1
|
Berdaguer R, van der Wielen N, Lorenzo ZC, Testerink C, Karlova R. The bryophyte rhizoid-sphere microbiome responds to water deficit. PLANT, CELL & ENVIRONMENT 2024; 47:4754-4767. [PMID: 39078220 DOI: 10.1111/pce.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
The roots of vascular plants are colonised by a multitude of microbes, which play an important role in plant health and stress resilience. Drought stress in particular is devastating for crop yield and causes major shifts in the rhizosphere microbial communities. However, the microbiome associated to the rhizoids (hereafter termed rhizoid-sphere) of the nonvascular bryophytes remains largely unexplored. Here, we use amplicon sequencing to explore the rhizoid-sphere microbiome of three bryophyte species under drought and well-watered conditions. Comparing rhizoid-sphere microbial communities associated with the two liverworts Marchantia polymorpha and Marchantia paleacea and the moss Physcomitrium patens showed characteristic differences in composition between host species and both conserved and unique changes under drought. At phylum level, these changes were similar to changes in the rhizosphere of angiosperms under drought. Furthermore, we observed strong differences in rhizoid-sphere colonisation between bryophyte species for taxa known for nitrogen fixation and plant growth promotion. Interestingly, M. polymorpha prioritised the growth of belowground organs under osmotic stress, as is the case for angiosperms under drought. Taken together, our results show interesting parallels between bryophytes and angiosperms in the relation with their rhizo(id-)sphere, suggesting evolutionary conservation among land plants in their response to drought stress.
Collapse
Affiliation(s)
- Roland Berdaguer
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | | | - Zulema Carracedo Lorenzo
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
- Laboratory of Entomology, Wageningen University, Wageningen, Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
2
|
Hoernstein SNW, Schlosser A, Fiedler K, van Gessel N, Igloi GL, Lang D, Reski R. A snapshot of the Physcomitrella N-terminome reveals N-terminal methylation of organellar proteins. PLANT CELL REPORTS 2024; 43:250. [PMID: 39361041 PMCID: PMC11450134 DOI: 10.1007/s00299-024-03329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
KEY MESSAGE Analysis of the N-terminome of Physcomitrella reveals N-terminal monomethylation of nuclear-encoded, mitochondria-localized proteins. Post- or co-translational N-terminal modifications of proteins influence their half-life as well as mediating protein sorting to organelles via cleavable N-terminal sequences that are recognized by the respective translocation machinery. Here, we provide an overview on the current modification state of the N-termini of over 4500 proteins from the model moss Physcomitrella (Physcomitrium patens) using a compilation of 24 N-terminomics datasets. Our data reveal distinct proteoforms and modification states and confirm predicted targeting peptide cleavage sites of 1,144 proteins localized to plastids and the thylakoid lumen, to mitochondria, and to the secretory pathway. In addition, we uncover extended N-terminal methylation of mitochondrial proteins. Moreover, we identified PpNTM1 (P. patens alpha N-terminal protein methyltransferase 1) as a candidate for protein methylation in plastids, mitochondria, and the cytosol. These data can now be used to optimize computational targeting predictors, for customized protein fusions and their targeted localization in biotechnology, and offer novel insights into potential dual targeting of proteins.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Kathrin Fiedler
- Institute of Biology III, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Lonza, Hochbergerstr. 60A, 4057, Basel, Switzerland
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Gabor L Igloi
- Institute of Biology III, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Microbial Genomics and Bioforensics, Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Hunziker S, Nazarova T, Kather M, Hartmann M, Brunner I, Schaub M, Rigling A, Hug C, Schönbeck L, Bose AK, Kammerer B, Gessler A. The metabolic fingerprint of Scots pine-root and needle metabolites show different patterns in dying trees. TREE PHYSIOLOGY 2024; 44:tpae036. [PMID: 38526975 PMCID: PMC11056600 DOI: 10.1093/treephys/tpae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
The loss of leaves and needles in tree crowns and tree mortality are increasing worldwide, mostly as a result of more frequent and severe drought stress. Scots pine (Pinus sylvestris L.) is a tree species that is strongly affected by these developments in many regions of Europe and Asia. So far, changes in metabolic pathways and metabolite profiles in needles and roots on the trajectory toward mortality are unknown, although they could contribute to a better understanding of the mortality mechanisms. Therefore, we linked long-term observations of canopy defoliation and tree mortality with the characterization of the primary metabolite profile in needles and fine roots of Scots pines from a forest site in the Swiss Rhone valley. Our results show that Scots pines are able to maintain metabolic homeostasis in needles over a wide range of canopy defoliation levels. However, there is a metabolic tipping point at around 80-85% needle loss. Above this threshold, many stress-related metabolites (particularly osmoprotectants, defense compounds and antioxidants) increase in the needles, whereas they decrease in the fine roots. If this defoliation tipping point is exceeded, the trees are very likely to die within a few years. The different patterns between needles and roots indicate that mainly belowground carbon starvation impairs key functions for tree survival and suggest that this is an important factor explaining the increasing mortality of Scots pines.
Collapse
Affiliation(s)
- Stefan Hunziker
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Tatiana Nazarova
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Michel Kather
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg 79014, Germany
| | - Martin Hartmann
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Zurich 8092, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8092, Switzerland
| | - Christian Hug
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Leonie Schönbeck
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Department of Botany and Plant Sciences, University of California, Riverside, CA 9252, USA
| | - Arun K Bose
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Bernd Kammerer
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg 79014, Germany
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
4
|
Sala-Carvalho WR, Peralta DF, Furlan CM. Chemical diversity of Brittonodoxa subpinnata, a Brazilian native species of moss. Mol Omics 2024; 20:203-212. [PMID: 38289293 DOI: 10.1039/d3mo00209h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Plants should be probably thought of as the most formidable chemical laboratory that can be exploited for the production of an incredible number of molecules with remarkable structural and chemical diversity that cannot be matched by any synthetic libraries of small molecules. The bryophytes chemistry has been neglected for too long, but in the last ten years, this scenery is changing, with several studies being made using extracts from bryophytes, aimed at the characterization of interesting metabolites, with their metabolome screened. The main objective of this study was to analyze the metabolome of Brittonodoxa subpinnata, a native Brazilian moss species, which occurs in the two Brazilian hotspots. GC-MS and LC-MS2 were performed. All extracts were analyzed using the molecular networking approach. The four extracts of B. subpinnata (polar, non-polar, soluble, and insoluble) resulted in 928 features detected within the established parameters. 189 (20.4%) compounds were annotated, with sugars, fatty acids, flavonoids, and biflavonoids as the major constituents. Sucrose was the sugar with the highest quantity; palmitic acid the major fatty acid but with great presence of very long-chain fatty acids rarely found in higher plants, glycosylated flavonoids were the major flavonoids, and biflavonoids majorly composed by units of flavones and flavanones, exclusively found in the cell wall. Despite the high percentage, this work leaves a significant gap for future works using other structure elucidation techniques, such as NMR.
Collapse
Affiliation(s)
- Wilton Ricardo Sala-Carvalho
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, 05508-090, SP, Brazil.
| | | | - Cláudia Maria Furlan
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, 05508-090, SP, Brazil.
| |
Collapse
|
5
|
Koselski M, Hoernstein SNW, Wasko P, Reski R, Trebacz K. Long-Distance Electrical and Calcium Signals Evoked by Hydrogen Peroxide in Physcomitrella. PLANT & CELL PHYSIOLOGY 2023; 64:880-892. [PMID: 37233615 PMCID: PMC10434737 DOI: 10.1093/pcp/pcad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 05/27/2023]
Abstract
Electrical and calcium signals in plants are some of the basic carriers of information that are transmitted over a long distance. Together with reactive oxygen species (ROS) waves, electrical and calcium signals can participate in cell-to-cell signaling, conveying information about different stimuli, e.g. abiotic stress, pathogen infection or mechanical injury. There is no information on the ability of ROS to evoke systemic electrical or calcium signals in the model moss Physcomitrella nor on the relationships between these responses. Here, we show that the external application of hydrogen peroxide (H2O2) evokes electrical signals in the form of long-distance changes in the membrane potential, which transmit through the plant instantly after stimulation. The responses were calcium-dependent since their generation was inhibited by lanthanum, a calcium channel inhibitor (2 mM), and EDTA, a calcium chelator (0.5 mM). The electrical signals were partially dependent on glutamate receptor (GLR) ion channels since knocking-out the GLR genes only slightly reduced the amplitude of the responses. The basal part of the gametophyte, which is rich in protonema cells, was the most sensitive to H2O2. The measurements carried out on the protonema expressing fluorescent calcium biosensor GCaMP3 proved that calcium signals propagated slowly (>5 µm/s) and showed a decrement. We also demonstrate upregulation of a stress-related gene that appears in a distant section of the moss 8 min after the H2O2 treatment. The results help understand the importance of both types of signals in the transmission of information about the appearance of ROS in the plant cell apoplast.
Collapse
Affiliation(s)
- Mateusz Koselski
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Sebastian N. W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg 79104, Germany
| | - Piotr Wasko
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestrasse 18, Freiburg 79104, Germany
| | - Kazimierz Trebacz
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| |
Collapse
|
6
|
Seebach H, Radow G, Brunek M, Schulz F, Piotrowski M, Krämer U. Arabidopsis nicotianamine synthases comprise a common core-NAS domain fused to a variable autoinhibitory C terminus. J Biol Chem 2023; 299:104732. [PMID: 37086785 PMCID: PMC10248798 DOI: 10.1016/j.jbc.2023.104732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023] Open
Abstract
Nicotianamine synthase (NAS) catalyzes the biosynthesis of the low-molecular-mass metal chelator nicotianamine (NA) from the 2-aminobutyrate moieties of three SAM molecules. NA has central roles in metal nutrition and metal homeostasis of flowering plants. The enzymatic function of NAS remains poorly understood. Crystal structures are available for archaeal and bacterial NAS-like proteins that carry out simpler aminobutanoyl transferase reactions. Here, we report amino acids essential for the activity of AtNAS1 based on structural modeling and site-directed mutagenesis. Using a newly developed enzyme-coupled continuous activity assay, we compare differing NAS proteins identified through multiple sequence alignments and phylogenetic analyses. In most NAS of dicotyledonous and monocotyledonous plants (class Ia and Ib), the core-NAS domain is fused to a variable C-terminal domain. Compared to fungal and moss NAS that comprise merely a core-NAS domain (class III), NA biosynthetic activities of the four paralogous Arabidopsis thaliana NAS proteins were far lower. C-terminally trimmed core-AtNAS variants exhibited strongly elevated activities. Of 320 amino acids of AtNAS1, twelve, 287-TRGCMFMPCNCS-298, accounted for the autoinhibitory effect of the C terminus, of which approximately one-third was attributed to N296 within a CNCS motif that is fully conserved in Arabidopsis. No detectable NA biosynthesis was mediated by two representative plant NAS proteins that naturally lack the C-terminal domain, class Ia Arabidopsis halleri NAS5 and Medicago truncatula NAS2 of class II which is found in dicots and diverged early during the evolution of flowering plants. Next, we will address a possible posttranslational release of autoinhibition in class I NAS proteins.
Collapse
Affiliation(s)
- Hiroyuki Seebach
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Gabriel Radow
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Michael Brunek
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Frank Schulz
- Chemistry and Biochemistry of Natural Products Research Group, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Markus Piotrowski
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
7
|
Ćosić MV, Mišić DM, Jakovljević KM, Giba ZS, Sabovljević AD, Sabovljević MS, Vujičić MM. Analysis of the Qualitative and Quantitative Content of the Phenolic Compounds of Selected Moss Species under NaCl Stress. Molecules 2023; 28:molecules28041794. [PMID: 36838781 PMCID: PMC9967137 DOI: 10.3390/molecules28041794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The response to salt stress analysed by quantitative and qualitative analyses in three selected moss species was studied. Non-halophytic funaroid Physcomitrium patens and two halophytic mosses, funaroid Entosthodon hungaricus and pottioid Hennediella heimii were exposed to salt stress under controlled in vitro conditions. The results clearly showed various phenolics to be present and included to some extent as a non-enzymatic component of oxidative, i.e., salt stress. The common pattern of responses characteristic of phenolic compounds was not present in these moss species, but in all three species the role of phenolics to stress tolerance was documented. The phenolic p-coumaric acid detected in all three species is assumed to be a common phenolic included in the antioxidative response and salt-stress tolerance. Although the stress response in each species also included other phenolics, the mechanisms were different, and also dependent on the stress intensity and duration.
Collapse
Affiliation(s)
- Marija V. Ćosić
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
- Correspondence:
| | - Danijela M. Mišić
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ksenija M. Jakovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| | - Zlatko S. Giba
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| | - Aneta D. Sabovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| | - Marko S. Sabovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 040 01 Košice, Slovakia
| | - Milorad M. Vujičić
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Hoernstein SNW, Özdemir B, van Gessel N, Miniera AA, Rogalla von Bieberstein B, Nilges L, Schweikert Farinha J, Komoll R, Glauz S, Weckerle T, Scherzinger F, Rodriguez-Franco M, Müller-Schüssele SJ, Reski R. A deeply conserved protease, acylamino acid-releasing enzyme (AARE), acts in ageing in Physcomitrella and Arabidopsis. Commun Biol 2023; 6:61. [PMID: 36650210 PMCID: PMC9845386 DOI: 10.1038/s42003-023-04428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Reactive oxygen species (ROS) are constant by-products of aerobic life. In excess, ROS lead to cytotoxic protein aggregates, which are a hallmark of ageing in animals and linked to age-related pathologies in humans. Acylamino acid-releasing enzymes (AARE) are bifunctional serine proteases, acting on oxidized proteins. AARE are found in all domains of life, albeit under different names, such as acylpeptide hydrolase (APEH/ACPH), acylaminoacyl peptidase (AAP), or oxidized protein hydrolase (OPH). In humans, AARE malfunction is associated with age-related pathologies, while their function in plants is less clear. Here, we provide a detailed analysis of AARE genes in the plant lineage and an in-depth analysis of AARE localization and function in the moss Physcomitrella and the angiosperm Arabidopsis. AARE loss-of-function mutants have not been described for any organism so far. We generated and analysed such mutants and describe a connection between AARE function, aggregation of oxidized proteins and plant ageing, including accelerated developmental progression and reduced life span. Our findings complement similar findings in animals and humans, and suggest a unified concept of ageing may exist in different life forms.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Buğra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Euro-BioImaging Bio-Hub, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Alessandra A Miniera
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Bruno Rogalla von Bieberstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Department of Anesthesiology, University Hospital Würzburg, Oberduerrbacher Strasse 6, 97072, Würzburg, Germany
| | - Lars Nilges
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Joana Schweikert Farinha
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Ramona Komoll
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Heraeus Medical GmbH, Philipp-Reis-Straße 8-13, 61273, Wehrheim, Germany
| | - Stella Glauz
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Tim Weckerle
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Zymo Research Europe GmbH, Muelhauser Strasse 9, 79110, Freiburg, Germany
| | - Friedrich Scherzinger
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Stefanie J Müller-Schüssele
- Molecular Botany, Department of Biology, Technical University of Kaiserslautern, Erwin-Schrödinger-Strasse 70, 67663, Kaiserslautern, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
9
|
Botton A, Girardi F, Ruperti B, Brilli M, Tijero V, Eccher G, Populin F, Schievano E, Riello T, Munné-Bosch S, Canton M, Rasori A, Cardillo V, Meggio F. Grape Berry Responses to Sequential Flooding and Heatwave Events: A Physiological, Transcriptional, and Metabolic Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:3574. [PMID: 36559686 PMCID: PMC9788187 DOI: 10.3390/plants11243574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the physiological response of Vitis vinifera cv. Sauvignon Blanc to sequential stresses simulated under a semi-controlled environment: flooding at bud-break followed by multiple summer stress (drought plus heatwave) occurring at pre-vèraison. Transcriptomic and metabolomic assessments were performed through RNASeq and NMR, respectively. A comprehensive hormone profiling was also carried out. Results pointed out a different response to the heatwave in the two situations. Flooding caused a developmental advance, determining a different physiological background in the berry, thus affecting its response to the summer stress at both transcriptional levels, with the upregulation of genes involved in oxidative stress responses, and metabolic level, with the increase in osmoprotectants, such as proline and other amino acids. In conclusion, sequential stress, including a flooding event at bud-break followed by a summer heatwave, may impact phenological development and berry ripening, with possible consequences on berry and wine quality. A berry physiological model is presented that may support the development of sustainable vineyard management solutions to improve the water use efficiency and adaptation capacity of actual viticultural systems to future scenarios.
Collapse
Affiliation(s)
- Alessandro Botton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Francesco Girardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Veronica Tijero
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Giulia Eccher
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Francesca Populin
- Unit of Fruit Crop Genetics and Breeding, Research and Innovation Centre—CRI, Edmund Mach Foundation—FEM, Via E. Mach 1, San Michele all’Adige, 38098 Trento, Italy
| | - Elisabetta Schievano
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Tobia Riello
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08017 Barcelona, Spain
| | - Monica Canton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Valerio Cardillo
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| |
Collapse
|
10
|
Integrated Physiological, Transcriptomic, and Metabolomic Analyses of the Response of Peach to Nitrogen Levels during Different Growth Stages. Int J Mol Sci 2022; 23:ijms231810876. [PMID: 36142789 PMCID: PMC9505813 DOI: 10.3390/ijms231810876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
This study performed physiological, transcriptome, and metabolite analyses of peach fruit under different nitrogen (N) conditions at different growth stages. Nitrogen management directly affected the yield, fruit quality, and metabolites of peach in different growth stages. Different fertilizing time influenced yield and leaf N concentration. RNA-Seq was used to analyze the influence of N levels at the fruit pit hardening (PH) and fruit expansion (FE) stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed differentially expressed genes (DEGs) related to carbon and nitrogen metabolite processes. Metabolome analysis shows that applying different nitrogen fertilizers at different growth stages of peach mainly affected metabolites related to carbon and amino acids. This research provides insight into the metabolic processes underlying different N responses during different growth stages and provides a foundation to improve the efficiency of N use in peach.
Collapse
|
11
|
Reboledo G, Agorio A, Vignale L, Alvarez A, Ponce De León I. The moss-specific transcription factor PpERF24 positively modulates immunity against fungal pathogens in Physcomitrium patens. FRONTIERS IN PLANT SCIENCE 2022; 13:908682. [PMID: 36186018 PMCID: PMC9520294 DOI: 10.3389/fpls.2022.908682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
APETALA2/ethylene response factors (AP2/ERFs) transcription factors (TFs) have greatly expanded in land plants compared to algae. In angiosperms, AP2/ERFs play important regulatory functions in plant defenses against pathogens and abiotic stress by controlling the expression of target genes. In the moss Physcomitrium patens, a high number of members of the ERF family are induced during pathogen infection, suggesting that they are important regulators in bryophyte immunity. In the current study, we analyzed a P. patens pathogen-inducible ERF family member designated as PpERF24. Orthologs of PpERF24 were only found in other mosses, while they were absent in the bryophytes Marchantia polymorpha and Anthoceros agrestis, the vascular plant Selaginella moellendorffii, and angiosperms. We show that PpERF24 belongs to a moss-specific clade with distinctive amino acids features in the AP2 domain that binds to the DNA. Interestingly, all P. patens members of the PpERF24 subclade are induced by fungal pathogens. The function of PpERF24 during plant immunity was assessed by an overexpression approach and transcriptomic analysis. Overexpressing lines showed increased defenses to infection by the fungal pathogens Botrytis cinerea and Colletotrichum gloeosporioides evidenced by reduced cellular damage and fungal biomass compared to wild-type plants. Transcriptomic and RT-qPCR analysis revealed that PpERF24 positively regulates the expression levels of defense genes involved in transcriptional regulation, phenylpropanoid and jasmonate pathways, oxidative burst and pathogenesis-related (PR) genes. These findings give novel insights into potential mechanism by which PpERF24 increases plant defenses against several pathogens by regulating important players in plant immunity.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lucía Vignale
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Alfonso Alvarez
- Laboratorio de Fisiología Vegetal, Facultad de Ciencias, Centro de Investigaciones Nucleares, Universidad de la República, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
12
|
Liu S, Li T, Fang S, Zhang P, Yi D, Cong B, Zhang Z, Zhao L. Metabolic profiling and gene expression analyses provide insights into cold adaptation of an Antarctic moss Pohlia nutans. FRONTIERS IN PLANT SCIENCE 2022; 13:1006991. [PMID: 36176693 PMCID: PMC9514047 DOI: 10.3389/fpls.2022.1006991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Antarctica is the coldest, driest, and most windy continent on earth. The major terrestrial vegetation consists of cryptogams (mosses and lichens) and two vascular plant species. However, the molecular mechanism of cold tolerance and relevant regulatory networks were largely unknown in these Antarctic plants. Here, we investigated the global alterations in metabolites and regulatory pathways of an Antarctic moss (Pohlia nutans) under cold stress using an integrated multi-omics approach. We found that proline content and several antioxidant enzyme activities were significantly increased in P. nutans under cold stress, but the contents of chlorophyll and total flavonoids were markedly decreased. A total of 559 metabolites were detected using ultra high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). We observed 39 and 71 differentially changed metabolites (DCMs) after 24 h and 60 h cold stress, indicating that several major pathways were differentially activated for producing fatty acids, alkaloids, flavonoids, terpenoids, and phenolic acids. In addition, the quantitative transcriptome sequencing was conducted to uncover the global transcriptional profiles of P. nutans under cold stress. The representative differentially expressed genes (DEGs) were identified and summarized to the function including Ca2+ signaling, ABA signaling, jasmonate signaling, fatty acids biosynthesis, flavonoid biosynthesis, and other biological processes. The integrated dataset analyses of metabolome and transcriptome revealed that jasmonate signaling, auxin signaling, very-long-chain fatty acids and flavonoid biosynthesis pathways might contribute to P. nutans acclimating to cold stress. Overall, these observations provide insight into Antarctic moss adaptations to polar habitats and the impact of global climate change on Antarctic plants.
Collapse
Affiliation(s)
- Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Tingting Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Shuo Fang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, China
| | - Dan Yi
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Zhaohui Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| |
Collapse
|
13
|
Valeeva LR, Dague AL, Hall MH, Tikhonova AE, Sharipova MR, Valentovic MA, Bogomolnaya LM, Shakirov EV. Antimicrobial Activities of Secondary Metabolites from Model Mosses. Antibiotics (Basel) 2022; 11:1004. [PMID: 35892395 PMCID: PMC9331938 DOI: 10.3390/antibiotics11081004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
Plants synthetize a large spectrum of secondary metabolites with substantial structural and functional diversity, making them a rich reservoir of new biologically active compounds. Among different plant lineages, the evolutionarily ancient branch of non-vascular plants (Bryophytes) is of particular interest as these organisms produce many unique biologically active compounds with highly promising antibacterial properties. Here, we characterized antibacterial activity of metabolites produced by different ecotypes (strains) of the model mosses Physcomitrium patens and Sphagnum fallax. Ethanol and hexane moss extracts harbor moderate but unstable antibacterial activity, representing polar and non-polar intracellular moss metabolites, respectively. In contrast, high antibacterial activity that was relatively stable was detected in soluble exudate fractions of P. patens moss. Antibacterial activity levels in P. patens exudates significantly increased over four weeks of moss cultivation in liquid culture. Interestingly, secreted moss metabolites are only active against a number of Gram-positive, but not Gram-negative, bacteria. Size fractionation, thermostability and sensitivity to proteinase K assays indicated that the secreted bioactive compounds are relatively small (less than <10 kDa). Further analysis and molecular identification of antibacterial exudate components, combined with bioinformatic analysis of model moss genomes, will be instrumental in the identification of specific genes involved in the bioactive metabolite biosynthesis.
Collapse
Affiliation(s)
- Lia R. Valeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (L.R.V.); (A.E.T.); (M.R.S.)
| | - Ashley L. Dague
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA; (A.L.D.); (M.H.H.)
| | - Mitchell H. Hall
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA; (A.L.D.); (M.H.H.)
| | - Anastasia E. Tikhonova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (L.R.V.); (A.E.T.); (M.R.S.)
| | - Margarita R. Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (L.R.V.); (A.E.T.); (M.R.S.)
| | - Monica A. Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Lydia M. Bogomolnaya
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Eugene V. Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA; (A.L.D.); (M.H.H.)
