1
|
Rogozynski NP, Cadonic IG, Soto-Dávila M, Wong-Benito V, Rodriguez-Ramos T, Craig P, Dixon B. Diploid and triploid Chinook salmon (Oncorhynchus tshawytscha) exhibit differential immunological responses to acute thermal stress. JOURNAL OF FISH DISEASES 2024; 47:e13998. [PMID: 39001637 DOI: 10.1111/jfd.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 10/15/2024]
Abstract
Exposure to temperatures outside of a fish's optimal range results in suppression of the immune system, ultimately leaving aquaculture stocks susceptible to disease outbreaks. This effect is exacerbated in triploid fishes, which demonstrate greater susceptibility to stress than their diploid counterparts. This study investigates the impacts of acute heat stress on the abundance of immune transcripts and proteins in diploid and triploid Chinook salmon (Oncorhynchus tshawytscha), an important finfish crop. This study also demonstrates that acute heat stress induces significant increases in the abundance hsp70, hsp90 and il1b transcripts in the head kidneys, gills and heart ventricles of both diploid and triploid Chinook salmon. Widespread dysregulation of antigen-presentation transcripts was also observed in fish of both ploidies. These results suggest that acute heat stress activates acute-phase responses in Chinook salmon and dysregulates antigen presentation, potentially leaving fish more susceptible to infection. At the protein level, IL-1β was differentially expressed in the head kidney and ventricles of diploid and triploid salmon following heat shock. Differential expression of two tapasin-like proteins in diploid and triploid salmon subjected to heat shock was also observed. Altogether, these data indicate that diploid and triploid Chinook salmon respond differently to acute thermal stressors.
Collapse
Affiliation(s)
- Noah P Rogozynski
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ivan G Cadonic
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Manuel Soto-Dávila
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | | | - Paul Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
de Faria CDFP, Gonçalez FL, Urbinati EC. Temperature, dietary lipids, and Aeromonas hydrophila modulate self-protection mechanisms in pacu Piaractus mesopotamicus Holmberg 1887. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39385400 DOI: 10.1111/jfb.15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Water temperature has a direct influence on several physiological processes in fish. This study investigated the effects of the exposure of pacu (Piaractus mesopotamicus) to 10 days of reduced temperature in stress and innate immune and antioxidant systems, all of which are involved in energy mobilization. Two groups of fish, fed a control diet or a diet with a higher lipid level, were exposed for 10 days to 16°C and then inoculated with Aeromonas hydrophila bacterin. Samples were taken before and after 5 and 10 days of exposure. The results showed that the low temperature (16°C) was a stressor, increasing cortisol levels. Higher levels of cortisol were seen in fish with more body fat, especially at 16°C, compared to those fed control diet. The immune system was enhanced by low temperature that activated the hemolytic activity of the complement system (HAC50) and lysozyme after 10 days of exposure in fish with more body fat. Bacterin inoculation, regardless of temperature and body fat, impaired the respiratory activity of leukocytes, but the complement system activity remained at the levels seen before cold activation. Similarly, lysozyme remained at the levels seen before cold activation, showing later activation. Furthermore, soon after inoculation (at 3 and 6 h), bacterin induced oxidative stress that decreased at 24 h when the concentration of reduced glutathione (GSH) showed lower levels, suggesting that GSH was consumed to attenuate the oxidative stress. Pacu was resilient to the reduced temperature, displaying protective responses to the stressful condition using lipids to modulate these responses.
Collapse
Affiliation(s)
| | - Fábio Lopes Gonçalez
- Universidade Estadual Paulista, UNESP, Faculdade de Ciências Agrárias e Veterinárias, São Paulo, Brazil
| | - Elisabeth Criscuolo Urbinati
- Universidade Estadual Paulista, UNESP, Centro de Aquicultura, São Paulo, Brazil
- Universidade Estadual Paulista, UNESP, Faculdade de Ciências Agrárias e Veterinárias, São Paulo, Brazil
| |
Collapse
|
3
|
Gnanagobal H, Chakraborty S, Vasquez I, Chukwu-Osazuwa J, Cao T, Hossain A, Dang M, Valderrama K, Kumar S, Bindea G, Hill S, Boyce D, Hall JR, Santander J. Transcriptome profiling of lumpfish (Cyclopterus lumpus) head kidney to Renibacterium salmoninarum at early and chronic infection stages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105165. [PMID: 38499166 DOI: 10.1016/j.dci.2024.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Renibacterium salmoninarum causes Bacterial Kidney Disease (BKD) in several fish species. Atlantic lumpfish, a cleaner fish, is susceptible to R. salmoninarum. To profile the transcriptome response of lumpfish to R. salmoninarum at early and chronic infection stages, fish were intraperitoneally injected with either a high dose of R. salmoninarum (1 × 109 cells dose-1) or PBS (control). Head kidney tissue samples were collected at 28- and 98-days post-infection (dpi) for RNA sequencing. Transcriptomic profiling identified 1971 and 139 differentially expressed genes (DEGs) in infected compared with control samples at 28 and 98 dpi, respectively. At 28 dpi, R. salmoninarum-induced genes (n = 434) mainly involved in innate and adaptive immune response-related pathways, whereas R. salmoninarum-suppressed genes (n = 1537) were largely connected to amino acid metabolism and cellular processes. Cell-mediated immunity-related genes showed dysregulation at 98 dpi. Several immune-signalling pathways were dysregulated in response to R. salmoninarum, including apoptosis, alternative complement, JAK-STAT signalling, and MHC-I dependent pathways. In summary, R. salmoninarum causes immune suppression at early infection, whereas lumpfish induce a cell-mediated immune response at chronic infection. This study provides a complete depiction of diverse immune mechanisms dysregulated by R. salmoninarum in lumpfish and opens new avenues to develop immune prophylactic tools to prevent BKD.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katherine Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada; Ocean Frontier Institute, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, 75006, Paris, France; Equipe Labellisée Ligue Contre Le Cancer, 75013, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Stephen Hill
- Cold-Ocean Deep-Sea Research Facility, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
4
|
Ying C, Hua Z, Ma F, Yang Y, Wang Y, Liu K, Yin G. Hepatic immune response of Coilia nasus infected with Anisakidae during ovarian development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101261. [PMID: 38897035 DOI: 10.1016/j.cbd.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Anisakidae parasitism is a prevalent disease in wild populations of Coilia nasus, and can result in a significant loss of germplasm resources. To elucidate the immune response mechanism of C. nasus livers to Anisakidae infection, we collected and analysed 18 parasitic and 18 non-parasitic livers at gonadal developmental stages II, III, and V using histopathology, molecular biology and transcriptome methods. The hepatic portal area of the parasitic group exhibited an increase in the fibrous stroma and thickened hepatic arteries with positive Ly-6G staining, indicating inflammation and immune responses in the liver. Hepatocyte cytokine levels and the expression of liver function-related genes indicated that fish livers responded similarly to Anisakidae parasitism across different gonadal developmental stages. Oxidative stress indices showed more intense changes in stage II samples, whereas gene expression levels of Nrf2 and C3 were significantly increased in parasitised livers during stage III and V. Liver transcriptome sequencing identified 2575 differentially expressed genes between the parasitic and non-parasitic groups at the three gonadal developmental stages. KEGG pathway analysis showed that natural killer cell-mediated cytotoxicity, the NOD-like receptor signaling pathway, neutrophil extracellular trap formation, and other immune pathways were significantly enriched. Expression patterns varied across developmental stages, suggesting that innate immunity was primarily responsible for the liver immune response to Anisakidae infection during C. nasus migration, possibly related to water temperature changes or shifts in the gonadal developmental stage. In summary, this study investigated the immune response of C. nasus to Anisakidae parasitism under natural conditions, focusing on reproductive aspects and environmental changes, thereby establishing a foundation for elucidating the molecular mechanisms underlying the immune response of Anisakidae in C. nasus.
Collapse
Affiliation(s)
- Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhong Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fengjiao Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yanping Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yinping Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kai Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
5
|
Sueiro MC, Awruch CA, Somoza GM, Svagelj WS, Palacios MG. Links between reproduction and immunity in two sympatric wild marine fishes. Comp Biochem Physiol A Mol Integr Physiol 2024; 287:111538. [PMID: 37871889 DOI: 10.1016/j.cbpa.2023.111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
According to life-history theory, limited resources can result in trade-offs between costly physiological functions. Particularly, it can be expected that individuals present lower immune function, or an alternative immunological strategy, during their reproductive compared to their non-reproductive season. Here we investigate the link between reproduction and immunity in two sympatric marine fish species, the rockfish Sebastes oculatus and the sandperch Pinguipes brasilianus. The results showed lower values of total white blood cells and spleen index, but higher levels of natural antibodies (only in females) in reproductive rockfish compared to non-reproductive ones. On the other hand, reproductively active sandperch showed lower levels of natural antibodies and a higher neutrophil to lymphocyte ratio and spleen index (only in males), compared to non-reproductive ones. Also, negative correlations between reproductive and immune parameters were observed in female rockfish at the individual level, but not in sandperch. Our results are consistent with the presence of different immunological strategies in reproductive and non-reproductive periods, with patterns that appear to be species-specific. This specificity suggests that various aspects of immunity might respond differentially to resource limitation, which could be associated with the disparate life-history strategies of the studied species. Alternatively, though not exclusively, the observed patterns could be driven by abiotic factors that characterize the reproductive season of each species (i.e., winter for rockfish, summer for sandperch). Our study contributes to ecoimmunological knowledge on free-living fish and highlights that detection of trade-offs can depend on the combination of study species, season, sex, and specific immune components measured.
