of cirrhosis and hepatocellular carcinoma. Fewer than 5% of HBV-infected adults (but up to 90% of HBV-infected infants and children) develop chronic HBV infection as indicated by continued, detectable expression of hepatitis B surface antigen (HBsAg) for at least 6 months after the initial infection. Increasing evidence indicates that HBV interacts with innate immunity signaling pathways of hepatocytes to suppress innate immunity. However, it is still not clear how HBV avoids monitoring by the innate immunity of hepatocytes and whether the innate immunity of hepatocytes can be effective against HBV if re-triggered. Moreover, a deep understanding of virus-host interactions is important in developing new therapeutic strategies for the treatment of HBV infection. In this review, we summarize the current knowledge regarding how HBV represses innate immune recognition, as well as recent progress with respect to in vitro models for studying HBV infection and innate immunity.
Collapse
Affiliation(s)
- Fayed Attia Koutb Megahed
- Stem Cell Research Center, Research Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China;
- Department of Nucleic Acid Researches, Genetic Engineering and Biotechnology Research Institute, General Autority-City of Scientific Researches and Technological Applications, Alexandria 21934, Egypt
| | - Xiaoling Zhou
- Stem Cell Research Center, Research Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China;
- Correspondence: (X.Z.); (P.S.)
| | - Pingnan Sun
- Stem Cell Research Center, Research Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China;
- Correspondence: (X.Z.); (P.S.)
| |
Collapse
|
17
|
Vazquez C, Tan CY, Horner SM. Hepatitis C Virus Infection Is Inhibited by a Noncanonical Antiviral Signaling Pathway Targeted by NS3-NS4A. J Virol 2019; 93:e00725-19. [PMID: 31534039 PMCID: PMC6854490 DOI: 10.1128/jvi.00725-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
The hepatitis C virus (HCV) NS3-NS4A protease complex is required for viral replication and is the major viral innate immune evasion factor. NS3-NS4A evades antiviral innate immunity by inactivating several proteins, including MAVS, the signaling adaptor for RIG-I and MDA5, and Riplet, an E3 ubiquitin ligase that activates RIG-I. Here, we identified a Tyr-16-Phe (Y16F) change in the NS4A transmembrane domain that prevents NS3-NS4A targeting of Riplet but not MAVS. This Y16F substitution reduces HCV replication in Huh7 cells, but not in Huh-7.5 cells, known to lack RIG-I signaling. Surprisingly, deletion of RIG-I in Huh7 cells did not restore Y16F viral replication. Rather, we found that Huh-7.5 cells lack Riplet expression and that the addition of Riplet to these cells reduced HCV Y16F replication, whereas the addition of Riplet lacking the RING domain restored HCV Y16F replication. In addition, TBK1 inhibition or IRF3 deletion in Huh7 cells was sufficient to restore HCV Y16F replication, and the Y16F protease lacked the ability to prevent IRF3 activation or interferon induction. Taken together, these data reveal that the NS4A Y16 residue regulates a noncanonical Riplet-TBK1-IRF3-dependent, but RIG-I-MAVS-independent, signaling pathway that limits HCV infection.IMPORTANCE The HCV NS3-NS4A protease complex facilitates viral replication by cleaving and inactivating the antiviral innate immune signaling proteins MAVS and Riplet, which are essential for RIG-I activation. NS3-NS4A therefore prevents IRF3 activation and interferon induction during HCV infection. Here, we uncover an amino acid residue within the NS4A transmembrane domain that is essential for inactivation of Riplet but does not affect MAVS cleavage by NS3-NS4A. Our study reveals that Riplet is involved in a RIG-I- and MAVS-independent signaling pathway that activates IRF3 and that this pathway is normally inactivated by NS3-NS4A during HCV infection. Our study selectively uncouples these distinct regulatory mechanisms within NS3-NS4A and defines a new role for Riplet in the antiviral response to HCV. Since Riplet is known to be inhibited by other RNA viruses, such as such influenza A virus, this innate immune signaling pathway may also be important in controlling other RNA virus infections.
Collapse
Affiliation(s)
- Christine Vazquez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Chin Yee Tan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
18
|
Tao S, Zhou L, Zhang H, Zhou S, Amiralaei S, Shelton J, Ehteshami M, Jiang Y, Amblard F, Coats SJ, Schinazi RF. Intracellular metabolism and potential cardiotoxicity of a β-D-2'- C-methyl-2,6-diaminopurine ribonucleoside phosphoramidate that inhibits hepatitis C virus replication. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:204-224. [PMID: 31595843 DOI: 10.1080/15257770.2019.1671594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
β-D-2'-C-Methyl-2,6-diaminopurine ribonucleoside (2'-C-Me-DAPN) phosphoramidate prodrug (DAPN-PD) is a selective hepatitis C virus inhibitor that is metabolized intracellularly into two active metabolites: 2'-C-Methyl-DAPN triphosphate (2'-C-Me-DAPN-TP) and 2'-C-methyl-guanosine 5'-triphosphate (2'-C-Me-GTP). BMS-986094 and IDX-184 are also bioconverted to 2'-C-Me-GTP. A phase IIb clinical trial with BMS-986094 was abruptly halted due to adverse cardiac and renal effects. Herein, we developed an efficient large scale synthesis of DAPN-PD and determined intracellular pharmacology of DAPN-PD in comparison with BMS-986094 and IDX-184, versus Huh-7, HepG2 and interspecies primary hepatocytes and human cardiomyocytes. Imaging data of drug treated human cardiomyocytes was found to be most useful in determining toxicity potential as no obvious beating rate change was observed for IDX-184 up to 50 µM up at 48 h. However, with BMS-986094 and DAPN-PD at 10 µM changes to both beat rate and rhythm were noted.
Collapse
Affiliation(s)
- Sijia Tao
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Longhu Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongwang Zhang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shaoman Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sheida Amiralaei
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jadd Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maryam Ehteshami
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Jiang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven J Coats
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
19
|
Thomas E, Baumert TF. Hepatitis B Virus-Hepatocyte Interactions and Innate Immune Responses: Experimental Models and Molecular Mechanisms. Semin Liver Dis 2019; 39:301-314. [PMID: 31266064 PMCID: PMC7377277 DOI: 10.1055/s-0039-1685518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of liver disease and cancer worldwide. While current therapeutic approaches can efficiently control viral infection, efficient curative antivirals are absent. The understanding of virus-hepatocyte interactions and sensing of viral infection is an important prerequisite for the development of novel antiviral therapies for cure. Hepatocyte intrinsic innate immunity provides a rapid first line of defense to combat viral infection through the upregulation of antiviral and inflammatory genes. However, the functional relevance of many of these antiviral signaling pathways in the liver and their role in HBV pathogenesis is still only partially understood. The recent identification of intracellular RNA and DNA sensing pathways and their involvement in disease biology, including viral pathogenesis and carcinogenesis, is currently transforming our understanding of virus-host interactions. Here the authors review the current knowledge on intrinsic antiviral innate immune responses including the role of viral nucleic acid sensing pathways in the liver. Since HBV has been designated as a "stealth virus," the study of the impact of HBV on signaling pathways in the hepatocyte is of significant interest to understand viral pathogenesis. Characterizing the mechanism underlying these HBV-host interactions and targeting related pathways to enhance antiviral innate responses may open new strategies to trigger noncytopathic clearance of covalently closed circular DNA to ultimately cure patients with chronic HBV infection.
