1
|
McFarland KS, Hegadorn K, Betenbaugh MJ, Handlogten MW. Elevated endoplasmic reticulum pH is associated with high growth and bisAb aggregation in CHO cells. Biotechnol Bioeng 2025; 122:137-148. [PMID: 39435744 DOI: 10.1002/bit.28866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Chinese hamster ovary (CHO) bioprocesses, the dominant platform for therapeutic protein production, are increasingly used to produce complex multispecific proteins. Product quantity and quality are affected by intracellular conditions, but these are challenging to measure and often overlooked during process optimization studies. pH is known to impact quality attributes like protein aggregation across upstream and downstream processes, yet the effects of intracellular pH on cell culture performance are largely unknown. Recently, advances in protein biosensors have enabled investigations of intracellular environments with high spatiotemporal resolution. In this study, we integrated a fluorescent pH-sensitive biosensor into a bispecifc (bisAb)-producing cell line to investigate changes in endoplasmic reticulum pH (pHER). We then investigated how changes in lactate metabolism impacted pHER, cellular redox, and product quality in fed-batch and perfusion bioreactors. Our data show pHER rapidly increased during exponential growth to a maximum of pH 7.7, followed by a sharp drop in the stationary phase in all perfusion and fed-batch conditions. pHER decline in the stationary phase was driven by an apparent loss of cellular pH regulation that occurred despite differences in redox profiles. Finally, we found protein aggregate levels correlated most closely with pHER which provides new insights into product aggregate formation in CHO processes. An improved understanding of the intracellular changes impacting bioprocesses can ultimately help guide media optimizations, improve bioprocess control strategies, or provide new targets for cell engineering.
Collapse
Affiliation(s)
- Kevin S McFarland
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development R&D, AstraZeneca, Gaithersburg, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Kaitlin Hegadorn
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development R&D, AstraZeneca, Gaithersburg, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Michael W Handlogten
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development R&D, AstraZeneca, Gaithersburg, USA
| |
Collapse
|
2
|
Skurska E, Olczak M. Interplay between de novo and salvage pathways of GDP-fucose synthesis. PLoS One 2024; 19:e0309450. [PMID: 39446915 PMCID: PMC11501016 DOI: 10.1371/journal.pone.0309450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 10/26/2024] Open
Abstract
GDP-fucose is synthesised via two pathways: de novo and salvage. The first uses GDP-mannose as a substrate, and the second uses free fucose. To date, these pathways have been considered to work separately and not to have an influence on each other. We report the mutual response of the de novo and salvage pathways to the lack of enzymes from a particular route of GDP-fucose synthesis. We detected different efficiencies of GDP-fucose and fucosylated structure synthesis after a single inactivation of enzymes of the de novo pathway. Our study demonstrated the unequal influence of the salvage enzymes on the production of GDP-fucose by enzymes of the de novo biosynthesis pathway. Simultaneously, we detected an elevated level of one of the enzymes of the de novo pathway in the cell line lacking the enzyme of the salvage biosynthesis pathway. Additionally, we identified dissimilarities in fucose uptake between cells lacking TSTA3 and GMDS proteins.
Collapse
Affiliation(s)
- Edyta Skurska
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
3
|
Sou YS, Yamaguchi J, Masuda K, Uchiyama Y, Maeda Y, Koike M. Golgi pH homeostasis stabilizes the lysosomal membrane through N-glycosylation of membrane proteins. Life Sci Alliance 2024; 7:e202402677. [PMID: 39079741 PMCID: PMC11289521 DOI: 10.26508/lsa.202402677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Protein glycosylation plays a vital role in various cellular functions, many of which occur within the Golgi apparatus. The Golgi pH regulator (GPHR) is essential for the proper functioning of the Golgi apparatus. The lysosomal membrane contains highly glycosylated membrane proteins in abundance. This study investigated the role of the Golgi luminal pH in N-glycosylation of lysosomal membrane proteins and the effect of this protein modification on membrane stability using Gphr-deficient MEFs. We showed that Gphr deficiency causes an imbalance in the Golgi luminal pH, resulting in abnormal protein N-glycosylation, indicated by a reduction in sialylated glycans and markedly reduced molecular weight of glycoproteins. Further experiments using FRAP and PLA revealed that Gphr deficiency prevented the trafficking dynamics and proximity condition of glycosyltransferases in the Golgi apparatus. In addition, incomplete N-glycosylation of lysosomal membrane proteins affected lysosomal membrane stability, as demonstrated by the increased susceptibility to lysosomal damage. Thus, this study highlights the critical role of Golgi pH regulation in controlling protein glycosylation and the impact of Golgi dysfunction on lysosomal membrane stability.
Collapse
Affiliation(s)
- Yu-Shin Sou
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo, Japan
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Keisuke Masuda
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yusuke Maeda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| |
Collapse
|
4
|
Kang H, Han AR, Zhang A, Jeong H, Koh W, Lee JM, Lee H, Jo HY, Maria-Solano MA, Bhalla M, Kwon J, Roh WS, Yang J, An HJ, Choi S, Kim HM, Lee CJ. GolpHCat (TMEM87A), a unique voltage-dependent cation channel in Golgi apparatus, contributes to Golgi-pH maintenance and hippocampus-dependent memory. Nat Commun 2024; 15:5830. [PMID: 38992057 PMCID: PMC11239671 DOI: 10.1038/s41467-024-49297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Impaired ion channels regulating Golgi pH lead to structural alterations in the Golgi apparatus, such as fragmentation, which is found, along with cognitive impairment, in Alzheimer's disease. However, the causal relationship between altered Golgi structure and cognitive impairment remains elusive due to the lack of understanding of ion channels in the Golgi apparatus of brain cells. Here, we identify that a transmembrane protein TMEM87A, renamed Golgi-pH-regulating cation channel (GolpHCat), expressed in astrocytes and neurons that contributes to hippocampus-dependent memory. We find that GolpHCat displays unique voltage-dependent currents, which is potently inhibited by gluconate. Additionally, we gain structural insights into the ion conduction through GolpHCat at the molecular level by determining three high-resolution cryogenic-electron microscopy structures of human GolpHCat. GolpHCat-knockout mice show fragmented Golgi morphology and altered protein glycosylation and functions in the hippocampus, leading to impaired spatial memory. These findings suggest a molecular target for Golgi-related diseases and cognitive impairment.
Collapse
Affiliation(s)
- Hyunji Kang
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ah-Reum Han
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Aihua Zhang
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Heejin Jeong
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Jung Moo Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Hayeon Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Hee Young Jo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea
| | - Miguel A Maria-Solano
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Jea Kwon
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Woo Suk Roh
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Jimin Yang
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea.
- IBS School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Raynor A, Haouari W, Lebredonchel E, Foulquier F, Fenaille F, Bruneel A. Biochemical diagnosis of congenital disorders of glycosylation. Adv Clin Chem 2024; 120:1-43. [PMID: 38762238 DOI: 10.1016/bs.acc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism, comprising over 160 described diseases to this day. CDG are characterized by a dysfunctional glycosylation process, with molecular defects localized in the cytosol, the endoplasmic reticulum, or the Golgi apparatus. Depending on the CDG, N-glycosylation, O-glycosylation and/or glycosaminoglycan synthesis can be affected. Various proteins, lipids, and glycosylphosphatidylinositol anchors bear glycan chains, with potential impacts on their folding, targeting, secretion, stability, and thus, functionality. Therefore, glycosylation defects can have diverse and serious clinical consequences. CDG patients often present with a non-specific, multisystemic syndrome including neurological involvement, growth delay, hepatopathy and coagulopathy. As CDG are rare diseases, and typically lack distinctive clinical signs, biochemical and genetic testing bear particularly important and complementary diagnostic roles. Here, after a brief introduction on glycosylation and CDG, we review historical and recent findings on CDG biomarkers and associated analytical techniques, with a particular emphasis on those with relevant use in the specialized clinical chemistry laboratory. We provide the reader with insights and methods which may help them properly assist the clinician in navigating the maze of glycosylation disorders.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Walid Haouari
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | | | - François Foulquier
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France.
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France; INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
6
|
Lee HM, Park JH, Kim TH, Kim HS, Kim DE, Lee MK, You J, Lee GM, Kim YG. Effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoprotein in recombinant CHO cells. Appl Microbiol Biotechnol 2024; 108:224. [PMID: 38376550 PMCID: PMC10879319 DOI: 10.1007/s00253-024-13059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44. All autophagy inhibitors significantly decreased the sialylation of Fc-fusion glycoprotein in both cell lines. The decrease in sialylation of Fc-fusion glycoprotein is unlikely to be attributed to the release of intracellular enzymes, given the high cell viability and low activity of extracellular sialidases. Interestingly, the five intracellular nucleotide sugars remained abundant in cells treated with autophagy inhibitors. In the mRNA expression profiles of 27 N-glycosylation-related genes using the NanoString nCounter system, no significant differences in gene expression were noted. With the positive effect of supplementing nucleotide sugar precursors on sialylation, attempts were made to enhance the levels of intracellular nucleotide sugars by supplying these precursors. The addition of nucleotide sugar precursors to cultures treated with inhibitors successfully enhanced the sialylation of Fc-fusion glycoproteins compared to the control culture. This was particularly evident under mild stress conditions and not under relatively severe stress conditions, which were characterized by a high decrease in sialylation. These results suggest that inhibiting autophagy in rCHO cell culture decreases sialylation of Fc-fusion glycoprotein by constraining the availability of intracellular nucleotide sugars. KEY POINTS: • The autophagy inhibition in rCHO cell culture leads to a significant reduction in the sialylation of Fc-fusion glycoprotein. • The pool of five intracellular nucleotide sugars remained highly abundant in cells treated with autophagy inhibitors. • Supplementation of nucleotide sugar precursors effectively restores decreased sialylation, particularly under mild stress conditions but not in relatively severe stress conditions.
