1
|
Basu D. Palmitoylethanolamide, an endogenous fatty acid amide, and its pleiotropic health benefits: A narrative review. J Biomed Res 2024; 38:1-15. [PMID: 39433509 DOI: 10.7555/jbr.38.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The global nutritional transition has led to high frequency and severity of chronic degenerative diseases worldwide, primarily driven by chronic inflammatory stress. At the mealtimes, various pharmaceutical products aim to prevent such an inflammatory stress, they usually cause various systemic side effects. Therefore, supplementation of natural and safe ingredients is a great strategy to reduce the risk and severity of inflammatory stress-related diseases. As a result, palmitoylethanolamide (PEA), an endocannabinoid-like mediator, has been extensively studied for its myriad of actions, including anti-inflammatory, anti-microbial, immunostimulatory, neuroprotective, and pain-reducing effects with high tolerability and safety of PEA in animals and humans. Because of the multiple molecular targets and mechanisms of action, PEA has shown therapeutic benefits in various diseases, including neurological, psychiatric, ophthalmic, metabolic, oncological, renal, hepatic, immunological, rheumatological, and gastrointestinal conditions. The current review highlights the roles and functions of PEA in various physiological and pathological conditions, further supporting the use of PEA as an important dietary agent.
Collapse
Affiliation(s)
- Debasis Basu
- Healious Global METTA Clinic, Kolkata, West Bengal 700029, India
| |
Collapse
|
2
|
Xu H, Li O, Kim D, Xue M, Bao Z, Yang F. Aged microbiota exacerbates cardiac failure by PPARα/PGC1α pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167271. [PMID: 38823462 DOI: 10.1016/j.bbadis.2024.167271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
The dysbiosis of gut microbiota with aging has been extensively studied, revealing its substantial contribution to variety of diseases. However, the impact of aged microbiota in heart failure (HF) remains unclear. In this study, we employed the method of fecal microbiota transplantation (FMT) from aged donors to investigate its role in the context of HF. Our results demonstrate that FMT from aged donors alters the recipient's gut microbiota composition and abundance. Furthermore, FMT impairs cardiac function and physical activity in HF mice. Aged FMT induces metabolic alterations, leading to body weight gain, impaired glucose tolerance, increased respiratory exchange ratio, and enhanced fat accumulation. The epicardium of aged FMT recipients shows fat accumulation, accompanied by cardiomyocyte hypertrophy, cardiac fibrosis and increased cellular apoptosis. Mechanistically, aged FMT suppresses the PPARα/PGC1α signaling pathway in HF. Notably, activation of PPARα effectively rescues the metabolic changes and myocardial injury caused by aged FMT. In conclusion, our study emphasizes the role of the PPARα/PGC1α signaling pathway in aged FMT-mediated HF.
Collapse
Affiliation(s)
- Han Xu
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Ouyang Li
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Dayoung Kim
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Mengjuan Xue
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| | - Fan Yang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| |
Collapse
|
3
|
Mattelaer N, Van der Schueren B, Van Oudenhove L, Weltens N, Vangoitsenhoven R. The circulating and central endocannabinoid system in obesity and weight loss. Int J Obes (Lond) 2024; 48:1363-1382. [PMID: 38834796 DOI: 10.1038/s41366-024-01553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Major advances have been made in obesity treatment, focusing on restoring disturbances along the gut-brain axis. The endocannabinoid system (ECS) is a neuromodulatory signaling system, present along the entire gut-brain axis, that plays a critical role in central and peripheral regulation of food intake and body weight. Evidence on the impact of weight loss on the ECS is, however, more limited. Therefore, we set out to review the existing literature for changes in central and circulating endocannabinoid levels after bariatric surgery and other weight loss strategies in humans. The PubMed, Embase and Web of Science databases were searched for relevant articles. Fifty-six human studies were identified. Most studies measuring circulating 2-arachidonoylglycerol (2-AG) found no difference between normal weight and obesity, or no correlation with BMI. In contrast, studies measuring circulating arachidonoylethanolamine (AEA) found an increase or positive correlation with BMI. Two studies found a negative correlation between BMI and cannabinoid receptor type 1 (CB1) receptor availability in the brain. Only one study investigated the effect of pharmacological weight management on circulating endocannabinoid concentrations and found no effect on AEA concentrations. So far, six studies investigated potential changes in circulating endocannabinoids after bariatric surgery and reported conflicting results. Available evidence does not univocally support that circulating endocannabinoids are upregulated in individuals with obesity, which may be explained by variability across studies in several potential confounding factors (e.g. age and sex) as well as heterogeneity within the obesity population (e.g. BMI only vs. intra-abdominal adiposity). While several studies investigated the effect of lifestyle interventions on the circulating ECS, more studies are warranted that focus on pharmacologically and surgically induced weight loss. In addition, we identified several research needs which should be fulfilled to better understand the role of the ECS in obesity and its treatments.
Collapse
Affiliation(s)
- Nele Mattelaer
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Laboratory for Brain-Gut Axis Studies, Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies, Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nathalie Weltens
- Laboratory for Brain-Gut Axis Studies, Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Lee S, Meslier V, Bidkhori G, Garcia-Guevara F, Etienne-Mesmin L, Clasen F, Park J, Plaza Oñate F, Cai H, Le Chatelier E, Pons N, Pereira M, Seifert M, Boulund F, Engstrand L, Lee D, Proctor G, Mardinoglu A, Blanquet-Diot S, Moyes D, Almeida M, Ehrlich SD, Uhlen M, Shoaie S. Transient colonizing microbes promote gut dysbiosis and functional impairment. NPJ Biofilms Microbiomes 2024; 10:80. [PMID: 39245657 PMCID: PMC11381545 DOI: 10.1038/s41522-024-00561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Species composition of the healthy adult gut microbiota tends to be stable over time. Destabilization of the gut microbiome under the influence of different factors is the main driver of the microbial dysbiosis and subsequent impacts on host physiology. Here, we used metagenomics data from a Swedish longitudinal cohort, to determine the stability of the gut microbiome and uncovered two distinct microbial species groups; persistent colonizing species (PCS) and transient colonizing species (TCS). We validated the continuation of this grouping, generating gut metagenomics data for additional time points from the same Swedish cohort. We evaluated the existence of PCS/TCS across different geographical regions and observed they are globally conserved features. To characterize PCS/TCS phenotypes, we performed bioreactor fermentation with faecal samples and metabolic modeling. Finally, using chronic disease gut metagenome and other multi-omics data, we identified roles of TCS in microbial dysbiosis and link with abnormal changes to host physiology.
Collapse
Affiliation(s)
- Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
- School of Life Sciences, Gwangju Institute of Science and Technology, Jouy-en-Josas, 61005, Republic of Korea
| | - Victoria Meslier
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350, Jouy-en-Josas, France
| | - Gholamreza Bidkhori
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Fernando Garcia-Guevara
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Frederick Clasen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Junseok Park
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | | | - Haizhuang Cai
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | | | - Nicolas Pons
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350, Jouy-en-Josas, France
| | - Marcela Pereira
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Maike Seifert
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Fredrik Boulund
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - David Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Mathieu Almeida
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350, Jouy-en-Josas, France
| | - S Dusko Ehrlich
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350, Jouy-en-Josas, France
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden.
| |
Collapse
|
6
|
Russell L, Condo K, DeFlorville T. Nutrition, endocannabinoids, and the use of cannabis: An overview for the nutrition clinician. Nutr Clin Pract 2024; 39:815-823. [PMID: 38555505 DOI: 10.1002/ncp.11148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024] Open
Abstract
The endocannabinoid system (ECs) is composed of multiple signaling compounds and receptors within the central and peripheral nervous system along with various organs, including the gut, liver, and skeletal muscle. The ECs has been implicated in metabolism, gut motility, and eating behaviors. The ECs is altered in disease states such as obesity. Recent studies have clarified the role of the gut microbiome and nutrition on the ECs. Exogenous cannabinoid (CB) use, either organic or synthetic, stimulates the ECs through CB1 and CB2 receptors. However, the role of CBs is unclear in regard to nutrition optimization or to treat disease states. This review briefly summarizes the effect of the ECs and exogenous CBs on metabolism and nutrition. With the increased legalization of cannabis, there is a corresponding increased use in the United States. Therefore, nutrition clinicians need to be aware of both the benefits and harm of cannabis use on overall nutrition status, as well as the gaps in knowledge for future research and guideline development.
Collapse
Affiliation(s)
- Lindsey Russell
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgical Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kayla Condo
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tiffany DeFlorville
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgical Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Florkowski M, Abiona E, Frank KM, Brichacek AL. Obesity-associated inflammation countered by a Mediterranean diet: the role of gut-derived metabolites. Front Nutr 2024; 11:1392666. [PMID: 38978699 PMCID: PMC11229823 DOI: 10.3389/fnut.2024.1392666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The prevalence of obesity has increased dramatically worldwide and has become a critical public health priority. Obesity is associated with many co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. Although the physiology of obesity is complex, a healthy diet and sufficient exercise are two elements known to be critical to combating this condition. Years of research on the Mediterranean diet, which is high in fresh fruits and vegetables, nuts, fish, and olive oil, have demonstrated a reduction in numerous non-communicable chronic diseases associated with this diet. There is strong evidence to support an anti-inflammatory effect of the diet, and inflammation is a key driver of obesity. Changes in diet alter the gut microbiota which are intricately intertwined with human physiology, as gut microbiota-derived metabolites play a key role in biological pathways throughout the body. This review will summarize recent published studies that examine the potential role of gut metabolites, including short-chain fatty acids, bile acids, trimethylamine-N-oxide, and lipopolysaccharide, in modulating inflammation after consumption of a Mediterranean-like diet. These metabolites modulate pathways of inflammation through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, toll-like receptor 4 signaling, and macrophage driven effects in adipocytes, among other mechanisms.
Collapse
Affiliation(s)
- Melanie Florkowski
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Esther Abiona
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Karen M Frank
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Allison L Brichacek
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
8
|
Soldevila-Domenech N, Fagundo B, Cuenca-Royo A, Forcano L, Gomis-González M, Boronat A, Pastor A, Castañer O, Zomeño MD, Goday A, Dierssen M, Baghizadeh Hosseini K, Ros E, Corella D, Martínez-González MÁ, Salas-Salvadó J, Fernández-Aranda F, Fitó M, de la Torre R. Relationship between sex, APOE genotype, endocannabinoids and cognitive change in older adults with metabolic syndrome during a 3-year Mediterranean diet intervention. Nutr J 2024; 23:61. [PMID: 38862960 PMCID: PMC11167771 DOI: 10.1186/s12937-024-00966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The Mediterranean diet (MedDiet) has demonstrated efficacy in preventing age-related cognitive decline and modulating plasma concentrations of endocannabinoids (eCBs) and N-acylethanolamines (NAEs, or eCB-like compounds), which are lipid mediators involved in multiple neurological disorders and metabolic processes. Hypothesizing that eCBs and NAEs will be biomarkers of a MedDiet intervention and will be related to the cognitive response, we investigated this relationship according to sex and apolipoprotein E (APOE) genotype, which may affect eCBs and cognitive performance. METHODS This was a prospective cohort study of 102 participants (53.9% women, 18.8% APOE-ɛ4 carriers, aged 65.6 ± 4.5 years) from the PREDIMED-Plus-Cognition substudy, who were recruited at the Hospital del Mar Research Institute (Barcelona). All of them presented metabolic syndrome plus overweight/obesity (inclusion criteria of the PREDIMED-Plus) and normal cognitive performance at baseline (inclusion criteria of this substudy). A comprehensive battery of neuropsychological tests was administered at baseline and after 1 and 3 years. Plasma concentrations of eCBs and NAEs, including 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and N-docosahexaenoylethanolamine (DHEA), were also monitored. Baseline cognition, cognitive changes, and the association between eCBs/NAEs and cognition were evaluated according to gender (crude models), sex (adjusted models), and APOE genotype. RESULTS At baseline, men had better executive function and global cognition than women (the effect size of gender differences was - 0.49, p = 0.015; and - 0.42, p = 0.036); however, these differences became nonsignificant in models of sex differences. After 3 years of MedDiet intervention, participants exhibited modest improvements in memory and global cognition. However, greater memory changes were observed in men than in women (Cohen's d of 0.40 vs. 0.25; p = 0.017). In men and APOE-ε4 carriers, 2-AG concentrations were inversely associated with baseline cognition and cognitive changes, while in women, cognitive changes were positively linked to changes in DHEA and the DHEA/AEA ratio. In men, changes in the OEA/AEA and OEA/PEA ratios were positively associated with cognitive changes. CONCLUSIONS The MedDiet improved participants' cognitive performance but the effect size was small and negatively influenced by female sex. Changes in 2-AG, DHEA, the OEA/AEA, the OEA/PEA and the DHEA/AEA ratios were associated with cognitive changes in a sex- and APOE-dependent fashion. These results support the modulation of the endocannabinoid system as a potential therapeutic approach to prevent cognitive decline in at-risk populations. TRIAL REGISTRATION ISRCTN89898870.
Collapse
Grants
- FI_B2021/00104 Agència de Gestió d'Ajuts Universitaris i de Recerca
- PROMETEO/2017/017; Grant FEA/SEA 2017 for Primary Care Research Generalitat Valenciana
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- Advanced Research Grant 2014-2019; agreement #340918 HORIZON EUROPE European Research Council
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- 2013ACUP00194 'la Caixa' Foundation
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- 2017 SGR 138 Generalitat de Catalunya
- ‘la Caixa’ Foundation
Collapse
Affiliation(s)
- Natalia Soldevila-Domenech
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Beatriz Fagundo
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Department of Physiotherapy, Fundació Universitària del Bages (FUB), Manresa, 08042, Spain
| | - Aida Cuenca-Royo
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Laura Forcano
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Maria Gomis-González
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Antoni Pastor
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Olga Castañer
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Endocrinology Service, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Maria Dolores Zomeño
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- School of Health Sciences, Blanquerna-Ramon Llull University, Barcelona, 08022, Spain
| | - Albert Goday
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Endocrinology Service, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Mara Dierssen
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Khashayar Baghizadeh Hosseini
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Cardiovascular risk, Nutrition and Aging, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, 08036, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, 46010, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Navarra's Health Research Institute (IdiSNA), Pamplona, Spain
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Reus, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Fernando Fernández-Aranda
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Clinical Psychology Unit, University Hospital of Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Rafael de la Torre
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Dr Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
9
|
Bay B, Arnold N, Waldeyer C. C-reactive protein, pharmacological treatments and diet: how to target your inflammatory burden. Curr Opin Lipidol 2024; 35:141-148. [PMID: 38277208 DOI: 10.1097/mol.0000000000000922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
PURPOSE OF REVIEW This article focuses on pharmacological agents as well as dietary changes aimed at the reduction of the inflammatory burden measured by circulating C-reactive protein concentrations. RECENT FINDINGS Over the last years, repurposed as well as new anti-inflammatory agents have been investigated in outcome trials in the cardiovascular field. Currently, a specific inhibition of the inflammatory cascade via the interleukin-6 ligand antibody ziltivekimab is being explored in large-scale outcome trials, after the efficacy of this agent with regard to the reduction of inflammatory biomarkers was proven recently. Next to the investigated pharmacological agents, specific dietary patterns possess the ability to improve the inflammatory burden. This enables patients themselves to unlock a potential health benefit ahead of the initiation of a specific medication targeting the inflammatory pathway. SUMMARY Both pharmacological agents as well as diet provide the opportunity to improve the inflammatory profile and thereby lower C-reactive protein concentrations. Whilst advances in the field of specific anti-inflammatory treatments have been made over the last years, their broad implementation is currently limited. Therefore, optimization of diet (and other lifestyle factors) could provide a cost effective and side-effect free intervention to target low-grade vascular inflammation.
Collapse
Affiliation(s)
- Benjamin Bay
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Arnold
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Waldeyer
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck
| |
Collapse
|
10
|
Wang Y, Balvers MGJ, Esser D, Schutte S, Vincken JP, Afman LA, Witkamp RF, Meijerink J. Nutrient composition of different energy-restricted diets determines plasma endocannabinoid profiles and adipose tissue DAGL-α expression; a 12-week randomized controlled trial in subjects with abdominal obesity. J Nutr Biochem 2024; 128:109605. [PMID: 38401691 DOI: 10.1016/j.jnutbio.2024.109605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The endocannabinoid system (ECS) is dysregulated during obesity and metabolic disorders. Weight loss favours the re-establishment of ECS homeostatic conditions, but also the fatty acid composition of the diet can modulate endocannabinoid profiles. However, the combined impact of nutrient quality and energy restriction on the ECS remains unclear. In this 12 weeks randomized controlled trial, men and women (40-70 years) with obesity (BMI: 31.3 ± 3.5 kg/ m2) followed either a low nutrient quality 25% energy-restricted (ER) diet (n=39) high in saturated fats and fructose, or a high nutrient quality ER diet (n=34) amongst others enriched in n-3 polyunsaturated fatty acids (PUFAs) or kept their habitual diet (controls). Profiles of plasma- and adipose N-acylethanolamines and mono-acyl glycerol esters were quantified using LC-MS/MS. Gene expression of ECS-related enzymes and receptors was determined in adipose tissue. Measurements were performed under fasting conditions before and after 12 weeks. Our results showed that plasma level of the DHA-derived compound docosahexaenoylethanolamide (DHEA) was decreased in the low nutrient quality ER diet (P<0.001) compared with the high nutrient quality ER diet, whereas anandamide (AEA) and arachidonoylglycerol (2-AG) levels were unaltered. However, adipose tissue gene expression of the 2-AG synthesizing enzyme diacylglycerol lipase alpha (DAGL-α) was increased following the low nutrient quality ER diet (P<.009) and differed upon intervention with both other diets. Concluding, nutrient quality of the diet affects N-acylethanolamine profiles and gene expression of ECS-related enzymes and receptors even under conditions of high energy restriction in abdominally obese humans. ClinicalTrials.gov NCT02194504.
Collapse
Affiliation(s)
- Ya Wang
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; The Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Diederik Esser
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sophie Schutte
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Jean-Paul Vincken
- The Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Abrignani V, Salvo A, Pacinella G, Tuttolomondo A. The Mediterranean Diet, Its Microbiome Connections, and Cardiovascular Health: A Narrative Review. Int J Mol Sci 2024; 25:4942. [PMID: 38732161 PMCID: PMC11084172 DOI: 10.3390/ijms25094942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The Mediterranean diet (MD), rich in minimally processed plant foods and in monounsaturated fats but low in saturated fats, meat, and dairy products, represents one of the most studied diets for cardiovascular health. It has been shown, from both observational and randomized controlled trials, that MD reduces body weight, improves cardiovascular disease surrogates such as waist-to-hip ratios, lipids, and inflammation markers, and even prevents the development of fatal and nonfatal cardiovascular disease, diabetes, obesity, and other diseases. However, it is unclear whether it offers cardiovascular benefits from its individual components or as a whole. Furthermore, limitations in the methodology of studies and meta-analyses have raised some concerns over its potential cardiovascular benefits. MD is also associated with characteristic changes in the intestinal microbiota, mediated through its constituents. These include increased growth of species producing short-chain fatty acids, such as Clostridium leptum and Eubacterium rectale, increased growth of Bifidobacteria, Bacteroides, and Faecalibacterium prausnitzii species, and reduced growth of Firmicutes and Blautia species. Such changes are known to be favorably associated with inflammation, oxidative status, and overall metabolic health. This review will focus on the effects of MD on cardiovascular health through its action on gut microbiota.
Collapse
Affiliation(s)
- Vincenzo Abrignani
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Andrea Salvo
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
12
|
Kranyak A, Haran K, Smith P, Johnson C, Liao W, Bhutani T. The Mediterranean Diet as a Potential Solution to the Gut Microbiome Dysbiosis in Psoriasis Patients. JOURNAL OF PSORIASIS AND PSORIATIC ARTHRITIS 2024; 9:69-81. [PMID: 39156223 PMCID: PMC11329232 DOI: 10.1177/24755303241226626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Background Adherence to a Mediterranean Diet (MeD) has been associated with lower disease severity in patients with psoriasis. However, the mechanism behind how this diet may lead to disease modification remain understudied. Recent studies have revealed dysbiosis of the gut microbiome in patients with psoriasis suggestive of inflammation and altered immune regulation. Diet affects the gut microbiome and this review aims to evaluate whether correcting this dysbiosis may be one theoretical mechanism by which the MeD may be associated with lower psoriasis severity. Methods A literature search of the PubMed database was conducted for the terms 1) 'psoriasis' and 'microbiome' or 'microbiota,' and 2) 'Mediterranean diet' and 'microbiome' or 'microbiota' with manual screening for relevant articles. In total, we identified 9 relevant primary research studies investigating the gut microbiome in patients with psoriasis and 16 relevant primary research studies investigating changes in the microbiota for those consuming a MeD. Results Though varying in exact levels of certain bacteria, studies analyzing the microbiome in psoriasis revealed dysbiosis. Those analyzing the effect of the Mediterranean diet on the microbiome revealed beneficial changes, including alleviating some of the same alterations seen in the microbiome of those with psoriasis. Conclusion Microbiota change is a possible mechanism why the MeD has previously been associated with lower psoriasis severity.
Collapse
Affiliation(s)
- Allison Kranyak
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Kathryn Haran
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Payton Smith
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Chandler Johnson
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Tina Bhutani
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Lacey J, Huston A, Lopez G, Vozmediano JR, Lam CS, Narayanan S, Lu W, Wolf U, Subbiah IM, Richard P, Lopez AM, Rao S, Frenkel M. Establishing an Integrative Oncology Service: Essential Aspects of Program Development. Curr Oncol Rep 2024; 26:200-211. [PMID: 38358637 DOI: 10.1007/s11912-024-01504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE OF REVIEW Over the last 2 decades, integrative oncology (IO) has seen exponential growth within cancer care. It aims to combine evidence-based complementary therapies with conventional treatments to improve the well-being and quality of life for individuals dealing with cancer. The proliferation of integrative medicine programs in major cancer centers globally reflects varying approaches shaped by cultural, demographic, and resource-based factors. RECENT FINDINGS Drawing upon the expertise of leaders in IO from the Society for Integrative Oncology (SIO) Clinical Practice Committee, this manuscript serves as a practical guide for establishing an IO practice. Collating insights from diverse professionals, including oncologists, integrative oncologists, supportive care physicians, researchers, and clinicians, the paper aims to provide a comprehensive roadmap for initiating and advancing IO services. The primary objective is to bridge the gap between conventional cancer care and complementary therapies, fostering a patient-centric approach to address the multifaceted challenges encountered by individuals with cancer. This paper delineates several key sections elucidating different aspects of IO practice. It delves into the core components necessary for an IO service's foundation, outlines the initial medical consultation process, and presents crucial tools essential for successful consultations. By consolidating insights and expertise, this manuscript seeks to facilitate the integration of IO into mainstream cancer care, ultimately enhancing patient outcomes and experiences.
Collapse
Affiliation(s)
- Judith Lacey
- Supportive Care and Integrative Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Alissa Huston
- Pluta Integrative Oncology & Wellness Center, Wilmot Cancer Institute University of Rochester, Rochester, NY, USA
| | - Gabriel Lopez
- Integrative Medicine Center, Department of Palliative, Rehabilitation and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Chun Sing Lam
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Santhosshi Narayanan
- Integrative Medicine Center, Department of Palliative, Rehabilitation and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weidong Lu
- Zakim Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ursula Wolf
- Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland
| | - Ishwaria M Subbiah
- Cancer Care Equity and Professional Wellness, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Patrick Richard
- Radiation Oncology, Rocky Mountain Cancer Centers, Boulder, CO, USA
| | - Ana Maria Lopez
- Integrative Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Cherry Hill, Cherry Hill, NJ, USA
| | - Santosh Rao
- Integrative Oncology, University Hospitals Connor Whole Health. Beachwood, Beachwood, OH, USA
| | - Moshe Frenkel
- Complementary and Integrative Medicine Service, Oncology Division, Rambam Health Care Campus, Haifa, Israel.
- Department of Family Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
14
|
Portincasa P, Khalil M, Graziani A, Frühbeck G, Baffy G, Garruti G, Di Ciaula A, Bonfrate L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur J Intern Med 2024; 119:13-30. [PMID: 37802720 DOI: 10.1016/j.ejim.2023.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The prevalence of overweight, obesity, type 2 diabetes, metabolic syndrome and steatotic liver disease is rapidly increasing worldwide with a huge economic burden in terms of morbidity and mortality. Several genetic and environmental factors are involved in the onset and development of metabolic disorders and related complications. A critical role also exists for the gut microbiota, a complex polymicrobial ecology at the interface of the internal and external environment. The gut microbiota contributes to food digestion and transformation, caloric intake, and immune response of the host, keeping the homeostatic control in health. Mechanisms of disease include enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability and translocation of bacterial metabolites which activate a chronic low-grade systemic inflammation and insulin resistance, as precursors of tangible metabolic disorders involving glucose and lipid homeostasis. The ultimate causative role of gut microbiota in this respect remains to be elucidated, as well as the therapeutic value of manipulating the gut microbiota by diet, pre- and pro- synbiotics, or fecal microbial transplantation.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, Graz, Austria
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, Bari 70124, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| |
Collapse
|
15
|
Ellermann M. Emerging mechanisms by which endocannabinoids and their derivatives modulate bacterial populations within the gut microbiome. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11359. [PMID: 38389811 PMCID: PMC10880783 DOI: 10.3389/adar.2023.11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
Bioactive lipids such as endocannabinoids serve as important modulators of host health and disease through their effects on various host functions including central metabolism, gut physiology, and immunity. Furthermore, changes to the gut microbiome caused by external factors such as diet or by disease development have been associated with altered endocannabinoid tone and disease outcomes. These observations suggest the existence of reciprocal relationships between host lipid signaling networks and bacterial populations that reside within the gut. Indeed, endocannabinoids and their congeners such as N-acylethanolamides have been recently shown to alter bacterial growth, functions, physiology, and behaviors, therefore introducing putative mechanisms by which these bioactive lipids directly modulate the gut microbiome. Moreover, these potential interactions add another layer of complexity to the regulation of host health and disease pathogenesis that may be mediated by endocannabinoids and their derivatives. This mini review will summarize recent literature that exemplifies how N-acylethanolamides and monoacylglycerols including endocannabinoids can impact bacterial populations in vitro and within the gut microbiome. We also highlight exciting preclinical studies that have engineered gut bacteria to synthesize host N-acylethanolamides or their precursors as potential strategies to treat diseases that are in part driven by aberrant lipid signaling, including obesity and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
16
|
Su Y, Wu KC, Chien SY, Naik A, Zaslavsky O. A Mobile Intervention Designed Specifically for Older Adults With Frailty to Support Healthy Eating: Pilot Randomized Controlled Trial. JMIR Form Res 2023; 7:e50870. [PMID: 37966877 PMCID: PMC10687683 DOI: 10.2196/50870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Frailty, a common geriatric syndrome, predisposes older adults to functional decline. No medications can alter frailty's trajectory, but nutritional interventions may aid in supporting independence. OBJECTIVE This paper presents a pilot randomized controlled trial to investigate the feasibility and efficacy of a mobile health intervention, "Olitor," designed to enhance adherence to the Mediterranean diet among older adults with frailty, requiring no external assistance. METHODS The study sample consisted of 15 participants aged 66-77 (mean 70.5, SD 3.96) years randomized into intervention (n=8; 8 females; mean 72.4, SD 4.8 years) and control groups (n=7; 6 females, 1 male; mean 70.0, SD 3.9 years). The intervention involved a patient-facing mobile app called "Olitor" and a secure web-based administrative dashboard. Participants were instructed to use the app at least weekly for 3 months, which provided feedback on their food choices, personalized recipe recommendations, and an in-app messaging feature. Using Mann-Whitney tests to compare change scores and Hedges g statistics to estimate effect sizes, the primary efficacy outcomes were adherence to the Mediterranean diet score and insulin resistance measures. Secondary outcomes included retention as a measure of feasibility, engagement level and user app quality ratings for acceptability, and additional metrics to evaluate efficacy. Models were adjusted for multiple comparisons. RESULTS The findings demonstrated a significant improvement in the Mediterranean diet adherence score in the intervention group compared to the control (W=50.5; adjusted P=.04) with median change scores of 2 (IQR 2-4.25) and 0 (IQR -0.50 to 0.50), respectively. There was a small and insignificant reduction in homeostasis model assessment of insulin resistance measure (W=23; adjusted P=.85). Additionally, there were significant increases in legume intake (W=54; adjusted P<.01). The intervention's effect size was large for several outcomes, such as Mediterranean diet adherence (Hedges g=1.58; 95% CI 0.34-2.67) and vegetable intake (Hedges g=1.14; 95% CI 0.08-2.21). The retention rate was 100%. The app's overall quality rating was favorable with an average interaction time of 12 minutes weekly. CONCLUSIONS This pilot study revealed the potential of the mobile intervention "Olitor" in promoting healthier eating habits among older adults with frailty. It demonstrated high retention rates, significant improvement in adherence to the Mediterranean diet, and increased intake of recommended foods. Insulin resistance showed a minor nonsignificant improvement. Several secondary outcomes, such as lower extremity function and Mediterranean diet knowledge, had a large effect size. Although the app's behavior change features were similar to those of previous digital interventions, the distinctive focus on theory-informed mechanistic measures involved in behavioral change, such as self-regulation, self-efficacy, and expected negative outcomes, may have enhanced its potential. Further investigations in a more diverse and representative population, focusing on individuals with impaired insulin sensitivity, are warranted to validate these preliminary findings. TRIAL REGISTRATION ClinicalTrials.gov NCT05236712; https://clinicaltrials.gov/study/NCT05236712.
Collapse
Affiliation(s)
- Yan Su
- College of Nursing & Health Sciences, University of Massachusetts Dartmouth, Darmouth, MA, United States
| | - Kuan-Ching Wu
- School of Nursing, University of Washington, Seattle, WA, United States
| | - Shao-Yun Chien
- School of Nursing, University of Washington, Seattle, WA, United States
| | - Aishwarya Naik
- Human Centered Design and Engeneering, University of Washington, Seattle, WA, United States
| | - Oleg Zaslavsky
- School of Nursing, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P. Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord 2023; 24:839-870. [PMID: 37119391 PMCID: PMC10148591 DOI: 10.1007/s11154-023-09798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 05/01/2023]
Abstract
Obesity has reached epidemic proportion worldwide and in all ages. Available evidence points to a multifactorial pathogenesis involving gene predisposition and environmental factors. Gut microbiota plays a critical role as a major interface between external factors, i.e., diet, lifestyle, toxic chemicals, and internal mechanisms regulating energy and metabolic homeostasis, fat production and storage. A shift in microbiota composition is linked with overweight and obesity, with pathogenic mechanisms involving bacterial products and metabolites (mainly endocannabinoid-related mediators, short-chain fatty acids, bile acids, catabolites of tryptophan, lipopolysaccharides) and subsequent alterations in gut barrier, altered metabolic homeostasis, insulin resistance and chronic, low-grade inflammation. Although animal studies point to the links between an "obesogenic" microbiota and the development of different obesity phenotypes, the translational value of these results in humans is still limited by the heterogeneity among studies, the high variation of gut microbiota over time and the lack of robust longitudinal studies adequately considering inter-individual confounders. Nevertheless, available evidence underscores the existence of several genera predisposing to obesity or, conversely, to lean and metabolically health phenotype (e.g., Akkermansia muciniphila, species from genera Faecalibacterium, Alistipes, Roseburia). Further longitudinal studies using metagenomics, transcriptomics, proteomics, and metabolomics with exact characterization of confounders are needed in this field. Results must confirm that distinct genera and specific microbial-derived metabolites represent effective and precision interventions against overweight and obesity in the long-term.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
18
|
Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH, Liu MD, Zhou HL, Wang YS, Xu ZX. Short-chain fatty acids in diseases. Cell Commun Signal 2023; 21:212. [PMID: 37596634 PMCID: PMC10436623 DOI: 10.1186/s12964-023-01219-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/09/2023] [Indexed: 08/20/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract. The absorption of SCFAs is mediated by substrate transporters, such as monocarboxylate transporter 1 and sodium-coupled monocarboxylate transporter 1, which promote cellular metabolism. An increasing number of studies have implicated metabolites produced by microorganisms as crucial executors of diet-based microbial influence on the host. SCFAs are important fuels for intestinal epithelial cells (IECs) and represent a major carbon flux from the diet, that is decomposed by the gut microbiota. SCFAs play a vital role in multiple molecular biological processes, such as promoting the secretion of glucagon-like peptide-1 by IECs to inhibit the elevation of blood glucose, increasing the expression of G protein-coupled receptors such as GPR41 and GPR43, and inhibiting histone deacetylases, which participate in the regulation of the proliferation, differentiation, and function of IECs. SCFAs affect intestinal motility, barrier function, and host metabolism. Furthermore, SCFAs play important regulatory roles in local, intermediate, and peripheral metabolisms. Acetate, propionate, and butyrate are the major SCFAs, they are involved in the regulation of immunity, apoptosis, inflammation, and lipid metabolism. Herein, we review the diverse functional roles of this major class of bacterial metabolites and reflect on their ability to affect intestine, metabolic, and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yong-Ping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yu-Ning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Li-Ting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hui-Hui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Ming-Di Liu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
19
|
Pepe RB, Lottenberg AM, Fujiwara CTH, Beyruti M, Cintra DE, Machado RM, Rodrigues A, Jensen NSO, Caldas APS, Fernandes AE, Rossoni C, Mattos F, Motarelli JHF, Bressan J, Saldanha J, Beda LMM, Lavrador MSF, Del Bosco M, Cruz P, Correia PE, Maximino P, Pereira S, Faria SL, Piovacari SMF. Position statement on nutrition therapy for overweight and obesity: nutrition department of the Brazilian association for the study of obesity and metabolic syndrome (ABESO-2022). Diabetol Metab Syndr 2023; 15:124. [PMID: 37296485 PMCID: PMC10251611 DOI: 10.1186/s13098-023-01037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a chronic disease resulting from multifactorial causes mainly related to lifestyle (sedentary lifestyle, inadequate eating habits) and to other conditions such as genetic, hereditary, psychological, cultural, and ethnic factors. The weight loss process is slow and complex, and involves lifestyle changes with an emphasis on nutritional therapy, physical activity practice, psychological interventions, and pharmacological or surgical treatment. Because the management of obesity is a long-term process, it is essential that the nutritional treatment contributes to the maintenance of the individual's global health. The main diet-related causes associated with excess weight are the high consumption of ultraprocessed foods, which are high in fats, sugars, and have high energy density; increased portion sizes; and low intake of fruits, vegetables, and grains. In addition, some situations negatively interfere with the weight loss process, such as fad diets that involve the belief in superfoods, the use of teas and phytotherapics, or even the avoidance of certain food groups, as has currently been the case for foods that are sources of carbohydrates. Individuals with obesity are often exposed to fad diets and, on a recurring basis, adhere to proposals with promises of quick solutions, which are not supported by the scientific literature. The adoption of a dietary pattern combining foods such as grains, lean meats, low-fat dairy, fruits, and vegetables, associated with an energy deficit, is the nutritional treatment recommended by the main international guidelines. Moreover, an emphasis on behavioral aspects including motivational interviewing and the encouragement for the individual to develop skills will contribute to achieve and maintain a healthy weight. Therefore, this Position Statement was prepared based on the analysis of the main randomized controlled studies and meta-analyses that tested different nutrition interventions for weight loss. Topics in the frontier of knowledge such as gut microbiota, inflammation, and nutritional genomics, as well as the processes involved in weight regain, were included in this document. This Position Statement was prepared by the Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), with the collaboration of dietitians from research and clinical fields with an emphasis on strategies for weight loss.
