1
|
Gu Y, Yu S, Gu W, Li B, Xue J, Liu J, Zhang Q, Yin Y, Zhang H, Guo Q, Yuan M, Lyu Z, Mu Y, Cheng Y. M2 macrophage infusion ameliorates diabetic glomerulopathy via the JAK2/STAT3 pathway in db/db mice. Ren Fail 2024; 46:2378210. [PMID: 39090966 PMCID: PMC11299449 DOI: 10.1080/0886022x.2024.2378210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Objectives: To explore the therapeutic effects of M2 macrophages in diabetic nephropathy (DN) and their mechanism.Methods: We infused M2 macrophages stimulated with IL-4 into 10-week-old db/db mice once a week for 4 weeks through the tail vein as M2 group. Then we investigated the role of M2 macrophages in alleviating the infammation of DN and explored the mechanism.Results: M2 macrophages hindered the progression of DN, reduced the levels of IL-1β (DN group was 34%, M2 group was 13%, p < 0.01) and MCP-1 (DN group was 49%, M2 group was 16%, p < 0.01) in the glomeruli. It was also proven that M2 macrophages alleviate mesangial cell injury caused by a high glucose environment. M2 macrophage tracking showed that the infused M2 macrophages migrated to the kidney, and the number of M2 macrophages in the kidney reached a maximum on day 3. Moreover, the ratio of M2 to M1 macrophages was 2.3 in the M2 infusion group, while 0.4 in the DN group (p < 0.01). Mechanistically, M2 macrophages downregulated Janus kinase (JAK) 2 and signal transducer and activator of transcription (STAT) 3 in mesangial cells.Conclusions: Multiple infusions of M2 macrophages significantly alleviated inflammation in the kidney and hindered the progression of DN at least partially by abrogating the M1/M2 homeostasis disturbances and suppressing the JAK2/STAT3 pathway in glomerular mesangial cells. M2 macrophage infusion may be a new therapeutic strategy for DN treatment.
Collapse
Affiliation(s)
- Yulin Gu
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Songyan Yu
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weijun Gu
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Bing Li
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jing Xue
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jiejie Liu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Qi Zhang
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaqi Yin
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Haixia Zhang
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Qinghua Guo
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Mingxia Yuan
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yiming Mu
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yu Cheng
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Jin J, Zhang M. Research progress on the role of extracellular vesicles in the pathogenesis of diabetic kidney disease. Ren Fail 2024; 46:2352629. [PMID: 38769599 PMCID: PMC11107856 DOI: 10.1080/0886022x.2024.2352629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM) and has become the main cause of end-stage renal disease worldwide. In recent years, with the increasing incidence of DM, the pathogenesis of DKD has received increasing attention. The pathogenesis of DKD is diverse and complex. Extracellular vesicles (EVs) contain cell-derived membrane proteins, nucleic acids (such as DNA and RNA) and other important cellular components and are involved in intercellular information and substance transmission. In recent years, an increasing number of studies have confirmed that EVs play an important role in the development of DKD. The purpose of this paper is to explain the potential diagnostic value of EVs in DKD, analyze the mechanism by which EVs participate in intercellular communication, and explore whether EVs may become drug carriers for targeted therapy to provide a reference for promoting the implementation and application of exosome therapy strategies in clinical practice.
Collapse
Affiliation(s)
- Jiangyuan Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
3
|
Xue HZ, Chen Y, Wang SD, Yang YM, Cai LQ, Zhao JX, Huang WJ, Xiao YH. Radix Astragali and Its Representative Extracts for Diabetic Nephropathy: Efficacy and Molecular Mechanism. J Diabetes Res 2024; 2024:5216113. [PMID: 39308629 PMCID: PMC11416176 DOI: 10.1155/2024/5216113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/03/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication of diabetes mellitus (DM). Radix Astragali (RA), a frequently used Chinese herbal medicine in the Leguminosae family, Astragalus genus, with its extracts, has been proven to be effective in DN treatment both in clinical practice and experimental studies. RA and its extracts can reduce proteinuria and improve renal function. They can improve histopathology changes including thickening of the glomerular basement membrane, mesangial cell proliferation, and injury of endothelial cells, podocytes, and renal tubule cells. The mechanisms mainly benefited from antioxidative stress which involves Nrf2/ARE signaling and the PPARγ-Klotho-FoxO1 axis; antiendoplasmic reticulum stress which involves PERK-ATF4-CHOP, PERK/eIF2α, and IRE1/XBP1 pathways; regulating autophagy which involves SIRT1/NF-κB signaling and AMPK signaling; anti-inflammation which involves IL33/ST2 and NF-κB signaling; and antifibrosis which involves TGF-β1/Smads, MAPK (ERK), p38/MAPK, JNK/MAPK, Wnt/β-catenin, and PI3K/AKT/mTOR signaling pathways. This review focuses on the clinical efficacy and the pharmacological mechanism of RA and its representative extracts on DN, and we further document the traditional uses of RA and probe into the TCM theoretical basis for its application in DN.
Collapse
Affiliation(s)
- Hui-zhong Xue
- The First Clinical Medical SchoolBeijing University of Chinese Medicine, Beijing, China 100700
| | - Yu Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and BeijingDongzhimen HospitalBeijing University of Chinese Medicine, Beijing, China 100700
| | - Shi-dong Wang
- Section II of Endocrinology & Nephropathy DepartmentDongzhimen HospitalBeijing University of Chinese Medicine, Beijing, China 100700
| | - Yi-meng Yang
- The First Clinical Medical SchoolBeijing University of Chinese Medicine, Beijing, China 100700
| | - Lu-qi Cai
- The First Clinical Medical SchoolBeijing University of Chinese Medicine, Beijing, China 100700
| | - Jin-xi Zhao
- Section II of Endocrinology & Nephropathy DepartmentDongzhimen HospitalBeijing University of Chinese Medicine, Beijing, China 100700
| | - Wei-jun Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and BeijingDongzhimen HospitalBeijing University of Chinese Medicine, Beijing, China 100700
| | - Yong-hua Xiao
- Section II of Endocrinology & Nephropathy DepartmentDongzhimen HospitalBeijing University of Chinese Medicine, Beijing, China 100700
| |
Collapse
|
4
|
Zhou M, Zhang S, Bai X, Cai Y, Zhang Z, Zhang P, Xue C, Zheng H, Sun Q, Han D, Lou L, Wang Y, Liu W. Acteoside delays the fibrosis process of diabetic nephropathy by anti-oxidation and regulating the autophagy-lysosome pathway. Eur J Pharmacol 2024; 978:176715. [PMID: 38852699 DOI: 10.1016/j.ejphar.2024.176715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Renal fibrosis is the final pathological change of kidney disease, it has also been recognized to be critical for the final progression of diabetic nephropathy (DN) to kidney failure. Acteoside (ACT) is a phenylethanoid glycoside widely distributed in dicotyledonous plants. It has many pharmacological activities, such as anti-oxidation, anti-inflammation, anti-cancer, neuroprotection, cardiovascular protection, anti-diabetes, bone and cartilage protection, liver and kidney protection, and antibacterial activity. This study aims to investigate the protective effects of ACT on renal interstitial fibrosis in rats with DN induced by intraperitoneal injection of streptozocin (STZ) combined with unilateral nephrectomy and its mechanism. In vivo and in vitro, the effects of ACT on reactive oxygen species (ROS) level, oxidative tubular injury, as well as damage of autophagic flux and lysosome in the DN model were detected. Results indicate that administration of ACT delayed the progression of renal interstitial fibrosis in DN by anti-oxidation and regulating the autophagy-lysosome pathway, which may potentially be attributed to the regulatory influence of ACT on transcription factor EB (TFEB).
Collapse
Affiliation(s)
- Mengqi Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shujiao Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuehui Bai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuzi Cai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingna Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Quanmei Sun
- National Centre for Nanoscience and Technology, Beijing, China
| | - Dong Han
- National Centre for Nanoscience and Technology, Beijing, China
| | - Lixia Lou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, China; Renal Research Institution of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Renal Research Institution of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Zhu X, Meng X, Du X, Zhao C, Ma X, Wen Y, Zhang S, Hou B, Cai W, Du B, Han Z, Xu F, Qiu L, Sun H. Vaccarin suppresses diabetic nephropathy through inhibiting the EGFR/ERK1/2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39205643 DOI: 10.3724/abbs.2024141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Diabetic nephropathy (DN) is recognized as one of the primary causes of chronic kidney disease and end-stage renal disease. Vaccarin (VAC) confers favorable effects on cardiovascular and metabolic diseases, including type 2 diabetes mellitus (T2DM). Nonetheless, the potential role and mechanism of VAC in the etiology of DN have yet to be completely elucidated. In this study, a classical mouse model of T2DM is experimentally induced via a high-fat diet (HFD)/streptozocin (STZ) regimen. Renal histological changes are assessed via H&E staining. Masson staining and immunohistochemistry (IHC) are employed to assess renal fibrosis. RT-PCR is utilized to quantify the mRNA levels of renal fibrosis, oxidative stress and inflammation markers. The levels of malondialdehyde (MDA) and reactive oxygen species (ROS), as well as the content of glutathione peroxidase (GSH-Px), are measured. The protein expressions of collagen I, TGF-β1, α-SMA, E-cadherin, Nrf2, catalase, SOD3, SOD2, SOD1, p-ERK, p-EGFR (Y845), p-EGFR (Y1173), p-NFκB P65, t-ERK, t-EGFR and t-NFκB P65 are detected by western blot analysis. Our results reveal that VAC has a beneficial effect on DN mice by improving renal function and mitigating histological damage. This is achieved through its inhibition of renal fibrosis, inflammatory cytokine overproduction, and ROS generation. Moreover, VAC treatment effectively suppresses the process of epithelial-mesenchymal transition (EMT), a crucial characteristic of renal fibrosis, in high glucose (HG)-induced HK-2 cells. Network pharmacology analysis and molecular docking identify epidermal growth factor receptor (EGFR) as a potential target for VAC. Amino acid site mutations reveal that Lys-879, Ile-918, and Ala-920 of EGFR may mediate the direct binding of VAC to EGFR. In support of these findings, VAC reduces the phosphorylation levels of both EGFR and its downstream mediator, extracellular signal-regulated kinase 1/2 (ERK1/2), in diabetic kidneys and HG-treated HK-2 cells. Notably, blocking either EGFR or ERK1/2 yields renal benefits similar to those observed with VAC treatment. Therefore, this study reveals that VAC attenuates renal damage via inactivation of the EGFR/ERK1/2 signaling axis in T2DM patients.
