1
|
Grandi L, Ye W, Clancy MV, Vallat A, Glauser G, Abdala-Roberts L, Brevault T, Benrey B, Turlings TCJ, Bustos-Segura C. Plant-to-plant defence induction in cotton is mediated by delayed release of volatiles upon herbivory. THE NEW PHYTOLOGIST 2024. [PMID: 39417446 DOI: 10.1111/nph.20202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Caterpillar feeding immediately triggers the release of volatile compounds stored in the leaves of cotton plants. Additionally, after 1 d of herbivory, the leaves release other newly synthesised volatiles. We investigated whether these volatiles affect chemical defences in neighbouring plants and whether such temporal shifts in emissions matter for signalling between plants. Undamaged receiver plants were exposed to volatiles from plants infested with Spodoptera caterpillars. For receiver plants, we measured changes in defence-related traits such as volatile emissions, secondary metabolites, phytohormones, gene expression, and caterpillar feeding preference. Then, we compared the effects of volatiles emitted before and after 24 h of damage on neighbouring plant defences. Genes that were upregulated in receiver plants following exposure to volatiles from damaged plants were the same as those activated directly by herbivory on a plant. Only volatiles emitted after 24 h of damage, including newly produced volatiles, were found to increase phytohormone levels, upregulate defence genes, and enhance resistance to caterpillars. These results indicate that the defence induction by volatiles is a specific response to de novo synthesised volatiles, suggesting that these compounds are honest signals of herbivore attack. These findings point to an adaptive origin of airborne signalling between plants.
Collapse
Affiliation(s)
- Luca Grandi
- Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Wenfeng Ye
- Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mary V Clancy
- Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, Neuchâtel, 2000, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, Neuchâtel, 2000, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Km. 15.5 Carretera Mérida-Xtmakuil s/n, Mérida, Yucatán, 97200, Mexico
| | - Thierry Brevault
- CIRAD, UPR AIDA, Biopass, Centre de recherche ISRA-IRD, Dakar, PH49+5VJ, Senegal
- AIDA, Univ Montpellier, CIRAD, Montpellier, 34980, France
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Ted C J Turlings
- Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Carlos Bustos-Segura
- Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
- Institute of Ecology and Environmental Sciences-Paris, INRAE, Sorbonne Université, CNRS, IRD, Université de Paris, UPEC, Route de St Cyr, Versailles, 78026, France
| |
Collapse
|
2
|
Thompson RA, Malone SC, Peltier D, Six D, Robertson N, Oliveira C, McIntire CD, Pockman WT, McDowell NG, Trowbridge AM, Adams HD. Local carbon reserves are insufficient for phloem terpene induction during drought in Pinus edulis in response to bark beetle-associated fungi. THE NEW PHYTOLOGIST 2024; 244:654-669. [PMID: 39149848 DOI: 10.1111/nph.20051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack. We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in mature Pinus edulis under experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostoma sp.) of Ips confusus, the main bark beetle colonizing this tree, to induce a defensive response. Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted for c. 23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site. Our results show that de novo terpene synthesis represents only a fraction of the total measured phloem terpenes in P. edulis following fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance of de novo terpene synthesis in a tree's induced defense response.
Collapse
Affiliation(s)
- R Alex Thompson
- Department of Life and Environmental Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Shealyn C Malone
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Drew Peltier
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV, 89154, USA
| | - Diana Six
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Nathan Robertson
- Biology Department, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Celso Oliveira
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - William T Pockman
- Biology Department, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Henry D Adams
- School of the Environment, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| |
Collapse
|
3
|
Baker G, Zhao S, Klutsch JG, Ishangulyyeva G, Erbilgin N. The Legacy Effect of Mountain Pine Beetle Outbreaks on the Chemical and Anatomical Defences of Surviving Lodgepole Pine Trees. Metabolites 2024; 14:472. [PMID: 39330479 PMCID: PMC11434468 DOI: 10.3390/metabo14090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
The recent mountain pine beetle outbreaks have caused widespread mortality among lodgepole pine trees in western North America, resulting in a reduced population of surviving trees. While previous studies have focused on the cascading impacts of these outbreaks on the physiology and growth of the surviving trees, there remains a need for a comprehensive study into the interactions among various physiological traits and the growth in post-outbreak stands. Specifically, the relationship between chemical (primarily terpenes) and anatomical (mainly resin ducts) defences, as well as the allocation of non-structural carbohydrates (NSCs) to support these defence modalities, is poorly understood. To address these gaps, we conducted a field survey of surviving lodgepole pine trees in post-mountain pine beetle outbreak stands in western Canada. Our retrospective analysis aimed at determining correlations between the post-outbreak concentrations of monoterpenes, diterpenes, and NSCs in the phloem and the historical resin duct characteristics and growth traits before and after the outbreak. We detected strong correlations between the post-outbreak concentrations of monoterpenes and historical resin duct characteristics, suggesting a possible link between these two defence modalities. Additionally, we found a positive relationship between the NSCs and the total concentrations of monoterpenes and diterpenes, suggesting that NSCs likely influence the production of these terpenes in lodgepole pine. Furthermore, historical tree growth patterns showed strong positive correlations with many individual monoterpenes and diterpenes. Interestingly, while surviving trees had enhanced anatomical defences after the outbreak, their growth patterns did not vary before and after the outbreak conditions. The complexity of these relationships emphasizes the dynamics of post-outbreak stand dynamics and resource allocations in lodgepole pine forests, highlighting the need for further research. These findings contribute to a broader understanding of conifer defences and their coordinated responses to forest insect outbreaks, with implications for forest management and conservation strategies.
Collapse
Affiliation(s)
- Gigi Baker
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada (J.G.K.)
| | - Shiyang Zhao
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada (J.G.K.)
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB T6G 2E3, Canada
| | - Jennifer G. Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada (J.G.K.)
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB T6G 2E3, Canada
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada (J.G.K.)
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada (J.G.K.)
| |
Collapse
|
4
|
Said-Al Ahl HAH, Kačániova M, Mahmoud AA, Hikal WM, Čmiková N, Szczepanek M, Błaszczyk K, Al-Balawi SM, Bianchi A, Smaoui S, Tkachenko KG. Phytochemical Characterization and Biological Activities of Essential Oil from Satureja montana L., a Medicinal Plant Grown under the Influence of Fertilization and Planting Dates. BIOLOGY 2024; 13:328. [PMID: 38785810 PMCID: PMC11118672 DOI: 10.3390/biology13050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The rising demand for safe plant compounds and herbal products that contribute positively to human health is in line with current market trends. Plants belonging to the Satureja genus, particularly the aromatic medicinal S. montana L. from the Lamiaceae family, are well suited to these trends as they serve as pharmaceutical raw materials. This research aimed to assess the influence of sowing date and fertilization doses, as well as their interaction, on the fresh weight, essential oil content, and composition of S. montana. Experimental cultivation involved varying nitrogen and phosphorus levels. The second cut had the highest fresh weight and oil production compared to the first cut. The highest total plant biomass was achieved with autumn sowing and fertilization at 55 kg N/ha and 37 kg P/ha, whereas Spring sowing exhibited higher essential oil production, with the maximum oil % with 74 kg P/ha and oil yield after applying 55 kg N/ha and 74 kg P/ha. The GC-MS analysis revealed that carvacrol was the predominant compound, with it being recommended to grow S. montana in Spring at doses of 55 kg N/ha and 74 kg P/ha for the superior oil yield. Additionally, S. montana essential oil demonstrated notable biological and antimicrobial activity, positioning it as a potential alternative to chemical food preservatives.
Collapse
Affiliation(s)
- Hussein A. H. Said-Al Ahl
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St. Dokki, Giza 12622, Egypt
| | - Miroslava Kačániova
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warszawa, Poland
| | - Abeer A. Mahmoud
- Department of Botany (Plant Physiology Section), Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Wafaa M. Hikal
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (W.M.H.); (S.M.A.-B.)
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Małgorzata Szczepanek
- Department of Agronomy, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland; (M.S.); (K.B.)
| | - Karolina Błaszczyk
- Department of Agronomy, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland; (M.S.); (K.B.)
| | - Siham M. Al-Balawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (W.M.H.); (S.M.A.-B.)
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Sfax 3029, Tunisia;
| | - Kirill G. Tkachenko
- Peter the Great Botanical Garden of the V.L. Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg 197376, Russia;
| |
Collapse
|
5
|
Wahyuni DSC, Klinkhamer PGL, Choi YH, Leiss KA. Resistance to Frankliniella occidentalis during Different Plant Life Stages and under Different Environmental Conditions in the Ornamental Gladiolus. PLANTS (BASEL, SWITZERLAND) 2024; 13:687. [PMID: 38475533 DOI: 10.3390/plants13050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
The defense mechanisms of plants evolve as they develop. Previous research has identified chemical defenses against Western flower thrips (WFT) in Gladiolus (Gladiolus hybridus L.). Consequently, our study aimed to explore the consistency of these defense variations against WFT across the various developmental stages of Gladiolus grown under different conditions. Thrips bioassays were conducted on whole plants at three developmental stages, using the Charming Beauty and Robinetta varieties as examples of susceptible and resistant varieties, respectively. Metabolomic profiles of the leaves, buds and flowers before thrips infestation were analyzed. The thrips damage in Charming Beauty was more than 500-fold higher than the damage in Robinetta at all plant development stages. Relative concentrations of triterpenoid saponins and amino acids that were associated with resistance were higher in Robinetta at all plant stages. In Charming Beauty, the leaves exhibited greater damage compared to buds and flowers. The relative concentrations of alanine, valine and threonine were higher in buds and flowers than in leaves. The Metabolomic profiles of the leaves did not change significantly during plant development. In addition, we cultivated plants under different environmental conditions, ensuring consistency in the performance of the two varieties across different growing conditions. In conclusion, the chemical thrips resistance markers, based on the analysis of vegetative plants grown in climate rooms, were consistent over the plant's lifetime and for plants grown under field conditions.
Collapse
Affiliation(s)
- Dinar S C Wahyuni
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
- Pharmacy Department, Faculty Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kirsten A Leiss
- Business Unit Horticulture, Wageningen University and Research Center, Postbus 20, 2665ZG Bleiswijk, The Netherlands
| |
Collapse
|
6
|
Dady ER, Kleczewski N, Ugarte CM, Ngumbi E. Plant Variety, Mycorrhization, and Herbivory Influence Induced Volatile Emissions and Plant Growth Characteristics in Tomato. J Chem Ecol 2023; 49:710-724. [PMID: 37924424 DOI: 10.1007/s10886-023-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 11/06/2023]
Abstract
Plants produce a range of volatile organic compounds (VOCs) that mediate vital ecological interactions between herbivorous insects, their natural enemies, plants, and soil dwelling organisms including arbuscular mycorrhizal fungi (AMF). The composition, quantity, and quality of the emitted VOCs can vary and is influenced by numerous factors such as plant species, variety (cultivar), plant developmental stage, root colonization by soil microbes, as well as the insect developmental stage, and level of specialization of the attacking herbivore. Understanding factors shaping VOC emissions is important and can be leveraged to enhance plant health and pest resistance. In this greenhouse study, we evaluated the influence of plant variety, mycorrhizal colonization, herbivory, and their interactions on the composition of emitted volatiles in tomato plants (Solanum lycopersicum L.). Four tomato varieties from two breeding histories (two heirlooms and two hybrids), were used. Tomato plants were inoculated with a commercial inoculum blend consisting of four species of AMF. Plants were also subjected to herbivory by Manduca sexta (Lepidoptera: Sphingidae L.) five weeks after transplanting. Headspace volatiles were collected from inoculated and non-inoculated plants with and without herbivores using solid phase-microextraction. Volatile profiles consisted of 21 different volatiles in detectable quantities. These included monoterpenes, sesquiterpenes, and alkane hydrocarbons. We documented a strong plant variety effect on VOC emissions. AMF colonization and herbivory suppressed VOC emissions. Plant biomass was improved by colonization of AMF. Our results show that mycorrhization, herbivory and plant variety can alter tomato plant VOC emissions and further shape volatile-mediated insect and plant interactions.
