1
|
Xiong JL, Wang YX, Luo JY, Wang SM, Sun JJ, Xi QY, Chen T, Zhang YL. Pituitary-derived small extracellular vesicles promote liver repair by its cargo miR-143-3p. Sci Rep 2024; 14:16635. [PMID: 39025906 PMCID: PMC11258314 DOI: 10.1038/s41598-024-67434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The small Extracellular vesicles (sEV) has been recognized to be significant for intercellular communication due to their ability to transfer important cellular cargoes like miRNAs through circulation. The pituitary gland has not been clearly known about the role of its secreted sEV under normal physiological conditions. And Liver disease is a global public health burden. The present study is the first to investigate the effect of pituitary sEV on the liver. Sequencing and qRT-PCR revealed miR-143-3p is one of the richest in the pituitary sEV. MiR-143 Knockout (KO) mice resulted in a remarkable decrease in insulin-like growth factor 1 (IGF-1) levels and a significant increase in insulin-like growth factor binding protein 5 (IGFBP5) levels along with a reduction in liver primary cell growth. More importantly, compared with miR-143-KO-sEV, WT-sEV possesses a more robust capacity to improve miR-143 KO mice liver repair through the Wnt/β-catenin pathway after an acute injury caused by carbon tetrachloride (CCl4). Our results indicate that pituitary-derived sEV promotes hepatocyte proliferation and liver repair by its cargo miR-143-3p and provides new insight into the regulation mechanism of the pituitary-liver axis, and open a new window for endocrine regulation by using sEV.
Collapse
Affiliation(s)
- Jia-Li Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Yu-Xuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun-Yi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Shu-Meng Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jia-Jie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qian-Yun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yong-Liang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
2
|
Wang A, Zhao Q, Liu M, Wang Y, Zhao G, Li W, Peng Y, Zheng J. In Vitro and In Vivo Metabolic Activation of Tolterodine Mediated by CYP3A. Chem Res Toxicol 2023; 36:479-491. [PMID: 36795936 DOI: 10.1021/acs.chemrestox.2c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Tolterodine (TOL) is an antimuscarinic drug used for the treatment of patients with overactive bladder presenting urinary frequency, urgency, and urge incontinence. During the clinical use of TOL, adverse events such as liver injury took place. The present study aimed at the investigation of the metabolic activation of TOL possibly associated with its hepatotoxicity. One GSH conjugate, two NAC conjugates, and two cysteine conjugates were found in both mouse and human liver microsomal incubations supplemented with TOL, GSH/NAC/cysteine, and NADPH. The detected conjugates suggest the production of a quinone methide intermediate. The same GSH conjugate was also observed in mouse primary hepatocytes and in the bile of rats receiving TOL. One of the urinary NAC conjugates was observed in rats administered TOL. One of the cysteine conjugates was found in a digestion mixture containing hepatic proteins from animals administered TOL. The observed protein modification was dose-dependent. CYP3A primarily catalyzes the metabolic activation of TOL. Ketoconazole (KTC) pretreatment reduced the generation of the GSH conjugate in mouse liver and cultured primary hepatocytes after TOL treatment. In addition, KTC reduced the susceptibility of primary hepatocytes to TOL cytotoxicity. The quinone methide metabolite may be involved in TOL-induced hepatotoxicity and cytotoxicity.
Collapse
Affiliation(s)
- Aixuan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Qiang Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Minglu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
3
|
Huang PP, Zhu WQ, Xiao JM, Zhang YQ, Li R, Yang Y, Shen L, Luo F, Dai W, Lian PA, Tang YX, Ran JL, Huang XS. Alterations in sorting and secretion of hepatic apoA5 induce hypertriglyceridemia due to short-term use of olanzapine. Front Pharmacol 2022; 13:935362. [PMID: 36034782 PMCID: PMC9411997 DOI: 10.3389/fphar.2022.935362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term use of olanzapine, an antipsychotic drug, induces hypertriglyceridemia, resulting in a higher risk of cardiovascular disease. However, the effects and underlying mechanisms of short-term use of olanzapine on circulating triglyceride levels remain poorly understood. Here, the role of apolipoprotein A5 (apoA5), a regulator of triglyceride metabolism, was investigated in olanzapine-induced hypertriglyceridemia. Our multi-center clinical study recruited 36 schizophrenia patients who received short-term (8 weeks) of olanzapine. Besides, female C57BL/6J mice were treated with olanzapine (3 mg/kg/day versus 6 mg/kg/day) for 6 weeks. We demonstrated that short-term use of olanzapine increased plasma triglyceride and decreased plasma apoA5 levels in the patients and mice, with a negative correlation between the two factors. However, no obesity was observed in the patients and mice. Interestingly, olanzapine increased hepatic apoA5 protein in the mice, without significant changes in hepatic Apoa5 mRNA. Consistently, in vitro studies indicated that olanzapine increased medium triglyceride levels and decreased medium apoA5 levels in a dose-dependent manner in human HepG2 cells and primary mouse hepatocytes. Whereas the olanzapine treatment increased hepatic apoA5 protein in vitro, without effects on hepatic APOA5 mRNA. Of note, olanzapine increased the co-localization between apoA5 protein and accumulated lipid droplets in hepatocytes, as opposed to at the hepatocellular plasma membrane, in mouse liver as demonstrated by fluorescence staining. Therefore, our study indicated that short-term use of olanzapine induced hypertriglyceridemia due to defects of sorting and secretion of hepatic apoA5.
Collapse
Affiliation(s)
- Piao-Piao Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Qiang Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing-Mei Xiao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi-Qi Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rong Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Shen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Wen Dai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Ping-An Lian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Xin Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan-Li Ran
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xian-Sheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Xian-Sheng Huang,
| |
Collapse
|
4
|
Colucci S, Altamura S, Marques O, Dropmann A, Horvat NK, Müdder K, Hammad S, Dooley S, Muckenthaler MU. Liver Sinusoidal Endothelial Cells Suppress Bone Morphogenetic Protein 2 Production in Response to TGFβ Pathway Activation. Hepatology 2021; 74:2186-2200. [PMID: 33982327 DOI: 10.1002/hep.31900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS TGFβ/bone morphogenetic protein (BMP) signaling in the liver plays a critical role in liver disease. Growth factors, such as BMP2, BMP6, and TGFβ1, are released from LSECs and signal in a paracrine manner to hepatocytes and hepatic stellate cells to control systemic iron homeostasis and fibrotic processes, respectively. The misregulation of the TGFβ/BMP pathway affects expression of the iron-regulated hormone hepcidin, causing frequent iron overload and deficiency diseases. However, whether LSEC-secreted factors can act in an autocrine manner to maintain liver homeostasis has not been addressed so far. APPROACH AND RESULTS We analyzed publicly available RNA-sequencing data of mouse LSECs for ligand-receptor interactions and identified members of the TGFβ family (BMP2, BMP6, and TGFβ1) as ligands with the highest expression levels in LSECs that may signal in an autocrine manner. We next tested the soluble factors identified through in silico analysis in optimized murine LSEC primary cultures and mice. Exposure of murine LSEC primary cultures to these ligands shows that autocrine responses to BMP2 and BMP6 are blocked despite high expression levels of the required receptor complexes partially involving the inhibitor FK-506-binding protein 12. By contrast, LSECs respond efficiently to TGFβ1 treatment, which causes reduced expression of BMP2 through activation of activin receptor-like kinase 5. CONCLUSIONS These findings reveal that TGFβ1 signaling is functionally interlinked with BMP signaling in LSECs, suggesting druggable targets for the treatment of iron overload diseases associated with deficiency of the BMP2-regulated hormone hepcidin, such as hereditary hemochromatosis, β-thalassemia, and chronic liver diseases.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Anne Dropmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Natalie K Horvat
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Katja Müdder
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Seddik Hammad
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Forensic and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| |
Collapse
|
5
|
Bauer TA, Horvat NK, Marques O, Chocarro S, Mertens C, Colucci S, Schmitt S, Carrella LM, Morsbach S, Koynov K, Fenaroli F, Blümler P, Jung M, Sotillo R, Hentze MW, Muckenthaler MU, Barz M. Core Cross-Linked Polymeric Micelles for Specific Iron Delivery: Inducing Sterile Inflammation in Macrophages. Adv Healthc Mater 2021; 10:e2100385. [PMID: 34137217 PMCID: PMC11468145 DOI: 10.1002/adhm.202100385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Iron is an essential co-factor for cellular processes. In the immune system, it can activate macrophages and represents a potential therapeutic for various diseases. To specifically deliver iron to macrophages, iron oxide nanoparticles are embedded in polymeric micelles of reactive polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine). Upon surface functionalization via dihydrolipoic acid, iron oxide cores act as crosslinker themselves and undergo chemoselective disulfide bond formation with the surrounding poly(S-ethylsulfonyl-l-cysteine) block, yielding glutathione-responsive core cross-linked polymeric micelles (CCPMs). When applied to primary murine and human macrophages, these nanoparticles display preferential uptake, sustained intracellular iron release, and induce a strong inflammatory response. This response is also demonstrated in vivo when nanoparticles are intratracheally administered to wild-type C57Bl/6N mice. Most importantly, the controlled release concept to deliver iron oxide in redox-responsive CCPMs induces significantly stronger macrophage activation than any other iron source at identical iron levels (e.g., Feraheme), directing to a new class of immune therapeutics.
Collapse
Affiliation(s)
- Tobias A. Bauer
- Leiden Academic Centre for Drug Research (LACDR)Leiden UniversityEinsteinweg 55Leiden2333CCThe Netherlands
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐14Mainz55128Germany
| | - Natalie K. Horvat
- European Molecular Biology Laboratory (EMBL)Collaboration for Joint PhD Degree between EMBL and the Faculty of BiosciencesUniversity of HeidelbergMeyerhofstr.1Heidelberg69117Germany
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)University of HeidelbergIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Oriana Marques
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Sara Chocarro
- Department of Molecular Thoracic OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 280Heidelberg69120Germany
| | - Christina Mertens
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Silvia Colucci
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Sascha Schmitt
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Luca M. Carrella
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐14Mainz55128Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Federico Fenaroli
- Department for BiosciencesUniversity of OsloBlindernveien 31Oslo0371Norway
| | - Peter Blümler
- Institute of PhysicsJohannes Gutenberg University MainzStaudingerweg 9Mainz55128Germany
| | - Michaela Jung
- Institute of Biochemistry IFaculty of MedicineGoethe‐University FrankfurtTheodor‐Stern‐Kai 7Frankfurt am Main60590Germany
| | - Rocio Sotillo
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)University of HeidelbergIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Molecular Thoracic OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 280Heidelberg69120Germany
| | - Matthias W. Hentze
- European Molecular Biology Laboratory (EMBL)Collaboration for Joint PhD Degree between EMBL and the Faculty of BiosciencesUniversity of HeidelbergMeyerhofstr.1Heidelberg69117Germany
| | - Martina U. Muckenthaler
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)University of HeidelbergIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR)Leiden UniversityEinsteinweg 55Leiden2333CCThe Netherlands
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐14Mainz55128Germany
| |
Collapse
|
6
|
Tian Y, Ren F, Xu L, Zhang X. Distinct effects of different doses of kaempferol on D‑GalN/LPS‑induced ALF depend on the autophagy pathway. Mol Med Rep 2021; 24:682. [PMID: 34318900 PMCID: PMC8335584 DOI: 10.3892/mmr.2021.12321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/24/2021] [Indexed: 01/16/2023] Open
Abstract
Kaempferol, a flavonoid compound, has various biological functions, such as anti-inflammatory and antitumor activities. Acute liver failure (ALF) is a lethal clinical syndrome that occurs due to severe damage of the liver function. In the present study, the mechanisms underlying the therapeutic effects of kaempferol in ALF were evaluated. An ALF mouse model was established using D-galactosamine (D-GalN; 700 mg/kg)/lipopolysaccharide (LPS; 10 µg/kg). A total of 2 h before the administration of D-GalN/LPS, mice were pretreated with different doses of kaempferol (2.5, 5, 10, 20 and 40 mg/kg), and 6 h after injection of D-GalN/LPS, mice were euthanized. The survival rate, liver function and levels of inflammatory cytokines were assessed. The results demonstrated that kaempferol pretreatment protected hepatocytes from ALF induced by D-GalN/LPS via regulation of the autophagy pathway, both in vivo and in vitro. Pretreatment with a high dose of kaempferol significantly decreased the survival rates and increased severe liver damage; however, pretreatment with a low dose of kaempferol had the opposite effect. Furthermore, pretreatment with a high dose of kaempferol enhanced the levels of proinflammatory cytokines [TNF-α, IL-6, IL-12p40, IL-1β, C-X-C motif chemokine ligand (CXCL)-2, CXCL-10] and markers of the MAPK signaling pathway [phosphorylated (p)-JNK, p-ERK, p-p38], whereas pretreatment with a low dose of kaempferol had the opposite effect. Pretreatment with a high dose of kaempferol decreased autophagy, whereas pretreatment with a low dose of kaempferol increased autophagy in vivo and in vitro. It was also shown that pretreatment with 3-methyadenine or autophagy related 7 small interfering RNA, to inhibit autophagy, partially abrogated the hepatoprotective effects of pretreatment with 5 mg/kg kaempferol in the ALF mouse model. These results demonstrate that the effects of different doses of kaempferol on D-GalN/LPS-induced ALF varies based on the dose, and that kaempferol exerted its effects via regulation of the autophagy pathway.