Collapse
Affiliation(s)
- Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyao Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Chenyang Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyu Ma
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shijie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhijun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi 214001, China
| | - Fei Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
7
|
Yang C, Yi B, Yang S, Li A, Liu J, Wang J, Liu J, Li Z, Liao Q, Zhang W, Zhang H. VDR restores the expression of PINK1 and BNIP3 in TECs of streptozotocin-induced diabetic mice. Life Sci Alliance 2024; 7:e202302474. [PMID: 38697845 PMCID: PMC11066303 DOI: 10.26508/lsa.202302474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Defective mitophagy in renal tubular epithelial cells is one of the main drivers of renal fibrosis in diabetic kidney disease. Our gene sequencing data showed the expression of PINK1 and BNIP3, two key molecules of mitophagy, was decreased in renal tissues of VDR-knockout mice. Herein, streptozotocin (STZ) was used to induce renal interstitial fibrosis in mice. VDR deficiency exacerbated STZ-induced renal impairment and defective mitophagy. Paricalcitol (pari, a VDR agonist) and the tubular epithelial cell-specific overexpression of VDR restored the expression of PINK1 and BNIP3 in the renal cortex and attenuated STZ-induced kidney fibrosis and mitochondrial dysfunction. In HK-2 cells under high glucose conditions, an increased level of α-SMA, COL1, and FN and a decreased expression of PINK1 and BNIP3 with severe mitochondrial damage were observed, and these alterations could be largely reversed by pari treatment. ChIP-qPCR and luciferase reporter assays showed VDR could positively regulate the transcription of Pink1 and Bnip3 genes. These findings reveal that VDR could restore mitophagy defects and attenuate STZ-induced fibrosis in diabetic mice through regulation of PINK1 and BNIP3.
Collapse
Affiliation(s)
- Cheng Yang
- https://ror.org/05akvb491 Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Bin Yi
- https://ror.org/05akvb491 Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Shikun Yang
- https://ror.org/05akvb491 Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Aimei Li
- https://ror.org/05akvb491 Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Jishi Liu
- https://ror.org/05akvb491 Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Jianwen Wang
- https://ror.org/05akvb491 Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Jun Liu
- https://ror.org/05akvb491 Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Zhi Li
- https://ror.org/05akvb491 Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Qin Liao
- https://ror.org/05akvb491 Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- https://ror.org/05akvb491 Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Hao Zhang
- https://ror.org/05akvb491 Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| |
Collapse
|
8
|
Lin HH, Tseng CY, Yu PR, Ho HY, Hsu CC, Chen JH. Therapeutic Effect of Desmodium caudatum Extracts on Alleviating Diabetic Nephropathy Mice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:374-380. [PMID: 38750193 DOI: 10.1007/s11130-024-01192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Desmodium caudatum extracts (DCE) were investigated for their potential therapeutic effects on diabetic nephropathy (DN). In our study, the high-fat diet (HFD) / streptozotocin (STZ)-induced DN model in C57BL/6 mice was treated with 100 mg/kg, 200 mg/kg DCE. The results showed that DCE decreased biochemical parameters and proteinuria levels. The kidney sections staining indicated that DCE treatment recovered glomerular atrophy and alleviated lipid droplets in the glomerular. Additionally, DCE inhibited lipid and glycogen accumulation down-regulated the expression of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) proteins. DCE also reduced collagenous fibrous tissue and the expression of transforming growth factor-β1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) through Masson's trichrome staining and immunohistochemical analysis. We found that DCE alleviated hydroxyproline content, and epithelial-mesenchymal transition (EMT). Besides, the results shown that DCE enhanced the antioxidant enzymes to mitigate fibrosis by reducing oxidative stress. In conclusion, our study provided evidence of the protective effect of DCE which down-regulated hyperglycemia, hyperlipidemia and inhibition of TGF-β1 and EMT pathway but elevated antioxidant, suggesting its therapeutic implication for DN.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, Taiwan
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Pei-Rong Yu
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Hsiang-Yu Ho
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|
9
|
Lv D, Zheng W, Zhang Z, Lin Z, Wu K, Liu H, Liao X, Sun Y. Microbial imidazole propionate affects glomerular filtration rate in patients with diabetic nephropathy through association with HSP90α. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119703. [PMID: 38453032 DOI: 10.1016/j.bbamcr.2024.119703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Imidazole propionate (ImP) is a detrimental metabolite produced by the fermentation of histidine intermediates via the intestinal flora. Here, the untargeted metabolite analysis of plasma metabolites from patients with diabetic nephropathy (DN), in combination with the Human Metabolome Database, revealed significantly increased levels of ImP in patients with DN, with a positive correlation with patients' blood creatinine concentration and urinary albumin-to-creatinine ratio, and a negative correlation with the glomerular filtration rate. RNA-seq was applied to detect the effects of ImP on renal tissue transcriptome in mice with DN. It demonstrated that ImP exacerbated renal injury in mice with DN and promoted renal tubular epithelial-mesenchymal transition (EMT), leading to renal mesenchymal fibrosis and renal impairment. Furthermore, ImP was found to directly target HAP90α and activate the PI3K-Akt signalling pathway, which is involved in EMT, by the drug affinity response target stability method. The findings showed that ImP may provide a novel target for DN quality, as it can directly bind to and activate HSP90, thereby facilitating the development of DN while acting as a potential indicator for the clinical diagnosis of DN.
Collapse
Affiliation(s)
- Dan Lv
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wenhan Zheng
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zheng Zhang
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ziyue Lin
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Keqian Wu
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Handeng Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Xiaohui Liao
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yan Sun
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Li J, Pang Q, Huang X, Jiang H, Tang G, Yan H, Guo Y, Yan X, Li L, Zhang H. 2-Dodecyl-6-Methoxycyclohexa-2, 5-Diene-1, 4-Dione isolated from Averrhoa carambola L. root inhibits high glucose-induced EMT in HK-2 cells through targeting the regulation of miR-21-5p/Smad7 signaling pathway. Biomed Pharmacother 2024; 172:116280. [PMID: 38368837 DOI: 10.1016/j.biopha.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
OBJECTIVE 2-Dodecyl-6-Methoxycyclohexa-2, 5-Diene-1, 4-Dione (DMDD) isolated from Averrhoa carambola L. root, has been proven therapeutic effects on diabetic kidney disease (DKD). This research aims to assess DMDD's effects on DKD and to investigate its underlying mechanisms, to establish DMDD as a novel pharmaceutical agent for DKD treatment. METHODS The human renal tubular epithelial (HK-2) cells were induced by high glucose (HG) to mimic DKD and followed by DMDD treatment. The cytotoxicity of DMDD was assessed using the Cell Counting Kit-8 (CCK-8) assay. The migratory capacity of HK-2 cells was evaluated through transwell and scratch-wound assays. To investigate the effect of Smad7 and miR-21-5p, lentiviral transfection was employed in HK-2 cells. Additionally, the expression of proteins related to epithelial-mesenchymal transition (EMT) and TGFβ1/Smad2/3 pathway was checked by QRT-PCR, Western blot, and immunofluorescence techniques. RESULTS This study has shown that DMDD significantly suppresses cell migration and the expression of Vimentin, α-SMA, TGFβ1, and p-Smad2/3 in HK-2 cells under HG conditions. Concurrently, DMDD enhances the protein expression of E-cadherin and Smad7. Intriguingly, the therapeutic effect of DMDD was abrogated upon Smad7 silencing. Further investigations revealed that DMDD effectively inhibits miR-21-5p expression, which is upregulated by HG. Downregulation of miR-21-5p inhibits the activation of the TGFβ1/Smad2/3 pathway and EMT induced by HG. In contrast, overexpression of miR-21-5p negates DMDD's therapeutic benefits. CONCLUSION DMDD mitigates EMT in HG-induced HK-2 cells by modulating the miR-21-5p/Smad7 pathway, thereby inhibiting renal fibrosis in DKD. These findings suggest that DMDD holds promise as a potential therapeutic agent for DKD.
Collapse
Affiliation(s)
- Jingyi Li
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qiuling Pang
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoman Huang
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huixian Jiang
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ganling Tang
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hui Yan
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yanxiang Guo
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoyi Yan
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Precision Medicine for Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Nanning, Guangxi 530021, China
| | - Hongliang Zhang
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
11
|
Cai L, Chen Y, Xue H, Yang Y, Wang Y, Xu J, Zhu C, He L, Xiao Y. Effect and pharmacological mechanism of Salvia miltiorrhiza and its characteristic extracts on diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117354. [PMID: 38380573 DOI: 10.1016/j.jep.2023.117354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 02/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is a severe diabetic microvascular complication with an increasing prevalence rate and lack of effective treatment. Traditional Chinese medicine has been proven to have favorable efficacy on DN, especially Salvia miltiorrhiza Bunge (SM), one of the most critical and conventional herbs in the treatment. Over the past decades, studies have demonstrated that SM is a potential treatment for DN, and the exploration of the underlying mechanism has also received much attention. AIM OF THIS REVIEW This review aims to systematically study the efficacy and pharmacological mechanism of SM in the treatment of DN to understand its therapeutic potential more comprehensively. MATERIALS AND METHODS Relevant information was sourced from Google Scholar, PubMed, Web of Science, and CNKI databases. RESULTS Several clinical trials and systematic reviews have indicated that SM has definite benefits on the kidneys of diabetic patients. And many laboratory studies have further revealed that SM and its characteristic extracts, mainly including salvianolic acids and tanshinones, can exhibit pharmacological activity against DN by the regulation of metabolism, renal hemodynamic, oxidative stress, inflammation, fibrosis, autophagy, et cetera, and several involved signaling pathways, thereby preventing various renal cells from abnormal changes in DN, including endothelial cells, podocytes, epithelial cells, and mesangial cells. CONCLUSION As a potential drug for the treatment of DN, SM has multi-component, multi-target, and multi-pathway pharmacological effects. This work will not only verify the satisfactory curative effect of SM in the treatment of DN but also provide helpful insights for the development of new anti-DN drugs and the application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Luqi Cai
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yu Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Huizhong Xue
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yimeng Yang
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yuqi Wang
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Junhe Xu
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Chunyan Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Long He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yonghua Xiao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
12
|
Sun J, Liu C, Liu YY, Guo ZA. Mitophagy in renal interstitial fibrosis. Int Urol Nephrol 2024; 56:167-179. [PMID: 37450241 DOI: 10.1007/s11255-023-03686-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
As a high energy consumption organ, kidney relies on a large number of mitochondria to ensure normal physiological activities. Under specific stimulation, mitophagy and mitochondrial dynamics (fission, fusion) cooperatively regulate mitochondrial quality and participate in many life activities such as energy metabolism, inflammatory response, oxidative stress, cell senescence and death. Mitophagy plays a key role in the progression of acute kidney injury and chronic kidney disease. The early induction of oxidative stress in renal parenchyma, the activation of pro-inflammatory cytokines and TGF-β signal pathway are closely related to renal interstitial fibrosis. Macrophage reprogramming is also considered to be an important participant in the progression of kidney fibrosis. This review summarizes the molecular mechanism of mitochondrial autophagy and its relationship with the pathway of promoting fibrosis, and discusses the possibility of restoring mitophagy balance as a pharmacological target for the treatment of renal interstitial fibrosis, so as to provide new ideas for more efficient anti-fibrosis and delay the progress of chronic kidney disease.