Collapse
Affiliation(s)
- Erinn R Dady
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Carmen M Ugarte
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Esther Ngumbi
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Shibata A, Kudo G. Night and day: Contributions of diurnal and nocturnal visitors to pollen dispersal, paternity diversity, and fruit set in an early-blooming shrub, Daphne jezoensis. AMERICAN JOURNAL OF BOTANY 2023; 110:e16239. [PMID: 37668113 DOI: 10.1002/ajb2.16239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
PREMISE Under uncertain pollinator visit conditions, plants often exhibit long flowering periods and generalized pollination systems. Flowering of the gynodioecious shrub Daphne jezoensis occurs in early spring in cool temperate forests. Pollination by nocturnal moths is expected, given the species' tubular-shaped flowers with sweet fragrance and nectar. However, the effectiveness of nocturnal moths under cool conditions is unknown. We evaluated the relative importance of diurnal and nocturnal visitors as pollinators in early spring. METHODS We investigated flowering duration, flower visitors, and floral scents in a natural population. We experimentally exposed flowers to visitors only during daytime or nighttime using bagging treatments and evaluated the contributions of diurnal and nocturnal insects to fruit set, pollen dispersal distance, and paternity diversity using 16 microsatellite markers. RESULTS Female flowers lasted ~3 wk, which was ~8 d longer than the flowering period of hermaphrodites. Various insects, including Coleoptera, Diptera, Hymenoptera, and Lepidoptera, visited the flowers during both daytime and nighttime. Flowers emitted volatiles, such as lilac aldehyde isomers and β-ocimene, which are known to attract moths. Fruit-set rate in the night-open treatment was similar to or higher than that in the day-open treatment. However, pollen dispersal distance in the night-open treatment was shorter than that in the day-open treatment. Paternity diversity was similar in day-open and night-open treatments. CONCLUSIONS Early-blooming plants ensure pollen receipt and dispersal by having a long flowering period and using both diurnal and nocturnal flower visitors, suggesting the importance of a generalized pollination system under uncertain pollinator visit conditions.
Collapse
Affiliation(s)
- Akari Shibata
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Gaku Kudo
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
8
|
Frost CJ. Overlaps and trade-offs in the diversity and inducibility of volatile chemical profiles among diverse sympatric neotropical canopy trees. PLANT, CELL & ENVIRONMENT 2023; 46:3059-3071. [PMID: 37082810 DOI: 10.1111/pce.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the strategies by which they are deployed in nature may influence biological diversity. Trees in neotropical forests are subject to relatively high herbivore pressure. Such consistent pressure is thought to select for constitutive, non-flexible defence-related phytochemistry with limited capacity for inducible phytochemical responses. However, this has not been explored for volatile organic compounds (VOCs) that have a relatively low ratio of production costs to ecological benefits. To test this, I sampled VOCs emitted from canopy leaves of 10 phylogenetically diverse tree species (3 Magnoliids and 7 Rosids) in the Peruvian Amazon before and after induction with the phytohormone methyl jasmonate (MeJA). There was no phylogenetic signal in induction or magnitude of MeJA-induced VOC emissions from intact leaves: all trees induced VOC profiles dominated by β-ocimene, linalool, and α-farnesene of varying ratios. Moreover, overall inducibility of VOCs from intact leaves was unrelated to phytochemical diversity or richness. In contrast, experimentally wounded leaves showed considerable phylogeny-based and MeJA-independent variation the richness and diversity of constitutive wound-emitted VOCs. Moreover, VOC inducibility from wounded leaves correlated negatively with phytochemical richness and diversity, potentially indicating a tradeoff in constitutive and inducible defence strategies for non-volatile specialised metabolites but not for inducible VOCs. Importantly, there was no correlation between any chemical profile and either natural herbivory or leaf toughness. The coexistence of multiple phytochemical strategies in a hyper-diverse forest has broad implications for competitive and multitrophic interactions, and the evolutionary forces that maintain the exceptional plant biodiversity in neotropical forests.
Collapse
Affiliation(s)
- Christopher J Frost
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Camina JL, Usseglio V, Marquez V, Merlo C, Dambolena JS, Zygadlo JA, Ashworth L. Ecological interactions affect the bioactivity of medicinal plants. Sci Rep 2023; 13:12165. [PMID: 37500739 PMCID: PMC10374891 DOI: 10.1038/s41598-023-39358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
Essential oils produced by medicinal plants possess important bioactive properties (antibacterial, antioxidant) of high value for human society. Pollination and herbivory can modify the chemical defences of plants and therefore they may influence the bioactivity of essential oils. However, the effect of ecological interactions on plant bioactivity has not yet been evaluated. We tested the hypothesis that cross-pollination and simulated herbivory modify the chemical composition of essential oils, improving the bioactive properties of the medicinal plant Lepechinia floribunda (Lamiaceae). Through controlled experiments, we showed that essential oils from the outcrossed plant progeny had a higher relative abundance of oxygenated terpenes and it almost doubled the bacteriostatic effect on Staphylococcus aureus, compared to inbred progeny (i.e., progeny produced in absence of pollinators). Herbivory affected negatively and positively the production of rare compounds in inbred and outcrossed plants, respectively, but its effects on bioactivity still remain unknown. We show for the first time that by mediating cross-pollination (indirect ecosystem service), pollinators can improve ecosystem services linked to the biological activity of plant's essential oils. We stress the importance of the qualitative component of pollination (self, cross); an aspect usually neglected in studies of pollination services.
Collapse
Affiliation(s)
- Julia L Camina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Virginia Usseglio
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Cátedra de Química Orgánica, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Cátedra de Química General, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Victoria Marquez
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Carolina Merlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Facultad de Ciencias Agropecuarias (FCA), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - José S Dambolena
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Cátedra de Química Orgánica, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Cátedra de Química Orgánica, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Lorena Ashworth
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Universidad Nacional Autónoma de México, Morelia, Mexico.
| |
Collapse
|
10
|
Wang Y, Bai J, Wen L, Wang W, Zhang L, Liu Z, Liu H. Phytotoxicity of microplastics to the floating plant Spirodela polyrhiza (L.): Plant functional traits and metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121199. [PMID: 36738884 DOI: 10.1016/j.envpol.2023.121199] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Freshwater ecosystems are gradually becoming sinks for terrestrial microplastics (MPs), posing a potential ecological risk. Although the effects of MPs on plankton and aquatic animals in freshwater ecosystems have been given increasing attention, the toxicity of MPs to the metabolism of aquatic plants remains unclear. Here, the model aquatic plant Spirodela polyrhiza (L.) Schleid. (S. polyrhiza) was exposed to polyvinyl chloride (PVC; 0, 10, 100 and 1000 mg/L) MPs, and changes in the plant functional traits and physiological metabolism were monitored. The results showed that the high dose of PVC MPs decreased the adventitious root elongation ratio by 41.68% and leaf multiplication ratio by 61.03% of S. polyrhiza, and resulted in the decrease in anthocyanin and nitrogen contents to 63.45% and 84.21% of the control group, respectively. Moreover, the widely targeted metabolomics analysis results showed 37 differential metabolites in the low-dose treatment and 119 differential metabolites in the high-dose treatment. PVC MPs interfered with organic matter accumulation by affecting carbon metabolism, nitrogen metabolism, amino acid metabolism and lipid metabolism, and S. polyrhiza resists PVC MP stress by regulating the synthesis and metabolism of secondary metabolites. PVC MPs had concentration-related toxicological effects on plant functional traits, inhibited plant growth and reproduction, affected plant nutrient metabolism, and exhibited profound effects on the nitrogen fate of aquatic plant habitats. Overall, we systematically summarized the metabolic response mechanisms of aquatic plants to PVC MP stress, providing a new perspective for studying the effects of MPs on plant trait function and ecological risks.
Collapse
Affiliation(s)
- Yaqi Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Lixiang Wen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Zhe Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Haizhu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
11
|
Dias EBDS, Camilo YMV, Souza ERBD, Ferri PH. Essential oil variability in Eugenia dysenterica fruits. Nat Prod Res 2023; 37:119-122. [PMID: 34227418 DOI: 10.1080/14786419.2021.1947273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Essential oils (EOs) of Eugenia dysenterica fruits from seven populations were assessed using GC/MS and chemometric analysis. Variations in EOs between populations and three operational chemical units (OCUs), combined with foliar Mn2+ as an environmental variable, indicate that 86.8% of variation in oils was explained by these predictors. Variance partitioning shows that the largest pure contribution was attributed to foliar Mn2+ (13.1%), followed by OCU (11.4%). Populational origin contributed with lowest variance (6.6%).
Collapse
|
12
|
Antoine G, Vaissayre V, Meile JC, Payet J, Conéjéro G, Costet L, Fock-Bastide I, Joët T, Dussert S. Diterpenes of Coffea seeds show antifungal and anti-insect activities and are transferred from the endosperm to the seedling after germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:627-637. [PMID: 36535102 DOI: 10.1016/j.plaphy.2022.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Species of the genus Coffea accumulate diterpenes of the ent-kaurane family in the endosperm of their seeds, of which cafestol and kahweol are the most abundant. The diterpenes are mainly stored in esterified form with fatty acids, mostly palmitate. In contrast to the numerous studies on their effects on human health and therapeutic applications, nothing was previously known about their biological and ecological role in planta. The antifungal and anti-insect activities of cafestol and cafestol palmitate were thus investigated in this study. Cafestol significantly affected the mycelial growth of five of the six phytopathogenic fungi tested. It also greatly reduced the percentage of pupation of larvae and the pupae and adult masses of one of the two fruit flies tested. By contrast, cafestol palmitate had no significant effect against any of the fungi and insects studied. Using confocal imaging and oil body isolation and analysis, we showed that diterpenes are localized in endosperm oil bodies, suggesting that esterification with fatty acids enables the accumulation of large amounts of diterpenes in a non-toxic form. Diterpene measurements in all organs of seedlings recovered from whole seed germination or embryos isolated from the endosperm showed that diterpenes are transferred from the endosperm to the cotyledons during seedling growth and then distributed to all organs, including the hypocotyl and the root. Collectively, our findings show that coffee diterpenes are broad-spectrum defence compounds that protect not only the seed on the mother plant and in the soil, but also the seedling after germination.
Collapse
Affiliation(s)
- Gaëlle Antoine
- DIADE, Univ Montpellier, IRD, CIRAD, Montpellier, France; PVBMT, Univ Réunion, CIRAD, La Réunion, Saint-Pierre, France
| | | | - Jean-Christophe Meile
- QUALISUD, Univ Montpellier, CIRAD, Institut Agro, Univ Avignon, Univ La Réunion, IRD, Montpellier, France
| | - Jim Payet
- PVBMT, Univ Réunion, CIRAD, La Réunion, Saint-Pierre, France
| | | | - Laurent Costet
- PVBMT, Univ Réunion, CIRAD, La Réunion, Saint-Pierre, France
| | | | - Thierry Joët
- DIADE, Univ Montpellier, IRD, CIRAD, Montpellier, France
| | | |
Collapse
|
13
|
Forrister DL, Endara MJ, Soule AJ, Younkin GC, Mills AG, Lokvam J, Dexter KG, Pennington RT, Kidner CA, Nicholls JA, Loiseau O, Kursar TA, Coley PD. Diversity and divergence: evolution of secondary metabolism in the tropical tree genus Inga. THE NEW PHYTOLOGIST 2023; 237:631-642. [PMID: 36263711 DOI: 10.1111/nph.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Plants are widely recognized as chemical factories, with each species producing dozens to hundreds of unique secondary metabolites. These compounds shape the interactions between plants and their natural enemies. We explore the evolutionary patterns and processes by which plants generate chemical diversity, from evolving novel compounds to unique chemical profiles. We characterized the chemical profile of one-third of the species of tropical rainforest trees in the genus Inga (c. 100, Fabaceae) using ultraperformance liquid chromatography-mass spectrometry-based metabolomics and applied phylogenetic comparative methods to understand the mode of chemical evolution. We show: each Inga species contain structurally unrelated compounds and high levels of phytochemical diversity; closely related species have divergent chemical profiles, with individual compounds, compound classes, and chemical profiles showing little-to-no phylogenetic signal; at the evolutionary time scale, a species' chemical profile shows a signature of divergent adaptation. At the ecological time scale, sympatric species were the most divergent, implying it is also advantageous to maintain a unique chemical profile from community members; finally, we integrate these patterns with a model for how chemical diversity evolves. Taken together, these results show that phytochemical diversity and divergence are fundamental to the ecology and evolution of plants.
Collapse
Affiliation(s)
- Dale L Forrister
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - María-José Endara
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS - Universidad de las Américas, 170513, Quito, Ecuador
| | - Abrianna J Soule
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Gordon C Younkin
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Anthony G Mills
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - John Lokvam
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Kyle G Dexter
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | - R Toby Pennington
- Department of Geography, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK
| | - Catherine A Kidner
- School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JW, UK
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK
| | - James A Nicholls
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian National Insect Collection (ANIC), Building 101, Clunies Ross Street, Black Mountain, ACT, 2601, Australia
| | - Oriane Loiseau
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | - Thomas A Kursar
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Phyllis D Coley
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| |
Collapse
|
14
|
The rhizospheric bacterial diversity of Fritillaria taipaiensis under single planting pattern over five years. Sci Rep 2022; 12:22544. [PMID: 36581656 PMCID: PMC9800406 DOI: 10.1038/s41598-022-26810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Rhizospheric microorganisms can profoundly influence the nutritional status of soil and the growth of plant. To reveal the change on the bacterial diversity in the rhizosphere of Fritillaria taipaiensis under long-term single planting, the bacterial community structure in the rhizospheric soils of F. taipaiensis with different cultivation years from 1 to 5 were analyzed. The result showed the Chao1 and the ACE indices of the bacterial community had no significant difference among samples while the Shannon and Simpson indices declined with the cutivation year; the intra group beta diversity of the rhizospheric bacteria increased after a initial decline with the cultivation year; in the sample with 1 year of cultivation, the dominant bacterial genera were mainly the species that can improve the soil nutrient status and promote plant growth while with the increase of cultivation year, the dominant genera in samples then gradually reflected the pathogen accumulation and soil nutrient status deterioration; pH was the most significant factor affected by the bacterial community composition. These results indicated long term continuous cropping changed the bacterial community structure and soil nutritional status in the F. taipaiensis rhizospheric soils, which could badly affect its growth.
Collapse
|
15
|
Rahaman F, Shukor Juraimi A, Rafii MY, Uddin K, Hassan L, Chowdhury AK, Karim SMR, Yusuf Rini B, Yusuff O, Bashar HMK, Hossain A. Allelopathic potential in rice - a biochemical tool for plant defence against weeds. FRONTIERS IN PLANT SCIENCE 2022; 13:1072723. [PMID: 36589133 PMCID: PMC9795009 DOI: 10.3389/fpls.2022.1072723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Rice is a key crop for meeting the global food demand and ensuring food security. However, the crop has been facing great problems to combat the weed problem. Synthetic herbicides pose a severe threat to the long-term viability of agricultural output, agroecosystems, and human health. Allelochemicals, secondary metabolites of allelopathic plants, are a powerful tool for biological and eco-friendly weed management. The dynamics of weed species in various situations are determined by crop allelopathy. Phenolics and momilactones are the most common allelochemicals responsible for herbicidal effects in rice. The dispersion of allelochemicals is influenced not only by crop variety but also by climatic conditions. The most volatile chemicals, such as terpenoids, are usually emitted by crop plants in drought-stricken areas whereas the plants in humid zones release phytotoxins that are hydrophilic in nature, including phenolics, flavonoids, and alkaloids. The allelochemicals can disrupt the biochemical and physiological processes in weeds causing them to die finally. This study insight into the concepts of allelopathy and allelochemicals, types of allelochemicals, techniques of investigating allelopathic potential in rice, modes of action of allelochemicals, pathways of allelochemical production in plants, biosynthesis of allelochemicals in rice, factors influencing the production of allelochemicals in plants, genetical manipulation through breeding to develop allelopathic traits in rice, the significance of rice allelopathy in sustainable agriculture, etc. Understanding these biological phenomena may thus aid in the development of new and novel weed-control tactics while allowing farmers to manage weeds in an environmentally friendly manner.
Collapse
Affiliation(s)
- Ferdoushi Rahaman
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Abdul Shukor Juraimi
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Mohd Y. Rafii
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kamal Uddin
- Department of Land Management, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Lutful Hassan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abul Kashem Chowdhury
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | | | - Bashir Yusuf Rini
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Oladosu Yusuff
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| | - H. M. Khairul Bashar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- On-Farm Research Division (OFRD), Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Akbar Hossain
- Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
16
|
Eisen KE, Ma R, Raguso RA. Among- and within-population variation in morphology, rewards, and scent in a hawkmoth-pollinated plant. AMERICAN JOURNAL OF BOTANY 2022; 109:1794-1810. [PMID: 35762273 DOI: 10.1002/ajb2.16030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Floral scent is a complex trait that mediates many plant-insect interactions, but our understanding of how floral scent variation evolves, either independently or in concert with other traits, remains limited. Assessing variation in floral scent at multiple levels of biological organization and comparing patterns of variation in scent to variation in other floral traits can contribute to our understanding of how scent variation evolves in nature. METHODS We used a greenhouse common garden experiment to investigate variation in floral scent at three scales-within plants, among plants, and among populations-and to determine whether scent, alone or in combination with morphology and rewards, contributes to population differentiation in Oenothera cespitosa subsp. marginata. Its range spans most of the biomes in the western United States, such that variation in both the abiotic and biotic environment could contribute to trait variation. RESULTS Multiple analytical approaches demonstrated substantial variation among and within populations in compound-specific and total floral scent measures. Overall, populations were differentiated in morphology and reward traits and in scent. Across populations, coupled patterns of variation in linalool, leucine-derived compounds, and hypanthium length are consistent with a long-tongued moth pollination syndrome. CONCLUSIONS The considerable variation in floral scent detected within populations suggests that, similar to other floral traits, variation in floral scent may have a heritable genetic component. Differences in patterns of population differentiation in floral scent and in morphology and rewards indicate that these traits may be shaped by different selective pressures.
Collapse
Affiliation(s)
- Katherine E Eisen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Biology, Lund University, Lund, Sweden
| | - Rong Ma
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
17
|
An Y, Li Y, Ma L, Li D, Zhang W, Feng Y, Liu Z, Wang X, Wen X, Zhang X. The Changes of Microbial Communities and Key Metabolites after Early Bursaphelenchus xylophilus Invasion of Pinus massoniana. PLANTS (BASEL, SWITZERLAND) 2022; 11:2849. [PMID: 36365304 PMCID: PMC9653782 DOI: 10.3390/plants11212849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pine wood nematode, Bursaphelenchus xylophilus, is a worldwide pest of pine trees, spreading at an alarming rate and with great ecological adaptability. In the process of causing disease, the nematode causes metabolic disorders and changes in the endophytic microbial community of the pine tree. However, the changes at the pine nidus during early nematode invasion have not been well studied, especially the differential metabolites, in Pinus massoniana, the main host of B. xylophilus in China. In this study, we analyzed the endophytic bacterial and fungal communities associated with healthy and B. xylophilus-caused wilted pine trees. The results show that 1333 bacterial OTUs and 502 fungal OTUs were annotated from P. massoniana stem samples. The abundance of bacterial communities in pine trees varies more following infection by B. xylophilus, but the abundance changes of fungal communities are less visible. There were significant differences in endophytic microbial diversity between wilted and healthy P. massoniana. In wilted pine trees, Actinobacteria and Bacteroidia were differential indicators of bacterial communities, whereas, in healthy pine trees, Rhizobiales in the Proteobacteria phylum were the major markers of bacterial communities. Meanwhile, the differential markers of fungal communities in healthy pines are Malasseziales, Tremellales, Sordariales, and Fusarium, whereas Pleosporaceae is the key marker of fungal communities in wilted pines. Our study examines the effect of changes in the endophytic microbial community on the health of pine trees that may be caused by B. xylophilus infection. In parallel, a non-targeted metabolomic study based on liquid mass spectrometry (LC-MS) technology was conducted on pine trees inoculated with pine nematodes and healthy pine trees with a view to identifying key compounds affecting early pine lesions. Ultimately, 307 distinctly different metabolites were identified. Among them, the riboflavin metabolic pathway in pine trees may play a key role in the early pathogenesis of pine wood nematode disease.
Collapse
Affiliation(s)
- Yibo An
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Kivimäenpä M, Mofikoya A, Abd El-Raheem AM, Riikonen J, Julkunen-Tiitto R, Holopainen JK. Alteration in Light Spectra Causes Opposite Responses in Volatile Phenylpropanoids and Terpenoids Compared with Phenolic Acids in Sweet Basil ( Ocimum basilicum) Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12287-12296. [PMID: 36126343 PMCID: PMC9545148 DOI: 10.1021/acs.jafc.2c03309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Basil (Ocimum basilicum, cv. Dolly) grew under three different light spectra (A, B, and C) created by light-emitting diode lamps. The proportions of UV-A, blue, and green-yellow wavelengths decreased linearly from A to C, and the proportions of red and far-red wavelengths increased from A to C. Photosynthetic photon flux density was 300 μmol m-2 s-1 in all spectra. The spectrum C plants had highest concentrations of phenolic acids (main compounds: rosmarinic acid and cichoric acid), lowest concentrations and emissions of phenylpropanoid eugenol and terpenoids (main compounds: linalool and 1,8-cineole), highest dry weight, and lowest water content. Conversely, spectra A and B caused higher terpenoid and eugenol concentrations and emissions and lower concentrations of phenolic acids. High density of peltate glandular trichomes explained high terpenoid and eugenol concentrations and emissions. Basil growth and secondary compounds affecting aroma and taste can be modified by altering light spectra; however, increasing terpenoids and phenylpropanoids decreases phenolic acids and growth and vice versa.
Collapse
Affiliation(s)
- Minna Kivimäenpä
- Department
of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Adedayo Mofikoya
- Department
of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ahmed M. Abd El-Raheem
- Department
of Economic Entomology and Agricultural Zoology, Menoufia University, Shebin
El Kom 32514, Egypt
| | - Johanna Riikonen
- Natural
Resources Institute Finland, Juntintie 154, 77600 Suonenjoki, Finland
| | - Riitta Julkunen-Tiitto
- Department
of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| | - Jarmo K. Holopainen
- Department
of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
19
|
Exploring plant volatile-mediated interactions between native and introduced plants and insects. Sci Rep 2022; 12:15450. [PMID: 36104363 PMCID: PMC9474884 DOI: 10.1038/s41598-022-18479-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn invasion scenarios, native and introduced species co-occur creating new interactions and modifying existing ones. Many plant–plant and plant–insect interactions are mediated by volatile organic compounds (VOCs), however, these have seldom been studied in an invasion context. To fill this knowledge gap, we explored some interactions mediated by VOCs between native and introduced plants and insects in a New Zealand system. We investigated whether a native plant, Leptospermum scoparium (mānuka), changes its volatile profile when grown adjacent to two European introduced plants, Calluna vulgaris (heather) and Cytisus scoparius (Scotch broom), in a semi-field trial using potted plants without above- or below-ground physical contact. We also investigated the influence of plant cues on the host-searching behaviour of two beetles, the native Pyronota festiva (mānuka beetle), and the introduced biocontrol agent Lochmaea suturalis (heather beetle), by offering them their host-plant and non-host volatiles versus clean air, and their combination in a Y-tube olfactometer. As a follow-up, we performed preference/feeding tests in Petri dishes with fresh plant material. Results of the semi-field experiment show a significant reduction in green leaf volatiles, sesquiterpenes and total volatile emissions by mānuka plants neighbouring heather. In the Y-tube assays, the native beetle P. festiva performed poorly in discriminating between host and non-host plants based on plant volatile cues only. However, it performed relatively well in the Petri dish tests, where other cues (i.e., visual, gustatory or tactile) were present. In contrast, the introduced beetle L. suturalis showed high host-specificity in both Y-tube and Petri dish assays. This study illustrates the importance of VOCs in mediating interactions between introduced and native species, suggesting that invasive plants can disrupt native plants’ communication and affect the host-searching behaviour of native insects. It also reinforces the relevance of regular host testing on introduced weed biocontrol agents to avoid unwanted host shifts or host-range expansion.
Collapse
|
20
|
Soderberg DN, Bentz BJ, Runyon JB, Hood SM, Mock KE. Chemical defense strategies, induction timing, growth, and trade‐offs in
Pinus aristata
and
Pinus flexilis. Ecosphere 2022. [DOI: 10.1002/ecs2.4183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- David N. Soderberg
- Wildland Resources Department Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | - Barbara J. Bentz
- USDA Forest Service, Rocky Mountain Research Station Logan Utah USA
| | - Justin B. Runyon
- USDA Forest Service, Rocky Mountain Research Station Bozeman Montana USA
| | - Sharon M. Hood
- USDA Forest Service, Rocky Mountain Research Station Missoula Montana USA
| | - Karen E. Mock
- Wildland Resources Department Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| |
Collapse
|
21
|
Sestari I, Campos ML. Into a dilemma of plants: the antagonism between chemical defenses and growth. PLANT MOLECULAR BIOLOGY 2022; 109:469-482. [PMID: 34843032 DOI: 10.1007/s11103-021-01213-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/28/2021] [Indexed: 05/21/2023]
Abstract
Chemical defenses are imperative for plant survival, but their production is often associated with growth restrictions. Here we review the most recent theories to explain this complex dilemma of plants. Plants are a nutritional source for a myriad of pests and pathogens that depend on green tissues to complete their life cycle. Rather than remaining passive victims, plants utilize an arsenal of chemical defenses to fend off biotic attack. While the deployment of such barriers is imperative for survival, the production of these chemical defenses is typically associated with negative impacts on plant growth. Here we discuss the most recent theories which explain this highly dynamic growth versus defense dilemma. Firstly, we discuss the hypothesis that the antagonism between the accumulation of chemical defenses and growth is rooted in the evolutionary history of plants and may be a consequence of terrestrialization. Then, we revise the different paradigms available to explain the growth versus chemical defense antagonism, including recent findings that update these into more comprehensive and plausible theories. Finally, we highlight state-of-the-art strategies that are now allowing the activation of growth and the concomitant production of chemical barriers in plants. Growth versus chemical defense antagonism imposes large ecological and economic costs, including increased crop susceptibility to pests and pathogens. In a world where these plant enemies are the main problem to increase food production, we believe that this review will summarize valuable information for future studies aiming to breed highly defensive plants without the typical accompanying penalties to growth.
Collapse
Affiliation(s)
- Ivan Sestari
- Coordenadoria Especial de Ciências Biológicas e Agronômicas, Universidade Federal de Santa Catarina, Curitibanos, SC, Brazil
| | - Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|
22
|
Wang M, Zheng Z, Tian Z, Zhang H, Zhu C, Yao X, Yang Y, Cai X. Molecular Cloning and Analysis of an Acetyl-CoA C-acetyltransferase Gene ( EkAACT) from Euphorbia kansui Liou. PLANTS (BASEL, SWITZERLAND) 2022; 11:1539. [PMID: 35736690 PMCID: PMC9229008 DOI: 10.3390/plants11121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Terpenoids are the largest class of natural products and are essential for cell functions in plants and their interactions with the environment. Acetyl-CoA acetyltransferase (AACT, EC2.3.1.9) can catalyze a key initiation step of the mevalonate pathway (MVA) for terpenoid biosynthesis and is modulated by many endogenous and external stimuli. Here, the function and expression regulation activities of AACT in Euphorbia kansui Liou (EkAACT) were reported. Compared with wild-type Arabidopsis, the root length, whole seedling fresh weight and growth morphology of EkAACT-overexpressing plants were slightly improved. The transcription levels of AtAACT, AtMDC, AtMK, AtHMGR, and AtHMGS in the MVA pathway and total triterpenoid accumulation increased significantly in transgenic Arabidopsis. Under NaCl and PEG treatment, EkAACT-overexpressing Arabidopsis showed a higher accumulation of total triterpenoids, higher enzyme activity of peroxidase (POD) and superoxide dismutase (SOD), increased root length and whole seedling fresh weight, and a decrease in the proline content, which indicated that plant tolerance to abiotic stress was enhanced. Thus, AACT, as the first crucial enzyme, plays a major role in the overall regulation of the MVA pathway.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Zhe Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Zheni Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Hao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Chenyu Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Xiangyu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Yixin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| |
Collapse
|
23
|
Wilkinson SW, Dalen LS, Skrautvol TO, Ton J, Krokene P, Mageroy MH. Transcriptomic changes during the establishment of long-term methyl jasmonate-induced resistance in Norway spruce. PLANT, CELL & ENVIRONMENT 2022; 45:1891-1913. [PMID: 35348221 PMCID: PMC9321552 DOI: 10.1111/pce.14320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Norway spruce (Picea abies) is an economically and ecologically important tree species that grows across northern and central Europe. Treating Norway spruce with jasmonate has long-lasting beneficial effects on tree resistance to damaging pests, such as the European spruce bark beetle Ips typographus and its fungal associates. The (epi)genetic mechanisms involved in such long-lasting jasmonate induced resistance (IR) have gained much recent interest but remain largely unknown. In this study, we treated 2-year-old spruce seedlings with methyl jasmonate (MeJA) and challenged them with the I. typographus vectored necrotrophic fungus Grosmannia penicillata. MeJA treatment reduced the extent of necrotic lesions in the bark 8 weeks after infection and thus elicited long-term IR against the fungus. The transcriptional response of spruce bark to MeJA treatment was analysed over a 4-week time course using mRNA-seq. This analysis provided evidence that MeJA treatment induced a transient upregulation of jasmonic acid, salicylic acid and ethylene biosynthesis genes and downstream signalling genes. Our data also suggests that defence-related genes are induced while genes related to growth are repressed by methyl jasmonate treatment. These results provide new clues about the potential underpinning mechanisms and costs associated with long-term MeJA-IR in Norway spruce.
Collapse
Affiliation(s)
- Samuel W. Wilkinson
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodUniversity of SheffieldSheffieldUK
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Lars S. Dalen
- Department of CommunicationsNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Thomas O. Skrautvol
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Jurriaan Ton
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodUniversity of SheffieldSheffieldUK
| | - Paal Krokene
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Melissa H. Mageroy
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
| |
Collapse
|
24
|
Kozłowska W, Matkowski A, Zielińska S. Light Intensity and Temperature Effect on Salvia yangii (B. T. Drew) Metabolic Profile in vitro. FRONTIERS IN PLANT SCIENCE 2022; 13:888509. [PMID: 35646028 PMCID: PMC9136318 DOI: 10.3389/fpls.2022.888509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Plant in vitro culture is a feasible system for the testing influence of an environmental factor on the accumulation and chemodiversity of specialized metabolites, especially in medicinal plants. Light and temperature are among the most important factors affecting the physiology of plant organisms but their influence on specific metabolic pathways is not completely understood. Here, we examined the morphogenetic response, photosynthetic pigments content, lipid peroxidation level, DPPH radical scavenging activity, and the production of volatile and non-volatile constituents in Salvia yangii B. T. Drew (syn. Perovskia atriplicifolia Benth.) in vitro cultures kept under different light intensities (70, 130, and 220 μmol m-2 s-1) and at two selected temperatures (25 and 30°C). The experiment was continued for 7 months to monitor the changes in the treatment response in time. Phytochemical analysis was performed using chromatographic (GC-MS and UHLPC) and spectrophotometric techniques. The light intensity significantly influenced metabolic response in a non-linear manner, whereas temperature-induced adaptive modifications varied within the long cultivation. Significant differences were noted in the content of carnosic and rosmarinic acid, as well as in several sesquiterpenes (alloaromadendrene, β-caryophyllene, α-humulene). At elevated (30°C) temperature, a trend of differently modulated content of two major antioxidants-rosmarinic acid (RA, a phenylpropanoid pathway derived phenolic acid) and carnosic acid (CA, an abietane diterpenoid) was observed, where RA, but not CA, was depending on the light intensity. At 25°C, both compounds depended on light but in various ways. Among the volatile terpenoid compounds, the influence of light was pronounced, leading to modulation of proportions between individual mono- and sesquiterpenes as well as between hydrocarbon and oxygenated compounds. The study provided new information on the metabolic profile plasticity in S. yangii and added to the existing knowledge on the chemical adaptations in plant species from severe habitats.
Collapse
Affiliation(s)
- Weronika Kozłowska
- Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Matkowski
- Division of Pharmaceutical Biology and Botany, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Wroclaw, Poland
| | - Sylwia Zielińska
- Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
25
|
Brand A, Tissier A. Control of resource allocation between primary and specialized metabolism in glandular trichomes. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102172. [PMID: 35144142 DOI: 10.1016/j.pbi.2022.102172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Plant specialized metabolites are often synthesized and stored in dedicated morphological structures such as glandular trichomes, resin ducts, or laticifers where they accumulate in large concentrations. How this high productivity is achieved is still elusive, in particular, with respect to the interface between primary and specialized metabolism. Here, we focus on glandular trichomes to survey recent progress in understanding how plant metabolic cell factories manage to balance homeostasis of essential central metabolites while producing large quantities of compounds that constitute a metabolic sink. In particular, we review the role of gene duplications, transcription factors and photosynthesis.
Collapse
Affiliation(s)
- Alejandro Brand
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg 3, 06120 Halle (Saale), Germany
| | - Alain Tissier
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
26
|
Angelovici R, Kliebenstein D. A plant balancing act: Meshing new and existing metabolic pathways towards an optimized system. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102173. [PMID: 35144143 DOI: 10.1016/j.pbi.2022.102173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Specialized metabolic pathways evolve from existing pathways, creating new functionality potentially boosting fitness. However, how these pathways are integrated into a pre-existing working and well-balanced metabolic system is unclear. They could be integrated to the system as a functional appendage, or they could be fully embedded into primary metabolism by establishing new biochemical and regulatory connections. A full integration into the primary metabolic system requires substantial system re-wiring and because of this complexity, the latter is often not experimentally pursued. New studies provide evidence that some specialized metabolic pathways are fully embedded in primary metabolism with extensive new regulatory and biochemical connections. This suggests, that we should consider whether other specialized metabolic pathways could be fully integrated rather than being simple appendages. In this mini review, we survey compelling evidence supporting that some specialized metabolic pathways are fully integrated and ask if these metabolites now act as de-facto primary metabolites?