Collapse
Affiliation(s)
- Emmanuel Thomas
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Laboratory of Excellence HEPSYS, University of Strasbourg, Strasbourg, France,Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
20
|
El Aggan H, Farahat N, El Deeb N, Zeid A, El-Shendidi A. Peripheral blood and hepatic Toll-like receptor 7 expression and interferon lambda 1 levels in chronic hepatitis C: Relation to virus replication and liver injury. Microb Pathog 2019; 131:65-74. [PMID: 30926417 DOI: 10.1016/j.micpath.2019.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Toll-like receptor 7 (TLR7) can recognize single-stranded RNA viruses like hepatitis C virus (HCV) with subsequent induction of different interferon (IFN) types including IFN lambda (IFNL), which activate an immediate anti-viral response. However, the role of TLR7 in inflammation and fibrosis, characteristics of HCV-induced liver injury, is still controversial. The present work was designed to investigate the potential role of TLR7 and IFNL1 in chronic hepatitis C (CHC) in relation to viral replication and liver injury. METHODS Forty two treatment-naïve patients with CHC and 20 healthy subjects were enrolled in the study. TLR7 expression on peripheral blood CD14+ monocytes was studied by color flow cytometry and the frequency of TLR7+CD14+ cells was expressed as percentage of total monocyte count. Quantification of IFNL1 levels in serum was determined using enzyme-linked immunosorbant assay. Liver biopsies were examined for assessment of histological activity grade (A0-A3) and fibrosis stage (F0-F4) according to METAVIR scoring system as well as steatosis grade. Immunohistochemical staining was performed using human antibodies against TLR7 and IFNL1 and was scored semi-quantitatively (score 0-3). Hepatic expression of TLR7 and IFNL1 was further classified using a two-grade scale as low expression (score 0 or 1) and high expression (score 2 or 3). RESULTS Percentages of circulating TLR7+CD14+ monocytes and serum IFNL1 levels were significantly higher in patients with CHC than in healthy controls (P = 0.025 and P < 0.001 respectively) and were positively correlated with corresponding hepatic TLR7 and IFNL1 expression (P < 0.001 and P = 0.010 respectively). Significantly lower peripheral blood and hepatic TLR7 expression and IFNL1 levels were found in patients with viral loads between 200,000-600,000 IU/ml and >600,000 IU/ml than in those with viral load <200,000 IU/ml (P < 0.05), in patients with severe necroinflammation than in those with mild-to-moderate necroinflammation (P < 0.05) and in patients with advanced fibrosis than in those with early fibrosis (P < 0.01). Also, changes in TLR7 expression and IFNL1 production in peripheral blood and the liver were inversely correlated with serum levels of aspartate and alanine aminotransferases (P < 0.05) and HCV RNA (P < 0.01), histological activity grade (P < 0.01) and fibrosis stage (P < 0.01). By plotting receiver operating characteristics (ROC) curve, serum IFNL1 showed higher sensitivity and specificity than percentages of circulating TLR7+CD14+ monocytes in discriminating patients with CHC according to the severity of hepatic necroinflammation (area under the curve (AUC) = 0.901 vs. 0.816 respectively) and fibrosis (AUC = 0.971 vs. 0.825 respectively) at a cut-off value of 44.75 pg/ml and 10.25% respectively. CONCLUSIONS TLR7 activation and IFNL1 production in CHC may play an important role in controlling viral replication and limiting hepatic inflammation and fibrosis and their downregulation may result in viral persistence and disease progression. The immunoregulatory role of TLR7-IFNL1 pathway in the pathogenesis of chronic HCV infection should be further studied. Clinical trials with a large number of patients are needed to assess the usefulness of serum IFNL1 as a potential biomarker for severity of liver injury in chronic HCV infection and other liver diseases.
Collapse
Affiliation(s)
- Hoda El Aggan
- Department of Internal Medicine (Hepatobiliary Unit), Faculty of Medicine, University of Alexandria, Egypt.
| | - Nahla Farahat
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Egypt
| | - Nevine El Deeb
- Department of Pathology, Faculty of Medicine, University of Alexandria, Egypt
| | - Ahmed Zeid
- Department of Internal Medicine (Hepatobiliary Unit), Faculty of Medicine, University of Alexandria, Egypt
| | - Assem El-Shendidi
- Department of Internal Medicine (Hepatobiliary Unit), Faculty of Medicine, University of Alexandria, Egypt
| |
Collapse
|
21
|
Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus Infection: Host⁻Virus Interaction and Mechanisms of Viral Persistence. Cells 2019; 8:cells8040376. [PMID: 31027278 PMCID: PMC6523734 DOI: 10.3390/cells8040376] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C (HCV) is a major cause of liver disease, in which a third of individuals with chronic HCV infections may develop liver cirrhosis. In a chronic HCV infection, host immune factors along with the actions of HCV proteins that promote viral persistence and dysregulation of the immune system have an impact on immunopathogenesis of HCV-induced hepatitis. The genome of HCV encodes a single polyprotein, which is translated and processed into structural and nonstructural proteins. These HCV proteins are the target of the innate and adaptive immune system of the host. Retinoic acid-inducible gene-I (RIG-I)-like receptors and Toll-like receptors are the main pattern recognition receptors that recognize HCV pathogen-associated molecular patterns. This interaction results in a downstream cascade that generates antiviral cytokines including interferons. The cytolysis of HCV-infected hepatocytes is mediated by perforin and granzyme B secreted by cytotoxic T lymphocyte (CTL) and natural killer (NK) cells, whereas noncytolytic HCV clearance is mediated by interferon gamma (IFN-γ) secreted by CTL and NK cells. A host-HCV interaction determines whether the acute phase of an HCV infection will undergo complete resolution or progress to the development of viral persistence with a consequential progression to chronic HCV infection. Furthermore, these host-HCV interactions could pose a challenge to developing an HCV vaccine. This review will focus on the role of the innate and adaptive immunity in HCV infection, the failure of the immune response to clear an HCV infection, and the factors that promote viral persistence.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
- Pennsylvania College of Optometry at Salus University, Elkins Park, PA 19027, USA.
| | - Ronak Loonawat
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Mohit Sehgal
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Dip Patel
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| |
Collapse
|
22
|
Xu H, Xu SJ, Xie SJ, Zhang Y, Yang JH, Zhang WQ, Zheng MN, Zhou H, Qu LH. MicroRNA-122 supports robust innate immunity in hepatocytes by targeting the RTKs/STAT3 signaling pathway. eLife 2019; 8:41159. [PMID: 30735121 PMCID: PMC6389286 DOI: 10.7554/elife.41159] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-122 (miR-122) is the most abundant microRNA in hepatocytes and a central player in liver biology and disease. Herein, we report a previously unknown role for miR-122 in hepatocyte intrinsic innate immunity. Restoration of miR-122 levels in hepatoma cells markedly enhanced the activation of interferons (IFNs) in response to a variety of viral nucleic acids or simulations, especially in response to hepatitis C virus RNA and poly (I:C). Mechanistically, miR-122 downregulated the phosphorylation (Tyr705) of STAT3, thereby removing the negative regulation of STAT3 on IFN-signaling. STAT3 represses IFN expression by inhibiting interferon regulatory factor 1 (IRF1), whereas miR-122 targets MERTK, FGFR1 and IGF1R, three receptor tyrosine kinases (RTKs) that directly promote STAT3 phosphorylation. This work identifies a miR-122–RTKs/STAT3–IRF1–IFNs regulatory circuitry, which may play a pivotal role in regulating hepatocyte innate immunity. These findings renewed our knowledge of miR-122’s function and have important implications for the treatment of hepatitis viruses.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi-Jun Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shu-Juan Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yin Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-Qi Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Man-Ni Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Verrier ER, Yim SA, Heydmann L, El Saghire H, Bach C, Turon-Lagot V, Mailly L, Durand SC, Lucifora J, Durantel D, Pessaux P, Manel N, Hirsch I, Zeisel MB, Pochet N, Schuster C, Baumert TF. Hepatitis B Virus Evasion From Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase Sensing in Human Hepatocytes. Hepatology 2018; 68:1695-1709. [PMID: 29679386 PMCID: PMC6195855 DOI: 10.1002/hep.30054] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) was identified as a DNA sensor. In this study, we investigated the functional role of cGAS in sensing HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss-of-function and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes, and HBV-infected human liver chimeric mice. Here, we show that cGAS is expressed in the human liver, primary human hepatocytes, and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral covalently closed circular DNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. Conclusion: HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways.