Collapse
Affiliation(s)
- Jun Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chong Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Liu
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhao-An Guo
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
13
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
14
|
Fan D, Ying Z, Yang Y, Qian Q, Li Y, Wang P, An X, Yan M. Deciphering the anti-renal fibrosis mechanism of triptolide in diabetic nephropathy by the integrative approach of network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2023; 316:116774. [PMID: 37311501 DOI: 10.1016/j.jep.2023.116774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Affiliation(s)
- Decai Fan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, NO. 24 TongJiaXiang St., Nanjing City, 210009, Jiangsu Province, China.
| | - Zi Ying
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, NO. 24 TongJiaXiang St., Nanjing City, 210009, Jiangsu Province, China.
| | - Ying Yang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, NO. 24 TongJiaXiang St., Nanjing City, 210009, Jiangsu Province, China.
| | - Qi Qian
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, NO. 155 HanZhong Rd., Nanjing, 210029, Jiangsu Province, China.
| | - Yuanyuan Li
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, NO. 155 HanZhong Rd., Nanjing, 210029, Jiangsu Province, China.
| | - Panjun Wang
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, NO. 155 HanZhong Rd., Nanjing, 210029, Jiangsu Province, China.
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, NO. 155 HanZhong Rd., Nanjing, 210029, Jiangsu Province, China.
| | - Ming Yan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, NO. 24 TongJiaXiang St., Nanjing City, 210009, Jiangsu Province, China.
| |
Collapse
|
15
|
Ural C, Celik A, Ozbal S, Guneli E, Arslan S, Ergur BU, Cavdar C, Akdoğan G, Cavdar Z. The renoprotective effects of taurine against diabetic nephropathy via the p38 MAPK and TGF-β/Smad2/3 signaling pathways. Amino Acids 2023; 55:1665-1677. [PMID: 37805666 DOI: 10.1007/s00726-023-03342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023]
Abstract
Diabetic nephropathy (DN), a severe diabetes complication, causes kidney morphological and structural changes due to extracellular matrix accumulation. This accumulation is caused mainly by oxidative stress. Semi-essential amino acid derivative taurine has powerful antioxidant and antifibrotic effects. The aim of this study was to investigate the renoprotective effects of taurine through its possible roles in oxidative stress, extracellular matrix proteins, and the signaling pathways associated with the accumulation of extracellular matrix proteins in DN rats. 29 Wistar albino rats were randomly separated into control, taurine, diabetes, and diabetes + taurine groups. Diabetes animals were injected 45 mg/kg streptozosine. Taurine is given by adding to drinking water as 1% (w/v). Urine, serum, and kidney tissue were collected from rats for biochemical and histological analysis after 12 weeks. According to the studies, taurine significantly reduces the levels of malondialdehyde (MDA), total oxidant status (TOS), and protein expression of NADPH oxidase 4 (NOX4) that increase in diabetic kidney tissue. Also, decreased superoxide dismutase (SOD) activity levels significantly increased with taurine in diabetic rats. Moreover, increased mRNA and protein levels of fibronectin decreased with taurine. The matrix metalloproteinase (MMP)-2 and MMP-9 activities and their mRNA levels increased significantly, and this increase was significantly summed with taurine. There was a decrease in mRNA expression of Extracellular matrix metalloproteinase inducer (EMMPRIN). Taurine significantly increased this decrease. Diabetes increased mRNA expressions of transforming growth factor (TGF)-β and Smad2/3. Taurine significantly reduced this induction. TGF-β protein expression, p38, and Smad2/3 activations were also inhibited, but taurine was suppressed significantly. All these findings indicate that taurine may be an effective practical strategy to prevent renal diabetic injury.
Collapse
Affiliation(s)
- Cemre Ural
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Asli Celik
- Multidisciplinary Experimental Animal Laboratory, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Seda Ozbal
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ensari Guneli
- Multidisciplinary Experimental Animal Laboratory, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Department of Laboratory Animal Science, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sevki Arslan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - Bekir Ugur Ergur
- Department of Histology and Embryology, University of Kyrenia, Kyrenia, Northern Cyprus
| | - Caner Cavdar
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Gül Akdoğan
- Department of Medical Biochemistry, School of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Zahide Cavdar
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, 35340, Izmir, Turkey.
| |
Collapse
|
16
|
Lin Z, Li S, Xiao H, Xu Z, Li C, Zeng J, Wang S, Liu Z, Huang H. The degradation of TGR5 mediated by Smurf1 contributes to diabetic nephropathy. Cell Rep 2023; 42:112851. [PMID: 37481723 DOI: 10.1016/j.celrep.2023.112851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
The multiple roles of TGR5 in the regulation of glucose metabolism, inflammation, and oxidative stress have drawn attention as therapeutic candidates for diabetes-related kidney disease. However, diabetes induces downregulation of renal TGR5 protein expression, and the regulatory mechanisms have not been clarified. Here, we identify that Smurf1, an E3 ubiquitin ligase, is a critical interactor of TGR5 and mediates the ubiquitination and proteasomal degradation of TGR5 under high glucose stimulation in glomerular mesangial cells. Genetic deficiency of Smurf1 restores TGR5 protein expression and attenuates renal injuries in diabetic mice. Mechanistically, Smurf1 interacts with the TGR5 ICL2 region by its HECT domain and induces K11/K48-linked polyubiquitination of TGR5 at K306 residue. Moreover, restoration of TGR5 protects db/db mice from diabetic nephropathy. These observations elucidate the critical role of Smurf1 in regulating TGR5 stability, suggesting that pharmacological targeting of the interaction between Smurf1 and TGR5 could serve as a promising therapeutic strategy against diabetic nephropathy.
Collapse
Affiliation(s)
- Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuting Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shaogui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Wang Y, Liu Y, Chen S, Li F, Wu Y, Xie X, Zhang N, Zeng C, Bai L, Dai M, Zhang L, Wang X. The protective mechanism of Dehydromiltirone in diabetic kidney disease is revealed through network pharmacology and experimental validation. Front Pharmacol 2023; 14:1201296. [PMID: 37680723 PMCID: PMC10482231 DOI: 10.3389/fphar.2023.1201296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Background: Salvia miltiorrhiza (SM) is an effective traditional Chinese medicine for treating DKD, but the exact mechanism is elusive. In this study, we aimed to investigate and confirm the method underlying the action of the active components of SM in the treatment of DKD. Methods: Renal tissue transcriptomics and network pharmacology of DKD patients was performed to identify the active components of SM and the disease targets of DKD. Next, the point of convergence among these three groups was studied. Potential candidate genes were identified and analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The component-target networks were modelled and visualized with Cytoscape. In addition, docking studies were performed to validate our potential target predictions. Lastly, in vitro and in vivo experiments were performed to understand the role of Dehydromiltirone (DHT), the active component of SM, in the phenotypic switching of mesangial cells. Results: Transcriptomics of DKD patients' renal tissues screened 4,864 differentially expressed genes. Eighty-nine active components of SM and 161 common targets were found. Functional enrichment analysis indicated that 161 genes were enriched in apoptosis, the PI3K-AKT signaling pathway, and the AGE-RAGE signaling pathway in diabetes complications. Molecular docking and molecular dynamic simulations show that DHT can bind to functional PIK3CA pockets, thereby becoming a possible inhibitor of PIK3CA. In vitro study demonstrated that DHT reduced the expression of phenotypic switching markers α-SMA, Col-I, and FN in HMCs by downregulating the over-activation of the PI3K-AKT signaling pathway through the inhibition of PIK3CA. Furthermore, the DKD mouse model confirmed that DHT could reduce proteinuria and improve glomerular hypertrophy in vivo. Conclusion: DHT was identified as the key active component of SM, and its therapeutic effect on DKD was achieved by inhibiting the phenotypic switching of mesangial cells via the PIK3CA signaling pathway.
Collapse
Affiliation(s)
- Yanzhe Wang
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyuan Liu
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Nephrology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Sijia Chen
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fengqin Li
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Wu
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinmiao Xie
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Zhang
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuchu Zeng
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linnan Bai
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengshi Dai
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoxia Wang
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Feng Y, Jia L, Ma W, Tian C, Du H. Iron Chelator Deferoxamine Alleviates Progression of Diabetic Nephropathy by Relieving Inflammation and Fibrosis in Rats. Biomolecules 2023; 13:1266. [PMID: 37627331 PMCID: PMC10452339 DOI: 10.3390/biom13081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most devastating diabetic microvascular complications. It has previously been observed that iron metabolism levels are abnormal in diabetic patients. However, the mechanism by which iron metabolism levels affect DN is poorly understood. This study was designed to evaluate the role of iron-chelator deferoxamine (DFO) in the improvement of DN. Here, we established a DN rat model induced by diets high in carbohydrates and fat and streptozotocin (STZ) injection. Our data demonstrated that DFO treatment for three weeks greatly attenuated renal dysfunction as evidenced by decreased levels of urinary albumin, blood urea nitrogen, and serum creatinine, which were elevated in DN rats. Histopathological observations showed that DFO treatment improved the renal structures of DN rats and preserved podocyte integrity by preventing the decrease of transcripts of nephrin and podocin. In addition, DFO treatment reduced the overexpression of fibronectin 1, collagen I, IL-1β, NF-κB, and MCP-1 in DN rats, as well as inflammatory cell infiltrates and collagenous fibrosis. Taken together, our findings unveiled that iron chelation via DFO injection had a protective impact on DN by alleviating inflammation and fibrosis, and that it could be a potential therapeutic strategy for DN.
Collapse
Affiliation(s)
- Yunfei Feng
- Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Li Jia
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan Ma
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenying Tian
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Ovchinnikov A, Filatova A, Potekhina A, Arefieva T, Gvozdeva A, Ageev F, Belyavskiy E. Blood Immune Cell Alterations in Patients with Hypertensive Left Ventricular Hypertrophy and Heart Failure with Preserved Ejection Fraction. J Cardiovasc Dev Dis 2023; 10:310. [PMID: 37504566 PMCID: PMC10380876 DOI: 10.3390/jcdd10070310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
(1) Background: Chronic inflammation and fibrosis are key players in cardiac remodeling associated with left ventricular hypertrophy (LVH) and heart failure with a preserved ejection fraction (HFpEF). Monocytes and T-helpers (Th) are involved in both pro-inflammatory and fibrotic processes, while regulatory T-cells (Treg) could be considered to suppress chronic inflammation in the hypertrophied myocardium. We aimed to estimate the relationship between the frequencies of circulating CD4+ T-cell and monocyte subpopulations and the variables of left ventricular (LV) diastolic function in patients with LVH depending on the presence of HFpEF. (2) Methods: We enrolled 57 patients with asymptomatic hypertensive LVH (n = 21), or LVH associated with HFpEF (n = 36). A clinical assessment and echocardiographs were analyzed. CD4+ Treg, activated Th (Th-act), and monocyte (classical, intermediate, and non-classical) subpopulations were evaluated via direct immunofluorescence and flow cytometry. (3) Results: Patients with HFpEF had a lower Treg/Th-act ratio (p = 0.001). Though asymptomatic patients and patients with HFpEF were comparable in terms of both the total monocyte number and monocyte subsets, there were moderate correlations between intermediate monocyte count and conventional and novel echocardiographic variables of LV diastolic dysfunction in patients with HFpEF. (4) Conclusions: In patients with LVH, the clinical deterioration (transition to HFpEF) and progression of LV diastolic dysfunction are probably associated with T-cell disbalance and an increase in intermediate monocyte counts.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anastasiya Filatova
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Laboratory of Cell Immunology, Institute of Experimental Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexandra Potekhina
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Tatiana Arefieva
- Laboratory of Cell Immunology, Institute of Experimental Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Anna Gvozdeva
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Fail Ageev
- Out-Patient Department, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | | |
Collapse
|
20
|
Wang S, Qin S, Cai B, Zhan J, Chen Q. Promising therapeutic mechanism for Chinese herbal medicine in ameliorating renal fibrosis in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:932649. [PMID: 37522131 PMCID: PMC10376707 DOI: 10.3389/fendo.2023.932649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious chronic microvascular abnormalities of diabetes mellitus and the major cause of uremia. Accumulating evidence has confirmed that fibrosis is a significant pathological feature that contributes to the development of chronic kidney disease in DN. However, the exact mechanism of renal fibrosis in DN is still unclear, which greatly hinders the treatment of DN. Chinese herbal medicine (CHM) has shown efficacy and safety in ameliorating inflammation and albuminuria in diabetic patients. In this review, we outline the underlying mechanisms of renal fibrosis in DN, including oxidative stress (OS) generation and OS-elicited ASK1-p38/JNK activation. Also, we briefly summarize the current status of CHM treating DN by improving renal fibrosis. The treatment of DN by inhibiting ASK1 activation to alleviate renal fibrosis in DN with CHM will promote the discovery of novel therapeutic targets for DN and provide a beneficial therapeutic method for DN.
Collapse
Affiliation(s)
- Shengju Wang
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuai Qin
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Baochao Cai
- Diabetes Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Jihong Zhan
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Li X, Miao Y, Li T, Liu X, Xu L, Guo J, Yu X, Sun B, Zhu Y, Ai D, Chen L. Integrin β6 mediates epithelial-mesenchymal transition in diabetic kidney disease. Mol Cell Endocrinol 2023; 572:111955. [PMID: 37187284 DOI: 10.1016/j.mce.2023.111955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
The progression of diabetic kidney disease (DKD) is associated with increased fibronectin (FN) levels in proximal tubular epithelial cells. Bioinformatics analysis showed that integrin β6 and cell adhesion function were significantly changed in the cortices of db/db mice. Remodelling of cell adhesion is one of the core changes during epithelial-mesenchymal transition (EMT) in DKD. Integrin is a family of transmembrane proteins that regulates cell adhesion and migration, and extracellular FN is the major ligand of integrin β6. We found that the expression of integrin β6 was elevated in the proximal tubules of db/db mice and FN-induced renal proximal tubule cells. The levels of EMT were also significantly increased in vivo and in vitro. In addition, FN treatment activated the Fak/Src pathway, increased the expression of p-YAP, and then upregulated the Notch1 pathway in diabetic proximal tubules. Knockdown of integrin β6 or Notch1 attenuated reversed the EMT aggravation induced by FN. Furthermore, urinary integrin β6 was significantly increased in DKD patients. Our findings reveal a critical role of integrin β6 in regulating EMT in proximal tubular epithelial cells and identify a novel direction for the detection and treatment of DKD.
Collapse
Affiliation(s)
- Xiaoyu Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yahui Miao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiangyang Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Linxin Xu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030000, China
| | - Jun Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaochen Yu
- Tianjin Children's Hospital, Tianjin, 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
22
|
Role of Klotho and AGE/RAGE-Wnt/β-Catenin Signalling Pathway on the Development of Cardiac and Renal Fibrosis in Diabetes. Int J Mol Sci 2023; 24:ijms24065241. [PMID: 36982322 PMCID: PMC10049403 DOI: 10.3390/ijms24065241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Fibrosis plays an important role in the pathogenesis of long-term diabetic complications and contributes to the development of cardiac and renal dysfunction. The aim of this experimental study, performed in a long-term rat model, which resembles type 1 diabetes mellitus, was to investigate the role of soluble Klotho (sKlotho), advanced glycation end products (AGEs)/receptor for AGEs (RAGE), fibrotic Wnt/β-catenin pathway, and pro-fibrotic pathways in kidney and heart. Diabetes was induced by streptozotocin. Glycaemia was maintained by insulin administration for 24 weeks. Serum and urine sKlotho, AGEs, soluble RAGE (sRAGE) and biochemical markers were studied. The levels of Klotho, RAGEs, ADAM10, markers of fibrosis (collagen deposition, fibronectin, TGF-β1, and Wnt/β-catenin pathway), hypertrophy of the kidney and/or heart were analysed. At the end of study, diabetic rats showed higher levels of urinary sKlotho, AGEs and sRAGE and lower serum sKlotho compared with controls without differences in the renal Klotho expression. A significant positive correlation was found between urinary sKlotho and AGEs and urinary albumin/creatinine ratio (uACR). Fibrosis and RAGE levels were significantly higher in the heart without differences in the kidney of diabetic rats compared to controls. The results also suggest the increase in sKlotho and sRAGE excretion may be due to polyuria in the diabetic rats.
Collapse
|
23
|
Title: Bioinformatic Identification of Genes Involved in Diabetic Nephropathy Fibrosis and their Clinical Relevance. Biochem Genet 2023:10.1007/s10528-023-10336-6. [PMID: 36715962 DOI: 10.1007/s10528-023-10336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Tubulointerstitial fibrosis is an important pathological feature of diabetic nephropathy that is associated with impaired renal function. However, the mechanism by which fibrosis occurs in diabetic nephropathy is unclear. Differentially expressed genes were identified from transcriptome profiles of renal tissue from diabetic patients and unilateral ureteral obstruction mice and intersected to obtain genes that may be involved in diabetic fibrosis. Biological function analysis and protein-protein interaction network analysis were performed. ROC curve and Pearson correlation analysis between hub genes were performed and glomerular filtration rate estimated. Finally, the RNA levels of hub genes were measured using real-time PCR. A total of 283 genes were identified as potentially involved in diabetic nephropathy fibrosis. TYROBP, CTSS, LCP2, LUM and TLR7 were identified as aberrantly expressed hub genes. Immune cell infiltration analysis demonstrated higher numbers of cytotoxic lymphocytes, B lineage cells, monocyte lineage cells, myeloid dendritic cells, neutrophils, and fibroblasts in the diabetic nephropathy group. The areas under ROC curves for TYROBP, CTSS, LCP2, LUM and TLR7 were 0.9167, 0.9583, 0.9917, 0.93333, and 0.9583, respectively (P < 0.001), and their correlation coefficients with estimated glomerular filtration rate were - 0.8332, - 0.752, - 0.7875, - 0.7567, and - 0.7136, respectively (P < 0.001). The RNA levels of TYROBP, CTSS, LUM and TLR7 were upregulated in high-glucose-treated human renal tubular epithelial cells (P < 0.005). Our study identified TYROBP, CTSS, LCP2, LUM and TLR7 as potentially involved in diabetic nephropathy fibrosis. Furthermore, TYROBP, CTSS, LUM and TLR7 may be associated with epithelial-mesenchymal transition of tubular epithelial cells.
Collapse
|
24
|
Mao Y, Yu J, Da J, Yu F, Zha Y. Acteoside alleviates UUO-induced inflammation and fibrosis by regulating the HMGN1/TLR4/TREM1 signaling pathway. PeerJ 2023; 11:e14765. [PMID: 36691481 PMCID: PMC9864189 DOI: 10.7717/peerj.14765] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Acteoside (Act), a phenylethanoid compound that was first isolated from mullein, has been widely used for the investigation of anti-inflammatory and anti-fibrotic effect. However, the mechanism of Act against unilateral ureteral obstruction (UUO)-mediated renal injury is largely unknown. Therefore, this study aimed to explore the effects of Act on UUO rats and possible mechanisms. METHODS A total of 20 Sprague-Dawley (SD) rats were divided randomly into three groups (n ≥ 6): (i) sham-operated group (Sham); (ii) UUO group (UUO+Saline); and (iii) UUO + Act 40 mg/kg/day, (UUO+Act); Continuous gavage administration for 2 weeks postoperatively, while the rats in Sham and UUO+saline groups were given equal amounts of saline. All rats were sacrificed after 14 days, the urine and blood samples were collected for biochemical analysis, the renal tissues were collected for pathological staining and immunohistochemistry. Correlations between individual proteins were analyzed by Pearson correlation analysis. RESULTS The results of renal function indexes and histopathological staining showed that Act could improve renal function by reducing serum creatinine, blood urea nitrogen and urine protein at the same time, Act could alleviate renal inflammation and fibrosis. In addition, the results of immunohistochemistry showed that Act could reduce the expression of inflammation and kidney injury-related proteins F4/80, Mcp-1, KIM-1 proteins, as well as the expression of fibrosis-related protein α-SMA and β-catenin. More importantly, Act can also reduce the expression of HMGN1, TLR4 and TREM-1 proteins. CONCLUSION These data demonstrate that Act can ameliorate UUO-induced renal inflammation and fibrosis in rats probably through triggering HMGN1/TLR4/TREM-1 pathway.