Collapse
Affiliation(s)
- Yuan Tian
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Ling Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
7
|
Rong J, Tao X, Lin Y, Zheng H, Ning L, Lu HS, Daugherty A, Shi P, Mullick AE, Chen S, Zhang Z, Xu Y, Wang J. Loss of Hepatic Angiotensinogen Attenuates Sepsis-Induced Myocardial Dysfunction. Circ Res 2021; 129:547-564. [PMID: 34238019 DOI: 10.1161/circresaha.120.318075] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale: The renin-angiotensin system (RAS) is a complex regulatory network that maintains normal physiological functions. The role of the RAS in sepsis-induced myocardial dysfunction (SIMD) is poorly defined. Angiotensinogen (AGT) is the unique precursor of the RAS and gives rise to all angiotensin peptides. The effects and mechanisms of AGT in development of SIMD have not been defined. Objective: To determine a role of AGT in SIMD and investigate the underlying mechanisms. Methods and Results: Either intraperitoneal injection of lipopolysaccharide (LPS) or cecal ligation and puncture (CLP) significantly enhanced AGT abundances in liver, heart, and plasma. Deficiency of hepatocyte-derived AGT (hepAGT), rather than cardiomyocyte-derived AGT (carAGT), alleviated septic cardiac dysfunction in mice and prolonged survival time. Further investigations revealed that the effects of hepAGT on SIMD were partially associated with augmented angiotensin II (AngII) production in circulation. In addition, hepAGT was internalized by LDL receptor-related protein 1 (LRP1) in cardiac fibroblasts (CF), and subsequently activated NLRP3 inflammasome via an AngII-independent pathway, ultimately promoting SIMD by suppressing Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) abundances in cardiomyocytes (CM). Conclusions: HepAGT promoted SIMD via both AngII-dependent and AngII-independent pathways. We identified a liver-heart axis by which AGT regulated development of SIMD. Our study may provide a potential novel therapeutic target for SIMD.
Collapse
Affiliation(s)
- Jiabing Rong
- Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, CHINA
| | - Xinran Tao
- Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Yao Lin
- Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine
| | - Haiqiong Zheng
- Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang university, CHINA
| | - Le Ning
- Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine
| | - Hong S Lu
- Physiology, University of Kentucky, UNITED STATES
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, UNITED STATES
| | - Peng Shi
- Institute of Translational Medicine, Zhejiang University, CHINA
| | - Adam E Mullick
- Antisense Drug Discovery, Ionis Pharmaceuticals, UNITED STATES
| | - Sicong Chen
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, CHINA
| | - Zhaocai Zhang
- Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, CHINA
| | - Yinchuan Xu
- Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang university, CHINA
| | - Jian'an Wang
- Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, CHINA
| |
Collapse
|
8
|
Tao XR, Rong JB, Lu HS, Daugherty A, Shi P, Ke CL, Zhang ZC, Xu YC, Wang JA. Angiotensinogen in hepatocytes contributes to Western diet-induced liver steatosis. J Lipid Res 2019; 60:1983-1995. [PMID: 31604805 PMCID: PMC6889717 DOI: 10.1194/jlr.m093252] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered as a liver manifestation of metabolic disorders. Previous studies indicate that the renin-angiotensin system (RAS) plays a complex role in NAFLD. As the only precursor of the RAS, decreased angiotensinogen (AGT) profoundly impacts RAS bioactivity. Here, we investigated the role of hepatocyte-derived AGT in liver steatosis. AGT floxed mice (hepAGT+/+) and hepatocyte-specific AGT-deficient mice (hepAGT−/−) were fed a Western diet and a normal laboratory diet for 12 weeks, respectively. Compared with hepAGT+/+ mice, Western diet-fed hepAGT−/− mice gained less body weight with improved insulin sensitivity. The attenuated severity of liver steatosis in hepAGT−/− mice was evidenced by histologic changes and reduced intrahepatic triglycerides. The abundance of SREBP1 and its downstream molecules, acetyl-CoA carboxylase and FASN, was suppressed in hepAGT−/− mice. Furthermore, serum derived from hepAGT+/+ mice stimulated hepatocyte SREBP1 expression, which could be diminished by protein kinase B (Akt)/mammalian target of rapamycin (mTOR) inhibition in vitro. Administration of losartan did not affect diet-induced body weight gain, liver steatosis severity, and hepatic p-Akt, p-mTOR, and SREBP1 protein abundance in hepAGT+/+ mice. These data suggest that attenuation of Western diet-induced liver steatosis in hepAGT−/− mice is associated with the alternation of the Akt/mTOR/SREBP-1c pathway.
Collapse
Affiliation(s)
- Xin-Ran Tao
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Bing Rong
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong S Lu
- Saha Cardiovascular Research Center and Departments of Pharmacology and Nutritional Sciences and Physiology, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center and Departments of Pharmacology and Nutritional Sciences and Physiology, University of Kentucky, Lexington, KY
| | - Peng Shi
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang-Le Ke
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhao-Cai Zhang
- Department of Intensive Care Unit, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin-Chuan Xu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-An Wang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Fornaguera C, Guerra‐Rebollo M, Lázaro MÁ, Cascante A, Rubio N, Blanco J, Borrós S. In Vivo Retargeting of Poly(beta aminoester) (OM-PBAE) Nanoparticles is Influenced by Protein Corona. Adv Healthc Mater 2019; 8:e1900849. [PMID: 31478348 DOI: 10.1002/adhm.201900849] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/28/2019] [Indexed: 12/29/2022]
Abstract
One of the main bottlenecks in the translation of nanomedicines from research to clinics is the difficulty in designing nanoparticles actively vectorized to the target tissue, a key parameter to ensure efficacy and safety. In this group, a library of poly(beta aminoester) polymers is developed, and it is demonstrated that adding specific combinations of terminal oligopeptides (OM-PBAE), in vitro transfection is cell selective. The current study aims to actively direct the nanoparticles to the liver by the addition of a targeting molecule. To achieve this objective, retinol, successfully attached to OM-PBAE, is selected as hepatic targeting moiety. It is demonstrated that organ biodistribution is tailored, achieving the desired liver accumulation. Regarding cell type transfection, antigen presenting cells in the liver are those showing the highest transfection. Thanks to proteomics studies, organ but not cellular biodistribution can be explained by the formation of differential protein coronas. Therefore, organ biodistribution is governed by differential protein corona formed when retinol is present, while cellular biodistribution is controlled by the end oligopeptides type. In summary, this work is a proof of concept that demonstrates the versatility of these OM-PBAE nanoparticles, in terms of the modification of the biodistribution of OM-PBAE nanoparticles adding active targeting moieties.
Collapse
Affiliation(s)
- Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat)Institut Químic de Sarrià (IQS)Ramon Llull University (URL) Via Augusta 390 08017 Barcelona Spain
| | - Marta Guerra‐Rebollo
- Grup d'Enginyeria de Materials (Gemat)Institut Químic de Sarrià (IQS)Ramon Llull University (URL) Via Augusta 390 08017 Barcelona Spain
| | | | - Anna Cascante
- Sagetis‐Biotech SL Via Augusta 390 08017 Barcelona Spain
| | - Núria Rubio
- Grup de Terapia CellularInstitut de Química Avançada de Catalunya (IQAC‐CSIC) C/Jordi Girona 28‐26 08034 Barcelona Spain
| | - Jerónimo Blanco
- Grup de Terapia CellularInstitut de Química Avançada de Catalunya (IQAC‐CSIC) C/Jordi Girona 28‐26 08034 Barcelona Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat)Institut Químic de Sarrià (IQS)Ramon Llull University (URL) Via Augusta 390 08017 Barcelona Spain
- Sagetis‐Biotech SL Via Augusta 390 08017 Barcelona Spain
| |
Collapse
|
10
|
Protective Role of Kupffer Cells and Macrophages in Klebsiella pneumoniae-Induced Liver Abscess Disease. Infect Immun 2019; 87:IAI.00369-19. [PMID: 31285251 DOI: 10.1128/iai.00369-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Klebsiella pneumoniae-induced liver abscess (KLA) is emerging as a leading cause of pyogenic liver abscess worldwide. In recent years, the emergence of hypervirulent K. pneumoniae (hvKp) has been strongly associated with KLA. Unlike classical K. pneumoniae, which generally infects the immunocompromised population, hvKp can cause serious and invasive infections in young and healthy individuals. hvKp isolates are often associated with the K1/K2 capsular types and possess hypermucoviscous capsules. KLA is believed to be caused by K. pneumoniae colonizing the gastrointestinal tract of the host and translocating across the intestinal barrier via the hepatic portal vein into the liver to cause liver abscess. We optimized the isolation of the liver-resident macrophages called Kupffer cells in mice and examined their importance in controlling bacterial loads during hvKp infection in healthy mice. Our study reveals the high capability of Kupffer cells to kill hvKp in vitro despite the presence of the bacterial hypermucoviscous capsule, in contrast to other macrophages, which were unable to phagocytose the bacteria efficiently. Depletion of Kupffer cells and macrophages with liposome-encapsulated clodronate (liposomal clodronate) in both an intraperitoneal and an oral mouse infection model resulted in increased bacterial loads in the livers, spleens, and lungs and increased mortality of the infected mice. Thus, Kupffer cells and macrophages are critical for the control of hvKp infection.
Collapse
|
11
|
McMahon M, Ding S, Jimenez LA, Terranova R, Gerard MA, Vitobello A, Moggs J, Henderson CJ, Wolf CR. Constitutive androstane receptor 1 is constitutively bound to chromatin and 'primed' for transactivation in hepatocytes. Mol Pharmacol 2019; 95:97-105. [PMID: 30361333 PMCID: PMC6277922 DOI: 10.1124/mol.118.113555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
The constitutive androstane receptor (CAR) is a xenobiotic sensor expressed in hepatocytes that activates genes involved in drug metabolism, lipid homeostasis, and cell proliferation. Much progress has been made in understanding the mechanism of activation of human CAR by drugs and xenobiotics. However, many aspects of the activation pathway remain to be elucidated. In this report, we have used viral constructs to express human CAR, its splice variants, and mutant CAR forms in hepatocytes from Car-/- mice in vitro and in vivo. We demonstrate CAR expression rescued the ability of Car-/- hepatocytes to respond to a wide range of CAR activators including phenobarbital. Additionally, two major splice isoforms of human CAR, CAR2 and CAR3, were inactive with almost all the agents tested. In contrast to the current model of CAR activation, ectopic CAR1 is constitutively localized in the nucleus and is loaded onto Cyp2b10 gene in the absence of an inducing agent. In studies to elucidate the role of threonine T38 in CAR regulation, we found that the T38D mutant was inactive even in the presence of CAR activators. However, the T38A mutant was activated by CAR inducers, showing that T38 is not essential for CAR activation. Also, using the inhibitor erlotinib, we could not confirm a role for the epidermal growth factor receptor in CAR regulation. Our data suggest that CAR is constitutively bound to gene regulatory regions and is regulated by exogenous agents through a mechanism which involves protein phosphorylation in the nucleus.
Collapse
Affiliation(s)
- Michael McMahon
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Shaohong Ding
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Lourdes Acosta Jimenez
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Remi Terranova
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Marie-Apolline Gerard
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Antonio Vitobello
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Jonathan Moggs
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Colin J Henderson
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - C Roland Wolf
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| |
Collapse
|
12
|
Salem ESB, Murakami K, Takahashi T, Bernhard E, Borra V, Bethi M, Nakamura T. Isolation of Primary Mouse Hepatocytes for Nascent Protein Synthesis Analysis by Non-radioactive L-azidohomoalanine Labeling Method. J Vis Exp 2018. [PMID: 30417869 DOI: 10.3791/58323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatocytes are parenchymal cells of the liver and engage multiple metabolic functions, including synthesis and secretion of proteins essential for systemic energy homeostasis. Primary hepatocytes isolated from the murine liver constitute a valuable biological tool to understand the functional properties or alterations occurring in the liver. Herein we describe a method for the isolation and culture of primary mouse hepatocytes by performing a two-step collagenase perfusion technique and discuss their utilization for investigating protein metabolism. The liver of an adult mouse is sequentially perfused with ethylene glycol-bis tetraacetic acid (EGTA) and collagenase, followed by the isolation of hepatocytes with the density gradient buffer. These isolated hepatocytes are viable on culture plates and maintain the majority of endowed characteristics of hepatocytes. These hepatocytes can be used for assessments of protein metabolism including nascent protein synthesis with non-radioactive reagents. We show that the isolated hepatocytes are readily controlled and comprise a higher quality and volume stability of protein synthesis linked to energy metabolism by utilizing the chemo-selective ligation reaction with a Tetramethylrhodamine (TAMRA) protein detection method and western blotting analyses. Therefore, this method is valuable for investigating hepatic nascent protein synthesis linked to energy homeostasis. The following protocol outlines the materials and methods for the isolation of high-quality primary mouse hepatocytes and detection of nascent protein synthesis.
Collapse
Affiliation(s)
- Esam S B Salem
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati; Division of Endocrinology, Cincinnati Children's Hospital Medical Center
| | - Kazutoshi Murakami
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center
| | | | - Elise Bernhard
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center
| | - Vishnupriya Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center
| | - Mridula Bethi
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, College of Medicine, University of Cincinnati;
| |
Collapse
|
13
|
Grimaldi M, Karaca M, Latini L, Brioudes E, Schalch T, Maechler P. Identification of the molecular dysfunction caused by glutamate dehydrogenase S445L mutation responsible for hyperinsulinism/hyperammonemia. Hum Mol Genet 2018; 26:3453-3465. [PMID: 28911206 DOI: 10.1093/hmg/ddx213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/01/2017] [Indexed: 01/14/2023] Open
Abstract
Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome gives rise to unregulated protein-induced insulin secretion from pancreatic beta-cells, fasting hypoglycemia and elevated plasma ammonia levels. Mutations associated with HI/HA were identified in the Glud1 gene, encoding for glutamate dehydrogenase (GDH). We aimed at identifying the molecular causes of dysregulation in insulin secretion and ammonia production conferred by the most frequent HI/HA mutation Ser445Leu. Following transduction with adenoviruses carrying the human GDH-wild type or GDH-S445L-mutant gene, immunoblotting showed efficient expression of the transgenes in all the investigated cell types. Enzymatic activity tested in INS-1E beta-cells revealed that the mutant was much more sensitive to the allosteric activator ADP, rendering it highly responsive to substrates. INS-1E cells expressing either the wild type or mutant GDH responded similarly to glucose stimulation regarding mitochondrial activation and insulin secretion. However, at basal glucose glutamine stimulation increased mitochondrial activity and insulin release only in the mutant cells. In mouse and human islets, expression of mutant GDH resulted in robust elevation of insulin secretion upon glutamine stimulation, not observed in control islets. Hepatocytes expressing either the wild type or mutant GDH produced similar levels of ammonia when exposed to glutamine, although alanine response was strongly elevated with the mutant form. In conclusion, the GDH-S445L mutation confers hyperactivity to this enzyme due to higher sensitivity to ADP allosteric activation. This renders beta-cells responsive to amino acid stimulation, explaining protein-induced hypoglycemia secondary to non-physiological insulin release. Hepatocytes carrying mutant GDH produced more ammonia upon alanine exposure, which underscores hyperammonemia developed by the patients.
Collapse
Affiliation(s)
- Mariagrazia Grimaldi
- Department of Cell Physiology and Metabolism.,Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland
| | - Melis Karaca
- Department of Cell Physiology and Metabolism.,Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland
| | - Livia Latini
- Department of Cell Physiology and Metabolism.,Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland
| | - Estelle Brioudes
- Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland.,Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospital, Geneva, Switzerland
| | - Thomas Schalch
- Department of Molecular Biology, Faculty of Science, Institute of Genetics and Genomics of Geneva (iGE3), Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism.,Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland
| |
Collapse
|
14
|
Lee CW, Huang WC, Huang HD, Huang YH, Ho JH, Yang MH, Yang VW, Lee OK. DNA Methyltransferases Modulate Hepatogenic Lineage Plasticity of Mesenchymal Stromal Cells. Stem Cell Reports 2017; 9:247-263. [PMID: 28602611 PMCID: PMC5511371 DOI: 10.1016/j.stemcr.2017.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
The irreversibility of developmental processes in mammalian cells has been challenged by rising evidence that de-differentiation of hepatocytes occurs in adult liver. However, whether reversibility exists in mesenchymal stromal cell (MSC)-derived hepatocytes (dHeps) remains elusive. In this study, we find that hepatogenic differentiation (HD) of MSCs is a reversible process and is modulated by DNA methyltransferases (DNMTs). DNMTs are regulated by transforming growth factor β1 (TGFβ1), which in turn controls hepatogenic differentiation and de-differentiation. In addition, a stepwise reduction in TGFβ1 concentrations in culture media increases DNMT1 and decreases DNMT3 in primary hepatocytes (Heps) and confers Heps with multi-differentiation potentials similarly to MSCs. Hepatic lineage reversibility of MSCs and lineage conversion of Heps are regulated by DNMTs in response to TGFβ1. This previously unrecognized TGFβ1-DNMTs-MSC-HD axis may further increase the understanding the normal and pathological processes in the liver, as well as functions of MSCs after transplantation to treat liver diseases.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Wei-Chih Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu 30010, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu 30010, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, HsinChu 30010, Taiwan; Center for Bioinformatics Research, National Chiao Tung University, HsinChu 30010, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11221, Taiwan
| | - Jennifer H Ho
- Center for Stem Cell Research, Taipei Medical University-Wan Fang Hospital, Taipei 11031, Taiwan
| | - Muh-Hwa Yang
- Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Genome Research Center, National Yang-Ming University, Taipei 11221, Taiwan; Immunity and Inflammation Research Center, National Yang-Ming University, Taipei 11221, Taiwan; Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Vincent W Yang
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Oscar K Lee
- Taipei City Hospital, Taipei 10341, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei 11221, Taiwan.
| |
Collapse
|
15
|
Wu HH, Lee OK. Exosomes from mesenchymal stem cells induce the conversion of hepatocytes into progenitor oval cells. Stem Cell Res Ther 2017; 8:117. [PMID: 28535778 PMCID: PMC5442870 DOI: 10.1186/s13287-017-0560-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Background We previously reported that mesenchymal stem cells (MSCs) possess therapeutic effects in a murine model of carbon tetrachloride-induced acute liver failure. In the study, we observed that the majority of repopulated hepatocytes were of recipient origin and were adjacent to transplanted MSCs; only a low percentage of repopulated hepatocytes were from transplanted MSCs. The findings indicate that MSCs guided the formation of new hepatocytes. Exosomes are important messengers for paracrine signaling delivery. The aim of this study is to investigate the paracrine effects, in particular, the effects of exosomes from MSCs, on hepatocytes. Methods Mature hepatocytes were isolated from murine liver by a two-step perfusion method with collagenase digestion. MSCs were obtained from murine bone marrow, and conditioned medium (CM) from MSC culture was then collected. Time-lapse imaging was used for observation of cell morphological change induced by CM on hepatocytes. In addition, expression of markers for hepatic progenitors including oval cells, intrahepatic stem cells, and hepatoblasts were analyzed. Results Treatment with the CM promoted the formation of small oval cells from hepatocytes; time-lapse imaging demonstrated the change from epithelial to oval cell morphology at the single hepatocyte level. Additionally, expression of EpCAM and OC2, markers of hepatic oval cells, was upregulated. Also, the number of EpCAMhigh cells was increased after CM treatment. The EpCAMhigh small oval cells possessed colony-formation ability; they also expressed cytokeratin 18 and were able to store glycogen upon induction of hepatic differentiation. Furthermore, exosomes from MSC-CM could induce the conversion of mature hepatocytes to EpCAMhigh small oval cells. Conclusions In summary, paracrine signaling through exosomes from MSCs induce the conversion of hepatocytes into hepatic oval cells, a mechanism of action which has not been reported regarding the therapeutic potentials of MSCs in liver regeneration. Exosomes from MSCs may therefore be used to treat liver diseases. Further studies are required for proof of concept of this approach. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0560-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao-Hsiang Wu
- Institute of Biophotonics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan
| | - Oscar K Lee
- Institute of Biophotonics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan. .,Taipei City Hospital, No.145, Zhengzhou Road, Datong District, Taipei, 10341, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan. .,Stem Cell Research Center, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan. .,Departments of Medical Research, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Taipei, 112, Taiwan.
| |
Collapse
|
16
|
Weerasinghe SVW, Park MJ, Portney DA, Omary MB. Mouse genetic background contributes to hepatocyte susceptibility to Fas-mediated apoptosis. Mol Biol Cell 2016; 27:3005-3012. [PMID: 27535425 PMCID: PMC5063609 DOI: 10.1091/mbc.e15-06-0423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/15/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022] Open
Abstract
Liver disease progression is modulated by genetic modifiers in mouse strains and across human races and ethnicities. We hypothesized that hepatocyte culture duration and genetic background regulate hepatocyte susceptibility to apoptosis. Hepatocytes were isolated from FVB/N, C57BL/6, and C3H/He mice and cultured or treated with Fas ligand or acetaminophen after different culture times. Protein and mRNA expressions of Fas receptor, caspases-3/7/8, and Bak/Bax/Bid proteins were determined. FVB/N hepatocytes manifested rapid decreases of caspases-3/7 but not caspase-8 as culture time increased, which paralleled decreased susceptibility to apoptosis. Some changes were also found in Fas-receptor and Bak, Bax, and Bid proteins; caspase mRNA decreases were also noted. Caspase protein degradation was partially reversed by lysosomal protease but not proteasome or autophagy inhibitors. C57BL/6 and FVB/N hepatocytes behaved similarly in their limited susceptibility to apoptosis, whereas C3H/He hepatocytes show limited alterations in caspases, with consequent increased susceptibility to apoptosis. Similarly, C3H/He mice were more susceptible than C57BL/6 and FVB/N mice to Fas-mediated liver injury. Therefore there are significant mouse strain-dependent differences in susceptibility to apoptosis and selective loss of caspases upon short-term hepatocyte culture, with consequent decrease in susceptibility to apoptosis. These differences likely reflect genetic modifiers that provide resistance or predisposition to hepatocyte death.
