1
|
Thongsak N, Chitapanarux T, Chotirosniramit A, Chakrabandhu S, Traisathit P, Nakharutai N, Srikummoon P, Thumronglaohapun S, Supasri T, Hemwan P, Chitapanarux I. Air pollutants and primary liver cancer mortality: a cohort study in crop-burning activities and forest fires area. Front Public Health 2024; 12:1389760. [PMID: 39381772 PMCID: PMC11459313 DOI: 10.3389/fpubh.2024.1389760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Northern Thailand experiences high levels of air pollution in the dry season due to agricultural waste burning and forest fires. Some air pollutants can enter the bloodstream, and the liver has the role of detoxifying these along with other harmful substances. In this study, we assessed the effects of long-term exposure to air pollutants on liver cancer mortality in this area. Methods A cohort of 10,859 primary liver cancer patients diagnosed between 2003 and 2018 and followed up to the end of 2020 were included in the study. Extended time-varying covariates of the annually averaged pollutant concentrations updated each year were utilized. The associations between air pollutants and mortality risk were examined by using a Cox proportional hazard model. Results Metastatic cancer stage had the highest adjusted hazard ratio (aHR) of 3.57 (95% confidence interval (CI):3.23-3.95). Being male (aHR = 1.10; 95% CI: 1.04-1.15), over 60 years old (aHR = 1.16; 95% CI: 1.11-1.21), having a history of smoking (aHR = 1.16; 95%CI: 1.11-1.22), and being exposed to a time-updated local concentration of PM2.5 of 40 μg/m3 (aHR = 1.10; 95% CI: 1.05-1.15) increased the mortality risk. Conclusion We found that air pollution is one of several detrimental factors on the mortality risk of liver cancer.
Collapse
Affiliation(s)
- Natthapat Thongsak
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Taned Chitapanarux
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anon Chotirosniramit
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Somvilai Chakrabandhu
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrinee Traisathit
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nawapon Nakharutai
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pimwarat Srikummoon
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Titaporn Supasri
- Atmospheric Research Unit of National Astronomical Research Institute of Thailand, Chiang Mai, Thailand
| | - Phonpat Hemwan
- Geo-Informatics and Space Technology Centre (Northern Region), Department of Geography, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Pei H, Dai X, He Z, Tang Z, Zhu Y, Du R. PM 2.5 exposure promotes the progression of acute kidney injury by activating NLRP3-mediated macrophage inflammatory response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116454. [PMID: 38749199 DOI: 10.1016/j.ecoenv.2024.116454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
AIM We reveal the mechanism of action whereby ambient PM2.5 promotes kidney injury. METHODS Using C57BL/6 mice, the effects of PM2.5 exposure on the acute kidney injury (AKI) were investigated, including renal function changes, expression of inflammatory cytokines, histopathological changes, as well as activation of nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3(NLRP3). The effects of PM2.5 on renal injury after NLRP3 inhibition were explored using NLRP3 inhibitor (MCC950) and NLRP3 knockout mice. The effects of PM2.5 on the inflammatory response of renal macrophages were investigated at the cellular level. RESULTS PM2.5 exposure could promote kidney injury, NLRP3 activation and inflammatory response in mice. After using MCC950 and NLRP3 knockout mice, the effects of PM2.5 and the kidney injury could be inhibited. The cellular-level results also suggested that MCC950 could inhibit the effects of PM2.5. CONCLUSION PM2.5 can promote the progression of AKI and aggravate tissue inflammation through NLRP3, which is an important environmental toxicological mechanism of PM2.5.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaowei Dai
- Reproductive medical center, Department of Obstetrics and Gynecology, The Second Norman Bethune Hospital Of Jilin University, Changchun Jilin, 130000, China.
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zhiling Tang
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, China.
| | - Yu Zhu
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Cheng Z, Qin K, Zhang Y, Yu Z, Li B, Jiang C, Xu J. Air pollution and cancer daily mortality in Hangzhou, China: an ecological research. BMJ Open 2024; 14:e084804. [PMID: 38858146 PMCID: PMC11168133 DOI: 10.1136/bmjopen-2024-084804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Long-term exposure to air pollution has been linked to cancer incidence. However, the evidence is limited regarding the effect of short-term exposure to air pollution on cancer mortality. OBJECTIVES This study aimed to investigate associations between short-term exposure to air pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter <10 mm (PM10) and PM2.5) and cancer daily mortality. METHODS This study used air quality, meteorological and daily cancer death data from 2014 to 2019 in Hangzhou, China. Generalised additive models (GAM) with quasi-Poisson regression were used to analyse the associations between air pollutants and cancer mortality with adjustment for confounding factors including time trends, day of week, temperature and humidity. Then, we conducted stratified analyses by sex, age, season and education. In addition, stratified analyses of age, season and education were performed within each sex to determine whether sex difference was modified by such factors. RESULTS After adjusting for potential confounders, the GAM results indicated a statistically significant relationship between increased cancer mortality and elevated air pollution concentrations, but only in the female population. For every 10 μg/m3 rise in pollutant concentration, the increased risk of cancer death in females was 6.82% (95% CI 3.63% to 10.10%) for SO2 on lag 03, and 2.02% (95% CI 1.12% to 2.93%) for NO2 on lag 01 and 0.89% (95% CI 0.46% to 1.33%) for PM10 on lag 03 and 1.29% (95% CI 0.64% to 1.95%) for PM2.5 on lag 03. However, no statistically significant association was found among males. Moreover, the differences in effect sizes between males and females were more pronounced during the cold season, among the elderly and among subjects with low levels of education. CONCLUSIONS Increased cancer mortality was only observed in females with rising concentrations of air pollutants. Further research is required to confirm this sex difference. Advocate for the reduction of air pollutant emissions to protect vulnerable groups.
Collapse
Affiliation(s)
- Zongxue Cheng
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Kang Qin
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Yan Zhang
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhecong Yu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Biao Li
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Caixia Jiang
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Jue Xu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
4
|
Cheng SYH, Hsu YC, Cheng SP. An ecological analysis of associations between ambient air pollution and cancer incidence rates in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29162-29173. [PMID: 38565820 DOI: 10.1007/s11356-024-33145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Air pollution is deemed a human carcinogen and can be linked to certain types of cancer other than lung cancer. The present study aimed to investigate the pollutant-cancer associations in a population-level cohort. We obtained the annual age-standardized incidence rates of 28 different cancer types between 2015 to 2019 from the Taiwan Cancer Registry. Outdoor concentrations of particulate matter with a diameter of 10 μm or less (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ground-level ozone (O3), and carbon monoxide (CO) between 2001 to 2010 were retrieved from the Taiwan Air Quality Monitoring Network. Weighted quantile sum (WQS) regression models were used to determine the combined effects of five air pollutants on the relationship to cancer incidence rates after controlling for sex ratio, age, average disposable income per household, overweight/obesity prevalence, current smoking rate, and drinking rate. Trend analyses showed that NO2 and CO concentrations tended to decrease, while SO2 concentrations increased in some counties. WQS regression analyses revealed significantly positive correlations between air pollutants and liver cancer, lung and tracheal cancer, colorectal cancer, thyroid cancer, kidney cancer, and small intestine cancer. Altogether, the results from this ecological study unravel that exposure to ambient air pollution is associated with the incidence of several non-lung cancer types.
Collapse
Affiliation(s)
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
- Center for Astronautical Physics and Engineering, National Central University, Taoyuan City, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Li J, Jiang H, Zhu Y, Ma Z, Li B, Dong J, Xiao C, Hu A. Fine particulate matter (PM 2.5) induces the stem cell-like properties of hepatocellular carcinoma by activating ROS/Nrf2/Keap1-mediated autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116052. [PMID: 38325274 DOI: 10.1016/j.ecoenv.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Exposure to fine particulate matter (PM2.5) has been linked to an increased incidence and mortality of hepatocellular carcinoma (HCC). However, the impact of PM2.5 exposure on HCC progression and the underlying mechanisms remain largely unknown. This study aimed to investigate the effects of PM2.5 exposure on the stem cell-like properties of HCC cells. Our findings indicate that PM2.5 exposure significantly enhances the stemness of HCC cells (p < 0.01). Subsequently, male nude mice were divided into two groups (n = 8/group for tumor-bearing assay, n = 5/group for metastasis assay) for control and PM2.5 exposure. In vivo assays revealed that exposure to PM2.5 promoted the growth, metastasis, and epithelial-mesenchymal transition (EMT) of HCC cells (p < 0.01). Further exploration demonstrated that PM2.5 enhances the stemness of HCC cells by inducing cellular reactive oxygen species (ROS) generation (p < 0.05). Mechanistic investigation indicated that elevated intracellular ROS inhibited kelch-like ECH-associated protein 1 (Keap1) levels, promoting the upregulation and nucleus translocation of NFE2-like bZIP transcription factor 2 (Nrf2). This, in turn, induced autophagy activation, thereby promoting the stemness of HCC cells (p < 0.01). Our present study demonstrates the adverse effects of PM2.5 exposure on HCC development and highlights the mechanism of ROS/Nrf2/Keap1-mediated autophagy. For the first time, we reveal the impact of PM2.5 exposure on the poor prognosis-associated cellular phenotype of HCC and its underlying mechanism, which is expected to provide new theoretical basis for the improvement of public health.
Collapse
Affiliation(s)
- Jiujiu Li
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Haoqi Jiang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yu Zhu
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Zijian Ma
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Bin Li
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jun Dong
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, Hefei 230032, China.
| | - Anla Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Ramamoorthy T, Nath A, Singh S, Mathew S, Pant A, Sheela S, Kaur G, Sathishkumar K, Mathur P. Assessing the Global Impact of Ambient Air Pollution on Cancer Incidence and Mortality: A Comprehensive Meta-Analysis. JCO Glob Oncol 2024; 10:e2300427. [PMID: 38513187 DOI: 10.1200/go.23.00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE This study aims to examine the association between exposure to major ambient air pollutants and the incidence and mortality of lung cancer and some nonlung cancers. METHODS This meta-analysis used PubMed and EMBASE databases to access published studies that met the eligibility criteria. Primary analysis investigated the association between exposure to air pollutants and cancer incidence and mortality. Study quality was assessed using the Newcastle Ottawa Scale. Meta-analysis was conducted using R software. RESULTS The meta-analysis included 61 studies, of which 53 were cohort studies and eight were case-control studies. Particulate matter 2.5 mm or less in diameter (PM2.5) was the exposure pollutant in half (55.5%), and lung cancer was the most frequently studied cancer in 59% of the studies. A pooled analysis of exposure reported in cohort and case-control studies and cancer incidence demonstrated a significant relationship (relative risk [RR], 1.04 [95% CI, 1.02 to 1.05]; I2, 88.93%; P < .05). A significant association was observed between exposure to pollutants such as PM2.5 (RR, 1.08 [95% CI, 1.04 to 1.12]; I2, 68.52%) and nitrogen dioxide (NO2) (RR, 1.03 [95% CI, 1.01 to 1.05]; I2, 73.52%) and lung cancer incidence. The relationship between exposure to the air pollutants and cancer mortality demonstrated a significant relationship (RR, 1.08 [95% CI, 1.07 to 1.10]; I2, 94.77%; P < .001). Among the four pollutants, PM2.5 (RR, 1.15 [95% CI, 1.08 to 1.22]; I2, 95.33%) and NO2 (RR, 1.05 [95% CI, 1.02 to 1.08]; I2, 89.98%) were associated with lung cancer mortality. CONCLUSION The study confirms the association between air pollution exposure and lung cancer incidence and mortality. The meta-analysis results could contribute to community cancer prevention and diagnosis and help inform stakeholders and policymakers in decision making.