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| |
Collapse
|
14
|
Mi Z, Ma Y, Liu P, Zhang H, Zhang L, Jia W, Zhu X, Wang Y, Zhang C, Du L, Li X, Chen H, Han T, Liu H. Combining Metabolic Analysis With Biological Endpoints Provides a View Into the Drought Resistance Mechanism of Carex breviculmis. FRONTIERS IN PLANT SCIENCE 2022; 13:945441. [PMID: 35982691 PMCID: PMC9380063 DOI: 10.3389/fpls.2022.945441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Metabolomics is an effective tool to test the response of plants to environmental stress; however, the relationships between metabolites and biological endpoints remained obscure in response to drought stress. Carex breviculmis is widely used in forage production, turf management, and landscape application and it is particularly resistant to drought stress. We investigated the metabolomic responses of C. breviculmis to drought stress by imposing a 22-day natural soil water loss. The results showed that water-deficit restrained plant growth, reducing plant height, leaf fresh weight, and total weight, however, increasing soluble protein content and malondialdehyde content. In total, 129 differential metabolites in the leaves were detected between drought and control using the Ultrahigh Performance Liquid Chromatography-Mass Spectrometer (UPLC-MS) method. Drought enhanced most of the primary and secondary metabolites in the differential metabolites. Almost all the sugars, amino acids, organic acids, phytohormones, nucleotides, phenylpropanoids and polyketides in the differential metabolites were negatively correlated with plant height and leaf fresh weight, while they were positively correlated with soluble protein content and malondialdehyde content. Metabolic pathway analysis showed that drought stress significantly affected aminoacyl-tRNA biosynthesis, TCA cycling, starch and sucrose metabolism. Our study is the first statement on metabolomic responses to drought stress in the drought-enduring plant C. breviculmis. According to the result, the coordination between diverse metabolic pathways in C. breviculmis enables the plant to adapt to a drought environment. This study will provide a systematic framework for explaining the metabolic plasticity and drought tolerance mechanisms of C. breviculmis under drought stress.
Collapse
Affiliation(s)
- Zhaorong Mi
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Yingying Ma
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Pinlin Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Haoyi Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Lu Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Wenqing Jia
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Xiaopei Zhu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Yanli Wang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Chan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Lin Du
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Xilin Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Haitao Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Tao Han
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Huichao Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| |
Collapse
|
15
|
Xu Y, Fu X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int J Mol Sci 2022; 23:5716. [PMID: 35628526 PMCID: PMC9143615 DOI: 10.3390/ijms23105716] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Abiotic stresses rewire plant central metabolism to maintain metabolic and energy homeostasis. Metabolites involved in the plant central metabolic network serve as a hub for regulating carbon and energy metabolism under various stress conditions. In this review, we introduce recent metabolomics techniques used to investigate the dynamics of metabolic responses to abiotic stresses and analyze the trend of publications in this field. We provide an updated overview of the changing patterns in central metabolic pathways related to the metabolic responses to common stresses, including flooding, drought, cold, heat, and salinity. We extensively review the common and unique metabolic changes in central metabolism in response to major abiotic stresses. Finally, we discuss the challenges and some emerging insights in the future application of metabolomics to study plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Sala-Carvalho WR, Montessi-Amaral FP, Esposito MP, Campestrini R, Rossi M, Peralta DF, Furlan CM. Metabolome of Ceratodon purpureus (Hedw.) Brid., a cosmopolitan moss: the influence of seasonality. PLANTA 2022; 255:77. [PMID: 35239061 DOI: 10.1007/s00425-022-03857-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Ceratodon purpureus showed changes in disaccharides, flavonoids, and carotenoids throughout annual seasons. These changes indicate harsher environmental conditions during the dry period, directing metabolic precursors to enhance the antioxidant system. Bryophytes are a group of land plants comprising mosses (Bryophyta), liverworts (Marchantyophyta), and hornworts (Antocerotophyta). This study uses the molecular networking approach to investigate the influence of seasonality (dry and rainy seasons) on the metabolome and redox status of the moss Ceratodon purpureus (Hedw.) Brid., from Campos do Jordão, Brazil. Samples of C. purpureus were submitted to three extraction methods: 80% methanol producing the soluble fraction (intracellular compounds), followed by debris hydrolysis using sodium hydroxide producing the insoluble fraction (cell wall conjugated compounds), both analyzed by HPLC-MS; and extraction using pre-cooled methanol, separated into polar and non-polar fractions, being both analyzed by GC-MS. All fractions were processed using the Global Natural Product Social Molecular Network (GNPS). The redox status was assessed by the analysis of four enzyme activities combined with the analysis of the contents of ascorbate, glutathione, carotenoids, reactive oxygen species (ROS), and malondialdehyde acid (MDA). During the dry period, there was an increase of most biflavonoids, as well as phospholipids, disaccharides, long-chain fatty acids, carotenoids, antioxidant enzymes, ROS, and MDA. Results indicate that C. purpureus is under harsher environmental conditions during the dry period, mainly due to low temperature and less water availability (low rainfall).
Collapse
Affiliation(s)
- Wilton R Sala-Carvalho
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Francisco P Montessi-Amaral
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Marisia P Esposito
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Richard Campestrini
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Magdalena Rossi
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Denilson F Peralta
- Instituto de Pesquisas Ambientais, Avenida Miguel Estéfano, 3687, SP, 04301-012, Brazil
| | - Claudia M Furlan
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil.
| |
Collapse
|
17
|
Reboledo G, Agorio AD, Vignale L, Batista-García RA, Ponce De León I. Transcriptional profiling reveals conserved and species-specific plant defense responses during the interaction of Physcomitrium patens with Botrytis cinerea. PLANT MOLECULAR BIOLOGY 2021; 107:365-385. [PMID: 33521880 DOI: 10.1007/s11103-021-01116-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Evolutionary conserved defense mechanisms present in extant bryophytes and angiosperms, as well as moss-specific defenses are part of the immune response of Physcomitrium patens. Bryophytes and tracheophytes are descendants of early land plants that evolved adaptation mechanisms to cope with different kinds of terrestrial stresses, including drought, variations in temperature and UV radiation, as well as defense mechanisms against microorganisms present in the air and soil. Although great advances have been made on pathogen perception and subsequent defense activation in angiosperms, limited information is available in bryophytes. In this study, a transcriptomic approach uncovered the molecular mechanisms underlying the defense response of the bryophyte Physcomitrium patens (previously Physcomitrella patens) against the important plant pathogen Botrytis cinerea. A total of 3.072 differentially expressed genes were significantly affected during B. cinerea infection, including genes encoding proteins with known functions in angiosperm immunity and involved in pathogen perception, signaling, transcription, hormonal signaling, metabolic pathways such as shikimate and phenylpropanoid, and proteins with diverse role in defense against biotic stress. Similarly as in other plants, B. cinerea infection leads to downregulation of genes involved in photosynthesis and cell cycle progression. These results highlight the existence of evolutionary conserved defense responses to pathogens throughout the green plant lineage, suggesting that they were probably present in the common ancestors of land plants. Moreover, several genes acquired by horizontal transfer from prokaryotes and fungi, and a high number of P. patens-specific orphan genes were differentially expressed during B. cinerea infection, suggesting that they are important players in the moss immune response.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astri D Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lucía Vignale
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
18
|
Sodeyama T, Nishikawa H, Harai K, Takeshima D, Sawa Y, Maruta T, Ishikawa T. The d-mannose/l-galactose pathway is the dominant ascorbate biosynthetic route in the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1724-1738. [PMID: 34245628 DOI: 10.1111/tpj.15413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 05/14/2023]
Abstract
Ascorbate is an abundant and indispensable redox compound in plants. Genetic and biochemical studies have established the d-mannose/l-galactose (d-Man/l-Gal) pathway as the predominant ascorbate biosynthetic pathway in streptophytes, while the d-galacturonate (d-GalUA) pathway is found in prasinophytes and euglenoids. Based on the presence of the complete set of genes encoding enzymes involved in the d-Man/l-Gal pathway and an orthologous gene encoding aldonolactonase (ALase) - a key enzyme for the d-GalUA pathway - Physcomitrium patens may possess both pathways. Here, we have characterized the moss ALase as a functional lactonase and evaluated the ascorbate biosynthesis capability of the two pathways using knockout mutants. Physcomitrium patens expresses two ALase paralogs, namely PpALase1 and PpALase2. Kinetic analyses with recombinant enzymes indicated that PpALase1 is a functional enzyme catalyzing the conversion of l-galactonic acid to the final precursor l-galactono-1,4-lactone and that it also reacts with dehydroascorbate as a substrate. Interestingly, mutants lacking PpALase1 (Δal1) showed 1.2-fold higher total ascorbate content than the wild type, and their dehydroascorbate content was increased by 50% compared with that of the wild type. In contrast, the total ascorbate content of mutants lacking PpVTC2-1 (Δvtc2-1) or PpVTC2-2 (Δvtc2-2), which encode the rate-limiting enzyme GDP-l-Gal phosphorylase in the d-Man/l-Gal pathway, was markedly decreased to 46 and 17%, respectively, compared with that of the wild type. Taken together, the dominant ascorbate biosynthetic pathway in P. patens is the d-Man/l-Gal pathway, not the d-GalUA pathway, and PpALase1 may play a significant role in ascorbate metabolism by facilitating dehydroascorbate degradation rather than ascorbate biosynthesis.
Collapse
Affiliation(s)
- Tsubasa Sodeyama
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Hitoshi Nishikawa
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Kenji Harai
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Daiki Takeshima
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Yoshihiro Sawa
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Takanori Maruta
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Takahiro Ishikawa
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| |
Collapse
|
19
|
van der Linden CFH, WallisDeVries MF, Simon S. Great chemistry between us: The link between plant chemical defenses and butterfly evolution. Ecol Evol 2021; 11:8595-8613. [PMID: 34257918 PMCID: PMC8258229 DOI: 10.1002/ece3.7673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
Plants constantly cope with insect herbivory, which is thought to be the evolutionary driver for the immense diversity of plant chemical defenses. Herbivorous insects are in turn restricted in host choice by the presence of plant chemical defense barriers. In this study, we analyzed whether butterfly host-plant patterns are determined by the presence of shared plant chemical defenses rather than by shared plant evolutionary history. Using correlation and phylogenetic statistics, we assessed the impact of host-plant chemical defense traits on shaping northwestern European butterfly assemblages at a macroevolutionary scale. Shared chemical defenses between plant families showed stronger correlation with overlap in butterfly assemblages than phylogenetic relatedness, providing evidence that chemical defenses may determine the assemblage of butterflies per plant family rather than shared evolutionary history. Although global congruence between butterflies and host-plant families was detected across the studied herbivory interactions, cophylogenetic statistics showed varying levels of congruence between butterflies and host chemical defense traits. We attribute this to the existence of multiple antiherbivore traits across plant families and the diversity of insect herbivory associations per plant family. Our results highlight the importance of plant chemical defenses in community ecology through their influence on insect assemblages.
Collapse
Affiliation(s)
| | - Michiel F. WallisDeVries
- De Vlinderstichting/Dutch Butterfly ConservationWageningenThe Netherlands
- Plant Ecology and Nature Conservation GroupWageningen University & ResearchWageningenThe Netherlands
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
20
|
Peters K, Balcke G, Kleinenkuhnen N, Treutler H, Neumann S. Untargeted In Silico Compound Classification-A Novel Metabolomics Method to Assess the Chemodiversity in Bryophytes. Int J Mol Sci 2021; 22:ijms22063251. [PMID: 33806786 PMCID: PMC8005083 DOI: 10.3390/ijms22063251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
In plant ecology, biochemical analyses of bryophytes and vascular plants are often conducted on dried herbarium specimen as species typically grow in distant and inaccessible locations. Here, we present an automated in silico compound classification framework to annotate metabolites using an untargeted data independent acquisition (DIA)–LC/MS–QToF-sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH) ecometabolomics analytical method. We perform a comparative investigation of the chemical diversity at the global level and the composition of metabolite families in ten different species of bryophytes using fresh samples collected on-site and dried specimen stored in a herbarium for half a year. Shannon and Pielou’s diversity indices, hierarchical clustering analysis (HCA), sparse partial least squares discriminant analysis (sPLS-DA), distance-based redundancy analysis (dbRDA), ANOVA with post-hoc Tukey honestly significant difference (HSD) test, and the Fisher’s exact test were used to determine differences in the richness and composition of metabolite families, with regard to herbarium conditions, ecological characteristics, and species. We functionally annotated metabolite families to biochemical processes related to the structural integrity of membranes and cell walls (proto-lignin, glycerophospholipids, carbohydrates), chemical defense (polyphenols, steroids), reactive oxygen species (ROS) protection (alkaloids, amino acids, flavonoids), nutrition (nitrogen- and phosphate-containing glycerophospholipids), and photosynthesis. Changes in the composition of metabolite families also explained variance related to ecological functioning like physiological adaptations of bryophytes to dry environments (proteins, peptides, flavonoids, terpenes), light availability (flavonoids, terpenes, carbohydrates), temperature (flavonoids), and biotic interactions (steroids, terpenes). The results from this study allow to construct chemical traits that can be attributed to biogeochemistry, habitat conditions, environmental changes and biotic interactions. Our classification framework accelerates the complex annotation process in metabolomics and can be used to simplify biochemical patterns. We show that compound classification is a powerful tool that allows to explore relationships in both molecular biology by “zooming in” and in ecology by “zooming out”. The insights revealed by our framework allow to construct new research hypotheses and to enable detailed follow-up studies.