Collapse
Affiliation(s)
- Renata Bressan Pepe
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Ana Maria Lottenberg
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
- Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), Rua Mato Grosso 306 – cj 1711, Sao Paulo, SP 01239-040 Brazil
| | - Clarissa Tamie Hiwatashi Fujiwara
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Mônica Beyruti
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Dennys Esper Cintra
- Centro de Estudos em Lipídios e Nutrigenômica – CELN – University of Campinas, Campinas, SP Brazil
| | - Roberta Marcondes Machado
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Alessandra Rodrigues
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Natália Sanchez Oliveira Jensen
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | | | - Ariana Ester Fernandes
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Carina Rossoni
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Mattos
- Programa de Obesidade e Cirurgia Bariátrica do Hospital Universitário Clementino Fraga Filho da UFRJ, Rio de Janeiro, RJ Brazil
| | - João Henrique Fabiano Motarelli
- Núcleo de Estudos e Extensão em Comportamento Alimentar e Obesidade (NEPOCA) da Universidade de São Paulo - FMRP/USP, Ribeirão Preto, Brazil
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | | | - Lis Mie Masuzawa Beda
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Maria Sílvia Ferrari Lavrador
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Mariana Del Bosco
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Patrícia Cruz
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | | | - Priscila Maximino
- Instituto PENSI - Fundação José Luiz Egydio Setúbal, Instituto Pensi, Fundação José Luiz Egydio Setúbal, Hospital Infantil Sabará, São Paulo, SP Brazil
| | - Silvia Pereira
- Núcleo de Saúde Alimentar da Sociedade Brasileira de Cirurgia Bariátrica e Metabólica, São Paulo, Brazil
| | | | | |
Collapse
|
20
|
De Filippo C, Costa A, Becagli MV, Monroy MM, Provensi G, Passani MB. Gut microbiota and oleoylethanolamide in the regulation of intestinal homeostasis. Front Endocrinol (Lausanne) 2023; 14:1135157. [PMID: 37091842 PMCID: PMC10113643 DOI: 10.3389/fendo.2023.1135157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
A vast literature strongly suggests that the endocannabinoid (eCB) system and related bioactive lipids (the paracannabinoid system) contribute to numerous physiological processes and are involved in pathological conditions such as obesity, type 2 diabetes, and intestinal inflammation. The gut paracannabinoid system exerts a prominent role in gut physiology as it affects motility, permeability, and inflammatory responses. Another important player in the regulation of host metabolism is the intestinal microbiota, as microorganisms are indispensable to protect the intestine against exogenous pathogens and potentially harmful resident microorganisms. In turn, the composition of the microbiota is regulated by intestinal immune responses. The intestinal microbial community plays a fundamental role in the development of the innate immune system and is essential in shaping adaptive immunity. The active interplay between microbiota and paracannabinoids is beginning to appear as potent regulatory system of the gastrointestinal homeostasis. In this context, oleoylethanolamide (OEA), a key component of the physiological systems involved in the regulation of dietary fat consumption, energy homeostasis, intestinal motility, and a key factor in modulating eating behavior, is a less studied lipid mediator. In the small intestine namely duodenum and jejunum, levels of OEA change according to the nutrient status as they decrease during food deprivation and increase upon refeeding. Recently, we and others showed that OEA treatment in rodents protects against inflammatory events and changes the intestinal microbiota composition. In this review, we briefly define the role of OEA and of the gut microbiota in intestinal homeostasis and recapitulate recent findings suggesting an interplay between OEA and the intestinal microorganisms.
Collapse
Affiliation(s)
- Carlotta De Filippo
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Alessia Costa
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
| | | | - Mariela Mejia Monroy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Gustavo Provensi
- Dipartimento di Neurofarba, Università di Firenze, Firenze, Italy
- *Correspondence: Maria Beatrice Passani, ; Gustavo Provensi,
| | - Maria Beatrice Passani
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
- *Correspondence: Maria Beatrice Passani, ; Gustavo Provensi,
| |
Collapse
|
21
|
Raue KD, David BT, Fessler RG. Spinal Cord-Gut-Immune Axis and its Implications Regarding Therapeutic Development for Spinal Cord Injury. J Neurotrauma 2023; 40:793-806. [PMID: 36509451 DOI: 10.1089/neu.2022.0264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) affects ∼1,300,000 people living in the United States. Most research efforts have been focused on reversing paralysis, as this is arguably the most defining feature of SCI. The damage caused by SCI, however, extends past paralysis and includes other debilitating outcomes including immune dysfunction and gut dysbiosis. Recent efforts are now investigating the pathophysiology of and developing therapies for these more distal manifestations of SCI. One exciting avenue is the spinal cord-gut-immune axis, which proposes that gut dysbiosis amplifies lesion inflammation and impairs SCI recovery. This review will highlight the most recent findings regarding gut and immune dysfunction following SCI, and discuss how the central nervous system (CNS), gut, and immune system all coalesce to form a bidirectional axis that can impact SCI recovery. Finally, important considerations regarding how the spinal cord-gut-immune axis fits within the larger framework of therapeutic development (i.e., probiotics, fecal transplants, dietary modifications) will be discussed, emphasizing the lack of interdepartmental investigation and the missed opportunity to maximize therapeutic benefit in SCI.
Collapse
Affiliation(s)
- Kristen D Raue
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
22
|
Bradshaw HB, Johnson CT. Measuring the Content of Endocannabinoid-Like Compounds in Biological Fluids: A Critical Overview of Sample Preparation Methodologies. Methods Mol Biol 2023; 2576:21-40. [PMID: 36152175 PMCID: PMC10845095 DOI: 10.1007/978-1-0716-2728-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Different mass spectrometric techniques have been used over the past decade to quantify endocannabinoids (eCBs) and related lipids. Even with the level of molecular fingerprinting accuracy of an instrument like the most advanced triple quadrupole mass spectrometer, if one is not getting the most optimized sample to the detector in a way that this improved technology can be of use, then advancements can be stymied. Here, our focus is on review and discussion of sample preparation methodologies used to isolate the eCB anandamide and its close congeners N-acyl ethanolamines and structural congeners (i.e., lipo amino acids, lipoamines, N-acyl amides) in biological fluids. Most of our focus will be on the analysis of these lipids in plasma/serum, but we will also discuss how the same techniques can be used for the analysis of saliva and breast milk.
Collapse
Affiliation(s)
- Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Clare T Johnson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
23
|
Soldevila-Domenech N, Pastor A, Sala-Vila A, Lázaro I, Boronat A, Muñoz D, Castañer O, Fagundo B, Corella D, Fernández-Aranda F, Martínez-González MÁ, Salas-Salvadó J, Fitó M, de la Torre R. Sex differences in endocannabinoids during 3 years of Mediterranean diet intervention: Association with insulin resistance and weight loss in a population with metabolic syndrome. Front Nutr 2022; 9:1076677. [PMID: 36532543 DOI: 10.3389/fnut.2022.1076677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
BackgroundExcess circulating endocannabinoids (eCBs) and imbalanced N-acylethanolamines (NAEs) related eCBs abundance could influence dietary weight loss success. We aimed to examine sex differences in the impact of a 3-years Mediterranean diet (MedDiet) intervention on circulating eCBs, NAEs and their precursor fatty acids, and to analyze the interplay between changes in eCBs or NAEs ratios, insulin resistance and the achievement of clinically meaningful weight reductions.MethodsProspective cohort study in a subsample of N = 105 participants (54.3% women; 65.6 ± 4.6 years) with overweight or obesity and metabolic syndrome that underwent a 3-years MedDiet intervention (PREDIMED-Plus study). Plasma eCBs and NAEs, including 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), fatty acids, diet, glycemic homeostasis (including the assessment of insulin resistance-HOMA-IR), and cardiovascular risk markers were monitored (at 0-6-12-36 months).ResultsMediterranean diet adherence increased in both sexes and remained high during the 3 years of follow-up. Reductions in body weight, glycemic and cardiovascular parameters were larger in men than in women. Women presented higher concentrations of NAEs than men throughout the study. In both sexes, AEA and other NAEs (including OEA, and PEA) decreased after 6 months (for AEA: −4.9%), whereas the ratio OEA/AEA increased after 1 year (+5.8%). Changes in 2-AG (−3.9%) and the ratio OEA/PEA (+8.2%) persisted over the 3 years of follow-up. In women, 6-months changes in AEA (OR = 0.65) and the ratio OEA/AEA (OR = 3.28) were associated with the achievement of 8% weight reductions and correlated with HOMA-IR changes (r = 0.29 and r = −0.34). In men, OEA/PEA changes were associated with 8% weight reductions (OR = 2.62) and correlated with HOMA-IR changes (r = −0.32).ConclusionA 3-years MedDiet intervention modulated plasma concentrations of eCBs and NAEs. Changes in AEA and in the relative abundance of NAEs were associated with clinically meaningful weight reductions. However, marked sex differences were identified in eCBs and NAEs, as well as in the efficacy of the intervention in terms of glycemic and cardiovascular parameters, which could be related to post-menopause alterations in glucose metabolism. These findings support a sex-balanced research strategy for a better understanding of the mechanisms underlying the regulation of body weight loss.
Collapse
Affiliation(s)
- Natalia Soldevila-Domenech
- Integrative Pharmacology and Systems Neurosciences Research Group, Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antoni Pastor
- Integrative Pharmacology and Systems Neurosciences Research Group, Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Aleix Sala-Vila
- Cardiovascular Risk and Nutrition Research Group, Epidemiology and Public Health Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Fatty Acid Research Institute, Sioux Falls, SD, United States
| | - Iolanda Lázaro
- Cardiovascular Risk and Nutrition Research Group, Epidemiology and Public Health Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Daniel Muñoz
- Cardiovascular Risk and Nutrition Research Group, Epidemiology and Public Health Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Olga Castañer
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group, Epidemiology and Public Health Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Endocrinology Service, Hospital del Mar, Barcelona, Spain
| | - Beatriz Fagundo
- Integrative Pharmacology and Systems Neurosciences Research Group, Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Physiotherapy, Fundació Universitària del Bages, Manresa, Spain
| | - Dolores Corella
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
| | - Fernando Fernández-Aranda
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel Ángel Martínez-González
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IdiSNA), Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jordi Salas-Salvadó
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Montserrat Fitó
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group, Epidemiology and Public Health Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Itsiopoulos C, Mayr HL, Thomas CJ. The anti-inflammatory effects of a Mediterranean diet: a review. Curr Opin Clin Nutr Metab Care 2022; 25:415-422. [PMID: 36039924 DOI: 10.1097/mco.0000000000000872] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Chronic noncommunicable diseases remain the leading cause of morbidity and mortality worldwide and the majority are preventable with a healthy diet and lifestyle, but controversy remains as to the best approach. Greater adherence to a traditional Mediterranean diet has consistently been associated with lower morbidity and mortality from cardiovascular disease, diabetes and many cancers, and lower all-cause mortality. Despite the well known benefits on chronic disease risk there remains some scepticism as to the effects of this dietary pattern across populations outside the Mediterranean and the mechanisms of action of this traditional plant-based dietary pattern.This narrative review aims to summarize the latest evidence on the health protective effects of a traditional Mediterranean diet on chronic noncommunicable diseases, specifically focussing on the anti-inflammatory effects of this highly published dietary pattern. RECENT FINDINGS Recent high-quality evidence now supports a Mediterranean diet in secondary prevention of cardiovascular disease with impacts on atherosclerosis progression, likely through reduction of systemic inflammation and irrespective of changes in cholesterol or weight. The Mediterranean diet has a low Dietary Inflammatory Index illustrating its anti-inflammatory potential. This dietary pattern beneficially modulates the gut microbiota and immune system, including emerging evidence for efficacy against severe acute respiratory syndrome coronavirus 2 (coronavirus disease 2019). Emerging evidence shows clinicians are not routinely recommending a Mediterranean diet despite well known evidence due to barriers such as lack of training, patient materials and concerns about potential patient adherence. SUMMARY The physiological mechanisms of action of this healthy diet pattern are becoming better understood to be multisystem and involving the gut. Larger controlled trials investigating mechanistic effects in broader non-Mediterranean populations are warranted. Although reflected in therapeutic guidelines for chronic disease management worldwide there are individual, clinical practice and health system barriers to its implementation that need a multisectoral approach to address.
Collapse
Affiliation(s)
| | - Hannah L Mayr
- Centre for Functioning and Health Research, Metro South Hospital and Health Service, Brisbane
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Woolloongabba
- Greater Brisbane Clinical School, Faculty of Medicine, the University of Queensland, Brisbane, Queensland, Australia
| | - Colleen J Thomas
- Department of Physiology, Anatomy and Microbiology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora
- Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora
- Florey Institute of Neuroscience and Mental Health, Pre-Clinical Critical Care Unit, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
26
|
Lakshmanan AP, Murugesan S, Al Khodor S, Terranegra A. The potential impact of a probiotic: Akkermansia muciniphila in the regulation of blood pressure—the current facts and evidence. Lab Invest 2022; 20:430. [PMID: 36153618 PMCID: PMC9509630 DOI: 10.1186/s12967-022-03631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Akkermansia muciniphila (A. muciniphila) is present in the human gut microbiota from infancy and gradually increases in adulthood. The potential impact of the abundance of A. muciniphila has been studied in major cardiovascular diseases including elevated blood pressure or hypertension (HTN). HTN is a major factor in premature death worldwide, and approximately 1.28 billion adults aged 30–79 years have hypertension. A. muciniphila is being considered a next-generation probiotic and though numerous studies had highlighted the positive role of A. muciniphila in lowering/controlling the HTN, however, few studies had highlighted the negative impact of increased abundance of A. muciniphila in the management of HTN. Thus, in the review, we aimed to discuss the current facts, evidence, and controversy about the role of A. muciniphila in the pathophysiology of HTN and its potential effect on HTN management/regulation, which could be beneficial in identifying the drug target for the management of HTN.
Collapse
|
27
|
Zhao J, Fan H, Wang T, Yu B, Mao S, Wang X, Zhang W, Wang L, Zhang Y, Ren Z, Liang B. TyG index is positively associated with risk of CHD and coronary atherosclerosis severity among NAFLD patients. Cardiovasc Diabetol 2022; 21:123. [PMID: 35778734 PMCID: PMC9250269 DOI: 10.1186/s12933-022-01548-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Insulin resistance (IR), endothelial dysfunction, inflammation, glucose and lipid metabolism disorders, and thrombosis are believed involved in coronary heart disease (CHD) and non-alcoholic fatty liver disease (NAFLD). Triglyceride-glucose (TyG) index, a new IR indicator, is correlated with NAFLD occurrence and severity, but its relationship with CHD risk remains unclear. This study investigated the correlation between TyG index and CHD risk among NAFLD patients. Methods This cross-sectional study included 424 patients with NAFLD and chest pain in the Department of Cardiology, The Second Hospital of Shanxi Medical University, from January 2021 to December 2021. The TyG index was calculated and coronary angiography performed. All individuals were divided into NAFLD + CHD and NAFLD groups and then by TyG index level. The t-test, Mann–Whitney U-test, or one-way analysis of variance compared differences in continuous variables, while the chi-square test or Fisher’s exact test compared differences in categorical variables. Logistic regression analysis determined the independent protective or hazardous factors of NAFLD with CHD. The receiver operating characteristic curve evaluated the ability of different TyG index rule-in thresholds to predict CHD. The relationship between Gensini score and TyG index was evaluated using linear correlation and multiple linear regression. Results CHD was detected in 255 of 424 patients. Compared to NAFLD group, multivariate logistic regression showed that TyG index was a risk factor for CHD among NAFLD patients after adjustment for age, sex, hypertension, and diabetes mellitus with the highest odds ratio (OR, 2.519; 95% CI, 1.559–4.069; P < 0.001). TG, low-density lipoprotein cholesterol, FBG and TYG–body mass index were also risk factors for CHD among NAFLD patients. High-density lipoprotein cholesterol level was a protective factor for CHD events in patients with NAFLD. In an in-depth analysis, multivariate logistic regression analysis showed that each 1-unit increase in TyG index was associated with a 2.06-fold increased risk of CHD (OR, 2.06; 95% CI, 1.16–3.65; P = 0.013). The multifactor linear regression analysis showed each 0.1-unit increase in TyG in the NAFLD-CHD group was associated with a 2.44 increase in Gensini score (β = 2.44; 95% CI, 0.97–3.91; P = 0.002). Conclusions The TyG index was positively correlated with CHD risk in NAFLD patients and reflected coronary atherosclerosis severity.
Collapse
Affiliation(s)
- Jianqi Zhao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Hongxuan Fan
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Ting Wang
- Department of Neurology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Bing Yu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Shaobin Mao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Xun Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Wenjing Zhang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Leigang Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Yao Zhang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Zhaoyu Ren
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Bin Liang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
28
|
Coccurello R, Marrone MC, Maccarrone M. The Endocannabinoids-Microbiota Partnership in Gut-Brain Axis Homeostasis: Implications for Autism Spectrum Disorders. Front Pharmacol 2022; 13:869606. [PMID: 35721203 PMCID: PMC9204215 DOI: 10.3389/fphar.2022.869606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The latest years have witnessed a growing interest towards the relationship between neuropsychiatric disease in children with autism spectrum disorders (ASD) and severe alterations in gut microbiota composition. In parallel, an increasing literature has focused the attention towards the association between derangement of the endocannabinoids machinery and some mechanisms and symptoms identified in ASD pathophysiology, such as alteration of neural development, immune system dysfunction, defective social interaction and stereotypic behavior. In this narrative review, we put together the vast ground of endocannabinoids and their partnership with gut microbiota, pursuing the hypothesis that the crosstalk between these two complex homeostatic systems (bioactive lipid mediators, receptors, biosynthetic and hydrolytic enzymes and the entire bacterial gut ecosystem, signaling molecules, metabolites and short chain fatty acids) may disclose new ideas and functional connections for the development of synergic treatments combining “gut-therapy,” nutritional intervention and pharmacological approaches. The two separate domains of the literature have been examined looking for all the plausible (and so far known) overlapping points, describing the mutual changes induced by acting either on the endocannabinoid system or on gut bacteria population and their relevance for the understanding of ASD pathophysiology. Both human pathology and symptoms relief in ASD subjects, as well as multiple ASD-like animal models, have been taken into consideration in order to provide evidence of the relevance of the endocannabinoids-microbiota crosstalk in this major neurodevelopmental disorder.
Collapse
Affiliation(s)
- Roberto Coccurello
- Institute for Complex Systems (ISC), National Council of Research (CNR), Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| | - Maria Cristina Marrone
- Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| |
Collapse
|
29
|
Jaber M, Altamimi M, Altamimi A, Cavaliere S, De Filippis F. Mediterranean diet diminishes the effects of Crohn's disease and improves its parameters: A systematic review. Nutr Health 2022:2601060221102281. [PMID: 35611526 DOI: 10.1177/02601060221102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The pathogenesis and clinical course of Crohn's disease (CD) is influenced by diet. Mediterranean Diet (MD) helps Crohn's patients through many mechanisms. AIMS This study aimed to evaluate the effect of the MD on CD patients and to evaluate such effect on body parameters. METHODS PubMed, Science Direct, Web of Science, MEDLINE and Cochrane central library were searched for MD and CD from 2010 to 2020. Included studies met the following criteria: (1) male and female adults (18-75 years) with a confirmed diagnosis of CD; (2) MD as an intervention; (3) original interventional Trial, Cross-Sectional Analysis, or Prospective Cohort Studies. RESULTS Five studies were included, involving 83,564 participants. A small number of patients with CD fulfilled the P-MDS criteria, the overall scores were low, 4.7 and 4.5 for females and males respectively. Patients with an inactive disease whose adherence to MD was greater, the MD score was negatively correlated with disease activity (p <0.001) and positively with IBDQ (p = 0.008). Twenty-seven percent had a prevalence of impaired adherence to a MD (mMED score = 0-2), giving such a population a risk attributed to 12% for the later CD. Seventy-point reduction in CDAI + decreased fecal CRP / calprotectin, calprotectin <250 mcg/gm or >50% decrease from baseline and hsCRP < 5 mg/L or >50% from baseline. CONCLUSIONS MD showed anti-inflammatory properties. Adherence to MD was associated with improvement in CD patients and negatively correlated with the disease activity, in addition to a lower risk of developing CD later in life.
Collapse
Affiliation(s)
- Mawada Jaber
- Department of Nutrition and food technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Altamimi
- Department of Nutrition and food technology, An-Najah National University, Nablus, Palestine
| | - Almothana Altamimi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sara Cavaliere
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
30
|
Ortiz-Alvarez L, Xu H, Di X, Kohler I, Osuna-Prieto FJ, Acosta FM, Vilchez-Vargas R, Link A, Plaza-Díaz J, van der Stelt M, Hankemeier T, Clemente-Postigo M, Tinahones FJ, Gil A, Rensen PCN, Ruiz JR, Martinez-Tellez B. Plasma Levels of Endocannabinoids and Their Analogues Are Related to Specific Fecal Bacterial Genera in Young Adults: Role in Gut Barrier Integrity. Nutrients 2022; 14:2143. [PMID: 35631284 PMCID: PMC9143287 DOI: 10.3390/nu14102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To investigate the association of plasma levels of endocannabinoids with fecal microbiota. METHODS Plasma levels of endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), as well as their eleven analogues, and arachidonic acid (AA), were measured using liquid chromatography-tandem mass spectrometry in 92 young adults. DNA extracted from stool samples was analyzed using 16S rRNA gene sequencing. Lipopolysaccharide levels were measured in plasma samples. RESULTS Plasma levels of endocannabinoids and their analogues were not related to beta or alpha diversity indexes. Plasma levels of AEA and related N-acylethanolamines correlated positively with the relative abundance of Faecalibacterium genus (all rho ≥ 0.26, p ≤ 0.012) and Akkermansia genus (all rho ≥ 0.22, p ≤ 0.036), and negatively with the relative abundance of Bilophila genus (all rho ≤ -0.23, p ≤ 0.031). Moreover, plasma levels of 2-AG and other acylglycerols correlated positively with the relative abundance of Parasutterella (all rho ≥ 0.24, p ≤ 0.020) and Odoribacter genera (all rho ≥ 0.27, p ≤ 0.011), and negatively with the relative abundance of Prevotella genus (all rho ≤ -0.24, p ≤ 0.023). In participants with high lipopolysaccharide values, the plasma levels of AEA and related N-acylethanolamines, as well as AA and 2-AG, were negatively correlated with plasma levels of lipopolysaccharide (all rho ≤ -0.24, p ≤ 0.020). CONCLUSION Plasma levels of endocannabinoids and their analogues are correlated to specific fecal bacterial genera involved in maintaining gut barrier integrity in young adults. This suggests that plasma levels of endocannabinoids and their analogues may play a role in the gut barrier integrity in young adults.
Collapse
Affiliation(s)
- Lourdes Ortiz-Alvarez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
| | - Xinyu Di
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and Pharmacology, Leiden University, 2300 Leiden, The Netherlands;
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands;
- Center for Analytical Sciences Amsterdam, 1098 Amsterdam, The Netherlands
| | - Francisco J. Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Center for Biomedical Research, Department of Analytical Chemistry, Institute of Nutrition and Food Technology, University of Granada, 18071 Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Health Sciences Technology Park, 18071 Granada, Spain
| | - Francisco M. Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Turku PET Centre, University of Turku, 20014 Turku, Finland
- Turku PET Centre, Turku University Hospital, 20521 Turku, Finland
- InFLAMES Research Flagship Centre, University of Turku, 20014 Turku, Finland
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (R.V.-V.); (A.L.)
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (R.V.-V.); (A.L.)
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 Leiden, The Netherlands;
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Department of Systems Biomedicine and Pharmacology, Leiden University, 2300 Leiden, The Netherlands;
| | - Mercedes Clemente-Postigo
- Department of Cell Biology, Physiology and Immunology, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain;
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Malaga, Spain;
- Centro de Investigación Biomédica En Red (CIBER), Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Malaga, Spain
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Malaga, Spain;
- Centro de Investigación Biomédica En Red (CIBER), Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Malaga, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
- Centro de Investigación Biomédica En Red (CIBER), Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Malaga, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico Ciencias de la Salud, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria, 18014 Granada, Spain
| | - Patrick C. N. Rensen
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 Leiden, The Netherlands;
| | - Jonatan R. Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Instituto de Investigación Biosanitaria, 18014 Granada, Spain
- Department of Physical and Sports Education, School of Sports Science, University of Granada, 18071 Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 Leiden, The Netherlands;
- CERNEP Research Center, Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), University of Almería, 04120 Almeria, Spain
| |
Collapse
|
31
|
Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front Cell Neurosci 2022; 16:867267. [PMID: 35634468 PMCID: PMC9130962 DOI: 10.3389/fncel.2022.867267] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain’s mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
- *Correspondence: Raj Kamal Srivastava,
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Inigo Ruiz de Azua,
| |
Collapse
|
32
|
Schab M, Skoczen S. The Role of Nutritional Status, Gastrointestinal Peptides, and Endocannabinoids in the Prognosis and Treatment of Children with Cancer. Int J Mol Sci 2022; 23:5159. [PMID: 35563548 PMCID: PMC9106013 DOI: 10.3390/ijms23095159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/26/2022] Open
Abstract
Neoplastic diseases in children are the second most frequent cause of death among the young. It is estimated that 400,000 children worldwide will be diagnosed with cancer each year. The nutritional status at diagnosis is a prognostic indicator and influences the treatment tolerance. Both malnutrition and obesity increase the risk of mortality and complications during treatment. It is necessary to constantly search for new factors that impair the nutritional status. The endocannabinoid system (ECS) is a signaling system whose best-known function is regulating energy balance and food intake, but it also plays a role in pain control, embryogenesis, neurogenesis, learning, and the regulation of lipid and glucose metabolism. Its action is multidirectional, and its role is being discovered in an increasing number of diseases. In adults, cannabinoids have been shown to have anti-cancer properties against breast and pancreatic cancer, melanoma, lymphoma, and brain tumors. Data on the importance of both the endocannabinoid system and synthetic cannabinoids are lacking in children with cancer. This review highlights the role of nutritional status in the oncological treatment process, and describes the role of ECS and gastrointestinal peptides in regulating appetite. We also point to the need for research to evaluate the role of the endocannabinoid system in children with cancer, together with a prospective assessment of nutritional status during oncological treatment.
Collapse
Affiliation(s)
- Magdalena Schab
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland;
| | - Szymon Skoczen
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland;
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
33
|
Impact of the Gastrointestinal Tract Microbiota on Cardiovascular Health and Pathophysiology. J Cardiovasc Pharmacol 2022; 80:13-30. [PMID: 35384898 DOI: 10.1097/fjc.0000000000001273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT The microbiota of the gastrointestinal tract (GIT) is an extremely diverse community of microorganisms, and their collective genomes (microbiome) provide a vast arsenal of biological activities, in particular enzymatic ones, which are far from being fully elucidated. The study of the microbiota (and the microbiome) is receiving great interest from the biomedical community as it carries the potential to improve risk-prediction models, refine primary and secondary prevention efforts, and also design more appropriate and personalized therapies, including pharmacological ones. A growing body of evidence, though sometimes impaired by the limited number of subjects involved in the studies, suggests that GIT dysbiosis, i.e. the altered microbial composition, has an important role in causing and/or worsening cardiovascular disease (CVD). Bacterial translocation as well as the alteration of levels of microbe-derived metabolites can thus be important to monitor and modulate, because they may lead to initiation and progression of CVD, as well as to its establishment as chronic state. We hereby aim to provide readers with details on available resources and experimental approaches that are used in this fascinating field of biomedical research, and on some novelties on the impact of GIT microbiota on CVD.
Collapse
|
34
|
Intestinal Microbiota as a Contributor to Chronic Inflammation and Its Potential Modifications. Nutrients 2021; 13:nu13113839. [PMID: 34836095 PMCID: PMC8618457 DOI: 10.3390/nu13113839] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a crucial factor in maintaining homeostasis. The presence of commensal microorganisms leads to the stimulation of the immune system and its maturation. In turn, dysbiosis with an impaired intestinal barrier leads to accelerated contact of microbiota with the host’s immune cells. Microbial structural parts, i.e., pathogen-associated molecular patterns (PAMPs), such as flagellin (FLG), peptidoglycan (PGN), lipoteichoic acid (LTA), and lipopolysaccharide (LPS), induce inflammation via activation of pattern recognition receptors. Microbial metabolites can also develop chronic low-grade inflammation, which is the cause of many metabolic diseases. This article aims to systematize information on the influence of microbiota on chronic inflammation and the benefits of microbiota modification through dietary changes, prebiotics, and probiotic intake. Scientific research indicates that the modification of the microbiota in various disease states can reduce inflammation and improve the metabolic profile. However, since there is no pattern for a healthy microbiota, there is no optimal way to modify it. The methods of influencing microbiota should be adapted to the type of dysbiosis. Although there are studies on the microbiota and its effects on inflammation, this subject is still relatively unknown, and more research is needed in this area.
Collapse
|
35
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Dominguez LJ, Di Bella G, Veronese N, Barbagallo M. Impact of Mediterranean Diet on Chronic Non-Communicable Diseases and Longevity. Nutrients 2021. [PMID: 34204683 DOI: 10.3390/nu130620208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The average life expectancy of the world population has increased remarkably in the past 150 years and it is still increasing. A long life is a dream of humans since the beginning of time but also a dream is to live it in good physical and mental condition. Nutrition research has focused on recent decades more on food combination patterns than on individual foods/nutrients due to the possible synergistic/antagonistic effects of the components in a dietary model. Various dietary patterns have been associated with health benefits, but the largest body of evidence in the literature is attributable to the traditional dietary habits and lifestyle followed by populations from the Mediterranean region. After the Seven Countries Study, many prospective observational studies and trials in diverse populations reinforced the beneficial effects associated with a higher adherence to the Mediterranean diet in reference to the prevention/management of age-associated non-communicable diseases, such as cardiovascular and metabolic diseases, neurodegenerative diseases, cancer, depression, respiratory diseases, and fragility fractures. In addition, the Mediterranean diet is ecologically sustainable. Therefore, this immaterial world heritage constitutes a healthy way of eating and living respecting the environment.
Collapse
Affiliation(s)
- Ligia J Dominguez
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Giovanna Di Bella
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
37
|
Impact of Mediterranean Diet on Chronic Non-Communicable Diseases and Longevity. Nutrients 2021; 13:nu13062028. [PMID: 34204683 PMCID: PMC8231595 DOI: 10.3390/nu13062028] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
The average life expectancy of the world population has increased remarkably in the past 150 years and it is still increasing. A long life is a dream of humans since the beginning of time but also a dream is to live it in good physical and mental condition. Nutrition research has focused on recent decades more on food combination patterns than on individual foods/nutrients due to the possible synergistic/antagonistic effects of the components in a dietary model. Various dietary patterns have been associated with health benefits, but the largest body of evidence in the literature is attributable to the traditional dietary habits and lifestyle followed by populations from the Mediterranean region. After the Seven Countries Study, many prospective observational studies and trials in diverse populations reinforced the beneficial effects associated with a higher adherence to the Mediterranean diet in reference to the prevention/management of age-associated non-communicable diseases, such as cardiovascular and metabolic diseases, neurodegenerative diseases, cancer, depression, respiratory diseases, and fragility fractures. In addition, the Mediterranean diet is ecologically sustainable. Therefore, this immaterial world heritage constitutes a healthy way of eating and living respecting the environment.
Collapse
|
38
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|