Collapse
Affiliation(s)
- Sujith V W Weerasinghe
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Min-Jung Park
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Daniel A Portney
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
17
|
Fang Z, Li P, Jia W, Jiang T, Wang Z, Xiang Y. miR-696 plays a role in hepatic gluconeogenesis in ob/ob mice by targeting PGC-1α. Int J Mol Med 2016; 38:845-52. [DOI: 10.3892/ijmm.2016.2659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/14/2016] [Indexed: 11/06/2022] Open
|
18
|
Schröder T, Kucharczyk D, Bär F, Pagel R, Derer S, Jendrek ST, Sünderhauf A, Brethack AK, Hirose M, Möller S, Künstner A, Bischof J, Weyers I, Heeren J, Koczan D, Schmid SM, Divanovic S, Giles DA, Adamski J, Fellermann K, Lehnert H, Köhl J, Ibrahim S, Sina C. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis. Mol Metab 2016; 5:283-295. [PMID: 27069868 PMCID: PMC4812012 DOI: 10.1016/j.molmet.2016.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). Results At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a second hit, such as dietary stress, was required to cause hepatic steatosis and inflammation. This study suggests a causative role of hepatic mitochondrial dysfunction in the development of experimental NASH. C57BL/6J-mtFVB/N mice (mt-ATP8, nt7778 G/T) display hepatic mitochondrial dysfunction. C57BL/6J-mtFVB/N mice display alterations in hepatic energy metabolism. C57BL/6J-mtFVB/N mice show no spontaneous hepatic steatosis or inflammation. C57BL/6J-mtFVB/N mice are susceptible to diet induced NASH. Study demonstrates causative role of mitochondrial dysfunction for NASH development.
Collapse
Key Words
- ALT, alanine aminotransferase
- AMP, adenosine monophosphate
- AMPK, AMP-activated proteinkinase
- ATP, adenosine triphosphate
- ATP8, ATP synthase protein 8
- Arg, arginine
- Asp, aspartic acid
- B6-mtB6, C57BL/6
- B6-mtFVB, C57BL/6-mtFVB/N
- C0, free dl-carnitine
- C16, hexadecanoyl-l-carntine
- C18, octadecanoyl-l-carnitine
- CD, control diet
- CD3, cluster of differentiation receptor 3
- CPT I, carnitine-palmitoyltransferase I
- CYP51A1, cytochrome P450, family 51, subfamily A, polypeptide 1
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- Gr1, granulocyte differentiation antigen 1
- H&E, hematoxylin–eosin staining
- H2O2, hydrogen peroxide
- Hsd17b7, 17-beta-hydroxysteroid dehydrogenase type 7
- IDI1, isopentenyl-diphosphate delta isomerase 1
- IL, interleukin
- IPA, ingenuity pathway analysis
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- Lipid metabolism
- Ly6G, lymphocyte antigen 6 complex, locus G
- MCDD, methionine and choline deficient diet
- MSMO1, methylsterol monooxygenase 1
- Met, methionine
- Mitochondrial dysfunction
- Mitochondrial gene polymorphism
- NAFL, non-alcoholic liver steatosis
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, non-alcoholic steatohepatitis
- ND3, NADH dehydrogenase subunit 3
- OCR, oxygen consumption rate
- OXPHOS, oxidative phosphorylation system
- PBS, phosphate buffered saline
- ROS, reactive oxygen species
- SNPs, single nucleotide polymorphisms
- SOD2, superoxide dismutase 2
- STRING, Search Tool for the Retrieval of Interacting Genes/Proteins
- Steatohepatitis
- TNFα
- TNFα, tumor necrosis factor alpha
- Tyr, tyrosine
- WD, western-style diet
- mt, mitochondrial
- pAMPK, phosphorylated AMP-activated proteinkinase
Collapse
Affiliation(s)
- Torsten Schröder
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute for Systemic Inflammation Research, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - David Kucharczyk
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Florian Bär
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - René Pagel
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Stefanie Derer
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sebastian Torben Jendrek
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Annika Sünderhauf
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Ann-Kathrin Brethack
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Misa Hirose
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Steffen Möller
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Ernst-Heydemann-Straße 8, D-18057 Rostock, Germany
| | - Axel Künstner
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Max Planck Institute for Evolutionary Biology, Guest Group Evolutionary Genomics, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Julia Bischof
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Imke Weyers
- University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Jörg Heeren
- University Hospital Hamburg-Eppendorf, Department of Biochemistry and Molecular Cell Biology, Martinistraße 52, D-20246 Hamburg, Germany
| | - Dirk Koczan
- University of Rostock, Institute of Immunology, Schillingallee 70, D-18057 Rostock, Germany
| | | | - Senad Divanovic
- Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Daniel Aaron Giles
- Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Jerzy Adamski
- Helmholtz Center, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany; Technische Universität München, Lehrstuhl für Experimentelle Genetik, Liesel-Beckmann-Straße 4, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Klaus Fellermann
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Hendrik Lehnert
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Jörg Köhl
- University of Lübeck, Institute for Systemic Inflammation Research, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Saleh Ibrahim
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Christian Sina
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| |
Collapse
|
19
|
Wu HH, Ho JH, Lee OK. Detection of hepatic maturation by Raman spectroscopy in mesenchymal stromal cells undergoing hepatic differentiation. Stem Cell Res Ther 2016; 7:6. [PMID: 26753763 PMCID: PMC4709909 DOI: 10.1186/s13287-015-0259-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) are well known for their application potential in tissue engineering. We previously reported that MSCs are able to differentiate into hepatocytes in vitro. However, conventional methods for estimating the maturation of hepatic differentiation require relatively large amounts of cell samples. Raman spectroscopy (RS), a photonic tool for acquisition of cell spectra by inelastic scattering, has been recently used as a label-free single-cell detector for biological applications including phenotypic changes and differentiation of cells and diagnosis. In this study, RS is used to real-time monitor the maturation of hepatic differentiation in live MSCs. Methods The MSCs were cultured on the type I collagen pre-coating substrate and differentiated into hepatocytes in vitro using a two-step protocol. The Raman spectra at different time points are acquired in the range 400–3000 cm–1and analyzed by quantification methods and principle component analysis during hepatic differentiation from the MSCs. Results The intensity of the broad band in the range 2800–3000 cm–1 reflects the amount of glycogen within lipochrome in differentiated hepatocytes. A high correlation coefficient between the glycogen amount and hepatic maturation was exhibited. Moreover, principle component analysis of the Raman spectra from 400 to 3000 cm–1 indicated that MSC-derived hepatocytes were close to the primary hepatocytes and were distinct from the undifferentiated MSCs. Conclusions In summary, RS can serve as a rapid, non-invasive, real-time and label-free biosensor and reflects changes in live cell components during hepatic differentiation. The use of RS may thus facilitate the detection of hepatic differentiation and maturation in stem cells. Such an approach may substantially improve the feasibility as well as shorten the time required compared to the conventional molecular biology methods.
Collapse
Affiliation(s)
- Hao-Hsiang Wu
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec.2, Linong Street, Taipei, 112, Taiwan.
| | - Jennifer H Ho
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan. .,Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Oscar K Lee
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec.2, Linong Street, Taipei, 112, Taiwan. .,Taipei City Hospital, No. 145, Zhengzhou Road, Datong District, Taipei, 10341, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
20
|
Chen P, Li J, Fan X, Zeng H, Deng R, Li D, Huang M, Bi H. Oleanolic acid attenuates obstructive cholestasis in bile duct-ligated mice, possibly via activation of NRF2-MRPs and FXR antagonism. Eur J Pharmacol 2015; 765:131-9. [PMID: 26297978 DOI: 10.1016/j.ejphar.2015.08.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
Obstructive cholestasis is characterized by impairment of hepatic canalicular bile efflux and there are no clinically effective drugs to cure except surgeries. Previously we revealed that oleanolic acid (OA) protected against lithocholic acid (LCA)-induced intrahepatic cholestasis in mice. Cholestasis caused by LCA is characterized by segmental bile duct obstruction, whether OA possesses the beneficial effect on completed obstructive cholestasis induced by bile duct ligation (BDL) remains unknown. In this study, we demonstrated that BDL-induced mice liver pathological change, and increase in serum levels of ALT, AST and ALP were all significantly reduced by OA (20 mg/kg, i.p.). Meanwhile, OA also lowered total bilirubin and total bile acids levels in serum, as well as total bile acids level in liver, in contrast, urinary total bile acids output was remarkably up-regulated by OA. Gene expression analysis showed that OA caused significant increased mRNA expression of MRP3 and MRP4 located at hepatic basolateral membrane, and restoration of MRP2 and BSEP located at hepatic cannalicular membrane. Furthermore, significant NRF2 protein accumulation in nucleus was also observed in OA treated mice. In mice primary cultured hepatocytes, the effects of OA on MRP2, MRP3 and MRP4 expression were directly proved to be mediated via NRF2 activation, and BSEP downregulation induced by OA was in part due to FXR antagonism. Luciferase assay performed in Hep G2 cells also illustrated that OA was a partial FXR antagonist. Taken together, we conclude that OA attenuates obstructive cholestasis in BDL mice, possibly via activation of NRF2-MRPs and FXR antagonism.
Collapse
Affiliation(s)
- Pan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Jingjie Li
- Center of Reproductive Medicine, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, PR China
| | - Xiaomei Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Hang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Rongrong Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Dongshun Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
21
|
Integrated analysis of mRNA and miRNA expression in response to interleukin-6 in hepatocytes. Genomics 2015; 106:107-15. [DOI: 10.1016/j.ygeno.2015.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/30/2015] [Accepted: 05/05/2015] [Indexed: 11/21/2022]
|
22
|
Wang X, Xu TY, Liu XZ, Zhang SL, Wang P, Li ZY, Guan YF, Wang SN, Dong GQ, Zhuo S, Le YY, Sheng CQ, Miao CY. Discovery of Novel Inhibitors and Fluorescent Probe Targeting NAMPT. Sci Rep 2015; 5:12657. [PMID: 26227784 PMCID: PMC4521150 DOI: 10.1038/srep12657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a promising antitumor target. Novel NAMPT inhibitors with diverse chemotypes are highly desirable for development of antitumor agents. Using high throughput screening system targeting NAMPT on a chemical library of 30000 small-molecules, we found a non-fluorescent compound F671-0003 and a fluorescent compound M049-0244 with excellent in vitro activity (IC50: 85 nM and 170 nM respectively) and anti-proliferative activity against HepG2 cells. These two compounds significantly depleted cellular NAD levels. Exogenous NMN rescued their anti-proliferative activity against HepG2 cells. Structure-activity relationship study proposed a binding mode for NAMPT inhibitor F671-0003 and highlighted the importance of hydrogen bonding, hydrophobic and π-π interactions in inhibitor binding. Imaging study provided the evidence that fluorescent compound M049-0244 (3 μM) significantly stained living HepG2 cells. Cellular fluorescence was further verified to be NAMPT dependent by using RNA interference and NAMPT over expression transgenic mice. Our findings provide novel antitumor lead compounds and a "first-in-class" fluorescent probe for imaging NAMPT.
