1
|
Bucher R, Batáry P, Baudry J, Beaumelle L, Čerevková A, de la Riva EG, Dirilgen T, Gallé R, Kesse-Guyot E, Rembiałkowska E, Rusch A, Stanley DA, Ulrich W, Birkhofer K. Functional diversity of ground beetles improved aphid control but did not increase crop yields on European farms. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024:e3035. [PMID: 39373261 DOI: 10.1002/eap.3035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/02/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
Land-use intensification is often associated with a decline in functional diversity, potentially undermining the provision of ecosystem services. However, how changes in traits affect ecosystem processes remains poorly understood. Variation in trait values among species in a community may drive ecosystem processes. Alternatively, the mass ratio hypothesis proposes that trait values of the dominant species in a local community are related to ecosystem processes. Using data from 159 farms in six European countries, we quantified the impact of local and landscape-level land-use intensity on ground beetles as pest control agents. We then assessed the extent to which functional diversity and community-weighted mean trait values relate to pest control and cereal yield. In addition, we assessed how the responses to land use and the effects of different species on pest control and yield varied with their traits to compare the relative impact of the traits studied. Functional diversity of ground beetles improved aphid removal, but did not translate into higher crop yields. Pest control of aphids was enhanced by a higher proportion of smaller, mobile ground beetles with a preference for the vegetation layer. Smaller, predatory ground beetles in communities improved crop yield. The magnitude of responses to land-use intensification and the effects on pest control and yield were more strongly influenced by body size than other traits. Our study provides evidence that reduced management intensity can improve pest control by supporting small-sized, macropterous ground beetles. In contrast to the claims of ecological intensification, our joint analysis of the direct effects of land use on yield and indirect effects via functional diversity of ground beetles and pest control suggests that ecosystem services by ground beetles cannot compensate for the yield gap due to a reduction in land-use intensity.
Collapse
Affiliation(s)
- Roman Bucher
- Department of Ecology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Péter Batáry
- 'Lendület' Landscape and Conservation Ecology, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
- Faunistics and Wildlife Conservation, Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, Bernburg, Germany
| | - Julia Baudry
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Léa Beaumelle
- French National Centre for Scientific Research CNRS, UPS, Toulouse, France
| | | | - Enrique G de la Riva
- Area of Ecology, Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, University of León, León, Spain
| | - Tara Dirilgen
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
| | - Róbert Gallé
- 'Lendület' Landscape and Conservation Ecology, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Emmanuelle Kesse-Guyot
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | | | - Adrien Rusch
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, Villenave d'Ornon, France
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Werner Ulrich
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Toruń, Poland
| | - Klaus Birkhofer
- Department of Ecology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| |
Collapse
|
2
|
Rolhauser AG, Isaac ME, Violle C, Martin AR, Vasseur F, Lemoine T, Mahaut L, Fort F, Rotundo JL, Vile D. Phenotypic limits of crop diversity: a data exploration of functional trait space. THE NEW PHYTOLOGIST 2024; 244:708-718. [PMID: 39183372 DOI: 10.1111/nph.20050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
Relationships between crop genetic and functional diversity are key to addressing contemporary agricultural challenges. Yet, there are few approaches for quantifying the relationship between genetic diversity and crop functional trait expression. Here, we introduce 'functional space accumulation curves' to analyze how trait space increases with the number of crop genotypes within a species. We explore the potential for functional space accumulating curves to quantify genotype-trait space relationships in four common annual crop species: barley (Hordeum vulgare), rice (Oryza sativa), soybean (Glycine max), and durum wheat (Triticum durum). We also employ these curves to describe genotype-trait space relationships in the wild annual Arabidopsis thaliana, which has not been subjected to artificial selection. All five species exhibited asymptotic functional space accumulation curves, suggesting a limit to intraspecific functional crop diversity, likely due to: dominant phenotypes represented by several genotypes; or functional redundancy that might exist among genotypes. Our findings indicate that there is a diminishing return of functional diversity with increasing number of genotypes. Our analysis demonstrates the efficacy of functional space accumulation curves in quantifying trait space occupancy of crops, with implications for managing crop diversity in agroecosystems, and genetic diversity in crop breeding programs.
Collapse
Affiliation(s)
- Andrés G Rolhauser
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
- Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, C1417DSE, Argentina
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, C1417DSE, Argentina
| | - Marney E Isaac
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
- Department of Global Development Studies, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Taina Lemoine
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Lucie Mahaut
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Florian Fort
- CEFE, Univ Montpellier, Institut Agro, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - José L Rotundo
- Corteva Agriscience, 7250 NW 62nd Ave., Johnston, 50310, IA, USA
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, 34000, France
| |
Collapse
|
3
|
Messier J, Becker-Scarpitta A, Li Y, Violle C, Vellend M. Root and biomass allocation traits predict changes in plant species and communities over four decades of global change. Ecology 2024; 105:e4389. [PMID: 39252476 DOI: 10.1002/ecy.4389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/12/2024] [Accepted: 04/28/2024] [Indexed: 09/11/2024]
Abstract
Global change is affecting the distribution and population dynamics of plant species across the planet, leading to trends such as shifts in distribution toward the poles and to higher elevations. Yet, we poorly understand why individual species respond differently to warming and other environmental changes, or how the trait composition of communities responds. Here we ask two questions regarding plant species and community changes over 42 years of global change in a temperate montane forest in Québec, Canada: (1) How did the trait composition, alpha diversity, and beta diversity of understory vascular plant communities change between 1970 and 2010, a period over which the region experienced 1.5°C of warming and changes in nitrogen deposition? (2) Can traits predict shifts in species elevation and abundance over this time period? For 46 understory vascular species, we locally measured six aboveground traits, and for 36 of those (not including shrubs), we also measured five belowground traits. Collectively, they capture leading dimensions of phenotypic variation that are associated with climatic and resource niches. At the community level, the trait composition of high-elevation plots shifted, primarily for two root traits: specific root length decreased and rooting depth increased. The mean trait values of high-elevation plots shifted over time toward values initially associated with low-elevation plots. These changes led to trait homogenization across elevations. The community-level shifts in traits mirrored the taxonomic shifts reported elsewhere for this site. At the species level, two of the three traits predicting changes in species elevation and abundance were belowground traits (low mycorrhizal fraction and shallow rooting). These findings highlight the importance of root traits, which, along with leaf mass fraction, were associated with shifts in distribution and abundance over four decades. Community-level trait changes were largely similar across the elevational and temporal gradients. In contrast, traits typically associated with lower elevations at the community level did not predict differences among species in their shift in abundance or distribution, indicating a decoupling between species- and community-level responses. Overall, changes were consistent with some influence of both climate warming and increased nitrogen availability.
Collapse
Affiliation(s)
- Julie Messier
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antoine Becker-Scarpitta
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Agriculture, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Department of Vegetation Ecology, Institute of Botany, Czech Academy of Sciences, Brno, Czech Republic
| | - Yuanzhi Li
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Cyrille Violle
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
4
|
Kaarlejärvi E, Itter M, Tonteri T, Hamberg L, Salemaa M, Merilä P, Vanhatalo J, Laine AL. Inferring ecological selection from multidimensional community trait distributions along environmental gradients. Ecology 2024; 105:e4378. [PMID: 39056347 DOI: 10.1002/ecy.4378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 07/28/2024]
Abstract
Understanding the drivers of community assembly is critical for predicting the future of biodiversity and ecosystem services. Ecological selection ubiquitously shapes communities by selecting for individuals with the most suitable trait combinations. Detecting selection types on key traits across environmental gradients and over time has the potential to reveal the underlying abiotic and biotic drivers of community dynamics. Here, we present a model-based predictive framework to quantify the multidimensional trait distributions of communities (community trait spaces), which we use to identify ecological selection types shaping communities along environmental gradients. We apply the framework to over 3600 boreal forest understory plant communities with results indicating that directional, stabilizing, and divergent selection all modify community trait distributions and that the selection type acting on individual traits may change over time. Our results provide novel and rare empirical evidence for divergent selection within a natural system. Our approach provides a framework for identifying key traits under selection and facilitates the detection of processes underlying community dynamics.
Collapse
Affiliation(s)
- Elina Kaarlejärvi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Malcolm Itter
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Tiina Tonteri
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leena Hamberg
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Maija Salemaa
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Päivi Merilä
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jarno Vanhatalo
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Deák B, Botta-Dukát Z, Rádai Z, Kovács B, Apostolova I, Bátori Z, Kelemen A, Lukács K, Kiss R, Palpurina S, Sopotlieva D, Valkó O. Meso-scale environmental heterogeneity drives plant trait distributions in fragmented dry grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174355. [PMID: 38964408 DOI: 10.1016/j.scitotenv.2024.174355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Environmental heterogeneity shapes the patterns of resources and limiting factors and therefore can be an important driver of plant community composition through the selection of the most adaptive functional traits. In this study, we explored plant trait-environment relationships in environmentally heterogeneous microsite complexes at the meso-scale (few meters), and used ancient Bulgarian and Hungarian burial mounds covered by dry grasslands as a model habitat. We assessed within-site trait variability typical of certain microsites with different combinations of environmental parameters (mound slopes with different aspects, mound tops, and surrounding plain grasslands) using a dataset of 480 vegetation plots. For this we calculated community-weighted means (CWMs) and abundance models. We found that despite their small size, the vegetation on mounds was characterized by different sets of functional traits (higher canopy, higher level of clonality, and heavier seeds) compared to the plain grasslands. North-facing slopes with mild environmental conditions were characterized by perennial species with light seeds, short flowering period, and a high proportion of dwarf shrubs sharply contrasted from the plain grasslands and from the south-facing slopes and mound tops with harsh environmental conditions. Patterns predicted by CWMs and abundance models differed in the case of certain traits (perenniality, canopy height, and leaf dry matter content), suggesting that environmental factors do not necessarily affect trait optima directly, but influence them indirectly through correlating traits. Due to the large relative differences in environmental parameters, contrasts in trait composition among microsites were mostly consistent and independent from the macroclimate. Mounds with high environmental heterogeneity can considerably increase variability in plant functional traits and ecological strategies at the site and landscape levels. The large trait variation on topographically heterogeneous landscape features can increase community resilience against climate change or stochastic disturbances, which underlines their conservation importance.
Collapse
Affiliation(s)
- Balázs Deák
- 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Hungary
| | - Zoltán Botta-Dukát
- Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Hungary
| | - Zoltán Rádai
- 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Hungary; Department of Dermatology, Medical Faculty and University Hospital, Heinrich-Heine University, Germany; One Health Institute, Faculty of Health Sciences, University of Debrecen, Hungary
| | - Bence Kovács
- Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Hungary
| | - Iva Apostolova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Bulgaria
| | - Zoltán Bátori
- Department of Ecology, University of Szeged, Hungary; MTA-SZTE 'Lendület' Applied Ecology Research Group, Hungary
| | - András Kelemen
- 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Hungary
| | - Katalin Lukács
- 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Hungary
| | - Réka Kiss
- 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Hungary
| | - Salza Palpurina
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Bulgaria; National Museum of Natural History, Bulgarian Academy of Sciences, Bulgaria
| | - Desislava Sopotlieva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Bulgaria
| | - Orsolya Valkó
- 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Hungary.
| |
Collapse
|
6
|
Zhang C, Wright IJ, Nielsen UN, Geisen S, Liu M. Linking nematodes and ecosystem function: a trait-based framework. Trends Ecol Evol 2024; 39:644-653. [PMID: 38423842 DOI: 10.1016/j.tree.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Trait-based approaches are being increasingly adopted to understand species' ecological strategies and how organisms influence ecosystem function. Trait-based research on soil organisms, however, remains poorly developed compared with that for plants. The abundant and diverse soil nematodes are prime candidates to advance trait-based approaches belowground, but a unified trait framework to describe nematode ecological strategies and assess their linkages with ecosystem function is lacking. We categorized nematode traits as morphological, physiological, life history, and community clusters, and proposed the nematode economics spectrum (NES) to better understand nematode ecological strategies and their association with ecosystem function. We argue that bridging the NES and the plant economics spectrum will facilitate a more holistic understanding of ecosystem carbon and nutrient cycling under global change.
Collapse
Affiliation(s)
- Chongzhe Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia; Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Ian J Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia; Australian Research Council Centre for Plant Success in Nature & Agriculture, Western Sydney University, Richmond, NSW 2753, Australia; School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| | - Manqiang Liu
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China.
| |
Collapse
|
7
|
Yu J, Shi P, Zong N, Song M, Miao Y, Huang X, Chen X, Hei H. Responses of Intraspecific and Interspecific Trait Variations to Nitrogen Addition in a Tibetan Alpine Meadow. PLANTS (BASEL, SWITZERLAND) 2024; 13:1764. [PMID: 38999605 PMCID: PMC11244433 DOI: 10.3390/plants13131764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
A community functional structure may respond to environmental changes such as nitrogen (N) enrichment by altering intraspecific and interspecific trait variations. However, the relative contributions of both components in determining the community response to N enrichment are unclear. In this study, we measured the plant height (H), leaf area (LA), leaf dry matter content (LDMC), and specific leaf area (SLA) based on a nine-year N addition gradient experiment in an alpine meadow on the Tibetan Plateau. We examined the intraspecific and interspecific variations within and among the communities, the responses of traits in terms of community weighted mean (CWM) and non-weighted mean (CM) to N addition, and the effects of these trait variations on aboveground net primary productivity (ANPP). Our results show that N addition increased the interspecific variation in H while decreasing that of LA within the community, whereas it had no significant effects on the intraspecific variations in the four traits within the community. In contrast, N addition significantly increased the intraspecific variation in H and decreased that of LA among the communities. Moreover, the contribution of intraspecific variation was greater than that of the interspecific variation in terms of CWM for all traits, while the opposite contribution was observed in terms of CM, suggesting that the dominant species would have greater resilience while subdominant species would become less resistant to N addition. Further, intraspecific variations of LA and LDMC within the community played an important role in explaining community productivity. Our results highlight the importance of both intraspecific and interspecific variations in mediating functional trait responses to N enrichment, and intraspecific variation within the communities has important implications for community functioning that should be considered to better understand and predict the responses of the alpine grasslands to N enrichment.
Collapse
Affiliation(s)
- Jialuo Yu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peili Shi
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ning Zong
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Minghua Song
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujue Miao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofang Huang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xueying Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Huixin Hei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Matos IS, McDonough S, Johnson BC, Kalantar D, Rohde J, Sahu R, Wang J, Fontao A, To J, Carlos S, Garcia L, Boakye M, Forbes H, Blonder BW. Negative allometry of leaf xylem conduit diameter and double-wall thickness: implications for implosion safety. THE NEW PHYTOLOGIST 2024; 242:2464-2478. [PMID: 38641796 DOI: 10.1111/nph.19771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Xylem conduits have lignified walls to resist crushing pressures. The thicker the double-wall (T) relative to its diameter (D), the greater the implosion safety. Having safer conduits may incur higher costs and reduced flow, while having less resistant xylem may lead to catastrophic collapse under drought. Although recent studies have shown that conduit implosion commonly occurs in leaves, little is known about how leaf xylem scales T vs D to trade off safety, flow efficiency, mechanical support, and cost. We measured T and D in > 7000 conduits of 122 species to investigate how T vs D scaling varies across clades, habitats, growth forms, leaf, and vein sizes. As conduits become wider, their double-cell walls become proportionally thinner, resulting in a negative allometry between T and D. That is, narrower conduits, which are usually subjected to more negative pressures, are proportionally safer than wider ones. Higher implosion safety (i.e. higher T/D ratios) was found in asterids, arid habitats, shrubs, small leaves, and minor veins. Despite the strong allometry, implosion safety does not clearly trade off with other measured leaf functions, suggesting that implosion safety at whole-leaf level cannot be easily predicted solely by individual conduits' anatomy.
Collapse
Affiliation(s)
- Ilaine Silveira Matos
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Samantha McDonough
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Breanna Carrillo Johnson
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Diana Kalantar
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - James Rohde
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Roshni Sahu
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Joyce Wang
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Adrian Fontao
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jason To
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sonoma Carlos
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Lisa Garcia
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mickey Boakye
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Holly Forbes
- University of California Botanical Garden, Berkeley, CA, 94720, USA
| | - Benjamin Wong Blonder
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Laurans M, Munoz F, Charles-Dominique T, Heuret P, Fortunel C, Isnard S, Sabatier SA, Caraglio Y, Violle C. Why incorporate plant architecture into trait-based ecology? Trends Ecol Evol 2024; 39:524-536. [PMID: 38212187 DOI: 10.1016/j.tree.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 01/13/2024]
Abstract
Trait-based ecology has improved our understanding of the functioning of organisms, communities, ecosystems, and beyond. However, its predictive ability remains limited as long as phenotypic integration and temporal dynamics are not considered. We highlight how the morphogenetic processes that shape the 3D development of a plant during its lifetime affect its performance. We show that the diversity of architectural traits allows us to go beyond organ-level traits in capturing the temporal and spatial dimensions of ecological niches and informing community assembly processes. Overall, we argue that consideration of multilevel topological, geometrical, and ontogenetic features provides a dynamic view of the whole-plant phenotype and a relevant framework for investigating phenotypic integration, plant adaptation and performance, and community structure and dynamics.
Collapse
Affiliation(s)
- Marilyne Laurans
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - François Munoz
- LiPhy, Université Grenoble-Alpes, CNRS, Grenoble, France
| | - Tristan Charles-Dominique
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France; CNRS UMR7618, Institute of Ecology and Environmental Sciences, Paris, Sorbonne University, Paris, France
| | - Patrick Heuret
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Claire Fortunel
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Sandrine Isnard
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Sylvie-Annabel Sabatier
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Yves Caraglio
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Cyrille Violle
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
10
|
Hu Y, Li X, Wang S, Lv P, Yue P, Chen M, Zuo X. Patterns and driving factors of functional traits of desert species with different elevational distributions in the Tibetan Plateau and adjacent areas. BMC PLANT BIOLOGY 2024; 24:371. [PMID: 38724940 PMCID: PMC11080261 DOI: 10.1186/s12870-024-05080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Variations in functional traits serve as measures of plants' ability to adapt to environment. Exploring the patterns of functional traits of desert plants along elevational gradients is helpful to understand the responses and adaptation strategies of species to changing environments. However, it is unknown whether the relationship between functional traits and elevation is affected by differences in the species' elevational distributions (elevation preference and species' range). Importantly, most researches have concerned with differences in mean trait values and ignored intraspecific trait variation. Here, we measured functional traits of desert plants along a wide elevational gradient in the Tibetan Plateau and adjacent areas and explored functional trait patterns over elevation in species with different elevational distributions. We decomposed trait variation and further investigated characterizations of intraspecific variation. Ultimately, the main drivers of trait variation were identified using redundancy analysis. We found that species' elevational distributions significantly influenced the relationship of functional traits such as plant height, leaf dry matter content, leaf thickness, leaf nitrogen and carbon content with elevation. Species with a lower elevational preference showed greater trait variation than species with a higher elevational preference, suggesting that species that prefer high elevation are more conservative facing environmental changes. We provide evidence that interspecific trait variation in leaf thickness and leaf carbon content decreased with increasing species' range, indicating that increased variations in resistance traits within species make greater responsiveness to environmental changes, enabling species a wider range. Elevation, temperature and precipitation were the main drivers of trait variation in species with a low elevational preference, while the effect of precipitation on trait variation in species with a high elevational preference was not significant. This study sheds new insights on how plants with different elevational distributions regulate their ecological strategies to cope with changing environments.
Collapse
Affiliation(s)
- Ya Hu
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou, 730000, Gansu Province, China
| | - Xiangyun Li
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou, 730000, Gansu Province, China
| | - Shaokun Wang
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou, 730000, Gansu Province, China
| | - Peng Lv
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou, 730000, Gansu Province, China
| | - Ping Yue
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou, 730000, Gansu Province, China
| | - Min Chen
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou, 730000, Gansu Province, China
| | - Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
11
|
Rodríguez-Alarcón S, Tamme R, Carmona CP. Intraspecific variation in fine-root traits is larger than in aboveground traits in European herbaceous species regardless of drought. FRONTIERS IN PLANT SCIENCE 2024; 15:1375371. [PMID: 38654904 PMCID: PMC11035731 DOI: 10.3389/fpls.2024.1375371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Differences within species (Intraspecific trait variation - ITV) contribute substantially to overall trait variability and environmental harshness can reduce among-species variation. While aboveground traits have received considerable attention, knowledge about ITV in fine-root traits and how it differs from ITV in aboveground traits remains limited. This study examined the partitioning of trait variation aboveground and fine-root traits in 52 European herbaceous species and how such proportions change in response to drought, offering valuable insights for accurate functional species characterization and inter-species comparisons. We studied seven morphological aboveground and fine-root traits under drought and well-watered conditions in a greenhouse experiment. Linear mixed effect models and permutational multivariate analysis of variance (PERMANOVA) were employed to decompose trait variation, ensuring the robustness of our results. We also calculated variance partitioning for the combination of aboveground traits and the combination of fine-root traits, as well as pairs of analogous leaf and fine-root traits (i.e., traits that fulfill similar functions) for each treatment (control and drought). Among-species trait differences explained a greater proportion of overall variance than within-species variation, except for root dry matter content (RDMC). Height and leaf area stood out, with species' identity accounting for 87-90% of total trait variation. Drought had no significant effect on the proportions of variation in any of the traits. However, the combination of fine-root traits exhibited higher intraspecific variability (44-44%) than aboveground traits (19-21%) under both drought and control. Analogous root traits also showed higher ITV (51-50%) than analogous leaf traits (27-31%). Our findings highlight substantial within-species variation and the nuanced responses of fine-root traits, particularly RDMC, suggesting root traits' flexibility to soil heterogeneity that fosters less differentiation among species. Among-species trait differences, especially aboveground, may underscore distinct strategies and competitive abilities for resource acquisition and utilization. This study contributes to elucidate the mechanisms underlying the multifunctionality of the above- and belowground plants compartments.
Collapse
Affiliation(s)
| | - Riin Tamme
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
12
|
Klimešová J, Herben T. Belowground morphology as a clue for plant response to disturbance and productivity in a temperate flora. THE NEW PHYTOLOGIST 2024; 242:61-76. [PMID: 38358032 DOI: 10.1111/nph.19584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Plants possess a large variety of nonacquisitive belowground organs, such as rhizomes, tubers, bulbs, and coarse roots. These organs determine a whole set of functions that are decisive in coping with climate, productivity, disturbance, and biotic interactions, and have been hypothesized to affect plant distribution along environmental gradients. We assembled data on belowground organ morphology for 1712 species from Central Europe and tested these hypotheses by quantifying relationships between belowground morphologies and species optima along ecological gradients related to productivity and disturbance. Furthermore, we linked these data with species co-occurrence in 30 115 vegetation plots from the Czech Republic to determine relationships between belowground organ diversity and these gradients. The strongest gradients determining belowground organ distribution were disturbance severity and frequency, light, and moisture. Nonclonal perennials and annuals occupy much smaller parts of the total environmental space than major types of clonal plants. Forest habitats had the highest diversity of co-occurring belowground morphologies; in other habitats, the diversity of belowground morphologies was generally lower than the random expectation. Our work shows that nonacquisitive belowground organs may be partly responsible for plant environmental niches. This adds a new dimension to the plant trait spectrum, currently based on acquisitive traits (leaves and fine roots) only.
Collapse
Affiliation(s)
- Jitka Klimešová
- Institute of Botany, Czech Academy of Sciences, Třeboň, CZ-379 82, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Praha 2, CZ-128 01, Czech Republic
| | - Tomáš Herben
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Praha 2, CZ-128 01, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| |
Collapse
|
13
|
Halbritter AH, Vandvik V, Cotner SH, Farfan-Rios W, Maitner BS, Michaletz ST, Oliveras Menor I, Telford RJ, Ccahuana A, Cruz R, Sallo-Bravo J, Santos-Andrade PE, Vilca-Bustamante LL, Castorena M, Chacón-Labella J, Christiansen CT, Duran SM, Egelkraut DD, Gya R, Haugum SV, Seltzer L, Silman MR, Strydom T, Spiegel MP, Barros A, Birkeli K, Boakye M, Chiappero F, Chmurzynski A, Garen JC, Gaudard J, Gauthier TLJ, Geange SR, Gonzales FN, Henn JJ, Hošková K, Isaksen A, Jessup LH, Johnson W, Kusch E, Lepley K, Lift M, Martyn TE, Muñoz Mazon M, Middleton SL, Quinteros Casaverde NL, Navarro J, Zepeda V, Ocampo-Zuleta K, Palomino-Cardenas AC, Pastor Ploskonka S, Pierfederici ME, Pinelli V, Rickenback J, Roos RE, Rui HS, Sanchez Diaz E, Sánchez-Tapia A, Smith A, Urquiaga-Flores E, von Oppen J, Enquist BJ. Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú. Sci Data 2024; 11:225. [PMID: 38383609 PMCID: PMC10881584 DOI: 10.1038/s41597-024-02980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.
Collapse
Affiliation(s)
- Aud H Halbritter
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway.
| | - Vigdis Vandvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway.
| | - Sehoya H Cotner
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - William Farfan-Rios
- Department of Biology and Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC, USA
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, Canada
| | - Imma Oliveras Menor
- AMAP, Université de Montpellier, Montpellier, France
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Richard J Telford
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Adam Ccahuana
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| | - Rudi Cruz
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Matiss Castorena
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Julia Chacón-Labella
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | - Sandra M Duran
- Department of Forest and Rangeland Stewardship, Fort Collins, CO, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - Dagmar D Egelkraut
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Ragnhild Gya
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Siri Vatsø Haugum
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Lorah Seltzer
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, Canada
| | - Miles R Silman
- Department of Biology and Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC, USA
| | - Tanya Strydom
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Marcus P Spiegel
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Agustina Barros
- Instituto Argentino de Nivología y Glaciología y Ciencias Ambientales, CONICET y Universidad Nacional de Cuyo, Mendoza, Argentina
- School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Kristine Birkeli
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Mickey Boakye
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA, USA
| | - Fernanda Chiappero
- Instituto Argentino de Nivología y Glaciología y Ciencias Ambientales, CONICET y Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Adam Chmurzynski
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Josef C Garen
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, Canada
| | - Joseph Gaudard
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Tasha-Leigh J Gauthier
- Department of Geography & Environmental Management, University of Waterloo, Waterloo Ontario, Canada
| | - Sonya R Geange
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Fiorella N Gonzales
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jonathan J Henn
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kristýna Hošková
- Department of Botany, Charles University in Prague, Praha, Czech Republic
| | - Anders Isaksen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Laura H Jessup
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | | | - Erik Kusch
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Kai Lepley
- School of Geography, Development & Environment, University of Arizona, Tucson, AZ, USA
| | - Mackenzie Lift
- School of Biological Sciences, University of Queensland, Queensland, Australia
| | - Trace E Martyn
- School of Biological Sciences, University of Queensland, Queensland, Australia
| | - Miguel Muñoz Mazon
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Sara L Middleton
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - Jocelyn Navarro
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Verónica Zepeda
- Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Korina Ocampo-Zuleta
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Universidad Austral de Chile, Santiago, Chile
| | | | - Samuel Pastor Ploskonka
- Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Maria Elisa Pierfederici
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Verónica Pinelli
- Departamento de Ecología y Gestión Ambiental, Universidad de la República, Maldonado, Uruguay
| | - Jess Rickenback
- School of Geosciences, University of Edinburgh, Edinburgh, Scotland
- Tropical Diversity, Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Ruben E Roos
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- Norwegian Institute for Nature Research, Oslo, Norway
| | - Hilde Stokland Rui
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Eugenia Sanchez Diaz
- Instituto Argentino de Nivología y Glaciología y Ciencias Ambientales, CONICET y Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrea Sánchez-Tapia
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alyssa Smith
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Erickson Urquiaga-Flores
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Pontificia Universidad Católica del Peru, Lima, Perú
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
14
|
Jeliazkov A, Chase JM. When Do Traits Tell More Than Species about a Metacommunity? A Synthesis across Ecosystems and Scales. Am Nat 2024; 203:E1-E18. [PMID: 38207141 DOI: 10.1086/727471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractLinking species traits with the variation in species assemblages across habitats has often proved useful for developing a more mechanistic understanding of species distributions in metacommunities. However, summarizing the rich tapestry of a species in all of its nuance with a few key ecological traits can also lead to an abstraction that provides less predictability than when using taxonomy alone. As a further complication, taxonomic and functional diversities can be inequitably compared, either by integrating taxonomic-level information into the calculation of how functional aspects of communities vary or by detecting spurious trait-environment relationships. To remedy this, we here synthesize analyses of 80 datasets on different taxa, ecosystems, and spatial scales that include information on abundance or presence/absence of species across sites with variable environmental conditions and the species' traits. By developing analyses that treat functional and taxonomic diversity equitably, we ask when functional diversity helps to explain metacommunity structure. We found that patterns of functional diversity explained metacommunity structure and response to environmental variation in only 25% of the datasets using a multitrait approach but up to 59% using a single-trait approach. Nevertheless, an average of only 19% (interquartile range = 0%-29%) of the traits showed a significant signal across environmental gradients. Species-level traits, as typically collected and analyzed through functional diversity patterns, often do not bring predictive advantages over what the taxonomic information already holds. While our assessment of a limited advantage of using traits to explain variation in species assemblages was largely true across ecosystems, traits played a more useful role in explaining variation when many traits were used and when trait constructs were more related to species' status, life history, and mobility. We propose future research directions to make trait-based approaches and data more helpful for inference in metacommunity ecology.
Collapse
|
15
|
González-Melo A, Posada JM, Beauchêne J, Lehnebach R, Levionnois S, Derroire G, Clair B. The links between wood traits and species demography change during tree development in a lowland tropical rainforest. AOB PLANTS 2024; 16:plad090. [PMID: 38249523 PMCID: PMC10799319 DOI: 10.1093/aobpla/plad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
One foundational assumption of trait-based ecology is that traits can predict species demography. However, the links between traits and demographic rates are, in general, not as strong as expected. These weak associations may be due to the use of traits that are distantly related to performance, and/or the lack of consideration of size-related variations in both traits and demographic rates. Here, we examined how wood traits were related to demographic rates in 19 tree species from a lowland forest in eastern Amazonia. We measured 11 wood traits (i.e. structural, anatomical and chemical traits) in sapling, juvenile and adult wood; and related them to growth and mortality rates (MR) at different ontogenetic stages. The links between wood traits and demographic rates changed during tree development. At the sapling stage, relative growth rates (RGR) were negatively related to wood specific gravity (WSG) and total parenchyma fractions, while MR decreased with radial parenchyma fractions, but increased with vessel lumen area (VA). Juvenile RGR were unrelated to wood traits, whereas juvenile MR were negatively related to WSG and axial parenchyma fractions. At the adult stage, RGR scaled with VA and wood potassium concentrations. Adult MR were not predicted by any trait. Overall, the strength of the trait-demography associations decreased at later ontogenetic stages. Our results indicate that the associations between traits and demographic rates can change as trees age. Also, wood chemical or anatomical traits may be better predictors of growth and MR than WSG. Our findings are important to expand our knowledge on tree life-history variations and community dynamics in tropical forests, by broadening our understanding on the links between wood traits and demography during tree development.
Collapse
Affiliation(s)
- Andrés González-Melo
- Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Avenida carrera 24 # 63C-69. Bogotá, Colombia
| | - Juan Manuel Posada
- Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Avenida carrera 24 # 63C-69. Bogotá, Colombia
| | - Jacques Beauchêne
- CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRAE, Université des Antilles, Université de Guyane, 97337, France
| | - Romain Lehnebach
- CNRS, Laboratory of Botany and Modeling of Plant Architecture and Vegetation (UMR AMAP), 34398 Montpellier, France
| | - Sébastian Levionnois
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université des Antilles, Universite de Guyane, Kourou, 97310France
| | - Géraldine Derroire
- CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRAE, Université des Antilles, Université de Guyane, 97337, France
| | - Bruno Clair
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université des Antilles, Universite de Guyane, Kourou, 97310France
- Laboratoire de Mécanique de Génie Civil (LMGC), CNRS, Université de Montpellier, 34000, France
| |
Collapse
|
16
|
Markgraf R, Doyon F, Delagrange S, Kneeshaw D. Biomass allocation and plant morphology explain the difference in shrub species abundance in a temperate forest. Ecol Evol 2023; 13:e10774. [PMID: 38053791 PMCID: PMC10694385 DOI: 10.1002/ece3.10774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
In forested ecosystems, shrubs must succeed in persisting in low-light environments, while simultaneously having the ability to rapidly expand and occupy newly created canopy openings, yet little is known about the traits that make this possible. We hypothesize that shrub species that are abundant in the understory exhibit a specific set of functional traits that define their ability to persist during unfavorable periods and to rapidly exploit newly created habitats. We tested this by comparing field-measured functional traits such as biomass allocation, leaf display, crown morphology, and leaf traits, across individual size classes and two gap-forest environments of five shrub species. We observed significant differences in traits between species, size classes, and gap-forest environments. These differences were primarily related to biomass allocation traits, followed by leaf display, crown morphology, and leaf traits. Abundant shrubs like mountain maple (Acer spicatum) and hazelnut (Corylus cornuta) invested significantly more biomass in roots, had a larger total leaf area, and displayed leaves in a more efficient manner to intercept light. The high investment in root biomass can be interpreted as shrubs exploiting the persistence and colonization strategy through resprouting. Permanent sub-canopy status likely explains the importance of efficient leaf display, wherein abundant shrubs had a large leaf area with minimal support structures.
Collapse
Affiliation(s)
- Rudiger Markgraf
- Département des sciences biologiquesUniversité du Québec à Montréal, UQAMMontréalQuebecCanada
| | - Frédérik Doyon
- Département des Sciences NaturellesUniversité du Québec en Outaouais, UQOGatineauQuebecCanada
- Institut des Sciences de la Forêt Tempérée, ISFORTRiponQuebecCanada
| | - Sylvain Delagrange
- Département des Sciences NaturellesUniversité du Québec en Outaouais, UQOGatineauQuebecCanada
- Institut des Sciences de la Forêt Tempérée, ISFORTRiponQuebecCanada
| | - Daniel Kneeshaw
- Département des sciences biologiquesUniversité du Québec à Montréal, UQAMMontréalQuebecCanada
| |
Collapse
|
17
|
Lerdau MT, Monson RK, Ehleringer JR. The carbon balance of plants: economics, optimization, and trait spectra in a historical perspective. Oecologia 2023; 203:297-310. [PMID: 37874360 DOI: 10.1007/s00442-023-05458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023]
Abstract
Over fifty years have passed since the publication of Harold Mooney's formative paper, "The Carbon Balance of Plants" on pages 315-346 of Volume 3 (1972) of Annual Review of Ecology and Systematics. Arguably, the conceptual framework presented in that paper, and the work by Mooney and his students leading up to the paper, provided the foundational principles from which core disciplines emerged in plant economic theory, functional trait theory and, more generally, plant physiological ecology. Here, we revisit the primary impacts of those early discoveries to understand how researchers constructed major concepts in our understanding of plant adaptations, and where those concepts are likely to take us in the near future. The discipline of functional trait ecology, which is rooted in the principles of evolutionary and economic optimization, has captured the imagination of the plant physiological ecology research community, though its emphasis has shifted toward predicting species distributions and ecological roles across resource gradients. In the face of 'big-data' research pursuits that are revealing trait expression patterns at the cellular level and mass and energy exchange patterns at the planetary scale, an opportunity exists to reconnect the principles of plant carbon balance and evolutionary optimization with trait origins at the genetic and cellular scales and trait impacts at the global scale.
Collapse
Affiliation(s)
- Manuel T Lerdau
- Departments of Environmental Sciences and of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - James R Ehleringer
- Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
18
|
Lemoine T, Violle C, Montazeaud G, Isaac ME, Rocher A, Fréville H, Fort F. Plant trait relationships are maintained within a major crop species: lack of artificial selection signal and potential for improved agronomic performance. THE NEW PHYTOLOGIST 2023; 240:2227-2238. [PMID: 37771248 DOI: 10.1111/nph.19279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
The exploration of phenotypic spaces of large sets of plant species has considerably increased our understanding of diversification processes in the plant kingdom. Nevertheless, such advances have predominantly relied on interspecific comparisons that hold several limitations. Here, we grew in the field a unique set of 179 inbred lines of durum wheat, Triticum turgidum spp. durum, characterized by variable degrees of artificial selection. We measured aboveground and belowground traits as well as agronomic traits to explore the functional and agronomic trait spaces and to investigate trait-to-agronomic performance relationships. We showed that the wheat functional trait space shared commonalities with global cross-species spaces previously described, with two main axes of variation: a root foraging axis and a slow-fast trade-off axis. Moreover, we detected a clear signature of artificial selection on the variation of agronomic traits, unlike functional traits. Interestingly, we identified alternative phenotypic combinations that can optimize crop performance. Our work brings insightful knowledge about the structure of phenotypic spaces of domesticated plants and the maintenance of phenotypic trade-offs in response to artificial selection, with implications for trade-off-free and multi-criteria selection in plant breeding.
Collapse
Affiliation(s)
- Taïna Lemoine
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Germain Montazeaud
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Marney E Isaac
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, M1C 1A4, ON, Canada
| | - Aline Rocher
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France
| | - Hélène Fréville
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France
| | - Florian Fort
- CEFE, Univ Montpellier, Institut Agro, CNRS, EPHE, IRD, Montpellier, 34000, France
| |
Collapse
|
19
|
Wei B, Zhang D, Wang G, Liu Y, Li Q, Zheng Z, Yang G, Peng Y, Niu K, Yang Y. Experimental warming altered plant functional traits and their coordination in a permafrost ecosystem. THE NEW PHYTOLOGIST 2023; 240:1802-1816. [PMID: 37434301 DOI: 10.1111/nph.19115] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Knowledge about changes in plant functional traits is valuable for the mechanistic understanding of warming effects on ecosystem functions. However, observations have tended to focus on aboveground plant traits, and there is little information about changes in belowground plant traits or the coordination of above- and belowground traits under climate warming, particularly in permafrost ecosystems. Based on a 7-yr field warming experiment, we measured 26 above- and belowground plant traits of four dominant species, and explored community functional composition and trait networks in response to experimental warming in a permafrost ecosystem on the Tibetan Plateau. Experimental warming shifted community-level functional traits toward more acquisitive values, with earlier green-up, greater plant height, larger leaves, higher photosynthetic resource-use efficiency, thinner roots, and greater specific root length and root nutrient concentrations. However, warming had a negligible effect in terms of functional diversity. In addition, warming shifted hub traits which have the highest centrality in the network from specific root area to leaf area. These results demonstrate that above- and belowground traits exhibit consistent adaptive strategies, with more acquisitive traits in warmer environments. Such changes could provide an adaptive advantage for plants in response to environmental change.
Collapse
Affiliation(s)
- Bin Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guanqin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qinlu Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihu Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kechang Niu
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Locqueville J, Violle C, McKey D, Caillon S, Coq S. A feedback loop between management, intraspecific trait variation and harvesting practices. AOB PLANTS 2023; 15:plad077. [PMID: 38046405 PMCID: PMC10691405 DOI: 10.1093/aobpla/plad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Intraspecific variation in plants is a major ecological mechanism whose local determinants are still poorly understood. In particular, the relationship between this variation and human practices may be key to understanding human-nature relationships. We argue that it is necessary to consider how human practices both influence and depend on the phenotypic variability of species of interest. Arnica montana (arnica) is a good model to study the complex interactions between human actions and plant phenotype, as (i) its ecological niche is shaped by human management actions and (ii) its variability has consequences for harvesters. Using a functional trait approach, we examined feedback loops linking management actions, plant phenotype and harvesting practices. In 27 sites in southeastern France, we measured vegetative and reproductive functional traits of arnica of interest for harvesters, and recorded management actions (grazing; mowing) and ecological variables (including height of surrounding vegetation and tree cover). We examined their effects on plant traits with linear mixed models and used path analysis to test if the effects of human management on traits are mediated by the height of surrounding vegetation. Management actions affected functional traits of arnica. Biomass removal practices (grazing, mowing) were associated with smaller plants producing smaller leaves with reduced specific leaf area. We uncovered the core role of the height of surrounding vegetation in determining this phenotype. Tree cover was associated with reduced flowering. The observed intraspecific variation in response to management actions differentially impacts the two main harvesting practices. Flower-head harvesting depends on reproductive traits that are not impacted by mowing (which is done in winter) but adversely affected by tree cover. In contrast, traits associated with large biomass under tree cover or with high surrounding vegetation are favourable for whole-plant harvesters. Our trait-based approach unveiled clear links between management actions and plant phenotype, with impacts on both vegetative and reproductive traits. These changes induced by management also affect the practices of harvesters. We thus demonstrated a feedback loop between human actions and plant phenotype and provided a novel perspective on human-related causes and consequences of plant intraspecific variability.
Collapse
Affiliation(s)
- Jonathan Locqueville
- Centre d'Ecologie Fonctionnelle et Evolutive, Univ Montpellier, CNRS EPHE, IRD, Montpellier 34293, France
| | - Cyrille Violle
- Centre d'Ecologie Fonctionnelle et Evolutive, Univ Montpellier, CNRS EPHE, IRD, Montpellier 34293, France
| | - Doyle McKey
- Centre d'Ecologie Fonctionnelle et Evolutive, Univ Montpellier, CNRS EPHE, IRD, Montpellier 34293, France
| | - Sophie Caillon
- Centre d'Ecologie Fonctionnelle et Evolutive, Univ Montpellier, CNRS EPHE, IRD, Montpellier 34293, France
| | - Sylvain Coq
- Centre d'Ecologie Fonctionnelle et Evolutive, Univ Montpellier, CNRS EPHE, IRD, Montpellier 34293, France
| |
Collapse
|
21
|
Jaeger FC, Handa IT, Paquette A, Parker WC, Messier C. Young temperate tree species show different fine root acclimation capacity to growing season water availability. PLANT AND SOIL 2023; 496:485-504. [PMID: 38510944 PMCID: PMC10948563 DOI: 10.1007/s11104-023-06377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 03/22/2024]
Abstract
Background and aims Changes in water availability during the growing season are becoming more frequent due to climate change. Our study aimed to compare the fine-root acclimation capacity (plasticity) of six temperate tree species aged six years and exposed to high or low growing season soil water availability over five years. Methods Root samples were collected from the five upper strata of mineral soil to a total soil depth of 30 cm in monoculture plots of Acer saccharum Marsh., Betula papyrifera Marsh., Larix laricina K. Koch, Pinus strobus L., Picea glauca (Moench) Voss and Quercus rubra L. established at the International Diversity Experiment Network with Trees (IDENT) field experiment in Sault Ste. Marie, Ontario, Canada. Four replicates of each monoculture were subjected to high or low water availability treatments. Results Absorptive fine root density increased by 67% for Larix laricina, and 90% for Picea glauca, under the high-water availability treatment at 0-5 cm soil depth. The two late successional, slower growing tree species, Acer saccharum and Picea glauca, showed higher plasticity in absorptive fine root biomass in the upper 5 cm of soil (PIv = 0.36 & 0.54 respectively), and lower plasticity in fine root depth over the entire 30 cm soil profile compared to the early successional, faster growing tree species Betula papyrifera and Larix laricina. Conclusion Temperate tree species show contrasting acclimation responses in absorptive fine root biomass and rooting depth to differences in water availability. Some of these responses vary with tree species successional status and seem to benefit both early and late successional tree species. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06377-w.
Collapse
Affiliation(s)
- Florentin C. Jaeger
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - I. Tanya Handa
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - Alain Paquette
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - William C. Parker
- Forest Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, ON Canada
| | - Christian Messier
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
- Institut des Sciences de La Forêt tempérée, Université du Québec en Outaouais, Ripon, Canada
| |
Collapse
|
22
|
Castro Sánchez-Bermejo P, Davrinche A, Matesanz S, Harpole WS, Haider S. Within-individual leaf trait variation increases with phenotypic integration in a subtropical tree diversity experiment. THE NEW PHYTOLOGIST 2023; 240:1390-1404. [PMID: 37710419 DOI: 10.1111/nph.19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Covariation of plant functional traits, that is, phenotypic integration, might constrain their variability. This was observed for inter- and intraspecific variation, but there is no evidence of a relationship between phenotypic integration and the functional variation within single plants (within-individual trait variation; WTV), which could be key to understand the extent of WTV in contexts like plant-plant interactions. We studied the relationship between WTV and phenotypic integration in c. 500 trees of 21 species in planted forest patches varying in species richness in subtropical China. Using visible and near-infrared spectroscopy (Vis-NIRS), we measured nine leaf morphological and chemical traits. For each tree, we assessed metrics of single and multitrait variation to assess WTV, and we used plant trait network properties based on trait correlations to quantify phenotypic integration. Against expectations, strong phenotypic integration within a tree led to greater variation across leaves. Not only this was true for single traits, but also the dispersion in a tree's multitrait hypervolume was positively associated with tree's phenotypic integration. Surprisingly, we only detected weak influence of the surrounding tree-species diversity on these relationships. Our study suggests that integrated phenotypes allow the variability of leaf phenotypes within the organism and supports that phenotypic integration prevents maladaptive variation.
Collapse
Affiliation(s)
- Pablo Castro Sánchez-Bermejo
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
| | - Andréa Davrinche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Research Centre for Ecological Change (REC), Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - Silvia Matesanz
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química inorgánica, ESCET, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
| | - W Stanley Harpole
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04103, Germany
| | - Sylvia Haider
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Leuphana University of Lüneburg, Institute of Ecology, Lüneburg, 21335, Germany
| |
Collapse
|
23
|
Wang J, Zhao W, Xu Z, Ding J, Yan Y, Sofia Santos Ferreira C. Plant functional traits explain long-term differences in ecosystem services between artificial forests and natural grasslands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118853. [PMID: 37660423 DOI: 10.1016/j.jenvman.2023.118853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Declining ecosystem services have prompted numerous studies aiming at developing more sustainable management practices for vegetation restoration. Advances in functional ecology indicate that the sustainable management of afforestation ecosystems should be performed based on plant functional traits, which provides pivotal knowledge for long-term sustainable vegetation restoration. Currently, the mechanism of how plant functional traits affect long term ecosystem services in restored areas is still unclear. This study investigates plant functional traits and the associated ecosystem services from artificial forestlands (Robinia pseudoacacia, Caragana korshinskii) and natural grasslands following different durations of vegetation restoration (10, 20, 30 and 40 years) in the Danangou watershed, a loess hilly-gully region in the Loess Plateau, China. The results showed that 1) the water conservation services of artificial forestlands first decreased and then increased over time, whereas the soil conservation service had an opposite trend; in turn, natural grassland led to a consistent increase in soil conservation and carbon sequestration services over time. 2) Artificial forestlands had greater soil conservation and carbon sequestration services than natural grassland but had lower water conservation services. 3) Leaves had a greater impact on carbon sequestration and water conservation services than did root length and root biomass density. 4) Root biomass density had a greater effect on soil conservation services than did leaf carbon content and soil organic matter. 5) Leaf carbon content, specific root length, and root biomass density had significant effects on the trade-off value between any two ecosystem services with increasing time after restoration of artificial forestland. 6) Specific leaf area had a greater effect on the trade-off values among the three services than did the other functional traits in the natural grassland. In arid ecosystems, natural grasslands are the best restoration strategy given their higher water conservation services. However, in soil erosion-affected areas, restoration through artificial forestlands is more appropriate. To mitigate the trade-offs between ecosystem services, it is recommended that artificial forestlands be thinned before the leaf carbon content, specific root length, and root biomass density reach a maximum (i.e., mature forestland).
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; College of Water Sciences, Beijing Normal University, Beijing, 100083, China
| | - Wenwu Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Zongxue Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100083, China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing, 100875, China
| | - Jingyi Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yue Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Carla Sofia Santos Ferreira
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm SE, 10691, Sweden; Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Coimbra Agrarian Technical School, Coimbra, Portugal
| |
Collapse
|
24
|
Akram MA, Wang X, Shrestha N, Zhang Y, Sun Y, Yao S, Li J, Hou Q, Hu W, Ran J, Deng J. Variations and driving factors of leaf functional traits in the dominant desert plant species along an environmental gradient in the drylands of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165394. [PMID: 37437630 DOI: 10.1016/j.scitotenv.2023.165394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Leaf functional traits (LFTs) of desert plants are responsive, adaptable and highly plastic to their environment. However, the macroscale variation in LFTs and driving factors underlying this variation remain unclear, especially for desert plants. Here, we measured eight LFTs, including leaf carbon concentration (LCC), leaf nitrogen concentration (LNC), leaf phosphorus concentration (LPC), specific leaf area (SLA), leaf dry matter content (LDMC), leaf mass per area (LMA), leaf thickness (LTH) and leaf tissue density (LTD) across 114 sites along environmental gradient in the drylands of China and in Guazhou Common Garden and evaluated the effect of environment and phylogeny on the LFTs. We noted that for all species, the mean values of LCC, LNC, LPC, SLA, LDMC, LMA, LTH and LTD were 384.62 mg g-1, 19.91 mg g-1, 1.12 mg g-1, 79.62 cm2 g-1, 0.74 g g-1, 237.39 g m-2, 0.38 mm and 0.91 g cm-3, respectively. LFTs exhibited significant geographical variations and the LNC, LMA and LTH in the plants of Guazhou Common Garden were significantly higher than the field sites in the drylands of China. LDMC and LTD of plants in Guazhou Common Garden were, however, considerably lower than those in the drylands of China. LCC, LPC, LTH and LTD differed significantly among different plant lifeforms, while LNC, SLA, LDMC and LMA didn't show significant variations. We found that the environmental variables explained higher spatial variations (3.6-66.3 %) in LFTs than the phylogeny (1.8-54.2 %). The LCC significantly increased, while LDMC and LTD decreased with increased temperature and reduced precipitation. LPC, LDMC, LMA, and LTD significantly increased, while SLA and LTH decreased with increased aridity. However, leaf elements were not significantly correlated with soil nutrients. The mean annual precipitation was a key factor controlling variations in LFTs at the macroscale in the drylands of China. These findings will provide new insights to better understand the response of LFTs and plants adaptation along environmental gradient in drylands, and will serve as a reference for studying biogeographic patterns of leaf traits.
Collapse
Affiliation(s)
- Muhammad Adnan Akram
- School of Economics, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoting Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Nawal Shrestha
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yahui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shuran Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jinhui Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qingqing Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jinzhi Ran
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jianming Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
25
|
Yao K, Zhang A, Rang B, Yang J, Liu Y, Wu Y. Hydrological niche regulation induced by different resistance strategies facilitates coexistence of P. longipes and L. communis under drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14072. [PMID: 38148219 DOI: 10.1111/ppl.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/14/2023] [Indexed: 12/28/2023]
Abstract
Under global warming, the availability of water resources is one of the most important factors affecting trait evolution and plant species distribution across terrestrial ecosystems, and the relationships between drought resistance strategies and the hydrological niche characteristics of plants are worth studying. We continuously monitored physiological drought response parameters such as gs , Tr , proline, soluble sugar, gene expression and activities of SOD, POD, and CAT to assess drought resistance strategies of Platycarya longipes and Lindera communis; determined plant soil hydrological niche separation by stable H and O isotope analysis; and analysed the effects of interspecific water competition by comparing the differences in morphological and physiological parameters between solo and mixed planting. Under drought stress, L. communis exhibited a drought avoidance strategy, and P. longipes exhibited a drought tolerance strategy. L. communis utilized the water within the shallow soil layer, while P. longipes mainly utilized the water in the deeper soil layer; there were fewer parameters with significant differences between the solo planting and the mixed planting of L. communis compared to P. longipes. Overall, P. longipes benefited from coexistence with L. communis under drought stress, which may be because L. communis employs a drought avoidance strategy, reducing soil water consumption in the drought environment. These results suggested that differences in functional traits or resistance strategies among species benefit species' coexistence in a community under drought stress.
Collapse
Affiliation(s)
- Kai Yao
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Aoli Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Bo Rang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Junting Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Yingliang Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Yanyou Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China
| |
Collapse
|
26
|
Liu C, Sack L, Li Y, Zhang J, Yu K, Zhang Q, He N, Yu G. Relationships of stomatal morphology to the environment across plant communities. Nat Commun 2023; 14:6629. [PMID: 37857672 PMCID: PMC10587080 DOI: 10.1038/s41467-023-42136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
The relationship between stomatal traits and environmental drivers across plant communities has important implications for ecosystem carbon and water fluxes, but it has remained unclear. Here, we measure the stomatal morphology of 4492 species-site combinations in 340 vegetation plots across China and calculate their community-weighted values for mean, variance, skewness, and kurtosis. We demonstrate a trade-off between stomatal density and size at the community level. The community-weighted mean and variance of stomatal density are mainly associated with precipitation, while that of stomatal size is mainly associated with temperature, and the skewness and kurtosis of stomatal traits are less related to climatic and soil variables. Beyond mean climate variables, stomatal trait moments also vary with climatic seasonality and extreme conditions. Our findings extend the knowledge of stomatal trait-environment relationships to the ecosystem scale, with applications in predicting future water and carbon cycles.
Collapse
Affiliation(s)
- Congcong Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, 100081, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, 100081, Beijing, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90025, USA
| | - Ying Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jiahui Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - Kailiang Yu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, 08540, USA
| | - Qiongyu Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China.
- Center for Ecological Research, Northeast Forestry University, 150040, Harbin, China.
- Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of Sciences, 165200, Daxing'anling, China.
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
27
|
Kassout J, Hmimsa Y, Fatehi SE, Kadaoui K, Houssni M, Chakkour S, Sahli A, El Chami MA, Ariza-Mateos D, Palacios-Rodríguez G, Navarro-Cerrillo RM, Ater M. Aridity Gradients Shape Intraspecific Variability of Morphological Traits in Native Ceratonia siliqua L. of Morocco. PLANTS (BASEL, SWITZERLAND) 2023; 12:3447. [PMID: 37836187 PMCID: PMC10575131 DOI: 10.3390/plants12193447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The carob tree (Ceratonia siliqua L.) is a significant fruit tree in the Mediterranean region with cultural, biological, and ecological importance. Despite its importance, intraspecific trait variability (ITV) in carob trees has been largely overlooked in previous studies. Understanding ITV and its relationship with environmental conditions is crucial for conservation and breeding programs. In this study, we investigated the variability of carob pod and seed-related traits across different ecological scales in 25 studied populations in Morocco. Significant differences in morphological traits were observed between carob populations at various ecological levels, and pod-related traits exhibited greater variability than seed traits. Correlation analysis revealed strong associations between carob morphological traits and environmental conditions, with altitude and aridity index playing an influential role. The aridity gradient was strongly related to changes in pod size, seed number, and size, as well as seed yield. Our findings highlight an important ITV reaching 45% at the intra-population level, 36.5% at the inter-geographic level, and 30% at the inter-population level. Overall, this study contributes valuable insights into the ecology and adaptation of carob trees, emphasizing the importance of considering intraspecific variability when studying this remarkable species. This knowledge is critical for addressing the challenges posed by climate change and human activities on the long-term survival and ecological functioning of carob populations.
Collapse
Affiliation(s)
- Jalal Kassout
- Regional Center of Agricultural Research of Marrakech, National Institute of Agricultural Research, Avenue Ennasr, P.O. Box 415, Rabat Principale, Rabat 10090, Morocco
| | - Younes Hmimsa
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
- TEDAEEP Team Research, Polydisciplinary Faculty of Larache (FPL), University of Abdelmalek Essaâdi, P.O. Box 745, Larache 92000, Morocco
| | - Salama El Fatehi
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
- TEDAEEP Team Research, Polydisciplinary Faculty of Larache (FPL), University of Abdelmalek Essaâdi, P.O. Box 745, Larache 92000, Morocco
| | - Khalil Kadaoui
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Mhammad Houssni
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Soufian Chakkour
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Abdelouahab Sahli
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Mohamad Ali El Chami
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - David Ariza-Mateos
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - Guillermo Palacios-Rodríguez
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - Rafael M. Navarro-Cerrillo
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - Mohamed Ater
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| |
Collapse
|
28
|
Cortés-Gómez AM, González-Chaves A, Urbina-Cardona N, Garibaldi LA. Functional Traits in Bees: the Role of Body Size and Hairs in the Pollination of a Passiflora Crop. NEOTROPICAL ENTOMOLOGY 2023:10.1007/s13744-023-01058-w. [PMID: 37493880 PMCID: PMC10390375 DOI: 10.1007/s13744-023-01058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 05/29/2023] [Indexed: 07/27/2023]
Abstract
Pollination is a vitally important function in nature and becomes an ecosystem service because it influences the food and nutritional security for people. However, the contribution of different functional traits of insects for pollen transport of plants is still poorly known. We explore the relationship between pollinator insect functional traits and the transport of pollen of sweet granadilla (Passiflora ligularis Juss) in eight crops. We sampled flower-visiting insects of this crop and recorded 10 functional traits (five by direct measurements and five from the literature) that were related to the amount of pollen carried by each insect. Bees (Apidae) were not only the most abundant insects but also the ones that loaded the highest amounts of pollen. Within these, the most abundant species was the exotic common honeybee (Apis mellifera (Linnaeus)) making up almost half of the specimens collected; however, this bee carried less pollen grains than other native bees. Bombus hortulanus (Smith) was one of the large-bodied native bees that carried more sweet granadilla pollen, despite not being an abundant species in the community. Body size was the most important trait determining the transport of sweet granadilla pollen, while the traits related to body hairs were not significant for the body's pollen load. None of the functional traits evaluated was influenced by taxonomy at species-level. Our results suggest that large body sizes in bees are the most important traits in granadilla pollen transport, regardless of other changes in composition and structure of pollinating insect assemblages in the crop.
Collapse
Affiliation(s)
- Angela M Cortés-Gómez
- Facultad de Estudios Ambientales y Rurales, Pontificia Univ Javeriana, Bogotá, Colombia.
| | | | | | - Lucas A Garibaldi
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Univ Nacional de Rio Negro, Bariloche, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Agroecología y Desarrollo Rural, Instituto de Investigaciones en Recursos Naturales, Río Negro, Argentina
| |
Collapse
|
29
|
García Criado M, Myers-Smith IH, Bjorkman AD, Normand S, Blach-Overgaard A, Thomas HJD, Eskelinen A, Happonen K, Alatalo JM, Anadon-Rosell A, Aubin I, Te Beest M, Betway-May KR, Blok D, Buras A, Cerabolini BEL, Christie K, Cornelissen JHC, Forbes BC, Frei ER, Grogan P, Hermanutz L, Hollister RD, Hudson J, Iturrate-Garcia M, Kaarlejärvi E, Kleyer M, Lamarque LJ, Lembrechts JJ, Lévesque E, Luoto M, Macek P, May JL, Prevéy JS, Schaepman-Strub G, Sheremetiev SN, Siegwart Collier L, Soudzilovskaia NA, Trant A, Venn SE, Virkkala AM. Plant traits poorly predict winner and loser shrub species in a warming tundra biome. Nat Commun 2023; 14:3837. [PMID: 37380662 DOI: 10.1038/s41467-023-39573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces.
Collapse
Affiliation(s)
| | | | - Anne D Bjorkman
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Signe Normand
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Haydn J D Thomas
- School of GeoSciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Anu Eskelinen
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Konsta Happonen
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Alba Anadon-Rosell
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Isabelle Aubin
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste Marie, ON, Canada
| | - Mariska Te Beest
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
- Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth, South Africa
| | | | - Daan Blok
- Dutch Research Council (NWO), The Hague, The Netherlands
| | - Allan Buras
- Land Surface-Atmosphere Interactions, School of Life Sciences Weihenstephan, Freising, Germany
| | - Bruno E L Cerabolini
- Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Katherine Christie
- Threatened, Endangered, and Diversity Program, Alaska Department of Fish and Game, Anchorage, USA
| | - J Hans C Cornelissen
- Section Systems Ecology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam, The Netherlands
| | - Bruce C Forbes
- Arctic Centre, University of Lapland, Rovaniemi, Finland
| | - Esther R Frei
- WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
- Climate Change and Extremes in Alpine Regions Research Centre CERC, Davos, Switzerland
| | - Paul Grogan
- Department of Biology, Queen's University, Kingston, Ontario, ON, Canada
| | - Luise Hermanutz
- Department of Biology, Memorial University, St. John's, NL, Canada
| | | | - James Hudson
- Government of British Columbia, Vancouver, BC, Canada
| | - Maitane Iturrate-Garcia
- Department of Chemical and Biological Metrology, Federal Institute of Metrology METAS, Bern-Wabern, Switzerland
| | - Elina Kaarlejärvi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Michael Kleyer
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Laurent J Lamarque
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Jonas J Lembrechts
- Research Group Plants and Ecosystems (PLECO), University of Antwerp, Wilrijk, Belgium
| | - Esther Lévesque
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Miska Luoto
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Petr Macek
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jeremy L May
- Department of Biological Sciences, Florida International University, Miami, FL, USA
- Department of Biology and Environmental Science, Marietta College, Marietta, OH, USA
| | - Janet S Prevéy
- WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
- U.S. Geological Survey, Fort Collins, CO, USA
| | - Gabriela Schaepman-Strub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Laura Siegwart Collier
- Department of Biology, Memorial University, St. John's, NL, Canada
- Terra Nova National Park, Parks Canada Agency, Glovertown, NL, Canada
| | | | - Andrew Trant
- School of Environment, Resources and Sustainability, University of Waterloo, Waterloo, ON, Canada
| | - Susanna E Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Anna-Maria Virkkala
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Woodwell Climate Research Center, Falmouth, MA, USA
| |
Collapse
|
30
|
Cheplick GP. Spatiotemporal variation of chasmogamy and cleistogamy in a native perennial grass: fecundity, reproductive allocation and allometry. AOB PLANTS 2023; 15:plad020. [PMID: 37197713 PMCID: PMC10184453 DOI: 10.1093/aobpla/plad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
It is difficult to assess the relative variability or stability of chasmogamous (CH) and cleistogamous (CL) reproduction in perennial herbs with mixed mating because long-term data in natural populations are unavailable. Here, the aim was to quantify and compare spatial (between-habitat) and temporal (among-year) variation in CH and CL reproduction over 5 years in two subpopulations of the native perennial grass Danthonia compressa. This species produces CH spikelets on terminal panicles in early summer, while axillary CL spikelets, including a basal cleistogene, mature into the autumn. Flowering tillers were collected from a sunny woodland edge and an adjacent shady interior habitat for 5 consecutive years (2017-21). Seed set, fecundity, seed mass and biomass allocation were recorded for the two floral types along with tiller vegetative mass. Bivariate line fitting was used for allometric analysis of CH and CL fecundity. Seed set, fecundity, mass per seed and allocation to seeds differed between floral types and showed significant variation between habitats and among years. Seed set and fecundity in CH panicles were greater than that of axillary CL panicles in most years. Tiller mass positively affected axillary CL seed production and mass of the basal cleistogene. Fecundity and allocation among years were more variable for CH compared to CL reproduction. High seed set and fecundity of CH spikelets suggest that pollination does not limit reproduction via chasmogamy. Late maturation of axillary CL spikelets provides additional fecundity, especially in larger plants along sunny woodland edges. The heavy cleistogene at the tiller base could be important to population persistence, analogous to the axillary bud bank of other perennial grasses that are not cleistogamous. The spatiotemporal stability of CL reproduction underscores the ecological significance of cleistogamy to reproductive fitness.
Collapse
|
31
|
Assaeed AM, Dar BA, Al-Doss AA, Al-Rowaily SL, Malik JA, Abd-ElGawad AM. Phenotypic Plasticity Strategy of Aeluropus lagopoides Grass in Response to Heterogenous Saline Habitats. BIOLOGY 2023; 12:biology12040553. [PMID: 37106753 PMCID: PMC10135548 DOI: 10.3390/biology12040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Understanding the response variation of morphological parameters and biomass allocation of plants in heterogeneous saline environments is helpful in evaluating the internal correlation between plant phenotypic plasticity mechanism and biomass allocation. The plasticity of plants alters the interaction among individuals and their environment and consequently affects the population dynamics and aspects of community and ecosystem functioning. The current study aimed to assess the plasticity of Aeluropus lagopoides traits with variation in saline habitats. Understanding the habitat stress tolerance strategy of A. lagopoides is of great significance since it is one of the highly palatable forage grass in the summer period. Five different saline flat regions (coastal and inland) within Saudi Arabia were targeted, and the soil, as well as the morphological and physiological traits of A. lagopoides, were assessed. Comprehensive correlation analyses were performed to correlate the traits with soil, region, or among each other. The soil analysis revealed significant variation among the five studied regions for all measured parameters, as well as among the soil layers showing the highest values in the upper layer and decreased with the depth. Significant differences were determined for all tested parameters of the morphological and reproductive traits as well as for the biomass allocation of A. lagopoides, except for the leaf thickness. In the highly saline region, Qaseem, A. lagopoides showed stunted aerial growth, high root/shoot ratio, improved root development, and high biomass allocation. In contrast, the populations growing in the low saline region (Jizan) showed the opposite trend. Under the more stressful condition, like in Qaseem and Salwa, A. lagopoides produce low spikes in biomass and seeds per plant, compared to the lowest saline habitats, such as Jouf. There was no significant difference in physiological parameters except stomatal conductance (gs), which is highest in the Jizan region. In conclusion, the population of A. lagopoides is tolerant of harsh environments through phenotypic plasticity. This could be a candidate species to rehabilitate the saline habitats, considering saline agriculture and saline soil remediation.
Collapse
Affiliation(s)
- Abdulaziz M Assaeed
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Basharat A Dar
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Doss
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saud L Al-Rowaily
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jahangir A Malik
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Abd-ElGawad
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
32
|
Bondi L, de Paula LFA, Rosado BHP, Porembski S. Demystifying the convergent ecological specialization of desiccation-tolerant vascular plants for water deficit. ANNALS OF BOTANY 2023; 131:521-531. [PMID: 36655617 PMCID: PMC10072101 DOI: 10.1093/aob/mcad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Desiccation-tolerant vascular plants (DT plants) are able to tolerate the desiccation of their vegetative tissues; as a result, two untested paradigms can be found in the literature, despite contradictions to theoretical premises and empirical findings. First, it is widely accepted that DT plants form a convergent group of specialist plants to water deficit conditions. A derived paradigm is that DT plants are placed at the extreme end of stress tolerance. Here, we tested the hypotheses that DT plants (1) are in fact convergent specialists for water deficit conditions and (2) exhibit ecological strategies related to stress tolerance, conservative resource-use and survival. METHODS We used biogeographical and functional-traits approaches to address the mentioned paradigms and assess the species' ecological strategies. For this, 27 DT plants were used and compared to 27 phylogenetically related desiccation-sensitive vascular plants (DS plants). KEY RESULTS We could not confirm either of the two hypotheses. We found that despite converging in desiccation tolerance, DT plants differ in relation to the conditions in which they occur and the ecological strategies they use to deal with water deficit. We found that some DT plants exhibit advantageous responses for higher growth and resource acquisition, which are suitable responses to cope with more productive conditions or with higher disturbance. We discuss that the ability to tolerate desiccation could compensate for a drought vulnerability promoted by higher investment in growth and bring advantages to deal with quick and pronounced variation of water, rather than to drought solely. CONCLUSIONS DT plants are not only selected by drought as an environmental constraint. The alternative functional designs could promote the diversity of ecological strategies, which preclude their convergence to the same resources and conditions. Thus, DT plants are a heterogeneous group of plants in how they deal with drought, despite their desiccation tolerance ability.
Collapse
Affiliation(s)
- Luiz Bondi
- Department of Botany, University of Rostock, Rostock, Germany
- Department of Ecology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Luiza F A de Paula
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruno H P Rosado
- Department of Ecology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
33
|
Wang H, Yang J, Xie T, Ma L, Niu F, He C, Shan L. Variation and association of leaf traits for desert plants in the arid area, northwest China. Ecol Evol 2023; 13:e9946. [PMID: 36969926 PMCID: PMC10037433 DOI: 10.1002/ece3.9946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Characterizing variation and association of plant traits is critical for understanding plant adaptation strategies and community assembly mechanisms. However, little is known about the leaf trait variations of desert plants and their association with different life forms. We used principal component analysis, Pearson's correlation, phylogenetic independent contrasts, linear mixed model, and variance decomposition to explore the variation and association of 10 leaf traits in 22 desert plants in the arid area of northwest China. We found that: (1) the contribution of interspecific variation to the overall variation was greater than the intraspecific variation of all the studied leaf traits; (2) intraspecific and interspecific variation in leaf traits differed among life forms. Some leaf traits, such as tissue density of shrubs and specific leaf area of herbs, exhibited greater intraspecific than interspecific variation, while other traits exhibited the inverse; (3) desert shrubs corroborate the leaf economic spectrum hypothesis and had a fast acquisitive resource strategy, but herbs may not conform to this hypothesis; (4) there were trade‐offs between leaf traits, which were mediated by phylogeny. Overall, our results suggest that interspecific variation of leaf traits significantly contributes to the total leaf traits variation in desert plants. However, intraspecific variation should not be overlooked. There are contrasts in the resource acquisition strategies between plants life forms. Our results support understanding of the mechanisms underlying community assembly in arid regions and suggest that future works may focus on the variation and association of plant traits at both intra‐ and interspecific scales.
Collapse
Affiliation(s)
- Hongyong Wang
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Jie Yang
- Pingliang institute of soil and water conservation SciencePingliangChina
| | - Tingting Xie
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Li Ma
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Furong Niu
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Cai He
- Wuwei Academy of ForestryWuweiChina
| | - Lishan Shan
- College of ForestryGansu Agricultural UniversityLanzhouChina
| |
Collapse
|
34
|
Moreira-Saporiti A, Teichberg M, Garnier E, Cornelissen JHC, Alcoverro T, Björk M, Boström C, Dattolo E, Eklöf JS, Hasler-Sheetal H, Marbà N, Marín-Guirao L, Meysick L, Olivé I, Reusch TBH, Ruocco M, Silva J, Sousa AI, Procaccini G, Santos R. A trait-based framework for seagrass ecology: Trends and prospects. FRONTIERS IN PLANT SCIENCE 2023; 14:1088643. [PMID: 37021321 PMCID: PMC10067889 DOI: 10.3389/fpls.2023.1088643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In the last three decades, quantitative approaches that rely on organism traits instead of taxonomy have advanced different fields of ecological research through establishing the mechanistic links between environmental drivers, functional traits, and ecosystem functions. A research subfield where trait-based approaches have been frequently used but poorly synthesized is the ecology of seagrasses; marine angiosperms that colonized the ocean 100M YA and today make up productive yet threatened coastal ecosystems globally. Here, we compiled a comprehensive trait-based response-effect framework (TBF) which builds on previous concepts and ideas, including the use of traits for the study of community assembly processes, from dispersal and response to abiotic and biotic factors, to ecosystem function and service provision. We then apply this framework to the global seagrass literature, using a systematic review to identify the strengths, gaps, and opportunities of the field. Seagrass trait research has mostly focused on the effect of environmental drivers on traits, i.e., "environmental filtering" (72%), whereas links between traits and functions are less common (26.9%). Despite the richness of trait-based data available, concepts related to TBFs are rare in the seagrass literature (15% of studies), including the relative importance of neutral and niche assembly processes, or the influence of trait dominance or complementarity in ecosystem function provision. These knowledge gaps indicate ample potential for further research, highlighting the need to understand the links between the unique traits of seagrasses and the ecosystem services they provide.
Collapse
Affiliation(s)
- Agustín Moreira-Saporiti
- Faculty for Biology and Chemistry, University of Bremen, Bremen, Germany
- Algae and Seagrass Ecology Group, Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Mirta Teichberg
- Algae and Seagrass Ecology Group, Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Eric Garnier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | | | - Mats Björk
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Johan S. Eklöf
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | - Nuria Marbà
- Global Change Research Group, Institut Mediterrani d’Estudis Avançats (IMEDEA, CSIC-UIB), Esporles Illes Balears, Spain
| | - Lázaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Lukas Meysick
- Åbo Akademi University, Environmental and Marine Biology, Åbo, Finland
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Irene Olivé
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Thorsten B. H. Reusch
- Marine Evolutionary Ecology, Division of Marine Ecology, GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - João Silva
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ana I. Sousa
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Rui Santos
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
35
|
Chacón-Labella J, Hinojo-Hinojo C, Bohner T, Castorena M, Violle C, Vandvik V, Enquist BJ. How to improve scaling from traits to ecosystem processes. Trends Ecol Evol 2023; 38:228-237. [PMID: 36435672 DOI: 10.1016/j.tree.2022.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
Scaling approaches in ecology assume that traits are the main attributes by which organisms influence ecosystem functioning. However, several recent empirical papers have found only weak links between traits and ecosystem functioning, questioning the usefulness of trait-based ecology (TBE). We argue that these studies often suffer from one or more widespread misconceptions. Specifically, these studies often (i) conflict with the conceptual foundations of TBE, (ii) lack theory- or hypothesis-driven selection and use of traits, (iii) tend to ignore intraspecific variation, and (iv) use experimental or study designs that are not well suited to make strong tests of TBE assumptions. Addressing these aspects could significantly improve our ability to scale from traits to ecosystem functioning.
Collapse
Affiliation(s)
- Julia Chacón-Labella
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA; Department of Biology (Botany), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Cesar Hinojo-Hinojo
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA; School of Geography and Urban Planning, Arizona State University, Tempe, AZ, USA
| | - Teresa Bohner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Matiss Castorena
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Vigdis Vandvik
- Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA; The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
36
|
Girard‐Tercieux C, Maréchaux I, Clark AT, Clark JS, Courbaud B, Fortunel C, Guillemot J, Künstler G, le Maire G, Pélissier R, Rüger N, Vieilledent G. Rethinking the nature of intraspecific variability and its consequences on species coexistence. Ecol Evol 2023; 13:e9860. [PMID: 36911314 PMCID: PMC9992775 DOI: 10.1002/ece3.9860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV increases niche overlap, previous studies have found contrasting results regarding the effect of IV on species coexistence. We aim at showing that the large IV observed in data does not mean that conspecific individuals are necessarily different in their response to the environment and that the role of high-dimensional environmental variation in determining IV has largely remained unexplored in forest plant communities. We first used a simulation experiment where an individual attribute is derived from a high-dimensional model, representing "perfect knowledge" of individual response to the environment, to illustrate how large observed IV can result from "imperfect knowledge" of the environment. Second, using growth data from clonal Eucalyptus plantations in Brazil, we estimated a major contribution of the environment in determining individual growth. Third, using tree growth data from long-term tropical forest inventories in French Guiana, Panama and India, we showed that tree growth in tropical forests is structured spatially and that despite a large observed IV at the population level, conspecific individuals perform more similarly locally than compared with heterospecific individuals. As the number of environmental dimensions that are well quantified at fine scale is generally lower than the actual number of dimensions influencing individual attributes, a great part of observed IV might be represented as random variation across individuals when in fact it is environmentally driven. This mis-representation has important consequences for inference about community dynamics. We emphasize that observed IV does not necessarily impact species coexistence per se but can reveal species response to high-dimensional environment, which is consistent with niche theory and the observation of the many differences between species in nature.
Collapse
Affiliation(s)
| | | | - Adam T. Clark
- Institute of BiologyKarl‐Franzens University of GrazGrazAustria
| | - James S. Clark
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
- Univ. Grenoble Alpes, INRAE, LESSEMSt‐Martin‐d'HèresFrance
| | | | - Claire Fortunel
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
| | - Joannès Guillemot
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, IRD, Institut AgroMontpellierFrance
| | | | - Guerric le Maire
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, IRD, Institut AgroMontpellierFrance
| | - Raphaël Pélissier
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
- Department of EcologyFrench Institute of PondicherryPuducherryIndia
| | - Nadja Rüger
- Department of EconomicsUniversity of LeipzigLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Smithsonian Tropical Research InstituteBalboaPanama
| | | |
Collapse
|
37
|
Kambach S, Sabatini FM, Attorre F, Biurrun I, Boenisch G, Bonari G, Čarni A, Carranza ML, Chiarucci A, Chytrý M, Dengler J, Garbolino E, Golub V, Güler B, Jandt U, Jansen J, Jašková A, Jiménez-Alfaro B, Karger DN, Kattge J, Knollová I, Midolo G, Moeslund JE, Pielech R, Rašomavičius V, Rūsiņa S, Šibík J, Stančić Z, Stanisci A, Svenning JC, Yamalov S, Zimmermann NE, Bruelheide H. Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe. Nat Commun 2023; 14:712. [PMID: 36759605 PMCID: PMC9911725 DOI: 10.1038/s41467-023-36240-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Ecological theory predicts close relationships between macroclimate and functional traits. Yet, global climatic gradients correlate only weakly with the trait composition of local plant communities, suggesting that important factors have been ignored. Here, we investigate the consistency of climate-trait relationships for plant communities in European habitats. Assuming that local factors are better accounted for in more narrowly defined habitats, we assigned > 300,000 vegetation plots to hierarchically classified habitats and modelled the effects of climate on the community-weighted means of four key functional traits using generalized additive models. We found that the predictive power of climate increased from broadly to narrowly defined habitats for specific leaf area and root length, but not for plant height and seed mass. Although macroclimate generally predicted the distribution of all traits, its effects varied, with habitat-specificity increasing toward more narrowly defined habitats. We conclude that macroclimate is an important determinant of terrestrial plant communities, but future predictions of climatic effects must consider how habitats are defined.
Collapse
Affiliation(s)
- Stephan Kambach
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany. .,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.
| | - Francesco Maria Sabatini
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,BIOME Lab, Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum University of Bologna, Bologna, Italy.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic
| | - Fabio Attorre
- Department of Environmental Biology, Sapienza University of Rome, Roma, Italy
| | - Idoia Biurrun
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | | | - Gianmaria Bonari
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Andraž Čarni
- Research Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, ZRC-SAZU, Ljubljana, Slovenia.,University of Nova Gorica, School for Viticulture and Enology, Nova Gorica, Slovenia
| | - Maria Laura Carranza
- Envixlab, Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Alessandro Chiarucci
- BIOME Lab, Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Milan Chytrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jürgen Dengler
- Vegetation Ecology Research Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland.,Plant Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Emmanuel Garbolino
- Climpact Data Science (CDS), Nova Sophia - Regus Nova, Sophia Antipolis Cedex, France
| | - Valentin Golub
- Samara Federal Research Scientific Center, Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, Togliatti, Russia
| | - Behlül Güler
- Biology Education, Dokuz Eylul University, Izmir, Turkey
| | - Ute Jandt
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Jan Jansen
- Department of Ecology and Physiology, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Anni Jašková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Borja Jiménez-Alfaro
- IMIB Biodiversity Research Institute (Univ.Oviedo-CSIC-Princ. Asturias), University of Oviedo, Oviedo, Spain
| | | | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Ilona Knollová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gabriele Midolo
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Remigiusz Pielech
- Department of Forest Biodiversity, University of Agriculture in Krakow, Kraków, Poland
| | | | - Solvita Rūsiņa
- Faculty of Geography and Earth Sciences, University of Latvia, Riga, Latvia
| | - Jozef Šibík
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zvjezdana Stančić
- Faculty of Geotechnical Engineering, University of Zagreb, Zagreb, Croatia
| | - Angela Stanisci
- Envixlab, Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Sergey Yamalov
- Botanical Garden-Institute, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Russia
| | | | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Wheeler GR, Brassil CE, Knops JMH. Functional traits' annual variation exceeds nitrogen-driven variation in grassland plant species. Ecology 2023; 104:e3886. [PMID: 36208107 PMCID: PMC10078297 DOI: 10.1002/ecy.3886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/08/2022] [Accepted: 08/09/2022] [Indexed: 02/03/2023]
Abstract
Effective application of functional trait approaches to ecological questions requires understanding the patterns of trait variation within species as well as between them. However, few studies address the potential for intraspecific variation to occur on a temporal basis and, thus, for trait-based findings to be contingent upon sampling year. To quantify annual variation in the functional traits of grassland plant species, we measured specific leaf area, leaf dry matter content, plant height, and chlorophyll content in 12 shortgrass prairie plant species. We repeated these measurements across 4 years, both in long-term nitrogen addition plots and in corresponding control plots. Three of the four traits showed significant year-to-year variation in a linear mixed model analysis, generally following a pattern of more acquisitive leaf economics spectrum traits in higher rainfall years. Furthermore, two of the measured traits responded interactively to nitrogen addition and sampling year, although only one, leaf dry matter content, showed the expected pattern of stronger nitrogen responses in high rainfall years. For leaf dry matter content and specific leaf area, trait responses to sampling year were larger than responses to the nitrogen addition treatment. These findings illustrate that species' functional traits can respond strongly to environmental changes across years, and thus that trait variation in a species or community is likely to extend beyond the values and patterns observed in any single year.
Collapse
Affiliation(s)
- George R Wheeler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Chad E Brassil
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Johannes M H Knops
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Health and Environmental Sciences, Xian Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
39
|
de la Sancha NU, González‐Maya JF, Boyle SA, Pérez‐Estigarribia PE, Urbina‐Cardona JN, McIntyre NE. Bioindicators of edge effects within Atlantic Forest remnants: Conservation implications in a threatened biodiversity hotspot. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Noé U. de la Sancha
- Department of Environmental Science and Studies DePaul University Chicago Illinois USA
- Negaunee Integrative Research Center The Field Museum of Natural History Chicago Illinois USA
| | - José F. González‐Maya
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias Ambientales Universidad Autónoma Metropolitana Unidad Lerma Lerma de Villada Mexico México
- Proyecto de Conservación de Aguas y Tierras ‐ ProCAT Colombia Bogotá Colombia
| | - Sarah A. Boyle
- Department of Biology and Program in Environmental Studies and Sciences, Rhodes College Memphis Tennessee USA
| | - Pastor E. Pérez‐Estigarribia
- Polytechnic School, Universidad Nacional de Asunción San Lorenzo Paraguay
- Facultad de Medicina, Universidad Sudamericana PJC Paraguay
| | - J. Nicolas Urbina‐Cardona
- Facultad de Estudios Ambientales y Rurales, Departamento de Ecología y Territorio Pontificia Universidad Javeriana Bogotá Colombia
| | - Nancy E. McIntyre
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
| |
Collapse
|
40
|
McWilliam M, Dornelas M, Álvarez-Noriega M, Baird AH, Connolly SR, Madin JS. Net effects of life-history traits explain persistent differences in abundance among similar species. Ecology 2023; 104:e3863. [PMID: 36056537 DOI: 10.1002/ecy.3863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023]
Abstract
Life-history traits are promising tools to predict species commonness and rarity because they influence a population's fitness in a given environment. Yet, species with similar traits can have vastly different abundances, challenging the prospect of robust trait-based predictions. Using long-term demographic monitoring, we show that coral populations with similar morphological and life-history traits show persistent (decade-long) differences in abundance. Morphological groups predicted species positions along two, well known life-history axes (the fast-slow continuum and size-specific fecundity). However, integral projection models revealed that density-independent population growth (λ) was more variable within morphological groups, and was consistently higher in dominant species relative to rare species. Within-group λ differences projected large abundance differences among similar species in short timeframes, and were generated by small but compounding variation in growth, survival, and reproduction. Our study shows that easily measured morphological traits predict demographic strategies, yet small life-history differences can accumulate into large differences in λ and abundance among similar species. Quantifying the net effects of multiple traits on population dynamics is therefore essential to anticipate species commonness and rarity.
Collapse
Affiliation(s)
- Mike McWilliam
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Maria Dornelas
- Centre for Biological Diversity, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Mariana Álvarez-Noriega
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | | | - Joshua S Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| |
Collapse
|
41
|
March-Salas M, Scheepens JF, van Kleunen M, Fitze PS. Precipitation predictability affects intra- and trans-generational plasticity and causes differential selection on root traits of Papaver rhoeas. FRONTIERS IN PLANT SCIENCE 2022; 13:998169. [PMID: 36452110 PMCID: PMC9703072 DOI: 10.3389/fpls.2022.998169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Climate forecasts show that in many regions the temporal distribution of precipitation events will become less predictable. Root traits may play key roles in dealing with changes in precipitation predictability, but their functional plastic responses, including transgenerational processes, are scarcely known. We investigated root trait plasticity of Papaver rhoeas with respect to higher versus lower intra-seasonal and inter-seasonal precipitation predictability (i.e., the degree of temporal autocorrelation among precipitation events) during a four-year outdoor multi-generation experiment. We first tested how the simulated predictability regimes affected intra-generational plasticity of root traits and allocation strategies of the ancestors, and investigated the selective forces acting on them. Second, we exposed three descendant generations to the same predictability regime experienced by their mothers or to a different one. We then investigated whether high inter-generational predictability causes root trait differentiation, whether transgenerational root plasticity existed and whether it was affected by the different predictability treatments. We found that the number of secondary roots, root biomass and root allocation strategies of ancestors were affected by changes in precipitation predictability, in line with intra-generational plasticity. Lower predictability induced a root response, possibly reflecting a fast-acquisitive strategy that increases water absorbance from shallow soil layers. Ancestors' root traits were generally under selection, and the predictability treatments did neither affect the strength nor the direction of selection. Transgenerational effects were detected in root biomass and root weight ratio (RWR). In presence of lower predictability, descendants significantly reduced RWR compared to ancestors, leading to an increase in performance. This points to a change in root allocation in order to maintain or increase the descendants' fitness. Moreover, transgenerational plasticity existed in maximum rooting depth and root biomass, and the less predictable treatment promoted the lowest coefficient of variation among descendants' treatments in five out of six root traits. This shows that the level of maternal predictability determines the variation in the descendants' responses, and suggests that lower phenotypic plasticity evolves in less predictable environments. Overall, our findings show that roots are functional plastic traits that rapidly respond to differences in precipitation predictability, and that the plasticity and adaptation of root traits may crucially determine how climate change will affect plants.
Collapse
Affiliation(s)
- Martí March-Salas
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Jaca, Spain
| | - J. F. Scheepens
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Patrick S. Fitze
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Jaca, Spain
| |
Collapse
|
42
|
Li TX, Shen-Tu XL, Xu L, Zhang WJ, Duan JP, Song YB, Dong M. Intraspecific and sex-dependent variation of leaf traits along altitude gradient in the endangered dioecious tree Taxus fuana Nan Li & R.R. Mill. FRONTIERS IN PLANT SCIENCE 2022; 13:996750. [PMID: 36325570 PMCID: PMC9618961 DOI: 10.3389/fpls.2022.996750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Plant intraspecific trait variation (ITV) including sex-dependent differences are matters of many ecological consequences, from individual to ecosystem, especially in endangered and rare species. Taxus fuana is an endangered dioecious species with small and isolated populations endemic to the Himalayas region. Little is known about its trait variation between sexes, and among populations. In this study, 18 leaf traits from 179 reproductive trees (males and females) along the altitude (2600-3200m a.s.l.) of the T. fuana populations distributed in Gyirong County, Tibet, China, were measured. ITV and sources of variation in leaf traits were assessed. The relationship between leaf traits of males and females and altitude was analyzed separately. Variations in leaf traits of T. fuana ranged from 3.1% to 24.2%, with the smallest in leaf carbon content and the largest in leaf thickness to area ratio. On average 78.13% of the variation in leaf traits was from within populations and 21.87% among populations. The trends in leaf width, leaf nitrogen to phosphorus ratio, leaf carbon to nitrogen ratio, leaf carbon isotope ratio, and leaf nitrogen isotope ratio in relation to altitude were the same for males and females. Leaf length to width ratio varied significantly with altitude only in males, while leaf phosphorus content, leaf nitrogen content, and leaf carbon to phosphorus ratio varied significantly with altitude only in females. The correlation coefficients of most leaf traits of females with altitude were larger than that of males. In the relationship between leaf traits, there was a high similarity among males and females, but the altitude accounted for more explanation in females than in males. Our results suggested that the variation in leaf traits of T. fuana was small and did not dominate the interspecific competition in the local communities. Adaptation to the altitude gradient of T. fuana might be through altering nutrient storage processes and water use efficiency. Adaptation of male and female T. fuana to environmental changes showed differences, where the males were more tolerant and the females responded greatly to altitude. The differences in adaptation strategies between male and female T. fuana may be detrimental to the maintenance of their populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Dong
- *Correspondence: Yao-Bin Song, ; Ming Dong,
| |
Collapse
|
43
|
Rolhauser AG, Windfeld E, Hanson S, Wittman H, Thoreau C, Lyon A, Isaac ME. A trait-environment relationship approach to participatory plant breeding for organic agriculture. THE NEW PHYTOLOGIST 2022; 235:1018-1031. [PMID: 35510804 PMCID: PMC9322327 DOI: 10.1111/nph.18203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The extent of intraspecific variation in trait-environment relationships is an open question with limited empirical support in crops. In organic agriculture, with high environmental heterogeneity, this knowledge could guide breeding programs to optimize crop attributes. We propose a three-dimensional framework involving crop performance, crop traits, and environmental axes to uncover the multidimensionality of trait-environment relationships within a crop. We modeled instantaneous photosynthesis (Asat ) and water-use efficiency (WUE) as functions of four phenotypic traits, three soil variables, five carrot (Daucus carota) varieties, and their interactions in a national participatory plant breeding program involving a suite of farms across Canada. We used these interactions to describe the resulting 12 trait-environment relationships across varieties. We found one significant trait-environment relationship for Asat (taproot tissue density-soil phosphorus), which was consistent across varieties. For WUE, we found that three relationships (petiole diameter-soil nitrogen, petiole diameter-soil phosphorus, and leaf area-soil phosphorus) varied significantly across varieties. As a result, WUE was maximized by different combinations of trait values and soil conditions depending on the variety. Our three-dimensional framework supports the identification of functional traits behind the differential responses of crop varieties to environmental variation and thus guides breeding programs to optimize crop attributes from an eco-evolutionary perspective.
Collapse
Affiliation(s)
- Andrés G. Rolhauser
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoONM1C 1A4Canada
- Departamento de Métodos Cuantitativos y Sistemas de InformaciónFacultad de AgronomíaUniversidad de Buenos AiresBuenos AiresC1417DSEArgentina
- Facultad de AgronomíaIFEVAUniversidad de Buenos AiresCONICETBuenos AiresC1417DSEArgentina
| | - Emma Windfeld
- Department of GeographyUniversity of TorontoTorontoONM5S 3G3Canada
- School of Public PolicySimpson CentreUniversity of CalgaryCalgaryABT2P 1H9Canada
| | - Solveig Hanson
- Center for Sustainable Food SystemsUniversity of British ColumbiaVancouverBCV6T 1Z2Canada
| | - Hannah Wittman
- Center for Sustainable Food SystemsUniversity of British ColumbiaVancouverBCV6T 1Z2Canada
| | - Chris Thoreau
- Center for Sustainable Food SystemsUniversity of British ColumbiaVancouverBCV6T 1Z2Canada
| | - Alexandra Lyon
- Center for Sustainable Food SystemsUniversity of British ColumbiaVancouverBCV6T 1Z2Canada
- Department of Sustainable Agriculture and Food SystemsKwantlen Polytechnic UniversityRichmondBCV6X 3X7Canada
| | - Marney E. Isaac
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoONM1C 1A4Canada
- Department of GeographyUniversity of TorontoTorontoONM5S 3G3Canada
| |
Collapse
|
44
|
Catchment scale deforestation increases the uniqueness of subtropical stream communities. Oecologia 2022; 199:671-683. [PMID: 35833985 DOI: 10.1007/s00442-022-05215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Local communities and individual species jointly contribute to the overall beta diversity in metacommunities. However, it is mostly unknown whether the local contribution (LCBD) and the species contribution (SCBD) to beta diversity can be predicted by local and regional environmental characteristics and by species traits and taxonomic relatedness, respectively. We investigated the LCBD and SCBD of stream benthic diatoms and insects along a gradient of land use intensification, ranging from streams in pristine forests to agricultural catchments in southeast subtropical Brazil. We expected that the LCBD would be negatively related to forest cover and positively related to the most unique streams in terms of environmental characteristics and land use (hereafter environmental and land use uniqueness, respectively). We also expected that species with a high SCBD would occur at sites with reduced forest cover. We found that the LCBD of diatoms and insects was negatively related to forest cover. The LCBD of insects was also positively related to environmental and land use uniqueness. As forest cover was negatively related to uniqueness in land use, biologically unique streams were those that deviated from the typical regional land cover. We also found that diatom traits, insect traits, and taxonomic relatedness partly explained SCBD. Furthermore, the SCBD of diatoms was positively correlated with forest cover, but the inverse was found for insects. We showed that deforestation creates novel and unique communities in subtropical streams and that species that contribute the most to beta diversity can occur at opposite ends of a land use gradient.
Collapse
|
45
|
He YY, Srisombut K, Xing DL, Swenson NG, Asefa M, Cao M, Song XY, Wen HD, Yang J. Ontogenetic trait variation and metacommunity effects influence species relative abundances during tree community assembly. PLANT DIVERSITY 2022; 44:360-368. [PMID: 35967256 PMCID: PMC9363650 DOI: 10.1016/j.pld.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 06/15/2023]
Abstract
Predicting species abundance is one of the most fundamental pursuits of ecology. Combining the information encoded in functional traits and metacommunities provides a new perspective to predict the abundance of species in communities. We applied a community assembly via trait selection model to predict quadrat-scale species abundances using functional trait variation on ontogenetic stages and metacommunity information for over 490 plant species in a subtropical forest and a lowland tropical forest in Yunnan, China. The relative importance of trait-based selection, mass effects, and stochasticity in shaping local species abundances is evaluated using different null models. We found both mass effects and trait selection contribute to local abundance patterns. Trait selection was detectable at all studied spatial scales (0.04-1 ha), with its strength stronger at larger scales and in the subtropical forest. In contrast, the importance of stochasticity decreased with spatial scale. A significant mass effect of the metacommunity was observed at small spatial scales. Our results indicate that tree community assembly is primarily driven by ontogenetic traits and metacommunity effects. Our findings also demonstrate that including ontogenetic trait variation into predictive frameworks allows ecologists to infer ecological mechanisms operating in community assembly at the individual level.
Collapse
Affiliation(s)
- Yun-Yun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kwansupa Srisombut
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding-Liang Xing
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Nanthan G. Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mengesha Asefa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Xiao-Yang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Han-Dong Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| |
Collapse
|
46
|
Using crushed waste bricks for urban greening with contrasting grassland mixtures: no negative effects of brick-augmented substrates varying in soil type, moisture and acid pre-treatment. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractEcological restoration aims at supporting biodiversity and ecosystem services, and urban greening is a great opportunity to achieve this goal. This is facilitated by species-rich seed mixtures based on local provenances, which are designed for certain nutrient and moisture regimes based on functional plant traits. Such grassland mixtures might be cultivated on crushed waste bricks, which would be a new component of water-holding urban substrates. Thus, we studied the effects of brick quantity and quality, acid pre-treatment of bricks, soil type and moisture on biomass of designed seed mixtures. Three greenhouse experiments were conducted, with substrates consisting of different brick ratios (5% vs. 30%), brick types (clean production waste vs. demolition material), and brick treatments (acid vs. control) tested on three trait-based mixtures and a non-regional commercial standard mixture. The trait-based mixtures included information on specific leaf area, seed mass and grass-to-legume ratio. There were no negative effects of demolition bricks, soil texture and moisture on grassland biomass. Acid-treated clean porous bricks improved biomass production of the standard and intermediate mixtures, while the effect was minimal with demolition bricks. Designed seed mixtures had a biomass similar to the standard mixture under dry conditions but did not benefit from high moisture like the standard mixture. In conclusion, waste bricks are a useful additive for urban restoration substrates to save raw material, and specifically designed regional mixtures can replace commercial grassland types on these substrates.
Collapse
|
47
|
Trobajo S, Fernández-Salegui AB, Hurtado P, Terrón A, Martínez I. Interspecific and intraspecific variability of water use traits in macrolichen species in a fragmented landscape along a climatic ecotone area. Fungal Biol 2022; 126:438-448. [DOI: 10.1016/j.funbio.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
|
48
|
Akram MA, Zhang Y, Wang X, Shrestha N, Malik K, Khan I, Ma W, Sun Y, Li F, Ran J, Deng J. Phylogenetic independence in the variations in leaf functional traits among different plant life forms in an arid environment. JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153671. [PMID: 35381492 DOI: 10.1016/j.jplph.2022.153671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Leaf traits of global plants reveal the fundamental trade-offs in plant resource acquisition to conservation strategies. However, which leaf traits are consistent, converged, or diverged among herbs, shrubs, and subshrubs in an arid environment remains unclear. In the present study, we evaluated the trade-offs in six leaf functional traits (LFTs): leaf fresh mass (LFM), leaf dry mass (LDM), leaf dry matter content (LDMC), leaf area (LA), specific leaf area (SLA), and leaf thickness (LTh) of 37 desert plant species. LFTs differed between different plant life forms; LFM, LDM, and LA were slightly higher in herbs, LDMC and LTh in shrubs, and SLA in subshrubs. Conversely, the correlations among LFTs were inconsistent in different life forms, which may indicate their different adaptation strategies in an arid environment. Legumes and C3 plants exhibited slightly higher LDMC, LA, and SLA than non-legumes and C4 plants, whereas non-legumes and C4 plants showed higher (nonsignificant) LFM, LDM, and LTh than legumes and C3 plants. A significant phylogenetic signal (PS) and maximum K-value were found for SLA (K = 0.32). LFTs exhibited convergent and divergent variations among different life forms. However, these variations in LFTs were not influenced by phylogeny. