1
|
Dusart N, Moulia B, Saudreau M, Serre C, Charrier G, Hartmann FP. Differential warming at crown scale impacts walnut primary growth onset and secondary growth rate. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7127-7144. [PMID: 39225364 DOI: 10.1093/jxb/erae360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Trees are exposed to significant spatio-temporal thermal variations, which can induce intra-crown discrepancies in the onset and dynamics of primary and secondary growth. In recent decades, an increase in late winter and early spring temperatures has been observed, potentially accelerating bud break, cambial activation, and their coordination. Intra-crown temperature heterogeneities could lead to asymmetric tree shapes unless there is a compensatory mechanism at the crown level. An original warming experiment was conducted on young Juglans regia trees in a greenhouse. The average temperature difference during the day between warmed and control parts from February to August was 4 °C. The warming treatment advanced the date of budbreak significantly, by up to 14 d. Warming did not alter secondary growth resumption but increased growth rates, leading to higher xylem cell production (by 2-fold) and to an increase in radial increment (+80% compared with control). Meristem resumptions were asynchronous without coordination in response to temperature. Buds on warmed branches began to swell 2 weeks prior to cambial division, which was 1 week earlier than on control branches. A difference in carbon and water remobilization at the end of bud ecodormancy was noted under warming. Overall, our results argue for a lack of compensatory mechanisms at the crown scale, which may lead to significant changes in tree architecture in response to intra-crown temperature heterogeneities.
Collapse
Affiliation(s)
- Nicolas Dusart
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Bruno Moulia
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Marc Saudreau
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Christophe Serre
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Guillaume Charrier
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Félix P Hartmann
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Routaboul JM, Bellenot C, Olympio A, Clément G, Citerne S, Remblière C, Charvin M, Franke L, Chiarenza S, Vasselon D, Jardinaud MF, Carrère S, Nussaume L, Laufs P, Leonhardt N, Navarro L, Schattat M, Noël LD. Arabidopsis hydathodes are sites of auxin accumulation and nutrient scavenging. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:857-871. [PMID: 39254742 DOI: 10.1111/tpj.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Hydathodes are small organs found on the leaf margins of vascular plants which release excess xylem sap through a process called guttation. While previous studies have hinted at additional functions of hydathode in metabolite transport or auxin metabolism, experimental support is limited. We conducted comprehensive transcriptomic, metabolomic and physiological analyses of mature Arabidopsis hydathodes. This study identified 1460 genes differentially expressed in hydathodes compared to leaf blades, indicating higher expression of most genes associated with auxin metabolism, metabolite transport, stress response, DNA, RNA or microRNA processes, plant cell wall dynamics and wax metabolism. Notably, we observed differential expression of genes encoding auxin-related transcriptional regulators, biosynthetic processes, transport and vacuolar storage supported by the measured accumulation of free and conjugated auxin in hydathodes. We also showed that 78% of the total content of 52 xylem metabolites was removed from guttation fluid at hydathodes. We demonstrate that NRT2.1 and PHT1;4 transporters capture nitrate and inorganic phosphate in guttation fluid, respectively, thus limiting the loss of nutrients during this process. Our transcriptomic and metabolomic analyses unveil an organ with its specific physiological and biological identity.
Collapse
Affiliation(s)
- Jean-Marc Routaboul
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| | - Caroline Bellenot
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| | - Aurore Olympio
- Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, CEA, CNRS UMR 7265, Saint Paul-Lez-Durance, F-13108, France
| | - Gilles Clément
- Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Sylvie Citerne
- Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Céline Remblière
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| | - Magali Charvin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, Paris, 75005, France
| | - Lars Franke
- Department of Plant Physiology, Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| | - Serge Chiarenza
- Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, CEA, CNRS UMR 7265, Saint Paul-Lez-Durance, F-13108, France
| | - Damien Vasselon
- Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Marie-Françoise Jardinaud
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| | - Laurent Nussaume
- Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, CEA, CNRS UMR 7265, Saint Paul-Lez-Durance, F-13108, France
| | - Patrick Laufs
- Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Nathalie Leonhardt
- Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, CEA, CNRS UMR 7265, Saint Paul-Lez-Durance, F-13108, France
| | - Lionel Navarro
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, Paris, 75005, France
| | - Martin Schattat
- Department of Plant Physiology, Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| | - Laurent D Noël
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| |
Collapse
|
3
|
Xie W, Lai X, Wu Y, Li Z, Zhu J, Huang Y, Zhang F. Transcription Factor and Protein Regulatory Network of PmACRE1 in Pinus massoniana Response to Pine Wilt Nematode Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2672. [PMID: 39409542 PMCID: PMC11479228 DOI: 10.3390/plants13192672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Pine wilt disease, caused by Bursaphelenchus xylophilus, is a highly destructive and contagious forest affliction. Often termed the "cancer" of pine trees, it severely impacts the growth of Masson pine (Pinus massoniana). Previous studies have demonstrated that ectopic expression of the PmACRE1 gene from P. massoniana in Arabidopsis thaliana notably enhances resistance to pine wilt nematode infection. To further elucidate the transcriptional regulation and protein interactions of the PmACRE1 in P. massoniana in response to pine wilt nematode infection, we cloned a 1984 bp promoter fragment of the PmACRE1 gene, a transient expression vector was constructed by fusing this promoter with the reporter GFP gene, which successfully activated the GFP expression. DNA pull-down assays identified PmMYB8 as a trans-acting factor regulating PmACRE1 gene expression. Subsequently, we found that the PmACRE1 protein interacts with several proteins, including the ATP synthase CF1 α subunit, ATP synthase CF1 β subunit, extracellular calcium-sensing receptor (PmCAS), caffeoyl-CoA 3-O-methyltransferase (PmCCoAOMT), glutathione peroxidase, NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase 1, cinnamyl alcohol dehydrogenase, auxin response factor 16, and dehydrin 1 protein. Bimolecular fluorescence complementation (BiFC) assays confirmed the interactions between PmACRE1 and PmCCoAOMT, as well as PmCAS proteins in vitro. These findings provide preliminary insights into the regulatory role of PmACRE1 in P. massoniana's defense against pine wilt nematode infection.
Collapse
Affiliation(s)
- Wanfeng Xie
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.X.); (Z.L.)
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolin Lai
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxiao Wu
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zheyu Li
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.X.); (Z.L.)
| | - Jingwen Zhu
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Huang
- Fujian Academy of Forestry, Fuzhou 350000, China
| | - Feiping Zhang
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Liu J, Carriquí M, Xiong D, Kang S. Influence of IAA and ABA on maize stem vessel diameter and stress resistance in variable environments. PHYSIOLOGIA PLANTARUM 2024; 176:e14443. [PMID: 39039017 DOI: 10.1111/ppl.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
The plasticity of the xylem and its associated hydraulic properties play crucial roles in plant acclimation to environmental changes, with vessel diameter (Dv) being the most functionally prominent trait. While the effects of external environmental factors on xylem formation and Dv are not fully understood, the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) are known to play significant signalling roles under stress conditions. This study investigates how these hormones impact Dv under various environmental changes. Experiments were conducted in maize plants subjected to drought, soil salinity, and high CO2 concentration treatments. We found that drought and soil salinity significantly reduced Dv at the same stem internode, while an elevated CO2 concentration can mitigate this decrease in Dv. Remarkably, significant negative correlations were observed between Dv and the contents of IAA and ABA when considering the different treatments. Moreover, appropriate foliar application of either IAA or ABA on well-watered and stressed plants led to a decrease in Dv, while the application of corresponding inhibitors resulted in an increase in Dv. This finding underscores the causal relationship between Dv and the levels of both IAA and ABA, offering a promising approach to manipulating xylem vessel size.
Collapse
Affiliation(s)
- Junzhou Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| |
Collapse
|
5
|
Lian X, Zhong L, Bai Y, Guang X, Tang S, Guo X, Wei T, Yang F, Zhang Y, Huang G, Zhang J, Shao L, Lei G, Li Z, Sahu SK, Zhang S, Liu H, Hu F. Spatiotemporal transcriptomic atlas of rhizome formation in Oryza longistaminata. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1652-1668. [PMID: 38345936 PMCID: PMC11123419 DOI: 10.1111/pbi.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Rhizomes are modified stems that grow underground and produce new individuals genetically identical to the mother plant. Recently, a breakthrough has been made in efforts to convert annual grains into perennial ones by utilizing wild rhizomatous species as donors, yet the developmental biology of this organ is rarely studied. Oryza longistaminata, a wild rice species featuring strong rhizomes, provides a valuable model for exploration of rhizome development. Here, we first assembled a double-haplotype genome of O. longistaminata, which displays a 48-fold improvement in contiguity compared to the previously published assembly. Furthermore, spatiotemporal transcriptomics was performed to obtain the expression profiles of different tissues in O. longistaminata rhizomes and tillers. Two spatially reciprocal cell clusters, the vascular bundle 2 cluster and the parenchyma 2 cluster, were determined to be the primary distinctions between the rhizomes and tillers. We also captured meristem initiation cells in the sunken area of parenchyma located at the base of internodes, which is the starting point for rhizome initiation. Trajectory analysis further indicated that the rhizome is regenerated through de novo generation. Collectively, these analyses revealed a spatiotemporal transcriptional transition underlying the rhizome initiation, providing a valuable resource for future perennial crop breeding.
Collapse
Affiliation(s)
- Xiaoping Lian
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Liyuan Zhong
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Yixuan Bai
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Xuanmin Guang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Sijia Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Xing Guo
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Tong Wei
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Feng Yang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Yujiao Zhang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Guangfu Huang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Jing Zhang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Lin Shao
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Guijie Lei
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Zheng Li
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Shilai Zhang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Huan Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Fengyi Hu
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| |
Collapse
|
6
|
Arend M, Hoch G, Kahmen A. Stem growth phenology, not canopy greening, constrains deciduous tree growth. TREE PHYSIOLOGY 2024; 44:tpad160. [PMID: 38159107 DOI: 10.1093/treephys/tpad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Canopy phenology is a widely used proxy for deciduous forest growth with various applications in terrestrial ecosystem modeling. Its use relies on common assumptions that canopy greening and stem growth are tightly coordinated processes, enabling predictions on the timing and the quantity of annual tree growth. Here, we present parallel observations of canopy and stem growth phenology and annual stem increment in around 90 deciduous forest trees with diffuse-porous (Fagus sylvatica, Acer pseudoplatanus, Carpinus betulus) or ring-porous (Quercus robur × petraea) wood anatomy. These data were collected in a mixed temperate forest at the Swiss-Canopy-Crane II site, in 4 years with strongly contrasting weather conditions. We found that stem growth resumption lagged several weeks behind spring canopy greening in diffuse-porous but not in ring-porous trees. Canopy greening and stem growth resumption showed no or only weak signs of temporal coordination across the observation years. Within the assessed species, the seasonal timing of stem growth varied strongly among individuals, as trees with high annual increments resumed growth earlier and also completed their main growth earlier. The length of main growth activity had no influence on annual increments. Our findings not only challenge tight temporal coordination of canopy and stem growth phenology but also demonstrate that longer main growth activity does not translate into higher annual increments. This may compromise approaches modeling tree growth and forest productivity with canopy phenology and growth length.