Collapse
Affiliation(s)
- Eloi R. Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France,Corresponding authors: Prof. Thomas F. Baumert, MD, , Dr. Catherine Schuster, PhD, , and Dr. Eloi R. Verrier, PhD, , Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000 Strasbourg, France. Tel: +33 3 68 85 37 03; fax: +33 3 68 85 37 24
| | - Seung-Ae Yim
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Vincent Turon-Lagot
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Laurent Mailly
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Sarah C. Durand
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Julie Lucifora
- Inserm, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - David Durantel
- Inserm, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France,Pôle Hépato-Digestif, Institut Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, F-75005 Paris, France,Inserm, U932, F-75005 Paris, France
| | - Ivan Hirsch
- Department of Genetics and Microbiology, Faculty of Science, Biocev, Charles University, 12844 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, CAS, IOCB & Gilead Research Center, 16610 Prague
| | - Mirjam B. Zeisel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Nathalie Pochet
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France,Corresponding authors: Prof. Thomas F. Baumert, MD, , Dr. Catherine Schuster, PhD, , and Dr. Eloi R. Verrier, PhD, , Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000 Strasbourg, France. Tel: +33 3 68 85 37 03; fax: +33 3 68 85 37 24
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France,Pôle Hépato-Digestif, Institut Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France,Corresponding authors: Prof. Thomas F. Baumert, MD, , Dr. Catherine Schuster, PhD, , and Dr. Eloi R. Verrier, PhD, , Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000 Strasbourg, France. Tel: +33 3 68 85 37 03; fax: +33 3 68 85 37 24
| |
Collapse
|
24
|
Krivoshiev BV, Beemster GTS, Sprangers K, Cuypers B, Laukens K, Blust R, Husson SJ. Transcriptome profiling of HepG2 cells exposed to the flame retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). Toxicol Res (Camb) 2018; 7:492-502. [PMID: 30090599 PMCID: PMC6060682 DOI: 10.1039/c8tx00006a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022] Open
Abstract
The flame retardant, 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO), has been receiving great interest given its superior fire protection properties, and its predicted low level of persistence, bioaccumulation, and toxicity. However, empirical toxicological data that are essential for a complete hazard assessment are severely lacking. In this study, we attempted to identify the potential toxicological modes of action by transcriptome (RNA-seq) profiling of the human liver hepatocellular carcinoma cell line, HepG2. Such insight may help in identifying compounds of concern and potential toxicological phenotypes. DOPO was found to have little cytotoxic potential, with lower effective concentrations compared to other flame retardants studied in the same cell line. Differentially expressed genes revealed a wide range of molecular effects including changes in protein, energy, DNA, and lipid metabolism, along with changes in cellular stress response pathways. In response to 250 μM DOPO, the most perturbed biological processes were fatty acid metabolism, androgen metabolism, glucose transport, and renal function and development, which is in agreement with other studies that observed similar effects of other flame retardants in other species. However, treatment with 2.5 μM DOPO resulted in very few differentially expressed genes and failed to indicate any potential effects on biology, despite such concentrations likely being orders of magnitude greater than would be encountered in the environment. This, together with the low levels of cytotoxicity, supports the potential replacement of the current flame retardants by DOPO, although further studies are needed to establish the nephrotoxicity and endocrine disruption of DOPO.
Collapse
Affiliation(s)
- Boris V Krivoshiev
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| | - Gerrit T S Beemster
- Department of Biology , Integrated Molecular Plant Physiology Research , University of Antwerp , Antwerp , Belgium
| | - Katrien Sprangers
- Department of Biology , Integrated Molecular Plant Physiology Research , University of Antwerp , Antwerp , Belgium
| | - Bart Cuypers
- Department of Mathematics and Computer Science , Advanced Database Research and Modelling (ADReM) , University of Antwerp , Antwerp , Belgium
- Department of Biomedical Sciences , Unit of Molecular Parasitology , Institute of Tropical Medicine , Antwerp , Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Science , Advanced Database Research and Modelling (ADReM) , University of Antwerp , Antwerp , Belgium
| | - Ronny Blust
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| | - Steven J Husson
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| |
Collapse
|
25
|
Shen F, Li Y, Wang Y, Sozzi V, Revill PA, Liu J, Gao L, Yang G, Lu M, Sutter K, Dittmer U, Chen J, Yuan Z. Hepatitis B virus sensitivity to interferon-α in hepatocytes is more associated with cellular interferon response than with viral genotype. Hepatology 2018; 67:1237-1252. [PMID: 29059468 DOI: 10.1002/hep.29609] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Interferon-α (IFN-α) is used to treat chronic hepatitis B virus (HBV) infection, but only 20%-40% of patients respond well. Clinical observations have suggested that HBV genotype is associated with the response to IFN therapy; however, its role in viral responsiveness to IFN in HBV-infected hepatocytes remains unclear. Here, we produced infectious virions of HBV genotypes A to D to infect three well-recognized cell-culture-based HBV infection systems, including primary human hepatocytes (PHH), differentiated HepaRG (dHepaRG), and HepG2-NTCP cells to quantitatively compare the antiviral effect of IFN-α on HBV across genotypes and cell models. The efficacy of IFN-α against HBV in hepatocytes was generally similar across genotypes A2, B5, C2, and D3; however, it was significantly different among the infection models given that the half maximal inhibitory concentration value of IFN-α for inhibition of viral DNA replication in PHH (<20 U/mL) and dHepaRG cells were much lower than that in HepG2-NTCP cells (>500 U/mL). Notably, even in PHH, IFN-α did not reduce HBV covalently closed circular DNA at the concentrations for which viral antigens and DNA replication intermediates were strongly reduced. The three cell-culture models exhibited differential cellular response to IFN-α. The genes reported to be associated with responsiveness to IFN-α in patients were robustly induced in PHH while weakly induced in HepG2-NTCP cells upon IFN-α treatment. Reduction or promotion of IFN response in PHH or HepG2-NTCP cells significantly attenuated or improved the inhibitory capacity of IFN-α on HBV replication, respectively. CONCLUSION In the cell-culture-based HBV infection models, the sensitivity of HBV to IFN-α in hepatocytes is determined more by the cell-intrinsic IFN response than by viral genotype, and improvement of the IFN response in HepG2-NTCP cells promotes the efficacy of IFN-α against HBV. (Hepatology 2018;67:1237-1252).
Collapse
Affiliation(s)
- Fang Shen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Roche Innovation Center Shanghai, Shanghai, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yang Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Vitina Sozzi
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lu Gao
- Roche Innovation Center Shanghai, Shanghai, China
| | - Guang Yang
- Roche Innovation Center Shanghai, Shanghai, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
26
|
Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq. Toxicol In Vitro 2018; 46:178-188. [DOI: 10.1016/j.tiv.2017.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/10/2017] [Accepted: 10/08/2017] [Indexed: 11/20/2022]
|
27
|
Han J, Chu Q, Huo R, Xu T. Inducible microRNA-122 modulates RIG-I signaling pathway via targeting DAK in miiuy croaker after poly(I:C) stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:52-60. [PMID: 28923593 DOI: 10.1016/j.dci.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
MicroRNA-122 (miR-122) was originally identified in mouse and then lots of researches on miR-122 had been performed in mammals. However, the functional study of miR-122 were restricted in fish. In miiuy croaker, miR-122 is sensitive to poly(I:C) stimulation. In this study, a combination of bioinformatics and experimental techniques were used to investigate the functions of miR-122. DAK is a putative target gene of miR-122 which was predicted by bioinformatics, and further the luciferase reporter assays were used to confirm the target sites in DAK 3'untranslated region. The inhibiting effect of miR-122 mimics or pre-miR-122 on DAK presented the dose and time dependent manners, and the pre-miR-122 showed stronger inhibiting effect on DAK than the miR-122 mimics. Therefore, the miR-122 participate in regulating RIG-I-like receptors signaling pathway via inhibiting DAK which is the inhibitors of MDA5. The expression of miR-122 and DAK showed negative relationship in both miiuy croaker spleen and macrophages, which imply that miR-122 may regulate DAK at the post-transcriptional level. These results will enhance our understanding about the regulation of miRNAs on immune response in fish.