Collapse
Affiliation(s)
- Ruthie Angelovici
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Dan Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
27
|
López-Goldar X, Hastings A, Züst T, Agrawal A. Evidence for tissue-specific defense-offense interactions between milkweed and its community of specialized herbivores. Mol Ecol 2022; 31:3254-3265. [PMID: 35363921 DOI: 10.1111/mec.16450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
Coevolution between plants and herbivores often involves escalation of defense-offense strategies, but attack by multiple herbivores may obscure the match of plant defense to any one attacker. As herbivores often specialize on distinct plant parts, we hypothesized that defense-offense interactions in coevolved systems may become physiologically and evolutionarily compartmentalized between plant tissues. We report that roots, leaves, flower buds and seeds of the tropical milkweed (Asclepias curassavica) show increasing concentrations of cardenolide toxins acropetally, with latex showing the highest concentration. In vitro assays of the physiological target of cardenolides, the Na+ /K+ -ATPase (hereafter 'sodium pump'), of three specialized milkweed herbivores (root-feeding Tetraopes tetrophthalmus, leaf-feeding Danaus plexippus, and seed-feeding Oncopeltus fasciatus) show that they are proportionally tolerant to the cardenolide concentrations of the tissues they eat. Indeed, molecular substitutions in the insects' sodium pumps predicted their tolerance to toxins from their target tissues. Nonetheless, the relative inhibition of the sodium pumps of these specialists by the concentration vs. composition (inhibition controlled for concentration, what we term 'potency') of cardenolides from their target vs. non-target plant tissues revealed different degrees of insect adaptation to tissue-specific toxins. In addition, a trade-off between toxin concentration and potency emerged across plant tissues, potentially reflecting coevolutionary history or plant physiological constraints. Our findings suggest that tissue-specific coevolutionary dynamics may be proceeding between the plant and its specialized community of herbivores. This novel finding may be common in nature, contributing to ways in which coevolution proceeds in multi-species communities.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Amy Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, Switzerland
| | - Anurag Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
28
|
Mason CJ, Ray S, Davidson-Lowe E, Ali J, Luthe DS, Felton G. Plant Nutrition Influences Resistant Maize Defense Responses to the Fall Armyworm (Spodoptera frugiperda). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Plants are often confronted by different groups of herbivores, which threaten their growth and reproduction. However, they are capable of mounting defenses against would-be attackers which may be heightened upon attack. Resistance to insects often varies among plant species, with different genotypes exhibiting unique patterns of chemical and physical defenses. Within this framework, plant access to nutrients may be critical for maximal functioning of resistance mechanisms and are likely to differ among plant genotypes. In this study, we aimed to test the hypothesis that access to nutrition would alter the expression of plant resistance to insects and alter insect performance in a manner consistent with fertilization regime. We used two maize (Zea mays) genotypes possessing different levels of resistance and the fall armyworm (Spodoptera frugiperda) as model systems. Plants were subjected to three fertilization regimes prior to assessing insect-mediated responses. Upon reaching V4 stage, maize plants were separated into two groups, one of which was infested with fall armyworm larvae to induce plant defenses. Plant tissue was collected and used in insect bioassays and to measure the expression of defense-related genes and proteins. Insect performance differed between the two plant genotypes substantially. For each genotype, fertilization altered larval performance, where lower fertilization rates hindered larval growth. Induction of plant defenses by prior herbivory substantially reduced naïve fall armyworm growth in both genotypes. The effects between fertilization and induced defenses were complex, with low fertilization reducing induced defenses in the resistant maize. Gene and protein expression patterns differed between the genotypes, with herbivory often increasing expression, but differing between fertilization levels. The soluble protein concentrations did not change across fertilization levels but was higher in the susceptible maize genotype. These results demonstrate the malleability of plant defenses and the cascading effects of plant nutrition on insect herbivory.
Collapse
|
29
|
Nagy NE, Norli HR, Fongen M, Østby RB, Heldal IM, Davik J, Hietala AM. Patterns and roles of lignan and terpenoid accumulation in the reaction zone compartmentalizing pathogen-infected heartwood of Norway spruce. PLANTA 2022; 255:63. [PMID: 35142905 PMCID: PMC8831285 DOI: 10.1007/s00425-022-03842-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/25/2022] [Indexed: 05/17/2023]
Abstract
Lignan impregnation of the reaction zone wood protects against oxidative degradation by fungi. Traumatic resin canals may play roles in the underlying signal transduction, synthesis, and translocation of defense compounds. Tree defense against xylem pathogens involves both constitutive and induced phenylpropanoids and terpenoids. The induced defenses include compartmentalization of compromised wood with a reaction zone (RZ) characterized by polyphenol deposition, whereas the role of terpenoids has remained poorly understood. To further elucidate the tree-pathogen interaction, we profiled spatial patterns in lignan (low-molecular-weight polyphenols) and terpenoid content in Norway spruce (Picea abies) trees showing heartwood colonization by the pathogenic white-rot fungus Heterobasidion parviporum. There was pronounced variation in the amount and composition of lignans between different xylem tissue zones of diseased and healthy trees. Intact RZ at basal stem regions, where colonization is the oldest, showed the highest level and diversity of these compounds. The antioxidant properties of lignans obviously hinder oxidative degradation of wood: RZ with lignans removed by extraction showed significantly higher mass loss than unextracted RZ when subjected to Fenton degradation. The reduced diversity and amount of lignans in pathogen-compromised RZ and decaying heartwood in comparison to intact RZ and healthy heartwood suggest that α-conindendrin isomer is an intermediate metabolite in lignan decomposition by H. parviporum. Diterpenes and diterpene alcohols constituted above 90% of the terpenes detected in sapwood of healthy and diseased trees. A significant finding was that traumatic resin canals, predominated by monoterpenes, were commonly associated with RZ. The findings clarify the roles and fate of lignan during wood decay and raise questions about the potential roles of terpenoids in signal transduction, synthesis, and translocation of defense compounds upon wood compartmentalization against decay fungi.
Collapse
Affiliation(s)
| | - Hans Ragnar Norli
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Monica Fongen
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Runa Berg Østby
- Faculty of Health, Welfare and Organisation, Østfold University College, P.B. 700, 1757, Halden, Norway
| | - Inger M Heldal
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Jahn Davik
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Ari M Hietala
- Norwegian Institute of Bioeconomy Research, P.B. 2609, 7734, Steinkjer, Norway.
| |
Collapse
|
30
|
Nantongo JS, Potts BM, Frickey T, Telfer E, Dungey H, Fitzgerald H, O'Reilly-Wapstra JM. Analysis of the transcriptome of the needles and bark of Pinus radiata induced by bark stripping and methyl jasmonate. BMC Genomics 2022; 23:52. [PMID: 35026979 PMCID: PMC8759178 DOI: 10.1186/s12864-021-08231-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plants are attacked by diverse insect and mammalian herbivores and respond with different physical and chemical defences. Transcriptional changes underlie these phenotypic changes. Simulated herbivory has been used to study the transcriptional and other early regulation events of these plant responses. In this study, constitutive and induced transcriptional responses to artificial bark stripping are compared in the needles and the bark of Pinus radiata to the responses from application of the plant stressor, methyl jasmonate. The time progression of the responses was assessed over a 4-week period. RESULTS Of the 6312 unique transcripts studied, 86.6% were differentially expressed between the needles and the bark prior to treatment. The most abundant constitutive transcripts were related to defence and photosynthesis and their expression did not differ between the needles and the bark. While no differential expression of transcripts were detected in the needles following bark stripping, in the bark this treatment caused an up-regulation and down-regulation of genes associated with primary and secondary metabolism. Methyl jasmonate treatment caused differential expression of transcripts in both the bark and the needles, with individual genes related to primary metabolism more responsive than those associated with secondary metabolism. The up-regulation of genes related to sugar break-down and the repression of genes related with photosynthesis, following both treatments was consistent with the strong down-regulation of sugars that has been observed in the same population. Relative to the control, the treatments caused a differential expression of genes involved in signalling, photosynthesis, carbohydrate and lipid metabolism as well as defence and water stress. However, non-overlapping transcripts were detected between the needles and the bark, between treatments and at different times of assessment. Methyl jasmonate induced more transcriptional responses in the bark than bark stripping, although the peak of expression following both treatments was detected 7 days post treatment application. The effects of bark stripping were localised, and no systemic changes were detected in the needles. CONCLUSION There are constitutive and induced differences in the needle and bark transcriptome of Pinus radiata. Some expression responses to bark stripping may differ from other biotic and abiotic stresses, which contributes to the understanding of plant molecular responses to diverse stresses. Whether the gene expression changes are heritable and how they differ between resistant and susceptible families identified in earlier studies needs further investigation.
Collapse
Affiliation(s)
- J S Nantongo
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia.
- National Forestry Resources Research Institute, Mukono, Uganda.
| | - B M Potts
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia
- ARC Training Centre for Forest Value, Hobart, Tasmania, Australia
| | | | | | | | - H Fitzgerald
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia
| | - J M O'Reilly-Wapstra
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia
- ARC Training Centre for Forest Value, Hobart, Tasmania, Australia
| |
Collapse
|
31
|
Additive genetic variation in Pinus radiata bark chemistry and the chemical traits associated with variation in mammalian bark stripping. Heredity (Edinb) 2021; 127:498-509. [PMID: 34663917 PMCID: PMC8626423 DOI: 10.1038/s41437-021-00476-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022] Open
Abstract
Secondary metabolites are suggested as a major mechanism explaining genetic variation in herbivory levels in Pinus radiata. The potential to incorporate these chemical traits into breeding/deployment programmes partly depends on the presence of additive genetic variation for the relevant chemical traits. In this study, near-infrared spectroscopy was used to quantify the constitutive and induced levels of 54 compounds in the bark of trees from 74 P. radiata full-sib families. The trees sampled for chemistry were protected from browsing and induced levels were obtained by subjecting half of the trees to artificial bark stripping. The treatment effect on bark chemistry was assessed along with narrow-sense heritability, the significance of non-additive genetic effects and the additive genetic correlations of compounds with bark stripping by mammalian herbivores that was observed in unprotected replicates of the field trial. The results indicated: (i) significant additive genetic variation, with low-moderate narrow-sense heritability estimates for most compounds; (ii) while significant induced effects were detected for some chemicals, no significant genetic variation in inducibility was detected; and (iii) sugars, fatty acids and a diterpenoid positively genetically correlated while a sesquiterpenoid negatively genetically correlated with bark stripping by the mammalian herbivore, the Bennett's wallaby (Macropus rufogriseus). At the onset of browsing, a trade-off with height was detected for selecting higher amounts of this sesquiterpenoid. However, overall, results showed potential to incorporate chemical traits into breeding/deployment programmes. The quantitative genetic analyses of the near infrared predicted chemical traits produced associations with mammalian bark stripping that mostly conform with those obtained using standard wet chemistry.
Collapse
|
32
|
Nantongo JS, Potts BM, Davies NW, Aurik D, Elms S, Fitzgerald H, O'Reilly-Wapstra JM. Chemical Traits that Predict Susceptibility of Pinus radiata to Marsupial Bark Stripping. J Chem Ecol 2021; 48:51-70. [PMID: 34611747 DOI: 10.1007/s10886-021-01307-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022]
Abstract
Bark stripping by mammals is a major problem in managed conifer forests worldwide. In Australia, bark stripping in the exotic plantations of Pinus radiata is mainly caused by native marsupials and results in reduced survival, growth, and in extreme cases death of trees. Herbivory is influenced by a balance between primary metabolites that are sources of nutrition and secondary metabolites that act as defences. Identifying the compounds that influence herbivory may be a useful tool in the management of forest systems. This study aimed to detect and identify both constitutive and induced compounds that are associated with genetic differences in susceptibility of two-year-old P. radiata trees to bark stripping by marsupials. An untargeted profiling of 83 primary and secondary compounds of the needles and bark samples from 21 susceptible and 21 resistant families was undertaken. These were among the most and least damaged families, respectively, screened in a trial of 74 families that were exposed to natural field bark stripping by marsupials. Experimental plants were in the same field trial but protected from bark stripping and a subset were subjected to artificial bark stripping to examine induced and constitutive chemistry differences between resistant and susceptible families. Machine learning (random forest), partial least squares plus discriminant analysis (PLS-DA), and principal components analysis with discriminant analysis (PCA-DA), as well as univariate methods were used to identify the most important totals by compound group and individual compounds differentiating the resistant and susceptible families. In the bark, the constitutive amount of two sesquiterpenoids - bicyclogermacrene and an unknown sesquiterpenoid alcohol -were shown to be of higher levels in the resistant families, whereas the constitutive sugars, fructose, and glucose, as well individual phenolics, were higher in the more susceptible families. The chemistry of the needles was not useful in differentiating the resistant and susceptible families to marsupial bark stripping. After artificial bark stripping, the terpenes, sugars, and phenolics responded in both the resistant and susceptible families by increasing or reducing amounts, which leveled the differences in the amounts of the compounds between the different resistant and susceptible classes observed at the constitutive level. Overall, based on the families with extreme values for less and more susceptibility, differences in the amounts of secondary compounds were subtle and susceptibility due to sugars may outweigh defence as the cause of the genetic variation in bark stripping observed in this non-native tree herbivory system.