Collapse
Affiliation(s)
- Matthias Arend
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
- Department of Environmental Sciences, Plant Ecology, University of Trier, Behringstraße 21, Trier 54296, Germany
| | - Günter Hoch
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
| |
Collapse
|
7
|
Karunarathne SI, Spokevicius AV, Bossinger G, Golz JF. Trees need closure too: Wound-induced secondary vascular tissue regeneration. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111950. [PMID: 38070652 DOI: 10.1016/j.plantsci.2023.111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Trees play a pivotal role in terrestrial ecosystems as well as being an important natural resource. These attributes are primarily associated with the capacity of trees to continuously produce woody tissue from the vascular cambium, a ring of stem cells located just beneath the bark. Long-lived trees are exposed to a myriad of biological and environmental stresses that may result in wounding, leading to a loss of bark and the underlying vascular cambium. This affects both wood formation and the quality of timber arising from the tree. In addition, the exposed wound site is a potential entry point for pathogens that cause disease. In response to wounding, trees have the capacity to regenerate lost or damaged tissues at this site. Investigating gene expression changes associated with different stages of wound healing reveals complex and dynamic changes in the activity of transcription factors, signalling pathways and hormone responses. In this review we summarise these data and discuss how they relate to our current understanding of vascular cambium formation and xylem differentiation during secondary growth. Based on this analysis, a model for wound healing that provides the conceptual foundations for future studies aimed at understanding this intriguing process is proposed.
Collapse
Affiliation(s)
- Sachinthani I Karunarathne
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Antanas V Spokevicius
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gerd Bossinger
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F Golz
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
8
|
Rezaie N, D'Andrea E, Scartazza A, Gričar J, Prislan P, Calfapietra C, Battistelli A, Moscatello S, Proietti S, Matteucci G. Upside down and the game of C allocation. TREE PHYSIOLOGY 2023:tpad034. [PMID: 36917230 DOI: 10.1093/treephys/tpad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Non-structural carbohydrates (NSCs) represent the primary carbon (C) reserves and play a crucial role for plant functioning and resilience. Indeed, these compounds are involved in the regulation between C supply and demand, and in the maintenance of hydraulic efficiency. NSCs are stored in parenchyma of woody organs, which is recognized as a proxy for reserve storage capacity of tree. Notwithstanding the importance of NSCs for tree physiology, their long-term regulation and trade-offs against growth were not deeply investigated. This work evaluated the long-term dynamics of mature tree reserves in stem and root, proxied by parenchyma features, and focusing on the trade off and interplay between the resources allocation in radial growth and reserves in stem and coarse root. In a Mediterranean beech forest, NSCs content, stem and root wood anatomy analysis, and eddy covariance data, were combined. The parenchyma fraction (RAP) of beech root and stem was different, due to differences in axial parenchyma (AP) and narrow ray parenchyma (nRP) fractions. However, these parenchyma components and radial growth showed synchronous inter-annual dynamics between the two organs. In beech stem, positive correlations were found among soluble sugars content and nRP, and among starch content and the AP. Positive correlations were found among Net Ecosystem Exchange (NEE) and AP of both organs. In contrast, NEE was negatively correlated to radial growth of root and stem. Our results suggest a different contribution of stem and roots to reserves storage, and a putative partitioning in the functional roles of parenchyma components. Moreover, a long-term trade-off of C allocation between growth and reserve pool was evidenced. Indeed, in case of C source reduction, trees preferentially allocate C towards reserves pool. Conversely, in high productive years, growth represents the major C sink.
Collapse
Affiliation(s)
- Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Via P. Castellino n. 111, 80131 Napoli, Italy
| | - Ettore D'Andrea
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano (TR), Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Andrea Scartazza
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Via Moruzzi 1, 56124 Pisa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Jožica Gričar
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Peter Prislan
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Carlo Calfapietra
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano (TR), Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano (TR), Italy
| | - Stefano Moscatello
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano (TR), Italy
| | - Simona Proietti
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano (TR), Italy
| | - Giorgio Matteucci
- Institute for BioEconomy, National Research Council of Italy (CNR-IBE), via Madonna del Piano, 10 - 50019 Sesto Fiorentino (FI), Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
9
|
Möhl P, von Büren RS, Hiltbrunner E. Growth of alpine grassland will start and stop earlier under climate warming. Nat Commun 2022; 13:7398. [PMID: 36456572 PMCID: PMC9715633 DOI: 10.1038/s41467-022-35194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Alpine plants have evolved a tight seasonal cycle of growth and senescence to cope with a short growing season. The potential growing season length (GSL) is increasing because of climate warming, possibly prolonging plant growth above- and belowground. We tested whether growth dynamics in typical alpine grassland are altered when the natural GSL (2-3 months) is experimentally advanced and thus, prolonged by 2-4 months. Additional summer months did not extend the growing period, as canopy browning started 34-41 days after the start of the season, even when GSL was more than doubled. Less than 10% of roots were produced during the added months, suggesting that root growth was as conservative as leaf growth. Few species showed a weak second greening under prolonged GSL, but not the dominant sedge. A longer growing season under future climate may therefore not extend growth in this widespread alpine community, but will foster species that follow a less strict phenology.
Collapse
Affiliation(s)
- Patrick Möhl
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland.
| | - Raphael S von Büren
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Erika Hiltbrunner
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| |
Collapse
|
10
|
Andrade MT, Oliveira LA, Pereira TS, Cardoso AA, Batista-Silva W, DaMatta FM, Zsögön A, Martins SCV. Impaired auxin signaling increases vein and stomatal density but reduces hydraulic efficiency and ultimately net photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4147-4156. [PMID: 35312771 DOI: 10.1093/jxb/erac119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Auxins are known to regulate xylem development in plants, but their effects on water transport efficiency are poorly known. Here we used tomato plants with the diageotropica mutation (dgt), which has impaired function of a cyclophilin 1 cis-trans isomerase involved in auxin signaling, and the corresponding wild type (WT) to explore the mutation's effects on plant hydraulics and leaf gas exchange. The xylem of the dgt mutant showed a reduced hydraulically weighted vessel diameter (Dh) (24-43%) and conduit number (25-58%) in petioles and stems, resulting in lower theoretical hydraulic conductivities (Kt); on the other hand, no changes in root Dh and Kt were observed. The measured stem and leaf hydraulic conductances of the dgt mutant were lower (up to 81%), in agreement with the Kt values; however, despite dgt and WT plants showing similar root Dh and Kt, the measured root hydraulic conductance of the dgt mutant was 75% lower. The dgt mutation increased the vein and stomatal density, which could potentially increase photosynthesis. Nevertheless, even though it had the same photosynthetic capacity as WT plants, the dgt mutant showed a photosynthetic rate c. 25% lower, coupled with a stomatal conductance reduction of 52%. These results clearly demonstrate that increases in minor vein and stomatal density only result in higher leaf gas exchange when accompanied by higher hydraulic efficiency.
Collapse
Affiliation(s)
- Moab T Andrade
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Leonardo A Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Talitha S Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
11
|
Jorge NDC, Freitas MDSC, Caffaro RM, Vale FHA, Lemos-Filho JP, Isaias RMDS. Vascular traits of stem galls: Cell increment versus morphogenetic constraints in wood anatomy. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:450-457. [PMID: 35098632 DOI: 10.1111/plb.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Eremanthus erythropappus hosts globoid stem galls induced by Neolasioptera sp. (Diptera: Cecidomyiidae) close to the stem apex, which do not compromise the shoot apical meristem (SAM). We hypothesize that maintenance of the SAM, as well as the increasing number of leaves per branch and of galled stem lengths and diameters, are a consequence of alterations in vascular cells and, consequently, in the priority for water flow from non-galled stems to the stem galls. Our study focuses on the globoid stem galls to evaluate if gall induction and development promote changes in structure and function of secondary xylem cells. Anatomical, cytological, histometric and physiological methods were used to analyse non-galled stem branches (NGS), mature globoid stem galls and stem portions below and above the galls. These analyses revealed that vessel elements are larger in stem galls and in stem portions above the galls. Under Neolasioptera sp. induction activity, the vascular cambium of E. erythropappus produces less numerous but larger vessel elements and overproduces parenchyma cells. Contrary to the vascular constriction hypothesis proposed for bacterial galls, the vascular traits of the Neolasioptera sp. stem galls on E. erythropappus result in priority for water flow to galls and the non-galled portions above the galls, allowing the maintenance of galled stem growth and development.
Collapse
Affiliation(s)
- N D C Jorge
- Laboratório de Anatomia Vegetal, Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M D S C Freitas
- Laboratório de Anatomia Vegetal, Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - R M Caffaro
- Laboratório de Anatomia Vegetal, Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - F H A Vale
- Laboratório de Anatomia Vegetal, Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - J P Lemos-Filho
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - R M D S Isaias
- Laboratório de Anatomia Vegetal, Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Rahman M, Islam M, Masood M, Gebrekirstos A, Bräuning A. Flood signals in tree-ring δ 18O and wood anatomical parameters of Lagerstroemia speciosa: Implications for developing flood management strategies in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151125. [PMID: 34688736 DOI: 10.1016/j.scitotenv.2021.151125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Bangladesh consists of 80% of the flood plain of the Ganges-Brahmaputra-Meghna river system (GBM), making the country one of the highest flood prone countries of the world. Due to the high rate of discharge of the GBM caused by the summer monsoon and the snowmelt of the Eastern Himalaya and Southern Tibetan Plateau due to climate change, Bangladesh witnessed 16 flood events over 1954-2017. We performed a multiproxy tree-ring analysis to investigate the impact of extreme flood events on tree growth, xylem anatomical parameters and oxygen isotope composition of tree-ring cellulose (δ18Otr) in a Bangladeshi moist tropical forest and to establish relationships between water level of the regional rivers and tree-ring parameters. By using pointer year analysis and comparing the pointer years with historical flood records (a cut-off threshold of the country's flooded land area of 33.3%), we identified the three extreme flood events (hereafter called flood years) 1974, 1988, and 1998 in Bangladesh. Superposed epoch analysis revealed significant changes in Tree-ring width (TRW), total vessel area (TVA), vessel density (VD), and δ18Otr during flood years. Flood associated hypoxic soil conditions reduced TRW up to 53% and TVA up to 28%, varying with flood events. In contrast, VD increased by 23% as a safety mechanism against flood induced hydraulic failure. Tree-ring δ18O significantly decreased during the flood years due to the amount effect in regional precipitation. Bootstrapped Pearson correlation analysis showed that wood anatomical variables encoded stronger river level signals than TRW and δ18Otr. Among the wood anatomical parameters, VD showed a strong relationship (r = -0.58, p < 0.01) with the water level of the Manu River, a regional river of the north-eastern part of Bangladesh, indicating that VD can be used as a reliable proxy for river level reconstruction. Our analyses suggest that multiproxy tree-ring analysis is a potential tool to study tropical moist forest responses to extreme flood events and to identify suitable proxies for reconstructing hydrological characteristics of South Asian rivers.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh; Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany.
| | - Mahmuda Islam
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh; Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany
| | - Muhammad Masood
- Design Circle-9, Bangladesh Water Development Board (BWDB), Pani Bhaban, 72, Green Road, Dhaka 1215, Bangladesh
| | - Aster Gebrekirstos
- Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany; World Agroforestry Centre (ICRAF), United Nations Avenue, P.O. Box 30677-00100, Nairobi, Kenya
| | - Achim Bräuning
- Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Chen Z, Zhou W, Sui X, Xu N, Zhao T, Guo Z, Niu J, Wang Q. Plant Growth-Promoting Rhizobacteria With ACC Deaminase Activity Enhance Maternal Lateral Root and Seedling Growth in Switchgrass. FRONTIERS IN PLANT SCIENCE 2022; 12:800783. [PMID: 35126425 PMCID: PMC8811130 DOI: 10.3389/fpls.2021.800783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 05/27/2023]
Abstract
Switchgrass, a C4 plant with high potential as a bioenergy source, is unsteady in yield under sub-optimal conditions. Bacteria containing 1-aminocyclopropane-1-carboxylate synthase (ACC) deaminase can promote plant growth. We isolated bacteria containing ACC deaminase activity from switchgrass rhizosphere using an orthogonal matrix experimental design with four factors (bacterial liquid concentration, bacterial liquid treatment time, nitrogen content, and NaCl) to quantitatively investigate the effects and pairwise interactions on the seedling growth. Pseudomonas sp. Y1, isolated from the switchgrass cv. Blackwell rhizomes was selected. We optimized the inoculation bacterial concentration, treatment time, NaCl, and nitrogen concentration for the seedling growth. The optimal bacterial concentration, treatment time, NaCl, and nitrogen content was 0.5-1.25 OD at 600 nm, 3 h, 60-125 mM and 158 mg L-1, respectively. Pseudomonas sp. Y1 significantly increased the total root length, root surface, shoot length, and fresh and dry weight through an effective proliferation of the number of first-order lateral roots and root tips. This indicated that Pseudomonas sp. Y1 has a higher potential to be used as a plant growth-promoting rhizobacteria bacteria.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Grassland Science, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang, China
| | - Wennan Zhou
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xin Sui
- Department of Grassland Science, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang, China
| | - Nan Xu
- Department of Grassland Science, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang, China
| | - Tian Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhipeng Guo
- Department of Grassland Science, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang, China
| | - Junpeng Niu
- Department of Grassland Science, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang, China
| | - Quanzhen Wang
- Department of Grassland Science, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang, China
| |
Collapse
|
14
|
Villouta C, Workmaster BA, Livingston DP, Atucha A. Acquisition of Freezing Tolerance in Vaccinium macrocarpon Ait. Is a Multi-Factor Process Involving the Presence of an Ice Barrier at the Bud Base. FRONTIERS IN PLANT SCIENCE 2022; 13:891488. [PMID: 35599888 PMCID: PMC9115472 DOI: 10.3389/fpls.2022.891488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/18/2022] [Indexed: 05/17/2023]
Abstract
Bud freezing survival strategies have in common the presence of an ice barrier that impedes the propagation of lethally damaging ice from the stem into the internal structures of buds. Despite ice barriers' essential role in buds freezing stress survival, the nature of ice barriers in woody plants is not well understood. High-definition thermal recordings of Vaccinium macrocarpon Ait. buds explored the presence of an ice barrier at the bud base in September, January, and May. Light and confocal microscopy were used to evaluate the ice barrier region anatomy and cell wall composition related to their freezing tolerance. Buds had a temporal ice barrier at the bud base in September and January, although buds were only freezing tolerant in January. Lack of functionality of vascular tissues may contribute to the impedance of ice propagation. Pith tissue at the bud base had comparatively high levels of de-methyl-esterified homogalacturonan (HG), which may also block ice propagation. By May, the ice barrier was absent, xylogenesis had resumed, and de-methyl-esterified HG reached its lowest levels, translating into a loss of freezing tolerance. The structural components of the barrier had a constitutive nature, resulting in an asynchronous development of freezing tolerance between anatomical and metabolic adaptations.
Collapse
Affiliation(s)
- Camilo Villouta
- Arnold Arboretum of Harvard University, Boston, MA, United States
| | - Beth Ann Workmaster
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - David P. Livingston
- Department of Crop and Soil Sciences, USDA-ARS and North Carolina State University, Raleigh, NC, United States
| | - Amaya Atucha
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Amaya Atucha,
| |
Collapse
|
15
|
Yu D, Janz D, Zienkiewicz K, Herrfurth C, Feussner I, Chen S, Polle A. Wood Formation under Severe Drought Invokes Adjustment of the Hormonal and Transcriptional Landscape in Poplar. Int J Mol Sci 2021; 22:9899. [PMID: 34576062 PMCID: PMC8493802 DOI: 10.3390/ijms22189899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Drought is a severe environmental stress that exerts negative effects on plant growth. In trees, drought leads to reduced secondary growth and altered wood anatomy. The mechanisms underlying wood stress adaptation are not well understood. Here, we investigated the physiological, anatomical, hormonal, and transcriptional responses of poplar to strong drought. Drought-stressed xylem was characterized by higher vessel frequencies, smaller vessel lumina, and thicker secondary fiber cell walls. These changes were accompanied by strong increases in abscisic acid (ABA) and antagonistic changes in salicylic acid in wood. Transcriptional evidence supported ABA biosynthesis and signaling in wood. Since ABA signaling activates the fiber-thickening factor NST1, we expected upregulation of the secondary cell wall (SCW) cascade under stress. By contrast, transcription factors and biosynthesis genes for SCW formation were down-regulated, whereas a small set of cellulose synthase-like genes and a huge array of genes involved in cell wall modification were up-regulated in drought-stressed wood. Therefore, we suggest that ABA signaling monitors normal SCW biosynthesis and that drought causes a switch from normal to "stress wood" formation recruiting a dedicated set of genes for cell wall biosynthesis and remodeling. This proposition implies that drought-induced changes in cell wall properties underlie regulatory mechanisms distinct from those of normal wood.
Collapse
Affiliation(s)
- Dade Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
- Service Unit for Metabolomics and Lipidomics, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
- Service Unit for Metabolomics and Lipidomics, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
- Department of Plant Biochemistry, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Rademacher T, Fonti P, LeMoine JM, Fonti MV, Basler D, Chen Y, Friend AD, Seyednasrollah B, Eckes-Shephard AH, Richardson AD. Manipulating phloem transport affects wood formation but not local nonstructural carbon reserves in an evergreen conifer. PLANT, CELL & ENVIRONMENT 2021; 44:2506-2521. [PMID: 34043242 DOI: 10.1111/pce.14117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
How variations in carbon supply affect wood formation remains poorly understood in particular in mature forest trees. To elucidate how carbon supply affects carbon allocation and wood formation, we attempted to manipulate carbon supply to the cambial region by phloem girdling and compression during the mid- and late-growing season and measured effects on structural development, CO2 efflux and nonstructural carbon reserves in stems of mature white pines. Wood formation and stem CO2 efflux varied with a location relative to treatment (i.e., above or below the restriction). We observed up to twice as many tracheids formed above versus below the treatment after the phloem transport manipulation, whereas the cell-wall area decreased only slightly below the treatments, and cell size did not change relative to the control. Nonstructural carbon reserves in the xylem, needles and roots were largely unaffected by the treatments. Our results suggest that low and high carbon supply affects wood formation, primarily through a strong effect on cell proliferation, and respiration, but local nonstructural carbon concentrations appear to be maintained homeostatically. This contrasts with reports of decoupling of source activity and wood formation at the whole-tree or ecosystem level, highlighting the need to better understand organ-specific responses, within-tree feedbacks, as well as phenological and ontogenetic effects on sink-source dynamics.
Collapse
Affiliation(s)
- Tim Rademacher
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - James M LeMoine
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Marina V Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russian Federation
| | - David Basler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yizhao Chen
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Bijan Seyednasrollah
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Andrew D Richardson
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
17
|
Xie D, Tarin MWK, Chen L, Ren K, Yang D, Zhou C, Wan J, He T, Rong J, Zheng Y. Consequences of LED Lights on Root Morphological Traits and Compounds Accumulation in Sarcandra glabra Seedlings. Int J Mol Sci 2021; 22:7179. [PMID: 34281238 PMCID: PMC8268991 DOI: 10.3390/ijms22137179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/26/2023] Open
Abstract
This study evaluated the effects of different light spectra (white light; WL, blue light; BL and red light; RL) on the root morphological traits and metabolites accumulation and biosynthesis in Sarcandra glabra. We performed transcriptomic and metabolomic profiling by RNA-seq and ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS), respectively. When morphological features were compared to WL, BL substantially increased under-ground fresh weight, root length, root surface area, and root volume, while RL inhibited these indices. A total of 433 metabolites were identified, of which 40, 18, and 68 compounds differentially accumulated in roots under WL (WG) vs. roots under BL (BG), WG vs. roots under RL (RG), and RG vs. BG, respectively. In addition, the contents of sinapyl alcohol, sinapic acid, fraxetin, and 6-methylcoumarin decreased significantly in BG and RG. In contrast, chlorogenic acid, rosmarinyl glucoside, quercitrin and quercetin were increased considerably in BG. Furthermore, the contents of eight terpenoids compounds significantly reduced in BG. Following transcriptomic profiling, several key genes related to biosynthesis of phenylpropanoid-derived and terpenoids metabolites were differentially expressed, such as caffeic acid 3-O-methyltransferase) (COMT), hydroxycinnamoyl-CoA shikimate hydroxycinnamoyl transferase (HCT), O-methyltransferase (OMT), and 1-deoxy-D-xylulose-5-phosphate synthetase (DXS). In summary, our findings showed that BL was suitable for growth and accumulation of bioactive metabolites in root tissue of S. glabra. Exposure to a higher ratio of BL might have the potential to improve the production and quality of S. glabra seedlings, but this needs to be confirmed further.