Collapse
Affiliation(s)
- Kristian Peters
- Bioinformatics & Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.T.); (S.N.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-345-5582-1475
| | - Gerd Balcke
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany;
| | - Niklas Kleinenkuhnen
- Max Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany;
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, 50931 Cologne, Germany
| | - Hendrik Treutler
- Bioinformatics & Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.T.); (S.N.)
- Datameer GmbH, Magdeburger Straße 23, 06112 Halle (Saale), Germany
| | - Steffen Neumann
- Bioinformatics & Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.T.); (S.N.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Commisso M, Guarino F, Marchi L, Muto A, Piro A, Degola F. Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. PLANTS (BASEL, SWITZERLAND) 2021; 10:203. [PMID: 33494524 PMCID: PMC7911284 DOI: 10.3390/plants10020203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023]
Abstract
Usually regarded as less evolved than their more recently diverged vascular sisters, which currently dominate vegetation landscape, bryophytes seem having nothing to envy to the defensive arsenal of other plants, since they had acquired a suite of chemical traits that allowed them to adapt and persist on land. In fact, these closest modern relatives of the ancestors to the earliest terrestrial plants proved to be marvelous chemists, as they traditionally were a popular remedy among tribal people all over the world, that exploit their pharmacological properties to cure the most different diseases. The phytochemistry of bryophytes exhibits a stunning assortment of biologically active compounds such as lipids, proteins, steroids, organic acids, alcohols, aliphatic and aromatic compounds, polyphenols, terpenoids, acetogenins and phenylquinones, thus it is not surprising that substances obtained from various species belonging to such ancestral plants are widely employed as antitumor, antipyretic, insecticidal and antimicrobial. This review explores in particular the antifungal potential of the three Bryophyta divisions-mosses (Musci), hornworts (Anthocerotae) and liverworts (Hepaticae)-to be used as a sources of interesting bioactive constituents for both pharmaceutical and agricultural areas, providing an updated overview of the latest relevant insights.
Collapse
Affiliation(s)
- Mauro Commisso
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona (VR), Italy;
| | - Francesco Guarino
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
| | - Laura Marchi
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Via Gramsci 14, 43125 Parma (PR), Italy;
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Via Ponte P. Bucci 6b, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Amalia Piro
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci 12 C, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco delle Scienze 11/A, 43124 Parma (PR), Italy
| |
Collapse
|
22
|
Phan TLCHB, Delorge I, Avonce N, Van Dijck P. Functional Characterization of Class I Trehalose Biosynthesis Genes in Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2020; 10:1694. [PMID: 32038675 PMCID: PMC6984353 DOI: 10.3389/fpls.2019.01694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The function of trehalose metabolism in plants during growth and development has been extensively studied, mostly in the eudicot Arabidopsis thaliana. So far, however, not much is known about trehalose metabolism in the moss Physcomitrella patens. Here, we show that in P. patens, two active trehalose-6-phosphate synthase enzymes exist, PpTPS1 and PpTPS2. Expression of both enzymes in Saccharomyces cerevisiae can complement the glucose-growth defect of the yeast tps1∆ mutant. Truncation of N-terminal extension in PpTPS1 and PpTPS2 resulted in higher TPS activity and high trehalose levels, upon expression in yeast. Physcomitrella knockout plants were generated and analyzed in various conditions to functionally characterize these proteins. tps1∆ and tps2∆ knockouts displayed a lower amount of caulonema filaments and were significantly reduced in size of gametophores as compared to the wild type. These phenotypes were more pronounced in the tps1∆ tps2∆ mutant. Caulonema formation is induced by factors such as high energy and auxins. Only high amounts of supplied energy were able to induce caulonema filaments in the tps1∆ tps2∆ mutant. Furthermore, this mutant was less sensitive to auxins as NAA-induced caulonema development was arrested in the tps1∆ tps2∆ mutant. In contrast, formation of caulonema filaments is repressed by cytokinins. This effect was more severe in the tps1∆ and tps1∆ tps2∆ mutants. Our results demonstrate that PpTPS1 and PpTPS2 are essential for sensing and signaling sugars and plant hormones to monitor the balance between caulonema and chloronema development.
Collapse
Affiliation(s)
- Tran Le Cong Huyen Bao Phan
- VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Department of Biology, College of Natural Sciences, Cantho University, Cantho, Vietnam
| | - Ines Delorge
- VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Nelson Avonce
- VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Chemical Diversity and Classification of Secondary Metabolites in Nine Bryophyte Species. Metabolites 2019; 9:metabo9100222. [PMID: 31614655 PMCID: PMC6835487 DOI: 10.3390/metabo9100222] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 11/28/2022] Open
Abstract
The central aim in ecometabolomics and chemical ecology is to pinpoint chemical features that explain molecular functioning. The greatest challenge is the identification of compounds due to the lack of constitutive reference spectra, the large number of completely unknown compounds, and bioinformatic methods to analyze the big data. In this study we present an interdisciplinary methodological framework that extends ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) with data-dependent acquisition (DDA-MS) and the automated in silico classification of fragment peaks into compound classes. We synthesize findings from a prior study that explored the influence of seasonal variations on the chemodiversity of secondary metabolites in nine bryophyte species. Here we reuse and extend the representative dataset with DDA-MS data. Hierarchical clustering, heatmaps, dbRDA, and ANOVA with post-hoc Tukey HSD were used to determine relationships of the study factors species, seasons, and ecological characteristics. The tested bryophytes showed species-specific metabolic responses to seasonal variations (50% vs. 5% of explained variation). Marchantia polymorpha, Plagiomnium undulatum, and Polytrichum strictum were biochemically most diverse and unique. Flavonoids and sesquiterpenoids were upregulated in all bryophytes in the growing seasons. We identified ecological functioning of compound classes indicating light protection (flavonoids), biotic and pathogen interactions (sesquiterpenoids, flavonoids), low temperature and desiccation tolerance (glycosides, sesquiterpenoids, anthocyanins, lactones), and moss growth supporting anatomic structures (few methoxyphenols and cinnamic acids as part of proto-lignin constituents). The reusable bioinformatic framework of this study can differentiate species based on automated compound classification. Our study allows detailed insights into the ecological roles of biochemical constituents of bryophytes with regard to seasonal variations. We demonstrate that compound classification can be improved with adding constitutive reference spectra to existing spectral libraries. We also show that generalization on compound classes improves our understanding of molecular ecological functioning and can be used to generate new research hypotheses.
Collapse
|
24
|
Satria D, Tamrakar S, Suhara H, Kaneko S, Shimizu K. Mass Spectrometry-Based Untargeted Metabolomics and α-Glucosidase Inhibitory Activity of Lingzhi ( Ganoderma lingzhi) During the Developmental Stages. Molecules 2019; 24:E2044. [PMID: 31146329 PMCID: PMC6600326 DOI: 10.3390/molecules24112044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 11/24/2022] Open
Abstract
Lingzhi is a Ganoderma mushroom species which has a wide range of bioactivities. Analysis of the changes in metabolites during the developmental stages of lingzhi is important to understand the underlying mechanism of its biosynthesis, as well as its bioactivity. It may also provide valuable information for the cultivation efficiency of lingzhi. In this study, mass spectrometry based untargeted metabolomics was carried out to analyze the alteration of metabolites during developmental stages of lingzhi. Eight developmental stages were categorized on the basis of morphological changes; starting from mycelium stage to post-mature stage. GC/MS and LC/MS analyses along with multivariate analysis of lingzhi developmental stages were performed. Amino acids, organic acids, sugars, polyols, fatty acids, fatty alcohols, and some small polar metabolites were extracted as marker metabolites from GC/MS analysis, while, lanostane-type triterpenoids were observed in LC/MS analysis of lingzhi. The marker metabolites from untargeted analysis of lingzhi developmental stages were correlated with the α-glucosidase inhibitory activity. Two metabolites, compounds 34 and 35, were identified as potential contributors of the α-glucosidase inhibitory activity. The current result shows that some metabolites are involved in the developmental process and α-glucosidase inhibitory activity of lingzhi.
Collapse
Affiliation(s)
- Dedi Satria
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
- Faculty of Health and Sciences, Muhammadiyah University of Sumatera Barat, Bukittinggi 26181, Indonesia.
| | - Sonam Tamrakar
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | - Hiroto Suhara
- Miyazaki Prefectural Wood Utilization Research Center, Miyazaki 885-0037, Japan.
| | - Shuhei Kaneko
- Fukuoka Prefecture Forest Research & Extension Center, Fukuoka 818-8549, Japan.
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
25
|
Ghatak A, Chaturvedi P, Weckwerth W. Metabolomics in Plant Stress Physiology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 164:187-236. [PMID: 29470599 DOI: 10.1007/10_2017_55] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metabolomics is an essential technology for functional genomics and systems biology. It plays a key role in functional annotation of genes and understanding towards cellular and molecular, biotic and abiotic stress responses. Different analytical techniques are used to extend the coverage of a full metabolome. The commonly used techniques are NMR, CE-MS, LC-MS, and GC-MS. The choice of a suitable technique depends on the speed, sensitivity, and accuracy. This chapter provides insight into plant metabolomic techniques, databases used in the analysis, data mining and processing, compound identification, and limitations in metabolomics. It also describes the workflow of measuring metabolites in plants. Metabolomic studies in plant responses to stress are a key research topic in many laboratories worldwide. We summarize different approaches and provide a generic overview of stress responsive metabolite markers and processes compiled from a broad range of different studies. Graphical Abstract.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria. .,Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
26
|
Arif MA, Alseekh S, Harb J, Fernie A, Frank W. Abscisic acid, cold and salt stimulate conserved metabolic regulation in the moss Physcomitrella patens. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:1014-1022. [PMID: 29943488 DOI: 10.1111/plb.12871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/22/2018] [Indexed: 05/08/2023]
Abstract
Salt and cold are major abiotic stresses that have adverse effects on plant growth and development. To cope with these stresses and their detrimental effects plants have evolved several metabolic, biochemical and physiological processes that are mainly triggered and mediated by the plant hormone abscisic acid (ABA). To elucidate the metabolic responses of the moss Physcomitrella patens, which serves as a model plant for abiotic stress adaptation, we performed GC-MS-based metabolic profiling of plants challenged for 5 and 28 h with either salt, cold or ABA. Our results indicate significant changes in the accumulation of several sugars including maltose, isomaltose and trehalose, amino acids including arginine, histidine, ornithine, tryptophan and tyrosine, and organic acids mainly citric acid and malonic acid. The metabolic responses provoked by ABA, cold and salt show considerable similarities. The accumulation of certain metabolites positively correlates with gene expression data whereas some metabolites do not show correlation with cognate transcript abundance. To place our results into an evolutionary context we compared the ABA- and stress-induced metabolic changes in moss to available metabolic profiles of the seed plant Arabidopsis thaliana. We detected considerable conservation between the species, indicating early evolution of stress-associated metabolic adaptations that probably occurred at the plant water-to-land transition.