Collapse
Affiliation(s)
- Thilagavathi Ramamoorthy
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Anita Nath
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Shubhra Singh
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Stany Mathew
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Apourv Pant
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Samvedana Sheela
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Gurpreet Kaur
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Krishnan Sathishkumar
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Prashant Mathur
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| |
Collapse
|
7
|
Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China) 2024; 135:449-473. [PMID: 37778818 DOI: 10.1016/j.jes.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/03/2023]
Abstract
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China.
| |
Collapse
|
8
|
Pardo M, Li C, Jabali A, Petrick LM, Ben-Ari Z, Rudich Y. Toxicity mechanisms of biomass burning aerosols in in vitro hepatic steatosis models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166988. [PMID: 37704129 DOI: 10.1016/j.scitotenv.2023.166988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that contributes to the global rise in liver-related morbidity and mortality. Wood tar (WT) aerosols are a significant fraction of carbonaceous aerosol originating from biomass smoldering, contributing to air pollution particles smaller than 2.5 mm (PM2.5). Mechanistic biological associations exist between exposure to PM2.5 and increased NAFLD phenotypes in both cell and animal models. Therefore, this study examines whether an existing NAFLD-like condition can enhance the biological susceptibility of liver cells exposed to air pollution in the form of WT material. Liver cells were incubated with lauric or oleic acid (LA, OA, respectively) for 24 h to accumulate lipids and served as an in vitro hepatic steatosis model. When exposed to 0.02 or 0.2 g/L water-soluble WT aerosols, both steatosis model cells showed increased cell death compared to the control cells (blank-treated cells with or without pre-incubation with LA or OA) or compared to WT-treated cells without pre-incubation with LA or OA. Furthermore, alterations in oxidative status included variations in reactive oxygen species (ROS) levels, elevated levels of lipid peroxidation adducts, and decreased expression of antioxidant genes associated with the NRF2 transcription factor. In addition, steatosis model cells exposed to WT had a higher degree of DNA damage than the control cells (blank-treated cells with or without pre-incubation with LA or OA). These results support a possible systemic effect through the direct inflammatory and oxidative stress response following exposure to water-soluble WT on liver cells, especially those predisposed to fatty liver. Furthermore, the liver steatosis model can be influenced by the type of fatty acid used; increased adverse effects of WT on metabolic dysregulation were observed in the LA model to a higher extent compared to the OA model.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Amani Jabali
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Lauren M Petrick
- The Bert Strassburger Metabolic Center, Sheba Medical Center, Tel Hashomer, Israel; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ziv Ben-Ari
- Liver Disease Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Tavabie O, Clough J, King J, Nicholas V, Kumar A. Challenges of developing a green gastroenterology evidence base and how trainee research networks can fill the gaps. Frontline Gastroenterol 2023:flgastro-2023-102497. [DOI: 10.1136/flgastro-2023-102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Trainee research networks are a collaborative effort to enable high-quality multicentre audits or research that is more widely accessible to trainees. Such networks lead, design and deliver research at a far higher scale than could be achieved locally and are carried out solely by trainees. There is an increasing focus on delivering research that is not only environmentally sustainable but also focuses on areas that can reduce the carbon footprint of service provision in gastroenterology and hepatology. In this manuscript, we performed a scoping review to understand the current evidence base of the impact of gastroenterology and hepatology services on the environment as well as exploring any association between pollution and climate change with gastrointestinal and liver disease. We further discuss the barriers that researchers face in delivering environmentally sustainable research, the limitation in clinical guidelines related to practicing environmentally sustainable gastroenterology and hepatology and how the trainee research networks are ideally placed to initiate change by developing, disseminating and implementing best practice in ‘green Gastroenterology’.
Collapse
|
10
|
Park J, Rho MJ, Park YH. Ambient particulate matter exposure and urologic cancer: a longitudinal nationwide cohort study. Am J Cancer Res 2023; 13:4755-4766. [PMID: 37970349 PMCID: PMC10636665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 11/17/2023] Open
Abstract
Increased particulate matter (PM) exposure is positively associated with increased incidence and mortality of many human malignancies. However, evidence of urologic cancer is limited. We aimed to evaluate the association between PM10 exposure and the relative risk of urologic cancer. This nationwide longitudinal cohort study included 231,997 participants who underwent a baseline health examination in 2008 from the National Health Information Database of Korea. The primary endpoint was newly diagnosed urologic cancer according to PM10 exposure. Of the total 231,99 participants, 50,677 developed urologic cancer during a median follow-up of 6.7 years. After controlling for confounding factors, participants in the high PM10 exposure group had a higher risk of kidney cancer (hazard ratio [HR] 1.111, 95% confidence interval [CI] 1.068-1.157) and prostate cancer (HR 1.083, 95% CI 1.058-1.109) than those in the low PM10 exposure group. However, in urothelial cell carcinoma, there was no significant increase in the HRs in the high PM10 exposure group. For kidney cancer, participants with the following characteristics were more susceptible: age < 65 years, female sex, decreased regular physical activity, current smoking, no diabetes, no hypertension, normal body mass index, and desirable total cholesterol level. For prostate cancer, participants with the following characteristics were more susceptible: decreased regular physical activity, current smoking, and no hypertension. High PM10 exposure is associated with an increased risk of overall urologic cancers, especially kidney and prostate cancer.
Collapse
Affiliation(s)
- Jihwan Park
- College of Liberal Arts, Dankook UniversityCheonan-si, Chungcheongnam-do, Republic of Korea
| | - Mi Jung Rho
- College of Health Science, Dankook UniversityCheonan-si, Chungcheongnam-do, Republic of Korea
| | - Yong Hyun Park
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of KoreaSeoul, Republic of Korea
| |
Collapse
|
11
|
Sheridan P, Chen C, Thompson CA, Benmarhnia T. Immortal Time Bias With Time-Varying Exposures in Environmental Epidemiology: A Case Study in Lung Cancer Survival. Am J Epidemiol 2023; 192:1754-1762. [PMID: 37400995 PMCID: PMC10558188 DOI: 10.1093/aje/kwad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 01/19/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023] Open
Abstract
Immortal time bias is a well-recognized bias in clinical epidemiology but is rarely discussed in environmental epidemiology. Under the target trial framework, this bias is formally conceptualized as a misalignment between the start of study follow-up (time 0) and treatment assignment. This misalignment can occur when attained duration of follow-up is encoded into treatment assignment using minimums, maximums, or averages. The bias can be exacerbated in the presence of time trends commonly found in environmental exposures. Using lung cancer cases from the California Cancer Registry (2000-2010) linked with estimated concentrations of particulate matter less than or equal to 2.5 μm in aerodynamic diameter (PM2.5), we replicated previous studies that averaged PM2.5 exposure over follow-up in a time-to-event model. We compared this approach with one that ensures alignment between time 0 and treatment assignment, a discrete-time approach. In the former approach, the estimated overall hazard ratio for a 5-μg/m3 increase in PM2.5 was 1.38 (95% confidence interval: 1.36, 1.40). Under the discrete-time approach, the estimated pooled odds ratio was 0.99 (95% confidence interval: 0.98, 1.00). We conclude that the strong estimated effect in the former approach was likely driven by immortal time bias, due to misalignment at time 0. Our findings highlight the importance of appropriately conceptualizing a time-varying environmental exposure under the target trial framework to avoid introducing preventable systematic errors.
Collapse
Affiliation(s)
- Paige Sheridan
- Correspondence to Dr. Paige Sheridan, Herbert Wertheim School of Public Health, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (e-mail: )
| | | | | | | |
Collapse
|
12
|
Pei H, He Z, Du R, Zhu Y, Yang Y. PM2.5 exposure aggravates acute liver injury by creating an inflammatory microenvironment through Kupffer cell. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115264. [PMID: 37467564 DOI: 10.1016/j.ecoenv.2023.115264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
AIM This work aimed to investigate the impact of PM2.5 exposure on acute liver injury METHODS: C57BL/6 mice were used to examine the hepatic histopathological changes in PM2.5-exposed mice, as well as in CCl4-mediated acute liver injury mice after long-term exposure to PM2.5. During in vitro experiments, Kupffer cells were detected for M1 polarization level after treating with PM2.5, and the activation level of NLRP3 inflammasomes were assessed. RESULTS According to our findings, PM2.5 can induce M1 polarization of Kupffer cells in the liver to create an inflammatory microenvironment. Long-term exposure to PM2.5 can aggravate acute liver injury in mice. Treatment with MCC950, an NLRP3 inhibitor, can inhibit the effect of PM2.5. As demonstrated by in vitro analysis, PM2.5 can promote M1 polarization of Kupffer cells. CONCLUSION As suggested by our results, long-term exposure to PM2.5 can create an inflammatory microenvironment to aggravate mouse acute liver injury. The effect is related to NLRP3-mediated M1 polarization in Kupffer cells.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yu Zhu
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Yi Yang
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| |
Collapse
|
13
|
Han D, Chen R, Kan H, Xu Y. The bio-distribution, clearance pathways, and toxicity mechanisms of ambient ultrafine particles. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:95-106. [PMID: 38074989 PMCID: PMC10702920 DOI: 10.1016/j.eehl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 02/17/2024]
Abstract
Ambient particles severely threaten human health worldwide. Compared to larger particles, ultrafine particles (UFPs) are highly concentrated in ambient environments, have a larger specific surface area, and are retained for a longer time in the lung. Recent studies have found that they can be transported into various extra-pulmonary organs by crossing the air-blood barrier (ABB). Therefore, to understand the adverse effects of UFPs, it is crucial to thoroughly investigate their bio-distribution and clearance pathways in vivo after inhalation, as well as their toxicological mechanisms. This review highlights emerging evidence on the bio-distribution of UFPs in pulmonary and extra-pulmonary organs. It explores how UFPs penetrate the ABB, the blood-brain barrier (BBB), and the placental barrier (PB) and subsequently undergo clearance by the liver, kidney, or intestine. In addition, the potential underlying toxicological mechanisms of UFPs are summarized, providing fundamental insights into how UFPs induce adverse health effects.
Collapse
Affiliation(s)
- Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Leirião LFL, Gabriel AFB, Alencar AP, Miraglia SGEK. Is the expansion of the subway network alone capable of improving local air quality? A study case in São Paulo, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1104. [PMID: 37642730 DOI: 10.1007/s10661-023-11736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
One of the policies adopted to reduce vehicular emissions is subway network expansion. This work fitted interrupted regression models to investigate the effects of the inauguration of subway stations on the mean, trend, and seasonality of the NO, NO2, NOx, and PM10 local concentrations. The regions investigated in the city of São Paulo (Brazil) were Pinheiros, Butantã, and St. Amaro. In Pinheiros, after the inauguration of the subway station, there were downward trends for all pollutants. However, these trends were not significantly different from the trends observed before. In Butantã, only regarding NO, there was a significant reduction and seasonal change after the subway station's inauguration. In St. Amaro, no trend in the PM10 concentration was noted. The absence of other transportation and land use policies in an integrative way to the subway network expansion may be responsible for the low air quality improvement. This study highlights that the expansion of the subway network must be integrated with other policies to improve local air quality.
Collapse
Affiliation(s)
- Luciana Ferreira Leite Leirião
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), R São Nicolau, 210 - Cep, Diadema, SP, 09913-030, Brazil.
| | - Ana Flávia Barbosa Gabriel
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), R São Nicolau, 210 - Cep, Diadema, SP, 09913-030, Brazil
| | - Airlane Pereira Alencar
- Institute of Mathematics and Statistics, University of São Paulo (USP), Rua Do Matão, São Paulo, SP, 1010 - Cep 05508-090, Brazil
| | - Simone Georges El Khouri Miraglia
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), R São Nicolau, 210 - Cep, Diadema, SP, 09913-030, Brazil
| |
Collapse
|
15
|
Sun M, Gao M, Luo M, Wang T, Zhong T, Qin J. Association between air pollution and primary liver cancer in European and east Asian populations: a Mendelian randomization study. Front Public Health 2023; 11:1212301. [PMID: 37575092 PMCID: PMC10415013 DOI: 10.3389/fpubh.2023.1212301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose The incidence of primary liver cancer is increasing year by year, with environmental factors playing a non-negligible role. At present, many studies are still disputing whether air pollution is associated with primary liver cancer incidence, and it is difficult to draw causal inferences. Therefore, in this study, we used two-sample Mendelian randomization (MR) to assess the causal relationship between air pollution (including PM2.5, PM2.5-10, PM10, nitrogen dioxide and nitrogen oxides) and primary liver cancer risk and its related biomarkers (Alpha-fetoprotein, Osteopontin, Glypican-3 and Arginase-1). Patients and methods We used large-scale publicly available genome-wide association studies (GWAS) summary data to conduct MR analyses of European and East Asian populations. Inverse variance weighted (IVW) method was used as the main analysis method, and weighted median model, MR-Egger, simple model and weighted model methods were selected for quality control. Heterogeneity was checked by the Cochran's Q test. The MR-Egger regression and the MR-PRESSO global test detect pleiotropy. The sensitivity analysis was performed using the leave-one-out method. Results Between air pollution and primary liver cancer in either European (PM2.5: p = 0.993; PM2.5-10: p = 0.833; PM10: p = 0.257; nitrogen dioxide: p = 0.215; nitrogen oxides: p = 0.614) or East Asian (PM2.5: p = 0.718; PM2.5-10: p = 0.362; PM10: p = 0.720; nitrogen dioxide: p = 0.101; nitrogen oxides: p = 0.760) populations were found no statistical association. Notably, there was a causal relationship between nitrogen oxides and Arginase-1, a biomarker associated with hepatocellular differentiation, statistically significant associations remained after deletion for single nucleotide polymorphisms (SNPs) associated with alcohol intake frequency, Body mass index (BMI) and cancers (Beta: 4.46; 95%CI: 0.83-8.08; p = 0.015). There was no heterogeneity or pleiotropy in the results. Conclusion This MR study found no evidence to support a causality between air pollution and primary liver cancer in European and East Asian populations, but nitrogen oxides may affect hepatocellular differentiation.