Collapse
Affiliation(s)
- Yan Mao
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Jiali Yu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Jingjing Da
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Fuxun Yu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yan Zha
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
25
|
Zhai J, Li Z, Zhang H, Lu Z, Zhang Y, Li M, Kang J, Yang Z, Ma L, Ma L, Ma Z, Ma X, Zhao F, Ma X, Gao Y, Zhang Y, Li X. Coptisine mitigates diabetic nephropathy via repressing the NRLP3 inflammasome. Open Life Sci 2023; 18:20220568. [PMID: 37197172 PMCID: PMC10183720 DOI: 10.1515/biol-2022-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 05/19/2023] Open
Abstract
Diabetic nephropathy is a microvascular complication of diabetes mellitus, threatening the health of millions of people. Herein, we explored a blood glucose independent function of coptisine on diabetic nephropathy. A diabetic rat model was established by intraperitoneal administration of streptozotocin (65 mg/kg). Coptisine treatment (50 mg/kg/day) retarded body weight loss and reduced blood glucose. On the other hand, coptisine treatment also decreased kidney weight and the levels of urinary albumin, serum creatinine, and blood urea nitrogen, indicating an improvement of renal function. Treatment with coptisine also mitigated renal fibrosis, with alleviative collagen deposition. Likewise, in vitro study showed that coptisine treatment decreased apoptosis and fibrosis markers in HK-2 cells treated with high glucose. Furthermore, after coptisine treatment, the activation of NOD-like receptor pyrin domain containing protein 3 (NRLP3) inflammasome was repressed, with decreased levels of NLRP3, cleaved caspase-1, interleukin (IL)-1β, and IL-18, indicating that the repression of NRLP3 inflammasome contributed to the effect of coptisine on diabetic nephropathy. In conclusion, this study revealed that coptisine mitigates diabetic nephropathy via repressing the NRLP3 inflammasome. It is indicated that coptisine may have the potential to be used in the diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Jiajia Zhai
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Zeping Li
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Huifeng Zhang
- Department of Neurology, Xi’an Electric Power Central Hospital, Xi’an, China
| | - Zuowei Lu
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, 127 West Changle Road, Xi’an 710032, China
| | - Yi Zhang
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Mo Li
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Jian Kang
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Zelong Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Louyan Ma
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Li Ma
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Zhengquan Ma
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Xiaorui Ma
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Fanghong Zhao
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Xiaoqing Ma
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Yuan Gao
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Yuanyuan Zhang
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Xiaomiao Li
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, 127 West Changle Road, Xi’an 710032, China
| |
Collapse
|
26
|
Wahab NAA, Giribabu N, Kilari EK, Salleh N. Abietic acid ameliorates nephropathy progression via mitigating renal oxidative stress, inflammation, fibrosis and apoptosis in high fat diet and low dose streptozotocin-induced diabetic rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154464. [PMID: 36215789 DOI: 10.1016/j.phymed.2022.154464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/28/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Abietic acid (AA) has been reported to exhibit anti-inflammatory activity, however its protective effect against inflammation and its trigger factor i.e., oxidative stress and the related sequelae i.e., apoptosis and fibrosis in the kidney in diabetes mellitus (DM) is unknown. PURPOSE To identify the ability of AA to mitigate the inflammatory and inflammation-related insults to the kidney in DM. METHODS & STUDY DESIGN Adult male rats were induced type-2 DM by feeding with a high-fat diet for twelve weeks followed by injection with a single dose of streptozotocin (STZ) (30 mg/kg/bw) intraperitoneally at twelve weeks. Following DM confirmation, AA (10 and 20 mg/kg/day) was given orally for another four weeks. Then the fasting blood glucose (FBG) and renal profile were determined and oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) tests were performed. A day after the last treatment, rats were sacrificed and kidneys were harvested and subjected for histopathological and molecular biological analysis. RESULTS AA treatment was found to reduce the FBG, serum urea and creatinine levels (p < 0.05) while improving the OGTT and ITT (p < 0.05) in diabetic rats. Besides, AA treatment also mitigated kidney histopathological changes, reduces kidney oxidative stress as reflected by reduced levels of RAGE and Keap1 but increased levels of kidney antioxidants Nrf2, SOD, CAT, GPX, HO-1 & NQO-1 (p < 0.05). Additionally, AA treatment also decreases kidney inflammation (NF-kB p65, IL-1β, IL-6, TNF-α and iNOS) and fibrosis (TGF-β1 and GSK-3β) (p < 0/05). Kidney apoptosis decreased as reflected by decreased levels of Bax, caspase-3 and caspase-9 while its anti-apoptosis Bcl-2 protein levels increased (p < 0.05). CONCLUSION AA helps to mitigate nephropathy development in DM via counteracting oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Nur Ainina Abd Wahab
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Eswar Kumar Kilari
- Pharmacology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh 530 003, India
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
27
|
Sun Y, Qu H, Song Q, Shen Y, Wang L, Niu X. High-glucose induced toxicity in HK-2 cells can be alleviated by inhibition of miRNA-320c. Ren Fail 2022; 44:1388-1398. [PMID: 35969018 PMCID: PMC9389931 DOI: 10.1080/0886022x.2022.2106874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Diabetic nephropathy (DN) is a major healthcare challenge worldwide. MiRNAs exert a regulatory effect on the progress of DN. Our study proposed to investigate the miR-320c expression and its function on the pathogenesis of DN in vitro. The level of miR-320c in HK-2 cells was quantified by RT-qPCR. Cell morphology, invasion, and migration were observed by optical microscope, Transwell invasion assay, and scratch wound assay. Then, the levels of PTEN, α-SMA, vimentin, E-cadherin, p-PI3K, PI3K, AKT, and p-AKT were analyzed through western blotting. A Dual-luciferase reporter assay was conducted to explore the target relationship between miR-320c and PTEN. It was discovered that miR-320c was over-expressed in high glucose (HG)-treated HK-2 cells. Furthermore, inhibition of miR-320c could alleviate the epithelial-mesenchymal transition (EMT) of HG-induced HK-2 cells and retain the normal morphology of HK-2 cells. Additionally, the miR-320c inhibitor decreased the invasiveness and migration of HG-treated HK-2 cells. Next, the target gene of miR-320c, PTEN, was identified, and the function of miR-320c was reversed by down-regulation of PTEN. Finally, we found inhibition of miR-320c restrained the PI3K/AKT pathway. Therefore, inhibition of miR-320c could alleviate toxicity of HK-2 cells induced by HG via targeting PTEN and restraining the PI3K/AKT pathway, illustrating that miR-320c may act as a new biomarker in the diagnosis of DN.
Collapse
Affiliation(s)
- Yan Sun
- Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Hai Qu
- Department of General Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Qi Song
- Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yifan Shen
- Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Lijuan Wang
- Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiaohong Niu
- Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
28
|
Li J, Zhang J, Yang M, Huang X, Zhang M, Fang X, Wu S. Kirenol alleviates diabetic nephropathy via regulating TGF-β/Smads and the NF-κB signal pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1690-1700. [PMID: 36073930 PMCID: PMC9467559 DOI: 10.1080/13880209.2022.2112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Kirenol possesses anti-inflammatory, antifibrotic and anti-arthritic effects. However, its reno-protective effects against diabetic nephropathy (DN) have not been evaluated. OBJECTIVE This study explores the reno-protective effects of kirenol against DN and clarifies the potential mechanisms. MATERIALS AND METHODS The mesangial cells were treated with 20 µM kirenol and 10 ng/mL human recombinant TGF-β1 or 30 mM glucose for 24 h. Then the cells were harvested to assay the expression of the target genes or proteins. Thirty C57BL/6J male mice were given high-fat diet with streptozotocin injection to induce diabetes and then were randomized into three groups (n = 10): vehicle administration (DM group), 2 mg/kg kirenol (DM + kirenol group) and 200 mg/kg metformin (Met group) for 3 months, orally. A healthy group (Con, n = 10) was included as the control. RESULTS Compared to the DM group, kirenol treatment decreased the phosphorylation of Smad2/3 and NF-κB (0.64- and 0.43-fold) as well as the accumulation of FN and Col IV (0.58- and 0.35-fold); moreover, the expression of IκBα was restored to normal level by kirenol treatment both in vivo and in vitro. After kirenol treatment, IL-6 expression was decreased 0.35- and 0.57-fold, and TNF-α expression was decreased 0.34- and 0.46-fold, in vitro and in vivo, respectively. Furthermore, kirenol alleviated the glomerular basement membrane thickness and foot process fusion. DISCUSSION AND CONCLUSIONS Kirenol could alleviate DN by downregulating the TGF-β/Smads and the NF-κB signal pathway. Our study provides a potential mechanism for the treatment of DN with kirenol.
Collapse
Affiliation(s)
- Jialin Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jiawen Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Meng Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiaocui Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Meng Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Suzhen Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
29
|
Zhong W, Hong C, Dong Y, Li Y, Xiao C, Liu X. ASH2L Aggravates Fibrosis and Inflammation through HIPK2 in High Glucose-Induced Glomerular Mesangial Cells. Genes (Basel) 2022; 13:genes13122244. [PMID: 36553510 PMCID: PMC9816940 DOI: 10.3390/genes13122244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease and continues to be a threat to patients with diabetes. Dysfunction of glomerular mesangial cells (GMCs) is the main contributing factor to glomerulosclerosis, which is a pathological feature of DN. The epigenetic factor ASH2L has long been thought to be a transcriptional activator, but its function and involvement in diabetic nephropathy is still unclear. Here, we investigated the effect of ASH2L on the regulation of fibrosis and inflammation induced by high glucose in mouse mesangial cells (mMCs). We observed that ASH2L expression is increased in high glucose-induced mMCs, while loss of ASH2L alleviated fibrosis and inflammation. Furthermore, ASH2L-mediates H3K4me3 of the homeodomain-interacting protein kinase 2 (HIPK2) promoter region, which is a contributor to fibrosis in the kidneys and promotes its transcriptional expression. Similar to loss of ASH2L, silencing HIPK2 also inhibited fibrosis and inflammation. In addition, ASH2L and HIPK2 are upregulated in the kidneys of both streptozocin-induced and db/db mouse. In conclusion, we uncovered the crucial role of ASH2L in high glucose-induced fibrosis and inflammation, suggesting that ASH2L regulation may be an attractive approach to attenuate the progression of DN.
Collapse
Affiliation(s)
- Wen Zhong
- School of pharmacy, Fudan University, Shanghai 201203, China
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chen Hong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yejun Dong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuhui Li
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chenxi Xiao
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
- Correspondence: ; Tel.: +86-21-51980159
| |
Collapse
|
30
|
Wang X, Liu XQ, Jiang L, Huang YB, Zeng HX, Zhu QJ, Qi XM, Wu YG. Paeoniflorin directly binds to TNFR1 to regulate podocyte necroptosis in diabetic kidney disease. Front Pharmacol 2022; 13:966645. [PMID: 36147345 PMCID: PMC9486100 DOI: 10.3389/fphar.2022.966645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Necroptosis was elevated in both tubulointerstitial and glomerular renal tissue in patients with diabetic kidney disease (DKD), and was most pronounced on glomerulus in the stage with macroalbuminuria. This study further explored whether paeoniflorin (PF) could affect podocyte necroptosis to protect kidney injure in vivo and in vitro. Our study firstly verified that there are obvious necroptosis-related changes in the glomeruli of DKD through bioinformatics analysis combined with clinicopathological data. STZ-induced mouse diabetes model and high-glucose induced podocyte injury model were used to evaluate the renoprotection, podocyte injury protection and necroptosis regulation of PF in DKD. Subsequently, the target protein-TNFR1 that PF acted on podocytes was found by computer target prediction, and then molecular docking and Surface plasmon resonance (SPR) experiments were performed to verify that PF had the ability to directly bind to TNFR1 protein. Finally, knockdown of TNFR1 on podocytes in vitro verified that PF mainly regulated the programmed necrosis of podocytes induced by high glucose through TNFR1. In conclusion, PF can directly bind and promote the degradation of TNFR1 in podocytes and then regulate the RIPK1/RIPK3 signaling pathway to affect necroptosis, thus preventing podocyte injury in DKD. Thus, TNFR1 may be used as a new potential target to treat DKD.
Collapse
Affiliation(s)
- Xian Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-qi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue-bo Huang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Han-xu Zeng
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi-jin Zhu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang-ming Qi
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Xiang-ming Qi, ; Yong-gui Wu,
| | - Yong-gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Center for Scientific Research of Anhui Medical University, Hefei, China
- *Correspondence: Xiang-ming Qi, ; Yong-gui Wu,
| |
Collapse
|
31
|
Li HQ, Liu N, Zheng ZY, Teng HL, Pei J. Clopidogrel delays and can reverse diabetic nephropathy pathogenesis in type 2 diabetic db/db mice. World J Diabetes 2022; 13:600-612. [PMID: 36159226 PMCID: PMC9412856 DOI: 10.4239/wjd.v13.i8.600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/26/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the principal cause of end-stage renal disease. Previous studies have shown that clopidogrel can prevent the early progression of renal injury.
AIM To elucidate whether clopidogrel is beneficial against DN by using a db/db mouse model.
METHODS db/db mice with a higher urinary albumin/creatinine ratio (ACR) relative to age- and sex-matched wild-type control mice were randomly allocated to clopidogrel and vehicle treatment groups. Clopidogrel was administered at doses of 5, 10, and 20 mg/kg by gavage for 12 wk. Body mass, blood glucose level, and urinary creatinine and albumin concentrations in each group were measured before and after the intervention. Renal fibrosis was evaluated using periodic acid-Schiff and Masson’s trichrome staining. The renal protein expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and F4/80 was assessed using immunohistochemistry. Urinary TNF-α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 levels were analyzed using enzyme-linked immunosorbent assay; TNF-α and IL-1β mRNA expression was measured using real-time quantitative polymerase chain reaction. The protein expression of fibronectin (FN) and collagen I was assessed using immunohistochemistry.