Collapse
Affiliation(s)
- Hoon-Min Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Jong-Ho Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - Tae-Ho Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Hyun-Seung Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Dae Eung Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea
| | - Jungmok You
- Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea.
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
7
|
Romann P, Schneider S, Tobler D, Jordan M, Perilleux A, Souquet J, Herwig C, Bielser JM, Villiger TK. Raman-controlled pyruvate feeding to control metabolic activity and product quality in continuous biomanufacturing. Biotechnol J 2024; 19:e2300318. [PMID: 37897126 DOI: 10.1002/biot.202300318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Despite technological advances ensuring stable cell culture perfusion operation over prolonged time, reaching a cellular steady-state metabolism remains a challenge for certain manufacturing cell lines. This study investigated the stabilization of a steady-state perfusion process producing a bispecific antibody with drifting product quality attributes, caused by shifting metabolic activity in the cell culture. MAIN METHODS A novel on-demand pyruvate feeding strategy was developed, leveraging lactate as an indicator for tricarboxylic acid (TCA) cycle saturation. Real-time lactate monitoring was achieved through in-line Raman spectroscopy, enabling accurate control at predefined target setpoints. MAJOR RESULTS The implemented feedback control strategy resulted in a three-fold reduction of ammonium accumulation and stabilized product quality profiles. Stable and flat glycosylation profiles were achieved with standard deviations below 0.2% for high mannose and fucosylation. Whereas galactosylation and sialylation were stabilized in a similar manner, varying lactate setpoints might allow for fine-tuning of these glycan forms. IMPLICATION The Raman-controlled pyruvate feeding strategy represents a valuable tool for continuous manufacturing, stabilizing metabolic activity, and preventing product quality drifting in perfusion cell cultures. Additionally, this approach effectively reduced high mannose, helping to mitigate increases associated with process intensification, such as extended culture durations or elevated culture densities.
Collapse
Affiliation(s)
- Patrick Romann
- Institute for Pharma Technology, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Sebastian Schneider
- Institute for Pharma Technology, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Daniela Tobler
- Institute for Pharma Technology, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Martin Jordan
- Biotech Process Science, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Corsier-sur-Vevey, Switzerland
| | - Arnaud Perilleux
- Biotech Process Science, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Corsier-sur-Vevey, Switzerland
| | - Jonathan Souquet
- Biotech Process Science, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Corsier-sur-Vevey, Switzerland
| | - Christoph Herwig
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Jean-Marc Bielser
- Biotech Process Science, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Corsier-sur-Vevey, Switzerland
| | - Thomas K Villiger
- Institute for Pharma Technology, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
8
|
Bohl S, Le Mignon M, Kilian T, Zimmer A. Sodium chloride impacts glycosylation and N- and O-glycan site occupancy of an Fc-fusion protein. Biotechnol Bioeng 2023; 120:3163-3176. [PMID: 37489835 DOI: 10.1002/bit.28512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Fc-fusion proteins are highly complex molecules, difficult to manufacture at scale. In this work, undesired proteoforms were detected during the manufacture of a therapeutic fusion protein produced in CHO cells. These species were characterized using gel electrophoresis, size exclusion chromatography and liquid chromatography-mass spectrometry leading to the identification of low molecular weight proteoforms presenting low N- and O-glycan site occupancy, as well as a low sialylation content. Upstream process parameters were investigated, and fusion protein quality was shown to be linked to the sodium chloride content of the medium. A mitigation strategy was developed to avoid formation of unwanted glyco-variants, resulting in an increased yield of highly glycosylated Fc-fusion protein. The effect of sodium chloride was shown to be independent of the osmolality increase and was hypothesized to be linked to a modulation of Golgi acidity, which is required for the correct localization and function of glycosyltransferases. Altogether, this study highlights the importance of the salt balance in cell culture media used to produce highly sialylated and occupied glycoproteins, helping to maximize the yield and increase robustness of processes aiming at producing biopharmaceutical complex therapeutic molecules.
Collapse
Affiliation(s)
- Susanne Bohl
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| | | | - Thomas Kilian
- Biomolecule Analytics & Proteomics, Merck KGaA, Darmstadt, Germany
| | - Aline Zimmer
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| |
Collapse
|
9
|
Löw K, Möller R, Stegmann C, Becker M, Rehburg L, Obernolte H, Schaudien D, Oestereich L, Braun A, Kunz S, Gerold G. Luminescent reporter cells enable the identification of broad-spectrum antivirals against emerging viruses. J Med Virol 2023; 95:e29211. [PMID: 37975336 DOI: 10.1002/jmv.29211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Abstract
The emerging viruses SARS-CoV-2 and arenaviruses cause severe respiratory and hemorrhagic diseases, respectively. The production of infectious particles of both viruses and virus spread in tissues requires cleavage of surface glycoproteins (GPs) by host proprotein convertases (PCs). SARS-CoV-2 and arenaviruses rely on GP cleavage by PCs furin and subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P), respectively. We report improved luciferase-based reporter cell lines, named luminescent inducible proprotein convertase reporter cells that we employ to monitor PC activity in its authentic subcellular compartment. Using these sensor lines we screened a small compound library in high-throughput manner. We identified 23 FDA-approved small molecules, among them monensin which displayed broad activity against furin and SKI-1/S1P. Monensin inhibited arenaviruses and SARS-CoV-2 in a dose-dependent manner. We observed a strong reduction in infectious particle release upon monensin treatment with little effect on released genome copies. This was reflected by inhibition of SARS-CoV-2 spike processing suggesting the release of immature particles. In a proof of concept experiment using human precision cut lung slices, monensin potently inhibited SARS-CoV-2 infection, evidenced by reduced infectious particle release. We propose that our PC sensor pipeline is a suitable tool to identify broad-spectrum antivirals with therapeutic potential to combat current and future emerging viruses.
Collapse
Affiliation(s)
- Karin Löw
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Rebecca Möller
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Cora Stegmann
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Miriam Becker
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Laura Rehburg
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, (CIMD), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) Research Network, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, (CIMD), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) Research Network, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Lisa Oestereich
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, (CIMD), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) Research Network, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Clinical Microbiology, Umeå University, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Sweden
| |
Collapse
|
10
|
Sun L, Zhang Y, Li W, Zhang J, Zhang Y. Mucin Glycans: A Target for Cancer Therapy. Molecules 2023; 28:7033. [PMID: 37894512 PMCID: PMC10609567 DOI: 10.3390/molecules28207033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Mucin glycans are an important component of the mucus barrier and a vital defence against physical and chemical damage as well as pathogens. There are 20 mucins in the human body, which can be classified into secreted mucins and transmembrane mucins according to their distributions. The major difference between them is that secreted mucins do not have transmembrane structural domains, and the expression of each mucin is organ and cell-specific. Under physiological conditions, mucin glycans are involved in the composition of the mucus barrier and thus protect the body from infection and injury. However, abnormal expression of mucin glycans can lead to the occurrence of diseases, especially cancer, through various mechanisms. Therefore, targeting mucin glycans for the diagnosis and treatment of cancer has always been a promising research direction. Here, we first summarize the main types of glycosylation (O-GalNAc glycosylation and N-glycosylation) on mucins and the mechanisms by which abnormal mucin glycans occur. Next, how abnormal mucin glycans contribute to cancer development is described. Finally, we summarize MUC1-based antibodies, vaccines, radio-pharmaceuticals, and CAR-T therapies using the best characterized MUC1 as an example. In this section, we specifically elaborate on the recent new cancer therapy CAR-M, which may bring new hope to cancer patients.
Collapse
Affiliation(s)
- Lingbo Sun
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuhan Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Wenyan Li
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Jing Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan'an, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| |
Collapse
|
11
|
Harduin-Lepers A. The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases. Glycoconj J 2023; 40:473-492. [PMID: 37247156 PMCID: PMC10225777 DOI: 10.1007/s10719-023-10123-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Every eukaryotic cell is covered with a thick layer of complex carbohydrates with essential roles in their social life. In Deuterostoma, sialic acids present at the outermost positions of glycans of glycoconjugates are known to be key players in cellular interactions including host-pathogen interactions. Their negative charge and hydrophilic properties enable their roles in various normal and pathological states and their expression is altered in many diseases including cancers. Sialylation of glycoproteins and glycolipids is orchestrated by the regulated expression of twenty sialyltransferases in human tissues with distinct enzymatic characteristics and preferences for substrates and linkages formed. However, still very little is known on the functional organization of sialyltransferases in the Golgi apparatus and how the sialylation machinery is finely regulated to provide the ad hoc sialome to the cell. This review summarizes current knowledge on sialyltransferases, their structure-function relationships, molecular evolution, and their implications in human biology.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
12
|
Indrawinata K, Argiropoulos P, Sugita S. Structural and functional understanding of disease-associated mutations in V-ATPase subunit a1 and other isoforms. Front Mol Neurosci 2023; 16:1135015. [PMID: 37465367 PMCID: PMC10352029 DOI: 10.3389/fnmol.2023.1135015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
The vacuolar-type ATPase (V-ATPase) is a multisubunit protein composed of the cytosolic adenosine triphosphate (ATP) hydrolysis catalyzing V1 complex, and the integral membrane complex, Vo, responsible for proton translocation. The largest subunit of the Vo complex, subunit a, enables proton translocation upon ATP hydrolysis, mediated by the cytosolic V1 complex. Four known subunit a isoforms (a1-a4) are expressed in different cellular locations. Subunit a1 (also known as Voa1), the neural isoform, is strongly expressed in neurons and is encoded by the ATP6V0A1 gene. Global knockout of this gene in mice causes embryonic lethality, whereas pyramidal neuron-specific knockout resulted in neuronal cell death with impaired spatial and learning memory. Recently reported, de novo and biallelic mutations of the human ATP6V0A1 impair autophagic and lysosomal activities, contributing to neuronal cell death in developmental and epileptic encephalopathies (DEE) and early onset progressive myoclonus epilepsy (PME). The de novo heterozygous R740Q mutation is the most recurrent variant reported in cases of DEE. Homology studies suggest R740 deprotonates protons from specific glutamic acid residues in subunit c, highlighting its importance to the overall V-ATPase function. In this paper, we discuss the structure and mechanism of the V-ATPase, emphasizing how mutations in subunit a1 can lead to lysosomal and autophagic dysfunction in neurodevelopmental disorders, and how mutations to the non-neural isoforms, a2-a4, can also lead to various genetic diseases. Given the growing discovery of disease-causing variants of V-ATPase subunit a and its function as a pump-based regulator of intracellular organelle pH, this multiprotein complex warrants further investigation.