Collapse
Affiliation(s)
- María Cruz Sueiro
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET), Puerto Madryn, Chubut, Argentina.
| | - Cynthia A Awruch
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET), Puerto Madryn, Chubut, Argentina; School of Natural Sciences and Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia. https://twitter.com/ca_awruch
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM). Argentina
| | - Walter S Svagelj
- Instituto de Investigaciones Marinas y Costeras (UNMdP-CONICET), Mar del Plata, Buenos Aires, Argentina
| | - María G Palacios
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
6
|
Lee JW, Balasubramanian B. Impacts of Temperature on the Growth, Feed Utilization, Stress, and Hemato-Immune Responses of Cherry Salmon ( Oncorhynchus masou). Animals (Basel) 2023; 13:3870. [PMID: 38136907 PMCID: PMC10740505 DOI: 10.3390/ani13243870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cherry salmon (Oncorhynchus masou) hold commercial value in aquaculture, and there is a need for controlled laboratory studies to isolate the specific effects of temperature on their growth, feeding, and well-being. We examined the effects of different temperatures (10 °C, 14 °C, 18 °C, and 22 °C) on juvenile cherry salmon (average mass 29.1 g) in triplicate tanks per treatment over eight weeks. The key parameters assessed included growth rate, feed efficiency, stress response, and hemato-immune responses. Our objectives were to determine the most and less favorable temperatures among the four designated temperatures and to assess the adverse effects associated with these less favorable temperatures. The results showed that body weight, growth rates, feed intake, and feed efficiency were significantly higher at 10 °C and 14 °C compared to 18 °C and 22 °C. Reduced appetite and feeding response were observed at 22 °C. Red blood cell parameters were significantly lower at 22 °C. At 10 °C, the results showed significantly increased plasma cortisol levels, gill Na+/K+-ATPase activity, body silvering, and decreased condition factors, suggesting potential smoltification. The potential smoltification decreased with increasing temperatures and disappeared at 22 °C. Furthermore, the plasma lysozyme concentrations significantly increased at 18 °C and 22 °C. In conclusion, our study identifies 10 °C and 14 °C as the temperatures most conducive to growth and feed performance in juvenile cherry salmon under these experimental conditions. However, temperatures of 22 °C or higher should be avoided to prevent compromised feeding, reduced health, disturbed immune responses, impaired growth, and feed performance.
Collapse
Affiliation(s)
- Jang-Won Lee
- Department of Integrative Biological Sciences and Industry, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | | |
Collapse
|
7
|
Chandra RK, Bhardwaj AK, Pati AK, Tripathi MK. Seasonal Immune Rhythms of head kidney and spleen cells in the freshwater Teleost, Channa punctatus. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100110. [PMID: 37456710 PMCID: PMC10344798 DOI: 10.1016/j.fsirep.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
Annual rhythms in immune function are the reflection of a crucial physiological strategy to deal with environmental stressors. The fish are pivotal animal models to study the annual rhythm and to understand the evolution of the vertebrate biological system. The current research was planned to assess the annual changes in the innate immune functions of immune cells in a teleost, Channa punctatus. Head kidney and splenic macrophage phagocytosis, superoxide generation, and nitrite release were evaluated to assess innate immunity. Cell-mediated immunity was measured through head kidney and splenic lymphocyte proliferation in presence of mitogens. The superoxide anion generation by the cells of head kidney and spleen was maximum in October. A bimodal pattern in nitrite production was observed with the first peak in November and the second in March. Cosinor analysis revealed a statistically significant annual rhythm in nitrite production. Similarly, phagocytosis and lymphocyte proliferation also showed statistically significant annual rhythms. It was concluded that animals maintain an optimum immune response in seasonally changing environments. Elevated immunity during certain times of the year might assist animals deal with seasonal environmental stressors. Further research may be focused upon measuring survival rate and reproductive success after season induced elevated immunity.
Collapse
Affiliation(s)
- Rakesh Kumar Chandra
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ajay Kumar Bhardwaj
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Atanu Kumar Pati
- Executive Member, Odisha State Higher Education Council, Government of Odisha, Bhubaneswar 751 002, Odisha, India
- Former Professor of Bioscience and Dean - Life Sciences, School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Manish Kumar Tripathi
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
8
|
Zhang J, Huang J, Zhao H. Molecular Cloning of Toll-like Receptor 2 and 4 ( SpTLR2, 4) and Expression of TLR-Related Genes from Schizothorax prenanti after Poly (I:C) Stimulation. Genes (Basel) 2023; 14:1388. [PMID: 37510293 PMCID: PMC10379648 DOI: 10.3390/genes14071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptor (TLR) signaling is conserved between fish and mammals, except for TLR4, which is absent in most fish. In the present study, we aimed to evaluate whether TLR4 is expressed in Schizothorax prenanti (SpTLR4). The SpTLR2 and SpTLR4 were cloned and identified, and their tissue distribution was examined. The cDNA encoding SpTLR4 and SpTLR2 complete coding sequences (CDS) were identified and cloned. Additionally, we examined the expression levels of seven SpTLRs (SpTLR2, 3, 4, 18, 22-1, 22-2, and 22-3), as well as SpMyD88 and SpIRF3 in the liver, head kidney, hindgut, and spleen of S. prenanti, after intraperitoneal injection of polyinosinic-polycytidylic acid (poly (I:C)). The SpTLR2 and SpTLR4 shared amino acid sequence identity of 42.15-96.21% and 36.21-93.58%, respectively, with sequences from other vertebrates. SpTLR2 and SpTLR4 were expressed in all S. prenanti tissues examined, particularly in immune-related tissues. Poly (I:C) significantly upregulated most of the genes evaluated in the four immune organs compared with the PBS-control (p < 0.05); expression of these different genes was tissue-specific. Our findings demonstrate that TLR2 and TLR4 are expressed in S. prenanti and that poly (I:C) affects the expression of nine TLR-related genes, which are potentially involved in S. prenanti antiviral immunity or mediating pathological processes with differential kinetics. This will contribute to a better understanding of the roles of these TLR-related genes in antiviral immunity.
Collapse
Affiliation(s)
- Jianlu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiqin Huang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Haitao Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| |
Collapse
|
9
|
Qin P, Munang’andu HM, Xu C, Xie J. Megalocytivirus and Other Members of the Family Iridoviridae in Finfish: A Review of the Etiology, Epidemiology, Diagnosis, Prevention and Control. Viruses 2023; 15:1359. [PMID: 37376659 PMCID: PMC10305399 DOI: 10.3390/v15061359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Aquaculture has expanded to become the fastest growing food-producing sector in the world. However, its expansion has come under threat due to an increase in diseases caused by pathogens such as iridoviruses commonly found in aquatic environments used for fish farming. Of the seven members belonging to the family Iridoviridae, the three genera causing diseases in fish comprise ranaviruses, lymphocystiviruses and megalocytiviruses. These three genera are serious impediments to the expansion of global aquaculture because of their tropism for a wide range of farmed-fish species in which they cause high mortality. As economic losses caused by these iridoviruses in aquaculture continue to rise, the urgent need for effective control strategies increases. As a consequence, these viruses have attracted a lot of research interest in recent years. The functional role of some of the genes that form the structure of iridoviruses has not been elucidated. There is a lack of information on the predisposing factors leading to iridovirus infections in fish, an absence of information on the risk factors leading to disease outbreaks, and a lack of data on the chemical and physical properties of iridoviruses needed for the implementation of biosecurity control measures. Thus, the synopsis put forth herein provides an update of knowledge gathered from studies carried out so far aimed at addressing the aforesaid informational gaps. In summary, this review provides an update on the etiology of different iridoviruses infecting finfish and epidemiological factors leading to the occurrence of disease outbreaks. In addition, the review provides an update on the cell lines developed for virus isolation and culture, the diagnostic tools used for virus detection and characterization, the current advances in vaccine development and the use of biosecurity in the control of iridoviruses in aquaculture. Overall, we envision that the information put forth in this review will contribute to developing effective control strategies against iridovirus infections in aquaculture.
Collapse
Affiliation(s)
- Pan Qin
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | | | - Cheng Xu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Jianjun Xie
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316100, China
| |
Collapse
|
10
|
Weber AV, Firth BL, Cadonic IG, Craig PM. Interactive effects of venlafaxine and thermal stress on zebrafish (Danio rerio) inflammatory and heat shock responses. Comp Biochem Physiol C Toxicol Pharmacol 2023; 269:109620. [PMID: 37004898 DOI: 10.1016/j.cbpc.2023.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Venlafaxine (VFX), a commonly prescribed antidepressant often detected in wastewater effluent, and acute temperature elevations from climate change and increased urbanization, are two environmental stressors currently placing freshwater ecosystems at risk. This study focused on understanding if exposure to VFX impacts the agitation temperature (Tag) and critical thermal maximum (CTmax) of zebrafish (Danio rerio). Additionally, we examined the interactive effects of VFX and acute thermal stress on zebrafish heat shock and inflammatory immune responses. A 96 h 1.0 μg/L VFX exposure experiment was conducted, followed by assessment of thermal tolerance via CTmax challenge. Heat shock proteins and pro-inflammatory immune cytokines were quantified through gene expression analysis by quantitative PCR (qPCR) on hsp 70, hsp 90, hsp 47, il-8, tnfα, and il-1β within gill and liver tissue. No significant changes in agitation temperature between control and exposed fish were observed, nor were there any differences in CTmax based on treatment. Unsurprisingly, hsp 47, 70, and 90 were all upregulated in groups exposed solely to CTmax, while only hsp 47 within gill tissue showed signs of interactive effects, which was significantly decreased in fish exposed to both VFX and CTmax. No induction of an inflammatory response occurred. This study demonstrated that environmentally relevant concentrations of VFX have no impact on thermal tolerance performance in zebrafish. However, VFX can cause diminished function of protective heat shock mechanisms, which could be detrimental to freshwater fish populations and aquatic ecosystems as temperature spikes become more frequent from climate change and urbanization near watersheds.