RESULTS Clopidogrel treatment did not affect the body mass or blood glucose level of the db/db mice; however, it increased bleeding time and reduced urinary ACR in a dose-dependent manner. Immunohistochemical staining revealed an amelioration of renal fibrosis, significantly lower deposition of FN and collagen I, and significantly lower expression of the proinflammatory cytokines TNF-α and IL-1β and lower levels of urinary TNF-α and MCP-1 in the clopidogrel-treated db/db mice (P < 0.05). Furthermore, clopidogrel significantly reduced macrophage infiltration into the glomeruli of the db/db mice.
CONCLUSION Clopidogrel significantly reduced renal collagen deposition and fibrosis and prevented renal dysfunction in db/db mice, most likely through inhibition of renal macrophage infiltration and the associated inflammation.
Collapse
Affiliation(s)
- Hong-Qin Li
- Department of Biopharmacy, Jilin University School of Pharmaceutical Sciences, Changchun 130021, Jilin Province, China
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Nian Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Zong-Yu Zheng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Hao-Lin Teng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jin Pei
- Department of Biopharmacy, Jilin University School of Pharmaceutical Sciences, Changchun 130021, Jilin Province, China
| |
Collapse
|
32
|
Mechanism of Cornus Officinalis in Treating Diabetic Kidney Disease Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1799106. [PMID: 35855831 PMCID: PMC9288281 DOI: 10.1155/2022/1799106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Diabetic kidney disease (DKD), one of the most important diabetic complications, is a great clinical challenge. It still lacks proper therapeutic strategies without side effects due to the complex pathological mechanisms. Cornus officinalis (CO) is a common traditional Chinese medicine, which has been used in the treatment of DKD and takes beneficial effects in therapy. However, the mechanism of CO in treating DKD is not clear yet. In this study, network pharmacology was applied to illustrate the potential mechanism of CO and the interaction between targets of CO and targets of disease. First, the active ingredients of CO and related targets were screened from the online database. Second, the intersection network between CO and disease was constructed, and protein–protein interaction analysis was done. Third, GO and KEGG analysis were employed to figure out the key targets of CO. Finally, molecular docking was carried out in the software SYBYL to verify the effectiveness of the ingredients and targets selected. According to GO and KEGG analysis, drug metabolism-cytochrome P450, sphingolipid signaling pathway, HIF-1 signaling pathway, TGF-beta signaling pathway, cGMP-PKG signaling pathway, estrogen signaling pathway, and TNF signaling pathway were most closely related to the pathogenesis of DKD. Moreover, NOS3, TNF, ROCK1, PPARG, KDR, and HIF1A were identified as key targets in regulating the occurrence and development of the disease. This study provides evidence to elucidate the mechanism of CO comprehensively and systematically and lays the foundation for further research on CO.
Collapse
|
33
|
Williams BM, Cliff CL, Lee K, Squires PE, Hills CE. The Role of the NLRP3 Inflammasome in Mediating Glomerular and Tubular Injury in Diabetic Nephropathy. Front Physiol 2022; 13:907504. [PMID: 35755447 PMCID: PMC9218738 DOI: 10.3389/fphys.2022.907504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a multi-protein signalling complex integral to the chronic inflammatory response, activated in response to sterile and non-sterile cellular damage. The assembly and activation of the NLRP3 inflammasome comprise a two-step process involving nuclear factor kappa B (NFkB)-mediated priming, followed by canonical, non-canonical or alternative signalling pathways. These result in the maturation and release of inflammatory cytokines interleukin 1 beta (IL1ß) and interleukin-18 (IL18), which are associated with chronic inflammatory conditions including diabetic kidney disease. Diabetic nephropathy is a condition affecting ∼40% of people with diabetes, the key underlying pathology of which is tubulointerstitial inflammation and fibrosis. There is growing evidence to suggest the involvement of the NLRP3 inflammasome in this chronic inflammation. Early deterioration of kidney function begins in the glomerulus, with tubular inflammation dictating the progression of late-stage disease. Priming and activation of the NLRP3 inflammasome have been linked to several clinical markers of nephropathy including proteinuria and albuminuria, in addition to morphological changes including mesangial expansion. Treatment options for diabetic nephropathy are limited, and research that examines the impact of directly targeting the NLRP3 inflammasome, or associated downstream components are beginning to gain favour, with several agents currently in clinical trials. This review will explore a role for NLRP3 inflammasome activation and signalling in mediating inflammation in diabetic nephropathy, specifically in the glomerulus and proximal tubule, before briefly describing the current position of therapeutic research in this field.
Collapse
Affiliation(s)
- B M Williams
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - C L Cliff
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - K Lee
- Lincoln County Hospital, Lincoln, United Kingdom
| | - P E Squires
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - C E Hills
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
34
|
Liu B, Deng C, Tan P. Ombuin ameliorates diabetic nephropathy in rats by anti-inflammation and antifibrosis involving Notch 1 and PPAR γ signaling pathways. Drug Dev Res 2022; 83:1270-1280. [PMID: 35672933 DOI: 10.1002/ddr.21956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/03/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes and it is urgent to develop effective therapies for DN. In this study, high-sucrose and high-fat diet combined with streptozotocin was used to induce DN in rats to observe the effects of natural flavonoid ombuin on renal function, inflammation, and interstitial fibrosis. Immunohistochemistry and western blotting analysis were used to detect protein expression levels. Results showed that ombuin significantly improved renal function and pathological injury, inhibited accumulation of advanced glycation end-products, suppressed the release of inflammatory cytokines, and improved renal interstitial fibrosis in DN rats. Ombuin also significantly downregulated the expressions of transforming growth factor beta1 (TGF-β1), connective tissue growth factor (CTGF), fibronectin (FN), p65, phosphorylated (p)-p65, Cleaved-Notch 1, and hairy and enhancer of split 1 (Hes 1), and upregulated the expression of peroxisome proliferator-activated receptor γ (PPAR γ). When PPAR γ activity was inhibited by T0070907, the effects of ombuin on improving DN were significantly reversed, and the expressions of TGF-β1, FN, CTGF, p-p65, and p65 increased, while the expressions of Cleaved-Notch 1 and Hes 1 were not significantly affected. These results suggest that ombuin may activate PPAR γ to exert anti-inflammatory and antifibrotic effects by inhibiting Notch 1 activity in DN. It is also possible that ombuin acts on these two independent signal pathways synchronously.
Collapse
Affiliation(s)
- Bin Liu
- Department of Nephrology and Rheumatology, Chinese Medicine Hospital of Hainan Province, Haikou, China
| | - Caichun Deng
- Department of Nephrology and Rheumatology, Chinese Medicine Hospital of Hainan Province, Haikou, China
| | - Ping Tan
- Department of Nephrology and Rheumatology, Chinese Medicine Hospital of Hainan Province, Haikou, China
| |
Collapse
|
35
|
Ma Z, Zhu L, Wang S, Guo X, Sun B, Wang Q, Chen L. Berberine protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition involving the inactivation of the NLRP3 inflammasome. Ren Fail 2022; 44:923-932. [PMID: 35618411 PMCID: PMC9154812 DOI: 10.1080/0886022x.2022.2079525] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Accumulating evidence has implicated that berberine (BBR) has a beneficial effect on diabetic kidney disease (DKD), but its mechanism is not clear. The aim of this study was to assess whether berberine could alleviate tubulointerstitial fibrosis and attenuate epithelial-to-mesenchymal transition (EMT) and its possible molecular mechanism. High-fat diet (HFD) followed by injection of STZ was used to induce diabetic rats in vivo. After the onset of diabetes, rats were treated with either BBR or saline for 12 weeks. In vitro, the human renal proximal tubular epithelial cell line (HK-2) was exposed to high glucose, with or without BBR. The influence of berberine on renal tubulointerstitial histological changes, markers of epithelial-to-mesenchymal transition (EMT) and (NOD-like receptor pyrin domain-containing protein 3) NLRP3 inflammasome expression were examined. Results showed that in vivo, BBR could significantly ameliorate microalbumin and renal pathologic changes in diabetic rats. Immunofluorescence showed that BBR could inhibit EMT. Furthermore, BBR could down-regulate the level of the NLRP3 inflammasome in diabetic rats. Consistently, in vitro, BBR suppressed high glucose-induced EMT and activation of NLRP3 inflammasome in HK-2. Our study demonstrated that BBR could inhibit high glucose-induced EMT and renal interstitial fibrosis by suppressing the NLRP3 inflammasome. BBR might be used as a novel drug to ameliorate tubulointerstitial fibrosis in DKD.
Collapse
Affiliation(s)
- Zejun Ma
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin
| | - Lili Zhu
- Tianjin Medical Devices Quality Supervision and Testing Center, Tianjin, China
| | - Shangshang Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin
| | - Xin Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin
| |
Collapse
|
36
|
Fan C, Zhang D, Zhang J, Li J, Wang Y, Gao L, Han S. The effect of D-chiro-inositol on renal protection in diabetic mice. Aging (Albany NY) 2022; 14:3416-3424. [PMID: 35439732 PMCID: PMC9085239 DOI: 10.18632/aging.204019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022]
Abstract
D-Chiro-inositol (DCI) exerts a hypoglycaemic effect, participates in lipid metabolism and reduces kidney damage. In this study, we preliminarily explored the protective effect of DCI on renal injury in diabetic mice. Male db/db mice were used in this study. After treatment with DCI (35 and 70 mg/kg/d) for 6 consecutive weeks, random blood glucose (RBG) measurements were conducted at 0 and 6 weeks. Creatinine (Cr) and serum blood urea nitrogen (BUN) levels were measured using assay kit, and morphological changes in the kidneys were observed by HE staining, Masson staining and electron microscopy. Immunohistochemical and Western blot experiments were used to examine the protein expression of matrix metalloproteinase-9 (MMP-9), nuclear factor-κB (NF-κB) and peroxisome proliferator-activated receptor-γ (PPAR-γ). We discovered that the increased RBG levels were alleviated after treatment with DCI. Moreover, the Cr and BUN levels were reduced, glomerular mesangial hyperplasia was alleviated, and the degree of renal fibrosis was reduced. In addition, DCI improved the protein expression of MMP-9 and PPAR-γ in kidney tissue, which in turn inhibited NF-κB protein expression, as shown by immunohistochemistry and Western blotting. Our findings showed that DCI ameliorated the renal injury induced by diabetes by upregulating MMP-9 and PPAR-γ expression and downregulating NF-κB expression. We preliminarily concluded that the renal protective effect of DCI on diabetic mice may occurs through the MMP-9/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Chunxue Fan
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, PR China.,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, PR China
| | - Dandan Zhang
- Clinical Medical College, North China University of Science and Technology, Tangshan 063210, Hebei, PR China
| | - Junling Zhang
- School of Nursing and Health, Caofeidian College of Technology, Tangshan 063210, Hebei, PR China
| | - Jinwei Li
- School of Nursing and Health, Caofeidian College of Technology, Tangshan 063210, Hebei, PR China
| | - Yu Wang
- School of Nursing and Health, Caofeidian College of Technology, Tangshan 063210, Hebei, PR China
| | - Linghuan Gao
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, PR China.,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, PR China
| | - Shuying Han
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, PR China.,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, PR China.,School of Nursing and Health, Caofeidian College of Technology, Tangshan 063210, Hebei, PR China
| |
Collapse
|
37
|
Guan G, Xie J, Dai Y, Han H. TFPI2 suppresses the interaction of TGF-β2 pathway regulators to promote endothelial-mesenchymal transition in diabetic nephropathy. J Biol Chem 2022; 298:101725. [PMID: 35157852 PMCID: PMC8914548 DOI: 10.1016/j.jbc.2022.101725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
Endothelial–mesenchymal transition (EndMT) is an important source of myofibroblasts, but also contributes to the progression of diabetic nephropathy (DN). By several differential gene expression analyses from the Gene Expression Omnibus (GEO) database, the tissue factor pathway inhibitor 2 (TFPI2) gene, known as a tumor suppressor, was shown to be dysregulated in DN; however, the potential role and regulatory mechanism of TFPI2 in DN are unclear. Here, we found abnormal upregulation of TFPI2 in the renal cortex of diabetic mice, accompanied by impaired renal function. We also injected a single dose of adeno-associated virus (AAV)2 carrying shRNA targeting TFPI2 intravenously into these mice and found that knockdown of TFPI2 improved renal function and reduced renal fibrosis and cell apoptosis in experimental DN. Furthermore, hyperglycemia-induced EndMT was inhibited in the absence of TFPI2, as evidenced by increased expression of endothelial markers (VE-cadherin and CD31) and decreased expression of mesenchymal markers (α-SMA, desmin, and FSP-1). To further explore the mechanism in vitro, human renal glomerular endothelial cells (hRGECs) were incubated in the presence of high glucose or transforming growth factor beta (TGF-β)2. TFPI2 deficiency inhibited high glucose-induced cell apoptosis and TGF-β2-induced EndMT in hRGECs, while overexpression of TFPI2 had the opposite effects. Importantly, TGF-β2 is a crucial driver of EndMT, and we found that TFPI2 promoted TGF-β2/Smad signaling activation by interferring the interaction of TGF-β pathway regulators (SMURF2 with SMAD7). Our results show that TFPI2 regulates EndMT and the TGF-β2 signaling pathway and is a potential promoter of DN pathogenesis.
Collapse
Affiliation(s)
- Guoying Guan
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Jinjiao Xie
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yamei Dai
- Health Management Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Hui Han
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
38
|
Feng X, Bu F, Huang L, Xu W, Wang W, Wu Q. Preclinical evidence of the effect of quercetin on diabetic nephropathy: A meta-analysis of animal studies. Eur J Pharmacol 2022; 921:174868. [DOI: 10.1016/j.ejphar.2022.174868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/25/2022]
|
39
|
Wu H, Norton V, Cui K, Zhu B, Bhattacharjee S, Lu YW, Wang B, Shan D, Wong S, Dong Y, Chan SL, Cowan D, Xu J, Bielenberg DR, Zhou C, Chen H. Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Front Cardiovasc Med 2022; 9:841928. [PMID: 35252405 PMCID: PMC8891533 DOI: 10.3389/fcvm.2022.841928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a worldwide health problem that usually comes with severe complications. There is no cure for diabetes yet and the threat of these complications is what keeps researchers investigating mechanisms and treatments for diabetes mellitus. Due to advancements in genomics, epigenomics, proteomics, and single-cell multiomics research, considerable progress has been made toward understanding the mechanisms of diabetes mellitus. In addition, investigation of the association between diabetes and other physiological systems revealed potentially novel pathways and targets involved in the initiation and progress of diabetes. This review focuses on current advancements in studying the mechanisms of diabetes by using genomic, epigenomic, proteomic, and single-cell multiomic analysis methods. It will also focus on recent findings pertaining to the relationship between diabetes and other biological processes, and new findings on the contribution of diabetes to several pathological conditions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Vikram Norton
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kui Cui
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Bo Zhu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Sudarshan Bhattacharjee
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yao Wei Lu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Beibei Wang
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Dan Shan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Scott Wong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yunzhou Dong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Siu-Lung Chan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Douglas Cowan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jian Xu
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Diane R. Bielenberg
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
40
|
Wang F, Fan J, Pei T, He Z, Zhang J, Ju L, Han Z, Wang M, Xiao W. Effects of Shenkang Pills on Early-Stage Diabetic Nephropathy in db/db Mice via Inhibiting AURKB/RacGAP1/RhoA Signaling Pathway. Front Pharmacol 2022; 13:781806. [PMID: 35222021 PMCID: PMC8873791 DOI: 10.3389/fphar.2022.781806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, so there is an urgent need to suppress its development at early stage. Shenkang pills (SKP) are a hospital prescription selected and optimized from effective traditional Chinese medicinal formulas for clinical treatment of DN. In the present study, liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS) and total contents qualification were applied to generate a quality control standard of SKP. For verifying the therapeutic effects of SKP, db/db mice were administered intragastrically with SKP at a human-equivalent dose (1.82 g/kg) for 4 weeks. Moreover, the underlying mechanism of SKP were analyzed by the renal RNA sequencing and network pharmacology. LC-Q-TOF-MS identified 46 compounds in SKP. The total polysaccharide and organic acid content in SKP were 4.60 and 0.11 mg/ml, respectively, while the total flavonoid, saponin, and protein content were 0.25, 0.31, and 0.42 mg/ml, respectively. Treatment of SKP significantly reduced fasting blood glucose, improved renal function, and ameliorated glomerulosclerosis and focal foot processes effacement in db/db mice. In addition, SKP protected podocytes from injury by increasing nephrin and podocin expression. Furthermore, transcriptome analyses revealed that 430 and 288 genes were up and down-regulated in mice treated with SKP, relative to untreated controls. Gene ontology enrichment analysis revealed that the differentially expressed genes mainly involved in modulation of cell division and chromosome segregation. Weighted gene co-expression network analysis and network pharmacology analysis indicated that aurora kinase B (AURKB), Rac GTPase activating protein 1 (RacGAP1) and SHC binding, and spindle associated 1 (shcbp1) might be the core targets of SKP. This protein and Ras homolog family member A (RhoA) were found overexpression in db/db mice, but significantly decreased with SKP treatment. We conclude that SKP can effectively treat early-stage DN and improve renal podocyte dysfunction. The mechanism may involve down-regulation of the AURKB/RacGAP1/RhoA pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Xiao
- *Correspondence: Mingqing Wang, ; Wei Xiao,
| |
Collapse
|
41
|
Zhang Y, Jin D, Duan Y, Zhang Y, Duan L, Lian F, Tong X. Bibliometric Analysis of Renal Fibrosis in Diabetic Kidney Disease From 1985 to 2020. Front Public Health 2022; 10:767591. [PMID: 35186833 PMCID: PMC8855938 DOI: 10.3389/fpubh.2022.767591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
BackgroundDiabetic renal fibrosis (DRF) is an irreversible renal pathological change in the end-stage of diabetic kidney disease (DKD), which plays a significant role in the development and deterioration of the disease. However, data for bibliometric analysis of renal fibrosis in DKD is currently missing. This study aimed to provide a comprehensive and visualized view of DRF research and lay the foundation for further studies.Materials and MethodsFirstly, the data was collected from the Web of Science Core Collection (WoSCC) database. Secondly, the Web of Science analytic tool was performed to analyze publication years, authors, countries/regions, organizations, and citation frequency. Finally, CiteSpace was employed to construct a visualization bibliometric network to reveal the emerging trends and hotspots of DRF.ResultsA total of 3,821 publications from 1985 to 2020 were included in this study. The number of publications has maintained a growth trend since 2003. Cooper is the most prolific author in this field, and the American Journal of Physiology-Renal Physiology ranking as first place compared with other journals. In terms of the number of publications, China contributed the most to DRF. Monash University is the organization that published the most papers. The top 5 clusters of keyword co-appearance are “chronic kidney disease”, “primary biliary cirrhosis”, “receptor”, “TGF-beta”, “renal tubulointerstitium”. The top 5 clusters of reference co-citation are “microRNAs”, “bone morphogenetic protein”, “hypertrophy”, “glomerulosclerosis”, “diabetic kidney disease”. The strongest citation burst of keyword is “diabetic kidney disease” and the strongest burst of cited reference is “Meng, 2016”.ConclusionsThe present study analyzed the research hotspots, Frontiers, and development trend of DRF and have important implications for future research.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Endocrinology Department, Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehong Zhang
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyun Duan
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Xiaolin Tong
| |
Collapse
|
42
|
Zang L, Gao F, Huang A, Zhang Y, Luo Y, Chen L, Mao N. Icariin inhibits epithelial mesenchymal transition of renal tubular epithelial cells via regulating the miR-122-5p/FOXP2 axis in diabetic nephropathy rats. J Pharmacol Sci 2022; 148:204-213. [PMID: 35063135 DOI: 10.1016/j.jphs.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial mesenchymal transition (EMT) of renal tubular epithelial cells (RTECs) dominates the pathology of diabetic nephropathy (DN). microRNAs (miRNAs) can influence the fate of DN via regulation of EMT. This study aimed to analyze the role of Icariin (ICA) in EMT of RTECs, hoping to provide theoretical basis for DN management. The DN rat model was established using streptozocin, followed by ICA treatment, histopathological observation, and detection of creatinine and blood urea nitrogen. In vitro cell models were established using high glucose (HG), followed by assessment of cell proliferation, apoptosis, and migration, and E-cadherin, α-SMA, miR-122-5p, and FOXP2 expressions. Cells were transfected with miR-122-5p mimics or si-FOXP2 for joint experiments with ICA. The targeting relationship between miR-122-5p and FOXP2 was verified. ICA repaired renal dysfunctions and glomerular structure abnormities of DN rats in a dose-dependent manner. In vitro, ICA improved proliferation while suppressed migration, apoptosis, and EMT of RTECs. miR-122-5p was up-regulated in DN rats and suppressed by ICA, and miR-122-5p targeted FOXP2. miR-122-5p up-regulation or FOXP2 down-regulation reversed the protective effects of ICA on HG-induced RTECs. Overall, our finding ascertained that ICA inhibited miR-122-5p to promote FOXP2 transcription, thereby attenuating EMT of RTECs and renal injury in DN rats.