Collapse
Affiliation(s)
- Dejin Xie
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
| | - Muhammad Waqqas Khan Tarin
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.); (C.Z.); (T.H.)
| | - Lingyan Chen
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.); (C.Z.); (T.H.)
| | - Ke Ren
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
| | - Deming Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
| | - Chengcheng Zhou
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.); (C.Z.); (T.H.)
| | - Jiayi Wan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
| | - Tianyou He
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.); (C.Z.); (T.H.)
| | - Jundong Rong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
| | - Yushan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.); (C.Z.); (T.H.)
| |
Collapse
|
18
|
Savage JA, Chuine I. Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. THE NEW PHYTOLOGIST 2021; 230:1700-1715. [PMID: 33608961 DOI: 10.1111/nph.17289] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/17/2020] [Indexed: 05/29/2023]
Abstract
In seasonally cold climates, many woody plants tolerate chilling and freezing temperatures by ceasing growth, shedding leaves and entering dormancy. At the same time, transport within these plants often decreases as the vascular system exhibits reduced functionality. As spring growth requires water and nutrients, we ask the question: how much does bud, leaf and flower development depend on the vasculature in spring? In this review, we present what is known about leaf, flower and vascular phenology to sort out this question. In early stages of bud development, buds rely on internal resources and do not appear to require vascular support. The situation changes during organ expansion, after leaves and flowers reconnect to the stem vascular system. However, there are major gaps in our understanding of the timing of vascular development, especially regarding the phloem, as well as the synchronization among leaves, flowers, stem and root vasculature. We believe these gaps are mainly the outcome of research completed in silo and urge future work to take a more integrative approach. We highlight current challenges and propose future directions to make rapid progress on this important topic in upcoming years.
Collapse
Affiliation(s)
- Jessica A Savage
- Department of Biology, University of Minnesota, Duluth, MN, 55811, USA
| | - Isabelle Chuine
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, FR-34293, Cedex 5, France
| |
Collapse
|
19
|
Macnee NC, Rebstock R, Hallett IC, Schaffer RJ, Bulley SM. A review of current knowledge about the formation of native peridermal exocarp in fruit. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1019-1031. [PMID: 32571472 DOI: 10.1071/fp19135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/29/2020] [Indexed: 05/09/2023]
Abstract
The outer skin layer in any plant is essential in offering a protective barrier against water loss and pathogen attack. Within fleshy fruit, the skin supports internal cell layers and can provide the initial cues in attracting seed-dispersing animals. The skin of a fruit, termed the exocarp, is a key element of consumer preference and a target for many breeding programs. Across fruiting species there is a huge diversity of exocarp types and these range from a simple single living cell layer (epidermis) often covered with a waxy layer, to complex multicellular suberised and dead cell layers (periderm), with various intermediate russet forms in between. Each exocarp can be interspersed with other structures such as hairs or spines. The epidermis has been well characterised and remains pluripotent with the help of the cells immediately under the epidermis. The periderm, in contrast, is the result of secondary meristematic activity, which replaces the epidermal layers, and is not well characterised in fruits. In this review we explore the structure, composition and mechanisms that control the development of a periderm type fruit exocarp. We draw upon literature from non-fleshy fruit species that form periderm tissue, from which a considerable amount of research has been undertaken.
Collapse
Affiliation(s)
- Nikolai C Macnee
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mount Albert, Auckland 1025, New Zealand; and School of Biological Science, The University of Auckland, Auckland, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mount Albert, Auckland 1025, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mount Albert, Auckland 1025, New Zealand
| | - Robert J Schaffer
- School of Biological Science, The University of Auckland, Auckland, New Zealand; and The New Zealand Institute for Plant and Food Research Limited, 55 Old Mill Road, RD3, Motueka 7198, New Zealand
| | - Sean M Bulley
- The New Zealand Institute for Plant and Food Research Limited, 412 No. 1 Road, RD2, Te Puke 3182, New Zealand; and Corresponding author.
| |
Collapse
|
20
|
Illouz-Eliaz N, Nissan I, Nir I, Ramon U, Shohat H, Weiss D. Mutations in the tomato gibberellin receptors suppress xylem proliferation and reduce water loss under water-deficit conditions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3603-3612. [PMID: 32173726 PMCID: PMC7475260 DOI: 10.1093/jxb/eraa137] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/11/2020] [Indexed: 05/19/2023]
Abstract
Low gibberellin (GA) activity in tomato (Solanum lycopersicum) inhibits leaf expansion and reduces stomatal conductance. This leads to lower transpiration and improved water status under transient drought conditions. Tomato has three GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors with overlapping activities and high redundancy. We tested whether mutation in a single GID1 reduces transpiration without affecting growth and productivity. CRISPR-Cas9 gid1 mutants were able to maintain higher leaf water content under water-deficit conditions. Moreover, while gid1a exhibited normal growth, it showed reduced whole-plant transpiration and better recovery from dehydration. Mutation in GID1a inhibited xylem vessel proliferation, which led to lower hydraulic conductance. In stronger GA mutants, we also found reduced xylem vessel expansion. These results suggest that low GA activity affects transpiration by multiple mechanisms: it reduces leaf area, promotes stomatal closure, and reduces xylem proliferation and expansion, and as a result, xylem hydraulic conductance. We further examined if gid1a performs better than the control M82 in the field. Under these conditions, the high redundancy of GID1s was lost and gid1a plants were semi-dwarf, but their productivity was not affected. Although gid1a did not perform better under drought conditions in the field, it exhibited a higher harvest index.
Collapse
Affiliation(s)
- Natanella Illouz-Eliaz
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Idan Nissan
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Nir
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Uria Ramon
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
21
|
Piermattei A, von Arx G, Avanzi C, Fonti P, Gärtner H, Piotti A, Urbinati C, Vendramin GG, Büntgen U, Crivellaro A. Functional Relationships of Wood Anatomical Traits in Norway Spruce. FRONTIERS IN PLANT SCIENCE 2020; 11:683. [PMID: 32528514 PMCID: PMC7266088 DOI: 10.3389/fpls.2020.00683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The quantitative assessment of wood anatomical traits offers important insights into those factors that shape tree growth. While it is known that conduit diameter, cell wall thickness, and wood density vary substantially between and within species, the interconnection between wood anatomical traits, tree-ring width, tree height and age, as well as environment effects on wood anatomy remain unclear. Here, we measure and derived 65 wood anatomical traits in cross-sections of the five outermost tree rings (2008-2012) of 30 Norway spruce [Picea abies (L.) H. Karst.] trees growing along an altitudinal gradient (1,400-1,750 m a.s.l.) in the northern Apennines (Italy). We assess the relationship among each anatomical trait and between anatomical trait groups according to their function for (i) tree-ring growth, (ii) cell growth, (iii) hydraulic traits, and (iv) mechanical traits. The results show that tree height significantly affects wood hydraulic traits, as well as number and tangential diameter of tracheids, and ultimately the total ring width. Moreover, the amount of earlywood and latewood percentage influence wood hydraulic safety and efficiency, as well as mechanical traits. Mechanically relevant wood anatomical traits are mainly influenced by tree age, not necessarily correlated with tree height. An additional level of complexity is also indicated by some anatomical traits, such as latewood lumen diameter and the cell wall reinforcement index, showing large inter-annual variation as a proxy of phenotypic plasticity. This study unravels the complex interconnection of tree-ring tracheid structure and identifies anatomical traits showing a large inter-individual variation and a strong interannual coherency. Knowing and quantifying anatomical variation in cells of plant stem is crucial in ecological and biological studies for an appropriate interpretation of abiotic drivers of wood formation often related to tree height and/or tree age.
Collapse
Affiliation(s)
- Alma Piermattei
- Department of Geography, Faculty of Earth Sciences and Geography, University of Cambridge, Cambridge, United Kingdom
| | - Georg von Arx
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Camilla Avanzi
- Department of Chemistry, Life Science and Sustainability, University of Parma, Parma, Italy
- Institute of Biosciences and Bioresources, Italian National Research Council, Florence, Italy
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Holger Gärtner
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Andrea Piotti
- Institute of Biosciences and Bioresources, Italian National Research Council, Florence, Italy
| | - Carlo Urbinati
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - Ulf Büntgen
- Department of Geography, Faculty of Earth Sciences and Geography, University of Cambridge, Cambridge, United Kingdom
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
- Department of Geography, Faculty of Science, Masaryk University, Brno, Czechia
| | - Alan Crivellaro
- Department of Geography, Faculty of Earth Sciences and Geography, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Small fluctuations in cell wall thickness in pine and spruce xylem: Signal from cambium? PLoS One 2020; 15:e0233106. [PMID: 32437374 PMCID: PMC7241711 DOI: 10.1371/journal.pone.0233106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
In the conifer tree rings, each tracheid goes through three phases of differentiation before becoming an element of the stem water-conducting structure: division, extension, and cell wall thickening. These phases are long-lasting and separated temporally, especially cell wall thickening. Despite the numerous lines of evidence that external conditions affect the rate of growth processes and the final anatomical dimensions during the respective phases of tracheid differentiation, the influence of the environment on anatomical dimensions during the cell division phase (cambial activity) has not yet been experimentally confirmed. In this communication, we provide indirect evidence of such an effect through observations of the small fluctuations in the latewood cell wall thickness of rapidly growing tree rings, which exhibit a high cell production rate (more than 0.4 cells per day on average). Such small fluctuations in the cell wall thickness cannot be driven by variations in external factors during the secondary wall deposition phase, since this phase overlaps for several tens of latewood cells in the rings of fast-growing trees due to its long duration.
Collapse
|
23
|
Loh SC, Othman AS, Veera Singham G. Identification and characterization of jasmonic acid- and linolenic acid-mediated transcriptional regulation of secondary laticifer differentiation in Hevea brasiliensis. Sci Rep 2019; 9:14296. [PMID: 31586098 PMCID: PMC6778104 DOI: 10.1038/s41598-019-50800-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022] Open
Abstract
Hevea brasiliensis remains the primary crop commercially exploited to obtain latex, which is produced from the articulated secondary laticifer. Here, we described the transcriptional events related to jasmonic acid (JA)- and linolenic acid (LA)-induced secondary laticifer differentiation (SLD) in H. brasiliensis clone RRIM 600 based on RNA-seq approach. Histochemical approach proved that JA- and LA-treated samples resulted in SLD in H. brasiliensis when compared to ethephon and untreated control. RNA-seq data resulted in 86,614 unigenes, of which 2,664 genes were differentially expressed in JA and LA-induced secondary laticifer harvested from H. brasiliensis bark samples. Among these, 450 genes were unique to JA and LA as they were not differentially expressed in ethephon-treated samples compared with the untreated samples. Most transcription factors from the JA- and LA-specific dataset were classified under MYB, APETALA2/ethylene response factor (AP2/ERF), and basic-helix-loop-helix (bHLH) gene families that were involved in tissue developmental pathways, and we proposed that Bel5-GA2 oxidase 1-KNOTTED-like homeobox complex are likely involved in JA- and LA-induced SLD in H. brasiliensis. We also discovered alternative spliced transcripts, putative novel transcripts, and cis-natural antisense transcript pairs related to SLD event. This study has advanced understanding on the transcriptional regulatory network of SLD in H. brasiliensis.
Collapse
Affiliation(s)
- Swee Cheng Loh
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Ahmad Sofiman Othman
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
24
|
Buttò V, Rossi S, Deslauriers A, Morin H. Is size an issue of time? Relationship between the duration of xylem development and cell traits. ANNALS OF BOTANY 2019; 123:1257-1265. [PMID: 30873532 PMCID: PMC6612947 DOI: 10.1093/aob/mcz032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/06/2018] [Accepted: 02/14/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Secondary growth is a process related to the formation of new cells that increase in size and wall thickness during xylogenesis. Temporal dynamics of wood formation influence cell traits, in turn affecting cell patterns across the tree ring. We verified the hypothesis that cell diameter and cell wall thickness are positively correlated with the duration of their differentiation phases. METHODS Histological sections were produced by microcores to assess the periods of cell differentiation in black spruce [Picea mariana (Mill.) B.S.P.]. Samples were collected weekly between 2002 and 2016 from a total of 50 trees in five sites along a latitudinal gradient in Quebec (Canada). The intra-annual temporal dynamics of cell differentiation were estimated at a daily scale, and the relationships between cell traits and duration of differentiation were fitted using a modified von Bertalanffy growth equation. KEY RESULTS At all sites, larger cell diameters and cell wall thicknesses were observed in cells that experienced a longer period of differentiation. The relationship was a non-linear, decreasing trend that occasionally resulted in a clear asymptote. Overall, secondary wall deposition lasted longer than cell enlargement. Earlywood cells underwent an enlargement phase that lasted for 12 d on average, while secondary wall thickness lasted 15 d. Enlargement in latewood cells averaged 7 d and secondary wall deposition occurred over an average of 27 d. CONCLUSIONS Cell size across the tree ring is closely connected to the temporal dynamics of cell formation. Similar relationships were observed among the five study sites, indicating shared xylem formation dynamics across the entire latitudinal distribution of the species.The duration of cell differentiation is a key factor involved in cell growth and wall thickening of xylem, thereby determining the spatial variation of cell traits across the tree ring.
Collapse
Affiliation(s)
- Valentina Buttò
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- For correspondence. E-mail
| | - Sergio Rossi
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Annie Deslauriers
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Hubert Morin
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| |
Collapse
|
25
|
Ren R, Li D, Zhen C, Chen D, Chen X. Specific roles of Os4BGlu10, Os6BGlu24, and Os9BGlu33 in seed germination, root elongation, and drought tolerance in rice. PLANTA 2019; 249:1851-1861. [PMID: 30848355 DOI: 10.1007/s00425-019-03125-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Morphological, physiological, and gene expression analyses showed that Os4BGlu10, Os6BGlu24, and Os9BGlu33 played specific roles in seed germination, root elongation, and drought tolerance of rice, with various relations with indole-3-acetic acid (IAA) and abscisic acid (ABA) signaling. β-Glucosidases (BGlus) belong to glycoside hydrolase family 1 and have many functions in plants. In this study, we investigated the function of three BGlus in seed germination, drought tolerance, and root elongation using the loss-of-function mutants bglu10, bglu24, and bglu33. These mutants germinated slightly later under normal conditions and had significantly longer roots than the wild type. In the presence of ABA, bglu10 and bglu24 exhibited a higher germination inhibition percentage, whereas bglu33 had a lower germination inhibition percentage, compared to the wild type. All of the mutants exhibited less drought tolerance, with the survival rates significantly lower than that of the wild type, which was also confirmed by a decrease in relative leaf water content and Fv/Fm ratio after drought treatment. The root length of bglu10 did not respond to IAA, whereas that of bglu24 responded to a high (0.25 µM) concentration of IAA, and that of bglu33 to a low (0.05 µM) concentration of IAA. The root length of bglu10 and bglu24 did not respond to ABA, whereas that of bglu33 increased significantly in response to a high (0.05 µM) concentration of ABA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that expression of Os4BGlu10 was up-regulated by polyethylene glycol (PEG), whereas that of Os6BGlu24 was up-regulated by 0.25 µM IAA, and Os9BGlu33 was up-regulated by PEG, IAA, and ABA. Taken together, we demonstrate that Os4BGlu10, Os6BGlu24, and Os9BGlu33 play specific roles in seed germination, root elongation, and drought tolerance with various relation with IAA and ABA signaling.
Collapse
Affiliation(s)
- Ruijuan Ren
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dong Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chunyan Zhen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Defu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Xiwen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
26
|
Zemlyanskaya EV, Omelyanchuk NA, Ubogoeva EV, Mironova VV. Deciphering Auxin-Ethylene Crosstalk at a Systems Level. Int J Mol Sci 2018; 19:ijms19124060. [PMID: 30558241 PMCID: PMC6321013 DOI: 10.3390/ijms19124060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/17/2023] Open
Abstract
The auxin and ethylene pathways cooperatively regulate a variety of developmental processes in plants. Growth responses to ethylene are largely dependent on auxin, the key regulator of plant morphogenesis. Auxin, in turn, is capable of inducing ethylene biosynthesis and signaling, making the interaction of these hormones reciprocal. Recent studies discovered a number of molecular events underlying auxin-ethylene crosstalk. In this review, we summarize the results of fine-scale and large-scale experiments on the interactions between the auxin and ethylene pathways in Arabidopsis. We integrate knowledge on molecular crosstalk events, their tissue specificity, and associated phenotypic responses to decipher the crosstalk mechanisms at a systems level. We also discuss the prospects of applying systems biology approaches to study the mechanisms of crosstalk between plant hormones.
Collapse
Affiliation(s)
- Elena V Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Nadya A Omelyanchuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Elena V Ubogoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Victoria V Mironova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
27
|
Felipo-Benavent A, Úrbez C, Blanco-Touriñán N, Serrano-Mislata A, Baumberger N, Achard P, Agustí J, Blázquez MA, Alabadí D. Regulation of xylem fiber differentiation by gibberellins through DELLA-KNAT1 interaction. Development 2018; 145:dev.164962. [PMID: 30389856 DOI: 10.1242/dev.164962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
The thickening of plant organs is supported by secondary growth, a process by which new vascular tissues (xylem and phloem) are produced. Xylem is composed of several cell types, including xylary fibers, parenchyma and vessel elements. In Arabidopsis, it has been shown that fibers are promoted by the class-I KNOX gene KNAT1 and the plant hormones gibberellins, and are repressed by a small set of receptor-like kinases; however, we lack a mechanistic framework to integrate their relative contributions. Here, we show that DELLAs, negative elements of the gibberellin signaling pathway, physically interact with KNAT1 and impair its binding to KNAT1-binding sites. Our analysis also indicates that at least 37% of the transcriptome mobilized by KNAT1 is potentially dependent on this interaction, and includes genes involved in secondary cell wall modifications and phenylpropanoid biosynthesis. Moreover, the promotion by constitutive overexpression of KNAT1 of fiber formation and the expression of genes required for fiber differentiation were still reverted by DELLA accumulation, in agreement with post-translational regulation of KNAT1 by DELLA proteins. These results suggest that gibberellins enhance fiber development by promoting KNAT1 activity.
Collapse
Affiliation(s)
- Amelia Felipo-Benavent
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Antonio Serrano-Mislata
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des Plantes (CNRS-Université de Strasbourg), Strasbourg 67084, France
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes (CNRS-Université de Strasbourg), Strasbourg 67084, France
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| |
Collapse
|
28
|
Auxin Controlled by Ethylene Steers Root Development. Int J Mol Sci 2018; 19:ijms19113656. [PMID: 30463285 PMCID: PMC6274790 DOI: 10.3390/ijms19113656] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/29/2022] Open
Abstract
Roots are important plant ground organs, which absorb water and nutrients to control plant growth and development. Phytohormones have been known to play a crucial role in the regulation of root growth, such as auxin and ethylene, which are central regulators of this process. Recent findings have revealed that root development and elongation regulated by ethylene are auxin dependent through alterations of auxin biosynthesis, transport and signaling. In this review, we focus on the recent advances in the study of auxin and auxin⁻ethylene crosstalk in plant root development, demonstrating that auxin and ethylene act synergistically to control primary root and root hair growth, but function antagonistically in lateral root formation. Moreover, ethylene modulates auxin biosynthesis, transport and signaling to fine-tune root growth and development. Thus, this review steps up the understanding of the regulation of auxin and ethylene in root growth.
Collapse
|
29
|
Lima TRA, Carvalho ECD, Martins FR, Oliveira RS, Miranda RS, Müller CS, Pereira L, Bittencourt PRL, Sobczak JCMSM, Gomes-Filho E, Costa RC, Araújo FS. Lignin composition is related to xylem embolism resistance and leaf life span in trees in a tropical semiarid climate. THE NEW PHYTOLOGIST 2018; 219:1252-1262. [PMID: 29767841 DOI: 10.1111/nph.15211] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Wood properties influence the leaf life span (LL) of tree crowns. As lignin is an important component of wood and the water transport system, we investigated its relationship with embolism resistance and the LL of several tree species in a seasonally dry tropical ecosystem. We determined total lignin and the monomer contents of guaiacyl (G) and syringyl (S) and related them to wood traits and xylem vulnerability to embolism (Ψ50 ) for the most common species of the Brazilian semiarid, locally known as Caatinga. Leaf life span was negatively related to Ψ50 and positively related to S : G, which was negatively related to Ψ50 . This means that greater S : G increases LL by reducing Ψ50 . Lignin content was not correlated with any variable. We found two apparently unrelated axes of drought resistance. One axis, associated with lignin monomeric composition, increases LL in the dry season as a result of lower xylem embolism vulnerability. The other, associated with wood density and stem water content, helps leafless trees to withstand drought and allows them to resprout at the end of the dry season. The monomeric composition of lignin (S : G) is therefore an important functional wood attribute affecting several key functional aspects of tropical tree species in a semiarid climate.
Collapse
Affiliation(s)
- Taysla R A Lima
- Ecology and Natural Resources Post-Graduate Program, Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Ellen C D Carvalho
- Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Fernando R Martins
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, PO Box 6109, 13083-970, Campinas, SP, Brazil
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, PO Box 6109, 13083-970, Campinas, SP, Brazil
| | - Rafael S Miranda
- Federal University of Piauí (UFPI/CPCE), Campus Professora Cinobelina Elvas, 64900-000, Bom Jesus, PI, Brazil
| | - Caroline S Müller
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, PO Box 6109, 13083-970, Campinas, SP, Brazil
| | - Luciano Pereira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, PO Box 6109, 13083-970, Campinas, SP, Brazil
| | - Paulo R L Bittencourt
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, PO Box 6109, 13083-970, Campinas, SP, Brazil
| | - Jullyana C M S M Sobczak
- Institute of Rural Development, University of International Integration of African-Brazilian Lusophony, 62790-000, Redenção, CE, Brazil
| | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60440-554, Fortaleza, CE, Brazil
| | - Rafael C Costa
- Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Francisca S Araújo
- Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| |
Collapse
|
30
|
Huang JG, Guo X, Rossi S, Zhai L, Yu B, Zhang S, Zhang M. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season. TREE PHYSIOLOGY 2018; 38:1225-1236. [PMID: 29757427 DOI: 10.1093/treephys/tpy046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
China's subtropical forests play a vital role in sequestering global carbon; therefore, it is critical to conduct a precise investigation of intra-annual wood formation in these ecosystems to clarify the mechanisms behind this. Two field experiments were established in Chinese subtropical forests to monitor weekly the intra-annual xylem formation of Pinus massoniana Lamb. from January to December 2015, using the recently developed micro-sampling approach. The effects of climate on wood formation were also assessed using linear or mixed models. Results indicate that there is an inactive period that might be semi-dormancy in subtropical pine ecosystems in January compared with the complete dormancy in temperate and boreal ecosystems and the fully active or short-term dormancy in tropical ecosystems. The duration of xylem formation of Chinese red pine in subtropical China in 2015 was 4-6 months longer than temperate and boreal forests. Moreover, trees were found to grow better during the dry season than the wet season, indicating that the Chinese red pine ecosystem is more strongly regulated by net energy than by environmental factors. Our findings indicate that China's subtropical pine forests may benefit from the expected longer dry seasons, possibly leading to better forest growth and improved carbon sequestration under continued climate warming.
Collapse
Affiliation(s)
- Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiali Guo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sergio Rossi
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi (QC), Canada
| | - Lihong Zhai
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Biyun Yu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaokang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingfang Zhang
- University of Electronic Science and Technology of China, Sichuan, China
| |
Collapse
|
31
|
Linh NM, Verna C, Scarpella E. Coordination of cell polarity and the patterning of leaf vein networks. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:116-124. [PMID: 29278780 DOI: 10.1016/j.pbi.2017.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
During development, the behavior of cells in tissues is coordinated along specific orientations or directions by coordinating the polar localization of components in those cells. The coordination of such cell polarity is perhaps nowhere more spectacular than in developing leaves, where the polarity of hundreds of cells is coordinated in the leaf epidermis and inner tissue to pattern vein networks. Available evidence suggests that the spectacular coordination of cell polarity that patterns vein networks is controlled by auxin transport and levels, and by genes that have been implicated in the polar localization of auxin transporters.
Collapse
Affiliation(s)
- Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
32
|
Prislan P, Cufar K, De Luis M, Gricar J. Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites. TREE PHYSIOLOGY 2018; 38:186-197. [PMID: 29325135 DOI: 10.1093/treephys/tpx167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
We investigated the dynamics of xylem differentiation processes and vessel characteristics in Fagus sylvatica L. to evaluate the plasticity of xylem structures under different environmental conditions. In 2008-10, analyses were performed on microcores collected weekly from two temperate sites: Menina planina (1200 m above sea level (a.s.l.)) and Panska reka (400 m a.s.l.). The duration between the onset and end of major cell differentiation steps and vessel characteristics (i.e., density, VD; mean diameter, MVD; mean area, MVA; and theoretic conductivity area, TCA) were analysed in the first and last quarters of the xylem rings, also in respect of local weather conditions (precipitation, temperature). Although the onset, duration and end of xylem formation phases differed between the two sites, the time spans between the successive wood formation phases were similar. Significant differences in MVD, MVA and TCA values were found between the first and last quarters of xylem increment, regardless of the site and year. Vessel density, on the other hand, depended on xylem-ring width and differed significantly between the sites, being about 30% higher at the high elevation site, in beech trees with 54% narrower xylem rings. Vessel density in the first quarter of the xylem ring showed a positive correlation with the onset of cell expansion, whereas a negative correlation of VD with the cessation of cell production was found in the last quarter of xylem increment. This may be explained by year-to-year differences in the timing of cambial reactivation and leaf development, which effect hormonal regulation of radial growth. No significant linkage between intra-annual weather conditions and conduit characteristics was found. It can thus be presumed that precipitation is not a limiting factor for xylem growth and cell differentiation in beech at the two temperate study sites and sites across Europe with similar weather conditions.
Collapse
Affiliation(s)
- Peter Prislan
- Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Katarina Cufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Martin De Luis
- Department of Geography and Regional Planning, University of Zaragoza-IUCA, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jožica Gricar
- Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
33
|
Dolzblasz A, Banasiak A, Vereecke D. Neovascularization during leafy gall formation on Arabidopsis thaliana upon Rhodococcus fascians infection. PLANTA 2018; 247:215-228. [PMID: 28942496 DOI: 10.1007/s00425-017-2778-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Extensive de novo vascularization of leafy galls emerging upon Rhodococcus fascians infection is achieved by fascicular/interfascicular cambium activity and transdifferentiation of parenchyma cells correlated with increased auxin signaling. A leafy gall consisting of fully developed yet growth-inhibited shoots, induced by the actinomycete Rhodococcus fascians, differs in structure compared to the callus-like galls induced by other bacteria. To get insight into the vascular development accompanying the emergence of the leafy gall, the anatomy of infected axillary regions of the inflorescence stem of wild-type Arabidopsis thaliana accession Col-0 plants and the auxin response in pDR5:GUS-tagged plants were followed in time. Based on our observations, three phases can be discerned during vascularization of the symptomatic tissue. First, existing fascicular cambium becomes activated and interfascicular cambium is formed giving rise to secondary vascular elements in a basipetal direction below the infection site in the main stem and in an acropetal direction in the entire side branch. Then, parenchyma cells in the region between both stems transdifferentiate acropetally towards the surface of the developing symptomatic tissue leading to the formation of xylem and vascularize the hyperplasia as they expand. Finally, parenchyma cells in the developing gall also transdifferentiate to vascular elements without any specific direction resulting in excessive vasculature disorderly distributed in the leafy gall. Prior to any apparent anatomical changes, a strong auxin response is mounted, implying that auxin is the signal that controls the vascular differentiation induced by the infection. To conclude, we propose the "sidetracking gall hypothesis" as we discuss the mechanisms driving the formation of superfluous vasculature of the emerging leafy gall.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland.
| | - Alicja Banasiak
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Danny Vereecke
- Department of Applied Biosciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
34
|
Falcioni R, Moriwaki T, de Oliveira DM, Andreotti GC, de Souza LA, dos Santos WD, Bonato CM, Antunes WC. Increased Gibberellins and Light Levels Promotes Cell Wall Thickness and Enhance Lignin Deposition in Xylem Fibers. FRONTIERS IN PLANT SCIENCE 2018; 9:1391. [PMID: 30294339 PMCID: PMC6158321 DOI: 10.3389/fpls.2018.01391] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/03/2018] [Indexed: 05/06/2023]
Abstract
Light intensity and hormones (gibberellins; GAs) alter plant growth and development. A fine regulation triggered by light and GAs induces changes in stem cell walls (CW). Cross-talk between light-stimulated and GAs-induced processes as well as the phenolic compounds metabolism leads to modifications in lignin formation and deposition on cell walls. How these factors (light and GAs) promote changes in lignin content and composition. In addition, structural changes were evaluated in the stem anatomy of tobacco plants. GA3 was sprayed onto the leaves and paclobutrazol (PAC), a GA biosynthesis inhibitor, via soil, at different irradiance levels. Fluorescence microscopy techniques were applied to detect lignin, and electron microscopy (SEM and TEM) was used to obtain details on cell wall structure. Furthermore, determination of total lignin and monomer contents were analyzed. Both light and GAs induces increased lignin content and CW thickening as well as greater number of fiber-like cells but not tracheary elements. The assays demonstrate that light exerts a role in lignification under GA3 supplementation. In addition, the existence of an exclusive response mechanism to light was detected, that GAs are not able to replace.
Collapse
Affiliation(s)
- Renan Falcioni
- Laboratório de Ecofisiologia Vegetal, Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Brazil
- Laboratório de Bioquímica de Plantas, Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, Brazil
- *Correspondence: Renan Falcioni, Werner Camargos Antunes, ;
| | - Thaise Moriwaki
- Laboratório de Ecofisiologia Vegetal, Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Dyoni Matias de Oliveira
- Laboratório de Bioquímica de Plantas, Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, Brazil
| | - Giovana Castelani Andreotti
- Laboratório de Ecofisiologia Vegetal, Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Luiz Antônio de Souza
- Laboratório de Histotécnica e Anatomia Vegetal, Universidade Estadual de Maringá, Maringá, Brazil
| | - Wanderley Dantas dos Santos
- Laboratório de Bioquímica de Plantas, Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, Brazil
| | - Carlos Moacir Bonato
- Laboratório de Ecofisiologia Vegetal, Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Werner Camargos Antunes
- Laboratório de Ecofisiologia Vegetal, Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Brazil
- Laboratório de Bioquímica de Plantas, Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, Brazil
- *Correspondence: Renan Falcioni, Werner Camargos Antunes, ;
| |
Collapse
|
35
|
|
36
|
Hacke UG, Spicer R, Schreiber SG, Plavcová L. An ecophysiological and developmental perspective on variation in vessel diameter. PLANT, CELL & ENVIRONMENT 2017; 40:831-845. [PMID: 27304704 DOI: 10.1111/pce.12777] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 05/05/2023]
Abstract
Variation in xylem vessel diameter is one of the most important parameters when evaluating plant water relations. This review provides a synthesis of the ecophysiological implications of variation in lumen diameter together with a summary of our current understanding of vessel development and its endogenous regulation. We analyzed inter-specific variation of the mean hydraulic vessel diameter (Dv ) across biomes, intra-specific variation of Dv under natural and controlled conditions, and intra-plant variation. We found that the Dv measured in young branches tends to stay below 30 µm in regions experiencing winter frost, whereas it is highly variable in the tropical rainforest. Within a plant, the widest vessels are often found in the trunk and in large roots; smaller diameters have been reported for leaves and small lateral roots. Dv varies in response to environmental factors and is not only a function of plant size. Despite the wealth of data on vessel diameter variation, the regulation of diameter is poorly understood. Polar auxin transport through the vascular cambium is a key regulator linking foliar and xylem development. Limited evidence suggests that auxin transport is also a determinant of vessel diameter. The role of auxin in cell expansion and in establishing longitudinal continuity during secondary growth deserve further study.
Collapse
Affiliation(s)
- Uwe G Hacke
- University of Alberta, Department of Renewable Resources, Edmonton, AB T6G 2E3, Canada
| | - Rachel Spicer
- Connecticut College, Department of Botany, New London, CT 06320, USA
| | - Stefan G Schreiber
- University of Alberta, Department of Renewable Resources, Edmonton, AB T6G 2E3, Canada
| | - Lenka Plavcová
- University of Hradec Králové, Department of Biology, Rokitanského 62, Hradec Králové, 500 03, Czech Republic
- Charles University, Department of Experimental Plant Biology, Viničná 5, Prague, 128 44, Czech Republic
| |
Collapse
|
37
|
Lavrič M, Eler K, Ferlan M, Vodnik D, Gričar J. Chronological Sequence of Leaf Phenology, Xylem and Phloem Formation and Sap Flow of Quercus pubescens from Abandoned Karst Grasslands. FRONTIERS IN PLANT SCIENCE 2017; 8:314. [PMID: 28321232 PMCID: PMC5337753 DOI: 10.3389/fpls.2017.00314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/20/2017] [Indexed: 05/31/2023]
Abstract
Intra-annual variations in leaf development, radial growth, including the phloem part, and sap flow have rarely been studied in deciduous trees from drought-prone environments. In order to understand better the chronological order and temporal course of these processes, we monitored leaf phenology, xylem and phloem formation and sap flow in Quercus pubescens from abandoned karst grasslands in Slovenia during the growing season of 2014. We found that the initial earlywood vessel formation started before bud opening at the beginning of April. Buds started to open in the second half of April and full leaf unfolding occurred by the end of May. LAI values increased correspondingly with leaf development. About 28% of xylem and 22% of phloem annual increment were formed by the time of bud break. Initial earlywood vessels were fully lignified and ready for water transport, indicating that they are essential to provide hydraulic conductivity for axial water flow during leaf development. Sap flow became active and increasing contemporarily with leaf development and LAI values. Similar early spring patterns of xylem sap flow and LAI denoted that water transport in oaks broadly followed canopy leaf area development. In the initial 3 weeks of radial growth, phloem growth preceded that of xylem, indicating its priority over xylem at the beginning of the growing season. This may be related to the fact that after bud break, the developing foliage is a very large sink for carbohydrates but, at the same time, represents a small transpirational area. Whether the interdependence of the chronological sequence of the studied processes is fixed in Q. pubescens needs to be confirmed with more data and several years of analyses, although the 'correct sequence' of processes is essential for synchronized plant performance and response to environmental stress.
Collapse
Affiliation(s)
- Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry InstituteLjubljana, Slovenia
| | - Klemen Eler
- Department of Agronomy, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
- Department of Forest Ecology, Slovenian Forestry InstituteLjubljana, Slovenia
| | - Mitja Ferlan
- Department of Forest Ecology, Slovenian Forestry InstituteLjubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry InstituteLjubljana, Slovenia
| |
Collapse
|
38
|
Schiestl-Aalto P, Mäkelä A. Temperature dependence of needle and shoot elongation before bud break in Scots pine. TREE PHYSIOLOGY 2017; 37:316-325. [PMID: 28008084 DOI: 10.1093/treephys/tpw120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Knowledge about the early part of needle growth is deficient compared with what is known about shoot growth. It is however important to understand growth of different organs to be able to estimate the changes in whole tree growth in a changing environment. The onset of growth in spring has been observed to occur over some certain threshold value of momentary temperature or temperature accumulation. We measured the length growth of Scots pine (Pinus sylvestris L.) needles and shoots from March until bud break over 3 years. We first compared needle growth with concurrent shoot growth. Then, we quantified threshold temperature of growth (i) with a logistic regression based on momentary temperatures and (ii) with the temperature sum accumulation method. Temperature sum was calculated with combinations of various time steps, starting dates and threshold temperature values. Needle elongation began almost concurrently with shoot elongation and proceeded linearly in relation to shoot growth until bud break. When studying the threshold temperature for growth, the method with momentary temperature effect on growth onset yielded ambiguous results in our conditions. The best fit of an exponential regression between needle growth or length and temperature sum was obtained with threshold temperatures -1 to +2 °C, with several combinations of starting date and time step. We conclude that although growth onset is a momentary event the process leading to it is a long-term continuum where past time temperatures have to be accounted for, rather than a sudden switch from quiescence to active growth. Further, our results indicate that lower temperatures than the commonly used +5 °C are sufficient for actuating the growth process.
Collapse
Affiliation(s)
- Pauliina Schiestl-Aalto
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | - Annikki Mäkelä
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| |
Collapse
|
39
|
Kebrom TH, McKinley B, Mullet JE. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:159. [PMID: 28649278 PMCID: PMC5480195 DOI: 10.1186/s13068-017-0848-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/14/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Bioenergy sorghum accumulates 75% of shoot biomass in stem internodes. Grass stem internodes are formed during vegetative growth and elongate in response to developmental and environmental signals. To identify genes and molecular mechanisms that modulate the extent of internode growth, we conducted microscopic and transcriptomic analyses of four successive sub-apical vegetative internodes representing different stages of internode development of the bioenergy sorghum genotype R.07020. RESULTS Stem internodes of sorghum genotype R.07020 are formed during the vegetative phase and their length is enhanced by environmental signals such as shade and floral induction in short days. During vegetative growth, the first visible and youngest sub-apical internode was ~0.7 cm in length, whereas the fourth fully expanded internode was ~5 cm in length. Microscopic analyses revealed that all internode tissue types including pith parenchyma and vascular bundles are present in the four successive internodes. Growth in the first two sub-apical internodes occurred primarily through an increase in cell number consistent with expression of genes involved in the cell cycle and DNA replication. Growth of the 3rd internode was associated with an increase in cell length and growth cessation in the 4th internode was associated with up-regulation of genes involved in secondary cell wall deposition. The expression of genes involved in hormone metabolism and signaling indicates that GA, BR, and CK activity decreased while ethylene, ABA, and JA increased in the 3rd/4th internodes. While the level of auxin appears to be increasing as indicated by the up-regulation of ARFs, down-regulation of TIR during development indicates that auxin signaling is also modified. The expression patterns of transcription factors are closely associated with their role during the development of the vegetative internodes. CONCLUSIONS Microscopic and transcriptome analyses of four successive sub-apical internodes characterized the developmental progression of vegetative stem internodes from initiation through full elongation in the sorghum genotype R.07020. Transcriptome profiling indicates that dynamic variation in the levels and action of GA, CK, IAA, BR, ethylene, ABA, and JA modulate gene expression and growth during internode growth and development. This study provides detailed microscopic and transcriptomic data useful for identifying genes and molecular pathways regulating internode elongation in response to various developmental and environmental signals.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| | - Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| | - John E. Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
40
|
Transcriptome Analysis of the Signalling Networks in Coronatine-Induced Secondary Laticifer Differentiation from Vascular Cambia in Rubber Trees. Sci Rep 2016; 6:36384. [PMID: 27808245 PMCID: PMC5093416 DOI: 10.1038/srep36384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022] Open
Abstract
The secondary laticifer in rubber tree (Hevea brasiliensis Muell. Arg.) is a specific tissue within the secondary phloem. This tissue differentiates from the vascular cambia, and its function is natural rubber biosynthesis and storage. Given that jasmonates play a pivotal role in secondary laticifer differentiation, we established an experimental system with jasmonate (JA) mimic coronatine (COR) for studying the secondary laticifer differentiation: in this system, differentiation occurs within five days of the treatment of epicormic shoots with COR. In the present study, the experimental system was used to perform transcriptome sequencing and gene expression analysis. A total of 67,873 unigenes were assembled, and 50,548 unigenes were mapped at least in one public database. Of these being annotated unigenes, 15,780 unigenes were differentially expressed early after COR treatment, and 19,824 unigenes were differentially expressed late after COR treatment. At the early stage, 8,646 unigenes were up-regulated, while 7,134 unigenes were down-regulated. At the late stage, the numbers of up- and down-regulated unigenes were 7,711 and 12,113, respectively. The annotation data and gene expression analysis of the differentially expressed unigenes suggest that JA-mediated signalling, Ca2+ signal transduction and the CLAVATA-MAPK-WOX signalling pathway may be involved in regulating secondary laticifer differentiation in rubber trees.
Collapse
|
41
|
Chin ARO, Sillett SC. Phenotypic plasticity of leaves enhances water-stress tolerance and promotes hydraulic conductivity in a tall conifer. AMERICAN JOURNAL OF BOTANY 2016; 103:796-807. [PMID: 27208348 DOI: 10.3732/ajb.1600110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Leaves respond to environmental signals and acclimate to local conditions until their ecological limits are reached. Understanding the relationships between anatomical variation in leaves and the availability of water and light improves our ability to predict ecosystem-level impacts of foliar response to climate change, as it expands our knowledge of tree physiology. METHODS We examined foliar anatomy and morphology of the largest plant species, Sequoiadendron giganteum, from leafy shoot samples collected throughout crowns of trees up to 95 m tall and assessed the functionality of within-crown variation with a novel drought/recovery experiment. KEY RESULTS We found phenotypic variation in response to water availability in 13 anatomical traits of Sequoiadendron leaves. Shoot expansion was constrained by the hydrostatic gradient of maximum water potential, while functional traits supporting succulence and toughness were associated with sites of peak hydraulic limitation. Water-stress tolerance in experimental shoots increased dramatically with height. CONCLUSION We propose a heat-sink function for transfusion tissue and uncover a suite of traits suggesting rapid hydraulic throughput and flexibility in water-stress tolerance investments as strategies that help this montane species reach such enormous size. Responses to water stress alter the amount of carbon stored in foliage and the rate of the eventual release of carbon.
Collapse
Affiliation(s)
- Alana R O Chin
- Department of Natural Resources, American River College, 4700 College Oak Drive, Sacramento, California 95841 USA
| | - Stephen C Sillett
- Department of Forestry and Wildland Resources, Humboldt State University, 1 Harpst Street, Arcata, California 95521 USA
| |
Collapse
|
42
|
von Arx G, Crivellaro A, Prendin AL, Čufar K, Carrer M. Quantitative Wood Anatomy-Practical Guidelines. FRONTIERS IN PLANT SCIENCE 2016; 7:781. [PMID: 27375641 PMCID: PMC4891576 DOI: 10.3389/fpls.2016.00781] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/20/2016] [Indexed: 05/04/2023]
Abstract
Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors-if not avoided or corrected-may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics.
Collapse
Affiliation(s)
- Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
- *Correspondence: Georg von Arx
| | - Alan Crivellaro
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| | - Angela L. Prendin
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| | - Katarina Čufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Marco Carrer
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| |
Collapse
|
43
|
Tian WM, Yang SG, Shi MJ, Zhang SX, Wu JL. Mechanical wounding-induced laticifer differentiation in rubber tree: An indicative role of dehydration, hydrogen peroxide, and jasmonates. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:95-103. [PMID: 26070085 DOI: 10.1016/j.jplph.2015.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 05/08/2023]
|
44
|
Singh P, Mohanta TK, Sinha AK. Unraveling the intricate nexus of molecular mechanisms governing rice root development: OsMPK3/6 and auxin-cytokinin interplay. PLoS One 2015; 10:e0123620. [PMID: 25856151 PMCID: PMC4391785 DOI: 10.1371/journal.pone.0123620] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/02/2015] [Indexed: 11/26/2022] Open
Abstract
The root system is an imperative component of a plant, involved in water and nutrient acquisition from the soil. Any subtle change in the root system may lead to drastic changes in plant productivity. Both auxin and cytokinin are implicated in regulating various root developmental aspects. One of the major signaling cascades facilitating various hormonal and developmental allocations is the Mitogen Activated Protein Kinase (MAPK) cascade. Innumerable efforts have been made to unravel the complex nexus involved in rice root development. In spite of a plethora of studies, a comprehensive study aiming to decipher the plausible cross-talk of MAPK signaling module with auxin and cytokinin signaling components in rice is missing. In the present study, extensive phenomics analysis of different stages of rice roots; transcript profiling by qRT-PCR of entire gene family of MAPK, MAPKK and PIN genes; as well as protein level and activity of potential MAPKs was investigated using western and immuno kinase assays both on auxin and cytokinin treatment. The above study led to the identification of various novel rice root specific phenotypic traits by using GiA roots software framework. High expression profile of OsMPK3/6, OsMKK4/5 and OsPIN 1b/9 and their marked transcript level modulation in response to both auxin and cytokinin was observed. Finally, the protein levels and activity assay further substantiated our present findings. Thus, OsMPK3/6-OsMKK4/5 module is elucidated as the putative, key player in auxin-cytokinin interaction augmenting their role by differentially regulating the expression patterns of OsPIN 1b/9 in root development in rice.
Collapse
Affiliation(s)
- Pallavi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Tapan Kumar Mohanta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- * E-mail:
| |
Collapse
|
45
|
Sequencing, assembly, annotation, and gene expression: novel insights into the hormonal control of carrot root development revealed by a high-throughput transcriptome. Mol Genet Genomics 2015; 290:1379-91. [PMID: 25666462 DOI: 10.1007/s00438-015-0999-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/22/2015] [Indexed: 01/24/2023]
Abstract
Previous studies have indicated that hormonal control is essential for plant root growth. The root of the carrot is an edible vegetable with a high nutritional value. However, molecular mechanisms underlying hormone-mediated root growth of carrot have not been illustrated. Therefore, the present study collected carrot root samples from four developmental stages, and performed transcriptome sequencing to understand the molecular functions of plant hormones in carrot root growth. A total of 160,227 transcripts were generated from our transcriptome, which were assembled into 32,716 unigenes with an average length of 1,453 bp. A total of 4,818 unigenes were found to be differentially expressed between the four developmental stages. In total, 87 hormone-related differentially expressed genes were identified, and the roles of the hormones are extensively discussed. Our results suggest that plant hormones may regulate carrot root growth in a phase-dependent manner, and these findings will provide valuable resources for future research on carrot root development.
Collapse
|
46
|
Lebedeva Osipova MA, Tvorogova VE, Vinogradova AP, Gancheva MS, Azarakhsh M, Ilina EL, Demchenko KN, Dodueva IE, Lutova LA. Initiation of spontaneous tumors in radish (Raphanus sativus): Cellular, molecular and physiological events. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:97-104. [PMID: 25462083 DOI: 10.1016/j.jplph.2014.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 05/04/2023]
Abstract
In plant meristems, the balance of cell proliferation and differentiation is maintained by phytohormones, specifically auxin and cytokinin, as well as transcription factors. Changing of the cytokinin/auxin balance in plants may lead to developmental abnormalities, and in particular, to the formation of tumors. The examples of spontaneous tumor formation in plants include tumors formed on the roots of radish (Raphanus sativus) inbred lines. Previously, it was found that the cytokinin/auxin ratio is altered in radish tumors. In this study, a detailed histological analysis of spontaneous radish tumors was performed, revealing a possible mechanism of tumor formation, namely abnormal cambial activity. The analysis of cell proliferation patterns revealed meristematic foci in radish tumors. By using a fusion of an auxin-responsive promoter (DR5) and a reporter gene, the involvement of auxin in developmental processes in tumors was shown. In addition, the expression of the root meristem-specific WUSCHEL-related homeobox 5 (WOX5) gene was observed in cells adjacent to meristematic foci. Taken together, the results of the present study show that tumor tissues share some characteristics with root apical meristems, including the presence of auxin-response maxima in meristematic foci with adjacent cells expressing WOX5.
Collapse
Affiliation(s)
- Maria A Lebedeva Osipova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia.
| | - Varvara E Tvorogova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia.
| | - Alena P Vinogradova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia.
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia.
| | - Mahboobeh Azarakhsh
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia.
| | - Elena L Ilina
- Komarov Botanical Institute, Russian Academy of Sciences, Laboratory of Anatomy and Morphology, Prof. Popov Street 2, 197376 Saint-Petersburg, Russia.
| | - Kirill N Demchenko
- Komarov Botanical Institute, Russian Academy of Sciences, Laboratory of Anatomy and Morphology, Prof. Popov Street 2, 197376 Saint-Petersburg, Russia.
| | - Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia.
| | - Lyudmila A Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
47
|
Zajączkowska U. Overgrowth of Douglas fir (Pseudotsuga menziesii Franco) stumps with regenerative tissue as an example of cell ordering and tissue reorganization. PLANTA 2014; 240:1203-11. [PMID: 25115561 PMCID: PMC4228119 DOI: 10.1007/s00425-014-2142-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/01/2014] [Indexed: 05/08/2023]
Abstract
Stump overgrowth may serve as a unique model for studying cellular reorganization and mechanisms responsible for cell polarity changes during the process of vascular tissue differentiation from initially unorganized parenchymatous cells. Cellular ordering and tissue reorganization during the overgrowth process of the transverse surfaces of Douglas fir stumps in forest stand was studied. At the beginning of stump overgrowth, the produced parenchymatous cells form an unorganized tissue. Particular parenchyma cells start arranging into more ordered structures which resemble rays. Application of digital image analysis software based on structure tensor was used. The analysis showed that at this stage of tissue development, cellular elements display a wide range of angular orientation values and attain very low coherency coefficients. The progress of the tissue differentiation process is associated with the formation of local regions with tracheids oriented circularly around the rays. This coincides with an increase in the range of angular orientations and greater values of coherency coefficients. At the most advanced stage of tissue development, with tracheids arranged parallelly in longitudinal strands, the degree of cell ordering is the highest what is manifested by the greatest values attained by coherency coefficients, and the narrow range of angular orientations. It is suggested that the ray-like structures could act as organizing centers in the morphogenetic field responsible for differentiation of the overgrowth tissue. The circular pattern of tracheids around rays in the initial phase of tissue development can be interpreted in terms of local rotation of the morphogenetic field which afterward is transformed into irrotational field. This transformation is noted by the presence of tracheids arranged parallelly in longitudinal strands. The possible involvement of a mechanism controlling cell polarity with respect to auxin transport is discussed.
Collapse
Affiliation(s)
- Urszula Zajączkowska
- Department of Forest Botany, Warsaw University of Life Sciences (WULS), 159 Nowoursynowska Str, 02-776, Warsaw, Poland,
| |
Collapse
|
48
|
Du E, Fang J. Linking belowground and aboveground phenology in two boreal forests in Northeast China. Oecologia 2014; 176:883-92. [PMID: 25164492 DOI: 10.1007/s00442-014-3055-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/14/2014] [Indexed: 11/29/2022]
Abstract
The functional equilibrium between roots and shoots suggests an intrinsic linkage between belowground and aboveground phenology. However, much less understanding of belowground phenology hinders integrating belowground and aboveground phenology. We measured root respiration (Ra) as a surrogate for root phenology and integrated it with observed leaf phenology and radial growth in a birch (Betula platyphylla)-aspen (Populus davidiana) forest and an adjacent larch (Larix gmelinii) forest in Northeast China. A log-normal model successfully described the seasonal variations of Ra and indicated the initiation, termination and peak date of root phenology. Both root phenology and leaf phenology were highly specific, with a later onset, earlier termination, and shorter period of growing season for the pioneer tree species (birch and aspen) than the dominant tree species (larch). Root phenology showed later initiation, later peak and later termination dates than leaf phenology. An asynchronous correlation of Ra and radial growth was identified with a time lag of approximately 1 month, indicating aprioritization of shoot growth. Furthermore, we found that Ra was strongly correlated with soil temperature and air temperature, while radial growth was only significantly correlated with air temperature, implying a down-regulating effect of temperature. Our results indicate different phenologies between pioneer and dominant species and support a down-regulation hypothesis of plant phenology which can be helpful in understanding forest dynamics in the context of climate change.
Collapse
Affiliation(s)
- Enzai Du
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China,
| | | |
Collapse
|
49
|
Huang JG, Deslauriers A, Rossi S. Xylem formation can be modeled statistically as a function of primary growth and cambium activity. THE NEW PHYTOLOGIST 2014; 203:831-41. [PMID: 24861414 DOI: 10.1111/nph.12859] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/17/2014] [Indexed: 05/09/2023]
Abstract
Primary (budburst, foliage and shoot) growth and secondary (cambium and xylem) growth of plants play a vital role in sequestering atmospheric carbon. However, their potential relationships have never been mathematically quantified and the underlying physiological mechanisms are unclear. We monitored primary and secondary growth in Picea mariana and Abies balsamea on a weekly basis from 2010 to 2013 at four sites over an altitudinal gradient (25-900 m) in the eastern Canadian boreal forest. We determined the timings of onset and termination through the fitted functions and their first derivative. We quantified the potential relationships between primary growth and secondary growth using the mixed-effects model. We found that xylem formation of boreal conifers can be modeled as a function of cambium activity, bud phenology, and shoot and needle growth, as well as species- and site-specific factors. Our model reveals that there may be an optimal mechanism to simultaneously allocate the photosynthetic products and stored nonstructural carbon to growth of different organs at different times in the growing season. This mathematical link can bridge phenological modeling, forest ecosystem productivity and carbon cycle modeling, which will certainly contribute to an improved prediction of ecosystem productivity and carbon equilibrium.
Collapse
Affiliation(s)
- Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Département de Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, G7H 2B1, QC, Canada
| | | | | |
Collapse
|
50
|
Olson ME, Anfodillo T, Rosell JA, Petit G, Crivellaro A, Isnard S, León-Gómez C, Alvarado-Cárdenas LO, Castorena M. Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol Lett 2014; 17:988-97. [DOI: 10.1111/ele.12302] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/21/2013] [Accepted: 04/30/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Mark E. Olson
- Instituto de Biología; Universidad Nacional Autónoma de México; Tercer Circuito s/n de CU México DF 04510 Mexico
| | - Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali; University of Padova; Viale dell'Università 16 35020 Legnaro (PD) Italy
| | - Julieta A. Rosell
- Instituto de Ecología; Universidad Nacional Autonoma de Mexico; Tercer Circuito s/n de CU; Mexico, DF 04510 Mexico
| | - Giai Petit
- Department Territorio e Sistemi Agro-Forestali; University of Padova; Viale dell'Università 16 35020 Legnaro (PD) Italy
| | - Alan Crivellaro
- Department Territorio e Sistemi Agro-Forestali; University of Padova; Viale dell'Università 16 35020 Legnaro (PD) Italy
| | - Sandrine Isnard
- Institut de Recherche pour le Développement (IRD) - UMR AMAP; Laboratoire de botanique et d'écologie végétale appliquées; Centre IRD de Nouméa; B.P. A5 98800 Nouméa Nouvelle-Calédonie
| | - Calixto León-Gómez
- Instituto de Biología; Universidad Nacional Autónoma de México; Tercer Circuito s/n de CU México DF 04510 Mexico
| | | | - Matiss Castorena
- Instituto de Biología; Universidad Nacional Autónoma de México; Tercer Circuito s/n de CU México DF 04510 Mexico
| |
Collapse
|