Collapse
Affiliation(s)
- A V Weber
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - B L Firth
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada. https://twitter.com/@Britney_Firth
| | - I G Cadonic
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada. https://twitter.com/@IvanCadonic
| | - P M Craig
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
11
|
Zhang L, Yang Z, Yang F, Wang G, Zeng M, Zhang Z, Yang M, Wang Z, Li Z. Gut microbiota of two invasive fishes respond differently to temperature. Front Microbiol 2023; 14:1087777. [PMID: 37056740 PMCID: PMC10088563 DOI: 10.3389/fmicb.2023.1087777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Temperature variation structures the composition and diversity of gut microbiomes in ectothermic animals, key regulators of host physiology, with potential benefit to host or lead to converse results (i.e., negative). So, the significance of either effect may largely depend on the length of time exposed to extreme temperatures and how rapidly the gut microbiota can be altered by change in temperature. However, the temporal effects of temperature on gut microbiota have rarely been clarified. To understand this issue, we exposed two juvenile fishes (Cyprinus carpio and Micropterus salmoides), which both ranked among the 100 worst invasive alien species in the world, to increased environmental temperature and sampled of the gut microbiota at multiple time points after exposure so as to determine when differences in these communities become detectable. Further, how temperature affects the composition and function of microbiota was examined by comparing predicted metagenomic profiles of gut microbiota between treatment groups at the final time point of the experiment. The gut microbiota of C. carpio was more plastic than those of M. salmoides. Specifically, communities of C. carpio were greatly altered by increased temperature within 1 week, while communities of M. salmoides exhibit no significant changes. Further, we identified 10 predicted bacterial functional pathways in C. carpio that were temperature-dependent, while none functional pathways in M. salmoides was found to be temperature-dependent. Thus, the gut microbiota of C. carpio was more sensitive to temperature changes and their functional pathways were significantly changed after temperature treatment. These results showed the gut microbiota of the two invasive fishes differ in response to temperature change, which may indicate that they differ in colonization modes. Broadly, we have confirmed that the increased short-term fluctuations in temperatures are always expected to alter the gut microbiota of ectothermic vertebrates when facing global climate change.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
- Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem and The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, China
- *Correspondence: Lixia Zhang,
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Fan Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Gege Wang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ming Zeng
- Jigongshan National Nature Reserve, Xinyang, China
| | | | - Mengxiao Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Zhibing Li
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
12
|
Amaral D, Filipe DM, Cavalheri TF, Vieira L, Magalhães RP, Belo I, Peres H, Ozório RODA. Solid-State Fermentation of Plant Feedstuff Mixture Affected the Physiological Responses of European Seabass ( Dicentrarchus labrax) Reared at Different Temperatures and Subjected to Salinity Oscillation. Animals (Basel) 2023; 13:393. [PMID: 36766282 PMCID: PMC9913833 DOI: 10.3390/ani13030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
This study aimed to evaluate the effects of dietary inclusion of plant feedstuff mixture (PFM) pre-treated by solid-state fermentation (SSF) on the physiological responses of European seabass. For that purpose, two diets were formulated to contain: 20% inclusion level of non-fermented plant ingredients mixture (20Mix) and 20Mix fermented by A. niger in SSF conditions (20Mix-SSF). Seabass juveniles (initial body weight: 20.9 ± 3.3 g) were fed the experimental diets, reared at two different temperatures (21 and 26 °C) and subjected to weekly salinity oscillations for six weeks. Growth performance, digestive enzyme activities, humoral immune parameters, and oxidative stress indicators were evaluated. A reduction in weight gain, feed intake, and thermal growth coefficient was observed in fish fed the fermented diet (20Mix-SSF). Salinity oscillation led to an increase in weight gain, feed efficiency, daily growth index, and thermal growth coefficient, regardless of dietary treatment. Higher rearing temperatures also increased daily growth index. No dietary effect was observed on digestive enzymes activities, whereas rearing temperature and salinity oscillation modulated digestive enzyme activities. Oxidative stress responses were significantly affected by experimental diets, temperature, and salinity conditions. Catalase and glutathione peroxidase activities showed an interactive effect. Fish reared at 21 °C showed higher enzymatic activity when fed the 20Mix-SSF. Conversely, fish reared at 26 °C showed higher GPx activity when fed the 20Mix diet. Fish reared at 26 °C showed reduced peroxidase and lysozyme activities, while salinity fluctuation led to increased lysozyme activity and decreased ACH50 activity. ACH50 activity increased in fish fed the 20Mix-SSF. Overall, the dietary inclusion of PFM fermented by A. niger was unable to mitigate the impact of environmental stress on physiological performance in European seabass. In fact, fermented feed caused an inhibition of growth performances and an alteration of some physiological stress indicators.
Collapse
Affiliation(s)
- Diogo Amaral
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Diogo Moreira Filipe
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Thais Franco Cavalheri
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
| | - Lúcia Vieira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Rui Pedro Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, 4704-553 Braga, Portugal
| | - Helena Peres
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Rodrigo O. de A. Ozório
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
| |
Collapse
|
13
|
Al-Haider S, Alneamah G, Alshkarchy S, Farhood A. The Babylon River's common carp (Cyprinus carpio) gills were used for the histopathological examination and PCR detection of Koi herpesvirus disease (KHVD). BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The first outbreak of koi herpesvirus in Iraq occurred in Babylon Province in the floating cages in the Euphrates River from the Musayyib thermal electric power station to the Al-Hindiya Dam. Fish were suffering from gills rot that did not respond to treatment and lesions and ulcers on the fish's body. The fatalities reached 80%. was water temperature 24°C, pH 6.85, Salinity 760 ppt. So the present study aims to highlight the pathological changes in gills after the Koi herpes virus infection in Babylon Province. The study started after the detection of (KHV) by polymerase chain reaction ( PCR) from the suspected samples (30 ) for the detection of virus nucleic acid. Also, study the water characterization during the periods of outbreaks. The gills specimen was collected from the positive cases for gross and histopathological examination. The result showed that ten samples were positive for (KHV) infection. The gross and histopathological examination results showed severe congestion with necrotic foci and sloughing of secondary lamella with increased mucus secretion. In addition, necrosis in the primary lamellae, Edam and inflammatory cells infiltration with hyperplasia of the secondary lamellae with the presence of intranuclear inclusion body in all exanimated slides.
Keywords: Koi Herpes; Cyprinus Carpio; Euphrates River; KHV; secondary lamellae; floating cages
Collapse
Affiliation(s)
- Sadeq Al-Haider
- College of veterinary medicine / Al-Qasim Green University/ department of pathology and poultry
| | - Ghusoon Alneamah
- College of veterinary medicine / Al-Qasim Green University/ department of pathology and poultry
| | - Samer Alshkarchy
- College of veterinary medicine / Al-Qasim Green University/ department of pathology and poultry
| | - Ahmed Farhood
- Ministry of Agriculture, the veterinary education hospital, Babylon, Iraq
| |
Collapse
|
14
|
Bartholomew JL, Alexander JD, Hallett SL, Alama-Bermejo G, Atkinson SD. Ceratonova shasta: a cnidarian parasite of annelids and salmonids. Parasitology 2022; 149:1862-1875. [PMID: 36081219 PMCID: PMC11010528 DOI: 10.1017/s0031182022001275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 12/29/2022]
Abstract
The myxozoan Ceratonova shasta was described from hatchery rainbow trout over 70 years ago. The parasite continues to cause severe disease in salmon and trout, and is recognized as a barrier to salmon recovery in some rivers. This review incorporates changes in our knowledge of the parasite's life cycle, taxonomy and biology and examines how this information has expanded our understanding of the interactions between C. shasta and its salmonid and annelid hosts, and how overarching environmental factors affect this host–parasite system. Development of molecular diagnostic techniques has allowed discrimination of differences in parasite genotypes, which have differing host affinities, and enabled the measurement of the spatio-temporal abundance of these different genotypes. Establishment of the C. shasta life cycle in the laboratory has enabled studies on host–parasite interactions and the availability of transcriptomic data has informed our understanding of parasite virulence factors and host defences. Together, these advances have informed the development of models and management actions to mitigate disease.
Collapse
Affiliation(s)
- Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| | - Julie D. Alexander
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| | - Sascha L. Hallett
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| | - Gema Alama-Bermejo
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Division of Fish Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Stephen D. Atkinson
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| |
Collapse
|
15
|
Zhang Y, Lyu L, Tao Y, Ju H, Chen J. Health risks of phthalates: A review of immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120173. [PMID: 36113640 DOI: 10.1016/j.envpol.2022.120173] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Phthalates (PAEs) are known environmental endocrine disruptors that have been widely detected in several environments, and many studies have reported the immunotoxic effects of these compounds. Here, we reviewed relevant published studies, summarized the occurrence and major metabolic pathways of six typical PAEs (DMP, DEP, DBP, BBP, DEHP, and DOP) in water, soil, and the atmosphere, degradation and metabolic pathways under aerobic and anaerobic conditions, and explored the molecular mechanisms of the toxic effects of eleven PAEs (DEHP, DPP, DPrP, DHP, DEP, DBP, MBP, MBzP, BBP, DiNP, and DMP) on the immune system of different organisms at the gene, protein, and cellular levels. A comprehensive understanding of the mechanisms by which PAEs affect immune system function through regulation of immune gene expression and enzymes, increased ROS, immune signaling pathways, specific and non-specific immunosuppression, and interference with the complement system. By summarizing the effects of these compounds on typical model organisms, this review provides insights into the mechanisms by which PAEs affect the immune system, thus supplementing human immune experiments. Finally, we discuss the future direction of PAEs immunotoxicity research, thus providing a framework for the analysis of other environmental pollutants, as well as a basis for PAEs management and safe use.
Collapse
Affiliation(s)
- Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Liang Lyu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yue Tao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Hanxun Ju
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jie Chen
- Rural Energy Station of Heilongjiang Province, Harbin, 150030, PR China.
| |
Collapse
|
16
|
Cloning of Toll-like Receptor 3 Gene from Schizothorax prenanti ( SpTLR3), and Expressions of Seven SpTLRs and SpMyD88 after Lipopolysaccharide Induction. Genes (Basel) 2022; 13:genes13101862. [PMID: 36292749 PMCID: PMC9601681 DOI: 10.3390/genes13101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Toll-like receptor 3 (SpTLR3) from Schizothorax prenanti (S. prenanti) was cloned and identified, and the tissue distribution of the SpTLR3 gene was examined in this study. Moreover, the relative mRNA expression levels of myeloid differentiation factor 88 gene (SpMyD88) and seven TLR genes (SpTLR2, SpTLR3, SpTLR4, SpTLR18, SpTLR22-1, SpTLR22-2 and SpTLR22-3) from S. prenanti after lipopolysaccharide (LPS) challenge were analyzed through quantitative real-time polymerase chain reaction (qRT-PCR). The full length of SpTLR3 gene is 3097 bp, and complete coding sequence (CDS) is 2715 bp, which encodes 904 amino acids. The SpTLR3 amino acid sequence shared 43.94−100% identity with TLR3 sequences from other vertebrates; SpTLR3 was expressed in all eight tissues examined; and the highest level appeared in the liver, which was significantly higher than in all other tissues (p < 0.05), followed by the levels in the heart and muscles. LPS significantly up-regulated all eight genes in the S. prenanti tissues at 12 or 24 h (p < 0.05). Compared with the PBS control group, no significant transcripts changes were found in SpTLR2 or SpTLR3 at 12 h after LPS induction, but they were significantly up-regulated at 24 h (p < 0.001). The most abundant transcripts were found in the head kidney SpTLR22 genes after 24 h LPS induction, with high to low levels, which were SpTLR22-1 (564-fold), SpTLR22-3 (508-fold) and SpTLR22-2 (351-fold). Among these eight genes, the expression level of SpTLR4 was the least up-regulated. Overall, SpTLR4 in the head kidney was involved in the antibacterial immune response earlier, and the level was increased at 12 h with extreme significance after LPS stimulation (p < 0.001), while the other seven genes were the most significantly up-regulated at 24 h post injection. Taken together, the results suggest that SpMyD88, SpTLR2, SpTLR3, SpTLR4, SpTLR18, SpTLR22-1, SpTLR22-2 and SpTLR22-3 participate in an innate immune response stimulated by LPS, and the response intensity of the genes was organ-specific, with differing kinetics. Our findings will contribute to a more complete understanding of the roles of these TLR genes in antibacterial immunity.
Collapse
|
17
|
Scharsack JP, Franke F. Temperature effects on teleost immunity in the light of climate change. JOURNAL OF FISH BIOLOGY 2022; 101:780-796. [PMID: 35833710 DOI: 10.1111/jfb.15163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Temperature is an important environmental modulator of teleost immune activity. Susceptibility of teleosts to temperature variation depends on the species-specific adaptive temperature range, and the activity of the teleost immune system is generally temperature-dependent. Similar to many physiological and metabolic traits of ectotherms, temperature modulates the activity of immune traits. At low temperatures, acquired immunity of many teleost species is down-modulated, and their immuno-competence mainly depends on innate immunity. At intermediate temperatures, both innate and acquired immunity are fully active and provide optimal protection, including long-lasting immunological memory. When temperatures increase and reach the upper permissive range, teleost immunity is compromised. Moreover, temperature shifts may have negative effects on teleost immune functions, in particular if shifts occur rapidly with high amplitudes. On the contrary, short-term temperature increase may help teleost immunity to fight against pathogens transiently. A major challenge to teleosts therefore is to maintain immuno-competence throughout the temperature range they are exposed to. Climate change coincides with rising temperatures, and more frequent and more extreme temperature shifts. Both are likely to influence the immuno-competence of teleosts. Nonetheless, teleosts exist in habitats that differ substantially in temperature, ranging from below zero in the Arctic's to above 40°C in warm springs, illustrating their enormous potential to adapt to different temperature regimes. The present review seeks to discuss how changes in temperature variation, induced by climate change, might influence teleost immunity.
Collapse
Affiliation(s)
- Jörn Peter Scharsack
- Department for Fish Diseases, Thuenen-Institute of Fisheries Ecology, Bremerhaven, Germany
| | - Frederik Franke
- Bavarian State Institute of Forestry, Department of Biodiversity, Nature Protection & Wildlife Management, Freising, Germany
| |
Collapse
|
18
|
Hypothermia-Mediated Apoptosis and Inflammation Contribute to Antioxidant and Immune Adaption in Freshwater Drum, Aplodinotus grunniens. Antioxidants (Basel) 2022; 11:antiox11091657. [PMID: 36139731 PMCID: PMC9495763 DOI: 10.3390/antiox11091657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hypothermia-exposure-induced oxidative stress dysregulates cell fate and perturbs cellular homeostasis and function, thereby disturbing fish health. To evaluate the impact of hypothermia on the freshwater drum (Aplodinotus grunniens), an 8-day experiment was conducted at 25 °C (control group, Con), 18 °C (LT18), and 10 °C (LT10) for 0 h, 8 h, 1 d, 2 d, and 8 d. Antioxidant and non-specific immune parameters reveal hypothermia induced oxidative stress and immunosuppression. Liver ultrastructure alterations indicate hypothermia induced mitochondrial enlargement, nucleoli aggregation, and lipid droplet accumulation under hypothermia exposure. With the analysis of the transcriptome, differentially expressed genes (DEGs) induced by hypothermia were mainly involved in metabolism, immunity and inflammation, programmed cell death, and disease. Furthermore, the inflammatory response and apoptosis were evoked by hypothermia exposure in different immune organs. Interactively, apoptosis and inflammation in immune organs were correlated with antioxidation and immunity suppression induced by hypothermia exposure. In conclusion, these results suggest hypothermia-induced inflammation and apoptosis, which might be the adaptive mechanism of antioxidation and immunity in the freshwater drum. These findings contribute to helping us better understand how freshwater drum adjust to hypothermia stress.
Collapse
|
19
|
Kim KH, Choi KM, Joo MS, Kang G, Woo WS, Sohn MY, Son HJ, Kwon MG, Kim JO, Kim DH, Park CI. Red Sea Bream Iridovirus (RSIV) Kinetics in Rock Bream (Oplegnathus fasciatus) at Various Fish-Rearing Seawater Temperatures. Animals (Basel) 2022; 12:ani12151978. [PMID: 35953967 PMCID: PMC9367270 DOI: 10.3390/ani12151978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Red sea bream iridoviral disease (RSIVD) generates serious economic losses by causing mass mortality events of rock bream during the season with high water temperature in the Republic of Korea and other Asian countries. However, very few studies have investigated RSIV kinetics in rock bream under various rearing water temperatures. In this paper, we investigated the viral load shedding of RSIV into seawater after artificially infecting rock bream (Oplegnathus fasciatus) with the virus. Overall, our data suggest that the viral load shedding of RSIV into seawater varies depending on water temperature and virus inoculation concentration. Our results reveal the potential of non-invasive virus detection approaches, such as the utilization of environmental DNA in fish farms. In addition, we showed that the quantitative analysis of seawater viruses can indirectly improve our understanding of disease progression in fish, potentially contributing to enhanced disease control. Abstract Red sea bream iridoviral disease (RSIVD) causes serious economic losses in the aquaculture industry. In this paper, we evaluated RSIV kinetics in rock bream under various rearing water temperatures and different RSIV inoculation concentrations. High viral copy numbers (approximately 103.7–106.7 RSIV genome copies/L/g) were observed during the period of active fish mortality after RSIV infection at all concentrations in the tanks (25 °C and 20 °C). In the group injected with 104 RSIV genome copies/fish, RSIV was not detected at 21–30 days post-infection (dpi) in the rearing seawater. In rock bream infected at 15 °C and subjected to increasing water temperature (1 °C/d until 25 °C) 3 days later, the virus replication rate and number of viral copies shed into the rearing seawater increased. With the decrease in temperature (1 °C/d) from 25 to 15 °C after the infection, the virus replicated rapidly and was released at high loads on the initial 3–5 dpi, whereas the number of viral copies in the fish and seawater decreased after 14 dpi. These results indicate that the number of viral copies shed into the rearing seawater varies depending on the RSIV infection level in rock bream.
Collapse
Affiliation(s)
- Kyung-Ho Kim
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Kwang-Min Choi
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Gyoungsik Kang
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Won-Sik Woo
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Min-Young Sohn
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Ha-Jeong Son
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Mun-Gyeong Kwon
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, 216, Gijanghaean-ro, Gijang, Busan 46083, Korea
| | - Jae-Ok Kim
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, 17, Jungnim 2-ro, Tongyeong 53019, Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Korea
- Correspondence: (D.-H.K.); (C.-I.P.); Tel.: +82-55-772-9153 (C.-I.P.)
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
- Correspondence: (D.-H.K.); (C.-I.P.); Tel.: +82-55-772-9153 (C.-I.P.)
| |
Collapse
|
20
|
Ugelvik MS, Mæhle S, Dalvin S. Temperature affects settlement success of ectoparasitic salmon lice (Lepeophtheirus salmonis) and impacts the immune and stress response of Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2022; 45:975-990. [PMID: 35397139 PMCID: PMC9320951 DOI: 10.1111/jfd.13619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/01/2023]
Abstract
In this study, the effect of temperature on Atlantic salmon (Salmo salar) stress and immune response to the ectoparasitic salmon lice (Lepeophtheirus salmonis) was investigated. We found that infestation affected the expression of several immune and wound healing transcripts in the skin especially at the site of lice attachment compared to un-infested control fish. Moreover, expression patterns in the skin of infested fish suggest that host immune responses towards salmon lice are impaired at low temperatures. However, reduced lice infestation success and survival at the lowest investigated temperatures suggest that cold water temperatures are more detrimental to the lice than their fish hosts. Finally, temperature affected the stress response of the fish and infected fish had a higher increase in cortisol levels in response to handling (a stressor) than un-infested controls.
Collapse
Affiliation(s)
| | - Stig Mæhle
- Institute of Marine ResearchBergenNorway
| | | |
Collapse
|
21
|
Influence of extracellular protein isolated from fish gut associated bacteria as an enhancer of growth and innate immune system in Mugil cephalus. Sci Rep 2022; 12:3217. [PMID: 35217708 PMCID: PMC8881613 DOI: 10.1038/s41598-022-05779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
The cultural microbiomes of 27 bacteria colonies were isolated from Mugil cephalus for analysis of the antibacterial and antagonistic activities. A potent probiotic bacterium was characterized using16S r RNA sequencing. The potent strain was added to fish diet to perform the challenge test and to study the growth and immunological parameter. The extracellular proteins from the probiotic were collected and characterized using MALDI TOF/TOF. Out of G27, G9 strain inhibited all the five pathogenic strains. An isolated bacterium was identified as Bacillus subtilis PRBD09 with accession number KF765648. After 35 days of feeding period B. subtilis PRBD09 enhance the both cellular and humoral immune responses, which responsible for survive of the Mugil cephalus against Aeromonas hydrophila infection. The MALDI TOF sample 08 and 09 were recognized as hypothetical proteins based on the MALDI TOF sample. A cytidinedeaminase was found in samples 10, 11, and 12. Extracellular proteins may be involved for the immunological increase in Mugil cephalus against Aeromonas hydrophila, according to the current research.
Collapse
|
22
|
Teffer AK, Hinch SG, Miller KM, Patterson DA, Bass AL, Cooke SJ, Farrell AP, Beacham TD, Chapman JM, Juanes F. Host-pathogen-environment interactions predict survival outcomes of adult sockeye salmon (Oncorhynchus nerka) released from fisheries. Mol Ecol 2021; 31:134-160. [PMID: 34614262 DOI: 10.1111/mec.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
Incorporating host-pathogen(s)-environment axes into management and conservation planning is critical to preserving species in a warming climate. However, the role pathogens play in host stress resilience remains largely unexplored in wild animal populations. We experimentally characterized how independent and cumulative stressors (fisheries handling, high water temperature) and natural infections affected the health and longevity of released wild adult sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Returning adults were collected before and after entering the Fraser River, yielding marine- and river-collected groups, respectively (N = 185). Fish were exposed to a mild (seine) or severe (gill net) fishery treatment at collection, and then held in flow-through freshwater tanks for up to four weeks at historical (14°C) or projected migration temperatures (18°C). Using weekly nonlethal gill biopsies and high-throughput qPCR, we quantified loads of up to 46 pathogens with host stress and immune gene expression. Marine-collected fish had less severe infections than river-collected fish, a short migration distance (100 km, 5-7 days) that produced profound infection differences. At 14°C, river-collected fish survived 1-2 weeks less than marine-collected fish. All fish held at 18°C died within 4 weeks unless they experienced minimal handling. Gene expression correlated with infections in river-collected fish, while marine-collected fish were more stressor-responsive. Cumulative stressors were detrimental regardless of infections or collection location, probably due to extreme physiological disturbance. Because river-derived infections correlated with single stressor responses, river entry probably decreases stressor resilience of adult salmon by altering both physiology and pathogen burdens, which redirect host responses toward disease resistance.
Collapse
Affiliation(s)
- Amy K Teffer
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada.,Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Arthur L Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Anthony P Farrell
- Department of Zoology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Jacqueline M Chapman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
23
|
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections. Front Immunol 2021; 12:734238. [PMID: 34603313 PMCID: PMC8481699 DOI: 10.3389/fimmu.2021.734238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Collapse
Affiliation(s)
- Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Damien Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
24
|
HIGH PREVALENCE OF CIRCULATING ANTIBODIES TO RENIBACTERIUM SALMONINARUM IN SPAWNING ONCORHYNCHUS SPP. FROM LAKE MICHIGAN, USA. J Wildl Dis 2021; 57:19-26. [PMID: 33635967 DOI: 10.7589/2019-04-098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/11/2019] [Indexed: 11/20/2022]
Abstract
Bacterial kidney disease, caused by Renibacterium salmoninarum, threatens salmonids worldwide. Following devastating mortality episodes in Oncorhynchus spp. in Lake Michigan, US, in the 1980s and infection rates >90%, pathogen prevalence has steadily declined to <5% over three decades in the three state-managed stocks. In this study, we sought to determine if the declining infection rates were associated with heightened circulating antibodies in state-managed Oncorhynchus spp. residing in the Lake Michigan watershed. A single-dilution, indirect enzyme-linked immunosorbent assay (ELISA) was modified to detect circulating antibodies against R. salmoninarum. Baseline values were delineated from naive chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss). The assay was first used to assess primary antibody production over a 4-wk period in chinook salmon experimentally infected with R. salmoninarum. Mean antibody response was detected as early as 2 wk postinfection and continued to increase to the end of the observation period. The modified ELISA was then used to detect antibodies in serum samples collected from feral adult chinook salmon, coho salmon (Oncorhynchus kisutch), and steelhead trout (O. mykiss) returning to spawn at Lake Michigan weirs in 2009 and 2013. Results demonstrated that about 80% of feral Oncorhynchus spp. had measurable titers of circulating antibodies to R. salmoninarum. The relative ease and reasonable costs of this modified ELISA makes it a valuable serosurveillance tool for assessing the humoral immune status of feral salmonid populations.
Collapse
|
25
|
Wang H, Tang X, Xing J, Sheng X, Chi H, Zhan W. Vaccination with live Hirame novirhabdovirus (HIRRV) at temperature-controlled condition induced protective immunity in flounder (Paralichthys olivaceus). Microb Pathog 2021; 157:104993. [PMID: 34044046 DOI: 10.1016/j.micpath.2021.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Hirame novirhabdovirus (HIRRV) is a severe viral pathogen of flounder resulting in significant losses to the aquaculture industry. However, the mortality due to the disease would be significantly reduced when the water temperature was increased from 10 to 20 °C. In this study, we examined the potentiality of vaccination with live HIRRV under a temperature-controlled culture condition for development of protective immunity in flounder. Flounders were infected with HIRRV at 10 °C and maintained for 2 days, and then the temperature was shift up to 20 °C. When the temperature was further shift down to 10 °C at 7 (S-7 group), 14 (S-14 group) or 21 (S-21 group) days post infection (dpi), mortality rates of 60%, 13.33% and 0 were observed, respectively. To investigate the development of protective immunity of survived flounder, a re-challenge was performed and a highest survival rate of 80% was found in S-21 group, which was significantly higher than S-14 group (65%) and S-7 group (45%). Moreover, it was found that a lower viral load was detected in the flounder maintained at 20 °C for a longer time, and a longer maintaining of survived flounder at 20 °C would also elicit higher percentages of IgM + B lymphocytes and specific antibodies levels. Notably, a significantly higher levels of specific antibodies were detected post re-challenge compared with the first peak level after initial infection. Therefore, these demonstrated that the initial infection with live HIRRV under a temperature-controlled condition elicited an effective protective immune response against HIRRV, and maintaining at 20 °C for a long enough time would allow the HIRRV-infected flounder to eliminate the virus completely and acquired a protective immunity against HIRRV infection. This is the first study showing the possibility of developing an effective preventive measure against HIRRV by vaccination with live virus under controlled water temperature.
Collapse
Affiliation(s)
- Hongye Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
26
|
Chen H, Liang Y, Han Y, Liu T, Chen S. Genome-wide analysis of Toll-like receptors in zebrafish and the effect of rearing temperature on the receptors in response to stimulated pathogen infection. JOURNAL OF FISH DISEASES 2021; 44:337-349. [PMID: 33103274 DOI: 10.1111/jfd.13287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Water temperature has a major influence on the host innate immune defence and the infectivity of pathogens in ectothermic teleosts. Toll-like receptors (TLRs) are the first and well-characterized innate immune receptors that are conserved in vertebrates. However, little is known about the effect of temperature variation on TLRs in fish species. In this study, we used adult zebrafish as a research model to investigate the effect of water temperature on TLRs. Whole genome searches identified 20 TLR homologue genes in zebrafish. Multiple sequence alignment and protein structure analysis revealed the conserved domains for these TLR proteins. To identify TLR genes related to temperature variation, TLR family genes from 12 species with different body temperatures were assigned to conduct phylogenetic analyses. Based on the phylogenetic relationships, TLR3, TLR4, TLR5 and TLR20~21 were selected as candidate genes. Immunostimulation data indicated that TLR3, TLR5, and TLR21 were more sensitive to temperature variation and their expression levels were affected in response to pathogen stimulation. Taken together, our results provide a new opportunity to understand the roles of temperature on host innate immune response in fishes and have broader implications for disease prevention in aquaculture.
Collapse
Affiliation(s)
- Hong Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yue Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yawen Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Tengfei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Dettleff P, Zuloaga R, Fuentes M, Gonzalez P, Aedo J, Estrada JM, Molina A, Valdés JA. Physiological and molecular responses to thermal stress in red cusk-eel (Genypterus chilensis) juveniles reveals atrophy and oxidative damage in skeletal muscle. J Therm Biol 2020; 94:102750. [PMID: 33292991 DOI: 10.1016/j.jtherbio.2020.102750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/30/2022]
Abstract
The red cusk-eel (Genypterus chilensis) is a native species with strong potential to support Chilean aquaculture diversification. Environmental stressors, such as temperature, may generate important effects in fish physiology with negative impact. However, no information exists on the effects of thermal stress in Genypterus species or how this stressor affects the skeletal muscle. The present study evaluated for the first time the effect of high temperature stress in red cusk-eel juveniles to determine changes in plasmatic markers of stress (cortisol, glucose and lactate dehydrogenase (LDH)), the transcriptional effect in skeletal muscle genes related to (i) heat shock protein response (hsp60 and hsp70), (ii) muscle atrophy and growth (foxo1, foxo3, fbxo32, murf-1, myod1 and ddit4), and (iii) oxidative stress (cat, sod1 and gpx1), and evaluate the DNA damage (AP sites) and peroxidative damage (lipid peroxidation (HNE proteins)) in this tissue. Thermal stress generates a significant increase in plasmatic levels of cortisol, glucose and LDH activity and induced heat shock protein transcripts in muscle. We also observed an upregulation of atrophy-related genes (foxo1, foxo3 and fbxo32) and a significant modulation of growth-related genes (myod1 and ddit4). Thermal stress induced oxidative stress in skeletal muscle, as represented by the upregulation of antioxidant genes (cat and sod1) and a significant increase in DNA damage and lipid peroxidation. The present study provides the first physiological and molecular information of the effects of thermal stress on skeletal muscle in a Genypterus species, which should be considered in a climate change scenario.
Collapse
Affiliation(s)
- Phillip Dettleff
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Pamela Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Jorge Aedo
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| |
Collapse
|
28
|
Dalvin S, Are Hamre L, Skern-Mauritzen R, Vågseth T, Stien L, Oppedal F, Bui S. The effect of temperature on ability of Lepeophtheirus salmonis to infect and persist on Atlantic salmon. JOURNAL OF FISH DISEASES 2020; 43:1519-1529. [PMID: 32882750 DOI: 10.1111/jfd.13253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The salmon louse (Lepeophtheirus salmonis) is an ecologically and economically important parasite of salmonid fish. Temperature is a strong influencer of biological processes in salmon lice, with development rate increased at higher temperatures. The successful attachment of lice onto a host is also predicted to be influenced by temperature; however, the correlation of temperature with parasite survival is unknown. This study describes the effects of temperature on infection success, and survival on the host during development to the adult stage. To accurately describe infection dynamics with varying temperatures, infection success was recorded on Atlantic salmon (Salmo salar) between 2 and 10°C. Infection success ranged from 20% to 50% and was strongly correlated with temperature, with the highest success at 10°C. Parasite loss was monitored during development at eight temperatures with high loss of lice at 3 and 24°C, whilst no loss was recorded in the temperature range from 6 to 21°C. Sea temperatures thus have large effects on the outcome of salmon louse infections and should be taken into account in the management and risk assessment of this parasite. Improving understanding of the infection dynamics of salmon lice will facilitate epidemiological modelling efforts and efficiency of pest management strategies.
Collapse
Affiliation(s)
- Sussie Dalvin
- SLRC - Sea Lice Research Centre, Institute of Marine Research, Bergen, Norway
- Department of Biological Sciences, SLRC - Sea Lice Research Centre, University of Bergen, Bergen, Norway
| | - Lars Are Hamre
- Department of Biological Sciences, SLRC - Sea Lice Research Centre, University of Bergen, Bergen, Norway
| | | | | | - Lars Stien
- Institute of Marine Research, Matredal, Norway
| | | | | |
Collapse
|
29
|
Warriner TR, Semeniuk CAD, Pitcher TE, Heath DD, Love OP. Mimicking Transgenerational Signals of Future Stress: Thermal Tolerance of Juvenile Chinook Salmon Is More Sensitive to Elevated Rearing Temperature Than Exogenously Increased Egg Cortisol. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.548939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Semple SL, Dixon B. Salmonid Antibacterial Immunity: An Aquaculture Perspective. BIOLOGY 2020; 9:E331. [PMID: 33050557 PMCID: PMC7599743 DOI: 10.3390/biology9100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
The aquaculture industry is continuously threatened by infectious diseases, including those of bacterial origin. Regardless of the disease burden, aquaculture is already the main method for producing fish protein, having displaced capture fisheries. One attractive sector within this industry is the culture of salmonids, which are (a) uniquely under pressure due to overfishing and (b) the most valuable finfish per unit of weight. There are still knowledge gaps in the understanding of fish immunity, leading to vaccines that are not as effective as in terrestrial species, thus a common method to combat bacterial disease outbreaks is the use of antibiotics. Though effective, this method increases both the prevalence and risk of generating antibiotic-resistant bacteria. To facilitate vaccine design and/or alternative treatment efforts, a deeper understanding of the teleost immune system is essential. This review highlights the current state of teleost antibacterial immunity in the context of salmonid aquaculture. Additionally, the success of current techniques/methods used to combat bacterial diseases in salmonid aquaculture will be addressed. Filling the immunology knowledge gaps highlighted here will assist in reducing aquaculture losses in the future.
Collapse
Affiliation(s)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
31
|
Zanuzzo FS, Beemelmanns A, Hall JR, Rise ML, Gamperl AK. The Innate Immune Response of Atlantic Salmon ( Salmo salar) Is Not Negatively Affected by High Temperature and Moderate Hypoxia. Front Immunol 2020; 11:1009. [PMID: 32536921 PMCID: PMC7268921 DOI: 10.3389/fimmu.2020.01009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Climate change is predicted to increase water temperatures and decrease oxygen levels in freshwater and marine environments, however, there is conflicting information regarding the extent to which these conditions may impact the immune defenses of fish. In this study, Atlantic salmon were exposed to: (1) normoxia (100–110% air saturation) at 12°C; (2) an incremental temperature increase (1°C per week from 12 to 20°C), and then held at 20°C for an additional 4 weeks; and (3) “2” with the addition of moderate hypoxia (~65–75% air saturation). These conditions realistically reflect what farmed salmon in some locations are currently facing, and future conditions in Atlantic Canada and Europe, during the summer months. The salmon were sampled for the measurement of head kidney constitutive anti-bacterial and anti-viral transcript expression levels, and blood parameters of humoral immune function. Thereafter, they were injected with either the multi-valent vaccine Forte V II (contains both bacterial and viral antigens) or PBS (phosphate-buffer-saline), and the head kidney and blood of these fish were sampled at 6, 12, 24, and 48 h post-injection (HPI). Our results showed that: (1) neither high temperature, nor high temperature + moderate hypoxia, adversely affected respiratory burst, complement activity or lysozyme concentration; (2) the constitutive transcript expression levels of the anti-bacterial genes il1β, il8-a, cox2, hamp-a, stlr5-a, and irf7-b were up-regulated by high temperature; (3) while high temperature hastened the peak in transcript expression levels of most anti-bacterial genes by 6–12 h following V II injection, it did not affect the magnitude of changes in transcript expression; (4) anti-viral (viperin-b, mx-b, and isg15-a) transcript expression levels were either unaffected, or downregulated, by acclimation temperature or V II injection over the 48 HPI; and (5) hypoxia, in addition to high temperature, did not impact immune transcript expression. In conclusion, temperatures up to 20°C, and moderate hypoxia, do not impair the capacity of the Atlantic salmon's innate immune system to respond to bacterial antigens. These findings are surprising, and highlight the salmon's capacity to mount robust innate immune responses (i.e., similar to control fish under optimal conditions) under conditions approaching their upper thermal limit.
Collapse
Affiliation(s)
- Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Anne Beemelmanns
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| |
Collapse
|
32
|
Nakajima A, Okada M, Ishihara A, Yamauchi K. Modulation of plasma protein expression in bullfrog (Rana catesbeiana) tadpoles during seasonal acclimatization and thermal acclimation. Gen Comp Endocrinol 2020; 290:113396. [PMID: 31987871 DOI: 10.1016/j.ygcen.2020.113396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Biological activities in ectothermic vertebrates depend to a great extent on ambient temperature. Adapting their biological systems to annual or short-term alterations in temperature may play an important role in thermal resistance or overwintering survival. Using SDS-PAGE and western blot, we examined plasma proteins in bullfrog (Rana catesbeiana) tadpoles that were seasonally acclimatized (winter vs. summer) or thermally acclimated (4 °C vs. 21 °C) and identified two season-responsive proteins. The first, transthyretin (TTR), is a plasma thyroid hormone distributor protein that was abundant in summer, and the second is a protein containing C-type lectin-like domain (CTLD) that was abundant in winter and cold acclimation of 4 weeks. Sequence analysis revealed that the C-terminal carbohydrate recognition domain of this CTLD protein (termed collectin X) was highly similar to those of the collectin family members, which participate in complement activation of the innate immune system; however, it lacked most of collagen-like domain. Among the hepatic genes involved in the thyroid system, ttr and dio3 were up-regulated, whereas thra and thrb were down-regulated, in summer acclimatization or warm acclimation. In contrast, the collectin X gene (colectx), as well as colect10 and colect11 in the collectin family involved in the innate immune system, were down-regulated during warm acclimation, although fcn2 in the ficolin family was up-regulated during summer acclimatization and warm acclimation. These findings indicate that seasonal acclimatization and thermal acclimation differentially affect some components of the thyroid and innate immune systems at protein and transcript levels.
Collapse
Affiliation(s)
- Ami Nakajima
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Masako Okada
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Akinori Ishihara
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Kiyoshi Yamauchi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
33
|
Filipe JF, Herrera V, Curone G, Vigo D, Riva F. Floods, Hurricanes, and Other Catastrophes: A Challenge for the Immune System of Livestock and Other Animals. Front Vet Sci 2020; 7:16. [PMID: 32083100 PMCID: PMC7004950 DOI: 10.3389/fvets.2020.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change involves different dramatic phenomena including desertification and wildfires, severe storms such as hurricanes and blizzards, increased sea levels resulting in flooding coastal cities and rise of atmospheric CO2 concentration. The alteration of the climate in a specific region affects the life of indigenous animals and humans. The climate changes influence living beings both directly and indirectly. The immune system of animals dramatically suffers the climate instability, making animals more susceptible to infectious and not infectious diseases. Different species of livestock animals respond with similar mechanisms to global warming, but some of them are more susceptible depending on their age, metabolism, and genetic conditions. The selection and study of autochthonous species and breeds, more easily adapted to specific environmental conditions could be an interesting strategy to face livestock rearing in the future.
Collapse
Affiliation(s)
- Joel F Filipe
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Valentina Herrera
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Giulio Curone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Daniele Vigo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Federica Riva
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
34
|
Lulijwa R, Alfaro AC, Merien F, Meyer J, Young T. Advances in salmonid fish immunology: A review of methods and techniques for lymphoid tissue and peripheral blood leucocyte isolation and application. FISH & SHELLFISH IMMUNOLOGY 2019; 95:44-80. [PMID: 31604150 DOI: 10.1016/j.fsi.2019.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Evaluating studies over the past almost 40 years, this review outlines the current knowledge and research gaps in the use of isolated leucocytes in salmonid immunology understanding. This contribution focuses on the techniques used to isolate salmonid immune cells and popular immunological assays. The paper also analyses the use of leucocytes to demonstrate immunomodulation following dietary manipulation, exposure to physical and chemical stressors, effects of pathogens and parasites, vaccine design and application strategies assessment. We also present findings on development of fish immune cell lines and their potential uses in aquaculture immunology. The review recovered 114 studies, where discontinuous density gradient centrifugation (DDGC) with Percoll density gradient was the most popular leucocyte isolation method. Fish head kidney (HK) and peripheral blood (PB) were the main sources of leucocytes, from rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Phagocytosis and respiratory burst were the most popular immunological assays. Studies used isolated leucocytes to demonstrate that dietary manipulations enhance fish immunity, while chemical and physical stressors suppress immunity. In addition, parasites, and microbial pathogens depress fish innate immunity and induce pro-inflammatory cytokine gene transcripts production, while vaccines enhance immunity. This review found 10 developed salmonid cell lines, mainly from S. salar and O. mykiss HK tissue, which require fish euthanisation to isolate. In the face of high costs involved with density gradient reagents, the application of hypotonic lysis in conjunction with mico-volume blood methods can potentially reduce research costs, time, and using nonlethal and ethically flexible approaches. Since the targeted literature review for this study retrieved no metabolomics study of leucocytes, indicates that this approach, together with traditional technics and novel flow cytometry could help open new opportunities for in vitro studies in aquaculture immunology and vaccinology.
Collapse
Affiliation(s)
- Ronald Lulijwa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; National Agricultural Research Organisation (NARO), Rwebitaba Zonal Agricultural Research and Development Institute (Rwebitaba-ZARDI), P. O. Box 96, Fort Portal, Uganda
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Fabrice Merien
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Jill Meyer
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; The Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, New Zealand
| |
Collapse
|
35
|
Amish SJ, Ali O, Peacock M, Miller M, Robinson M, Smith S, Luikart G, Neville H. Assessing thermal adaptation using family‐based association and
F
ST
outlier tests in a threatened trout species. Mol Ecol 2019; 28:2573-2593. [DOI: 10.1111/mec.15100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Stephen J. Amish
- Conservation Genomics Group, Division of Biological Sciences University of Montana Missoula Montana
- Flathead Biological Station University of Montana Polson Montana
| | - Omar Ali
- Department of Animal Science University of California Davis California
| | - Mary Peacock
- Department of Biology University of Nevada Reno Nevada
| | - Michael Miller
- Department of Animal Science University of California Davis California
| | | | - Seth Smith
- Flathead Biological Station University of Montana Polson Montana
| | - Gordon Luikart
- Conservation Genomics Group, Division of Biological Sciences University of Montana Missoula Montana
- Flathead Biological Station University of Montana Polson Montana
| | | |
Collapse
|
36
|
Sueiro MC, Awruch CA, Irigoyen AJ, Argemi F, Palacios MG. Seasonality of Immunological and Health-State Parameters of Wild Broadnose Sevengill Shark, Notorynchus cepedianus. Physiol Biochem Zool 2019; 92:24-36. [DOI: 10.1086/700573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Xing J, Wang L, Zhen M, Tang X, Zhan W. Variations of T and B lymphocytes of flounder ( Paralichthys olivaceus ) after Hirame novirhabdovirus infection and immunization. Mol Immunol 2018; 96:19-27. [DOI: 10.1016/j.molimm.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/20/2023]
|
38
|
Ammar AY, El Nahas AF, Mahmoud S, Barakat ME, Hassan AM. Characterization of type IV antifreeze gene in Nile tilapia (Oreochromis niloticus) and influence of cold and hot weather on its expression and some immune-related genes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:515-525. [PMID: 29234908 DOI: 10.1007/s10695-017-0450-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work is to study the effect of the thermal stress of ambient temperature during winter and summer on the expression of type IV antifreeze gene (ANF IV) in different tissues of Nile tilapia (Oreochromis niloticus) as well as some immune-related genes. At first, genomic ANF IV gene was characterized from one fish; 124 amino acids were identified with 92.7% similarity with that on the gene bank. Expression of ANF IV and immune-related genes were done twice, once at the end of December (winter sample, temperature 14 °C) and the other at August (summer sample, temperature 36 °C). Assessment of ANF IV gene expression in different organs of fish was done; splenic mRNA was used for assessment of immune-related gene transcripts (CXCl2 chemokine, cc-chemokine, INF-3A, and MHC IIβ). Winter expression analysis of AFP IV in O. niloticus revealed significant upregulation of mRNA transcript levels in the intestine, gills, skin, spleen, liver, and brain with 324.03-, 170.06-, 107.63-, 97.61-, 94.35-, and 27.85-folds, respectively. Furthermore, upregulation in the gene was observed in some organs during summer: in the liver, gills, skin, intestine, and brain with lower levels compared with winter. The level of expression of immune-related genes in winter is significantly higher than summer in all assessed genes. Cc-chemokine gene expression was the most affected in both winter and summer. Variable expression profile of ANF IV in different organs and in different seasons together with its amino acid similarity of N-terminal and C-terminal with apolipoprotein (lipid binder) and form of high-density lipoprotein (HDL) suggests a different role for this protein which may be related to lipid metabolism.
Collapse
Affiliation(s)
- Asmma Y Ammar
- Biotechnology department, Animal Health Research Institute, Kafr El Sheikh, Egypt
| | - Abeer F El Nahas
- Animal Husbandry and Animal Wealth Department, Faculty of Veterinary Medicine, Alexandria University, Edfina, Behera, 22758, Egypt.
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafer El Sheikh University, Kafr El Sheikh, Egypt
| | - Mohamed E Barakat
- Biotechnology Department, Animal Health Research Institute, Kafer El Sheik, Egypt
| | - Asmaa M Hassan
- Biotechnology department, Animal Health Research Institute, Kafr El Sheikh, Egypt
| |
Collapse
|
39
|
Low incubation temperature during early development negatively affects survival and related innate immune processes in zebrafish larvae exposed to lipopolysaccharide. Sci Rep 2018. [PMID: 29515182 PMCID: PMC5841277 DOI: 10.1038/s41598-018-22288-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In many fish species, the immune system is significantly constrained by water temperature. In spite of its critical importance in protecting the host against pathogens, little is known about the influence of embryonic incubation temperature on the innate immunity of fish larvae. Zebrafish (Danio rerio) embryos were incubated at 24, 28 or 32 °C until first feeding. Larvae originating from each of these three temperature regimes were further distributed into three challenge temperatures and exposed to lipopolysaccharide (LPS) in a full factorial design (3 incubation × 3 challenge temperatures). At 24 h post LPS challenge, mortality of larvae incubated at 24 °C was 1.2 to 2.6-fold higher than those kept at 28 or 32 °C, regardless of the challenge temperature. LPS challenge at 24 °C stimulated similar immune-related processes but at different levels in larvae incubated at 24 or 32 °C, concomitantly with the down-regulation of some chemokine and lysozyme transcripts in the former group. Larvae incubated at 24 °C and LPS-challenged at 32 °C exhibited a limited immune response with up-regulation of hypoxia and oxidative stress processes. Annexin A2a, S100 calcium binding protein A10b and lymphocyte antigen-6, epidermis were identified as promising candidates for LPS recognition and signal transduction.
Collapse
|
40
|
Mosberian-Tanha P, Landsverk T, Press CM, Mydland LT, Schrama JW, Øverland M. Granulomatous enteritis in rainbow trout (Oncorhynchus mykiss) associated with soya bean meal regardless of water dissolved oxygen level. JOURNAL OF FISH DISEASES 2018; 41:269-280. [PMID: 28944974 DOI: 10.1111/jfd.12710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
This study investigated morphological changes associated with soya bean meal-induced enteritis (SBMIE) in distal intestine (DI) of rainbow trout (Oncorhynchus mykiss) fed a soya bean meal (SBM)-based diet and exposed to normoxia or hypoxia created by optimal and low water flow rates, respectively. A 28-day adaption period was followed by a 42-day challenge period where 600 fish were subjected to dietary challenge and/or hypoxia. Twelve tanks each containing 50 juvenile trout were assigned randomly in triplicate to each treatment. Histopathological and immunohistochemical evaluation revealed pathological features that have not previously been described in association with SBMIE. Vacuolar degeneration of epithelial cells mainly at the base of mucosal folds, epithelial cysts, epithelial dysplasia, necrosis, shedding of necrotic cells, and granulomatous inflammation including infiltration of enlarged, sometimes finely vacuolated or "foamy" macrophages, multinucleated giant cells and increased proliferation of fibroblasts were observed. Acid-fast bacteria were not detected in enlarged macrophages; however, these cells contained AB-PAS- and sometimes cytokeratin-positive material, which was interpreted to be of epithelial/goblet cell origin. Hypoxia did not affect the morphological changes in DI. These results suggest that SBM was associated with a granulomatous form of enteritis in DI of rainbow trout regardless of water oxygen level.
Collapse
Affiliation(s)
- P Mosberian-Tanha
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - T Landsverk
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - C M Press
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - L T Mydland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - J W Schrama
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen, The Netherlands
| | - M Øverland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
41
|
Dalmo RA. DNA vaccines for fish: Review and perspectives on correlates of protection. JOURNAL OF FISH DISEASES 2018; 41:1-9. [PMID: 29064091 DOI: 10.1111/jfd.12727] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 05/19/2023]
Abstract
Recently in 2016, the European Medicines Agency (EMA) recommended granting a marketing authorization in the EU for "Clynav," a DNA vaccine against salmon pancreas disease (salmonid alphavirus-3). Generally, DNA vaccines induce both early and late immune responses in fish that may be protective against disease. Several transcriptomic approaches have been performed to map immunome profiles following DNA vaccination, but the precise immune mechanism(s) that is responsible for protection is not known, although reasonable suggestions have been made. The current review includes an overview on main transcriptomic findings from microarray experiments after DNA vaccination against VHSV, IHNV, HIRRV and IPNV-with considerations of what can be considered as correlates of protection (CoP) or merely a surrogate of protection. Identification and use of correlates of protection (COPs) may be a strategic tool for accelerated and targeted vaccine design, testing and licensure. General rules on what can be considered as CoPs can be extracted from past knowledge on protective immune responses following vaccination that induced protection. Lastly, there will be an overview on non-viral molecular adjuvants that have been exploited to obtain higher vaccine potencies and efficacies.
Collapse
Affiliation(s)
- R A Dalmo
- Faculty of Biosciences, Fisheries & Economics, Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| |
Collapse
|
42
|
Abram QH, Dixon B, Katzenback BA. Impacts of Low Temperature on the Teleost Immune System. BIOLOGY 2017; 6:E39. [PMID: 29165340 PMCID: PMC5745444 DOI: 10.3390/biology6040039] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
As poikilothermic vertebrates, fish can experience changes in water temperature, and hence body temperature, as a result of seasonal changes, migration, or efflux of large quantities of effluent into a body of water. Temperature shifts outside of the optimal temperature range for an individual fish species can have negative impacts on the physiology of the animal, including the immune system. As a result, acute or chronic exposure to suboptimal temperatures can impair an organisms' ability to defend against pathogens and thus compromise the overall health of the animal. This review focuses on the advances made towards understanding the impacts of suboptimal temperature on the soluble and cellular mediators of the innate and adaptive immune systems of fishes. Although cold stress can result in varying effects in different fish species, acute and chronic suboptimal temperature exposure generally yield suppressive effects, particularly on adaptive immunity. Knowledge of the effects of environmental temperature on fish species is critical for both the optimal management of wild species and the best management practices for aquaculture species.
Collapse
Affiliation(s)
- Quinn H Abram
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
43
|
Zhang J, Sun L. Transcriptome analysis reveals temperature-regulated antiviral response in turbot Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2017; 68:359-367. [PMID: 28735862 DOI: 10.1016/j.fsi.2017.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Megalocytivirus is a severe pathogen to turbot (Scophthalmus maximus), a popular aquaculture species in many countries. In this study, we investigated the effect of temperature on the antiviral response of turbot at transcriptome level. We found that when turbot were infected with megalocytivirus RBIV-C1 at low temperatures (14 °C, 16 °C, and 18 °C), viral replication was undetectable or moderate and no fish mortality occurred; in contrast, when turbot were infected with RBIV-C1 at high temperatures (20 °C, 22 °C, and 24 °C), viral replication was robust and 100% host mortality was observed. During the course of viral infection, downward temperature shift curbed viral replication and augmented host survival, whereas upward temperature shift promoted viral replication and reduced host survival. Comparative transcriptome analyses were conducted to examine the whole-genome transcription of turbot infected with RBIV-C1 at 16 °C and 22 °C for 4 days (samples S16-4d and S22-4d, respectively) and 8 days (samples S16-8d and S22-8d, respectively). The results showed that compared to S22-4d and S22-8d, 1600 and 5927 upregulated unigenes of various functional categories were identified in S16-4d and S16-8d, respectively. Of these genes, 22 were immune-related, most of which were detected in S16-8d and exhibited more genetic subtypes in S16-8d than in S16-4d. In addition, upregulated genes associated with cell junctions and cell membrane were also identified. These results indicate that temperature had a profound effect on the global transcription of turbot, which consequently affects the immune as well as physical resistance of the fish against viral infection.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
44
|
Jung MH, Jung SJ. Protective immunity against rock bream iridovirus (RBIV) infection and TLR3-mediated type I interferon signaling pathway in rock bream (Oplegnathus fasciatus) following poly (I:C) administration. FISH & SHELLFISH IMMUNOLOGY 2017; 67:293-301. [PMID: 28602740 DOI: 10.1016/j.fsi.2017.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
In this study, we evaluated the potential of poly (I:C) to induce antiviral status for protecting rock bream from RBIV infection. Rock bream injected with poly (I:C) at 2 days before infection (1.1 × 104) at 20 °C had significantly higher protection with RPS 13.4% and 33.4% at 100 and 200 μg/fish, respectively, through 100 days post infection (dpi). The addition of boost immunization with poly (I:C) at before/post infection at 20 °C clearly enhanced the level of protection showing 33.4% and 60.0% at 100 and 200 μg/fish, respectively. To investigate the development of a protective immune response, rock bream were re-infected with RBIV (1.1 × 107) at 200 dpi. While 100% of the previously unexposed fish died, 100% of the previously infected fish survived. Poly (I:C) induced TLR3 and Mx responses were observed at several sampling time points in the spleen, kidney and blood. Moreover, significantly high expression levels of IRF3 (2.9- and 3.1-fold at 1 d and 2 days post administration (dpa), respectively), ISG15 and PKR expression (5.4- and 10.2-fold at 2 dpa, respectively) were observed in the blood, but the expression levels were low in the spleen and kidney after poly (I:C) administration. Our results showed the induction of antiviral immune responses and indicate the possibility of developing long term preventive measures against RBIV using poly (I:C).
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| |
Collapse
|
45
|
Jung MH, Lee J, Ortega-Villaizan M, Perez L, Jung SJ. Protective immunity against Megalocytivirus infection in rock bream (Oplegnathus fasciatus) following CpG ODN administration. Vaccine 2017; 35:3691-3699. [PMID: 28579234 DOI: 10.1016/j.vaccine.2017.05.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/27/2022]
Abstract
Rock bream iridovirus (RBIV) disease in rock bream (Oplegnathus fasciatus) remains an unsolved problem in Korea aquaculture farms. CpG ODNs are known as immunostimulant, can improve the innate immune system of fish providing resistance to diseases. In this study, we evaluated the potential of CpG ODNs to induce anti-viral status protecting rock bream from different RBIV infection conditions. We found that, when administered into rock bream, CpG ODN 1668 induces better antiviral immune responses compared to other 5 CpG ODNs (2216, 1826, 2133, 2395 and 1720). All CpG ODN 1668 administered fish (1/5µg) at 2days before infection (1.1×107) held at 26°C died even though mortality was delayed from 8days (1µg) and 4days (5µg). Similarly, CpG ODN 1668 administered (5µg) at 2days before infection (1.2×106) held at 23/20°C had 100% mortality; the mortality was delayed from 9days (23°C) and 11days (20°C). Moreover, when CpG ODN 1668 administered (1/5/10µg) at 2/4/7days before infection or virus concentration was decreased to 1.1×104 and held at 20°C had mortality rates of 20/60/30% (2days), 30/40/60% (4days) and 60/60/20% (7days), respectively, for the respective administration dose, through 100 dpi. To investigate the development of a protective immune response, survivors were re-infected with RBIV (1.1×107) at 100 and 400 dpi, respectively. While 100% of the previously unexposed fish died, 100% of the previously infected fish survived. The high survival rate of fish following re-challenge with RBIV indicates that protective immunity was established in the surviving rock bream. Our results showed the possibility of developing preventive measures against RBIV using CpG ODN 1668 by reducing RBIV replication speed (i.e. water temperature of 20°C and infection dose of 1.1×104).
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Republic of Korea
| | | | - Luis Perez
- IBMC, Miguel Hernandez University, Elche, Spain
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| |
Collapse
|
46
|
Kaneshige N, Jirapongpairoj W, Hirono I, Kondo H. Temperature-dependent regulation of gene expression in Japanese flounder Paralichthys olivaceus kidney after Edwardsiella tarda formalin-killed cells. FISH & SHELLFISH IMMUNOLOGY 2016; 59:298-304. [PMID: 27815208 DOI: 10.1016/j.fsi.2016.10.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
Temperature affects the activities of the immune system and the susceptibility of fish to pathogens. To investigate the modulation of temperature on immune related gene expression in formalin-killed cells (FKC) of Edwardsiella tarda-injected Japanese flounder Paralichthys olivaceus, fish reared at 15 or 22 °C were injected with FKC of E. tarda. The up-regulation of immune related genes was detected in FKC-injected fish at both temperatures by qPCR. The mRNA expression of IFNγ was highly up-regulated at 6 h post injection (hpi) in FKC-injected fish at 15 °C, whereas at 22 °C, strong up-regulation of the gene was detected at 3 hpi The mRNA expression level of IRF1 was detected from 3 hpi to day 14 post injection in fish reared at 15 °C, but the gene was up-regulated from 3 to 6 hpi in fish reared at 22 °C. Comprehensive gene expression profiling showed that immune related genes are differentially expressed between 15 and 22 °C. Genes involved in the IFNγ signaling pathway were up-regulated at 22 °C but not at 15 °C. These results demonstrate that gene(s) involved in IFNγ signaling pathway in Japanese flounder stimulated with FKC of E. tarda are regulated by temperature.
Collapse
Affiliation(s)
- Norie Kaneshige
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Walissara Jirapongpairoj
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
47
|
Papežíková I, Mareš J, Vojtek L, Hyršl P, Marková Z, Šimková A, Bartoňková J, Navrátil S, Palíková M. Seasonal changes in immune parameters of rainbow trout (Oncorhynchus mykiss), brook trout (Salvelinus fontinalis) and brook trout × Arctic charr hybrids (Salvelinus fontinalis × Salvelinus alpinus alpinus). FISH & SHELLFISH IMMUNOLOGY 2016; 57:400-405. [PMID: 27566100 DOI: 10.1016/j.fsi.2016.08.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Despite the high number of studies concerning seasonality of immune response in fish, information for some fish species is still scarce. Here, we assess seasonal changes in leukocyte counts and several immune parameters in three groups of farmed salmonids, i.e. brook trout (Salvelinus fontinalis), brook trout x Arctic charr hybrids (Salvelinus fontinalis x Salvelinus alpinus alpinus) and rainbow trout (Oncorhynchus mykiss) reared under the same conditions and fed with the same feed. Fish were sampled in five periods of the year (late April, early July, late August, early November and early February) and leukocyte counts, respiratory burst of blood phagocytes, lysozyme concentration in skin mucus and total complement activity were measured. Generalized linear models using fish body length as a continuous predictor and sampling period and fish species as categorical predictors, were significant for each of the parameters analysed. The highest seasonal variations in measured parameters were found in rainbow trout and lowest in hybrids. Our results confirm that measures of innate and adaptive immunity are strongly affected by season in all three groups of salmonids. The results will contribute to the improved assessment of immunocompetence in farmed fishes, essential for future sustainable development in aquaculture.
Collapse
Affiliation(s)
- Ivana Papežíková
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic.
| | - Jan Mareš
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemědělská 1/1665, 613 00 Brno, Czech Republic
| | - Libor Vojtek
- Department of Experimental Biology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Hyršl
- Department of Experimental Biology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Zdeňka Marková
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Andrea Šimková
- Department of Botany and Zoology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jana Bartoňková
- Department of Experimental Biology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Stanislav Navrátil
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Miroslava Palíková
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
48
|
Purcell MK, McKibben CL, Pearman-Gillman S, Elliott DG, Winton JR. Effects of temperature on Renibacterium salmoninarum infection and transmission potential in Chinook salmon, Oncorhynchus tshawytscha (Walbaum). JOURNAL OF FISH DISEASES 2016; 39:787-798. [PMID: 26449619 DOI: 10.1111/jfd.12409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
Renibacterium salmoninarum is a significant pathogen of salmonids and the causative agent of bacterial kidney disease (BKD). Water temperature affects the replication rate of pathogens and the function of the fish immune system to influence the progression of disease. In addition, rapid shifts in temperature may serve as stressors that reduce host resistance. This study evaluated the effect of shifts in water temperature on established R. salmoninarum infections. We challenged Chinook salmon with R. salmoninarum at 12 °C for 2 weeks and then divided the fish into three temperature groups (8, 12 and 15 °C). Fish in the 8 °C group had significantly higher R. salmoninarum-specific mortality, kidney R. salmoninarum loads and bacterial shedding rates relative to the fish held at 12 or 15 °C. There was a trend towards suppressed bacterial load and shedding in the 15 °C group, but the results were not significant. Bacterial load was a significant predictor of shedding for the 8 and 12 °C groups but not for the 15 °C group. Overall, our results showed little effect of temperature stress on the progress of infection, but do support the conclusion that cooler water temperatures contribute to infection progression and increased transmission potential in Chinook salmon infected with R. salmoninarum.
Collapse
Affiliation(s)
- M K Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - C L McKibben
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - S Pearman-Gillman
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - D G Elliott
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - J R Winton
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| |
Collapse
|
49
|
Makrinos DL, Bowden TJ. Natural environmental impacts on teleost immune function. FISH & SHELLFISH IMMUNOLOGY 2016; 53:50-57. [PMID: 26973022 DOI: 10.1016/j.fsi.2016.03.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
The environment in which teleosts exist can experience considerable change. Short-term changes can occur in relation to tidal movements or adverse weather events. Long-term changes can be caused by anthropogenic impacts such as climate change, which can result in changes to temperature, acidity, salinity and oxygen capacity of aquatic environments. These changes can have important impacts on the physiology of an animal, including its immune system. This can have consequences on the well-being of the animal and its ability to protect against pathogens. This review will look at recent investigations of these types of environmental change on the immune response in teleosts.
Collapse
Affiliation(s)
| | - Timothy J Bowden
- School of Food & Agriculture, University of Maine, Orono, ME, USA
| |
Collapse
|
50
|
Subbotkin MF, Subbotkina TA. Variability of the lysozyme content in bream from the Rybinsk Reservoir in different seasons of the annual cycle. BIOL BULL+ 2016. [DOI: 10.1134/s1062359016020096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|