Collapse
Affiliation(s)
- Li Zang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Fang Gao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Aijing Huang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Yalan Zhang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Yangyan Luo
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Lijia Chen
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Nan Mao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China.
| |
Collapse
|
43
|
miRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms. J Physiol Biochem 2022; 78:19-37. [DOI: 10.1007/s13105-021-00867-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
|
44
|
Zhang HC, Wen T, Cai YZ. Overexpression of miR-146a promotes cell proliferation and migration in a model of diabetic foot ulcers by regulating the AKAP12 axis. Endocr J 2022; 69:85-94. [PMID: 34483150 DOI: 10.1507/endocrj.ej21-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the current study, we aimed to study the effect of miR-146a on proliferation and migration in an in vitro diabetic foot ulcer (DFU) model by targeting A-kinase-anchoring protein 12 (AKAP12). An in vitro DFU model was initially established using HaCaT cells derived from human keratinocytes and induced by advanced glycation end products (AGEs). The effects of overexpression of miR-146a on proliferation and migration ability were analysed. The expression levels of miR-146a and AKAP12 were measured by quantitative real-time polymerase chain reaction (qRT-PCR), and AKAP12, hypoxia-inducible factor-1α (HIF-1α), Wnt3a and β-catenin protein levels were measured by western blotting. The cell proliferation ability was measured by MTT, and the migration ability was analysed by a cell scratch assay. The binding between miR-146a and AKAP12 was identified using a luciferase reporter assay. The results demonstrated that AGEs significantly suppressed cell proliferation and migration, while the expression of miR-146a decreased and the expression of AKAP12 increased. A luciferase reporter assay revealed that miR-146a could directly target AKAP12. Overexpression of miR-146a promoted cell proliferation and migration in an in vitro DFU model and also promoted the expression of HIF-1α, Wnt3a and β-catenin but suppressed the expression of AKAP12. Co-overexpression of miR-146a and AKAP12 reversed the effect of miR-146a on cell proliferation and migration. Our findings revealed that miR-146a directly targeted AKAP12 and promoted cell proliferation and migration in an in vitro DFU model. This study provides a new perspective for the study of miR-146a in the treatment of DFU.
Collapse
Affiliation(s)
- Han-Chong Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, P.R. China
- Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Tie Wen
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, P.R. China
- Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Yu-Zhong Cai
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, P.R. China
- Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, P.R. China
| |
Collapse
|
45
|
Wang H, Zhang R, Wu X, Chen Y, Ji W, Wang J, Zhang Y, Xia Y, Tang Y, Yuan J. The Wnt Signaling Pathway in Diabetic Nephropathy. Front Cell Dev Biol 2022; 9:701547. [PMID: 35059392 PMCID: PMC8763969 DOI: 10.3389/fcell.2021.701547] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney-related complication of both type 1 and type 2 diabetes mellitus (T1DM, T2DM) and the second major cause of end-stage kidney disease. DN can lead to hypertension, edema, and proteinuria. In some cases, DN can even progress to kidney failure, a life-threatening condition. The precise etiology and pathogenesis of DN remain unknown, although multiple factors are believed to be involved. The main pathological manifestations of DN include mesangial expansion, thickening of the glomerular basement membrane, and podocyte injury. Eventually, these pathological manifestations will lead to glomerulosclerosis, thus affecting renal function. There is an urgent need to develop new strategies for the prevention and treatment of DN. Existing evidence shows that the Wnt signaling cascade plays a key role in regulating the development of DN. Previous studies focused on the role of the Wnt canonical signaling pathway in DN. Subsequently, accumulated evidence on the mechanism of the Wnt non-canonical signaling indicated that Wnt/Ca2+ and Wnt/PCP also have essential roles in the progression of DN. In this review, we summarize the specific mechanisms of Wnt signaling in the occurrence and development of DN in podocyte injury, mesangial cell injury, and renal fibrosis. Also, to elucidate the significance of the Wnt canonical pathway in the process of DN, we uncovered evidence supporting that both Wnt/PCP and Wnt/Ca2+ signaling are critical for DN development.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Jining Medical University, Jining, China
| | - Ran Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Xinjie Wu
- Basic Medical School, Jining Medical University, Jining, China
| | - Yafen Chen
- Basic Medical School, Jining Medical University, Jining, China
| | - Wei Ji
- Basic Medical School, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yawen Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinxiang Yuan
- Collaborative Innovation Center, Jining Medical University, Jining, China
| |
Collapse
|
46
|
Jiang S, Luo M, Bai X, Nie P, Zhu Y, Cai H, Li B, Luo P. Cellular crosstalk of glomerular endothelial cells and podocytes in diabetic kidney disease. J Cell Commun Signal 2022; 16:313-331. [PMID: 35041192 DOI: 10.1007/s12079-021-00664-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes and is the leading cause of end-stage renal disease (ESRD). Persistent proteinuria is an important feature of DKD, which is caused by the destruction of the glomerular filtration barrier (GFB). Glomerular endothelial cells (GECs) and podocytes are important components of the GFB, and their damage can be observed in the early stages of DKD. Recently, studies have found that crosstalk between cells directly affects DKD progression, which has prospective research significance. However, the pathways involved are complex and largely unexplored. Here, we review the literature on cellular crosstalk of GECs and podocytes in the context of DKD, and highlight specific gaps in the field to propose future research directions. Elucidating the intricates of such complex processes will help to further understand the pathogenesis of DKD and develop better prevention and treatment options.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Hangxi Cai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
47
|
Tomilin VN, Pyrshev K, Stavniichuk A, Hassanzadeh Khayyat N, Ren G, Zaika O, Khedr S, Staruschenko A, Mei FC, Cheng X, Pochynyuk O. Epac1-/- and Epac2-/- mice exhibit deficient epithelial Na+ channel regulation and impaired urinary Na+ conservation. JCI Insight 2021; 7:145653. [PMID: 34914636 PMCID: PMC8855822 DOI: 10.1172/jci.insight.145653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Exchange proteins directly activated by cAMP (Epacs) are abundantly expressed in the renal tubules. We used genetic and pharmacological tools in combination with balance, electrophysiological, and biochemical approaches to examine the role of Epac1 and Epac2 in renal sodium handling. We demonstrate that Epac1–/– and Epac2–/– mice exhibit a delayed anti-natriuresis to dietary sodium restriction despite augmented aldosterone levels. This was associated with a significantly lower response to the epithelial Na+ channel (ENaC) blocker amiloride, reduced ENaC activity in split-opened collecting ducts, and defective posttranslational processing of α and γENaC subunits in the KO mice fed with a Na+-deficient diet. Concomitant deletion of both isoforms led to a marginally greater natriuresis but further increased aldosterone levels. Epac2 blocker ESI-05 and Epac1&2 blocker ESI-09 decreased ENaC activity in Epac WT mice kept on the Na+-deficient diet but not on the regular diet. ESI-09 injections led to natriuresis in Epac WT mice on the Na+-deficient diet, which was caused by ENaC inhibition. In summary, our results demonstrate similar but nonredundant actions of Epac1 and Epac2 in stimulation of ENaC activity during variations in dietary salt intake. We speculate that inhibition of Epac signaling could be instrumental in treatment of hypertensive states associated with ENaC overactivation.
Collapse
Affiliation(s)
- Victor N Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Kyrylo Pyrshev
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Anna Stavniichuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Naghmeh Hassanzadeh Khayyat
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Guohui Ren
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwuakee, United States of America
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwuakee, United States of America
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Xiaodong Cheng
- The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| |
Collapse
|
48
|
Sapian S, Budin SB, Taib IS, Mariappan V, Zainalabidin S, Chin KY. Role of Polyphenol in Regulating Oxidative Stress, Inflammation, Fibrosis, and Apoptosis in Diabetic Nephropathy. Endocr Metab Immune Disord Drug Targets 2021; 22:453-470. [PMID: 34802412 DOI: 10.2174/1871530321666211119144309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is known as one of the driving sources of end-stage renal disease (ESRD). DN prevalence continues to increase in every corner of the world andthat has been a major concern to healthcare professionals as DN is the key driver of diabetes mellitus (DM) morbidity and mortality. Hyperglycaemia is closely connected with the production of reactive oxygen species (ROS) that cause oxidative stress response as well as numerous cellular and molecular modifications. Oxidative stress is a significant causative factor to renal damage, as it can activate other immunological pathways, such as inflammatory, fibrosis, and apoptosis pathways. These pathways can lead to cellular impairment and death as well as cellular senescence. Natural substances containing bioactive compounds, such as polyphenols, have been reported to exert valuable effects on various pathological conditions, including DM. The role of polyphenols in alleviating DN conditions has been documented in many studies. In this review, the potential of polyphenols in ameliorating the progression of DN via modulation of oxidative stress, inflammation, fibrosis, and apoptosis, as well as cellular senescence, has been addressed. This information may be used as the strategies for the management of DN and development as nutraceutical products to overcome DN development.
Collapse
Affiliation(s)
- Syaifuzah Sapian
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Vanitha Mariappan
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Satirah Zainalabidin
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Kok Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000. Malaysia
| |
Collapse
|
49
|
Gusev E, Solomatina L, Zhuravleva Y, Sarapultsev A. The Pathogenesis of End-Stage Renal Disease from the Standpoint of the Theory of General Pathological Processes of Inflammation. Int J Mol Sci 2021; 22:ijms222111453. [PMID: 34768884 PMCID: PMC8584056 DOI: 10.3390/ijms222111453] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease can progress to end-stage chronic renal disease (ESRD), which requires the use of replacement therapy (dialysis or kidney transplant) in life-threatening conditions. In ESRD, irreversible changes in the kidneys are associated with systemic changes of proinflammatory nature and dysfunctions of internal organs, skeletal muscles, and integumentary tissues. The common components of ESRD pathogenesis, regardless of the initial nosology, are (1) local (in the kidneys) and systemic chronic low-grade inflammation (ChLGI) as a risk factor for diabetic kidney disease and its progression to ESRD, (2) inflammation of the classical type characteristic of primary and secondary autoimmune glomerulonephritis and infectious recurrent pyelonephritis, as well as immune reactions in kidney allograft rejection, and (3) chronic systemic inflammation (ChSI), pathogenetically characterized by latent microcirculatory disorders and manifestations of paracoagulation. The development of ChSI is closely associated with programmed hemodialysis in ESRD, as well as with the systemic autoimmune process. Consideration of ESRD pathogenesis from the standpoint of the theory of general pathological processes opens up the scope not only for particular but also for universal approaches to conducting pathogenetic therapies and diagnosing and predicting systemic complications in severe nephropathies.
Collapse
|
50
|
Liu P, Zhang J, Wang Y, Shen Z, Wang C, Chen DQ, Qiu X. The Active Compounds and Therapeutic Target of Tripterygium wilfordii Hook. f. in Attenuating Proteinuria in Diabetic Nephropathy: A Review. Front Med (Lausanne) 2021; 8:747922. [PMID: 34621768 PMCID: PMC8490618 DOI: 10.3389/fmed.2021.747922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Tripterygium wilfordii Hook. f. (TWHF) is a traditional Chinese herbal medicine and widely used to treat diabetic kidney disease in China. Emerging evidences have revealed its ability to attenuate diabetic nephropathy (DN). Tripterygium wilfordii polyglycosides (TWPs), triptolide (TP), and celastrol are predominantly active compounds isolated from TWHF. The effects and molecular mechanisms of TWHF and its active compounds have been investigated in recent years. Currently, it is becoming clearer that the effects of TWHF and its active compounds involve in anti-inflammation, anti-oxidative stress, anti-fibrosis, regulating autophagy, apoptosis, and protecting podocytes effect. This review presents an overview of the current findings related to the effects and mechanisms of TWHF and its active compounds in therapies of DN, thus providing a systematic understanding of the mechanisms and therapeutic targets by which TWHF and its active compounds affect cells and tissues in vitro and in vivo.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jing Zhang
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Yun Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Zhengri Shen
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chen Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Xinping Qiu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|