Collapse
Affiliation(s)
- Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ruixuan Huo
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
28
|
Liu B, Tang L, Zhang X, Ma J, Sehgal M, Cheng J, Zhang X, Zhou Y, Du Y, Kulp J, Guo JT, Chang J. A cell-based high throughput screening assay for the discovery of cGAS-STING pathway agonists. Antiviral Res 2017; 147:37-46. [PMID: 28982551 DOI: 10.1016/j.antiviral.2017.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 02/01/2023]
Abstract
Stimulator of interferon genes (STING) is an endoplasmic reticulum transmembrane protein that serves as a molecular hub for activation of interferon and inflammatory cytokine response by multiple cellular DNA sensors. Not surprisingly, STING has been demonstrated to play an important role in host defense against microorganisms and pharmacologic activation of STING is considered as an attractive strategy to treat viral diseases and boost antitumor immunity. In light of this we established a HepAD38-derived reporter cell line that expresses firefly luciferase in response to the activation of cyclic GMP-AMP synthase (cGAS)-STING pathway for high throughput screening (HTS) of small molecular human STING agonists. This cell-based reporter assay required only 4 h treatment with a reference STING agonist to induce a robust luciferase signal and was demonstrated to have an excellent performance in HTS format. By screening 16,000 compounds, a dispiro diketopiperzine (DSDP) compound was identified to induce cytokine response in a manner dependent on the expression of functional human STING, but not mouse STING. Moreover, we showed that DSDP induced an interferon-dominant cytokine response in human skin fibroblasts and peripheral blood mononuclear cells, which in turn potently suppressed the replication of yellow fever virus, dengue virus and Zika virus. We have thus established a robust cell-based assay system suitable for rapid discovery and mechanistic analyses of cGAS-STING pathway agonists. Identification of DSDP as a human STING agonist enriches the pipelines of STING-targeting drug development for treatment of viral infections and cancers.
Collapse
Affiliation(s)
- Bowei Liu
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA; Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xiaohui Zhang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA; Artificial Liver Center, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Julia Ma
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Mohit Sehgal
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Junjun Cheng
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Xuexiang Zhang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - John Kulp
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA.
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA.
| |
Collapse
|
29
|
Sung PS, Hong SH, Lee J, Park SH, Yoon SK, Chung WJ, Shin EC. CXCL10 is produced in hepatitis A virus-infected cells in an IRF3-dependent but IFN-independent manner. Sci Rep 2017; 7:6387. [PMID: 28744018 PMCID: PMC5527116 DOI: 10.1038/s41598-017-06784-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/19/2017] [Indexed: 01/26/2023] Open
Abstract
Acute hepatitis A caused by hepatitis A virus (HAV) infection is accompanied by severe liver injury in adult patients, and the liver injury is associated with the production of chemokines. Herein, we investigated the mechanism of how HAV infection induces the production of CXCR3 and CCR5 chemokines, such as CXCL10, CCL4 and CCL5. The production of CXCL10, CCL4 and CCL5 was markedly increased by HAV (HM-175/18f) infection in the culture of primary human hepatocytes and HepG2 cells. In particular, CXCL10 was produced in HAV-infected cells, not in neighboring uninfected cells. Moreover, these chemokines were significantly increased in the sera of acute hepatitis A patients. The production of IFN-λs was also robustly induced by HAV infection, and the blocking of secreted IFN-λs partially abrogated the production of CCL4 and CCL5 in HAV-infected cells. However, CXCL10 production was not decreased by the blocking of IFN-λs. Instead, CXCL10 production was reduced by silencing the expression of RIG-I-like receptor (RLR) signal molecules, such as mitochondrial antiviral signaling protein and interferon regulatory factor 3, in HAV-infected cells. In conclusion, HAV infection strongly induces the production of helper 1 T cell-associated chemokines, particularly CXCL10 via RLR signaling, even without secreted IFNs.
Collapse
Affiliation(s)
- Pil Soo Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Hui Hong
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
| | - Jeewon Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Seung Kew Yoon
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Jin Chung
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
30
|
Sung PS, Hong SH, Chung JH, Kim S, Park SH, Kim HM, Yoon SK, Shin EC. IFN-λ4 potently blocks IFN-α signalling by ISG15 and USP18 in hepatitis C virus infection. Sci Rep 2017. [PMID: 28630501 PMCID: PMC5476576 DOI: 10.1038/s41598-017-04186-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genetic polymorphisms in IFNL4 have been shown to predict responses to IFN-α-based therapy in hepatitis C virus (HCV)-infected patients. The IFNL4-ΔG genotype, which encodes functional IFN-λ4 protein, is associated with a poor treatment response. In the present study, we investigated the induction and biological effects of IFN-λ4 in HCV-infected hepatocytes and their association with responsiveness to IFN-α. We also studied the effects of direct-acting antiviral (DAA) treatment on IFN-λ4 expression and IFN-α responsiveness. HCV infection induced IFN-λ4 expression at mRNA and protein levels in primary human hepatocytes (PHHs). In hepatoma cells, IFNL4 gene transfection or recombinant IFN-λ4 protein treatment robustly increased the protein levels of ISG15 and USP18 in an IFNLR1-dependent manner and potently blocked IFN-α signalling. The ISG15/USP18-mediated IFN-α unresponsiveness was demonstrated by transfection of siRNAs targeting ISG15 and/or USP18. This potent IFN-λ4 effect was related to prolonged ISG expression after IFNL4 gene transfection. DAA treatment of HCV-infected PHHs reduced the expression of IFN-λs, including IFN-λ4, and restored IFN-α responsiveness. These results demonstrate that virus-induced IFN-λ4 potently blocks IFN-α signalling by inducing high protein levels of ISG15 and USP18. Moreover, the data clearly demonstrate that DAA therapy restores IFN-α responsiveness in HCV-infected cells.
Collapse
Affiliation(s)
- Pil Soo Sung
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea.,Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seon-Hui Hong
- BioMedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae-Hee Chung
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Sojeong Kim
- BioMedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, 34141, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Seung Kew Yoon
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea. .,BioMedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
31
|
Hei L, Zhong J. Laboratory of genetics and physiology 2 (LGP2) plays an essential role in hepatitis C virus infection-induced interferon responses. Hepatology 2017; 65:1478-1491. [PMID: 28090671 DOI: 10.1002/hep.29050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 12/24/2022]
Abstract
UNLABELLED Retinoic acid-inducible gene I (RIG-I)-like receptors are cytosolic pattern recognition receptors (PRRs) that detect non-self-RNA and activate downstream interferon (IFN) signaling. One of the RIG-I-like receptors, laboratory of genetics and physiology 2 (LGP2), was originally thought to be a negative feedback regulator in the RIG-I signaling pathway, but growing evidence indicates that LGP2 is one cofactor of melanoma differentiation-associated protein 5 (MDA5) in MDA5-mediated IFN signaling activation. Our previous work showed that MDA5 was the major PRR to sense hepatitis C virus (HCV) infection in hepatocytes, but the role of LGP2 in HCV infection-induced IFN signaling has not been elucidated. In this study, we reported that LGP2 was a positive regulator of HCV infection-induced IFN signaling. Knockout of LGP2 in hepatocytes significantly diminished IFN production in response to HCV infection, but not to HCV 3'untranslated region RNA transfection. Mechanistic studies showed that LGP2 exerted its function at a step upstream of MDA5 in the IFN signaling. HCV infection promoted the molecular interaction between LGP2 and MDA5, which, in turn, enhanced MDA5/HCV RNA association. Finally, we demonstrated that the ATPase activity of LGP2 was critical for assisting MDA5/HCV RNA interaction and activating IFN signaling during HCV infection. CONCLUSION Our work demonstrated that LGP2 plays an essential role in activating IFN signaling against HCV infection by promoting MDA5 recognition of HCV pathogen-associated molecular patterns. (Hepatology 2017;65:1478-1491).