Collapse
Affiliation(s)
- Xia Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xin-Zhu Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhi-Yong Li
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Yun-Feng Guan
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Guo-Qiang Dong
- Department of Medicinal Chemistry, Second Military Medical University, Shanghai, China
| | - Shu Zhuo
- 1] Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. [2] Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Ying-Ying Le
- 1] Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. [2] Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Chun-Quan Sheng
- Department of Medicinal Chemistry, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Hepatocyte-Specific Expression of Human Lysosome Acid Lipase Corrects Liver Inflammation and Tumor Metastasis in lal(-/-) Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [PMID: 26212911 DOI: 10.1016/j.ajpath.2015.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is a major organ for lipid synthesis and metabolism. Deficiency of lysosomal acid lipase (LAL; official name Lipa, encoded by Lipa) in mice (lal(-/-)) results in enlarged liver size due to neutral lipid storage in hepatocytes and Kupffer cells. To test the functional role of LAL in hepatocyte, hepatocyte-specific expression of human LAL (hLAL) in lal(-/-) mice was established by cross-breeding of liver-activated promoter (LAP)-driven tTA transgene and (tetO)7-CMV-hLAL transgene with lal(-/-) knockout (KO) (LAP-Tg/KO) triple mice. Hepatocyte-specific expression of hLAL in LAP-Tg/KO triple mice reduced the liver size to the normal level by decreasing lipid storage in both hepatocytes and Kupffer cells. hLAL expression reduced tumor-promoting myeloid-derived suppressive cells in the liver of lal(-/-) mice. As a result, B16 melanoma metastasis to the liver was almost completely blocked. Expression and secretion of multiple tumor-promoting cytokines or chemokines in the liver were also significantly reduced. Because hLAL is a secretory protein, lal(-/-) phenotypes in other compartments (eg, blood, spleen, and lung) also ameliorated, including systemic reduction of myeloid-derived suppressive cells, an increase in CD4(+) and CD8(+) T and B lymphocytes, and reduced B16 melanoma metastasis in the lung. These results support a concept that LAL in hepatocytes is a critical metabolic enzyme in controlling neutral lipid metabolism, liver homeostasis, immune response, and tumor metastasis.
Collapse
|
24
|
Hepatocyte-Specific Depletion of UBXD8 Induces Periportal Steatosis in Mice Fed a High-Fat Diet. PLoS One 2015; 10:e0127114. [PMID: 25970332 PMCID: PMC4430229 DOI: 10.1371/journal.pone.0127114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
We showed previously that UBXD8 plays a key role in proteasomal degradation of lipidated ApoB in hepatocarcinoma cell lines. In the present study, we aimed to investigate the functions of UBXD8 in liver in vivo. For this purpose, hepatocyte-specific UBXD8 knockout (UBXD8-LKO) mice were generated. They were fed with a normal or high-fat diet, and the phenotypes were compared with those of littermate control mice. Hepatocytes obtained from UBXD8-LKO and control mice were analyzed in culture. After 26 wk of a high-fat diet, UBXD8-LKO mice exhibited macrovesicular steatosis in the periportal area and microvesicular steatosis in the perivenular area, whereas control mice exhibited steatosis only in the perivenular area. Furthermore, UBXD8-LKO mice on a high-fat diet had significantly lower concentrations of serum triglyceride and VLDL than control mice. A Triton WR-1339 injection study revealed that VLDL secretion from hepatocytes was reduced in UBXD8-LKO mice. The decrease of ApoB secretion upon UBXD8 depletion was recapitulated in cultured primary hepatocytes. Accumulation of lipidated ApoB in lipid droplets was observed only in UBXD8-null hepatocytes. The results showed that depletion of UBXD8 in hepatocytes suppresses VLDL secretion, and could lead to periportal steatosis when mice are fed a high-fat diet. This is the first demonstration that an abnormality in the intracellular ApoB degradation mechanism can cause steatosis, and provides a useful model for periportal steatosis, which occurs in several human diseases.
Collapse
|
25
|
Meng Q, Tao C, Qiu Z, Akaike T, Cui F, Wang X. A hybrid substratum for primary hepatocyte culture that enhances hepatic functionality with low serum dependency. Int J Nanomedicine 2015; 10:2313-23. [PMID: 25848252 PMCID: PMC4376262 DOI: 10.2147/ijn.s75011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell culture systems have proven to be crucial for the in vitro maintenance of primary hepatocytes and the preservation of hepatic functional expression at a high level. A poly-(N-p-vinylbenzyl-4-O-β-D-galactopyranosyl-D-gluconamide) matrix can recognize cells and promote liver function in a spheroid structure because of a specific galactose–asialoglycoprotein receptor interaction. Meanwhile, a fusion protein, E-cadherin-Fc, when incubated with various cells, has shown an enhancing effect on cellular viability and metabolism. Therefore, a hybrid substratum was developed for biomedical applications by using both of these materials to combine their advantages for primary hepatocyte cultures. The isolated cells showed a monolayer aggregate morphology on the coimmobilized surface and displayed higher functional expression than cells on traditional matrices. Furthermore, the hybrid system, in which the highest levels of cell adhesion and hepatocellular metabolism were achieved with the addition of 1% fetal bovine serum, showed a lower serum dependency than the collagen/gelatin-coated surface. Accordingly, this substrate may attenuate the negative effects of serum and further contribute to establishing a defined culture system for primary hepatocytes.
Collapse
Affiliation(s)
- Qingyuan Meng
- School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China ; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China ; Biomaterials Center for Regenerative Medical Engineering, Ibaraki, Japan
| | - Chunsheng Tao
- School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China ; The 401 Hospital of Chinese People's Liberation Army, Qingdao, People's Republic of China
| | - Zhiye Qiu
- School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Ibaraki, Japan
| | - Fuzhai Cui
- School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
26
|
O'Neill KE, Thowfeequ S, Li WC, Eberhard D, Dutton JR, Tosh D, Slack JMW. Hepatocyte-ductal transdifferentiation is mediated by reciprocal repression of SOX9 and C/EBPα. Cell Reprogram 2014; 16:314-23. [PMID: 25153359 DOI: 10.1089/cell.2014.0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary hepatocytes rapidly dedifferentiate when cultured in vitro. We have studied the mechanism of hepatocyte dedifferentiation by using two culture media: one that maintains hepatocytes in a differentiated state and another that allows dedifferentiation. We show that dedifferentiation involves partial transformation of hepatocytes into cells that resemble biliary epithelial cells. Lineage labeling and time-lapse filming confirm that the dedifferentiated cells are derived from hepatocytes and not from contaminating ductal or fibroblastic cells in the original culture. Furthermore, we establish that the conversion of hepatocytes to biliary-like cells is regulated by mutual antagonism of CCAAT/enhancer binding protein alpha (C/EBPα) and SOX9, which have opposing effects on the expression of hepatocyte and ductal genes. Thus, hepatocyte dedifferentiation induces the biliary gene expression program by alleviating C/EBPα-mediated repression of Sox9. We propose that reciprocal antagonism of C/EBPα and SOX9 also operates in the formation of hepatocytes and biliary ducts from hepatoblasts during normal embryonic development. These data demonstrate that reprogramming of differentiated cells can be used to model the acquisition and maintenance of cell fate in vivo.
Collapse
Affiliation(s)
- Kathy E O'Neill
- 1 Centre for Regenerative Medicine, Department of Biology & Biochemistry University of Bath , Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Buck LD, Inman SW, Rusyn I, Griffith LG. Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix. Biotechnol Bioeng 2014; 111:1018-27. [PMID: 24222008 PMCID: PMC4110975 DOI: 10.1002/bit.25152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/18/2013] [Accepted: 11/06/2013] [Indexed: 01/02/2023]
Abstract
Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed two methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth, and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound.
Collapse
Affiliation(s)
- Lorenna D. Buck
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - S. Walker Inman
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Linda G. Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| |
Collapse
|
28
|
Chen WW, Birsoy K, Mihaylova MM, Snitkin H, Stasinski I, Yucel B, Bayraktar EC, Carette JE, Clish CB, Brummelkamp TR, Sabatini DD, Sabatini DM. Inhibition of ATPIF1 ameliorates severe mitochondrial respiratory chain dysfunction in mammalian cells. Cell Rep 2014; 7:27-34. [PMID: 24685140 PMCID: PMC4040975 DOI: 10.1016/j.celrep.2014.02.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/07/2014] [Accepted: 02/28/2014] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial respiratory chain disorders are characterized by loss of electron transport chain (ETC) activity. Although the causes of many such diseases are known, there is a lack of effective therapies. To identify genes that confer resistance to severe ETC dysfunction when inactivated, we performed a genome-wide genetic screen in haploid human cells with the mitochondrial complex III inhibitor antimycin. This screen revealed that loss of ATPIF1 strongly protects against antimycin-induced ETC dysfunction and cell death by allowing for the maintenance of mitochondrial membrane potential. ATPIF1 loss protects against other forms of ETC dysfunction and is even essential for the viability of human ρ° cells lacking mitochondrial DNA, a system commonly used for studying ETC dysfunction. Importantly, inhibition of ATPIF1 ameliorates complex III blockade in primary hepatocytes, a cell type afflicted in severe mitochondrial disease. Altogether, these results suggest that inhibition of ATPIF1 can ameliorate severe ETC dysfunction in mitochondrial pathology.
Collapse
Affiliation(s)
- Walter W Chen
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kivanc Birsoy
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Maria M Mihaylova
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Harriet Snitkin
- Department of Cell Biology, New York University School of Medicine, New York, New York, 10016, USA
| | - Iwona Stasinski
- Department of Cell Biology, New York University School of Medicine, New York, New York, 10016, USA
| | - Burcu Yucel
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Erol C Bayraktar
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clary B Clish
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
| | - Thijn R Brummelkamp
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121 1066 CX, Amsterdam, The Netherlands
| | - David D Sabatini
- Department of Cell Biology, New York University School of Medicine, New York, New York, 10016, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Chen P, Zeng H, Wang Y, Fan X, Xu C, Deng R, Zhou X, Bi H, Huang M. Low dose of oleanolic acid protects against lithocholic acid-induced cholestasis in mice: potential involvement of nuclear factor-E2-related factor 2-mediated upregulation of multidrug resistance-associated proteins. Drug Metab Dispos 2014; 42:844-52. [PMID: 24510383 DOI: 10.1124/dmd.113.056549] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oleanolic acid (OA) is a natural triterpenoid and has been demonstrated to protect against varieties of hepatotoxicants. Recently, however, OA at high doses was reported to produce apparent cholestasis in mice. In this study, we characterized the protective effect of OA at low doses against lithocholic acid (LCA)-induced cholestasis in mice and explored further mechanisms. OA cotreatment (5, 10, and 20 mg/kg, i.p.) significantly improved mouse survival rate, attenuated liver necrosis, and decreased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase; more importantly, serum total bile acids and bilirubin, as well as hepatic total bile acids were also remarkably reduced. Gene and protein expression analysis showed that hepatic expression of multidrug resistance-associated protein 2 (Mrp2), Mrp3, and Mrp4 was significantly increased by OA cotreatment, whereas other bile acid metabolism- and transport-related genes, including Na+/taurocholate cotransporter, organic anion transporter 1b2, bile salt export pump, multidrug resistance protein 3, Cyp3a11, Cyp2b10, Sulfotransferase 2a1 (Sult2a1), and UDP-glucuronosyltransferase 1a1 (Ugt1a1), were only slightly changed. OA also caused increased nuclear factor-E2-related factor (Nrf2) mRNA expression and nuclear protein accumulation, whereas nuclear receptors farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor were not significantly influenced by OA. Luciferase (Luc) assays performed in HepG2 cells illustrated that OA was a strong Nrf2 agonist with moderate PXR and weak FXR agonism. Finally, in mouse primary cultured hepatocytes, OA dose- and time-dependently induced expression of Mrp2, Mrp3, and Mrp4; however, this upregulation was abrogated when Nrf2 was silenced. In conclusion, OA produces a protective effect against LCA-induced hepatotoxicity and cholestasis, possibly due to Nrf2-mediated upregulation of Mrp2, Mrp3, and Mrp4.