Collapse
Affiliation(s)
- M A Arif
- Plant Molecular Cell Biology, Department Biology I, Ludwig Maximilian University of Munich, LMU Biocenter, Planegg-Martinsried, Munich, Germany
| | - S Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - J Harb
- Department of Biology and Biochemistry, Birzeit University, Birzeit, West Bank, Palestine
| | - A Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - W Frank
- Plant Molecular Cell Biology, Department Biology I, Ludwig Maximilian University of Munich, LMU Biocenter, Planegg-Martinsried, Munich, Germany
| |
Collapse
|
27
|
Peters K, Gorzolka K, Bruelheide H, Neumann S. Seasonal variation of secondary metabolites in nine different bryophytes. Ecol Evol 2018; 8:9105-9117. [PMID: 30271570 PMCID: PMC6157681 DOI: 10.1002/ece3.4361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/12/2018] [Accepted: 06/22/2018] [Indexed: 12/27/2022] Open
Abstract
Bryophytes occur in almost all land ecosystems and contribute to global biogeochemical cycles, ecosystem functioning, and influence vegetation dynamics. As growth and biochemistry of bryophytes are strongly dependent on the season, we analyzed metabolic variation across seasons with regard to ecological characteristics and phylogeny. Using bioinformatics methods, we present an integrative and reproducible approach to connect ecology with biochemistry. Nine different bryophyte species were collected in three composite samples in four seasons. Untargeted liquid chromatography coupled with mass spectrometry (LC/MS) was performed to obtain metabolite profiles. Redundancy analysis, Pearson's correlation, Shannon diversity, and hierarchical clustering were used to determine relationships among species, seasons, ecological characteristics, and hierarchical clustering. Metabolite profiles of Marchantia polymorpha and Fissidens taxifolius which are species with ruderal life strategy (R-selected) showed low seasonal variability, while the profiles of the pleurocarpous mosses and Grimmia pulvinata which have characteristics of a competitive strategy (C-selected) were more variable. Polytrichum strictum and Plagiomnium undulatum had intermediary life strategies. Our study revealed strong species-specific differences in metabolite profiles between the seasons. Life strategies, growth forms, and indicator values for light and soil were among the most important ecological predictors. We demonstrate that untargeted Eco-Metabolomics provide useful biochemical insight that improves our understanding of fundamental ecological strategies.
Collapse
Affiliation(s)
- Kristian Peters
- Leibniz Institute of Plant Biochemistry, Stress and Developmental BiologyHalleGermany
| | - Karin Gorzolka
- Leibniz Institute of Plant Biochemistry, Stress and Developmental BiologyHalleGermany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Stress and Developmental BiologyHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
28
|
Yin BF, Zhang YM, Lou AR. Impacts of the removal of shrubs on the physiological and biochemical characteristics of Syntrichia caninervis Mitt: in a temperate desert. Sci Rep 2017; 7:45268. [PMID: 28374741 PMCID: PMC5379693 DOI: 10.1038/srep45268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
Moss crusts play important roles in biological soil crusts biomass and soil surface stabilization. However, because of increasingly intensive human activities, especially grazing, the growth and survival of shrubs are seriously threatened. This study aimed to test whether the presence of shrubs affects the physiological state of the bryophyte Syntrichia caninervis Mitt. in this desert ecosystem. We simulated animal-grazed shrubs at three levels in the Gurbantunggut Desert and compared these simulations to exposed areas, measuring the indicators of growth and stress tolerance exhibited by bryophytes. The results showed that the removal of shrubs significantly decreased chlorophyll fluorescence activity and soluble protein content in S. caninervis, especially under the total shrub removal treatment. The ratio between the total removal of shrubs and other treatments in antioxidative enzymes and in osmotic adjustment substances of S. caninervis exhibited two types of responses. With the exception of malonyldialdehyde (MDA) and superoxide dismutase (SOD), the variables examined fitted as downward parabolic then upward parabolic temporal dynamics. The removal of shrubs is harmful to the survival of S.caninervis. In resource-constrained conditions, SOD is an important antioxidant enzyme that of peroxidase (POD), catalase (CAT) and osmotic adjustment substances, for S. caninervis survival.
Collapse
Affiliation(s)
- Ben-feng Yin
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Life Sciences of Beijing Normal University, Beijing 100875, China
- Xinjiang Institute of Ecology and Geography, Key Laboratory of Biogeography and Bioresources in Arid Land, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuan-ming Zhang
- Xinjiang Institute of Ecology and Geography, Key Laboratory of Biogeography and Bioresources in Arid Land, Chinese Academy of Sciences, Urumqi 830011, China
| | - An-ru Lou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Life Sciences of Beijing Normal University, Beijing 100875, China
| |
Collapse
|
29
|
Ponce de León I, Montesano M. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes. FRONTIERS IN PLANT SCIENCE 2017; 8:366. [PMID: 28360923 PMCID: PMC5350094 DOI: 10.3389/fpls.2017.00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 05/06/2023]
Abstract
Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- *Correspondence: Inés Ponce de León,
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la RepúblicaMontevideo, Uruguay
| |
Collapse
|
30
|
Vesty EF, Saidi Y, Moody LA, Holloway D, Whitbread A, Needs S, Choudhary A, Burns B, McLeod D, Bradshaw SJ, Bae H, King BC, Bassel GW, Simonsen HT, Coates JC. The decision to germinate is regulated by divergent molecular networks in spores and seeds. THE NEW PHYTOLOGIST 2016; 211:952-66. [PMID: 27257104 PMCID: PMC4950004 DOI: 10.1111/nph.14018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/16/2016] [Indexed: 05/15/2023]
Abstract
Dispersal is a key step in land plant life cycles, usually via formation of spores or seeds. Regulation of spore- or seed-germination allows control over the timing of transition from one generation to the next, enabling plant dispersal. A combination of environmental and genetic factors determines when seed germination occurs. Endogenous hormones mediate this decision in response to the environment. Less is known about how spore germination is controlled in earlier-evolving nonseed plants. Here, we present an in-depth analysis of the environmental and hormonal regulation of spore germination in the model bryophyte Physcomitrella patens (Aphanoregma patens). Our data suggest that the environmental signals regulating germination are conserved, but also that downstream hormone integration pathways mediating these responses in seeds were acquired after the evolution of the bryophyte lineage. Moreover, the role of abscisic acid and diterpenes (gibberellins) in germination assumed much greater importance as land plant evolution progressed. We conclude that the endogenous hormone signalling networks mediating germination in response to the environment may have evolved independently in spores and seeds. This paves the way for future research about how the mechanisms of plant dispersal on land evolved.
Collapse
Affiliation(s)
- Eleanor F. Vesty
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Younousse Saidi
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Laura A. Moody
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Daniel Holloway
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Amy Whitbread
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Sarah Needs
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Anushree Choudhary
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Bethany Burns
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Daniel McLeod
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Susan J. Bradshaw
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Hansol Bae
- Department of Systems BiologyTechnical University of DenmarkSøltofts Plads, 2800 KgsLyngbyDenmark
| | - Brian Christopher King
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| | - George W. Bassel
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Henrik Toft Simonsen
- Department of Systems BiologyTechnical University of DenmarkSøltofts Plads, 2800 KgsLyngbyDenmark
| | - Juliet C. Coates
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| |
Collapse
|
31
|
Hagedorn F, Joseph J, Peter M, Luster J, Pritsch K, Geppert U, Kerner R, Molinier V, Egli S, Schaub M, Liu JF, Li M, Sever K, Weiler M, Siegwolf RTW, Gessler A, Arend M. Recovery of trees from drought depends on belowground sink control. NATURE PLANTS 2016; 2:16111. [PMID: 27428669 DOI: 10.1038/nplants.2016.111] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/20/2016] [Indexed: 05/21/2023]
Abstract
Climate projections predict higher precipitation variability with more frequent dry extremes(1). CO2 assimilation of forests decreases during drought, either by stomatal closure(2) or by direct environmental control of sink tissue activities(3). Ultimately, drought effects on forests depend on the ability of forests to recover, but the mechanisms controlling ecosystem resilience are uncertain(4). Here, we have investigated the effects of drought and drought release on the carbon balances in beech trees by combining CO2 flux measurements, metabolomics and (13)CO2 pulse labelling. During drought, net photosynthesis (AN), soil respiration (RS) and the allocation of recent assimilates below ground were reduced. Carbohydrates accumulated in metabolically resting roots but not in leaves, indicating sink control of the tree carbon balance. After drought release, RS recovered faster than AN and CO2 fluxes exceeded those in continuously watered trees for months. This stimulation was related to greater assimilate allocation to and metabolization in the rhizosphere. These findings show that trees prioritize the investment of assimilates below ground, probably to regain root functions after drought. We propose that root restoration plays a key role in ecosystem resilience to drought, in that the increased sink activity controls the recovery of carbon balances.
Collapse
Affiliation(s)
- Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Jobin Joseph
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Fahnenbergplatz, 79098 Freiburg, Germany
| | - Martina Peter
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Jörg Luster
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Uwe Geppert
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Rene Kerner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Virginie Molinier
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Simon Egli
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Jian-Feng Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, 100091 Beijing, China
| | - Maihe Li
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Krunoslav Sever
- Department of Forest Genetics, Dendrology and Botany, Faculty of Forestry, University of Zagreb, Svetošimunska 25, HR-10000 Zagreb, Croatia
| | - Markus Weiler
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Fahnenbergplatz, 79098 Freiburg, Germany
| | - Rolf T W Siegwolf
- Laboratory of Atmospheric Chemistry, Ecosystem Fluxes Group, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute for Landscape Biogeochemistry, Leibnitz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, 15374 Müncheberg, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstrasse 6, 14195 Berlin, Germany
| | - Matthias Arend
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- School of Forest Science and Resource Management, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
32
|
Lo JC, Tsednee M, Lo YC, Yang SC, Hu JM, Ishizaki K, Kohchi T, Lee DC, Yeh KC. Evolutionary analysis of iron (Fe) acquisition system in Marchantia polymorpha. THE NEW PHYTOLOGIST 2016; 211:569-83. [PMID: 26948158 DOI: 10.1111/nph.13922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
To acquire appropriate iron (Fe), vascular plants have developed two unique strategies, the reduction-based strategy I of nongraminaceous plants for Fe(2+) and the chelation-based strategy II of graminaceous plants for Fe(3+) . However, the mechanism of Fe uptake in bryophytes, the earliest diverging branch of land plants and dominant in gametophyte generation is less clear. Fe isotope fractionation analysis demonstrated that the liverwort Marchantia polymorpha uses reduction-based Fe acquisition. Enhanced activities of ferric chelate reductase and proton ATPase were detected under Fe-deficient conditions. However, M. polymorpha did not show mugineic acid family phytosiderophores, the key components of strategy II, or the precursor nicotianamine. Five ZIP (ZRT/IRT-like protein) homologs were identified and speculated to be involved in Fe uptake in M. polymorpha. MpZIP3 knockdown conferred reduced growth under Fe-deficient conditions, and MpZIP3 overexpression increased Fe content under excess Fe. Thus, a nonvascular liverwort, M. polymorpha, uses strategy I for Fe acquisition. This system may have been acquired in the common ancestor of land plants and coopted from the gametophyte to sporophyte generation in the evolution of land plants.
Collapse
Affiliation(s)
- Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Munkhtsetseg Tsednee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Chu Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Shun-Chung Yang
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
33
|
Hoernstein SNW, Mueller SJ, Fiedler K, Schuelke M, Vanselow JT, Schuessele C, Lang D, Nitschke R, Igloi GL, Schlosser A, Reski R. Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens. Mol Cell Proteomics 2016; 15:1808-22. [PMID: 27067052 DOI: 10.1074/mcp.m115.057190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Protein arginylation is a posttranslational modification of both N-terminal amino acids of proteins and sidechain carboxylates and can be crucial for viability and physiology in higher eukaryotes. The lack of arginylation causes severe developmental defects in moss, affects the low oxygen response in Arabidopsis thaliana and is embryo lethal in Drosophila and in mice. Although several studies investigated impact and function of the responsible enzyme, the arginyl-tRNA protein transferase (ATE) in plants, identification of arginylated proteins by mass spectrometry was not hitherto achieved. In the present study, we report the identification of targets and interaction partners of ATE in the model plant Physcomitrella patens by mass spectrometry, employing two different immuno-affinity strategies and a recently established transgenic ATE:GUS reporter line (Schuessele et al., 2016 New Phytol. , DOI: 10.1111/nph.13656). Here we use a commercially available antibody against the fused reporter protein (β-glucuronidase) to pull down ATE and its interacting proteins and validate its in vivo interaction with a class I small heatshock protein via Förster resonance energy transfer (FRET). Additionally, we apply and modify a method that already successfully identified arginylated proteins from mouse proteomes by using custom-made antibodies specific for N-terminal arginine. As a result, we identify four arginylated proteins from Physcomitrella patens with high confidence.Data are available via ProteomeXchange with identifier PXD003228 and PXD003232.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Stefanie J Mueller
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Kathrin Fiedler
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Marc Schuelke
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Jens T Vanselow
- §Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Christian Schuessele
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Daniel Lang
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Roland Nitschke
- ¶ZBSA - Centre for Biological Systems Analysis, Life Imaging Center, University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany; ‡‡BIOSS - Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Gabor L Igloi
- ‖Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Andreas Schlosser
- §Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Ralf Reski
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany; ¶ZBSA - Centre for Biological Systems Analysis, Life Imaging Center, University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany; **FRIAS - Freiburg Institute for Advanced Studies, 79104 Freiburg, Germany; ‡‡BIOSS - Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| |
Collapse
|
34
|
Eudes A, Pereira JH, Yogiswara S, Wang G, Teixeira Benites V, Baidoo EEK, Lee TS, Adams PD, Keasling JD, Loqué D. Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin. PLANT & CELL PHYSIOLOGY 2016; 57:568-79. [PMID: 26858288 PMCID: PMC4790474 DOI: 10.1093/pcp/pcw016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/13/2016] [Indexed: 05/19/2023]
Abstract
Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity to acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels.
Collapse
Affiliation(s)
- Aymerick Eudes
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jose H Pereira
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sasha Yogiswara
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA Department of Bioengineering & Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - George Wang
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Veronica Teixeira Benites
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA Graduate Program, San Francisco State University, San Francisco, CA 94132, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Paul D Adams
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA Department of Bioengineering & Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Dominique Loqué
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
35
|
Schuessele C, Hoernstein SNW, Mueller SJ, Rodriguez-Franco M, Lorenz T, Lang D, Igloi GL, Reski R. Spatio-temporal patterning of arginyl-tRNA protein transferase (ATE) contributes to gametophytic development in a moss. THE NEW PHYTOLOGIST 2016; 209:1014-1027. [PMID: 26428055 DOI: 10.1111/nph.13656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
The importance of the arginyl-tRNA protein transferase (ATE), the enzyme mediating post-translation arginylation of proteins in the N-end rule degradation (NERD) pathway of protein stability, was analysed in Physcomitrella patens and compared to its known functions in other eukaryotes. We characterize ATE:GUS reporter lines as well as ATE mutants in P. patens to study the impact and function of arginylation on moss development and physiology. ATE protein abundance is spatially and temporally regulated in P. patens by hormones and light and is highly abundant in meristematic cells. Further, the amount of ATE transcript is regulated during abscisic acid signalling and downstream of auxin signalling. Loss-of-function mutants exhibit defects at various levels, most severely in developing gametophores, in chloroplast starch accumulation and senescence. Thus, arginylation is necessary for moss gametophyte development, in contrast to the situation in flowering plants. Our analysis further substantiates the conservation of the N-end rule pathway components in land plants and highlights lineage-specific features. We introduce moss as a model system to characterize the role of the NERD pathway as an additional layer of complexity in eukaryotic development.
Collapse
Affiliation(s)
- Christian Schuessele
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Stefanie J Mueller
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Timo Lorenz
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Gabor L Igloi
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- FRIAS - Freiburg Institute for Advanced Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- TIP - Trinational Institute for Plant Research, Upper Rhine Valley, 79104, Freiburg, Germany
| |
Collapse
|
36
|
Du B, Jansen K, Kleiber A, Eiblmeier M, Kammerer B, Ensminger I, Gessler A, Rennenberg H, Kreuzwieser J. A coastal and an interior Douglas fir provenance exhibit different metabolic strategies to deal with drought stress. TREE PHYSIOLOGY 2016; 36:148-63. [PMID: 26491053 DOI: 10.1093/treephys/tpv105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/04/2015] [Indexed: 05/28/2023]
Abstract
Drought is a major environmental stress affecting growth and vitality of forest ecosystems. In the present study, foliar nitrogen (N) and carbon (C) metabolism of two Douglas fir (Pseudotsuga menziesii) provenances with assumed different drought tolerance were investigated. We worked with 1-year-old seedlings of the interior provenance Fehr Lake (FEHR) originating from a dry environment and the coastal provenance Snoqualmie (SNO) from a more humid origin. Total C and N, structural N and the concentrations of soluble protein, total amino acids (TAAs) and individual amino acids as well as the relative abundance of polar, low-molecular-weight metabolites including antioxidants were determined in current-year needles exposed either to 42 days of drought or to 42 days drought plus 14 days of rewatering. The seedlings reacted in a provenance-specific manner to drought stress. Coastal provenance SNO showed considerably increased contents of TAAs, which were caused by increased abundance of the quantitatively most important amino acids arginine, ornithine and lysine. Additionally, the polyamine putrescine accumulated exclusively in drought-stressed trees of this provenance. In contrast, the interior provenance FEHR showed the opposite response, i.e., drastically reduced concentrations of these amino acids. However, FEHR showed considerably increased contents of pyruvate-derived and aromatic amino acids, and also higher drought-induced levels of the antioxidants ascorbate and α-tocopherol. In response to drought, both provenances produced large amounts of carbohydrates, such as glucose and fructose, most likely as osmolytes that can readily be metabolized for protection against osmotic stress. We conclude that FEHR and SNO cope with drought stress in a provenance-specific manner: the coastal provenance SNO was mainly synthesizing N-based osmolytes, a reaction not observed in the interior provenance FEHR; instead, the latter increased the levels of scavengers of reactive oxygen species. Our results underline the importance of provenance-specific reactions to abiotic stress.
Collapse
Affiliation(s)
- Baoguo Du
- Key Laboratory for Ecological Security and Protection of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, 621000 Mianyang, China Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| | - Kirstin Jansen
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalderstr. 84, 15374 Müncheberg, Germany
| | - Anita Kleiber
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| | - Monika Eiblmeier
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| | - Bernd Kammerer
- Core Facility Metabolomics, Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-Universität Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| | - Ingo Ensminger
- Department of Biology, Graduate Programs in Cell and Systems Biology and Ecology and Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6 Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Wonnhaldestr. 4, 79100 Freiburg, Germany
| | - Arthur Gessler
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalderstr. 84, 15374 Müncheberg, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| | - Jürgen Kreuzwieser
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| |
Collapse
|
37
|
Zúñiga-González P, Zúñiga GE, Pizarro M, Casanova-Katny A. Soluble carbohydrate content variation in Sanionia uncinata and Polytrichastrum alpinum, two Antarctic mosses with contrasting desiccation capacities. Biol Res 2016; 49:6. [PMID: 26823072 PMCID: PMC4731983 DOI: 10.1186/s40659-015-0058-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptogamic vegetation dominates the ice-free areas along the Antarctic Peninsula. The two mosses Sanionia uncinata and Polytrichastrum alpinum inhabit soils with contrasting water availability. Sanionia uncinata grows in soil with continuous water supply, while P. alpinum grows in sandy, non-flooded soils. Desiccation and rehydration experiments were carried out to test for differences in the rate of water loss and uptake, with non-structural carbohydrates analysed to test their role in these processes. RESULTS Individual plants of S. uncinata lost water 60 % faster than P. alpinum; however, clumps of S. uncinata took longer to dry than those of P. alpinum (11 vs. 5 h, respectively). In contrast, rehydration took less than 10 min for both mosses. Total non-structural carbohydrate content was higher in P. alpinum than in S. uncinata, but sugar levels changed more in P. alpinum during desiccation and rehydration (60-50 %) when compared to S. uncinata. We report the presence of galactinol (a precursor of the raffinose family) for the first time in P. alpinum. Galactinol was present at higher amounts than all other non-structural sugars. CONCLUSIONS Individual plants of S. uncinata were not able to retain water for long periods but by growing and forming carpets, this species can retain water the longest. In contrast individual P. alpinum plants required more time to lose water than S. uncinata, but as moss cushions they suffered desiccation faster than the later. On the other hand, both species rehydrated very quickly. We found that when both mosses lost 50 % of their water, carbohydrates content remained stable and the plants did not accumulate non-structural carbohydrates during the desiccation prosses as usually occurs in vascular plants. The raffinose family oligosaccarides decreased during desiccation, and increased during rehydration, suggesting they function as osmoprotectors.
Collapse
Affiliation(s)
- Paz Zúñiga-González
- Laboratorio de Micología y Micorrizas, Facultad de Ciencias Naturales y Oceanográficas and Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile.
| | - Gustavo E Zúñiga
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago, Alameda, 3363, Santiago, Chile.
| | - Marisol Pizarro
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago, Alameda, 3363, Santiago, Chile.
| | - Angélica Casanova-Katny
- Núcleo de Estudios Ambientales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile.
- Facultad de Química y Biología, Universidad de Santiago, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
38
|
Monti LL, Bustamante CA, Osorio S, Gabilondo J, Borsani J, Lauxmann MA, Maulión E, Valentini G, Budde CO, Fernie AR, Lara MV, Drincovich MF. Metabolic profiling of a range of peach fruit varieties reveals high metabolic diversity and commonalities and differences during ripening. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.06.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Alvarez A, Montesano M, Schmelz E, Ponce de León I. Activation of Shikimate, Phenylpropanoid, Oxylipins, and Auxin Pathways in Pectobacterium carotovorum Elicitors-Treated Moss. FRONTIERS IN PLANT SCIENCE 2016; 7:328. [PMID: 27047509 PMCID: PMC4801897 DOI: 10.3389/fpls.2016.00328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/03/2016] [Indexed: 05/22/2023]
Abstract
Plants have developed complex defense mechanisms to cope with microbial pathogens. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are perceived by pattern recognition receptors (PRRs), leading to the activation of defense. While substantial progress has been made in understanding the activation of plant defense by PAMPs and DAMPs recognition in tracheophytes, far less information exists on related processes in early divergent plants like mosses. The aim of this study was to identify genes that were induced in P. patens in response to elicitors of Pectobacterium carotovorum subsp. carotovorum, using a cDNA suppression subtractive hybridization (SSH) method. A total of 239 unigenes were identified, including genes involved in defense responses related to the shikimate, phenylpropanoid, and oxylipin pathways. The expression levels of selected genes related to these pathways were analyzed using quantitative RT-PCR, confirming their rapid induction by P.c. carotovorum derived elicitors. In addition, P. patens induced cell wall reinforcement after elicitor treatment by incorporation of phenolic compounds, callose deposition, and elevated expression of Dirigent-like encoding genes. Small molecule defense markers and phytohormones such as cinnamic acid, 12-oxo-phytodienoic acid, and auxin levels all increased in elicitor-treated moss tissues. In contrast, salicylic acid levels decreased while abscisic acid levels remained unchanged. P. patens reporter lines harboring an auxin-inducible promoter fused to β-glucuronidase revealed GUS activity in protonemal and gametophores tissues treated with elicitors of P.c. carotovorum, consistent with a localized activation of auxin signaling. These results indicate that P. patens activates the shikimate, phenylpropanoid, oxylipins, and auxin pathways upon treatment with P.c. carotovorum derived elicitors.
Collapse
Affiliation(s)
- Alfonso Alvarez
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- Laboratorio de Fisiología Vegetal, Facultad de Ciencias, Centro de Investigaciones Nucleares, Universidad de la RepúblicaMontevideo, Uruguay
| | - Marcos Montesano
- Laboratorio de Fisiología Vegetal, Facultad de Ciencias, Centro de Investigaciones Nucleares, Universidad de la RepúblicaMontevideo, Uruguay
| | - Eric Schmelz
- Section of Cell and Developmental Biology, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- *Correspondence: Inés Ponce de León
| |
Collapse
|
40
|
Harb J, Alseekh S, Tohge T, Fernie AR. Profiling of primary metabolites and flavonols in leaves of two table grape varieties collected from semiarid and temperate regions. PHYTOCHEMISTRY 2015. [PMID: 26196939 DOI: 10.1016/j.phytochem.2015.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cultivation of grapes in West Bank - Palestine is very old and a large number of grape varieties exist as a result of continuous domestication over thousands of years. This rich biodiversity has highly influenced the consumer behavior of local people, who consume both grape berries and leaves. However, studies that address the contents of health-promoting metabolites in leaves are scarce. Accordingly the aim of this study is to assess metabolite levels in leaves of two grape varieties that were collected from semiarid and temperate regions. Metabolic profiling was conducted using GC-MS and LC-MS. The obtained results show that abiotic stresses in the semiarid region led to clear changes in primary metabolites, in particular in amino acids, which exist at very high levels. By contrast, qualitative and genotype-dependent differences in secondary metabolites were observed, whereas abiotic stresses appear to have negligible effect on the content of these metabolites. The qualitative difference in the flavonol profiles between the two genotypes is most probably related to differential expression of specific genes, in particular flavonol 3-O-rhamnosyltransferase, flavonol-3-O-glycoside pentosyltransferases and flavonol-3-O-d-glucosidel-rhamnosyltransferase by 'Beituni' grape leaves, which led to much higher levels of flavonols with rutinoside, pentoside, and rhamnoside moieties with this genotype.
Collapse
Affiliation(s)
- Jamil Harb
- Department of Biology and Biochemistry, Birzeit University, Birzeit, West Bank, Palestine; Max-Planck-Institut für Mölekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Saleh Alseekh
- Max-Planck-Institut für Mölekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Takayuki Tohge
- Max-Planck-Institut für Mölekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Mölekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
41
|
Kim T, Dreher K, Nilo-Poyanco R, Lee I, Fiehn O, Lange BM, Nikolau BJ, Sumner L, Welti R, Wurtele ES, Rhee SY. Patterns of metabolite changes identified from large-scale gene perturbations in Arabidopsis using a genome-scale metabolic network. PLANT PHYSIOLOGY 2015; 167:1685-1698. [PMID: 25670818 PMCID: PMC4378150 DOI: 10.1104/pp.114.252361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/06/2015] [Indexed: 05/29/2023]
Abstract
Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes.
Collapse
Affiliation(s)
- Taehyong Kim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.K., K.D., R.N.-P., S.Y.R.);Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea (I.L.); Genome Center, University of California, Davis, California 95616 (O.F.); M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.M.L.); Center for Metabolic Biology, Department of Biochemistry, Biophysics, and Molecular Biology (B.J.N.), and Department of Genetics, Development, and Cell Biology (E.S.W.), Iowa State University, Ames, Iowa 50011; Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (L.S.); andDivision of Biology, Kansas State University, Manhattan, Kansas 66506 (R.W.)
| | - Kate Dreher
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.K., K.D., R.N.-P., S.Y.R.);Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea (I.L.); Genome Center, University of California, Davis, California 95616 (O.F.); M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.M.L.); Center for Metabolic Biology, Department of Biochemistry, Biophysics, and Molecular Biology (B.J.N.), and Department of Genetics, Development, and Cell Biology (E.S.W.), Iowa State University, Ames, Iowa 50011; Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (L.S.); andDivision of Biology, Kansas State University, Manhattan, Kansas 66506 (R.W.)
| | - Ricardo Nilo-Poyanco
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.K., K.D., R.N.-P., S.Y.R.);Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea (I.L.); Genome Center, University of California, Davis, California 95616 (O.F.); M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.M.L.); Center for Metabolic Biology, Department of Biochemistry, Biophysics, and Molecular Biology (B.J.N.), and Department of Genetics, Development, and Cell Biology (E.S.W.), Iowa State University, Ames, Iowa 50011; Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (L.S.); andDivision of Biology, Kansas State University, Manhattan, Kansas 66506 (R.W.)
| | - Insuk Lee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.K., K.D., R.N.-P., S.Y.R.);Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea (I.L.); Genome Center, University of California, Davis, California 95616 (O.F.); M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.M.L.); Center for Metabolic Biology, Department of Biochemistry, Biophysics, and Molecular Biology (B.J.N.), and Department of Genetics, Development, and Cell Biology (E.S.W.), Iowa State University, Ames, Iowa 50011; Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (L.S.); andDivision of Biology, Kansas State University, Manhattan, Kansas 66506 (R.W.)
| | - Oliver Fiehn
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.K., K.D., R.N.-P., S.Y.R.);Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea (I.L.); Genome Center, University of California, Davis, California 95616 (O.F.); M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.M.L.); Center for Metabolic Biology, Department of Biochemistry, Biophysics, and Molecular Biology (B.J.N.), and Department of Genetics, Development, and Cell Biology (E.S.W.), Iowa State University, Ames, Iowa 50011; Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (L.S.); andDivision of Biology, Kansas State University, Manhattan, Kansas 66506 (R.W.)
| | - Bernd Markus Lange
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.K., K.D., R.N.-P., S.Y.R.);Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea (I.L.); Genome Center, University of California, Davis, California 95616 (O.F.); M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.M.L.); Center for Metabolic Biology, Department of Biochemistry, Biophysics, and Molecular Biology (B.J.N.), and Department of Genetics, Development, and Cell Biology (E.S.W.), Iowa State University, Ames, Iowa 50011; Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (L.S.); andDivision of Biology, Kansas State University, Manhattan, Kansas 66506 (R.W.)
| | - Basil J Nikolau
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.K., K.D., R.N.-P., S.Y.R.);Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea (I.L.); Genome Center, University of California, Davis, California 95616 (O.F.); M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.M.L.); Center for Metabolic Biology, Department of Biochemistry, Biophysics, and Molecular Biology (B.J.N.), and Department of Genetics, Development, and Cell Biology (E.S.W.), Iowa State University, Ames, Iowa 50011; Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (L.S.); andDivision of Biology, Kansas State University, Manhattan, Kansas 66506 (R.W.)
| | - Lloyd Sumner
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.K., K.D., R.N.-P., S.Y.R.);Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea (I.L.); Genome Center, University of California, Davis, California 95616 (O.F.); M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.M.L.); Center for Metabolic Biology, Department of Biochemistry, Biophysics, and Molecular Biology (B.J.N.), and Department of Genetics, Development, and Cell Biology (E.S.W.), Iowa State University, Ames, Iowa 50011; Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (L.S.); andDivision of Biology, Kansas State University, Manhattan, Kansas 66506 (R.W.)
| | - Ruth Welti
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.K., K.D., R.N.-P., S.Y.R.);Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea (I.L.); Genome Center, University of California, Davis, California 95616 (O.F.); M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.M.L.); Center for Metabolic Biology, Department of Biochemistry, Biophysics, and Molecular Biology (B.J.N.), and Department of Genetics, Development, and Cell Biology (E.S.W.), Iowa State University, Ames, Iowa 50011; Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (L.S.); andDivision of Biology, Kansas State University, Manhattan, Kansas 66506 (R.W.)
| | - Eve S Wurtele
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.K., K.D., R.N.-P., S.Y.R.);Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea (I.L.); Genome Center, University of California, Davis, California 95616 (O.F.); M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.M.L.); Center for Metabolic Biology, Department of Biochemistry, Biophysics, and Molecular Biology (B.J.N.), and Department of Genetics, Development, and Cell Biology (E.S.W.), Iowa State University, Ames, Iowa 50011; Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (L.S.); andDivision of Biology, Kansas State University, Manhattan, Kansas 66506 (R.W.)
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.K., K.D., R.N.-P., S.Y.R.);Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea (I.L.); Genome Center, University of California, Davis, California 95616 (O.F.); M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.M.L.); Center for Metabolic Biology, Department of Biochemistry, Biophysics, and Molecular Biology (B.J.N.), and Department of Genetics, Development, and Cell Biology (E.S.W.), Iowa State University, Ames, Iowa 50011; Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (L.S.); andDivision of Biology, Kansas State University, Manhattan, Kansas 66506 (R.W.)
| |
Collapse
|
42
|
Fesenko IA, Arapidi GP, Skripnikov AY, Alexeev DG, Kostryukova ES, Manolov AI, Altukhov IA, Khazigaleeva RA, Seredina AV, Kovalchuk SI, Ziganshin RH, Zgoda VG, Novikova SE, Semashko TA, Slizhikova DK, Ptushenko VV, Gorbachev AY, Govorun VM, Ivanov VT. Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens. BMC PLANT BIOLOGY 2015; 15:87. [PMID: 25848929 PMCID: PMC4365561 DOI: 10.1186/s12870-015-0468-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/26/2015] [Indexed: 05/27/2023]
Abstract
BACKGROUND Protein degradation is a basic cell process that operates in general protein turnover or to produce bioactive peptides. However, very little is known about the qualitative and quantitative composition of a plant cell peptidome, the actual result of this degradation. In this study we comprehensively analyzed a plant cell peptidome and systematically analyzed the peptide generation process. RESULTS We thoroughly analyzed native peptide pools of Physcomitrella patens moss in two developmental stages as well as in protoplasts. Peptidomic analysis was supplemented by transcriptional profiling and quantitative analysis of precursor proteins. In total, over 20,000 unique endogenous peptides, ranging in size from 5 to 78 amino acid residues, were identified. We showed that in both the protonema and protoplast states, plastid proteins served as the main source of peptides and that their major fraction formed outside of chloroplasts. However, in general, the composition of peptide pools was very different between these cell types. In gametophores, stress-related proteins, e.g., late embryogenesis abundant proteins, were among the most productive precursors. The Driselase-mediated protonema conversion to protoplasts led to a peptide generation "burst", with a several-fold increase in the number of components in the latter. Degradation of plastid proteins in protoplasts was accompanied by suppression of photosynthetic activity. CONCLUSION We suggest that peptide pools in plant cells are not merely a product of waste protein degradation, but may serve as important functional components for plant metabolism. We assume that the peptide "burst" is a form of biotic stress response that might produce peptides with antimicrobial activity from originally functional proteins. Potential functions of peptides in different developmental stages are discussed.
Collapse
Affiliation(s)
- Igor A Fesenko
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Georgij P Arapidi
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Alexander Yu Skripnikov
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Biology Department, Lomonosov Moscow State University, Moscow, 199234 Russian Federation
| | - Dmitry G Alexeev
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Elena S Kostryukova
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Alexander I Manolov
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Ilya A Altukhov
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Regina A Khazigaleeva
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Anna V Seredina
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Sergey I Kovalchuk
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Rustam H Ziganshin
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Viktor G Zgoda
- />Institute of Biomedical Chemistry RAMS im. V.N. Orehovicha, 10, Pogodinskaya Street, Moscow, 119121 Russian Federation
| | - Svetlana E Novikova
- />Institute of Biomedical Chemistry RAMS im. V.N. Orehovicha, 10, Pogodinskaya Street, Moscow, 119121 Russian Federation
| | - Tatiana A Semashko
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Darya K Slizhikova
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Vasilij V Ptushenko
- />A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Moscow, 119992 Russian Federation
| | - Alexey Y Gorbachev
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Vadim M Govorun
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Vadim T Ivanov
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| |
Collapse
|
43
|
Beike AK, Lang D, Zimmer AD, Wüst F, Trautmann D, Wiedemann G, Beyer P, Decker EL, Reski R. Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation. THE NEW PHYTOLOGIST 2015; 205:869-81. [PMID: 25209349 PMCID: PMC4301180 DOI: 10.1111/nph.13004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/17/2014] [Indexed: 05/21/2023]
Abstract
The whole-genome transcriptomic cold stress response of the moss Physcomitrella patens was analyzed and correlated with phenotypic and metabolic changes. Based on time-series microarray experiments and quantitative real-time polymerase chain reaction, we characterized the transcriptomic changes related to early stress signaling and the initiation of cold acclimation. Transcription-associated protein (TAP)-encoding genes of P. patens and Arabidopsis thaliana were classified using generalized linear models. Physiological responses were monitored with pulse-amplitude-modulated fluorometry, high-performance liquid chromatography and targeted high-performance mass spectrometry. The transcript levels of 3220 genes were significantly affected by cold. Comparative classification revealed a global specialization of TAP families, a transcript accumulation of transcriptional regulators of the stimulus/stress response and a transcript decline of developmental regulators. Although transcripts of the intermediate to later response are from evolutionarily conserved genes, the early response is dominated by species-specific genes. These orphan genes may encode as yet unknown acclimation processes.
Collapse
Affiliation(s)
- Anna K Beike
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Andreas D Zimmer
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
- Institut für Humangenetik, Universitätsklinikum FreiburgBreisacherstr. 33, D-79106, Freiburg, Germany
| | - Florian Wüst
- Cell Biology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Danika Trautmann
- Cell Biology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
- Institut National de la Recherche Agronomique28 rue de Herrlisheim, F-68021, Colmar, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Peter Beyer
- Cell Biology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
- FRISYS - Freiburg Initiative for Systems Biology79104, Freiburg, Germany
- BIOSS–Centre for Biological Signaling Studies79104, Freiburg, Germany
- FRIAS– Freiburg Institute for Advanced Studies79104, Freiburg, Germany
- TIP–Trinational Institute for Plant Research79104, Freiburg, Germany
| |
Collapse
|
44
|
Jansen K, Du B, Kayler Z, Siegwolf R, Ensminger I, Rennenberg H, Kammerer B, Jaeger C, Schaub M, Kreuzwieser J, Gessler A. Douglas-fir seedlings exhibit metabolic responses to increased temperature and atmospheric drought. PLoS One 2014; 9:e114165. [PMID: 25436455 PMCID: PMC4250086 DOI: 10.1371/journal.pone.0114165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/05/2014] [Indexed: 11/23/2022] Open
Abstract
In the future, periods of strongly increased temperature in concert with drought (heat waves) will have potentially detrimental effects on trees and forests in Central Europe. Norway spruce might be at risk in the future climate of Central Europe. However, Douglas-fir is often discussed as an alternative for the drought and heat sensitive Norway spruce, because some provenances are considered to be well adapted to drier and warmer conditions. In this study, we identified the physiological and growth responses of seedlings from two different Douglas-fir provenances to increased temperature and atmospheric drought during a period of 92 days. We analysed (i) plant biomass, (ii) carbon stable isotope composition as an indicator for time integrated intrinsic water use efficiency, (iii) apparent respiratory carbon isotope fractionation as well as (iv) the profile of polar low molecular metabolites. Plant biomass was only slightly affected by increased temperatures and atmospheric drought but the more negative apparent respiratory fractionation indicated a temperature-dependent decrease in the commitment of substrate to the tricarboxylic acid cycle. The metabolite profile revealed that the simulated heat wave induced a switch in stress protecting compounds from proline to polyols. We conclude that metabolic acclimation successfully contributes to maintain functioning and physiological activity in seedlings of both Douglas-fir provenances under conditions that are expected during heat waves (i.e. elevated temperatures and atmospheric drought). Douglas-fir might be a potentially important tree species for forestry in Central Europe under changing climatic conditions.
Collapse
Affiliation(s)
- Kirstin Jansen
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Baoguo Du
- Institute for Forest Botany and Tree Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Sichuan Province Key Laboratory of Ecological Security and Protection, Mianyang Normal University, Mianyang, China
| | - Zachary Kayler
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Rolf Siegwolf
- Laboratory of Atmospheric Chemistry, Stable Isotopes and Ecosystem Fluxes, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Ingo Ensminger
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Heinz Rennenberg
- Institute for Forest Botany and Tree Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Bernd Kammerer
- Core Facility Metabolomics, Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Carsten Jaeger
- Core Facility Metabolomics, Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Jürgen Kreuzwieser
- Institute for Forest Botany and Tree Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Arthur Gessler
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
45
|
Beike AK, Spagnuolo V, Lüth V, Steinhart F, Ramos-Gómez J, Krebs M, Adamo P, Rey-Asensio AI, Angel Fernández J, Giordano S, Decker EL, Reski R. Clonal in vitro propagation of peat mosses ( Sphagnum L.) as novel green resources for basic and applied research. PLANT CELL, TISSUE AND ORGAN CULTURE 2014; 120:1037-1049. [PMID: 26321779 PMCID: PMC4551280 DOI: 10.1007/s11240-014-0658-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/01/2014] [Indexed: 05/06/2023]
Abstract
As builders and major components of peatlands, Sphagnopsida (peat mosses) are very important organisms for ecosystems and world's climate. Nowadays many Sphagnum species as well as their habitats are largely protected, while their scientific and economic relevance remains considerable. Advanced methods of in vitro cultivation provide the potential to work in a sustainable way with peat mosses and address aspects of basic research as well as biotechnological and economical topics like biomonitoring or the production of renewable substrates for horticulture (Sphagnum farming). Here, we describe the establishment of axenic in vitro cultures of the five peat moss species Sphagnum fimbriatum Wils. and Hook., Sphagnum magellanicum Brid., Sphagnum palustre L., Sphagnum rubellum Wils. and Sphagnum subnitens Russ. and Warnst. with specific focus on large-scale cultivation of S. palustre in bioreactors. Axenic, clonal cultures were established to produce high quantities of biomass under standardized laboratory conditions. For advanced production of S.palustre we tested different cultivation techniques, growth media and inocula, and analyzed the effects of tissue disruption. While cultivation on solid medium is suitable for long term storage, submerse cultivation in liquid medium yielded highest amounts of biomass. By addition of sucrose and ammonium nitrate we were able to increase the biomass by around 10- to 30-fold within 4 weeks. The morphology of in vitro-cultivated gametophores showed similar phenotypic characteristics compared to material from the field. Thus the tested culture techniques are suitable to produce S. palustre material for basic and applied research.
Collapse
Affiliation(s)
- Anna K. Beike
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Valeria Spagnuolo
- Dipartimento di Biologia, Università di Napoli Federico II, Campus Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Volker Lüth
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Feray Steinhart
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Julia Ramos-Gómez
- BIOVIA Consultor Ambiental, Edificio Emprendia, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Matthias Krebs
- Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University of Greifswald, 17487 Greifswald, Germany
| | - Paola Adamo
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Naples, Italy
| | - Ana Isabel Rey-Asensio
- BIOVIA Consultor Ambiental, Edificio Emprendia, Campus Vida, 15782 Santiago de Compostela, Spain
| | - J. Angel Fernández
- Department of Cellular Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simonetta Giordano
- Dipartimento di Biologia, Università di Napoli Federico II, Campus Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
- AMRA S.c.a r.l., Via Nuova Agnano 11, 80125 Naples, Italy
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Freiburg, Germany
- FRIAS - Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|
46
|
Su Y, Wang J, Shi M, Niu X, Yu X, Gao L, Zhang X, Chen L, Zhang W. Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. BIORESOURCE TECHNOLOGY 2014; 170:522-529. [PMID: 25164345 DOI: 10.1016/j.biortech.2014.08.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 05/09/2023]
Abstract
Various combinations of acetate (Ac), Fe(2+) and high light (HL) stress conditions were evaluated to maximize astaxanthin accumulation and biomass production in Haematococcus pluvialis, and then GC-MS and LC-MS based metabolomics were applied to determine molecular mechanisms responsible for enhancing astaxanthin accumulation under the stress conditions. With the optimized analytical protocols, the GC-MS and LC-MS analyses allowed identification of 93 stable and 24 unstable intracellular metabolites from H. pluvialis, respectively. In addition, a metabolic network was constructed based on GC-MS metabolomic datasets using a weighted correlation network analysis (WGCNA) approach. The network analysis uncovered 2, 1 and 1 distinguished metabolic modules highly associated with HL, Fe(2+) & HL, and Ac & Fe(2+) & HL conditions, respectively. Finally, LC-MS analysis found that AKG, Glu and R5P may be metabolites associated with the Fe(2+) & HL condition. The study provided the first metabolomic view of cell growth and astaxanthin accumulation in H. pluvialis.
Collapse
Affiliation(s)
- Yingxue Su
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Xiangfeng Niu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Xinheng Yu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Lianju Gao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China.
| |
Collapse
|
47
|
MS-based metabolomics facilitates the discovery of in vivo functional small molecules with a diversity of biological contexts. Future Med Chem 2014; 5:1953-65. [PMID: 24175746 DOI: 10.4155/fmc.13.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In vivo small molecules as necessary intermediates are involved in numerous critical metabolic pathways and biological processes associated with many essential biological functions and events. There is growing evidence that MS-based metabolomics is emerging as a powerful tool to facilitate the discovery of functional small molecules that can better our understanding of development, infection, nutrition, disease, toxicity, drug therapeutics, gene modifications and host-pathogen interaction from metabolic perspectives. However, further progress must still be made in MS-based metabolomics because of the shortcomings in the current technologies and knowledge. This technique-driven review aims to explore the discovery of in vivo functional small molecules facilitated by MS-based metabolomics and to highlight the analytic capabilities and promising applications of this discovery strategy. Moreover, the biological significance of the discovery of in vivo functional small molecules with different biological contexts is also interrogated at a metabolic perspective.
Collapse
|
48
|
Lauxmann MA, Borsani J, Osorio S, Lombardo VA, Budde CO, Bustamante CA, Monti LL, Andreo CS, Fernie AR, Drincovich MF, Lara MV. Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit. PLANT, CELL & ENVIRONMENT 2014; 37:601-16. [PMID: 23937123 DOI: 10.1111/pce.12181] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 05/23/2023]
Abstract
Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed 'chilling injury' (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. 'Dixiland' peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs.
Collapse
Affiliation(s)
- Martin A Lauxmann
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Beike AK, Jaeger C, Zink F, Decker EL, Reski R. High contents of very long-chain polyunsaturated fatty acids in different moss species. PLANT CELL REPORTS 2014; 33:245-54. [PMID: 24170342 PMCID: PMC3909245 DOI: 10.1007/s00299-013-1525-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 05/21/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are important cellular compounds with manifold biological functions. Many PUFAs are essential for the human diet and beneficial for human health. In this study, we report on the high amounts of very long-chain (vl) PUFAs (≥C₂₀) such as arachidonic acid (AA) in seven moss species. These species were established in axenic in vitro culture, as a prerequisite for comparative metabolic studies under highly standardized laboratory conditions. In the model organism Physcomitrella patens, tissue-specific differences in the fatty acid compositions between the filamentous protonema and the leafy gametophores were observed. These metabolic differences correspond with differential gene expression of fatty acid desaturase (FADS)-encoding genes in both developmental stages, as determined via microarray analyses. Depending on the developmental stage and the species, AA amounts for 6-31 %, respectively, of the total fatty acids. Subcellular localization of the corresponding FADS revealed the endoplasmic reticulum as the cellular compartment for AA synthesis. Our results show that vlPUFAs are highly abundant metabolites in mosses. Standardized cultivation techniques using photobioreactors along with the availability of the P. patens genome sequence and the high rate of homologous recombination are the basis for targeted metabolic engineering in moss. The potential of producing vlPUFAs of interest from mosses will be highlighted as a promising area in plant biotechnology.
Collapse
Affiliation(s)
- Anna K. Beike
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Carsten Jaeger
- Core Facility Metabolomics, ZBSA, Center for Biological Systems Analysis, University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
| | - Felix Zink
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- BIOSS-Centre for Biological Signalling Studies, 79104 Freiburg, Germany
- FRIAS-Freiburg Institute for Advanced Studies, 79104 Freiburg, Germany
| |
Collapse
|
50
|
Rosales-Mendoza S, Orellana-Escobedo L, Romero-Maldonado A, Decker EL, Reski R. The potential of Physcomitrella patens as a platform for the production of plant-based vaccines. Expert Rev Vaccines 2014; 13:203-12. [PMID: 24405402 DOI: 10.1586/14760584.2014.872987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The moss Physcomitrella patens has a number of advantages for the production of biopharmaceuticals, including: i) availability of standardized conditions for cultivation in bioreactors; ii) not being part of the food chain; iii) high biosafety; iv) availability of highly efficient transformation methods; v) a haploid, fully sequenced genome providing genetic stability and uniform expression; vi) efficient gene targeting at the nuclear level allows for the generation of mutants with specific post-translational modifications (e.g., glycosylation patterns); and vii) oral formulations are a viable approach as no toxic effects are attributed to ingestion of this moss. In the light of this panorama, this opinion paper analyzes the possibilities of using P. patens for the production of oral vaccines and presents some specific cases where its use may represent significant progress in the field of plant-based vaccine development. The advantages represented by putative adjuvant effects of endogenous secondary metabolites and producing specific glycosylation patterns are highlighted.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México
| | | | | | | | | |
Collapse
|