Collapse
Affiliation(s)
- Lei Hei
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Yin X, Li X, Ambardekar C, Hu Z, Lhomme S, Feng Z. Hepatitis E virus persists in the presence of a type III interferon response. PLoS Pathog 2017; 13:e1006417. [PMID: 28558073 PMCID: PMC5466342 DOI: 10.1371/journal.ppat.1006417] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/09/2017] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
The RIG-I-like RNA helicase (RLR)-mediated interferon (IFN) response plays a pivotal role in the hepatic antiviral immunity. The hepatitis A virus (HAV) and the hepatitis C virus (HCV) counter this response by encoding a viral protease that cleaves the mitochondria antiviral signaling protein (MAVS), a common signaling adaptor for RLRs. However, a third hepatotropic RNA virus, the hepatitis E virus (HEV), does not appear to encode a functional protease yet persists in infected cells. We investigated HEV-induced IFN responses in human hepatoma cells and primary human hepatocytes. HEV infection resulted in persistent virus replication despite poor spread. This was companied by a type III IFN response that upregulated multiple IFN-stimulated genes (ISGs), but type I IFNs were barely detected. Blocking type III IFN production or signaling resulted in reduced ISG expression and enhanced HEV replication. Unlike HAV and HCV, HEV did not cleave MAVS; MAVS protein size, mitochondrial localization, and function remained unaltered in HEV-replicating cells. Depletion of MAVS or MDA5, and to a less extent RIG-I, also diminished IFN production and increased HEV replication. Furthermore, persistent activation of the JAK/STAT signaling rendered infected cells refractory to exogenous IFN treatment, and depletion of MAVS or the receptor for type III IFNs restored the IFN responsiveness. Collectively, these results indicate that unlike other hepatotropic RNA viruses, HEV does not target MAVS and its persistence is associated with continuous production of type III IFNs.
Collapse
Affiliation(s)
- Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Xinlei Li
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Charuta Ambardekar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Zhimin Hu
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sébastien Lhomme
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
33
|
Hepatitis C Virus Indirectly Disrupts DNA Damage-Induced p53 Responses by Activating Protein Kinase R. mBio 2017; 8:mBio.00121-17. [PMID: 28442604 PMCID: PMC5405228 DOI: 10.1128/mbio.00121-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many DNA tumor viruses promote cellular transformation by inactivating the critically important tumor suppressor protein p53. In contrast, it is not known whether p53 function is disrupted by hepatitis C virus (HCV), a unique, oncogenic RNA virus that is the leading infectious cause of liver cancer in many regions of the world. Here we show that HCV-permissive, liver-derived HepG2 cells engineered to constitutively express microRNA-122 (HepG2/miR-122 cells) have normal p53-mediated responses to DNA damage and that HCV replication in these cells potently suppresses p53 responses to etoposide, an inducer of DNA damage, or nutlin-3, an inhibitor of p53 degradation pathways. Upregulation of p53-dependent targets is consequently repressed within HCV-infected cells, with potential consequences for cell survival. Despite this, p53 function is not disrupted by overexpression of the complete HCV polyprotein, suggesting that altered p53 function may result from the host response to viral RNA replication intermediates. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated ablation of double-stranded RNA (dsRNA)-activated protein kinase R (PKR) restored p53 responses while boosting HCV replication, showing that p53 inhibition results directly from viral activation of PKR. The hepatocellular abundance of phosphorylated PKR is elevated in HCV-infected chimpanzees, suggesting that PKR activation and consequent p53 inhibition accompany HCV infection in vivo. These findings reveal a feature of the host response to HCV infection that may contribute to hepatocellular carcinogenesis. Chronic infection with hepatitis C virus (HCV) is the leading cause of liver cancer in most developed nations. However, the mechanisms whereby HCV infection promotes carcinogenesis remain unclear. Here, we demonstrate that HCV infection inhibits the activation of p53 following DNA damage. Contrary to previous reports, HCV protein expression is insufficient to inhibit p53. Rather, p53 inhibition is mediated by cellular protein kinase R (PKR), which is activated by HCV RNA replication and subsequently suppresses global protein synthesis. These results redefine our understanding of how HCV infection influences p53 function. We speculate that persistent disruption of p53-mediated DNA damage responses may contribute to hepatocellular carcinogenesis in chronically infected individuals.
Collapse
|
34
|
Takaki H, Oshiumi H, Shingai M, Matsumoto M, Seya T. Development of mouse models for analysis of human virus infections. Microbiol Immunol 2017; 61:107-113. [PMID: 28370181 DOI: 10.1111/1348-0421.12477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/09/2023]
Abstract
Viruses usually exhibit strict species-specificity as a result of co-evolution with the host. Thus, in mouse models, a great barrier exists for analysis of infections with human-tropic viruses. Mouse models are unlikely to faithfully reproduce the human immune response to viruses or viral compounds and it is difficult to evaluate human therapeutic efficacy with antiviral reagents in mouse models. Humans and mice essentially have different immune systems, which makes it difficult to extrapolate mouse results to humans. In addition, apart from immunological reasons, viruses causing human diseases do not always infect mice because of species tropism. One way to determine tropism would be a virus receptor that is expressed on affected cells. The development of gene-disrupted mice and Tg mice, which express human receptor genes, enables us to analyze several viral infections in mice. Mice are, indeed, susceptible to human viruses when artificially infected in receptor-supplemented mice. Although the mouse cells less efficiently permit viral replication than do human cells, the models for analysis of human viruses have been established in vivo as well as in vitro, and explain viral pathogenesis in the mouse systems. In most systems, however, nucleic acid sensors and type I interferon suppress viral propagation to block the appearance of infectious manifestation. We herein review recent insight into in vivo antiviral responses induced in mouse infection models for typical human viruses.
Collapse
Affiliation(s)
- Hiromi Takaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto
| | - Masashi Shingai
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo
| |
Collapse
|
35
|
The Role of Type III Interferons in Hepatitis C Virus Infection and Therapy. J Immunol Res 2017; 2017:7232361. [PMID: 28255563 PMCID: PMC5309426 DOI: 10.1155/2017/7232361] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
The human interferon (IFN) response is a key innate immune mechanism to fight virus infection. IFNs are host-encoded secreted proteins, which induce IFN-stimulated genes (ISGs) with antiviral properties. Among the three classes of IFNs, type III IFNs, also called IFN lambdas (IFNLs), are an essential component of the innate immune response to hepatitis C virus (HCV). In particular, human polymorphisms in IFNL gene loci correlate with hepatitis C disease progression and with treatment response. To date, the underlying mechanisms remain mostly elusive; however it seems clear that viral infection of the liver induces IFNL responses. As IFNL receptors show a more restricted tissue expression than receptors for other classes of IFNs, IFNL treatment has reduced side effects compared to the classical type I IFN treatment. In HCV therapy, however, IFNL will likely not play an important role as highly effective direct acting antivirals (DAA) exist. Here, we will review our current knowledge on IFNL gene expression, protein properties, signaling, ISG induction, and its implications on HCV infection and treatment. Finally, we will discuss the lessons learnt from the HCV and IFNL field for virus infections beyond hepatitis C.
Collapse
|
36
|
Suppression of Host Innate Immune Response by Hepatitis C Virus via Induction of Autophagic Degradation of TRAF6. J Virol 2016; 90:10928-10935. [PMID: 27681126 DOI: 10.1128/jvi.01365-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an important adaptor molecule that mediates the TNFR family and interleukin-1 (IL-1)/Toll-like receptor (TLR) signaling cascades. These pathways are important for the host to control viral infections. In this report, we demonstrated that hepatitis C virus (HCV) depleted TRAF6 from its host cells through a posttranslational mechanism. This depletion was independent of proteasomes, as it was not affected by the proteasome inhibitor MG132, but it was suppressed by bafilomycin A1, which led to the association of TRAF6 with autophagosomes. As bafilomycin A1 is a vacuolar ATPase inhibitor that inhibits autophagic protein degradation, these results suggested that HCV depleted TRAF6 via autophagy. The degradation of TRAF6 was apparently mediated by the p62 sequestosome protein, which is a factor important for selective autophagy, as it could bind to TRAF6 and its silencing stabilized TRAF6. The depletion of TRAF6 suppressed activation of NF-κB and induction of proinflammatory cytokines and enhanced HCV replication. In contrast, the overexpression of TRAF6 suppressed HCV replication. These results revealed a novel mechanism that was used by HCV to disrupt the host innate immune responses for viral replication and persistence. IMPORTANCE HCV can cause severe liver diseases and is one of the most important human pathogens. It establishes chronic infections in the great majority of patients that it infects, indicating that it has evolved sophisticated mechanisms to evade host immunity. TRAF6 is an important signaling molecule that mediates activation of NF-κB and expression of proinflammatory cytokines and interferons. In this study, we found that HCV infection suppressed the host innate immune response through the induction of autophagic degradation of TRAF6. This finding provided important information for further understanding how HCV evades host immunity to establish persistence.
Collapse
|
37
|
Du X, Pan T, Xu J, Zhang Y, Song W, Yi Z, Yuan Z. Hepatitis C virus replicative double-stranded RNA is a potent interferon inducer that triggers interferon production through MDA5. J Gen Virol 2016; 97:2868-2882. [PMID: 27655134 DOI: 10.1099/jgv.0.000607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cytoplasmic RNA sensors, retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, play crucial roles in innate sensing of hepatitis C virus (HCV). However, the exact identity of the IFN inducer generated during HCV infection is poorly understood. To identify the IFN inducer, we extracted the RNAs from HCV-replicating cells and introduced these into IFN signalling-competent cells to examine IFN production. RNAs isolated from HCV-replicating cells triggered robust IFN-β and IFN-λ production in Huh7 cells in a viral replication-dependent manner, preferentially through the melanoma differentiation-associated gene 5 but not through the retinoic acid-inducible gene I-mediated pathway. The IFN-inducing capacity of HCV RNA survived after calf intestinal alkaline phosphatase and ssRNA-specific S1 nuclease treatment, but was completely eliminated by dsRNA-specific RNase III digestion, suggesting that viral replicative dsRNA is an IFN inducer. Furthermore, HCV viral RNA extracted from replicating cells was sensitive to 5'-monophosphate-dependent 5'→3' exonuclease (TER) digestion, suggesting that the HCV genome lacks a 5'-triphosphate or -diphosphate. In semi-permeabilized cells, the HCV IFN inducer primarily resided in an enclosed membranous structure that protects the IFN inducer from RNase digestion. Taken together, we identified HCV replicative dsRNA as a viral IFN inducer enclosed within the viral replication factory.
Collapse
Affiliation(s)
- Xiaoting Du
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Tingting Pan
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Jun Xu
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Yang Zhang
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Wuhui Song
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhenghong Yuan
- Institute of Biomedical Sciences, Fudan University, Shanghai, PR China.,Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China.,Institute of Medical Microbiology, Fudan University, Shanghai, PR China
| |
Collapse
|
38
|
Schwartz RE, Bram Y, Frankel A. Pluripotent Stem Cell-Derived Hepatocyte-like Cells: A Tool to Study Infectious Disease. CURRENT PATHOBIOLOGY REPORTS 2016; 4:147-156. [PMID: 29910973 DOI: 10.1007/s40139-016-0113-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review Liver disease is an important clinical and global problem and is the 16th leading cause of death worldwide and responsible for 1 million deaths worldwide each year. Infectious disease is a major cause of liver disease specifically and overall is even a greater cause of patient morbidity and mortality. Tools to study human liver disease and infectious disease have been lacking which has significantly hampered the study of liver disease generally and hepatotropic pathogens more specifically. Historically, hepatoma cell lines have been used for in vitro cell culture models to study infectious disease. Significant differences between human hepatoma cell lines and the human hepatocyte has hampered our understanding of hepatocyte pathogen infection and hepatocyte--pathogen interactions. Recent Findings Despite these limitations, great progress was made in the understanding of specific aspects of the life cycle of the canonical hepatocyte viral pathogen, Hepatitis C Virus. Over time various specific drugs targeting various proteins of the HCV virion or aspects of the HCV viral life cycle have been created that enable almost complete elimination of the virus in vitro and clinically. These drugs, direct-acting antivirals have enabled achieving sustained virologic response in over 90-95 percent of patients. Summary Despite the development of direct-acting antivirals and the extreme success in achieving sustained virologic response, there has only been limited success elucidating host-pathogen interactions largely due to the poor nature of the hepatoma platform. Alternative approaches are needed. Pluripotent stem cells are renewable, can be derived from a single donor and can be efficiently and reproducibly differentiated towards many cell types including ectodermal-, endodermal-, and mesodermal-derived lineages. The development of pluripotent stem cell-derived hepatocyte-like cells (iHLCS) changes the paradigm as robust cells with the phenotype and function of hepatocytes can be readily created on demand with a variety of genetic background or alterations. iHLCs are readily used as models to study human drug metabolism, human liver disease, and human hepatotropic infectious disease. In this review, we discuss the biology of the HCV virus, the use of iHLCs as models to study human liver disease, and review the current work on using iHLCs to study HCV infection.
Collapse
Affiliation(s)
| | - Yaron Bram
- Weill Cornell School of Medicine, New York, NY, USA
| | | |
Collapse
|
39
|
Abstract
Hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis C virus (HCV) are responsible for most cases of viral hepatitis. Infection by each type of virus results in a different typical natural disease course and clinical outcome that are determined by virological and immunological factors. HCV tends to establish a chronic persistent infection, whereas HAV does not. HBV is effectively controlled in adults, although it persists for a lifetime after neonatal infection. In this Review, we discuss the similarities and differences in immune responses to and immunopathogenesis of HAV, HBV and HCV infections, which may explain the distinct courses and outcomes of each hepatitis virus infection.
Collapse
|
40
|
Innate immunity against hepatitis C virus. Curr Opin Immunol 2016; 42:98-104. [PMID: 27366996 DOI: 10.1016/j.coi.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) infection tends persistent and causes chronic liver diseases, including inflammation, cirrhosis and hepatocellular carcinoma. Innate immune responses triggered by HCV infection, particularly the production of interferons and pro-inflammatory cytokines, shape the early host antiviral defense, and orchestrate subsequent HCV-specific adaptive immunity. Host has evolved multifaceted means to sense HCV infection to induce innate immune responses, whereas HCV has also developed elaborate strategies to evade immune attack. Recent studies in the field have provided many new insights into the interplay of HCV and innate immunity. In this review, we summarized these recent advances, focusing on pathogen recognition by innate sensors, newly discovered anti-HCV innate effectors and new viral strategies to evade innate immunity.
Collapse
|
41
|
Thomas E, Liang TJ. Experimental models of hepatitis B and C - new insights and progress. Nat Rev Gastroenterol Hepatol 2016; 13:362-74. [PMID: 27075261 PMCID: PMC5578419 DOI: 10.1038/nrgastro.2016.37] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viral hepatitis is a major cause of morbidity and mortality, affecting hundreds of millions of people worldwide. Hepatitis-causing viruses initiate disease by establishing both acute and chronic infections, and several of these viruses are specifically associated with the development of hepatocellular carcinoma. Consequently, intense research efforts have been focusing on increasing our understanding of hepatitis virus biology and on improving antiviral therapy and vaccination strategies. Although valuable information on viral hepatitis emerged from careful epidemiological studies on sporadic outbreaks in humans, experimental models using cell culture, rodent and non-human primates were essential in advancing the field. Through the use of these experimental models, improvement in both the treatment and prevention of viral hepatitis has progressed rapidly; however, agents of viral hepatitis are still among the most common pathogens infecting humans. In this Review, we describe the important part that these experimental models have played in the study of viral hepatitis and led to monumental advances in our understanding and treatment of these pathogens. Ongoing developments in experimental models are also described.
Collapse
Affiliation(s)
- Emmanuel Thomas
- Schiff Center for Liver Diseases and Sylvester Cancer Center, Room
PAP514, Papanicolaou Building, 1550 NW 10th Avenue, Miami, Florida 33136, USA
| | - T. Jake Liang
- Liver Diseases Branch, NIH, Building 10-9B16, Bethesda, Maryland
20892–1800, USA
| |
Collapse
|
42
|
Bang BR, Elmasry S, Saito T. Organ system view of the hepatic innate immunity in HCV infection. J Med Virol 2016; 88:2025-2037. [PMID: 27153233 DOI: 10.1002/jmv.24569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2016] [Indexed: 12/12/2022]
Abstract
An orchestration of innate and adaptive immunity determines the infection outcome and whether the host achieves clearance or allows the pathogen to establish persistent infection. The robust activation of the innate immune response plays the most critical role in both limiting viral replication and halting the spread of the pathogen immediately after infection. The magnitude of innate immune activation is coupled with the efficient mounting of the adaptive immunity. Although immunity against HCV infection is known to be inadequate as most cases transitions to chronicity, approximately 25% of acute infection cases result in spontaneous clearance. The exact immune mechanisms that govern the infection outcome remain largely unknown; recent discoveries suggest that the innate immune system facilitates this event. Both infected hepatocytes and local innate immune cells trigger the front line defense program of the liver as well as the recruitment of diverse adaptive immune cells to the site of infection. Although hepatocyte is the target of HCV infection, nearly all cell types that exist in the liver are involved in the innate defense and contribute to the pathophysiology of hepatic inflammation. The main focus of this comprehensive review is to discuss the current knowledge on how each hepatic cell type contributes to the organ system level innate immunity against HCV infection as well as interplays with the viral evasion program. Furthermore, this review article also aims to synchronize the observations from both molecular biological studies and clinical studies with the ultimate goal of improving our understanding of HCV mediated hepatitis. J. Med. Virol. 88:2025-2037, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bo-Ram Bang
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, USC Research Center for Liver Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Sandra Elmasry
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, USC Research Center for Liver Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, USC Research Center for Liver Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California. .,Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California. .,Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, California.
| |
Collapse
|
43
|
Ferraris P, Chandra PK, Panigrahi R, Aboulnasr F, Chava S, Kurt R, Pawlotsky JM, Wilkens L, Osterlund P, Hartmann R, Balart LA, Wu T, Dash S. Cellular Mechanism for Impaired Hepatitis C Virus Clearance by Interferon Associated with IFNL3 Gene Polymorphisms Relates to Intrahepatic Interferon-λ Expression. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:938-51. [PMID: 26896692 PMCID: PMC5807932 DOI: 10.1016/j.ajpath.2015.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
The single nucleotide polymorphism located within the IFNL3 (also known as IL28B) promoter is one of the host factors associated with hepatitis C virus (HCV) clearance by interferon (IFN)-α therapy; however the mechanism remains unknown. We investigated how IL28B gene polymorphism influences HCV clearance with infected primary human hepatocytes, liver biopsies, and hepatoma cell lines. Our study confirms that the rs12979860-T/T genotype has a strong correlation with ss469415590-ΔG/ΔG single nucleotide polymorphism that produces IFN-λ4 protein. We found that IFN-α and IFN-λ1 antiviral activity against HCV was impaired in IL28B T/T infected hepatocytes compared with C/C genotype. Western blot analysis showed that IL28B TT genotype hepatocytes expressed higher levels of IFN-λ proteins (IL28B, IL-29), preactivated IFN-stimulated gene (ISG) expression, and impaired Stat phosphorylation when stimulated with either IFN-α or IFN-λ1. Furthermore, we showed that silencing IFN-λ1 in T/T cell line reduced basal ISG expression and improved antiviral activity. Likewise, overexpression of IFN-λ (1 to 4) in C/C cells induced basal ISG expression and prevented IFN-α antiviral activity. We showed that IFN-λ4, produced at low level only in T/T cells induced expression of IL28B and IL-29 and prevented IFN-α antiviral activity in HCV cell culture. Our results suggest that IFN-λ4 protein expression associated with the IL28B-T/T variant preactivates the Janus kinase-Stat signaling, leading to impaired HCV clearance by both IFN-α and IFN-λ.
Collapse
Affiliation(s)
- Pauline Ferraris
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Partha K Chandra
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Rajesh Panigrahi
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Fatma Aboulnasr
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Srinivas Chava
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Ramazan Kurt
- Department of Medicine, Gastroenterology, and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Jean-Michel Pawlotsky
- Department of Molecular Virology and Immunology, Institut Mondor de la Recherche, Creteil, France
| | - Ludwig Wilkens
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Pamela Osterlund
- Department of Vaccination and Immune Protection Viral Infections, National Institute for Health and Welfare, Helsinki, Finland
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Luis A Balart
- Department of Medicine, Gastroenterology, and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana; Department of Medicine, Gastroenterology, and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
44
|
Hoffmann F, Endres S, Rothenfusser S. Reply. Hepatology 2016; 63:1062-3. [PMID: 26106015 DOI: 10.1002/hep.27955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Franziska Hoffmann
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians Universität München, Munich, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians Universität München, Munich, Germany
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
45
|
Abstract
The past decade has seen tremendous progress in understanding hepatitis C virus (HCV) biology and its related disease, hepatitis C. Major advances in characterizing viral replication have led to the development of direct-acting anti-viral therapies that have considerably improved patient treatment outcome and can even cure chronic infection. However, the high cost of these treatments, their low barrier to viral resistance, and their inability to prevent HCV-induced liver cancer, along with the absence of an effective HCV vaccine, all underscore the need for continued efforts to understand the biology of this virus. Moreover, beyond informing therapies, enhanced knowledge of HCV biology is itself extremely valuable for understanding the biology of related viruses, such as dengue virus, which is becoming a growing global health concern. Major advances have been realized over the last few years in HCV biology and pathogenesis, such as the discovery of the envelope glycoprotein E2 core structure, the generation of the first mouse model with inheritable susceptibility to HCV, and the characterization of virus-host interactions that regulate viral replication or innate immunity. Here, we review the recent findings that have significantly advanced our understanding of HCV and highlight the major challenges that remain.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| |
Collapse
|
46
|
Abstract
Despite advances in therapy, hepatitis C virus infection remains a major global health issue with 3 to 4 million incident cases and 170 million prevalent chronic infections. Complex, partially understood, host-virus interactions determine whether an acute infection with hepatitis C resolves, as occurs in approximately 30% of cases, or generates a persistent hepatic infection, as occurs in the remainder. Once chronic infection is established, the velocity of hepatocyte injury and resultant fibrosis is significantly modulated by immunologic as well as environmental factors. Immunomodulation has been the backbone of antiviral therapy despite poor understanding of its mechanism of action.
Collapse
Affiliation(s)
- David E. Kaplan
- Medicine and Research Services, Philadelphia VA Medical Center, Philadelphia PA,Division of Gastroenterology, Department of Medicine, University of Pennsylvania
| |
Collapse
|
47
|
Kell A, Stoddard M, Li H, Marcotrigiano J, Shaw GM, Gale M. Pathogen-Associated Molecular Pattern Recognition of Hepatitis C Virus Transmitted/Founder Variants by RIG-I Is Dependent on U-Core Length. J Virol 2015; 89:11056-68. [PMID: 26311867 PMCID: PMC4621103 DOI: 10.1128/jvi.01964-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Despite the introduction of direct-acting antiviral (DAA) drugs against hepatitis C virus (HCV), infection remains a major public health concern because DAA therapeutics do not prevent reinfection and patients can still progress to chronic liver disease. Chronic HCV infection is supported by a variety of viral immune evasion strategies, but, remarkably, 20% to 30% of acute infections spontaneously clear prior to development of adaptive immune responses, thus implicating innate immunity in resolving acute HCV infection. However, the virus-host interactions regulating acute infection are unknown. Transmission of HCV involves one or a few transmitted/founder (T/F) variants. In infected hepatocytes, the retinoic acid-inducible gene I (RIG-I) protein recognizes 5' triphosphate (5'ppp) of the HCV RNA and a pathogen-associated molecular pattern (PAMP) motif located within the 3' untranslated region consisting of poly-U/UC. PAMP binding activates RIG-I to induce innate immune signaling and type 1 interferon antiviral defenses. HCV poly-U/UC sequences can differ in length and complexity, suggesting that PAMP diversity in T/F genomes could regulate innate immune control of acute HCV infection. Using 14 unique poly-U/UC sequences from HCV T/F genomes recovered from acute-infection patients, we tested whether RIG-I recognition and innate immune activation correlate with PAMP sequence characteristics. We show that T/F variants are recognized by RIG-I in a manner dependent on length of the U-core motif of the poly-U/UC PAMP and are recognized by RIG-I to induce innate immune responses that restrict acute infection. PAMP recognition of T/F HCV variants by RIG-I may therefore impart innate immune signaling and HCV restriction to impact acute-phase-to-chronic-phase transition. IMPORTANCE Recognition of nonself molecular patterns such as those seen with viral nucleic acids is an essential step in triggering the immune response to virus infection. Innate immunity is induced by hepatitis C virus infection through the recognition of viral RNA by the cellular RIG-I protein, where RIG-I recognizes a poly-uridine/cytosine motif in the viral genome. Variation within this motif may provide an immune evasion strategy for transmitted/founder viruses during acute infection. Using 14 unique poly-U/UC sequences from HCV T/F genomes recovered from acutely infected HCV patients, we demonstrate that RIG-I binding and activation of innate immunity depend primarily on the length of the uridine core within this motif. T/F variants found in acute infection contained longer U cores within the motif and could activate RIG-I and induce innate immune signaling sufficient to restrict viral infection. Thus, recognition of T/F variants by RIG-I could significantly impact the transition from acute to chronic infection.
Collapse
Affiliation(s)
- Alison Kell
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Mark Stoddard
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joe Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
48
|
Nakai M, Oshiumi H, Funami K, Okamoto M, Matsumoto M, Seya T, Sakamoto N. Interferon (IFN) and Cellular Immune Response Evoked in RNA-Pattern Sensing During Infection with Hepatitis C Virus (HCV). SENSORS 2015; 15:27160-73. [PMID: 26512676 PMCID: PMC4634469 DOI: 10.3390/s151027160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) infects hepatocytes but not dendritic cells (DCs), but DCs effectively mature in response to HCV-infected hepatocytes. Using gene-disrupted mice and hydrodynamic injection strategy, we found the MAVS pathway to be crucial for induction of type III interferons (IFNs) in response to HCV in mouse. Human hepatocytes barely express TLR3 under non-infectious states, but frequently express it in HCV infection. Type I and III IFNs are induced upon stimulation with polyI:C, an analog of double-stranded (ds)RNA. Activation of TLR3 and the TICAM-1 pathway, followed by DC-mediated activation of cellular immunity, is augmented during exposure to viral RNA. Although type III IFNs are released from replication-competent human hepatocytes, DC-mediated CTL proliferation and NK cell activation hardly occur in response to the released type III IFNs. Yet, type I IFNs and HCV-infected hepatocytes can induce maturation of DCs in either human or mouse origin. In addition, mouse CD8+ DCs mature in response to HCV-infected hepatocytes unless the TLR3/TICAM-1 pathway is blocked. We found the exosomes containing HCV RNA in the supernatant of the HCV-infected hepatocytes act as a source of TLR3-mediated DC maturation. Here we summarize our view on the mechanism by which DCs mature to induce NK and CTL in a status of HCV infection.
Collapse
Affiliation(s)
- Masato Nakai
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Kenji Funami
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Masaaki Okamoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| | - Naoya Sakamoto
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|
49
|
Sung PS, Shin EC, Yoon SK. Interferon Response in Hepatitis C Virus (HCV) Infection: Lessons from Cell Culture Systems of HCV Infection. Int J Mol Sci 2015; 16:23683-94. [PMID: 26457705 PMCID: PMC4632721 DOI: 10.3390/ijms161023683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-stranded RNA virus that infects approximately 130–170 million people worldwide. In 2005, the first HCV infection system in cell culture was established using clone JFH-1, which was isolated from a Japanese patient with fulminant HCV infection. JFH-1 replicates efficiently in hepatoma cells and infectious virion particles are released into the culture supernatant. The development of cell culture-derived HCV (HCVcc) systems has allowed us to understand how hosts respond to HCV infection and how HCV evades host responses. Although the mechanisms underlying the different outcomes of HCV infection are not fully understood, innate immune responses seem to have a critical impact on the outcome of HCV infection, as demonstrated by the prognostic value of IFN-λ gene polymorphisms among patients with chronic HCV infection. Herein, we review recent research on interferon response in HCV infection, particularly studies using HCVcc infection systems.
Collapse
Affiliation(s)
- Pil Soo Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
| | - Seung Kew Yoon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
50
|
Yi Z, Chen J, Kozlowski M, Yuan Z. Innate detection of hepatitis B and C virus and viral inhibition of the response. Cell Microbiol 2015; 17:1295-303. [PMID: 26243406 DOI: 10.1111/cmi.12489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 12/23/2022]
Abstract
Viral hepatitis caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) infections poses a significant burden to the public health system. Although HBV and HCV differ in structure and life cycles, they share unique characteristics, such as tropism to infect hepatocytes and association with hepatic and extrahepatic disorders that are of innate immunity nature. In response to HBV and HCV infection, the liver innate immune cells eradicate pathogens by recognizing specific molecules expressed by pathogens via distinct cellular pattern recognition receptors whose triggering activates intracellular signalling pathways inducing cytokines, interferons and anti-viral response genes that collectively function to clear infections. However, HBV and HCV evolve strategies to inactivate innate signalling factors and as such establish persistent infections without being recognized by the innate immunity. We review recent insights into how HBV and HCV are sensed and how they evade innate immunity to establish chronicity. Understanding the mechanisms of viral hepatitis is mandatory to develop effective and safe therapies for eradication of viral hepatitis.
Collapse
Affiliation(s)
- Zhigang Yi
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Maya Kozlowski
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|