Collapse
Affiliation(s)
- Pan Chen
- School of Pharmaceutical Sciences (P.C., H.Z., Y.W., X.F., R.D., X.Z., H.B., M.H.) and The First Affiliated Hospital (C.X.), Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li H, Lee J, He C, Zou MH, Xie Z. Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids. Am J Physiol Endocrinol Metab 2014; 306:E197-209. [PMID: 24302004 PMCID: PMC3920006 DOI: 10.1152/ajpendo.00202.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nutrient overload is associated with the development of obesity, insulin resistance, and type 2 diabetes. However, the underlying mechanisms for developing insulin resistance in the presence of excess nutrients are incompletely understood. We investigated whether activation of AMP-activated protein kinase (AMPK) prevents the hepatic insulin resistance that is induced by the consumption of a high-protein diet (HPD) and the presence of excess amino acids. Exposure of HepG2 cells to excess amino acids reduced AMPK phosphorylation, upregulated Notch1 expression, and impaired the insulin-stimulated phosphorylation of Akt Ser(473) and insulin receptor substrate-1 (IRS-1) Tyr(612). Inhibition of Notch1 prevented amino acid-induced insulin resistance, which was accompanied by reduced expression of Rbp-Jk, hairy and enhancer of split-1, and forkhead box O1. Mechanistically, mTORC1 signaling was activated by excess amino acids, which then positively regulated Notch1 expression through the activation of the signal transducer and activator of transcription 3 (STAT3). Activation of AMPK by metformin inhibited mTORC1-STAT3 signaling, thereby preventing excess amino acid-impaired insulin signaling. Finally, HPD feeding suppressed AMPK activity, activated mTORC1/STAT3/Notch1 signaling, and induced insulin resistance. Chronic administration of either metformin or rapamycin inhibited the HPD-activated mTORC1/STAT3/Notch1 signaling pathway and prevented hepatic insulin resistance. We conclude that the upregulation of Notch1 expression by hyperactive mTORC1 signaling is an essential event in the development of hepatic insulin resistance in the presence of excess amino acids. Activation of AMPK prevents amino acid-induced insulin resistance through the suppression of the mTORC1/STAT3/Notch1 signaling pathway.
Collapse
Affiliation(s)
- Hongliang Li
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | | |
Collapse
|
31
|
Moon HY, Song P, Choi CS, Ryu SH, Suh PG. Involvement of exercise-induced macrophage migration inhibitory factor in the prevention of fatty liver disease. J Endocrinol 2013; 218:339-48. [PMID: 23823021 PMCID: PMC3757527 DOI: 10.1530/joe-13-0135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Physical inactivity can lead to obesity and fat accumulation in various tissues. Critical complications of obesity include type II diabetes and nonalcoholic fatty liver disease (NAFLD). Exercise has been reported to have ameliorating effects on obesity and NAFLD. However, the underlying mechanism is not fully understood. We showed that liver expression of macrophage migration inhibitory factor (MIF) was increased after 4 weeks of treadmill exercise. Phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase in human hepatocyte cell lines was enhanced after MIF treatment. These responses were accompanied by increases in lipid oxidation. Moreover, inhibition of either AMPK or cluster of differentiation 74 resulted in inhibition of MIF-induced lipid oxidation. Furthermore, the administration of MIF to a human hepatocyte cell line and mice liver reduced liver X receptor agonist-induced lipid accumulation. Taken together, these results indicate that MIF is highly expressed in the liver during physical exercise and may prevent hepatic steatosis by activating the AMPK pathway.
Collapse
Affiliation(s)
| | - Parkyong Song
- Division of Molecular and Life SciencesPohang University of Science and Technology (POSTECH)Pohang, KyungbukRepublic of Korea
| | - Cheol Soo Choi
- Lee Gil Ya Cancer and Diabetes Institute and Gil Medical Center, Korea Mouse Metabolic Phenotyping CenterGachon UniversityIncheon, 406-840Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life SciencesPohang University of Science and Technology (POSTECH)Pohang, KyungbukRepublic of Korea
| | | |
Collapse
|
32
|
Shen L, Hillebrand A, Wang DQH, Liu M. Isolation and primary culture of rat hepatic cells. J Vis Exp 2012:3917. [PMID: 22781923 DOI: 10.3791/3917] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Primary hepatocyte culture is a valuable tool that has been extensively used in basic research of liver function, disease, pathophysiology, pharmacology and other related subjects. The method based on two-step collagenase perfusion for isolation of intact hepatocytes was first introduced by Berry and Friend in 1969 and, since then, has undergone many modifications. The most commonly used technique was described by Seglenin 1976. Essentially, hepatocytes are dissociated from anesthetized adult rats by a non-recirculating collagenase perfusion through the portal vein. The isolated cells are then filtered through a 100 μm pore size mesh nylon filter, and cultured onto plates. After 4-hour culture, the medium is replaced with serum-containing or serum-free medium, e.g. HepatoZYME-SFM, for additional time to culture. These procedures require surgical and sterile culture steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol, which allow consistently in the generation of viable hepatocytes in large numbers.
Collapse
Affiliation(s)
- Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, USA
| | | | | | | |
Collapse
|
33
|
Bioluminescence imaging captures the expression and dynamics of endogenous p21 promoter activity in living mice and intact cells. Mol Cell Biol 2011; 31:3759-72. [PMID: 21791610 DOI: 10.1128/mcb.05243-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To interrogate endogenous p21(WAF1/CIP1) (p21) promoter activity under basal conditions and in response to various forms of stress, knock-in imaging reporter mice in which expression of firefly luciferase (FLuc) was placed under the control of the endogenous p21 promoter within the Cdkn1a gene locus were generated. Bioluminescence imaging (BLI) of p21 promoter activity was performed noninvasively and repetitively in mice and in cells derived from these mice. We demonstrated that expression of FLuc accurately reported endogenous p21 expression at baseline and under conditions of genotoxic stress and that photon flux correlated with mRNA abundance and, therefore, bioluminescence provided a direct readout of p21 promoter activity in vivo. BLI confirmed that p53 was required for activation of the p21 promoter in vivo in response to ionizing radiation. Interestingly, imaging of reporter cells demonstrated that p53 prevents the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway from activating p21 expression when quiescent cells are stimulated with serum to reenter the cell cycle. In addition, low-light BLI identified p21 expression in specific regions of individual organs that had not been observed previously. This inducible p21(FLuc) knock-in reporter strain will facilitate imaging studies of p53-dependent and -independent stress responses within the physiological context of the whole animal.
Collapse
|
34
|
Park JS, Surendran S, Kamendulis LM, Morral N. Comparative nucleic acid transfection efficacy in primary hepatocytes for gene silencing and functional studies. BMC Res Notes 2011; 4:8. [PMID: 21244687 PMCID: PMC3033823 DOI: 10.1186/1756-0500-4-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 01/18/2011] [Indexed: 01/18/2023] Open
Abstract
Background Primary hepatocytes are the best resource for in vitro studies directed at understanding hepatic processes at the cellular and molecular levels, necessary for novel drug development to treat highly prevalent diseases such as non-alcoholic steatohepatitis, cardiovascular disease and type 2 diabetes. There is a need to identify simple methods to genetically manipulate primary hepatocytes and conduct functional studies with plasmids, small interfering RNA (siRNA) or microRNA (miRNA). New lipofection reagents are available that have the potential to yield higher levels of transfection with reduced toxicity. Findings We have tested several liposome-based transfection reagents used in molecular biology research. We show that transfection efficiency with one of the most recently developed formulations, Metafectene Pro, is high with plasmid DNA (>45% cells) as well as double stranded RNA (>90% with siRNA or microRNA). In addition, negligible cytotoxicity was present with all of these nucleic acids, even if cells were incubated with the DNA:lipid complex for 16 hours. To provide the proof of concept that these conditions can be used not only for overexpression of a gene of interest, but also in RNA interference applications, we targeted two liver expressed genes, Sterol Regulatory Element-Binding Protein-1 and Fatty Acid Binding Protein 5 using plasmid-mediated short hairpin RNA expression. In addition, similar transfection conditions were used to optimally deliver siRNA and microRNA. Conclusions We have identified a lipid-based reagent for primary hepatocyte transfection of nucleic acids currently used in molecular biology laboratories. The conditions described here can be used to expedite a large variety of research applications, from gene function studies to microRNA target identification.
Collapse
Affiliation(s)
- Jae-Seung Park
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut St, IB130, Indianapolis, Indiana 46202, USA.
| | | | | | | |
Collapse
|
35
|
Swift B, Brouwer KL. Influence of seeding density and extracellular matrix on bile Acid transport and mrp4 expression in sandwich-cultured mouse hepatocytes. Mol Pharm 2010; 7:491-500. [PMID: 19968322 PMCID: PMC3235796 DOI: 10.1021/mp900227a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study was undertaken to examine the influence of seeding density, extracellular matrix and days in culture on bile acid transport proteins and hepatobiliary disposition of the model bile acid taurocholate. Mouse hepatocytes were cultured in a sandwich configuration on six-well Biocoat plates with an overlay of Matrigel (BC/MG) or gelled-collagen (BC/GC) for 3 or 4 days at seeding densities of 1.0, 1.25, or 1.5 x 10(6) cells/well. The lower seeding densities of 1.0 and 1.25 x 10(6) cells/well resulted in good hepatocyte morphology and bile canalicular network formation, as visualized by 5-(and 6)-carboxy-2',7'-dichlorofluorescein accumulation. In general, taurocholate cellular accumulation tended to increase as a function of seeding density in BC/GC; cellular accumulation was significantly increased in hepatocytes cultured in BC/MG compared to BC/GC at the same seeding density on both days 3 and 4 of culture. In general, in vitro intrinsic biliary clearance of taurocholate was increased at higher seeding densities. Levels of bile acid transport proteins on days 3 and 4 were not markedly influenced by seeding density or extracellular matrix except for multidrug resistance protein 4 (Mrp4), which was inversely related to seeding density. Mrp4 levels decreased approximately 2- to 3-fold between seeding densities of 1.0 x 10(6) and 1.25 x 10(6) cells/well regardless of extracellular matrix; an additional approximately 3- to 5-fold decrease in Mrp4 protein was noted in BC/GC between seeding densities of 1.25 x 10(6) and 1.5 x 10(6) cells/well. Results suggest that seeding density, extracellular matrix and days in culture profoundly influence Mrp4 expression in sandwich-cultured mouse hepatocytes. Primary mouse hepatocytes seeded in a BC/MG configuration at densities of 1.25 x 10(6) cells/well and 1.0 x 10(6), and cultured for 3 days, yielded optimal transport based on the probes studied. This work demonstrates the applicability of the sandwich-cultured model to mouse hepatocytes.
Collapse
Affiliation(s)
- Brandon Swift
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7569
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7569
| |
Collapse
|
36
|
Cytolytic T cells induce ceramide-rich platforms in target cell membranes to initiate graft-versus-host disease. Blood 2009; 114:3693-706. [PMID: 19666872 DOI: 10.1182/blood-2008-11-191148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alloreactive donor cytolytic T lymphocytes play a critical role in pathophysiology of acute graft-versus-host disease (GVHD). As GVHD progression involves tumor necrosis factor superfamily receptor activation, and as apoptotic signaling for some tumor necrosis factor superfamily receptors might involve acid sphingomyelinase (ASMase)-mediated ceramide generation, we hypothesized that ASMase deletion would ameliorate GVHD. Using clinically relevant mouse models of acute GVHD in which allogeneic bone marrow and T cells were transplanted into asmase+/+ and asmase(-/-) hosts, we identify host ASMase as critical for full-blown GVHD. Lack of host ASMase reduced the acute inflammatory phase of GVHD, attenuating cytokine storm, CD8+ T-cell proliferation/activation, and apoptosis of relevant graft-versus-host target cells (hepatocytes, intestinal, and skin cells). Organ injury was diminished in asmase(-/-) hosts, and morbidity and mortality improved at 90 days after transplantation. Resistance to cytolytic T lymphocyte-induced apoptosis was found at the target cell membrane if hepatocytes lack ASMase, as hepatocyte apoptosis required target cell ceramide generation for formation of ceramide-rich macrodomains, sites concentrating proapoptotic Fas. These studies indicate a requirement for target cell ASMase in evolution of GVHD in liver, small intestines, and skin and provide potential new targets for disease management.
Collapse
|
37
|
Fullerton MD, Hakimuddin F, Bonen A, Bakovic M. The development of a metabolic disease phenotype in CTP:phosphoethanolamine cytidylyltransferase-deficient mice. J Biol Chem 2009; 284:25704-13. [PMID: 19625253 DOI: 10.1074/jbc.m109.023846] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylethanolamine (PE) is an important inner membrane phospholipid mostly synthesized de novo via the PE-Kennedy pathway and by the decarboxylation of phosphatidylserine. CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) catalyzes the formation of CDP-ethanolamine, which is often the rate regulatory step in the PE-Kennedy pathway. In the current investigation, we show that the reduced CDP-ethanolamine formation in Pcyt2(+/-) mice limits the rate of PE synthesis and increases the availability of diacylglycerol. This results in the increased formation of triglycerides, which is facilitated by stimulated de novo fatty acid synthesis and increased uptake of pre-existing fatty acids. Pcyt2(+/-) mice progressively accumulate more diacylglycerol and triglycerides with age and have modified fatty acid composition, predominantly in PE and triglycerides. Pcyt2(+/-) additionally have an inherent blockage in fatty acid utilization as energy substrate and develop impaired tolerance to glucose and insulin at an older age. Accordingly, gene expression analyses demonstrated the up-regulation of the main lipogenic genes and down-regulation of mitochondrial fatty acid beta-oxidation genes. These data demonstrate for the first time that to preserve membrane PE phospholipids, Pcyt2 deficiency generates compensatory changes in triglyceride and energy substrate metabolism, resulting in a progressive development of liver steatosis, hypertriglyceridemia, obesity, and insulin resistance, the main features of the metabolic syndrome.
Collapse
Affiliation(s)
- Morgan D Fullerton
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
38
|
Abstract
Mammalian autophagy has been well characterized in the liver and in hepatocytes. Autophagy plays important roles in the normal physiology of the liver and in the pathogenesis of several liver diseases. This chapter will discuss the commonly used methods for analysis of autophagy in hepatocytes and in the liver.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
39
|
Mathijs K, Kienhuis AS, Brauers KJJ, Jennen DGJ, Lahoz A, Kleinjans JCS, van Delft JHM. Assessing the metabolic competence of sandwich-cultured mouse primary hepatocytes. Drug Metab Dispos 2009; 37:1305-11. [PMID: 19251822 DOI: 10.1124/dmd.108.025775] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary human and rat hepatocyte cultures are well established in vitro systems used in toxicological studies. However, whereas transgenic mouse models provide an opportunity for studying mechanisms of toxicity, mouse primary hepatocyte cultures are less well described. The potential usefulness of a mouse hepatocyte-based in vitro model was assessed in this study by investigating time-dependent competence for xenobiotic metabolism and gene expression profiles. Primary mouse hepatocytes, isolated using two-step collagenase perfusion, were cultured in a collagen sandwich configuration. Gene expression profiles and the activities of various cytochrome P450 (P450) enzymes were determined after 0, 42, and 90 h in culture. Principal component analysis of gene expression profiles shows that replicates per time point are similar. Gene expression levels of most phase I biotransformation enzymes decrease to approximately 69 and 57% of the original levels at 42 and 90 h, respectively, whereas enzyme activities for most of the studied P450s decrease to 59 and 34%. The decrease for phase II gene expression is only to 96 and 92% of the original levels at 42 and 90 h, respectively. Pathway analysis reveals initial effects at the level of proteins, external signaling pathways, and energy production. Later effects are observed for transcription, translation, membranes, and cell cycle-related gene sets. These results indicate that the sandwich-cultured primary mouse hepatocyte system is robust and seems to maintain its metabolic competence better than that of the rat hepatocyte system.
Collapse
Affiliation(s)
- Karen Mathijs
- Department of Health Risk Analyses and Toxicology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Latta M, Künstle G, Lucas R, Hentze H, Wendel A. ATP-depleting carbohydrates prevent tumor necrosis factor receptor 1-dependent apoptotic and necrotic liver injury in mice. J Pharmacol Exp Ther 2007; 321:875-83. [PMID: 17369282 DOI: 10.1124/jpet.107.119958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrated previously that depletion of hepatic ATP by endogenous metabolic shunting of phosphate after fructose treatment renders hepatocytes resistant to tumor necrosis factor (TNF)-induced apoptosis. We here address the question whether this principle extends to TNF receptor 1-mediated caspase-independent apoptotic and to necrotic liver injury. As in the apoptotic model of galactosamine/lipopolysaccharide (LPS)-induced liver damage, the necrotic hepatotoxicity initiated by sole high-dose LPS treatment was abrogated after depletion of hepatic ATP. Although systemic TNF and interferon-gamma levels were suppressed, animals still were protected when ATP depletion was initiated after the peak of proinflammatory cytokines upon LPS injection, showing that fructose-induced ATP depletion affects both cytokine release and action. In T cell-dependent necrotic hepatotoxicity elicited by concanavalin A or galactosamine + staphylococcal enterotoxin B, ATP depletion prevented liver injury as well, but here without modulating cytokine release. By attenuating caspase-8 activation, ATP depletion of hepatocytes in vitro impaired TNF receptor signaling by the death-inducing signaling complex, whereas receptor internalization and nuclear factor-kappaB activation upon TNF stimulation were unaffected. These findings demonstrate that sufficient target cell ATP levels are required for the execution of both apoptotic and necrotic TNF-receptor 1-mediated liver cell death.
Collapse
Affiliation(s)
- Markus Latta
- Biochemical Pharmacology, Faculty of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | |
Collapse
|
41
|
Zhande R, Zhang W, Zheng Y, Pendleton E, Li Y, Polakiewicz RD, Sun XJ. Dephosphorylation by Default, a Potential Mechanism for Regulation of Insulin Receptor Substrate-1/2, Akt, and ERK1/2. J Biol Chem 2006; 281:39071-80. [PMID: 17068339 DOI: 10.1074/jbc.m605251200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important mechanism that controls many cellular activities. Phosphorylation of a given protein is precisely controlled by two opposing biochemical reactions catalyzed by protein kinases and protein phosphatases. How these two opposing processes are coordinated to achieve regulation of protein phosphorylation is unresolved. We have developed a novel experimental approach to directly study protein dephosphorylation in cells. We determined the kinetics of dephosphorylation of insulin receptor substrate-1/2, Akt, and ERK1/2, phosphoproteins involved in insulin receptor signaling. We found that insulin-induced ERK1/2 and Akt kinase activities were completely abolished 10 min after inhibition of the corresponding upstream kinases with PD98059 and LY294002, respectively. In parallel experiments, insulin-induced phosphorylation of Akt, ERK1/2, and insulin receptor substrate-1/2 was decreased and followed similar kinetics. Our findings suggest that these proteins are dephosphorylated by a default mechanism, presumably via constitutively active phosphatases. However, dephosphorylation of these proteins is overcome by activation of protein kinases following stimulation of the insulin receptor. We propose that, during acute insulin stimulation, the kinetics of protein phosphorylation is determined by the interplay between upstream kinase activity and dephosphorylation by default.
Collapse
Affiliation(s)
- Rachel Zhande
- Section of Endocrinology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Han CY, Chiba T, Campbell JS, Fausto N, Chaisson M, Orasanu G, Plutzky J, Chait A. Reciprocal and coordinate regulation of serum amyloid A versus apolipoprotein A-I and paraoxonase-1 by inflammation in murine hepatocytes. Arterioscler Thromb Vasc Biol 2006; 26:1806-13. [PMID: 16709944 DOI: 10.1161/01.atv.0000227472.70734.ad] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE During inflammation, the serum amyloid A (SAA) content of HDL increases, whereas apolipoprotein A-I (apoA-I) and paraoxonase-1 (PON-1) decrease. It remains unclear whether SAA physically displaces apoA-I or if these changes derive from coordinated but inverse transcriptional regulation of the HDL apolipoprotein genes. Because cytokines stimulate the hepatic expression of inflammatory markers, we investigated their role in regulating SAA, apoA-I, and PON-1 expression. METHODS AND RESULTS A cytokine mixture (tumor necrosis factor [TNF]-alpha, interleukin [IL]-1beta, and IL-6) simultaneously induced SAA and repressed apoA-I and PON-1 expression levels. These effects were partially inhibited in cells pretreated with either nuclear factor kappaB (NF-kappaB) inhibitors (pyrrolidine dithiocarbamate, SN50, and overexpression of super-repressor inhibitor kappaB) or after exposure to the peroxisome proliferator-activated receptor-alpha (PPARalpha) ligands (WY-14643 and fenofibrate). Consistent with these findings, the basal level of SAA was increased, whereas apoA-I and PON-1 decreased in primary hepatocytes from PPARalpha-deficient mice as compared with wild-type mice. Moreover, neither WY-14643 nor fenofibrate had any effect on SAA, apoA-I, or PON-1 expression in the absence of PPARalpha. CONCLUSIONS These results suggest that cytokines increase the expression of SAA through NF-kappaB transactivation, while simultaneously decreasing the expression of apoA-I and PON-1 by inhibiting PPARalpha activation. Inflammation may convert HDL de novo into a more proatherogenic form by coordinate but inverse transcriptional regulation in the liver, rather than by physical displacement of apoA-I by SAA.
Collapse
Affiliation(s)
- Chang Yeop Han
- Department of Medicine, University of Washington, Seattle, WA 98195-6426, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Park JK, Feuerman MH. Afr2 regulation occurs cell-autonomously in vitro but is not conferred on episomal DNA in transient assays. DNA Cell Biol 2005; 24:189-98. [PMID: 15767785 DOI: 10.1089/dna.2005.24.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oncofetal antigens such as alpha-fetoprotein (AFP) are expressed in regenerating liver. The level of AFP gene expression during liver regeneration is regulated by the unlinked, autosomal gene, Alpha-fetoprotein regulator 2 (Afr2). C3H/HeJ (Afr2A/A) mice express 10-fold higher levels of AFP than C57BL/6J (Afr2B/B) mice. Here we show that primary hepatocytes isolated from C3H/HeJ and C57BL/6J mice exhibit differential expression of the endogenous AFP gene, which was attributed to the Afr2 gene locus and indicative of a cell-autonomous mechanism. We show that the Afr2-Response Element (ARE), between 1010 and 838 base pairs upstream of the AFP transcriptional start site, did not modulate reporter gene expression in transfection assays of Hep G2, Hep 3B, Hepa 1.6, and HeLa cell lines. Reporter gene expression in transiently transfected primary hepatocytes was also ARE-independent. Finally, gene expression from reporter constructs delivered by hydrodynamics-based transfection to the livers of C3H/HeJ and C57BL/6J mice after CCl4-induced liver regeneration was ARE-independent. In conclusion, ARE-dependent transcription was not found in transient assays performed in three different systems, two of which retained regulation of the endogenous AFP gene, suggesting that the ARE may not function as a simple transcription factor recognition site.
Collapse
Affiliation(s)
- James K Park
- Graduate Program in Molecular and Cellular Biology and Department of Biochemistry, State University of New York-Downstate Medical Center, Brooklyn, New York 11203, USA
| | | |
Collapse
|
44
|
Zhao Y, Ding WX, Qian T, Watkins S, Lemasters JJ, Yin XM. Bid activates multiple mitochondrial apoptotic mechanisms in primary hepatocytes after death receptor engagement. Gastroenterology 2003; 125:854-67. [PMID: 12949730 DOI: 10.1016/s0016-5085(03)01066-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Activation of Fas or tumor necrosis factor receptor 1 (TNF-R1) on hepatocytes leads to apoptosis, which requires mitochondria activation. The pro-death Bcl-2 family protein, Bid, mediates this pathway by inducing mitochondrial releases of cytochrome c and other apoptotic factors. How Bid activates mitochondria has been studied in vitro with isolated mitochondria. We intended to study the mechanisms in intact hepatocytes so that findings could be made in a proper cellular context and would be more physiologically relevant. METHODS Hepatocytes were isolated from wild-type and bid-deficient mice and treated with anti-Fas or TNF-alpha. Mechanisms of mitochondria activation were dissected with genetic, biochemical, and morphologic approaches. RESULTS bid-deficient hepatocytes were much more resistant to apoptosis. Bid was required for permeability transition and mitochondria depolarization in addition to the previously defined release of cytochrome c. Permeability transition inhibitors cyclosporin A and aristolochic acid could inhibit mitochondria activation effectively, but not as much as the deletion of the bid gene, and they could not inhibit Bak oligomerization. In addition, mitochondria depolarization also could be induced by caspases, whose activation was mainly dependent on Bid. CONCLUSIONS Bid may activate mitochondria by 2 mechanisms, one is related to permeability transition and the other is related to Bak oligomerization. Bid can further affect mitochondria potentials by indirectly regulating caspase activity. This in vivo study provides novel findings not previously disclosed by in vitro studies, and indicates the importance of several mechanisms in contributing Bid-mediated mitochondria dysfunction that could be potential cellular targets of intervention.
Collapse
Affiliation(s)
- Yongge Zhao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
45
|
Reid PC, Sugii S, Chang TY. Trafficking defects in endogenously synthesized cholesterol in fibroblasts, macrophages, hepatocytes, and glial cells from Niemann-Pick type C1 mice. J Lipid Res 2003; 44:1010-9. [PMID: 12611909 DOI: 10.1194/jlr.m300009-jlr200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick type C1 disease (NPC1) is an inherited neurovisceral lipid storage disorder, hallmarked by the intracellular accumulation of unesterified cholesterol and glycolipids in endocytic organelles. Cells acquire cholesterol through exogenous uptake and endogenous biosynthesis. NPC1 participation in the trafficking of LDL-derived cholesterol has been well studied; however, its role in the trafficking of endogenously synthesized cholesterol (endoCHOL) has received much less attention. Previously, using mutant Chinese hamster ovary cells, we showed that endoCHOL moves from the endoplasmic reticulum (ER) to the plasma membrane (PM) independent of NPC1. After arriving at the PM, it moves between the PM and internal compartments. The movement of endoCHOL from internal membranes back to the PM and the ER for esterification was shown to be defective in NPC1 cells. To test the generality of these findings, we have examined the trafficking of endoCHOL in four different physiologically relevant cell types isolated from wild-type, heterozygous, and homozygous BALB/c NPC1NIH mice. The results show that all NPC1 homozygous cell types (embryonic fibroblasts, peritoneal macrophages, hepatocytes, and cerebellar glial cells) exhibit partial trafficking defects, with macrophages and glial cells most prominently affected. Our findings suggest that endoCHOL may contribute significantly to the overall cholesterol accumulation observed in selective tissues affected by Niemann-Pick type C disease.
Collapse
Affiliation(s)
- Patrick C Reid
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
46
|
Noga AA, Zhao Y, Vance DE. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J Biol Chem 2002; 277:42358-65. [PMID: 12193594 DOI: 10.1074/jbc.m204542200] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Phosphatidylethanolamine N-methyltransferase (PEMT) catalyzes the conversion of phosphatidylethanolamine to phosphatidylcholine (PC). We investigated whether there was diminished secretion of lipoproteins from hepatocytes derived from mice that lacked PEMT (Pemt(-/-)) compared with Pemt(+/+) mice. Hepatocytes were incubated with 0.75 mm oleate, the media were harvested, and triacylglycerol (TG), PC, apolipoprotein (apo) B100, and apoB48 were isolated and quantified. Compared with hepatocytes from Pemt(+/+) mice, hepatocytes from Pemt(-/-) mice secreted 50% less TG, whereas secretion of PC was unaffected. Fractionation of the secreted lipoproteins on density gradients demonstrated that the decrease in TG was in the very low density lipoprotein (VLDL)/low density lipoprotein fractions. The secretion of apoB100 was decreased by approximately 70% in VLDLs/low density lipoproteins, whereas there was no significant decrease in apoB48 secretion in any fraction. Transfection of McArdle hepatoma cells (that lack PEMT) with PEMT cDNA enhanced secretion of TG in the VLDLs. Because the levels of PC in the hepatocytes and hepatoma cells were unaffected by the lack of PEMT expression, there appears to be an unexpected requirement for PEMT in the secretion of apoB100-containing VLDLs.
Collapse
Affiliation(s)
- Anna A Noga
- Department of Biochemistry and the Canadian Institutes of Health Research Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
47
|
Abstract
2-Butoxyethanol has been reported to induce an increase in liver tumors in male B6C3F1 mice following chronic inhalation while rats, similarly treated, showed no increase in liver tumors. The mechanism for the selective induction of cancer in mouse liver is unknown, however, 2-butoxyethanol has been shown to induce hemolysis in mice, resulting in an accumulation of hemosiderin (iron) in the liver. Previous studies by our group and others have shown that mouse liver compared to other rodent species has a lower antioxidant capacity and appears to be more susceptible to chemically-induced oxidative damage. Since iron is known to produce hydroxyl radicals (through the Fenton reaction), we have proposed that the 2-butoxyethanol-induced iron overload (through hemolysis) may contribute to the induction of liver neoplasia in the mouse. In the present studies, 2-butoxyethanol induced oxidative stress in the liver of mice following 7-day treatment by gavage. These studies also examined whether 2-butoxyethanol, 2-butoxy acetic acid (a major metabolite of 2-butoxyethanol) or iron (FeSO(4)) produced oxidative stress in mouse and rat hepatocytes. Oxidative stress was examined by measuring oxidative DNA damage (OH8dG), lipid peroxidation (MDA formation) and cellular vitamin E concentrations. Neither 2-butoxyethanol or 2-butoxyacetic acid induced changes in the oxidative stress parameters examined in either rat or mouse hepatocytes. In contrast, FeSO(4) produced a dose-related increase in OH8dG and MDA and a decrease in vitamin E levels following 24 h treatment. Mouse hepatocytes were more sensitive than rat hepatocytes to the oxidative damage induced by the FeSO(4). FeSO(4)-induced oxidative stress was not increased by co-treatment of FeSO(4) with either 2-butoxyethanol or 2-butoxy acetic acid. These results support the proposal that the induction of hepatic oxidative stress by 2-butoxyethanol in vivo occurs secondary to induction of hemolysis and iron deposition in the liver rather than as a direct action of 2-butoxyethanol or its main metabolite, 2-butoxy acetic acid.
Collapse
Affiliation(s)
- Joungjoa Park
- Division of Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, MS 1021, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
48
|
Klaunig JE, Goldblatt PJ, Hinton DE, Lipsky MM, Trump BF. Carcinogen induced unscheduled DNA synthesis in mouse hepatocytes. Toxicol Pathol 2001; 12:119-25. [PMID: 11478312 DOI: 10.1177/019262338401200202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mouse primary liver cell cultures were examined for evidence of unscheduled DNA synthesis (UDS) following treatment with the carcinogens; dimethylnitrosamine (DMNA), diethylnitrosamine (DENA), 2-acetylaminofluorene (2-AAF), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), benzo(a)pyrene (BP), dimethylbenzanthracene (DMBA), 1,1,-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), safrole, diethylstilbestrol (DES), aflatoxin B1 (AFB1), and dieldrin and the noncarcinogens; dimethylformamide (DMF), fluorene, and pyrene. Mouse hepatocyte cultures were simultaneously treated with three concentrations of each compound and 3H-thymidine. After 24 hrs, cells were fixed and processed for autoradiography. 3H-thymidine incorporation in both experimental and control cell nuclei, as evidenced by autoradiographic grains, was quantitated microscopically. DMNA, DENA, 2-AAF, MNNG, BP, AFB1 and DMBA significantly increased UDS over untreated cells at all concentrations studied. DDT, DMF, fluorene, pyrene, safrole, DES, and dieldrin were negative for UDS in all concentrations examined. DMNA, 2-AAF and MNNG were also studied for UDS induction in 2 hr old, 1 day old and 4 day old cultures. A progressive decrease in UDS with increased time after plating was found in DMNA and 2-AAF treated cultures. After 4 days DMNA and 2-AAF induced UDS only at the highest concentrations examined (10(-3) M and 10(-4) M respectively). MNNG induced UDS at all time periods and concentrations sampled. An attempt to enhance the sensitivity of the UDS assay by inducing the mixed function oxidative enzyme activity in the hepatocytes with phenobarbital administered in vivo resulted in no statistically significant increase in UDS with DMNA, 2-AAF, MNNG, DDT, and dieldrin when compared with cells from non-induced animals.
Collapse
Affiliation(s)
- J E Klaunig
- Department of Pathology, Medical College of Ohio, Toledo 43699, USA
| | | | | | | | | |
Collapse
|
49
|
Bundschuh DS, Uhlig S, Leist M, Sauer A, Wendel A. Isolation and characterization of rat primary lung cells. In Vitro Cell Dev Biol Anim 1995; 31:684-91. [PMID: 8564079 DOI: 10.1007/bf02634089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lung cell culture may be useful as an in vitro alternative to study the susceptibility of the lung to various toxic agents. Lungs from female Wistar rats were enzymatically digested by recirculating perfusion through the pulmonary artery with a sequence of solutions containing deoxyribonuclease, chymopapain, pronase, collagenase, and elastase. Lung tissue was microdissected and resuspended and the cells obtained were washed by centrifugation. By this isolation method, 2 x 10(8) cells per rat lung were obtained with an average viability of 97%. Lung cells cultured in medium containing antibiotics and serum maintained a viability of > 70% for 5 d. Rat primary lung cells were exposed to various toxic agents and their viability was assessed by formazan production capacity after 18 h of incubation. Compared to rat and mouse hepatocyte cultures (EC50 = 5.8 mM), rat primary lung cells were much more susceptible to hydrogen peroxide (EC50 = 0.6 mM). All cell types were equally sensitive to the more potent toxicant tert-butylhydroperoxide (EC50 = 0.1 mM). Paraquat was more toxic to lung cells (EC50 = 0.03 mM) than to rat (EC50 = 2.8 mM) and mouse (EC50 = 0.2 mM) hepatocytes. In contrast, rat lung cells were less sensitive to sodium nitroprusside (EC50 = 2.6 mM) compared to rat (EC50 = 0.2 mM) and mouse (EC50 = 0.03 mM) hepatocytes. Nitrofurantoin and menadione (at EC50 = 0.04 mM and 0.006 mM, respectively) were more toxic to rat lung and liver cells than to murine hepatocytes (EC50 = 0.2 mM and 0.04 mM, respectively). Our findings demonstrate the applicability of this rat primary lung cell culture for studying the effects of lung toxicants.
Collapse
|
50
|
Rabek JP, Zhang DE, Torres-Ramos CA, Papaconstantinou J. Analysis of the mechanism of glucocorticoid-mediated down regulation of the mouse alpha-fetoprotein gene. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1218:136-44. [PMID: 7517187 DOI: 10.1016/0167-4781(94)90002-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of alpha-fetoprotein gene expression by dexamethasone was examined in vivo and in vitro using primary mouse fetal liver cell cultures. Dexamethasone accelerates the developmental down regulation of AFP mRNA pools. However, treatment of primary fetal liver cells in culture does not reduce the AFP mRNA pool and may stabilize both AFP and albumin gene expression. These results indicate that in vivo the effect of dexamethasone may require interaction with another tissue or cell type. The mechanism of the dexamethasone mediated inhibition of AFP was examined by DNase I footprinting and transient expression assays. Two protein-binding regions of the proximal promoter (III and IV) show significant homology to the GRE consensus sequence. DNase I footprinting shows that only region IV can bind purified GR and competition with GRE oligonucleotides indicate that, using adult liver nuclear proteins, no GR is bound in either region. Nuclear protein from adrenalectomized mice show the same protection as controls. These results indicate that GR may not bind to the AFP proximal promoter in the adult. AFP promoter-CAT expression vectors were used to further examine the effect of dexamethasone on AFP expression. AFP promoter-CAT constructs were inhibited by 10(-6) M dexamethasone; while linking of an AFP enhancer to the promoter abolished the effect. We conclude that the in vitro effects on transiently expressed AFP directed expression vectors may be a function of vector structure and/or characteristics of the cells used whereas the in vivo effect may reflect normal regulatory mechanisms.
Collapse
Affiliation(s)
- J P Rabek
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-0643
| | | | | | | |
Collapse
|