Collapse
Affiliation(s)
- Judith S Nantongo
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| | - Brad M Potts
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.,ARC Training Centre for Forest Value, University of Tasmania, TAS, Hobart, 7001, Australia
| | - Noel W Davies
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, TAS, 7001, Australia
| | - Don Aurik
- Timberlands Pacific Pty Ltd, Launceston, 7250, Australia
| | - Stephen Elms
- Hancock Victorian Plantations, Churchill, 3842, Australia
| | - Hugh Fitzgerald
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Julianne M O'Reilly-Wapstra
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.,ARC Training Centre for Forest Value, University of Tasmania, TAS, Hobart, 7001, Australia
| |
Collapse
|
33
|
Koudounas K, Thomopoulou M, Rigakou A, Angeli E, Melliou E, Magiatis P, Hatzopoulos P. Silencing of Oleuropein β-Glucosidase Abolishes the Biosynthetic Capacity of Secoiridoids in Olives. FRONTIERS IN PLANT SCIENCE 2021; 12:671487. [PMID: 34539687 PMCID: PMC8446429 DOI: 10.3389/fpls.2021.671487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Specialized metabolism is an evolutionary answer that fortifies plants against a wide spectrum of (a) biotic challenges. A plethora of diversified compounds can be found in the plant kingdom and often constitute the basis of human pharmacopeia. Olive trees (Olea europaea) produce an unusual type of secoiridoids known as oleosides with promising pharmaceutical activities. Here, we transiently silenced oleuropein β-glucosidase (OeGLU), an enzyme engaged in the biosynthetic pathway of secoiridoids in the olive trees. Reduction of OeGLU transcripts resulted in the absence of both upstream and downstream secoiridoids in planta, revealing a regulatory loop mechanism that bypasses the flux of precursor compounds toward the branch of secoiridoid biosynthesis. Our findings highlight that OeGLU could serve as a molecular target to regulate the bioactive secoiridoids in olive oils.
Collapse
Affiliation(s)
- Konstantinos Koudounas
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Margarita Thomopoulou
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Aimilia Rigakou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisavet Angeli
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Polydefkis Hatzopoulos
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
34
|
Panda S, Kazachkova Y, Aharoni A. Catch-22 in specialized metabolism: balancing defense and growth. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6027-6041. [PMID: 34293097 DOI: 10.1093/jxb/erab348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/21/2021] [Indexed: 05/25/2023]
Abstract
Plants are unsurpassed biochemists that synthesize a plethora of molecules in response to an ever-changing environment. The majority of these molecules, considered as specialized metabolites, effectively protect the plant against pathogens and herbivores. However, this defense most probably comes at a great expense, leading to reduction of growth (known as the 'growth-defense trade-off'). Plants employ several strategies to reduce the high metabolic costs associated with chemical defense. Production of specialized metabolites is tightly regulated by a network of transcription factors facilitating its fine-tuning in time and space. Multifunctionality of specialized metabolites-their effective recycling system by re-using carbon, nitrogen, and sulfur, thus re-introducing them back to the primary metabolite pool-allows further cost reduction. Spatial separation of biosynthetic enzymes and their substrates, and sequestration of potentially toxic substances and conversion to less toxic metabolite forms are the plant's solutions to avoid the detrimental effects of metabolites they produce as well as to reduce production costs. Constant fitness pressure from herbivores, pathogens, and abiotic stressors leads to honing of specialized metabolite biosynthesis reactions to be timely, efficient, and metabolically cost-effective. In this review, we assess the costs of production of specialized metabolites for chemical defense and the different plant mechanisms to reduce the cost of such metabolic activity in terms of self-toxicity and growth.
Collapse
Affiliation(s)
- Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Gilat Research Center, Agricultural Research Organization, Negev, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
35
|
Intra-Individual and Intraspecific Terpenoid Diversity in Erodium cicutarium. PLANTS 2021; 10:plants10081574. [PMID: 34451618 PMCID: PMC8398229 DOI: 10.3390/plants10081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
The chemodiversity between and within individuals of several plant species is remarkable and shaped by the local habitat environment and the genetic background. The forb Erodium cicutarium (Geraniaceae) is globally distributed and partly invasive. This paper hypothesizes a high intra-specific and inter-individual chemical diversity in this species and investigates this by comparing the concentration and diversity of terpenoid compounds in different plant parts, i.e., leaves, blossoms and fruits. Plants were grown from seeds, originating from native range Bavaria (BY), Germany, and invaded range California (CA), USA, populations. In total, 20 different terpenoids were found, which occurred in distinct combinations and the patterns clustered into groups of distinct chemotypes for all plant parts. Several of the chemotypes were specific to plants of one region. The terpenoid compositions of different plant parts within individuals were highly correlated. Chemodiversity was higher in reproductive plant parts compared to the leaves, and higher in plants from BY compared to CA. This study highlights the intra-specific and inter-individual chemodiversity in E. cicutarium, linked to its geographical origin, which may facilitate its invasion success but also calls for further investigation of the role of chemodiversity in invasive plants on interactions with the environment.
Collapse
|
36
|
Hahn PG, Keefover‐Ring K, Nguyen LMN, Maron JL. Intraspecific correlations between growth and defence vary with resource availability and differ within and among populations. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Philip G. Hahn
- Entomology and Nematology Department University of Florida Gainesville FL USA
| | - Ken Keefover‐Ring
- Department of Botany University of Wisconsin‐Madison Madison WI USA
- Department of Geography University of Wisconsin‐Madison Madison WI USA
| | | | - John L. Maron
- Division of Biological Sciences University of Montana Missoula MT USA
| |
Collapse
|
37
|
Perez TM, Socha A, Tserej O, Feeley KJ. Photosystem II heat tolerances characterize thermal generalists and the upper limit of carbon assimilation. PLANT, CELL & ENVIRONMENT 2021; 44:2321-2330. [PMID: 33378078 DOI: 10.1111/pce.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The heat tolerance of photosystem II (PSII) may promote carbon assimilation at higher temperatures and help explain plant responses to climate change. Higher PSII heat tolerance could lead to (a) increases in the high-temperature compensation point (Tmax ); (b) increases in the thermal breadth of photosynthesis (i.e. the photosynthetic parameter Ω) to promote a thermal generalist strategy of carbon assimilation; (c) increases in the optimum rate of carbon assimilation Popt and faster carbon assimilation and/or (d) increases in the optimum temperature for photosynthesis (Topt ). To address these hypotheses, we tested if the Tcrit , T50 and T95 PSII heat tolerances were correlated with carbon assimilation parameters for 21 plant species. Our results did not support Hypothesis 1, but we observed that T50 may be used to estimate the upper thermal limit for Tmax at the species level, and that community mean Tcrit may be useful for approximating Tmax . The T50 and T95 heat tolerance metrics were positively correlated with Ω in support of Hypothesis 2. We found no support for Hypotheses 3 or 4. Our study shows that high PSII heat tolerance is unlikely to improve carbon assimilation at higher temperatures but may characterize thermal generalists with slow resource acquisition strategies.
Collapse
Affiliation(s)
- Timothy M Perez
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annika Socha
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Olga Tserej
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| | - Kenneth J Feeley
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| |
Collapse
|
38
|
Aebisher D, Cichonski J, Szpyrka E, Masjonis S, Chrzanowski G. Essential Oils of Seven Lamiaceae Plants and Their Antioxidant Capacity. Molecules 2021; 26:3793. [PMID: 34206525 PMCID: PMC8270304 DOI: 10.3390/molecules26133793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress has been reported as a cause of many diseases like Parkinson's, Alzheimer's, cardiovascular disease, and diabetes. Oxidative stress can also lead to cancer formation by promoting tumor development and progression. Antioxidants derived from Lamiaceae plants play an important role in natural medicine, pharmacology, cosmetology, and aromatherapy. Herein, we examine the antioxidative capacity of essential oils from seven aromatic Lamiaceae plants against the synthetic radicals DPPH and ABTS. Among the essential oils analyzed, the most robust scavenging capacities were found in mixtures of volatile compounds from thyme and savory. The scavenging activity of tested EOs against the ABTS radical was clearly higher than activity towards DPPH. Analysis of essential oils with weaker antioxidant activity has shown that volatile compounds from marjoram, sage, and hyssop were more active than EOs from lavender and mint. It can be suggested that the potent antioxidant capacity of thyme (Thymus vulgaris) and savory (Satyreja hortensis) are related to a high level of phenolic constituents, such as thymol and carvacrol. On the other hand, the elevated antioxidative power of marjoram, sage, and hyssop essential oils may also be due to their terpinene, o-cymene, terpinolene, and terpinen-4-ol constituents. Although non-phenolic components are less active than thymol or carvacrol, they may affect antioxidant capacity synergistically.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Institute of Medical Studies, Medical College of Rzeszów University, Warzywna 1A Street, 35-959 Rzeszów, Poland
| | - Jan Cichonski
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 8B Zelwerowicza Street, 35-601 Rzeszow, Poland; (J.C.); (E.S.); (S.M.)
| | - Ewa Szpyrka
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 8B Zelwerowicza Street, 35-601 Rzeszow, Poland; (J.C.); (E.S.); (S.M.)
| | - Sygit Masjonis
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 8B Zelwerowicza Street, 35-601 Rzeszow, Poland; (J.C.); (E.S.); (S.M.)
| | - Grzegorz Chrzanowski
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 8B Zelwerowicza Street, 35-601 Rzeszow, Poland; (J.C.); (E.S.); (S.M.)
| |
Collapse
|
39
|
Merschel AG, Beedlow PA, Shaw DC, Woodruff DR, Lee EH, Cline SP, Comeleo RL, Hagmann RK, Reilly MJ. An Ecological Perspective on Living with Fire in Ponderosa Pine Forests of Oregon and Washington: Resistance, Gone but not Forgotten. TREES, FORESTS AND PEOPLE 2021; 4:10.1016/j.tfp.2021.100074. [PMID: 34017963 PMCID: PMC8128712 DOI: 10.1016/j.tfp.2021.100074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Wildland fires (WLF) have become more frequent, larger, and severe with greater impacts to society and ecosystems and dramatic increases in firefighting costs. Forests throughout the range of ponderosa pine in Oregon and Washington are jeopardized by the interaction of anomalously dense forest structure, a warming and drying climate, and an expanding human population. These forests evolved with frequent interacting disturbances including low-severity surface fires, droughts, and biological disturbance agents (BDAs). Chronic low-severity disturbances were, and still are, critical to maintaining disturbance resistance, the property of an ecosystem to withstand disturbance while maintaining its structure and ecological function. Restoration of that historical resistance offers multiple social and ecological benefits. Moving forward, we need a shared understanding of the ecology of ponderosa pine forests to appreciate how restoring resistance can reduce the impacts of disturbances. Given contemporary forest conditions, a warming climate, and growing human populations, we predict continued elevation of tree mortality from drought, BDAs, and the large high-severity WLFs that threaten lives and property as well as ecosystem functions and services. We recommend more comprehensive planning to promote greater use of prescribed fire and management of reported fires for ecological benefits, plus increased responsibility and preparedness of local agencies, communities and individual homeowners for WLF and smoke events. Ultimately, by more effectively preparing for fire in the wildland urban interface, and by increasing the resistance of ponderosa pine forests, we can greatly enhance our ability to live with fire and other disturbances.
Collapse
Affiliation(s)
- Andrew G Merschel
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, 3180 SW Jefferson Way, Corvallis, OR. 97331, USA
| | - Peter A Beedlow
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA
| | - David C Shaw
- Department of Forest Engineering, Resources, and Management, Oregon State University, 216 Peavy Hall, 3100 SW Jefferson Way, Corvallis, OR 97331, USA
| | - David R Woodruff
- USDA Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97333, USA
| | - E Henry Lee
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA
| | - Steven P Cline
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA
| | - Randy L Comeleo
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA
| | - R Keala Hagmann
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Applegate Forestry LLC, Corvallis, OR 97330, USA
| | - Matthew J Reilly
- USDA Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97333, USA
| |
Collapse
|
40
|
Markó G, Németh I, Gyuricza V, Altbäcker V. Sex-specific differences in Juniperus communis: essential oil yield, growth-defence conflict and population sex ratio. AOB PLANTS 2021; 13:plab021. [PMID: 34122786 PMCID: PMC8192244 DOI: 10.1093/aobpla/plab021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
In plants, biomass and nutrient allocation often generate trade-offs between the different biochemical pathways conflicting the utilization of the common source among growth, reproduction and chemical defence. However, in dioecious plant species, these trade-off patterns could appear as a more contrasted problem between males and females due to the dissimilar reproduction investment. Generally, the growth ratio is higher in males than females, while females have a stronger defence than males. To understand the possible role of the sex-specific dissimilarities within the growth-defence conflict framework, we investigated the possible causes of the high variance of the essential oil yield in a dioecious evergreen species, Juniperus communis. Specifically, we tested the correlations between the essential oil yield with other individual-specific traits (e.g. sex, age), the presence of the growth-defence trade-off, and the differential growth and survival patterns between males and females through an extensive field survey with sample collection in three natural populations (Kiskunság National Park, Hungary). The individual-specific essential oil yield was also measured and served as a proxy to describe the degree of chemical defence. We found that the essential oil yield showed strong and consistent sex-specific patterns decreasing with age in adults. Contrary to the predictions, the males showed a consistently higher yield than the females. We also observed a growth-defence trade-off in males but not in females. Consistently with the growth-defence conflict hypothesis, the populations' sex ratio was male-biased, and this pattern was more evident with ageing modifying the demographic structure due to the sexually dissimilar lifespan. Our juniper study revealed a contrasting and unique essential oil accumulation driven by the complex allocation trade-off mechanisms within individuals, which could be a flexible and adaptive defence response against the increasing biotic and abiotic environmental stresses exacerbated under global climate change.
Collapse
Affiliation(s)
- Gábor Markó
- Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, H-1118 Budapest, Hungary
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - István Németh
- Biotech Biostatistics and Programming, Parexel International, Hermina út 17, H-1146 Budapest, Hungary
| | - Veronika Gyuricza
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Vilmos Altbäcker
- Department of Nature Conservation, Institute of Game Management and Nature Protection, Hungarian University of Agriculture and Life Sciences, Guba Sándor utca 40, H-7400 Kaposvár, Hungary
| |
Collapse
|
41
|
Farag MA, Meyer A, Ali SE. Bleaching effect in Sarcophyton spp. soft corals-is there a correlation to their diterpene content? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25594-25602. [PMID: 33459982 DOI: 10.1007/s11356-021-12483-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Rising seawater temperature is one of the greatest threats to the persistence of coral reefs. While great efforts have been made to understand the metabolic costs of thermal acclimation, the exact roles of many secondary metabolites involved in the immediate response exhibited by soft corals remain largely unknown. Herein, an untargeted metabolomics approach using ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-MS) was employed to investigate thermal stress-induced modifications to the de novo synthesis of secondary metabolites in two soft coral species, Sarcophyton ehrenbergi and S. glaucum. Exposure to elevated temperature resulted in symbiont photoinhibition primarily via either damage to photosystem II (PSII) or the loss of algal symbionts during coral bleaching. This was suggested by a decrease in pulse amplitude modulated (PAM) measurements of corals incubated at different temperatures. Thermal stress was also found to impair the production of diterpenoid secondary metabolites in soft corals. Principally, reduction in the levels of a number of diterpenes, viz. sarcophytoxide and deoxysarcophytoxide, in heat stressed S. ehrenbergi and S. glaucum was observed indicative that thermal acclimation is energetically costly and will necessitate downstream changes in secondary metabolic pathways. Our data suggest that, while the host controls the production of ecologically important terpenes, when energetic contribution from the algal symbiont is reduced or absent as a result of a bleaching event, energy reserves may be insufficient to maintain the production of such energetically cost chemicals. This study provides for the first time a holistic assessment of secondary metabolite changes imposed in soft corals during exposure and acclimation to elevated temperatures.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St. P.B., Cairo, 11562, Egypt.
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo (AUC), New Cairo, 11835, Egypt.
| | - Achim Meyer
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheit Str. 6, 28359, Bremen, Germany
| | - Sara E Ali
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo, 11432, Egypt
| |
Collapse
|
42
|
Tang M, Zhao W, Xing M, Zhao J, Jiang Z, You J, Ni B, Ni Y, Liu C, Li J, Chen X. Resource allocation strategies among vegetative growth, sexual reproduction, asexual reproduction and defense during growing season of Aconitum kusnezoffii Reichb. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:957-977. [PMID: 33180340 DOI: 10.1111/tpj.15080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Natural plants must actively allocate their limited resources for survival and reproduction. Although vegetative growth, sexual reproduction, asexual reproduction and defense are all basic processes in the life cycle of plants, the strategies used to allocate resources between these processes are poorly understood. These processes are conspicuous in naturally grown Aconitum kusnezoffii Reichb., which makes it a suitable study subject. Here, the morphology, dry matter, total organic carbon, total nitrogen and aconitum alkaloid levels of shoot, principal root (PR) and lateral roots were measured throughout the growing season. Then, transcriptome and metabolite content analyses were performed. We found that vegetative growth began first. After vegetative growth ceased, sexual development began. Flower organ development was accompanied by increased photosynthesis and the PR consumed temporarily stored resources after flower formation. Asexual propagule development initiated earlier than sexual reproduction and kept accumulating resources after that. Development was slow before flower formation, mainly manifesting as increasing length; then, after flower formation it accelerated via enhanced material transport and accumulation. Defense compounds were maintained at low levels before flowering. In particular, the turnover of defense compounds was enhanced before and after flower bud emergence, providing resources for other processes. After flower formation, defense compounds were accumulated. The pattern found herein provides a vivid example for further studies on resource allocation strategies. The exciting finding that the PR, as a more direct storage site for photosynthate, is a buffer unit for resources, and that defense compounds can be reused for other processes, suggests a need to explore potential mechanisms.
Collapse
Affiliation(s)
- Mingze Tang
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Wei Zhao
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Ming Xing
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Jiaxin Zhao
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Zhang Jiang
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Jian You
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Biao Ni
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Yuanbo Ni
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Chengbai Liu
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Jiangnan Li
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Xia Chen
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| |
Collapse
|
43
|
Eilers EJ, Kleine S, Eckert S, Waldherr S, Müller C. Flower Production, Headspace Volatiles, Pollen Nutrients, and Florivory in Tanacetum vulgare Chemotypes. FRONTIERS IN PLANT SCIENCE 2021; 11:611877. [PMID: 33552105 PMCID: PMC7855176 DOI: 10.3389/fpls.2020.611877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 06/01/2023]
Abstract
Floral volatiles and reward traits are major drivers for the behavior of mutualistic as well as antagonistic flower visitors, i.e., pollinators and florivores. These floral traits differ tremendously between species, but intraspecific differences and their consequences on organism interactions remain largely unknown. Floral volatile compounds, such as terpenoids, function as cues to advertise rewards to pollinators, but should at the same time also repel florivores. The reward composition, e.g., protein and lipid contents in pollen, differs between individuals of distinct plant families. Whether the nutritional value of rewards within the same plant species is linked to their chemotypes, which differ in their pattern of specialized metabolites, has yet not been investigated. In the present study, we compared Tanacetum vulgare plants of five terpenoid chemotypes with regard to flower production, floral headspace volatiles, pollen macronutrient and terpenoid content, and floral attractiveness to florivorous beetles. Our analyses revealed remarkable differences between the chemotypes in the amount and diameter of flower heads, duration of bloom period, and pollen nutritional quality. The floral headspace composition of pollen-producing mature flowers, but not of premature flowers, was correlated to that of pollen and leaves in the same plant individual. For two chemotypes, florivorous beetles discriminated between the scent of mature and premature flower heads and preferred the latter. In semi-field experiments, the abundance of florivorous beetles and flower tissue miners differed between T. vulgare chemotypes. Moreover, the scent environment affected the choice and beetles were more abundant in homogenous plots composed of one single chemotype than in plots with different neighboring chemotypes. In conclusion, flower production, floral metabolic composition and pollen quality varied to a remarkable extend within the species T. vulgare, and the attractiveness of floral scent differed also intra-individually with floral ontogeny. We found evidence for a trade-off between pollen lipid content and pollen amount on a per-plant-level. Our study highlights that chemotypes which are more susceptible to florivory are less attacked when they grow in the neighborhood of other chemotypes and thus gain a benefit from high overall chemodiversity.
Collapse
Affiliation(s)
| | - Sandra Kleine
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Silvia Eckert
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Simon Waldherr
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
44
|
Suárez-Vidal E, Sampedro L, Climent J, Voltas J, Sin E, Notivol E, Zas R. Direct and correlated responses to artificial selection for growth and water-use efficiency in a Mediterranean pine. AMERICAN JOURNAL OF BOTANY 2021; 108:102-112. [PMID: 33512710 DOI: 10.1002/ajb2.1599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/22/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Persistence of tree populations in the face of global change relies on their capacity to respond to biotic and abiotic stressors through plastic or adaptive changes. Genetic adaptation will depend on the additive genetic variation within populations and the heritability of traits related to stress tolerance. Because traits can be genetically linked, selective pressure acting on one trait may lead to correlated responses in other traits. METHODS To test direct and correlated responses to selection for growth and drought tolerance in Pinus halepensis, we selected trees in a parental population for higher growth and greater water-use efficiency (WUE) and compared their offspring with the offspring of random trees from the parental population in two contrasting common gardens. We estimated direct responses to selection for growth and WUE and correlated responses for growth and tolerance to abiotic and biotic stressors. RESULTS We found a strong response to selection and high realized heritability for WUE, but no response to selection for growth. Correlated responses to selection in other life-history traits were not significant, except for concentration of some chemical defenses, which was greater in the offspring of mother trees selected for growth than in the offspring of unselected control trees. CONCLUSIONS The empirical evidence of direct responses to selection for high WUE suggests that P. halepensis has the potential to evolve in response to increasing drought stress. Contrary to expectations, the results are not conclusive of a potential negative impact of WUE and growth selection on other key life-history traits.
Collapse
Affiliation(s)
| | - Luis Sampedro
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36143, Pontevedra, Spain
| | - Jose Climent
- INIA-CIFOR, Department of Ecology and Forest Genetics, Ctra. Coruña km 7.5, 28040, Madrid, Spain
| | - Jordi Voltas
- Joint Research Unit CTFC - AGROTECNIO, Rovira Roure 191, E25198, Lleida, Spain
- Department of Crop and Forest Sciences, University of Lleida, Rovira Roure 191, E25198, Lleida, Spain
| | - Ester Sin
- Department of Crop and Forest Sciences, University of Lleida, Rovira Roure 191, E25198, Lleida, Spain
| | - Eduardo Notivol
- Forest Resources Unit, CITA & IA2, Av. Montañana 930, 50059, Zaragoza, Spain
| | - Rafael Zas
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36143, Pontevedra, Spain
| |
Collapse
|
45
|
Castaño C, Camarero JJ, Zas R, Sampedro L, Bonet JA, Alday JG, Oliva J. Insect defoliation is linked to a decrease in soil ectomycorrhizal biomass and shifts in needle endophytic communities. TREE PHYSIOLOGY 2020; 40:1712-1725. [PMID: 32785638 DOI: 10.1093/treephys/tpaa104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Insect outbreaks of increasing frequency and severity in forests are predicted due to climate change. Insect herbivory is known to promote physiological changes in forest trees. However, little is known about whether these plant phenotypic adjustments have cascading effects on tree microbial symbionts such as fungi in roots and foliage. We studied the impact of defoliation by the pine processionary moth in two infested Pinus nigra forests through a multilevel sampling of defoliated and non-defoliated trees. We measured tree growth, nutritional status and carbon allocation to chemical defenses. Simultaneously, we analysed the putative impact of defoliation on the needle endophytes and on the soil fungal communities. Higher concentrations of chemical defenses were found in defoliated trees, likely as a response to defoliation; however, no differences in non-structural carbohydrate reserves were found. In parallel to the reductions in tree growth and changes in chemical defenses, we observed shifts in the composition of needle endophytic and soil fungal communities in defoliated trees. Defoliated trees consistently corresponded with a lower biomass of ectomycorrhizal fungi in both sites, and a higher alpha diversity and greater relative abundance of belowground saprotrophs and pathogens. However, ectomycorrhizal alpha diversity was similar between non-defoliated and defoliated trees. Specific needle endophytes in old needles were strongly associated with non-defoliated trees. The potential role of these endophytic fungi in pine resistance should be further investigated. Our study suggests that lower biomass of ectomycorrhizal fungi in defoliated trees might slow down tree recovery since fungal shifts might affect tree-mycorrhizal feedbacks and can potentially influence carbon and nitrogen cycling in forest soils.
Collapse
Affiliation(s)
- Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), 50192 Zaragoza, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, 36080 Pontevedra, Spain
| | - Luis Sampedro
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, 36080 Pontevedra, Spain
| | - José Antonio Bonet
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| | - Josu G Alday
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| | - Jonàs Oliva
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| |
Collapse
|
46
|
Herbivory and Attenuated UV Radiation Affect Volatile Emissions of the Invasive Weed Calluna vulgaris. Molecules 2020; 25:molecules25143200. [PMID: 32668802 PMCID: PMC7397131 DOI: 10.3390/molecules25143200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
Calluna vulgaris (heather) is an aggressive invasive weed on the Central Plateau, North Is., New Zealand (NZ), where it encounters different environmental factors compared to its native range in Europe, such as high ultraviolet radiation (UV) and a lack of specialist herbivores. The specialist herbivore Lochmaea suturalis (heather beetle) was introduced from the United Kingdom (UK) in 1996 as a biocontrol agent to manage this invasive weed. Like other plant invaders, a novel environment may be challenging for heather as it adjusts to its new conditions. This process of “adjustment” involves morphological and physiological changes often linked to phenotypic plasticity. The biochemical responses of exotic plants to environmental variables in their invaded range is poorly understood. The production and release of volatile organic compounds (VOCs) is essential to plant communication and highly susceptible to environmental change. This study therefore aimed to explore the VOC emissions of heather in response to different levels of UV exposure, and to feeding damage by L. suturalis. Using tunnel houses clad with UV-selective filters, we measured VOCs produced by heather under NZ ambient, 20% attenuated, and 95% attenuated solar UV treatments. We also compared VOC emissions in the field at adjacent sites where L. suturalis was present or absent. Volatiles produced by the same target heather plants were measured at four different times in the spring and summer of 2018–2019, reflecting variations in beetle’s abundance, feeding stage and plant phenology. Heather plants under 95% attenuated UV produced significantly higher amounts of (E)-β-farnesene, decanal, benzaldehyde, and benzeneacetaldehyde compared to 25% attenuated and ambient UV radiation. We also found significant differences in volatiles produced by heather plants in beetle-present versus beetle-absent sites on most sampling occasions. We also recorded a lower number of generalist herbivores on heather at sites where L. suturalis was present. Interactions between invasive plants, a novel environment, and the native communities they invade, are discussed.
Collapse
|
47
|
Park SJ, De Faveri SG, Cheesman J, Hanssen BL, Cameron DNS, Jamie IM, Taylor PW. Zingerone in the Flower of Passiflora Maliformis Attracts an Australian Fruit Fly, Bactrocera Jarvisi (Tryon). Molecules 2020; 25:molecules25122877. [PMID: 32580521 PMCID: PMC7355451 DOI: 10.3390/molecules25122877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
Passiflora maliformis is an introduced plant in Australia but its flowers are known to attract the native Jarvis’s fruit fly, Bactrocera jarvisi (Tryon). The present study identifies and quantifies likely attractant(s) of male B. jarvisi in P. maliformis flowers. The chemical compositions of the inner and outer coronal filaments, anther, stigma, ovary, sepal, and petal of P. maliformis were separately extracted with ethanol and analyzed using gas chromatography-mass spectrometry (GC-MS). Polyisoprenoid lipid precursors, fatty acids and their derivatives, and phenylpropanoids were detected in P. maliformis flowers. Phenylpropanoids included raspberry ketone, cuelure, zingerone, and zingerol, although compositions varied markedly amongst the flower parts. P. maliformis flowers were open for less than one day, and the amounts of some of the compounds decreased throughout the day. The attraction of male B. jarvisi to P. maliformis flowers is most readily explained by the presence of zingerone in these flowers.
Collapse
Affiliation(s)
- Soo Jean Park
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; (D.N.S.C.); (P.W.T.)
- Correspondence: ; Tel.: +61-413-616-107
| | - Stefano G. De Faveri
- Horticulture and Forestry Science, Queensland Department of Agriculture and Fisheries, Mareeba, QLD 4880, Australia; (S.G.D.F.); (J.C.)
| | - Jodie Cheesman
- Horticulture and Forestry Science, Queensland Department of Agriculture and Fisheries, Mareeba, QLD 4880, Australia; (S.G.D.F.); (J.C.)
| | - Benjamin L. Hanssen
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; (B.L.H.); (I.M.J.)
| | - Donald N. S. Cameron
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; (D.N.S.C.); (P.W.T.)
| | - Ian M. Jamie
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; (B.L.H.); (I.M.J.)
| | - Phillip W. Taylor
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; (D.N.S.C.); (P.W.T.)
| |
Collapse
|
48
|
Decker LE, Hunter MD. Interspecific variation and elevated CO 2 influence the relationship between plant chemical resistance and regrowth tolerance. Ecol Evol 2020; 10:5416-5430. [PMID: 32607163 PMCID: PMC7319169 DOI: 10.1002/ece3.6284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/04/2022] Open
Abstract
To understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO2 on the relationships between chemical resistance (constitutive and induced via mechanical damage) and regrowth tolerance in four milkweed species (Asclepias). We quantified potential resistance and tolerance trade-offs at the physiological level following simulated mowing, which are relevant to milkweed ecology and conservation. We examined the legacy effects of elevated CO2 on four hypothesized trade-offs between the following: (a) plant growth rate and constitutive chemical resistance (foliar cardenolide concentrations), (b) plant growth rate and mechanically induced chemical resistance, (c) constitutive resistance and regrowth tolerance, and (d) regrowth tolerance and mechanically induced resistance. We observed support for one trade-off between plant regrowth tolerance and mechanically induced resistance traits that was, surprisingly, independent of CO2 exposure. Across milkweed species, mechanically induced resistance increased by 28% in those plants previously exposed to elevated CO2. In contrast, constitutive resistance and the diversity of mechanically induced chemical resistance traits declined in response to elevated CO2 in two out of four milkweed species. Finally, previous exposure to elevated CO2 uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage. Our data highlight the complex and dynamic nature of plant defense phenotypes under environmental change and question the generality of physiologically based defense trade-offs.
Collapse
Affiliation(s)
| | - Mark D. Hunter
- Department of Ecology and Evolutionary BiologyUniversity of MichiganBiological Sciences BuildingAnn ArborMIUSA
| |
Collapse
|
49
|
Howe M, Mason CJ, Gratton C, Keefover‐Ring K, Wallin K, Yanchuk A, Zhu J, Raffa KF. Relationships between conifer constitutive and inducible defenses against bark beetles change across levels of biological and ecological scale. OIKOS 2020. [DOI: 10.1111/oik.07242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Michael Howe
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI 53706 USA
| | - Charles J. Mason
- Dept of Entomology, Pennsylvania State Univ., University Park PA USA
| | - Claudio Gratton
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI 53706 USA
| | - Ken Keefover‐Ring
- Depts of Botany and Geography, Univ. of Wisconsin‐Madison Madison WI USA
| | - Kimberly Wallin
- College of Science and Mathematics, North Dakota State Univ. Fargo ND USA
| | - Alvin Yanchuk
- Ministry of Forests, Lands, Natural Resource Operations & Rural Development, Government of British Columbia Victoria BC Canada
| | - Jun Zhu
- Dept of Statistics, Univ. of Wisconsin‐Madison Madison WI USA
| | - Kenneth F. Raffa
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI 53706 USA
| |
Collapse
|
50
|
López-Goldar X, Lundborg L, Borg-Karlson AK, Zas R, Sampedro L. Resin acids as inducible chemical defences of pine seedlings against chewing insects. PLoS One 2020; 15:e0232692. [PMID: 32357193 PMCID: PMC7194405 DOI: 10.1371/journal.pone.0232692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/19/2020] [Indexed: 11/23/2022] Open
Abstract
Inducibility of defences in response to biotic stimuli is considered an important trait in plant resistance. In conifers, previous research has mostly focused on the inducibility of the volatile fraction of the oleoresin (mono- and sesquiterpenes), leaving the inducibility of the non-volatile resin acids largely unexplored, particularly in response to real herbivory. Here we investigated the differences in the inducibility of resin acids in two pine species, one native from Europe (Pinus pinaster Ait.) and another from North America (Pinus radiata D. Don), in response to wounding by two European insects: a bark chewer, the pine weevil (Hylobius abietis L.), and a defoliator, the pine processionary caterpillar (Thaumetopoea pityocampa Schiff.). We quantified the constitutive (control) and induced concentrations of resin acids in the stem and needles of both pine species by gas chromatography techniques. Both pine species strongly increased the concentration of resin acids in the stem after pine weevil feeding, although the response was greater in P. pinaster than in P. radiata. However, systemic defensive responses in the needles were negligible in both pine species after pine weevil feeding in the stem. On the other hand, P. radiata locally reduced the resin acid concentration in the needles after pine caterpillar feeding, whereas in P. pinaster resin acid concentration was apparently unaffected. Nevertheless, systemic induction of resin acids was only observed in the stem of P. pinaster in response to pine caterpillar feeding. In summary, pine induced responses were found highly compartmentalized, and specific to herbivore identity. Particularly, plant defence suppression mechanisms by the pine caterpillar, and ontogenetic factors might be potentially affecting the induced response of resin acids in both pine species.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Lina Lundborg
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Anna Karin Borg-Karlson
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Rafael Zas
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Luis Sampedro
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| |
Collapse
|