Collapse
Affiliation(s)
- Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ming Gao
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manjun Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- National Health Committee (NHC) Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Taowei Zhong
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- National Health Committee (NHC) Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| |
Collapse
|
16
|
Cui H, Qi Y, Guo C, Tang N. The effect of PM 2.5 exposure on the mortality of patients with hepatocellular carcinoma in Tianjin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28039-1. [PMID: 37273052 DOI: 10.1007/s11356-023-28039-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Several studies have shown the effects of PM2.5 exposure on respiratory and cardiovascular systems. However, there is no cohort study evidence of adverse effects of PM2.5 exposure on survival in patients with hepatocellular carcinoma (HCC) in China. This study is aimed at evaluating this association. This cohort study included 1440 HCC patients treated at the Third Central Clinical College of Tianjin Medical University from September 2013 to December 2018. We collected patient information, including demographic data, medical history, lifestyle characteristics, and disease characteristics. Based on PM2.5 concentrations measured at monitoring stations, the inverse distance weighted (IDW) method was used to assess the individuals' exposure during their survival period. Survival status was analysed by the Kaplan-Meier method. Restricted cubic splines and Cox proportional hazards models were used to estimate the relationship between PM2.5 and mortality, and potential confounders were adjusted for. The mortality rate of HCC patients exposed to PM2.5 ≥ 58.56 μg/m3 was significantly higher than that of HCC patients living in environments with PM2.5 < 58.56 μg/m3 (79.0% vs 50.7%, P < 0.001). The restricted cubic spline model showed a linear relationship between the PM2.5 concentration and mortality risk (P overall-association < 0.0001 and P nonlinear-association = 0.3568). Cox regression analysis showed that after adjusting for confounding factors, for every 10-μg/m3 increase in atmospheric PM2.5, the risk of death for HCC patients increased by 44% [hazard ratio (HR) = 1.44, 95% confidence interval (CI) 1.34, 1.56; P < 0.001]. Compared with patients exposed to PM2.5 <58.56 μg/m3, those exposed to PM2.5 ≥ 58.56 μg/m3 had a 1.55-fold increased risk of death. Stratified analysis results showed that the effects of PM2.5 on HCC mortality were more significant in patients aged ≥60 years or patients living in central urban areas. We found that exposure to elevated PM2.5 after HCC diagnosis may affect survival, with a higher concentration corresponding to a greater effect.
Collapse
Affiliation(s)
- Hao Cui
- The Third Central Clinical College of Tianjin Medical University, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Department of Hepatology and Gastroenterology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China
| | - Ye Qi
- The Third Central Clinical College of Tianjin Medical University, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, No. 22 Meteorological Station Road, Heping District, Tianjin, 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Chunyue Guo
- The Third Central Clinical College of Tianjin Medical University, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, No. 22 Meteorological Station Road, Heping District, Tianjin, 300070, China.
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
17
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
18
|
Li YZ, Huang SH, Shi S, Chen WX, Wei YF, Zou BJ, Yao W, Zhou L, Liu FH, Gao S, Yan S, Qin X, Zhao YH, Chen RJ, Gong TT, Wu QJ. Association of long-term particulate matter exposure with all-cause mortality among patients with ovarian cancer: A prospective cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163748. [PMID: 37120017 DOI: 10.1016/j.scitotenv.2023.163748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Evidence of the association between particles with a diameter of 2.5 μm or less (PM2.5) in long term and ovarian cancer (OC) mortality is limited. METHODS This prospective cohort study analyzed data collected between 2015 and 2020 from 610 newly diagnosed OC patients, aged 18-79 years. The residential average PM2.5 concentrations 10 years before the date of OC diagnosis were assessed by random forest models at a 1 km × 1 km resolution. Cox proportional hazard models fully adjusted for the covariates (including age at diagnosis, education, physical activity, kitchen ventilation, FIGO stage, and comorbidities) and distributed lag non-linear models were used to estimate the hazard ratios (HRs) and 95 % confidence intervals (CIs) of PM2.5 and all-cause mortality of OC. RESULTS During a median follow-up of 37.6 months (interquartile: 24.8-50.5 months), 118 (19.34 %) deaths were confirmed among 610 OC patients. One-year PM2.5 exposure levels before OC diagnosis was significantly associated with an increase in all-cause mortality among OC patients (single-pollutant model: HR = 1.22, 95 % CI: 1.02-1.46; multi-pollutant models: HR = 1.38, 95 % CI: 1.10-1.72). Furthermore, during 1 to 10 years prior to diagnosis, the lag-specific effect of long-term PM2.5 exposure on the all-cause mortality of OC had a risk increase for lag 1-6 years, and the exposure-response relationship was linear. Of note, significant interactions between several immunological indicators as well as solid fuel use for cooking and ambient PM2.5 concentrations were observed. CONCLUSION Higher ambient PM2.5 concentrations were associated with an increased risk of all-cause mortality among OC patients, and there was a lag effect in long-term PM2.5 exposure.
Collapse
Affiliation(s)
- Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shu-Hong Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Wen-Xiao Chen
- Department of Sports Medicine and Joint Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing-Jie Zou
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Yao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lu Zhou
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shi Yan
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ren-Jie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
19
|
Gan T, Bambrick H, Tong S, Hu W. Air pollution and liver cancer: A systematic review. J Environ Sci (China) 2023; 126:817-826. [PMID: 36503807 DOI: 10.1016/j.jes.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/17/2023]
Abstract
Air pollution has previously been linked to several adverse health outcomes, but the potential association between air pollution and liver cancer remains unclear. We searched PubMed, EMBASE, and Web of Science from inception to 10 October 2021, and manually reviewed the references of relevant papers to further identify any related literature investigating possible associations between air pollution and liver cancer. Risk estimates values were represented by statistical associations based on quantitative analyses. A total of 13 cohort studies obtained from 11 articles were included, with 10,961,717 participants. PM2.5 was the most frequently examined pollutant (included in 11 studies), followed by NO2 and NOx (included in 6 studies), and fewer studies focused on other pollutants (PM2.5 absorbance, PM10, PM2.5-10, O3, and BC). In all the 16 associations for liver cancer mortality, 14 associations reported the effect of PM2.5 on liver cancer mortality. Eight associations on PM2.5 were significant, showing a suggestive association between PM2.5 and liver cancer mortality. Among 24 associations shown by risk estimates for liver cancer incidence, most associations were not statistically significant. For other air pollutants, no positive associations were presented in these studies. PM2.5 was the most frequently examined pollutant, followed by NO2 and NOx, and fewer studies focused on other pollutants. PM2.5 was associated with liver cancer mortality, but there was no association for other air pollutants. Future research should use advanced statistical methods to further assess the impact of multiple air pollutants on liver cancer in the changing socio-environmental context.
Collapse
Affiliation(s)
- Ting Gan
- School of Public Health and Social Work, Queensland University of Technology, Queensland 4059, Australia
| | - Hilary Bambrick
- School of Public Health and Social Work, Queensland University of Technology, Queensland 4059, Australia; National Centre for Epidemiology and Population Health, Australian National University, Australian Capital Territory 2601, Australia
| | - Shilu Tong
- School of Public Health and Social Work, Queensland University of Technology, Queensland 4059, Australia; Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Queensland 4059, Australia.
| |
Collapse
|
20
|
Tsai SS, Hsu CT, Yang C. Risk of death from liver cancer in relation to long-term exposure to fine particulate air pollution in Taiwan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:135-143. [PMID: 36752360 DOI: 10.1080/15287394.2023.2168225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the International Agency for Research on Cancer (IARC), airborne fine particulate matter (PM2.5), which is categorized as a Group I carcinogen, was found to lead to predominantly lung as well as other cancer types in humans. Hepatocellular carcinoma (HCC) is endemic in Taiwan where it is the second and fourth foremost cause of cancer deaths in men and women, respectively. Taiwan's mortality rates for liver cancer vary considerably from one region to another, suggesting that the environment may exert some influence on deaths attributed to liver cancer. The aim of this investigation was to perform an ecologic study to examine the possible link between ambient PM2.5 levels and risk of liver cancer in 66 in Taiwan municipalities. To undertake this investigation, annual PM2.5 levels and age-standardized liver cancer mortality rates were calculated for male and female residents of these areas from 2010 to 2019. Data were tested using weighted-multiple regression analyses to compute adjusted risk ratio (RR) controlling for urbanization level and physician density. Annual PM2.5 levels of each municipality were divided into tertiles. The adjusted RRs for males residing in those areas with intermediate tertile levels (21.85 to 28.21 ug/m3) and the highest tertiles levels (28.22-31.23 ug/m3) of PM2.5 were 1.29 (95% CI = 1.25-1.46) and 1.41 (95% CI = 1.36-1.46), respectively. Women in these locations shared a similar risk, 1.32 (1.25-1.4) and 1.41 (1.34-1.49), respectively. Evidence indicated that PM2.5 increased risk of mortality rates attributed to liver cancer in both men and women in Taiwan.
Collapse
Affiliation(s)
- Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Ta Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - ChunYuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
21
|
Kiyani R, Dehdashti B, Heidari Z, Sharafi SM, Mahmoodzadeh M, Amin MM. Biomonitoring of organochlorine pesticides and cancer survival: a population-based study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37357-37369. [PMID: 36572771 DOI: 10.1007/s11356-022-24855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Organochlorine pesticides (OCPs) are endocrine-disrupting chemicals (EDCs) that even at very low levels can cause cancer by increasing the activity of tumor cells and suppressing the immune system. There is also little information on OCPs and survival after diagnosis. The aim of this study was to monitor the concentration of OCPs in the blood serum of cancer patients and its relationship with their socio-demographic characteristics and ultimately that impact on survival time and hazard ratio (HR). This cross-sectional study included 89 diagnosed patients with cancer in Isfahan, Iran. 12 types of OCPs were measured in serum by gas chromatography (7GC) with an electron capture detector and equipped with mass spectrometer (MS). Also, participants' questionnaire was completed to collect information. T-test, ANOVA, and Chi-square tests were used to evaluate the association between serum levels of OCPs and quantitative and qualitative information of patients. Survival analysis was also examined based on Kaplan-Meier method, log-rank test, and Cox model. The mean of total OCPs in patients' serum was calculated to be 1.82 ± 1.36 μg/L. Concentration of 2,4' DDE had a significant relationship with body mass index (BMI) (kg/m2) (P < 0.05). In addition, gender revealed a significant correlation in estimating survival time (P < 0.05). Non-exposure to OCPs showed a positive effect on increasing the life expectancy of patients. Lindane and endosulfan increased the risk of death by 16% and 37%, respectively, with insignificant P value (P > 0.05). The findings of the present study showed adverse effects of OCPs on patients' survival time and increased mortality of HR. Moreover, as the first research conducted in the study area, it is suggested management of environmental, individual and social factors that could be influenced the biological accumulation of OCPs in humans and cause health promotion.
Collapse
Affiliation(s)
- Raziyeh Kiyani
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahare Dehdashti
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Sharafi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Mahmoodzadeh
- Department of Adult Oncology Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Liu H, Zhang X, Sun Z, Chen Y. Ambient Fine Particulate Matter and Cancer: Current Evidence and Future Perspectives. Chem Res Toxicol 2023; 36:141-156. [PMID: 36688945 DOI: 10.1021/acs.chemrestox.2c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The high incidence of cancer has placed an enormous health and economic burden on countries around the world. In addition to evidence of epidemiological studies, conclusive evidence from animal experiments and mechanistic studies have also shown that morbidity and mortality of some cancers can be attributed to ambient fine particulate matter (PM2.5) exposure, especially in lung cancer. However, the underlying carcinogenetic mechanisms of PM2.5 remain unclear. Furthermore, in terms of risks of other types of cancer, both epidemiological and mechanistic evidence are more limited and scattered, and the results are also inconsistent. In order to sort out the carcinogenic effect of PM2.5, this paper reviews the association of cancers with PM2.5 based on epidemiological and biological evidence including genetic, epigenetic, and molecular mechanisms. The limitations of existing researches and the prospects for the future are also well clarified in this paper to provide insights for future studies.
Collapse
Affiliation(s)
- Hanrui Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
23
|
Rizzato S, Monteduro AG, Buja I, Maruccio C, Sabella E, De Bellis L, Luvisi A, Maruccio G. Optimization of SAW Sensors for Nanoplastics and Grapevine Virus Detection. BIOSENSORS 2023; 13:197. [PMID: 36831963 PMCID: PMC9953723 DOI: 10.3390/bios13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
In this work, we report the parametric optimization of surface acoustic wave (SAW) delay lines on Lithium niobate for environmental monitoring applications. First, we show that the device performance can be improved by acting opportunely on geometrical design parameters of the interdigital transducers such as the number of finger pairs, the finger overlap length and the distance between the emitter and the receiver. Then, the best-performing configuration is employed to realize SAW sensors. As aerosol particulate matter (PM) is a major threat, we first demonstrate a capability for the detection of polystyrene particles simulating nanoparticulates/nanoplastics, and achieve a limit of detection (LOD) of 0.3 ng, beyond the present state-of-the-art. Next, the SAW sensors were used for the first time to implement diagnostic tools able to detect Grapevine leafroll-associated virus 3 (GLRaV-3), one of the most widespread viruses in wine-growing areas, outperforming electrochemical impedance sensors thanks to a five-times better LOD. These two proofs of concept demonstrate the ability of miniaturized SAW sensors for carrying out on-field monitoring campaigns and their potential to replace the presently used heavy and expensive laboratory instrumentation.
Collapse
Affiliation(s)
- Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy
| | - Ilaria Buja
- Omnics Research Group, Department of Mathematics and Physics University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy
| | - Claudio Maruccio
- Omnics Research Group, Department of Mathematics and Physics University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy
| |
Collapse
|
24
|
Fan X, Dong T, Yan K, Ci X, Peng L. PM2.5 increases susceptibility to acute exacerbation of COPD via NOX4/Nrf2 redox imbalance-mediated mitophagy. Redox Biol 2022; 59:102587. [PMID: 36608590 PMCID: PMC9813701 DOI: 10.1016/j.redox.2022.102587] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
The increasing abundance of fine particulate matter (PM2.5) in the environment has increased susceptibility to acute exacerbation of COPD (AECOPD). During PM2.5 exposure, excessive reactive oxygen species (ROS) production triggers a redox imbalance, which contributes to damage to organelles and disruption of homeostasis. At present, there are limited data on whether NOX4/Nrf2 redox imbalance increases susceptibility to acute exacerbation of COPD (AECOPD), and the underlying mechanism is unclear. Therefore, the current study was aimed to evaluate the role of NOX4/Nrf2 redox balance on AECOPD induced by PM2.5-CS-exposure. Here, we report that PM2.5 exacerbates cytotoxicity by enhancing NOX4/Nrf2 redox imbalance-mediated mitophagy. First, exposure to a low-dose of PM2.5 (200 μg/ml) significantly exacerbated oxidative stress and mitochondrial damage by increasing the ROS overproduction, enhancing the excessive NOX4/Nrf2 redox imbalance, decreasing the mitochondrial membrane potential (MMP), and enhancing the mitochondrial fragmentation that were caused by a low-dose of CSE (2.5%). Second, coexposure to PM2.5 and CSE (PM2.5-CSE) induced excessive mitophagy. Third, PM2.5 exacerbated CS-induced COPD, as shown by excessive inflammatory cell infiltration, inflammatory cytokine production and mucus hypersecretion, goblet cell hyperplasia, NOX4/Nrf2 redox imbalance, and mitophagy, these effects triggered excessive ROS production and mitochondrial damage in mice. Mechanistically, PM2.5-CS-induced excessive levels of mitophagy by triggering redox imbalance, leading to greater cytotoxicity and AECOPD; however, reestablishing the NOX4/Nrf2 redox balance via NOX4 blockade or mitochondria-specific ROS inhibitor treatment alleviated this cytotoxicity and ameliorated AECOPD. PM2.5 may exacerbate NOX4/Nrf2 redox imbalance and subsequently enhance mitophagy by increasing the ROS and mito-ROS levels, thereby increasing susceptibility to AECOPD.
Collapse
Affiliation(s)
- Xiaoye Fan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Tingting Dong
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Kun Yan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Xinxin Ci
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China; Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| |
Collapse
|
25
|
Yuan CS, Lai CS, Chang-Chien GP, Tseng YL, Cheng FJ. Kidney damage induced by repeated fine particulate matter exposure: Effects of different components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157528. [PMID: 35882344 DOI: 10.1016/j.scitotenv.2022.157528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exposure to fine particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) is associated with adverse health effects. This study aimed to evaluate the toxic effects of the constituents of PM2.5 on mouse kidneys. METHODS We collected PM2.5 near an industrial complex located in southern Kaohsiung, Taiwan, that was divided into water extract and insoluble particles. Male C57BL/6 mice were divided into five groups: control, low- and high-dose insoluble particle exposure, and low- and high-dose water extract exposure. Biochemical analysis, Western blot analysis, histological examination, and immunohistochemistry were performed to evaluate the impact of PM2.5 constituents on mice kidneys. RESULTS PM2.5 was collected from January 1, 2021, to February 8, 2021, from an industrial complex in Kaohsiung, Taiwan. Metallic element analysis showed that Pb, Ni, V, and Ti were non-essential metals with enrichment factors >10. Polycyclic aromatic hydrocarbon and nitrate polycyclic aromatic hydrocarbon analyses revealed that the toxic equivalents are, in the order, benzo(a)pyrene (BaP), indeno(1,2,3-cd) pyrene (IP), dibenzo(a,h)anthracene (DBA), and benzo(b)fluoranthene (BbF), which are potential carcinogens. Both water extract and insoluble particle exposure induced inflammatory cytokine upregulation, inflammatory cell infiltration, antioxidant activity downregulation, and elevation of kidney injury molecule 1 (KIM-1) level in mouse kidneys. A dose-dependent effect of PM2.5 water extract and insoluble particle exposure on angiotensin converter enzyme 2 downregulation in mouse kidneys was observed. CONCLUSION We found that water-soluble extract and insoluble particles of PM2.5 could induce oxidative stress and inflammatory reactions, influence the regulation of renin-angiotensin system (RAS), and lead to kidney injury marker level elevation in mouse kidneys. The lowest-observed-adverse-effect level for renal toxicity in mice was 40 μg water-soluble extract/insoluble particle inhalation per week, which was approximately equal to the ambient PM2.5 concentration of 44 μg/m3 for mice.
Collapse
Affiliation(s)
- Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC; Aerosol Science Research Center, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC
| | - Guo-Ping Chang-Chien
- Department of Chemical and Materials Engineering, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung 833, Taiwan; Super Micro Mass Research and Technology Center, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung 833, Taiwan
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung 833, Taiwan, ROC; Chang Gung University College of Medicine, 259, Wenhua 1(st) Road, Guishan District, Taoyuan City 333, Taiwan, ROC.
| |
Collapse
|
26
|
Mani SA, Peltier RE, Le Mestre M, Gunkel-Grillon P, Shah S, Mani FS. Black carbon and elemental characterization of PM 2.5 in dense traffic areas in two cities in Fiji, a Small Island Developing State. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157136. [PMID: 35798099 DOI: 10.1016/j.scitotenv.2022.157136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
PM2.5 characterizations are essential in understanding its impact on the health of the exposed population. Sampled PM2.5 by Mani et al. (2020) was characterized to determine atmospheric metal concentration and inhalation health risk in Suva and Lautoka Cities, the only two cities in Fiji and one of the largest in the South Pacific Islands. Twenty-two elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Si, Sr, V, Zn) were analyzed using ICP-OES. Black Carbon (BC) sampling was also done at three different sites in Suva City, namely, Fiji National University Samabula Intersection site, Suva City Bus Station site and the Reservoir Road Community Settlement Site as well as at Lautoka City Bus Station. Mean BC concentrations over the sampling period were found to be 3.9 ± 2.9 (median = 3.3 μg/m3), 2.6 ± 2.7 μg/m3 (median = 1.7 μg/m3), 2.4 ± 2.3 μg/m3 (median = 1.7 μg/m3) and 4.0 ± 4.7 μg/m3 (median = 2.4 μg/m3) respectively. Health risk assessments (Carcinogenic Risk (CR) and Non-Carcinogenic Risk (HQ)) were also done to assess the risk of inhalation exposure in adults and children. The Hazard Index for children in Lautoka (HI = 1.03) was found to slightly exceed the safe level of 1. This study provides the first inventory of atmospheric particulate bound metal concentrations and diurnal BC profiles in Fiji and informs policy makers and scientists for further studies.
Collapse
Affiliation(s)
- S A Mani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, University of the South Pacific, Suva, Fiji.
| | - R E Peltier
- Department of Environmental Health Science, University of Massachusetts Amherst, USA.
| | - M Le Mestre
- Institute of Pure and Applied Sciences, University of New Caledonia, New Caledonia.
| | - P Gunkel-Grillon
- Institute of Pure and Applied Sciences, University of New Caledonia, New Caledonia.
| | - S Shah
- Department of Chemistry, Fiji National University, Fiji.
| | - F S Mani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, University of the South Pacific, Suva, Fiji.
| |
Collapse
|
27
|
Liu G, Yang Z, Wang C, Wang D. PM 2.5 exposure and cervical cancer survival in Liaoning Province, northeastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74669-74676. [PMID: 35641744 DOI: 10.1007/s11356-022-20597-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter with a diameter of 2.5 μm or less (PM2.5) has frequently been reported to be associated with an increased incidence of cancer, but few studies have explored the association between PM2.5 exposure and cancer survival. We retrospectively analyzed the association between PM2.5 exposure and the overall survival (OS) of cervical cancer patients residing in 14 urban areas of Liaoning Province, northeastern China, during January 2014-October 2021. Patients from urban areas who completed the recommended treatments with complete follow-up information were included. The PM2.5 monitoring data of each urban area of Liaoning Province were retrieved, and individual exposure to PM2.5 after diagnosis was calculated as the average daily concentration in the city of residence from the date of discharge to the date of death or the last follow-up. Log-rank tests and Cox regression were performed to examine the relationship between PM2.5 exposure and cervical cancer survival. A total of 1753 cervical cancer patients were finally included, among whom 804 (45.9%) were from Shenyang City, the capital of Liaoning Province. The median average daily concentration of PM2.5 to which the patients were exposed was 45.0 (interquartile range 38.2-50.0) μg/m3. Both log-rank tests (grouped by quartiles, p < 0.001) and Cox regression (continuous, HR = 1.06, 95% CI 1.04-1.08) indicated that PM2.5 was significantly associated with shorter OS. Sensitivity analysis also confirmed the robustness of our findings. From the subgroup analysis, only the OS of stage II and stage III patients was associated with PM exposure. Our findings provide the insight that PM2.5 exposure might be associated with shorter OS of cervical cancer patients.
Collapse
Affiliation(s)
- Guangcong Liu
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute Shenyang, Shenyang, People's Republic of China
| | - Zhuo Yang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute Shenyang, Shenyang, People's Republic of China
| | - Chenyu Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute Shenyang, Shenyang, People's Republic of China
| | - Danbo Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute Shenyang, Shenyang, People's Republic of China.
| |
Collapse
|
28
|
Chin WS, Pan SC, Huang CC, Chen PJ, Guo YL. Exposure to Air Pollution and Survival in Follow-Up after Hepatocellular Carcinoma. Liver Cancer 2022; 11:474-482. [PMID: 36158593 PMCID: PMC9485987 DOI: 10.1159/000525346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Air pollutants are classified as carcinogens by the International Agency for Research on Cancer. Long-term exposure to ambient particulate matter with an aerodiameter of 2.5 μm or lower (PM2.5) has been reported to be linked with increased mortality due to hepatocellular carcinoma (HCC). However, the effects of air pollutants other than PM2.5 on HCC-related mortality have not been fully investigated. Accordingly, we conducted this study to assess the effect of long-term exposure to air pollutants (PM2.5 and nitrogen dioxide [NO2]) on HCC-related mortality. Method In 2005, the Taiwan Liver Cancer Network (TLCN) was established by the National Research Program for Genomic Medicine to recruit liver cancer patients from 5 major medical centers in northern, central, and southern Taiwan. The TLCN had successfully recruited 9,344 patients by the end of 2018. In this study, we included 1,000 patients randomly sampled from the TLCN to assess the effect of exposure to air pollutants on HCC mortality after HCC diagnosis. Daily averages of PM2.5 and NO2 concentrations were retrieved from 77 air quality-monitoring stations and interpolated to the townships of patients' residences by using the Kriging method. The effect of air pollutants on HCC survival was assessed using a Cox proportional hazards model. Results A total of 940 patients were included in the analysis. After adjusting for potential confounders and mutually adjusting for co-pollutants, we observed that the hazards ratio (95% confidence interval) for HCC-related mortality for every 1-μg/m3 increase in PM2.5 concentration was 1.11 (1.08-1.14) and that for every 1-ppb increase in NO2 concentration was 1.08 (1.03-1.13). Conclusion Our study suggests that long-term exposure to PM2.5 and NO2 was associated with decreased survival time in patients with HCC in Taiwan.
Collapse
Affiliation(s)
- Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan
| | - Shin-Chun Pan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Ching-Chun Huang
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Microbiology, NTU College of Medicine, Taipei, Taiwan
- Department of Gastroenterology, NTU Hospital, Taipei, Taiwan
| | - Yue Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| |
Collapse
|
29
|
Yu P, Xu R, Li S, Yue X, Chen G, Ye T, Coêlho MSZS, Saldiva PHN, Sim MR, Abramson MJ, Guo Y. Exposure to wildfire-related PM2.5 and site-specific cancer mortality in Brazil from 2010 to 2016: A retrospective study. PLoS Med 2022; 19:e1004103. [PMID: 36121854 PMCID: PMC9529133 DOI: 10.1371/journal.pmed.1004103] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/03/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Long-term exposure to fine particles ≤2.5 μm in diameter (PM2.5) has been linked to cancer mortality. However, the effect of wildfire-related PM2.5 exposure on cancer mortality risk is unknown. This study evaluates the association between wildfire-related PM2.5 and site-specific cancer mortality in Brazil, from 2010 to 2016. METHODS AND FINDINGS Nationwide cancer death records were collected during 2010-2016 from the Brazilian Mortality Information System. Death records were linked with municipal-level wildfire- and non-wildfire-related PM2.5 concentrations, at a resolution of 2.0° latitude by 2.5° longitude. We applied a variant difference-in-differences approach with quasi-Poisson regression, adjusting for seasonal temperature and gross domestic product (GDP) per capita. Relative risks (RRs) and 95% confidence intervals (CIs) for the exposure for specific cancer sites were estimated. Attributable fractions and cancer deaths were also calculated. In total, 1,332,526 adult cancer deaths (age ≥ 20 years), from 5,565 Brazilian municipalities, covering 136 million adults were included. The mean annual wildfire-related PM2.5 concentration was 2.38 μg/m3, and the annual non-wildfire-related PM2.5 concentration was 8.20 μg/m3. The RR for mortality from all cancers was 1.02 (95% CI 1.01-1.03, p < 0.001) per 1-μg/m3 increase of wildfire-related PM2.5 concentration, which was higher than the RR per 1-μg/m3 increase of non-wildfire-related PM2.5 (1.01 [95% CI 1.00-1.01], p = 0.007, with p for difference = 0.003). Wildfire-related PM2.5 was associated with mortality from cancers of the nasopharynx (1.10 [95% CI 1.04-1.16], p = 0.002), esophagus (1.05 [95% CI 1.01-1.08], p = 0.012), stomach (1.03 [95% CI 1.01-1.06], p = 0.017), colon/rectum (1.08 [95% CI 1.05-1.11], p < 0.001), larynx (1.06 [95% CI 1.02-1.11], p = 0.003), skin (1.06 [95% CI 1.00-1.12], p = 0.003), breast (1.04 [95% CI 1.01-1.06], p = 0.007), prostate (1.03 [95% CI 1.01-1.06], p = 0.019), and testis (1.10 [95% CI 1.03-1.17], p = 0.002). For all cancers combined, the attributable deaths were 37 per 100,000 population and ranged from 18/100,000 in the Northeast Region of Brazil to 71/100,000 in the Central-West Region. Study limitations included a potential lack of assessment of the joint effects of gaseous pollutants, an inability to capture the migration of residents, and an inability to adjust for some potential confounders. CONCLUSIONS Exposure to wildfire-related PM2.5 can increase the risks of cancer mortality for many cancer sites, and the effect for wildfire-related PM2.5 was higher than for PM2.5 from non-wildfire sources.
Collapse
Affiliation(s)
- Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science & Technology, Nanjing, China
| | - Gongbo Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tingting Ye
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Micheline S. Z. S. Coêlho
- Laboratory of Urban Health, Insper, São Paulo, Brazil
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo H. N. Saldiva
- Laboratory of Urban Health, Insper, São Paulo, Brazil
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Malcolm R. Sim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Michael J. Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
30
|
Sui J, Xia H, Zhao Q, Sun G, Cai Y. Long-Term Exposure to Fine Particulate Matter and the Risk of Chronic Liver Diseases: A Meta-Analysis of Observational Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610305. [PMID: 36011940 PMCID: PMC9408691 DOI: 10.3390/ijerph191610305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/05/2023]
Abstract
Although fine particulate matter (PM2.5) is a known carcinogen, evidence of the association between PM2.5 and chronic liver disease is controversial. In the present meta-analysis study, we reviewed epidemiological studies to strengthen evidence for the association between PM2.5 and chronic liver disease. We searched three online databases from 1990 up to 2022. The random-effect model was applied for detection of overall risk estimates. Sixteen eligible studies, including one cross-sectional study, one retrospective cohort study, and 14 prospective cohort studies, fulfilled inclusion criteria with more than 330 thousand participants from 13 countries. Overall risk estimates of chronic liver disease for 10 μg/m3 increase in PM2.5 was 1.27 (95% confidence interval (CI): 1.19−1.35, p < 0.001). We further analyzed the relationship between PM2.5 exposure and different chronic liver diseases. The results showed that increments in PM2.5 exposure significantly increased the risk of liver cancer, liver cirrhosis, and fatty liver disease (hazard ratio (HR) = 1.23, 95% CI: 1.14−1.33; HR = 1.17, 95% CI: 1.06−1.29; HR = 1.51, 95% CI: 1.09−2.08, respectively). Our meta-analysis indicated long-term exposure to PM2.5 was associated with increased risk of chronic liver disease. Moreover, future researches should be focused on investigating subtypes of chronic liver diseases and specific components of PM2.5.
Collapse
Affiliation(s)
- Jing Sui
- Research Institute for Environment and Health, School of Emergency Management, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qun Zhao
- Research Institute for Environment and Health, School of Emergency Management, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yinyin Cai
- Institute of Atmospheric Environmental Economics, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Correspondence: ; Tel.: +86-025-5873-1136
| |
Collapse
|
31
|
Eom SY, Kim YD, Kim H. Particulate Matter Exposure after a Cancer Diagnosis and All-Cause Mortality in a Regional Cancer Registry-Based Cohort in South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9875. [PMID: 36011507 PMCID: PMC9408397 DOI: 10.3390/ijerph19169875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Although particulate matter (PM) is a Group 1 carcinogen, few studies have evaluated the effect of PM exposure after a cancer diagnosis on survival. Herein, we evaluated the effect of exposure to ambient PM10 after a cancer diagnosis on survival using data from the Regional Cancer Registry cohort in Chungbuk Province, Korea. A total of 44,432 patients with cancer who survived for >1 year after being diagnosed between 2005 and 2018 were followed until 31 December 2019; there were 32,734 survivors (73.7%) and 11,698 deceased (26.3%). The average follow-up period was 67.7 months, and the cumulative average concentration of PM10 exposure of patients with cancer after a diagnosis was 49.0 µg/m3. When PM10 concentration increased by 1 standard deviation (5.2 µg/m3), the all-cause mortality risk increased 2.06-fold (95% CI: 2.02−2.11). This trend was most pronounced in the younger patient group and in patients with local-stage cancer. This study demonstrates that exposure to PM10 after cancer diagnosis might influence the survival of patients with cancer, requiring environmental preventive measures such as lower pollutant exposure.
Collapse
Affiliation(s)
- Sang-Yong Eom
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
- Chungbuk Environmental Health Center, Chungbuk National University Hospital, Cheongju 28644, Korea
| | - Yong-Dae Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
- Chungbuk Environmental Health Center, Chungbuk National University Hospital, Cheongju 28644, Korea
- Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju 28644, Korea
| | - Heon Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
- Chungbuk Environmental Health Center, Chungbuk National University Hospital, Cheongju 28644, Korea
- Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju 28644, Korea
| |
Collapse
|
32
|
Prueitt RL, Li W, Edwards L, Zhou J, Goodman JE. Systematic review of the association between long-term exposure to fine particulate matter and mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1647-1685. [PMID: 33849343 DOI: 10.1080/09603123.2021.1901864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
We used a transparent systematic review framework based on best practices for evaluating study quality and integrating evidence to conduct a review of the available epidemiology studies evaluating associations between long-term exposure to ambient concentrations of PM2.5 and mortality (all-cause and non-accidental) conducted in North America. We found that while there is some consistency across studies for reporting positive associations, these associations are weak and several important methodological issues have led to uncertainties with regard to the evidence from these studies, including potential confounding by measured and unmeasured factors, exposue measurement error, and model misspecification. These uncertainties provide a plausible, alternative explanation to causality for the weakly positive findings across studies. Using a causality framework that incorporates best practices for making causal determinations, we concluded that the evidence for a causal relationship between long-term exposure to ambient PM2.5 concentrations and mortality from these studies is inadequate.
Collapse
|
33
|
Wen Q, Chan KH, Shi K, Lv J, Guo Y, Pei P, Yang L, Chen Y, Du H, Gilbert S, Avery D, Hu W, Chen J, Yu C, Chen Z, Li L. Tobacco smoking and solid fuels for cooking and risk of liver cancer: A prospective cohort study of 0.5 million Chinese adults. Int J Cancer 2022; 151:181-190. [PMID: 35199334 PMCID: PMC7612779 DOI: 10.1002/ijc.33977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 12/05/2022]
Abstract
Previous research found tobacco smoking and solid fuel use for cooking to increase the risk of chronic liver disease mortality, but previous cohort studies have not investigated their independent and joint associations with liver cancer incidence in contemporary China. The China Kadoorie Biobank (CKB) study recruited 0.5 million adults aged 30 to 79 years from 10 areas across China during 2004 to 2008. Participants reported detailed smoking and fuel use information at baseline. After an 11.1-year median follow-up via electronic record linkage, we recorded 2997 liver cancer cases. Overall, 29.4% participants were current smokers. Among those who cooked at least once per month, 48.8% always used solid fuels (ie, coal or wood) for cooking. Tobacco smoking and solid fuel use for cooking were independently associated with increased risks of liver cancer, with hazard ratios (95% confidence intervals [CIs]) of 1.28 (1.15-1.42) and 1.25 (1.03-1.52), respectively. The more cigarettes consumed each day, the earlier the age of starting smoking or the longer duration of solid fuels exposure, the higher the risk (Ptrend < .001, =.001, =.018, respectively). Compared with never smokers who had always used clean fuels (ie, gas or electricity), ever-smokers who had always used solid fuels for cooking had a 67% (95% CIs: 1.29-2.17) higher risk. Among Chinese adults, tobacco smoking and solid fuel use for cooking were independently associated with higher risk of liver cancer incidence. Stronger association was observed with higher number of daily cigarette consumption, the earlier age of starting smoking and longer duration of solid fuel use.
Collapse
Affiliation(s)
- Qiaorui Wen
- Department of Epidemiology and BiostatisticsSchool of Public Health, Peking University Health Science CenterBeijingChina
| | - Ka Hung Chan
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Oxford British Heart Foundation Centre of Research ExcellenceUniversity of OxfordOxfordUK
| | - Kexiang Shi
- Department of Epidemiology and BiostatisticsSchool of Public Health, Peking University Health Science CenterBeijingChina
| | - Jun Lv
- Department of Epidemiology and BiostatisticsSchool of Public Health, Peking University Health Science CenterBeijingChina
- Oxford British Heart Foundation Centre of Research ExcellencePeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesPeking University, Ministry of EducationBeijingChina
| | - Yu Guo
- Fuwai Hospital Chinese Academy of Medical SciencesNational Center for Cardiovascular DiseasesBeijingChina
| | - Pei Pei
- National Center for Cardiovascular DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUK
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUK
| | - Huaidong Du
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUK
| | - Simon Gilbert
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Daniel Avery
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Weijie Hu
- Maiji DivisionCenter for Disease Control and PreventionTianshuiChina
| | - Junshi Chen
- Food Safety Risk AssessmentChina National CenterBeijingChina
| | - Canqing Yu
- Department of Epidemiology and BiostatisticsSchool of Public Health, Peking University Health Science CenterBeijingChina
- Oxford British Heart Foundation Centre of Research ExcellencePeking UniversityBeijingChina
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUK
| | - Liming Li
- Department of Epidemiology and BiostatisticsSchool of Public Health, Peking University Health Science CenterBeijingChina
- Oxford British Heart Foundation Centre of Research ExcellencePeking UniversityBeijingChina
| | | |
Collapse
|
34
|
Ammons S, Aja H, Ghazarian AA, Lai GY, Ellison GL. Perception of worry of harm from air pollution: results from the Health Information National Trends Survey (HINTS). BMC Public Health 2022; 22:1254. [PMID: 35752789 PMCID: PMC9233822 DOI: 10.1186/s12889-022-13450-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background Air pollution exposure has been associated with a multitude of diseases and poses a significant concern to public health. For targeted environmental risk communication and interventions to be effective, it is important to correctly identify characteristics associated with worry of harm from air pollution. Methods Using responses from 3,630 participants of the Health Information National Trends Survey 4 Cycle 2, we assessed worry of harm from exposure to indoor (IAP) and outdoor (OAP) air pollution separately. Multinomial logistic regression models were used to calculate odds ratios and 95% confidence intervals. Results Hispanics were more likely to worry about harm from IAP and OAP compared to non-Hispanic whites. Participants who lived in metropolitan counties were more likely to worry about harm from IAP and OAP compared to those who lived in rural counties. Finally, those who believed their chance of getting cancer was high were more likely to worry about harm from IAP and OAP compared to those who thought their likelihood of getting cancer was low. Conclusions Worry of harm from IAP and OAP varied across sociodemographic and cancer-related characteristics. Public health professionals should consider these characteristics when developing targeted environmental risk communication and interventions. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13450-z.
Collapse
Affiliation(s)
- Samantha Ammons
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, MD, Bethesda, USA
| | - Hayley Aja
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, MD, Bethesda, USA.,Extramural Research Branch, Extramural Research and Partnerships Division, Office of Science Advisor, Policy, and Engagement, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Armen A Ghazarian
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, MD, Bethesda, USA
| | - Gabriel Y Lai
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, MD, Bethesda, USA
| | - Gary L Ellison
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, MD, Bethesda, USA.
| |
Collapse
|
35
|
Yu P, Xu R, Li S, Coelho MSZS, Saldiva PHN, Sim MR, Abramson MJ, Guo Y. Associations between long-term exposure to PM 2.5 and site-specific cancer mortality: A nationwide study in Brazil between 2010 and 2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119070. [PMID: 35231538 DOI: 10.1016/j.envpol.2022.119070] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 05/21/2023]
Abstract
Long-term exposure to PM2.5 has been linked to lung cancer incidence and mortality, but limited evidence existed for other cancers. This study aimed to assess the association between PM2.5 on cancer specific mortality. An ecological study based on the cancer mortality data collected from 5,565 Brazilian cities during 2010-2018 using a difference-in-differences approach with quasi-Poisson regression, was applied to examine PM2.5-cancer mortality associations. Globally gridded annual average surface PM2.5 concentration was extracted and linked with the residential municipality of participants in this study. Sex, age stratified and exposure-response estimations were also conducted. Totalling 1,768,668 adult cancer deaths records of about 208 million population living across 5,565 municipalities were included in this study. The average PM2.5 concentration was 7.63 μg/m3 (standard deviation 3.32) with range from 2.95 μg/m3 to 28.5 μg/m3. With each 10 μg/m3 increase in three-year-average (current year and previous two years) concentrations of PM2.5, the relative risks (RR) of cancer mortality were 1.16 (95% confidence interval [CI]: 1.11-1.20) for all-site cancers. The PM2.5 exposure was significantly associated with several cancer-specific mortalities including oral, nasopharynx, oesophagus, and stomach, colon rectum, liver, gallbladder, larynx, lung, bone, skin, female breast, cervix, prostate, brain and leukaemia. No safe level of PM2.5 exposure was observed in the exposure-response curve for all types of cancer. In conclusion, with nationwide cancer death records in Brazil, we found that long-term exposure to ambient PM2.5 increased risks of mortality for many cancer types. Even low level PM2.5 concentrations had significant impacts on cancer mortality.
Collapse
Affiliation(s)
- Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | | | - Malcolm R Sim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
36
|
Pritchett N, Spangler EC, Gray GM, Livinski AA, Sampson JN, Dawsey SM, Jones RR. Exposure to Outdoor Particulate Matter Air Pollution and Risk of Gastrointestinal Cancers in Adults: A Systematic Review and Meta-Analysis of Epidemiologic Evidence. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:36001. [PMID: 35234536 PMCID: PMC8890324 DOI: 10.1289/ehp9620] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Outdoor air pollution is a known lung carcinogen, but research investigating the association between particulate matter (PM) and gastrointestinal (GI) cancers is limited. OBJECTIVES We sought to review the epidemiologic literature on outdoor PM and GI cancers and to put the body of studies into context regarding potential for bias and overall strength of evidence. METHODS We conducted a systematic review and meta-analysis of epidemiologic studies that evaluated the association of fine PM [PM with an aerodynamic diameter of ≤2.5μm (PM2.5)] and PM10 (aerodynamic diameter ≤10μm) with GI cancer incidence or mortality in adults. We searched five databases for original research published from 1980 to 2021 in English and summarized findings for studies employing a quantitative estimate of exposure overall and by specific GI cancer subtypes. We evaluated the risk of bias of individual studies and the overall quality and strength of the evidence according to the Navigation Guide methodology, which is tailored for environmental health research. RESULTS Twenty studies met inclusion criteria and included participants from 14 countries; nearly all were of cohort design. All studies identified positive associations between PM exposure and risk of at least one GI cancer, although in 3 studies these relationships were not statistically significant. Three of 5 studies estimated associations with PM10 and satisfied inclusion criteria for meta-analysis, but each assessed a different GI cancer and were therefore excluded. In the random-effects meta-analysis of 13 studies, PM2.5 exposure was associated with an increased risk of GI cancer overall [risk ratio (RR)=1.12; 95% CI: 1.01, 1.24]. The most robust associations were observed for liver cancer (RR=1.31; 95% CI: 1.07, 1.56) and colorectal cancer (RR=1.35; 95% CI: 1.08, 1.62), for which all studies identified an increased risk. We rated most studies with "probably low" risk of bias and the overall body of evidence as "moderate" quality with "limited" evidence for this association. We based this determination on the generally positive, but inconsistently statistically significant, effect estimates reported across a small number of studies. CONCLUSION We concluded there is some evidence of associations between PM2.5 and GI cancers, with the strongest evidence for liver and colorectal cancers. Although there is biologic plausibility for these relationships, studies of any one cancer site were few and there remain only a small number overall. Studies in geographic areas with high GI cancer burden, evaluation of the impact of different PM exposure assessment approaches on observed associations, and investigation of cancer subtypes and specific chemical components of PM are important areas of interest for future research. https://doi.org/10.1289/EHP9620.
Collapse
Affiliation(s)
- Natalie Pritchett
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily C. Spangler
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - George M. Gray
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington DC, USA
| | - Alicia A. Livinski
- National Institutes of Health Library, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua N. Sampson
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sanford M. Dawsey
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rena R. Jones
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Shan H, Li X, Ouyang C, Ke H, Yu X, Tan J, Chen J, Wang C, Zhang L, Tang Y, Yu L, Li W. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113170. [PMID: 35026589 DOI: 10.1016/j.ecoenv.2022.113170] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
PM2.5 is a harmful air pollutant currently threatening public health. It has been closely linked to increased morbidity of bronchial asthma and lung cancer worldwide. Salidroside (Sal), an active component extracted from Rhodiola rosea, has been reported to ameliorate the progression of asthma. However, there are few studies on the protective effect of salidroside on PM2.5-induced bronchial epithelial cell injury, and the related molecular mechanism is not clear. Here, we aimed to explore the protective effect and related mechanism of Sal on PM2.5 bronchial injury. We chose 50 μg/mL PM2.5 for 24 h as a PM2.5-induced cell damage model. After that BEAS-2B cells were pretreated with 40, 80, 160 µM Sal for 24 h and then exposed to 50 μg/mL PM2.5 for 24 h. We found that Sal pretreatment significantly inhibited the decrease of cell viability induced by PM2.5. Sal was effective in preventing PM2.5-induced apoptotic features, including Ca2+ overload, the cleavages of caspase 3, and the increases in levels of caspase 9 and Bcl-2-associated X protein (Bax), ultimately, Sal significantly inhibited PM2.5-induced apoptosis. Sal improved mitochondrial membrane potential, inhibited the release of cytochrome c from the mitochondria to cytoplasm. Sal alleviated ROS production, decreased the level of MDA, prevented the reduction of CAT, SOD and GSH-Px and increased the expression of NF-E2-related factor 2 (Nrf2), HO-1 and superoxide dismutase 1 (SOD1) in cells exposed to PM2.5. Furthermore, Sal improved the decrease of SIRT1 and PGC-1 α expression levels caused by PM2.5. In addition, inhibition of SIRT1 by EX527 (SIRT1 inhibitor) reversed the protective effects of Sal, including the decrease of ROS level, the increase of membrane potential level and the decrease of apoptosis level. Thus, Sal may be regarded as a potential drug to prevent PM2.5-induced apoptosis of bronchial epithelial cells and other diseases with similar pathological mechanisms.
Collapse
Affiliation(s)
- Hui Shan
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Xiaohong Li
- Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China; Department of Nutrition and Food Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Chuan Ouyang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Hongyang Ke
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Xiaoli Yu
- Key Laboratory of health inspection and quarantine, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Jinfeng Tan
- Weifang environmental monitoring station, Weifang, China
| | - Junhao Chen
- Key Laboratory of health inspection and quarantine, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Chunping Wang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Liping Zhang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Yunfeng Tang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Li Yu
- School of basic medicine, Weifang Medical University, Weifang, China
| | - Wanwei Li
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China.
| |
Collapse
|
38
|
Wang Y, Wang S, Jing H, Zhang T, Song N, Xu S. CircRNA-IGLL1/miR-15a/RNF43 axis mediates ammonia-induced autophagy in broilers jejunum via Wnt/β-catenin pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118332. [PMID: 34637826 DOI: 10.1016/j.envpol.2021.118332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
With the continued increase of global ammonia emission, the damage to human or animal caused by ammonia pollution has attracted wide attention. The noncoding RNAs have been reported to regulate a variety of biological processes under different environmental stimulation via ceRNA (competing endogenous RNA) networks. Autophagy is a hallmark of tissue damage from air pollution. However, the specific role of circular RNAs (circRNAs) in the injury of intestinal tissue caused by autophagy remains unclear. Here, we established 42-days old ammonia-exposed broiler models and observed that autophagy flux in broiler jejunum was activated under ammonia exposure. Meanwhile, a total of eight significantly dysregulated expressed circRNAs were obtained and a circRNAs-miRNAs-genes interaction networks were constructed by bioinformatics analysis. Furthermore, an axis named circRNA-IGLL1/miR-15a/RNF43 was predicted to participate in the excessive autophagy by targeting RNF43. The target relationship was proved by dual-luciferase reporter assay in vitro. Mechanistically, downregulated circRNA-IGLL1 could suppress the expression of RNF43 in ammonia-exposed jejunum and the Wnt/β-catenin pathway was activated. Inhibition of miR-15a reversed autophagy caused by downregulated circRNA-IGLL1. CircRNA-IGLL1 could competitively bind miR-15a to regulate RNF43 expression, thus modulating the occurrence of autophagy. Taken together, our results showed that circRNA-IGLL1/miR-15a/RNF43 axis is involved in ammonia-induced intestinal autophagy in broilers.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongyuan Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tianyi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
39
|
Yu P, Xu R, Coelho MSZS, Saldiva PHN, Li S, Zhao Q, Mahal A, Sim M, Abramson MJ, Guo Y. The impacts of long-term exposure to PM 2.5 on cancer hospitalizations in Brazil. ENVIRONMENT INTERNATIONAL 2021; 154:106671. [PMID: 34082238 DOI: 10.1016/j.envint.2021.106671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Long-term exposure to PM2.5 has been linked to cancer incidence and mortality. However, it was unknown whether there was an association with cancer hospitalizations. METHODS Data on cancer hospitalizations and annual PM2.5 concentrations were collected from 1,814 Brazilian cities during 2002-2015. A difference-in-difference approach with quasi-Poisson regression was applied to examine State-specific associations. The State-specific associations were pooled at a national level using random-effect meta-analyses. PM2.5 attributable burden were estimated for cancer hospitalization admissions, inpatient days and costs. RESULTS We included 5,102,358 cancer hospitalizations (53.8% female). The mean annual concentration of PM2.5 was 7.0 μg/m3 (standard deviation: 4.0 μg/m3). With each 1 μg/m3 increase in two-year-average (current year and previous one year) concentrations of PM2.5, the relative risks (RR) of hospitalization were 1.04 (95% confidence interval [CI]: 1.02 to 1.07) for all-site cancers from 2002 to 2015 without sex and age differences. We estimated that 33.82% (95%CI: 14.97% to 47.84%) of total cancer hospitalizations could be attributed to PM2.5 exposure in Brazil during the study time. For every 100,000 population, 1,190 (95%CI: 527 to 1,836) cancer hospitalizations, 8,191 (95%CI: 3,627 to 11,587) inpatient days and US$788,775 (95%CI: $349,272 to $1,115,825) cost were attributable to PM2.5 exposure. CONCLUSIONS Long-term exposure to ambient PM2.5 was positively associated with hospitalization for many cancer types in Brazil. Inpatient days and cost would be saved if the annual PM2.5 exposure was reduced.
Collapse
Affiliation(s)
- Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | | | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Qi Zhao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ajay Mahal
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Malcolm Sim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
40
|
Yuan CS, Lai CS, Tseng YL, Hsu PC, Lin CM, Cheng FJ. Repeated exposure to fine particulate matter constituents lead to liver inflammation and proliferative response in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112636. [PMID: 34392150 DOI: 10.1016/j.ecoenv.2021.112636] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/18/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fine particulate matter (particulate matter with aerodynamic diameter of ≦2.5 µm, PM2.5) exposure cause adverse health effects, including lung inflammation. Through intra-tracheal instillation of PM2.5 components, the study aimed to evaluate the inflammatory and proliferative effects on mice liver. PM2.5 samples were collected near an industrial complex at southern Taiwan. Mice were exposed to water extracts or insoluble particles by intra-tracheal instillation. Male C57BL/6 mice were divided into five groups: control, low dose insoluble particle exposure (LP), high dose insoluble particle exposure (HP), low dose water extract exposure (LW), and high dose water extract exposure (HW). Biochemical analysis, western blotting, histological examination, and immunohistochemistry were employed to evaluate the results. RESULT Enrichment factor (EF) of metallic elements showed that the EFs of trace elements (Ti, V, Ni, Zn, Pb, Cr, and Cu) in PM2.5 were above 10. Hematoxylin and Eosin (H&E) staining of the liver tissue showed inflammatory infiltration in particle exposure group; hepatocyte ballooning degeneration and karyomegaly were seen in the water extract exposure group. Upregulation of inflammatory signaling, p65 and p50, and caspase-3 (an important effector involved in apoptosis) positive hepatocytes was significantly increased in the HP group, followed by an elevation in protein levels of growth arrest and DNA damage-inducible protein 153 (GADD153). Increased protein expression of proliferating cell nuclear antigen (PCNA) was noted in the LW and HW groups. An increase in phosphorylation of regulators of cell proliferation, Akt and extracellular signal-regulated kinase (ERK) 1/2, were detected in the LW and HW groups. CONCLUSION The present study shows that the insoluble particle composition of PM2.5 induced inflammatory signaling and cytokines upregulation in the liver, accompanied with inflammatory cell and macrophage infiltration and an abnormal liver function. Exposure of water extract to PM2.5 induced signals of upregulated cellular proliferation, elevated markers of cell proliferation in liver, hepatocyte ballooning degeneration and karyomegaly.
Collapse
Affiliation(s)
- Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC; Aerosol Science Research Center, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81164, Taiwan, ROC
| | - Chieh-Mo Lin
- Departme nt of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Chiayi, Taiwan, ROC; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC; Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Puzi, Chiayi County, Taiwan, ROC
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung 833, Taiwan, ROC; Chang Gung University College of Medicine, 259, Wenhua 1st Road, Guishan District, Taoyuan 333, Taiwan, ROC.
| |
Collapse
|
41
|
Shehzad K, Bilgili F, Koçak E, Xiaoxing L, Ahmad M. COVID-19 outbreak, lockdown, and air quality: fresh insights from New York City. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41149-41161. [PMID: 33779900 PMCID: PMC8005864 DOI: 10.1007/s11356-021-13556-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/16/2021] [Indexed: 05/22/2023]
Abstract
The outbreak of the COVID-19 pandemic has adversely affected all aspects of life and poses a severe threat to human health and economic development. New York City administration enacted a strict isolation decision at the end of March 2020 to tackle the COVID-19, creating a unique opportunity to assess air quality. Therefore, we investigated the impact of the lockdown on air quality in New York City. We evaluated the air pollutants concentration, i.e., PM2.5, CO, NO2, SO2, and O3, during the lockdown and compared them with pre-COVID-19. We explored the first phase of lockdown through a spatial approach, then formulated the air quality index (AQI) of each pollutant before and during the lockdown. Our findings revealed that (1) there was a significant decline in the concentration level of PM2.5 from 10.3 to 4.0 μg/m3 during phase one of lockdown. (2) NO2 concentrations have been decreased by up to 52% in 1st phase of lockdown. (3) O3 concentration has been increased by 44.4%. (4) Brooklyn, Manhattan, Queens, and Staten Island County encountered 18.75%, 55.62%, 47.14%, and 47% diminution in AQI due to lockdown as compared to 2018, respectively. Our key findings can provide critical environmental implications for policymakers, researchers, academics, and the US government.
Collapse
Affiliation(s)
- Khurram Shehzad
- School of Economics and Management, Southeast University, Nanjing, China
| | - Faik Bilgili
- Faculty of Economics and Administrative Sciences, Department of Economics, Erciyes University, 38039 Melikgazi, Kayseri Turkey
| | - Emrah Koçak
- Faculty of Economics and Administrative Sciences, Department of Economics, Erciyes University, 38039 Melikgazi, Kayseri Turkey
| | - Liu Xiaoxing
- School of Economics and Management, Southeast University, Nanjing, China
| | - Mahmood Ahmad
- School of International Trade and Economics, University of International Business and Economics, Beijing, China
| |
Collapse
|
42
|
Villanueva C, Chang J, Ziogas A, Bristow RE, Vieira VM. Ambient air pollution and ovarian cancer survival in California. Gynecol Oncol 2021; 163:155-161. [PMID: 34330535 DOI: 10.1016/j.ygyno.2021.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To examine whether exposure to ambient ozone, particulate matter with diameter less than 2.5 μm (PM2.5), nitrogen dioxide (NO2), and distance to major roadways (DTR) impact ovarian cancer-specific survival, while considering differences by stage, race/ethnicity, and socioeconomic status. METHODS Women diagnosed with epithelial ovarian cancer from 1996 to 2014 were identified through the California Cancer Registry and followed through 2016. Women's geocoded addresses were linked to pollutant exposure data and averaged over the follow-up period. Pollutants were considered independently and in multi-pollutant models. Cox proportional hazards models assessed hazards of disease-specific death due to environmental exposures, controlling for important covariates, with additional models stratified by stage at diagnosis, race/ethnicity and socioeconomic status. RESULTS PM2.5 and NO2, but not ozone or DTR, were significantly associated with survival in univariate models. In a multi-pollutant model for PM2.5, ozone, and DTR, an interquartile range increase in PM2.5 (Hazard Ratio [HR], 1.45; 95% Confidence Interval [CI], 1.41-1.49) was associated with worse prognosis. Similarly, in the multi-pollutant model with NO2, ozone, and DTR, women with higher NO2 exposures (HR for 20.0-30.0 ppb, 1.30; 95% CI, 1.25-1.36 and HR for >30.0 ppb, 2.48; 95% CI, 2.32-2.66) had greater mortality compared to the lowest exposed (<20.0 ppb). Stratified results show the effects of the pollutants differed by race/ethnicity and were magnified among women diagnosed in early stages. CONCLUSIONS Our analyses suggest that greater exposure to NO2 and PM2.5 may adversely impact ovarian cancer-specific survival, independent of sociodemographic and treatment factors. These findings warrant further study.
Collapse
Affiliation(s)
- Carolina Villanueva
- Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, United States of America.
| | - Jenny Chang
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Argyrios Ziogas
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Robert E Bristow
- Chao Family Comprehensive Cancer Center, Orange, CA, United States of America; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of California, Irvine School of Medicine, Orange, CA, United States of America
| | - Verónica M Vieira
- Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, United States of America; Chao Family Comprehensive Cancer Center, Orange, CA, United States of America
| |
Collapse
|
43
|
PM2.5-exposed hepatocytes induce hepatic stellate cells activation by releasing TGF-β1. Biochem Biophys Res Commun 2021; 569:125-131. [PMID: 34243068 DOI: 10.1016/j.bbrc.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
The interaction between various types of hepatic cells is related to liver fibrosis. Recent studies demonstrated that fine particulate matter (PM2.5) exposure is an important risk factor for the occurrence of liver fibrosis, but its molecular mechanism is still obscure. In this study, we aimed to investigate whether transforming growth factor- β1 (TGF- β1) secreted from PM2.5-treated hepatocytes (L-O2) are shuttled to hepatic stellate cells (HSCs) and to establish their effects on HSCs. We have observed that the conditioned medium from L-O2 cells stimulated with PM2.5 induced the activation of LX-2 cells, and at the same time, the same results were obtained when we co-cultured LX-2 in PM2.5-exposed L-O2 cells. In addition, analysis of L-O2 cells stimulated with PM2.5 revealed significant increases in TGF-β1 expression. Moreover, we found that the TGF-β1 receptor inhibitor, SB-525334, decreases the proliferation and migration of LX-2 cells in the co-culture system. In addition, the expression of α-smooth muscle actin and type I collagen in LX-2 cells induced by PM2.5-treated L-O2 cells were also blocked by pretreated with SB-525334. These observations imply that PM2.5 induces TGF- β1expression in hepatocytes, which leads to HSCs activation.
Collapse
|
44
|
Wang R, Han X, Pang H, Hu Z, Shi C. Illuminating a time-response mechanism in mice liver after PM 2.5 exposure using metabolomics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144485. [PMID: 33429275 DOI: 10.1016/j.scitotenv.2020.144485] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
PM2.5 is recognized as an atmospheric pollutant that seriously jeopardizes human health. Emerging evidence indicates that PM2.5 exposure is associated with metabolic disorders. Existing epidemiology and toxicology studies on the health effects of PM2.5 usually focused on its different components and doses, the effects on susceptible populations, or the effects of indoor and outdoor pollution. The underlying mechanisms of exposure time are poorly understood. Liver, as the central organ involved in various metabolisms, has special signaling pathways non-existed in lung and cardiovascular systems. Exacerbation in liver by the prolonged exposure of PM2.5 leads to hepatic function disorder. It is therefore essential to elucidate the mechanism underlying hepatotoxicity after PM2.5 exposure from the perspective of time-response relationship. In this study, targeted metabolomics was utilized to explore the hepatic injury in mice after PM2.5 exposure. Our results showed that prolonged exposure of PM2.5 would aggravate liver metabolic disorders. The metabolic process was divided into three phases. In phase I, it was found that PM2.5 exposure disturbed the hepatic urea synthesis. In phase II, oxidative damages and inflammations obviously occurred in liver, which would further cause neurobehavioral disorders and fat deposits. In phase III, the changes of metabolites and metabolic pathways indicated that the liver has been severely damaged, with the accelerated biosynthesis and fat metabolism. Finally, using ROC analysis coupled with their biological functions, 4 potential biomarkers were screened out, with which we established a method to classify and diagnose the progress of liver damage in mice after PM2.5 exposure. In this paper, we not only established the time-response relationship of PM2.5, but also provided new insights for the classification and prediction of the toxic injury stages in mice liver, which provides a ground work for the future drug intervention to prevent oxidative damage of PM2.5.
Collapse
Affiliation(s)
- Rongrong Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China; College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xi Han
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China; College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Chunzhen Shi
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China; College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
45
|
Chu H, Xin J, Yuan Q, Wu Y, Du M, Zheng R, Liu H, Wu S, Zhang Z, Wang M. A prospective study of the associations among fine particulate matter, genetic variants, and the risk of colorectal cancer. ENVIRONMENT INTERNATIONAL 2021; 147:106309. [PMID: 33338681 DOI: 10.1016/j.envint.2020.106309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) is suspected to increase the risk of colorectal cancer, but the mechanism remains unknown. We aimed to investigate the association between PM2.5 exposure, genetic variants and colorectal cancer risk in the Prostate, Lung, Colon and Ovarian (PLCO) Cancer Screening trial. METHODS We included a prospective cohort of 139,534 cancer-free individuals from 10 United States research centers with over ten years of follow-up. We used a Cox regression model to assess the association between PM2.5 exposure and colorectal cancer incidence by calculating the hazard ratio (HR) and 95% confidence interval (CI) with adjustment for potential confounders. The polygenic risk score (PRS) and genome-wide interaction analysis (GWIA) were used to evaluate the multiplicative interaction between PM2.5 exposure and genetic variants in regard to colorectal cancer risk. RESULTS After a median of 10.43 years of follow-up, 1,666 participants had been diagnosed with colorectal cancer. PM2.5 exposure was significantly associated with an increased risk of colorectal cancer (HR = 1.27; 95% CI = 1.17-1.37 per 5 μg/m3 increase). Five independent susceptibility loci reached statistical significance at P < 1.22 × 10-8 in the interaction analysis. Furthermore, a joint interaction was observed between PM2.5 exposure and the PRS based on these five loci with colorectal cancer risk (P = 3.11 × 10-29). The Gene Ontology analysis showed that the vascular endothelial growth factor (VEGF) receptor signaling pathway was involved in the biological process of colorectal cancer. CONCLUSIONS Our large-scale analysis has shown for the first time that long-term PM2.5 exposure potential increases colorectal cancer risk, which might be modified by genetic variants.
Collapse
Affiliation(s)
- Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Yuan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Yanling Wu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
46
|
Qin S, Li B, Li R, Cai Y, Zheng K, Huang H, Xiao F, Zeng M, Xu X. Proteomic characteristics and identification of PM 2.5-induced differentially expressed proteins in hepatocytes and c-Myc silenced hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111838. [PMID: 33387776 DOI: 10.1016/j.ecoenv.2020.111838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Proteomics and bioinformatics were applied to explore PM2.5-induced differentially expressed proteins (DEPs) in hepatocytes (L02 cells) and c-Myc-silenced hepatocytes. L02 cells and c-Myc-silenced hepatocytes were treated with PM2.5 for 24 h. Fifty-two DEPs were screened in L02 hepatocytes, of which 28 were upregulated and 24 were downregulated. Forty-one DEPs were screened in the c-Myc-silenced hepatocytes, of which 31 were upregulated and 10 were downregulated. GO analysis showed that DEPs in L02 cells were mainly concentrated in the cytosol and were involved in biological processes such as the response to metal ions. DEPs in c-Myc-silenced cells were mainly enriched in the extracellular space and were involved in lipoprotein metabolism. KEGG analysis showed that DEPs in L02 cells were mainly involved in arachidonic acid metabolism and mineral absorption. DEPs in c-Myc-silenced cells were mainly enriched in pathways involving nerve absorption, complement and coagulation cascades, and other pathways. Twenty key proteins, including Metallothionein-2A (MT2A), Metallothionein-1X (MT1X), zinc transporter ZIP10 (SLC39A10) and Serine protease 23 (PRSS23) were screened in two groups through analysis of protein-protein interactions. Based on the identification of the selected DEPs, PRSS23 and SLC39A10 might be the potential biomarker of PM2.5-induced carcinogenesis, which provide the scientific basis for further research into the carcinogenic mechanisms of PM2.5.
Collapse
Affiliation(s)
- Shuangjian Qin
- Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China; Institute of environment and health, Shenzhen center for disease control and prevention, Shenzhen, Guangdong 518055, China
| | - Boru Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China; Institute of environment and health, Shenzhen center for disease control and prevention, Shenzhen, Guangdong 518055, China
| | - Runbing Li
- Institute of environment and health, Shenzhen center for disease control and prevention, Shenzhen, Guangdong 518055, China; School of public health, University of South China, Hengyang, Hunan 421001, China
| | - Ying Cai
- Institute of environment and health, Shenzhen center for disease control and prevention, Shenzhen, Guangdong 518055, China; School of public health, University of South China, Hengyang, Hunan 421001, China
| | - Kai Zheng
- Institute of environment and health, Shenzhen center for disease control and prevention, Shenzhen, Guangdong 518055, China; School of public health, University of South China, Hengyang, Hunan 421001, China
| | - Haiyan Huang
- Institute of environment and health, Shenzhen center for disease control and prevention, Shenzhen, Guangdong 518055, China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China.
| | - Ming Zeng
- Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China.
| | - Xinyun Xu
- Institute of environment and health, Shenzhen center for disease control and prevention, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
47
|
Cox LA. How Do Exposure Estimation Errors Affect Estimated Exposure-Response Relations? INTERNATIONAL SERIES IN OPERATIONS RESEARCH & MANAGEMENT SCIENCE 2021:449-474. [DOI: 10.1007/978-3-030-57358-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
48
|
Pourvakhshoori N, Khankeh HR, Stueck M, Farrokhi M. The association between air pollution and cancers: controversial evidence of a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38491-38500. [PMID: 32767014 DOI: 10.1007/s11356-020-10377-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
There are inconsistent reports on the association between air pollution and cancers. This systematic review was, therefore, conducted to ascertain the relationship between air pollution and some cancers. This is a systematic review study, which all articles published in this area were extracted from January 1, 1950 to December 31, 2018 from Web of Science, PubMed, Scopus, Cochrane Library, MEDLINE, EMBASE, Science Direct, Google scholar. Searching was performed independently by two search-method experts. The required data were extracted from the articles by an author-made questionnaire. Forty-eight articles were investigated. Evidence linking air pollution to some cancers is limited. Leukemia had the highest association with exposure to various air pollutants and bladder cancer had the lowest association. It is noteworthy that the specific type of pollutants in all studies was not specified. Based on the findings, the results are contradictory, and the role of air pollution in some cancers cannot be supported. Accordingly, studies are recommended to be performed at the individual level or multifactorial studies to specifically investigate the relationship between air pollution and these types of cancers. In this way, the role of air pollution in the incidence of these cancers can be determined more accurately.
Collapse
Affiliation(s)
- Negar Pourvakhshoori
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Nursing, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamid Reza Khankeh
- Department of Clinical Science and Education, Karolinska Institute, Stockholm, Sweden
| | - Marcus Stueck
- DFPA Academy of Work and Health, Leipzig, Germany
- International Research Academy BIONET, Leipzig, Germany
| | - Mehrdad Farrokhi
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Ou JY, Kirchhoff AC, Hanson HA. Air Pollution across the Cancer Continuum: Extending Our Understanding of the Relationship between Environmental Exposures and Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1876-1879. [PMID: 33004409 DOI: 10.1158/1055-9965.epi-19-1588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Previous studies of the environment and cancer have focused on etiology, showing that extrinsic factors in the environment contribute to 70% to 90% of cancers. Cancer patients and survivors often continue to live in the same neighborhoods they resided in before their cancer diagnosis. Thus, patients and survivors are exposed to the same environmental contexts that likely contributed to their original cancer, but little is known about the health effects of continued exposure to carcinogens after a cancer diagnosis. This commentary provides a summary of studies of the association between PM2.5 and cancer mortality among patients and PM2.5 and posttreatment morbidity among cancer survivors, and proposes new directions and opportunities for future research on such topics.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Judy Y Ou
- Huntsman Cancer Institute, Cancer Control and Population Sciences, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Anne C Kirchhoff
- Huntsman Cancer Institute, Cancer Control and Population Sciences, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Heidi A Hanson
- Huntsman Cancer Institute, Cancer Control and Population Sciences, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
50
|
Coleman NC, Burnett RT, Ezzati M, Marshall JD, Robinson AL, Pope CA. Fine Particulate Matter Exposure and Cancer Incidence: Analysis of SEER Cancer Registry Data from 1992-2016. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:107004. [PMID: 33035119 PMCID: PMC7546438 DOI: 10.1289/ehp7246] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Previous research has identified an association between fine particulate matter (PM 2.5 ) air pollution and lung cancer. Most of the evidence for this association, however, is based on research using lung cancer mortality, not incidence. Research that examines potential associations between PM 2.5 and incidence of non-lung cancers is limited. OBJECTIVES The primary purpose of this study was to evaluate the association between the incidence of cancer and exposure to PM 2.5 using > 8.5 million cases of cancer incidences from U.S. registries. Secondary objectives include evaluating the sensitivity of the associations to model selection, spatial control, and latency period as well as estimating the exposure-response relationship for several cancer types. METHODS Surveillance, Epidemiology, and End Results (SEER) program data were used to calculate incidence rates for various cancer types in 607 U.S. counties. County-level PM 2.5 concentrations were estimated using integrated empirical geographic regression models. Flexible semi-nonparametric regression models were used to estimate associations between PM 2.5 and cancer incidence for selected cancers while controlling for important county-level covariates. Primary time-independent models using average incidence rates from 1992-2016 and average PM 2.5 from 1988-2015 were estimated. In addition, time-varying models using annual incidence rates from 2002-2011 and lagged moving averages of annual estimates for PM 2.5 were also estimated. RESULTS The incidences of all cancer and lung cancer were consistently associated with PM 2.5 . The incident rate ratios (IRRs), per 10 - μ g / m 3 increase in PM 2.5 , for all and lung cancer were 1.09 (95% CI: 1.03, 1.14) and 1.19 (95% CI: 1.09, 1.30), respectively. Less robust associations were observed with oral, rectal, liver, skin, breast, and kidney cancers. DISCUSSION Exposure to PM 2.5 air pollution contributes to lung cancer incidence and is potentially associated with non-lung cancer incidence. https://doi.org/10.1289/EHP7246.
Collapse
Affiliation(s)
| | | | - Majid Ezzati
- Medical Research Council–Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Julian D. Marshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Allen L. Robinson
- Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - C. Arden Pope
- Department of Economics, Brigham Young University, Provo, Utah, USA
| |
Collapse
|