Collapse
Affiliation(s)
- Karen Indrawinata
- Division of Translational and Experimental Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Peter Argiropoulos
- Division of Translational and Experimental Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Shuzo Sugita
- Division of Translational and Experimental Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Sharapov SZ, Timoshchuk AN, Aulchenko YS. Genetic control of N-glycosylation of human blood plasma proteins. Vavilovskii Zhurnal Genet Selektsii 2023; 27:224-239. [PMID: 37293449 PMCID: PMC10244589 DOI: 10.18699/vjgb-23-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2022] [Indexed: 06/10/2023] Open
Abstract
Glycosylation is an important protein modification, which influences the physical and chemical properties as well as biological function of these proteins. Large-scale population studies have shown that the levels of various plasma protein N-glycans are associated with many multifactorial human diseases. Observed associations between protein glycosylation levels and human diseases have led to the conclusion that N-glycans can be considered a potential source of biomarkers and therapeutic targets. Although biochemical pathways of glycosylation are well studied, the understanding of the mechanisms underlying general and tissue-specific regulation of these biochemical reactions in vivo is limited. This complicates both the interpretation of the observed associations between protein glycosylation levels and human diseases, and the development of glycan-based biomarkers and therapeutics. By the beginning of the 2010s, high-throughput methods of N-glycome profiling had become available, allowing research into the genetic control of N-glycosylation using quantitative genetics methods, including genome-wide association studies (GWAS). Application of these methods has made it possible to find previously unknown regulators of N-glycosylation and expanded the understanding of the role of N-glycans in the control of multifactorial diseases and human complex traits. The present review considers the current knowledge of the genetic control of variability in the levels of N-glycosylation of plasma proteins in human populations. It briefly describes the most popular physical-chemical methods of N-glycome profiling and the databases that contain genes involved in the biosynthesis of N-glycans. It also reviews the results of studies of environmental and genetic factors contributing to the variability of N-glycans as well as the mapping results of the genomic loci of N-glycans by GWAS. The results of functional in vitro and in silico studies are described. The review summarizes the current progress in human glycogenomics and suggests possible directions for further research.
Collapse
Affiliation(s)
- S Zh Sharapov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - A N Timoshchuk
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Y S Aulchenko
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Li J, Zhang J, Wang Y. Analysis of mannosidase I activity in interphase and mitotic cells by lectin staining and endoglycosidase H treatment. STAR Protoc 2023; 4:102283. [PMID: 37148248 PMCID: PMC10193293 DOI: 10.1016/j.xpro.2023.102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023] Open
Abstract
N-Glycosylation is a common protein modification catalyzed by a series of glycosylation enzymes in the endoplasmic reticulum and Golgi apparatus. Here, based on a previously established Golgi α-mannosidase-I-deficient cell line, we present a protocol to investigate the enzymatic activity of exogenously expressed Golgi α-mannosidase IA in interphase and mitotic cells. We describe steps for cell surface lectin staining and subsequent live cell imaging. We also detail PNGase F and Endo H cleavage assays to analyze protein glycosylation. For complete details on the use and execution of this protocol, please refer to Huang et al.1.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Abstract
Significance: Cancer-associated tissue-specific lactic acidosis stimulates and mediates tumor invasion and metastasis and is druggable. Rarely, malignancy causes systemic lactic acidosis, the role of which is poorly understood. Recent Advances: The understanding of the role of lactate has shifted dramatically since its discovery. Long recognized as only a waste product, lactate has become known as an alternative metabolism substrate and a secreted nutrient that is exchanged between the tumor and the microenvironment. Tissue-specific lactic acidosis is targeted to improve the host body's anticancer defense and serves as a tool that allows the targeting of anticancer compounds. Systemic lactic acidosis is associated with poor survival. In patients with solid cancer, systemic lactic acidosis is associated with an extremely poor prognosis, as revealed by the analysis of 57 published cases in this study. Although it is considered a pathology worth treating, targeting systemic lactic acidosis in patients with solid cancer is usually inefficient. Critical Issues: Research gaps include simple questions, such as the unknown nuclear pH of the cancer cells and its effects on chemotherapy outcomes, pH sensitivity of glycosylation in cancer cells, in vivo mechanisms of response to acidosis in the absence of lactate, and overinterpretation of in vitro results that were obtained by using cells that were not preadapted to acidic environments. Future Directions: Numerous metabolism-targeting anticancer compounds induce lactatemia, lactic acidosis, or other types of acidosis. Their potential to induce acidic environments is largely overlooked, although the acidosis might contribute to a substantial portion of the observed clinical effects. Antioxid. Redox Signal. 37, 1130-1152.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Zhao M, Aweya JJ, Feng Q, Zheng Z, Yao D, Zhao Y, Chen X, Zhang Y. Ammonia stress affects the structure and function of hemocyanin in Penaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113827. [PMID: 36068754 DOI: 10.1016/j.ecoenv.2022.113827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic factors and climate change have serious effects on the aquatic ecosystem and aquaculture. Among water pollutants, ammonia has the greatest impact on aquaculture organisms such as penaeid shrimp because it makes them more susceptible to infections. In this study, we explored the effects of ammonia stress (0, 50, 100, and 150 mg/L) on the molecular structure and functions of the multifunctional respiratory protein hemocyanin (HMC) in Penaeus vannamei. While the mRNA expression of Penaeus vannamei hemocyanin (PvHMC) was up-regulated after ammonia stress, both plasma hemocyanin protein and oxyhemocyanin (OxyHMC) levels decreased. Moreover, ammonia stress changed the molecular structure of hemocyanin, modulated the expression of protein phosphatase 2 A (PP2A) and casein kinase 2α (CK2α) to regulate the phosphorylation modification of hemocyanin, and enhanced its degradation into fragments by trypsin. Under moderate ammonia stress conditions, hemocyanin also undergoes glycosylation to improve its in vitro antibacterial activity and binding with Gram-negative (Vibrio parahaemolyticus) and Gram-positive (Staphylococcus aureus) bacteria, albeit differently. The current findings indicate that P. vannamei hemocyanin undergoes adaptive molecular modifications under ammonia stress enabling the shrimp to survive and counteract the consequences of the stress.
Collapse
Affiliation(s)
- Mingming Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Qian Feng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
17
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success? Front Med 2022; 16:322-338. [PMID: 35687277 DOI: 10.1007/s11684-021-0901-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/23/2021] [Indexed: 11/04/2022]
Abstract
Immune-based therapies have experienced a pronounced breakthrough in the past decades as they acquired multiple US Food and Drug Administration (FDA) approvals for various indications. To date, six chimeric antigen receptor T cell (CAR-T) therapies have been permitted for the treatment of certain patients with relapsed/refractory hematologic malignancies. However, several clinical trials of solid tumor CAR-T therapies were prematurely terminated, or they reported life-threatening treatment-related damages to healthy tissues. The simultaneous expression of target antigens by healthy organs and tumor cells is partly responsible for such toxicities. Alongside targeting tumor-specific antigens, targeting the aberrantly glycosylated glycoforms of tumor-associated antigens can also minimize the off-tumor effects of CAR-T therapies. Tn, T, and sialyl-Tn antigens have been reported to be involved in tumor progression and metastasis, and their expression results from the dysregulation of a series of glycosyltransferases and the endoplasmic reticulum protein chaperone, Cosmc. Moreover, these glycoforms have been associated with various types of cancers, including prostate, breast, colon, gastric, and lung cancers. Here, we discuss how underglycosylated antigens emerge and then detail the latest advances in the development of CAR-T-based immunotherapies that target some of such antigens.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, P.O. Box 44771/66595, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran. .,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran.
| |
Collapse
|
18
|
Linders PTA, Ioannidis M, ter Beest M, van den Bogaart G. Fluorescence Lifetime Imaging of pH along the Secretory Pathway. ACS Chem Biol 2022; 17:240-251. [PMID: 35000377 PMCID: PMC8787756 DOI: 10.1021/acschembio.1c00907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many cellular processes
are dependent on correct pH levels, and
this is especially important for the secretory pathway. Defects in
pH homeostasis in distinct organelles cause a wide range of diseases,
including disorders of glycosylation and lysosomal storage diseases.
Ratiometric imaging of the pH-sensitive mutant of green fluorescent
protein, pHLuorin, has allowed for targeted pH measurements in various
organelles, but the required sequential image acquisition is intrinsically
slow and therefore the temporal resolution is unsuitable to follow
the rapid transit of cargo between organelles. Therefore, we applied
fluorescence lifetime imaging microscopy (FLIM) to measure intraorganellar
pH with just a single excitation wavelength. We first validated this
method by confirming the pH in multiple compartments along the secretory
pathway and compared the pH values obtained by the FLIM-based measurements
with those obtained by conventional ratiometric imaging. Then, we
analyzed the dynamic pH changes within cells treated with Bafilomycin
A1, to block the vesicular ATPase, and Brefeldin A, to block endoplasmic
reticulum (ER)–Golgi trafficking. Finally, we followed the
pH changes of newly synthesized molecules of the inflammatory cytokine
tumor necrosis factor-α while they were in transit from the
ER via the Golgi to the plasma membrane. The toolbox we present here
can be applied to measure intracellular pH with high spatial and temporal
resolution and can be used to assess organellar pH in disease models.
Collapse
Affiliation(s)
- Peter T. A. Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Melina Ioannidis
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| | - Martin ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| |
Collapse
|
19
|
Govind AP, Jeyifous O, Russell TA, Yi Z, Weigel AV, Ramaprasad A, Newell L, Ramos W, Valbuena FM, Casler JC, Yan JZ, Glick BS, Swanson GT, Lippincott-Schwartz J, Green WN. Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome. eLife 2021; 10:68910. [PMID: 34545811 PMCID: PMC8494481 DOI: 10.7554/elife.68910] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity, and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that N-glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal activation. In exploring the basis of these N-glycosylation alterations, we discovered that they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed during neuronal excitation were in close association with endoplasmic reticulum (ER) exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite’s satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction, and disease.
Collapse
Affiliation(s)
- Anitha P Govind
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Okunola Jeyifous
- Department of Neurobiology, University of Chicago, Chicago, United States.,Marine Biological Laboratory, Woods Hole, United States
| | - Theron A Russell
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Zola Yi
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Abhijit Ramaprasad
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Luke Newell
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - William Ramos
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Fernando M Valbuena
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jason C Casler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jing-Zhi Yan
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | | | - William N Green
- Department of Neurobiology, University of Chicago, Chicago, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
20
|
Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture. Biotechnol Adv 2021; 54:107831. [PMID: 34480988 DOI: 10.1016/j.biotechadv.2021.107831] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used mammalian host cells for the commercial production of therapeutic proteins. Fed-batch culture is widely used to produce therapeutic proteins, including monoclonal antibodies, because of its operational simplicity and high product titer. Despite technical advances in the development of culture media and cell cultures, it is still challenging to maintain high productivity in fed-batch cultures while also ensuring good product quality. In this review, factors that affect the quality attributes of therapeutic proteins in recombinant CHO (rCHO) cell culture, such as glycosylation, charge variation, aggregation, and degradation, are summarized and categorized into three groups: culture environments, chemical additives, and host cell proteins accumulated in culture supernatants. Understanding the factors that influence the therapeutic protein quality in rCHO cell culture will facilitate the development of large-scale, high-yield fed-batch culture processes for the production of high-quality therapeutic proteins.
Collapse
|
21
|
Khakurel A, Kudlyk T, Bonifacino JS, Lupashin VV. The Golgi-associated retrograde protein (GARP) complex plays an essential role in the maintenance of the Golgi glycosylation machinery. Mol Biol Cell 2021; 32:1594-1610. [PMID: 34161137 PMCID: PMC8351751 DOI: 10.1091/mbc.e21-04-0169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
The Golgi complex is a central hub for intracellular protein trafficking and glycosylation. Steady-state localization of glycosylation enzymes is achieved by a combination of mechanisms involving retention and recycling, but the machinery governing these mechanisms is poorly understood. Herein we show that the Golgi-associated retrograde protein (GARP) complex is a critical component of this machinery. Using multiple human cell lines, we show that depletion of GARP subunits impairs Golgi modification of N- and O-glycans and reduces the stability of glycoproteins and Golgi enzymes. Moreover, GARP-knockout (KO) cells exhibit reduced retention of glycosylation enzymes in the Golgi. A RUSH assay shows that, in GARP-KO cells, the enzyme beta-1,4-galactosyltransferase 1 is not retained at the Golgi complex but instead is missorted to the endolysosomal system. We propose that the endosomal system is part of the trafficking itinerary of Golgi enzymes or their recycling adaptors and that the GARP complex is essential for recycling and stabilization of the Golgi glycosylation machinery. [Media: see text].
Collapse
Affiliation(s)
- Amrita Khakurel
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| | - Tetyana Kudlyk
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Vladimir V. Lupashin
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| |
Collapse
|
22
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
23
|
Khosrowabadi E, Rivinoja A, Risteli M, Tuomisto A, Salo T, Mäkinen MJ, Kellokumpu S. SLC4A2 anion exchanger promotes tumour cell malignancy via enhancing net acid efflux across golgi membranes. Cell Mol Life Sci 2021; 78:6283-6304. [PMID: 34279699 PMCID: PMC8429400 DOI: 10.1007/s00018-021-03890-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
Proper functioning of each secretory and endocytic compartment relies on its unique pH micro-environment that is known to be dictated by the rates of V-ATPase-mediated H+ pumping and its leakage back to the cytoplasm via an elusive "H+ leak" pathway. Here, we show that this proton leak across Golgi membranes is mediated by the AE2a (SLC4A2a)-mediated bicarbonate-chloride exchange, as it is strictly dependent on bicarbonate import (in exchange for chloride export) and the expression level of the Golgi-localized AE2a anion exchanger. In the acidic Golgi lumen, imported bicarbonate anions and protons then facilitate a common buffering reaction that yields carbon dioxide and water before their egress back to the cytoplasm via diffusion or water channels. The flattened morphology of the Golgi cisternae helps this process, as their high surface-volume ratio is optimal for water and gas exchange. Interestingly, this net acid efflux pathway is often upregulated in cancers and established cancer cell lines, and responsible for their markedly elevated Golgi resting pH and attenuated glycosylation potential. Accordingly, AE2 knockdown in SW-48 colorectal cancer cells was able to restore these two phenomena, and at the same time, reverse their invasive and anchorage-independent growth phenotype. These findings suggest a possibility to return malignant cells to a benign state by restoring Golgi resting pH.
Collapse
Affiliation(s)
- Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu (Oulun Yliopisto), Aapistie 7A, PO BOX 5400, 90014, Oulu, Finland.
| | | | - Maija Risteli
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Anne Tuomisto
- Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Markus J Mäkinen
- Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu (Oulun Yliopisto), Aapistie 7A, PO BOX 5400, 90014, Oulu, Finland.
| |
Collapse
|
24
|
Galenkamp KMO, Commisso C. The Golgi as a "Proton Sink" in Cancer. Front Cell Dev Biol 2021; 9:664295. [PMID: 34055797 PMCID: PMC8155353 DOI: 10.3389/fcell.2021.664295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer cells exhibit increased glycolytic flux and adenosine triphosphate (ATP) hydrolysis. These processes increase the acidic burden on the cells through the production of lactate and protons. Nonetheless, cancer cells can maintain an alkaline intracellular pH (pHi) relative to untransformed cells, which sets the stage for optimal functioning of glycolytic enzymes, evasion of cell death, and increased proliferation and motility. Upregulation of plasma membrane transporters allows for H+ and lactate efflux; however, recent evidence suggests that the acidification of organelles can contribute to maintenance of an alkaline cytosol in cancer cells by siphoning off protons, thereby supporting tumor growth. The Golgi is such an acidic organelle, with resting pH ranging from 6.0 to 6.7. Here, we posit that the Golgi represents a "proton sink" in cancer and delineate the proton channels involved in Golgi acidification and the ion channels that influence this process. Furthermore, we discuss ion channel regulators that can affect Golgi pH and Golgi-dependent processes that may contribute to pHi homeostasis in cancer.
Collapse
Affiliation(s)
- Koen M. O. Galenkamp
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Cosimo Commisso
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
25
|
Puhl AC, Fritch EJ, Lane TR, Tse LV, Yount BL, Sacramento CQ, Fintelman-Rodrigues N, Tavella TA, Maranhão Costa FT, Weston S, Logue J, Frieman M, Premkumar L, Pearce KH, Hurst BL, Andrade CH, Levi JA, Johnson NJ, Kisthardt SC, Scholle F, Souza TML, Moorman NJ, Baric RS, Madrid PB, Ekins S. Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine, and Pyronaridine: In Vitro Activity against SARS-CoV-2 and Potential Mechanisms. ACS OMEGA 2021; 6:7454-7468. [PMID: 33778258 PMCID: PMC7992063 DOI: 10.1021/acsomega.0c05996] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 05/11/2023]
Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) is a newly identified virus that has resulted in over 2.5 million deaths globally and over 116 million cases globally in March, 2021. Small-molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola viruses and demonstrated activity against SARS-CoV-2 in vivo. Most notably, the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small-molecule drugs that are active against Ebola viruses (EBOVs) would appear a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone, and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg viruses in vitro in HeLa cells and mouse-adapted EBOV in mice in vivo. We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7, and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC50 values of 180 nM and IC50 198 nM, respectively. We used microscale thermophoresis to test the binding of these molecules to the spike protein, and tilorone and pyronaridine bind to the spike receptor binding domain protein with K d values of 339 and 647 nM, respectively. Human Cmax for pyronaridine and quinacrine is greater than the IC50 observed in A549-ACE2 cells. We also provide novel insights into the mechanism of these compounds which is likely lysosomotropic.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ethan J. Fritch
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Longping V. Tse
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Boyd L. Yount
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Carolina Q. Sacramento
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Tatyana Almeida Tavella
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Stuart Weston
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - James Logue
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Matthew Frieman
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lakshmanane Premkumar
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- UNC
Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, United States
| | - Brett L. Hurst
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322, United States
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322, United States
| | - Carolina Horta Andrade
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
- LabMol—Laboratory of Molecular Modeling
and Drug Design, Faculdade
de Farmácia, Universidade Federal
de Goiás, Goiânia,
GO 74605-170, Brazil
| | - James A. Levi
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nicole J. Johnson
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Samantha C. Kisthardt
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Frank Scholle
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thiago Moreno L. Souza
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Nathaniel John Moorman
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging Antiviral Drug Discovery
Initiative, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Ralph S. Baric
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging Antiviral Drug Discovery
Initiative, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Peter B. Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
26
|
Abouelela ME, Assaf HK, Abdelhamid RA, Elkhyat ES, Sayed AM, Oszako T, Belbahri L, El Zowalaty AE, Abdelkader MSA. Identification of Potential SARS-CoV-2 Main Protease and Spike Protein Inhibitors from the Genus Aloe: An In Silico Study for Drug Development. Molecules 2021; 26:1767. [PMID: 33801151 PMCID: PMC8004122 DOI: 10.3390/molecules26061767] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) disease is a global rapidly spreading virus showing very high rates of complications and mortality. Till now, there is no effective specific treatment for the disease. Aloe is a rich source of isolated phytoconstituents that have an enormous range of biological activities. Since there are no available experimental techniques to examine these compounds for antiviral activity against SARS-CoV-2, we employed an in silico approach involving molecular docking, dynamics simulation, and binding free energy calculation using SARS-CoV-2 essential proteins as main protease and spike protein to identify lead compounds from Aloe that may help in novel drug discovery. Results retrieved from docking and molecular dynamics simulation suggested a number of promising inhibitors from Aloe. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) calculations indicated that compounds 132, 134, and 159 were the best scoring compounds against main protease, while compounds 115, 120, and 131 were the best scoring ones against spike glycoprotein. Compounds 120 and 131 were able to achieve significant stability and binding free energies during molecular dynamics simulation. In addition, the highest scoring compounds were investigated for their pharmacokinetic properties and drug-likeness. The Aloe compounds are promising active phytoconstituents for drug development for SARS-CoV-2.
Collapse
Affiliation(s)
- Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Hamdy K. Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Reda A. Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Ehab S. Elkhyat
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Tomasz Oszako
- Department of Forest Protection, Forest Research Institute, 05-090 Sekocin Stary, Poland;
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland
| | - Ahmed E. El Zowalaty
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | |
Collapse
|
27
|
Sharapov SZ, Shadrina AS, Tsepilov YA, Elgaeva EE, Tiys ES, Feoktistova SG, Zaytseva OO, Vuckovic F, Cuadrat R, Jäger S, Wittenbecher C, Karssen LC, Timofeeva M, Tillin T, Trbojević-Akmačić I, Štambuk T, Rudman N, Krištić J, Šimunović J, Momčilović A, Vilaj M, Jurić J, Slana A, Gudelj I, Klarić T, Puljak L, Skelin A, Kadić AJ, Van Zundert J, Chaturvedi N, Campbell H, Dunlop M, Farrington SM, Doherty M, Dagostino C, Gieger C, Allegri M, Williams F, Schulze MB, Lauc G, Aulchenko YS. Replication of 15 loci involved in human plasma protein N-glycosylation in 4802 samples from four cohorts. Glycobiology 2021; 31:82-88. [PMID: 32521004 PMCID: PMC7874387 DOI: 10.1093/glycob/cwaa053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Human protein glycosylation is a complex process, and its in vivo regulation is poorly understood. Changes in glycosylation patterns are associated with many human diseases and conditions. Understanding the biological determinants of protein glycome provides a basis for future diagnostic and therapeutic applications. Genome-wide association studies (GWAS) allow to study biology via a hypothesis-free search of loci and genetic variants associated with a trait of interest. Sixteen loci were identified by three previous GWAS of human plasma proteome N-glycosylation. However, the possibility that some of these loci are false positives needs to be eliminated by replication studies, which have been limited so far. Here, we use the largest set of samples so far (4802 individuals) to replicate the previously identified loci. For all but one locus, the expected replication power exceeded 95%. Of the 16 loci reported previously, 15 were replicated in our study. For the remaining locus (near the KREMEN1 gene), the replication power was low, and hence, replication results were inconclusive. The very high replication rate highlights the general robustness of the GWAS findings as well as the high standards adopted by the community that studies genetic regulation of protein glycosylation. The 15 replicated loci present a good target for further functional studies. Among these, eight loci contain genes encoding glycosyltransferases: MGAT5, B3GAT1, FUT8, FUT6, ST6GAL1, B4GALT1, ST3GAL4 and MGAT3. The remaining seven loci offer starting points for further functional follow-up investigation into molecules and mechanisms that regulate human protein N-glycosylation in vivo.
Collapse
Affiliation(s)
- Sodbo Zh Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Alexandra S Shadrina
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Yakov A Tsepilov
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Elizaveta E Elgaeva
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Evgeny S Tiys
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Sofya G Feoktistova
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Olga O Zaytseva
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Frano Vuckovic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Rafael Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam- Rehbruecke, 14558 Nuthetal, Germany
| | - Susanne Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam- Rehbruecke, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), ngolstädter Landstraβe 1, Neuherberg, 85764, Germany
| | - Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam- Rehbruecke, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), ngolstädter Landstraβe 1, Neuherberg, 85764, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Maria Timofeeva
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh EH4 2XU, UK
- D-IAS, Danish Institute for Advanced Study, Department of Public Health, University of Southern Denmark, , J.B. Winsløws Vej 9, DK-5000 Odense C, Denmark
| | - Therese Tillin
- MRC Unit for Lifelong Health & Ageing University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Tamara Štambuk
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, 10000, Croatia
| | - Jasminka Krištić
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Jelena Šimunović
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Ana Momčilović
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Julija Jurić
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Anita Slana
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Thomas Klarić
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Livia Puljak
- Catholic University of Croatia, Ilica, 242 Zagreb, 10000, Croatia
| | - Andrea Skelin
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
- St. Catherine Specialty Hospital, 10000 Zagreb & 49210, Zabok, Croatia
| | - Antonia Jeličić Kadić
- University Hospital Center Split, Department of Pediatrics, Spinčićeva ul. 1, Split, 21000, Croatia
| | - Jan Van Zundert
- Department of Anesthesiology and Multidisciplinary Paincentre, ZOL, Genk/Lanaken, Belgium
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, P. Debyelaan 25, Maastricht, 6229 HX, The Netherlands
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health & Ageing University College London, Gower Street, London, WC1E 6BT, UK
| | - Harry Campbell
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Malcolm Dunlop
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Susan M Farrington
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Margaret Doherty
- Institute of Technology Sligo, Department of Life Sciences, Ash Ln, Bellanode, Sligo, F91 YW50, Ireland
- National Institute for Bioprocessing Research & Training, 24 Foster’s Ave, Belfield, Blackrock, Co.,Dublin, A94 X099, Ireland
| | - Concetta Dagostino
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Christian Gieger
- Institute of Epidemiology II, Research Unit of Molecular Epidemiology, Helmholtz Centre Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Massimo Allegri
- Pain Therapy Department Policlinico Monza Hospital, 20090 Monza, Italy
| | - Frances Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, St Thomas’ Campus, Lambeth Palace Road, London SE1 7EH, UK
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam- Rehbruecke, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), ngolstädter Landstraβe 1, Neuherberg, 85764, Germany
- Institute of Nutrition Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Yurii S Aulchenko
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| |
Collapse
|
28
|
Halcrow PW, Geiger JD, Chen X. Overcoming Chemoresistance: Altering pH of Cellular Compartments by Chloroquine and Hydroxychloroquine. Front Cell Dev Biol 2021; 9:627639. [PMID: 33634129 PMCID: PMC7900406 DOI: 10.3389/fcell.2021.627639] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the anti-cancer effects of chemotherapeutic agents (chemoresistance) is a major issue for people living with cancer and their providers. A diverse set of cellular and inter-organellar signaling changes have been implicated in chemoresistance, but it is still unclear what processes lead to chemoresistance and effective strategies to overcome chemoresistance are lacking. The anti-malaria drugs, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are being used for the treatment of various cancers and CQ and HCQ are used in combination with chemotherapeutic drugs to enhance their anti-cancer effects. The widely accepted anti-cancer effect of CQ and HCQ is their ability to inhibit autophagic flux. As diprotic weak bases, CQ and HCQ preferentially accumulate in acidic organelles and neutralize their luminal pH. In addition, CQ and HCQ acidify the cytosolic and extracellular environments; processes implicated in tumorigenesis and cancer. Thus, the anti-cancer effects of CQ and HCQ extend beyond autophagy inhibition. The present review summarizes effects of CQ, HCQ and proton pump inhibitors on pH of various cellular compartments and discuss potential mechanisms underlying their pH-dependent anti-cancer effects. The mechanisms considered here include their ability to de-acidify lysosomes and inhibit autophagosome lysosome fusion, to de-acidify Golgi apparatus and secretory vesicles thus affecting secretion, and to acidify cytoplasm thus disturbing aerobic metabolism. Further, we review the ability of these agents to prevent chemotherapeutic drugs from accumulating in acidic organelles and altering their cytosolic concentrations.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
29
|
Chepur SV, Pluzhnikov NN, Chubar OV, Bakulina LS, Litvinenko IV, Makarov VA, Gogolevsky AS, Myasnikov VA, Myasnikova IA, Al-Shehadat RI. Respiratory RNA Viruses: How to Be Prepared for an Encounter with New Pandemic Virus Strains. BIOLOGY BULLETIN REVIEWS 2021; 11. [PMCID: PMC8078390 DOI: 10.1134/s207908642102002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The characteristics of the biology of influenza viruses and coronavirus that determine the implementation of the infectious process are presented. With provision for pathogenesis of infection possible effects of serine proteinase inhibitors, heparin, and inhibitors of heparan sulfate receptors in the prevention of cell contamination by viruses are examined. It has been determined that chelators of metals of variable valency and antioxidants should be used for the reduction of replicative activity of viruses and anti-inflammatory therapy. The possibility of a pH-dependent impairment of glycosylation of cellular and viral proteins was traced for chloroquine and its derivatives. The use of low-toxicity drugs as part of adjunct therapy increases the effectiveness of synthetic antiviral drugs and interferons and ensures the safety of baseline therapy.
Collapse
Affiliation(s)
- S. V. Chepur
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - N. N. Pluzhnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - O. V. Chubar
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - L. S. Bakulina
- Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | | | - V. A. Makarov
- Fundamentals of Biotechnology Federal Research Center, 119071 Moscow, Russia
| | - A. S. Gogolevsky
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - V. A. Myasnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - I. A. Myasnikova
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - R. I. Al-Shehadat
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| |
Collapse
|
30
|
Viinikangas T, Khosrowabadi E, Kellokumpu S. N-Glycan Biosynthesis: Basic Principles and Factors Affecting Its Outcome. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:237-257. [PMID: 34687012 DOI: 10.1007/978-3-030-76912-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbohydrate chains are the most abundant and diverse of nature's biopolymers and represent one of the four fundamental macromolecular building blocks of life together with proteins, nucleic acids, and lipids. Indicative of their essential roles in cells and in multicellular organisms, genes encoding proteins associated with glycosylation account for approximately 2% of the human genome. It has been estimated that 50-80% of all human proteins carry carbohydrate chains-glycans-as part of their structure. Despite cells utilize only nine different monosaccharides for making their glycans, their order and conformational variation in glycan chains together with chain branching differences and frequent post-synthetic modifications can give rise to an enormous repertoire of different glycan structures of which few thousand is estimated to carry important structural or functional information for a cell. Thus, glycans are immensely versatile encoders of multicellular life. Yet, glycans do not represent a random collection of unpredictable structures but rather, a collection of predetermined but still dynamic entities that are present at defined quantities in each glycosylation site of a given protein in a cell, tissue, or organism.In this chapter, we will give an overview of what is currently known about N-glycan synthesis in higher eukaryotes, focusing not only on the processes themselves but also on factors that will affect or can affect the final outcome-the dynamicity and heterogeneity of the N-glycome. We hope that this review will help understand the molecular details underneath this diversity, and in addition, be helpful for those who plan to produce optimally glycosylated antibody-based therapeutics.
Collapse
Affiliation(s)
- Teemu Viinikangas
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
31
|
The Close Relationship between the Golgi Trafficking Machinery and Protein Glycosylation. Cells 2020; 9:cells9122652. [PMID: 33321764 PMCID: PMC7764369 DOI: 10.3390/cells9122652] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is the most common post-translational modification of proteins; it mediates their correct folding and stability, as well as their transport through the secretory transport. Changes in N- and O-linked glycans have been associated with multiple pathological conditions including congenital disorders of glycosylation, inflammatory diseases and cancer. Glycoprotein glycosylation at the Golgi involves the coordinated action of hundreds of glycosyltransferases and glycosidases, which are maintained at the correct location through retrograde vesicle trafficking between Golgi cisternae. In this review, we describe the molecular machinery involved in vesicle trafficking and tethering at the Golgi apparatus and the effects of mutations in the context of glycan biosynthesis and human diseases.
Collapse
|
32
|
Puhl AC, Fritch EJ, Lane TR, Tse LV, Yount BL, Sacramento CQ, Tavella TA, Costa FTM, Weston S, Logue J, Frieman M, Premkumar L, Pearce KH, Hurst BL, Andrade CH, Levi JA, Johnson NJ, Kisthardt SC, Scholle F, Souza TML, Moorman NJ, Baric RS, Madrid P, Ekins S. Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine and Pyronaridine: In vitro Activity Against SARS-CoV-2 and Potential Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.01.407361. [PMID: 33299990 PMCID: PMC7724658 DOI: 10.1101/2020.12.01.407361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 is a newly identified virus that has resulted in over 1.3 M deaths globally and over 59 M cases globally to date. Small molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola virus and demonstrated activity against SARS-CoV-2 in vivo . Most notably the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small molecule drugs that are active against Ebola virus would seem a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg virus in vitro in HeLa cells and of mouse adapted Ebola virus in mouse in vivo . We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7 and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC 50 values of 180 nM and IC 50 198 nM, respectively. We have also tested them in a pseudovirus assay and used microscale thermophoresis to test the binding of these molecules to the spike protein. They bind to spike RBD protein with K d values of 339 nM and 647 nM, respectively. Human C max for pyronaridine and quinacrine is greater than the IC 50 hence justifying in vivo evaluation. We also provide novel insights into their mechanism which is likely lysosomotropic.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Ethan James Fritch
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Longping V. Tse
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Boyd L. Yount
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Carol Queiroz Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brasil
| | - Tatyana Almeida Tavella
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, USA
| | - Brett L. Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Carolina Horta Andrade
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - James A. Levi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Nicole J. Johnson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Samantha C. Kisthardt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Thiago Moreno L. Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brasil
| | - Nathaniel John Moorman
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
33
|
Morris G, Athan E, Walder K, Bortolasci CC, O'Neil A, Marx W, Berk M, Carvalho AF, Maes M, Puri BK. Can endolysosomal deacidification and inhibition of autophagy prevent severe COVID-19? Life Sci 2020; 262:118541. [PMID: 33035581 PMCID: PMC7537668 DOI: 10.1016/j.lfs.2020.118541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
The possibility is examined that immunomodulatory pharmacotherapy may be clinically useful in managing the pandemic coronavirus disease 2019 (COVID-19), known to result from infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense single-stranded RNA virus. The dominant route of cell entry of the coronavirus is via phagocytosis, with ensconcement in endosomes thereafter proceeding via the endosomal pathway, involving transfer from early (EEs) to late endosomes (LEs) and ultimately into lysosomes via endolysosomal fusion. EE to LE transportation is a rate-limiting step for coronaviruses. Hence inhibition or dysregulation of endosomal trafficking could potentially inhibit SARS-CoV-2 replication. Furthermore, the acidic luminal pH of the endolysosomal system is critical for the activity of numerous pH-sensitive hydrolytic enzymes. Golgi sub-compartments and Golgi-derived secretory vesicles also depend on being mildly acidic for optimal function and structure. Activation of endosomal toll-like receptors by viral RNA can upregulate inflammatory mediators and contribute to a systemic inflammatory cytokine storm, associated with a worsened clinical outcome in COVID-19. Such endosomal toll-like receptors could be inhibited by the use of pharmacological agents which increase endosomal pH, thereby reducing the activity of acid-dependent endosomal proteases required for their activity and/or assembly, leading to suppression of antigen-presenting cell activity, decreased autoantibody secretion, decreased nuclear factor-kappa B activity and decreased pro-inflammatory cytokine production. It is also noteworthy that SARS-CoV-2 inhibits autophagy, predisposing infected cells to apoptosis. It is therefore also suggested that further pharmacological inhibition of autophagy might encourage the apoptotic clearance of SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Eugene Athan
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Infectious Disease, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Victoria, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Wolf Marx
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Maes
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
34
|
Haouari W, Dubail J, Lounis-Ouaras S, Prada P, Bennani R, Roseau C, Huber C, Afenjar A, Colin E, Vuillaumier-Barrot S, Seta N, Foulquier F, Poüs C, Cormier-Daire V, Bruneel A. Serum bikunin isoforms in congenital disorders of glycosylation and linkeropathies. J Inherit Metab Dis 2020; 43:1349-1359. [PMID: 32700771 DOI: 10.1002/jimd.12291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Bikunin (Bkn) isoforms are serum chondroitin sulfate (CS) proteoglycans synthesized by the liver. They include two light forms, that is, the Bkn core protein and the Bkn linked to the CS chain (urinary trypsin inhibitor [UTI]), and two heavy forms, that is, pro-α-trypsin inhibitor and inter-α-trypsin inhibitor, corresponding to UTI esterified by one or two heavy chains glycoproteins, respectively. We previously showed that the Western-blot analysis of the light forms could allow the fast and easy detection of patients with linkeropathy, deficient in enzymes involved in the synthesis of the initial common tetrasaccharide linker of glycosaminoglycans. Here, we analyzed all serum Bkn isoforms in a context of congenital disorders of glycosylation (CDG) and showed very specific abnormal patterns suggesting potential interests for their screening and diagnosis. In particular, genetic deficiencies in V-ATPase (ATP6V0A2-CDG, CCDC115-CDG, ATP6AP1-CDG), in Golgi manganese homeostasis (TMEM165-CDG) and in the N-acetyl-glucosamine Golgi transport (SLC35A3-CDG) all share specific abnormal Bkn patterns. Furthermore, for each studied linkeropathy, we show that the light abnormal Bkn could be further in-depth characterized by two-dimensional electrophoresis. Moreover, besides being interesting as a specific biomarker of both CDG and linkeropathies, Bkn isoforms' analyses can provide new insights into the pathophysiology of the aforementioned diseases.
Collapse
Affiliation(s)
- Walid Haouari
- INSERM UMR1193, Université Paris-Saclay, Châtenay-Malabry, France
| | - Johanne Dubail
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Samra Lounis-Ouaras
- INSERM UMR1193, Université Paris-Saclay, Châtenay-Malabry, France
- AP-HP, Biochimie-Hormonologie, Hôpital Antoine Béclère, Clamart, France
| | - Pierre Prada
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | - Rizk Bennani
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | - Charles Roseau
- INSERM UMR1193, Université Paris-Saclay, Châtenay-Malabry, France
| | - Céline Huber
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Alexandra Afenjar
- Département de Génétique et Embryologie Médicale, Sorbonne Universités, Centre de Référence Malformations et Maladies Congénitales du Cervelet et Déficiences Intellectuelles de Causes Rares, Hôpital Trousseau, AP-HP, Paris, France
| | - Estelle Colin
- Department of Biochemistry and Genetics, University Hospital, Angers, France
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers, France
| | | | - Nathalie Seta
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
- Université de Paris, Paris, France
| | - François Foulquier
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christian Poüs
- INSERM UMR1193, Université Paris-Saclay, Châtenay-Malabry, France
- AP-HP, Biochimie-Hormonologie, Hôpital Antoine Béclère, Clamart, France
| | - Valérie Cormier-Daire
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Arnaud Bruneel
- INSERM UMR1193, Université Paris-Saclay, Châtenay-Malabry, France
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| |
Collapse
|
35
|
Dissecting Total Plasma and Protein-Specific Glycosylation Profiles in Congenital Disorders of Glycosylation. Int J Mol Sci 2020; 21:ijms21207635. [PMID: 33076454 PMCID: PMC7589176 DOI: 10.3390/ijms21207635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Protein N-glycosylation is a multifactorial process involved in many biological processes. A broad range of congenital disorders of glycosylation (CDGs) have been described that feature defects in protein N-glycan biosynthesis. Here, we present insights into the disrupted N-glycosylation of various CDG patients exhibiting defects in the transport of nucleotide sugars, Golgi glycosylation or Golgi trafficking. We studied enzymatically released N-glycans of total plasma proteins and affinity purified immunoglobulin G (IgG) from patients and healthy controls using mass spectrometry (MS). The applied method allowed the differentiation of sialic acid linkage isomers via their derivatization. Furthermore, protein-specific glycan profiles were quantified for transferrin and IgG Fc using electrospray ionization MS of intact proteins and glycopeptides, respectively. Next to the previously described glycomic effects, we report unprecedented sialic linkage-specific effects. Defects in proteins involved in Golgi trafficking (COG5-CDG) and CMP-sialic acid transport (SLC35A1-CDG) resulted in lower levels of sialylated structures on plasma proteins as compared to healthy controls. Findings for these specific CDGs include a more pronounced effect for α2,3-sialylation than for α2,6-sialylation. The diverse abnormalities in glycomic features described in this study reflect the broad range of biological mechanisms that influence protein glycosylation.
Collapse
|
36
|
Makarov V, Riabova O, Ekins S, Pluzhnikov N, Chepur S. The past, present and future of RNA respiratory viruses: influenza and coronaviruses. Pathog Dis 2020; 78:ftaa046. [PMID: 32860686 PMCID: PMC7499567 DOI: 10.1093/femspd/ftaa046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza virus and coronaviruses continue to cause pandemics across the globe. We now have a greater understanding of their functions. Unfortunately, the number of drugs in our armory to defend us against them is inadequate. This may require us to think about what mechanisms to address. Here, we review the biological properties of these viruses, their genetic evolution and antiviral therapies that can be used or have been attempted. We will describe several classes of drugs such as serine protease inhibitors, heparin, heparan sulfate receptor inhibitors, chelating agents, immunomodulators and many others. We also briefly describe some of the drug repurposing efforts that have taken place in an effort to rapidly identify molecules to treat patients with COVID-19. While we put a heavy emphasis on the past and present efforts, we also provide some thoughts about what we need to do to prepare for respiratory viral threats in the future.
Collapse
Affiliation(s)
- Vadim Makarov
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Olga Riabova
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Nikolay Pluzhnikov
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| | - Sergei Chepur
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| |
Collapse
|
37
|
Mastrangeli R, Audino MC, Palinsky W, Broly H, Bierau H. The Formidable Challenge of Controlling High Mannose-Type N-Glycans in Therapeutic mAbs. Trends Biotechnol 2020; 38:1154-1168. [DOI: 10.1016/j.tibtech.2020.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
|
38
|
Abstract
La glycosylation est un processus cellulaire complexe conduisant à des transferts successifs de monosaccharides sur une molécule acceptrice, le plus souvent une protéine ou un lipide. Ce processus est universel chez tous les organismes vivants et est très conservé au cours de l’évolution. Chez l’homme, des perturbations survenant au cours d’une ou plusieurs réactions de glycosylation sont à l’origine de glycopathologies génétiques rares, appelées anomalies congénitales de la glycosylation ou congenital disorders of glycosylation (CDG). Cette revue propose de revisiter ces CDG, de 1980 à aujourd’hui, en présentant leurs découvertes, leurs diagnostics, leurs causes biochimiques et les traitements actuellement disponibles.
Collapse
|
39
|
Nirk EL, Reggiori F, Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol Med 2020; 12:e12476. [PMID: 32715647 PMCID: PMC7411564 DOI: 10.15252/emmm.202012476] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used as antimalarial drugs, hydroxychloroquine (HCQ) and, to a lesser extent, chloroquine (CQ) are currently being used to treat several diseases. Due to its cost‐effectiveness, safety and efficacy, HCQ is especially used in rheumatic autoimmune disorders (RADs), such as systemic lupus erythematosus, primary Sjögren's syndrome and rheumatoid arthritis. Despite this widespread use in the clinic, HCQ molecular modes of action are still not completely understood. By influencing several cellular pathways through different mechanisms, CQ and HCQ inhibit multiple endolysosomal functions, including autophagy, as well as endosomal Toll‐like receptor activation and calcium signalling. These effects alter several aspects of the immune system with the synergistic consequence of reducing pro‐inflammatory cytokine production and release, one of the most marked symptoms of RADs. Here, we review the current knowledge on the molecular modes of action of these drugs and the circumstances under which they trigger side effects. This is of particular importance as the therapeutic use of HCQ is expanding beyond the treatment of malaria and RADs.
Collapse
Affiliation(s)
- Eliise Laura Nirk
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Ondruskova N, Honzik T, Vondrackova A, Stranecky V, Tesarova M, Zeman J, Hansikova H. Severe phenotype of ATP6AP1-CDG in two siblings with a novel mutation leading to a differential tissue-specific ATP6AP1 protein pattern, cellular oxidative stress and hepatic copper accumulation. J Inherit Metab Dis 2020; 43:694-700. [PMID: 32216104 PMCID: PMC7383996 DOI: 10.1002/jimd.12237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Congenital disorders of glycosylation (CDG) represent a wide range of >140 inherited metabolic diseases, continually expanding not only with regards to the number of newly identified causative genes, but also the heterogeneity of the clinical and molecular presentations within each subtype. The deficiency of ATP6AP1, an accessory subunit of the vacuolar H+ -ATPase, is a recently characterised N- and O-glycosylation defect manifesting with immunodeficiency, hepatopathy and cognitive impairment. At the cellular level, the latest studies demonstrate a complex disturbance of metabolomics involving peroxisomal function and lipid homeostasis in the patients. Our study delineates a case of two severely affected siblings with a new hemizygous variant c.221T>C (p.L74P) in ATP6AP1 gene, who both died due to liver failure before reaching 1 year of age. We bring novel pathobiochemical observations including the finding of increased reactive oxygen species in the cultured fibroblasts from the older boy, a striking copper accumulation in his liver, as well as describe the impact of the mutation on the protein in different organs, showing a tissue-specific pattern of ATP6AP1 level and its posttranslational modification.
Collapse
Affiliation(s)
- Nina Ondruskova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Alzbeta Vondrackova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Viktor Stranecky
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Marketa Tesarova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Jiri Zeman
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| |
Collapse
|
41
|
Linders PTA, Peters E, ter Beest M, Lefeber DJ, van den Bogaart G. Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. Int J Mol Sci 2020; 21:E4654. [PMID: 32629928 PMCID: PMC7369703 DOI: 10.3390/ijms21134654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is an important post-translational modification for both intracellular and secreted proteins. For glycosylation to occur, cargo must be transported after synthesis through the different compartments of the Golgi apparatus where distinct monosaccharides are sequentially bound and trimmed, resulting in increasingly complex branched glycan structures. Of utmost importance for this process is the intraorganellar environment of the Golgi. Each Golgi compartment has a distinct pH, which is maintained by the vacuolar H+-ATPase (V-ATPase). Moreover, tethering factors such as Golgins and the conserved oligomeric Golgi (COG) complex, in concert with coatomer (COPI) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion, efficiently deliver glycosylation enzymes to the right Golgi compartment. Together, these factors maintain intra-Golgi trafficking of proteins involved in glycosylation and thereby enable proper glycosylation. However, pathogenic mutations in these factors can cause defective glycosylation and lead to diseases with a wide variety of symptoms such as liver dysfunction and skin and bone disorders. Collectively, this group of disorders is known as congenital disorders of glycosylation (CDG). Recent technological advances have enabled the robust identification of novel CDGs related to membrane trafficking components. In this review, we highlight differences and similarities between membrane trafficking-related CDGs.
Collapse
Affiliation(s)
- Peter T. A. Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Ella Peters
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Martin ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
42
|
Zürcher P, Sokolov M, Brühlmann D, Ducommun R, Stettler M, Souquet J, Jordan M, Broly H, Morbidelli M, Butté A. Cell culture process metabolomics together with multivariate data analysis tools opens new routes for bioprocess development and glycosylation prediction. Biotechnol Prog 2020; 36:e3012. [DOI: 10.1002/btpr.3012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Philipp Zürcher
- Department of Chemistry and Applied Biosciences Institute of Chemical and Bioengineering ETH Zürich Switzerland
| | - Michael Sokolov
- Department of Chemistry and Applied Biosciences Institute of Chemical and Bioengineering ETH Zürich Switzerland
- DataHow AG Zurich Switzerland
| | - David Brühlmann
- Merck Biopharma, Biotech Process Sciences Corsier‐sur‐Vevey Switzerland
| | - Raphael Ducommun
- Merck Biopharma, Biotech Process Sciences Corsier‐sur‐Vevey Switzerland
| | - Matthieu Stettler
- Merck Biopharma, Biotech Process Sciences Corsier‐sur‐Vevey Switzerland
| | - Jonathan Souquet
- Merck Biopharma, Biotech Process Sciences Corsier‐sur‐Vevey Switzerland
| | - Martin Jordan
- Merck Biopharma, Biotech Process Sciences Corsier‐sur‐Vevey Switzerland
| | - Hervé Broly
- Merck Biopharma, Biotech Process Sciences Corsier‐sur‐Vevey Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences Institute of Chemical and Bioengineering ETH Zürich Switzerland
- DataHow AG Zurich Switzerland
| | - Alessandro Butté
- Department of Chemistry and Applied Biosciences Institute of Chemical and Bioengineering ETH Zürich Switzerland
- DataHow AG Zurich Switzerland
| |
Collapse
|
43
|
Abstract
The mammalian Golgi apparatus is a highly dynamic organelle, which is normally localized in the juxtanuclear space and plays an essential role in the regulation of cellular homeostasis. While posttranslational modification of cargo is mediated by the resident enzymes (glycosyltransferases, glycosidases, and kinases), the ribbon structure of Golgi and its cisternal stacking mostly rely on the cooperation of coiled-coil matrix golgins. Among them, giantin, GM130, and GRASPs are unique, because they form a tripartite complex and serve as Golgi docking sites for cargo delivered from the endoplasmic reticulum (ER). Golgi undergoes significant disorganization in many pathologies associated with a block of the ER-to-Golgi or intra-Golgi transport, including cancer, different neurological diseases, alcoholic liver damage, ischemic stress, viral infections, etc. In addition, Golgi fragments during apoptosis and mitosis. Here, we summarize and analyze clinically relevant observations indicating that Golgi fragmentation is associated with the selective loss of Golgi residency for some enzymes and, conversely, with the relocation of some cytoplasmic proteins to the Golgi. The central concept is that ER and Golgi stresses impair giantin docking site but have no impact on the GM130-GRASP65 complex, thus inducing mislocalization of giantin-sensitive enzymes only. This cardinally changes the processing of proteins by eliminating the pathways controlled by the missing enzymes and by activating the processes now driven by the GM130-GRASP65-dependent proteins. This type of Golgi disorganization is different from the one induced by the cytoskeleton alteration, which despite Golgi de-centralization, neither impairs function of golgins nor alters trafficking.
Collapse
Affiliation(s)
- A Petrosyan
- College of Medicine, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. .,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE 68588, USA.,The Fred and Pamela Buffett Cancer Center, Omaha, NE 68106, USA
| |
Collapse
|
44
|
Vasanthakumar T, Rubinstein JL. Structure and Roles of V-type ATPases. Trends Biochem Sci 2020; 45:295-307. [PMID: 32001091 DOI: 10.1016/j.tibs.2019.12.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022]
Abstract
V-ATPases are membrane-embedded protein complexes that function as ATP hydrolysis-driven proton pumps. V-ATPases are the primary source of organellar acidification in all eukaryotes, making them essential for many fundamental cellular processes. Enzymatic activity can be modulated by regulated and reversible disassembly of the complex, and several subunits of mammalian V-ATPase have multiple isoforms that are differentially localized. Although the biochemical properties of the different isoforms are currently unknown, mutations in specific subunit isoforms have been associated with various diseases, making V-ATPases potential drug targets. V-ATPase structure and activity have been best characterized in Saccharomyces cerevisiae, where recent structures have revealed details about the dynamics of the enzyme, the proton translocation pathway, and conformational changes associated with regulated disassembly and autoinhibition.
Collapse
Affiliation(s)
- Thamiya Vasanthakumar
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - John L Rubinstein
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
45
|
Listik E, Xavier EG, Silva Pinhal MAD, Toma L. Dermatan sulfate epimerase 1 expression and mislocalization may interfere with dermatan sulfate synthesis and breast cancer cell growth. Carbohydr Res 2020; 488:107906. [PMID: 31972438 DOI: 10.1016/j.carres.2020.107906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 11/18/2022]
Abstract
Dermatan sulfate (DS) is a glycosaminoglycan (GAG) that is produced through the epimerization of the glucuronic acid on chondroitin sulfate into iduronic acid (IduA) by dermatan sulfate epimerase (DS-epi) 1 and 2. Proteoglycans (PGs) play essential physiological and pathological roles during cellular development, proliferation, differentiation, and cancer metastasis. DS proteoglycans play vital roles during the process of tumorigenesis, due to the increased flexibility of the polysaccharide chain in the presence of IduA residues, which facilitate specific interactions with proteins, such as growth factors, cytokines, and angiogenic factors. Furthermore, DS-epi is highly expressed in many tumors, especially in esophageal squamous cell carcinoma. This study aimed to investigate the expression of DS-epi1 in multiple breast cancer cell lines, including MCF7 (luminal A), MDA-MB-231 (triple-negative) and SKBR3 (human epidermal growth factor receptor 2-positive), and its involvement in cancer progression. A SKBR3 variant, SKBR3m, presented the most erratic cell growth pattern when compared with those for MCF7 and MDA-MB-231. Moreover, SKBR3m cells demonstrated the highest level of DS-epi1 gene expression and higher 35S-DS content. However, at the protein level, MCF7 cells displayed the highest protein level for DS-epi1, whereas MDA-MB-231 cells had the lowest level. DS-epi1 was found in vesicles and in the perinuclear compartment only in SKBR3m cells, suggesting localization in the Golgi apparatus in these cells, in contrast with the cytoplasmic localization observed in MCF7 and MDA-MB-231 cells. The cytoplasm location of DS-epi1 likely compromised the formation of DS chains, but the core protein was detected using a decorin antibody. Golgi-specific labeling confirmed the localization of DS-epi1 in SKBR3m cells at the Golgi apparatus, indicating that the location of the enzyme was a determinant for the synthesis of DS in this cell line, suggesting that DS may play a decisive role in the tumor growth observed in this breast cancer cell line.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, Brazil, CEP: 04044-020.
| | - Everton Galvão Xavier
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, Brazil, CEP: 04044-020.
| | - Maria Aparecida da Silva Pinhal
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, Brazil, CEP: 04044-020.
| | - Leny Toma
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, Brazil, CEP: 04044-020.
| |
Collapse
|
46
|
Abstract
Maintenance of the main Golgi functions, glycosylation and sorting, is dependent on the unique Golgi pH microenvironment that is thought to be set by the balance between the rates of V-ATPase-mediated proton pumping and its leakage back to the cytoplasm via an unknown pathway. The concentration of other ions, such as chloride, potassium, calcium, magnesium, and manganese, is also important for Golgi homeostasis and dependent on the transport activity of other ion transporters present in the Golgi membranes. During the last decade, several new disorders have been identified that are caused by, or are associated with, dysregulated Golgi pH and ion homeostasis. Here, we will provide an updated overview on these disorders and the proteins involved. We will also discuss other disorders for which the molecular defects remain currently uncertain but which potentially involve proteins that regulate Golgi pH or ion homeostasis.
Collapse
|
47
|
|
48
|
Wang Y, Zhang N, Lu S, Wang J, Bing T, Liu X, Chen C, Shangguan D. Dual-Monitoring Glycosylation and Local pH in Live Cells by Metabolic Oligosaccharide Engineering with a Ratiometric Fluorescent Tag. Anal Chem 2019; 91:13720-13728. [DOI: 10.1021/acs.analchem.9b03047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yan Wang
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Chen
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Pothukuchi P, Agliarulo I, Russo D, Rizzo R, Russo F, Parashuraman S. Translation of genome to glycome: role of the Golgi apparatus. FEBS Lett 2019; 593:2390-2411. [PMID: 31330561 DOI: 10.1002/1873-3468.13541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Glycans are one of the four biopolymers of the cell and they play important roles in cellular and organismal physiology. They consist of both linear and branched structures and are synthesized in a nontemplated manner in the secretory pathway of mammalian cells with the Golgi apparatus playing a key role in the process. In spite of the absence of a template, the glycans synthesized by a cell are not a random collection of possible glycan structures but a distribution of specific glycans in defined quantities that is unique to each cell type (Cell type here refers to distinct cell forms present in an organism that can be distinguished based on morphological, phenotypic and/or molecular criteria.) While information to produce cell type-specific glycans is encoded in the genome, how this information is translated into cell type-specific glycome (Glycome refers to the quantitative distribution of all glycan structures present in a given cell type.) is not completely understood. We summarize here the factors that are known to influence the fidelity of glycan biosynthesis and integrate them into known glycosylation pathways so as to rationalize the translation of genetic information to cell type-specific glycome.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Seetharaman Parashuraman
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| |
Collapse
|
50
|
Khayat W, Hackett A, Shaw M, Ilie A, Dudding-Byth T, Kalscheuer VM, Christie L, Corbett MA, Juusola J, Friend KL, Kirmse BM, Gecz J, Field M, Orlowski J. A recurrent missense variant in SLC9A7 causes nonsyndromic X-linked intellectual disability with alteration of Golgi acidification and aberrant glycosylation. Hum Mol Genet 2019; 28:598-614. [PMID: 30335141 DOI: 10.1093/hmg/ddy371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
We report two unrelated families with multigenerational nonsyndromic intellectual disability (ID) segregating with a recurrent de novo missense variant (c.1543C>T:p.Leu515Phe) in the alkali cation/proton exchanger gene SLC9A7 (also commonly referred to as NHE7). SLC9A7 is located on human X chromosome at Xp11.3 and has not yet been associated with a human phenotype. The gene is widely transcribed, but especially abundant in brain, skeletal muscle and various secretory tissues. Within cells, SLC9A7 resides in the Golgi apparatus, with prominent enrichment in the trans-Golgi network (TGN) and post-Golgi vesicles. In transfected Chinese hamster ovary AP-1 cells, the Leu515Phe mutant protein was correctly targeted to the TGN/post-Golgi vesicles, but its N-linked oligosaccharide maturation as well as that of a co-transfected secretory membrane glycoprotein, vesicular stomatitis virus G (VSVG) glycoprotein, was reduced compared to cells co-expressing SLC9A7 wild-type and VSVG. This correlated with alkalinization of the TGN/post-Golgi compartments, suggestive of a gain-of-function. Membrane trafficking of glycosylation-deficient Leu515Phe and co-transfected VSVG to the cell surface, however, was relatively unaffected. Mass spectrometry analysis of patient sera also revealed an abnormal N-glycosylation profile for transferrin, a clinical diagnostic marker for congenital disorders of glycosylation. These data implicate a crucial role for SLC9A7 in the regulation of TGN/post-Golgi pH homeostasis and glycosylation of exported cargo, which may underlie the cellular pathophysiology and neurodevelopmental deficits associated with this particular nonsyndromic form of X-linked ID.
Collapse
Affiliation(s)
- Wujood Khayat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Anna Hackett
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Tracy Dudding-Byth
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Louise Christie
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Kathryn L Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Brian M Kirmse
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|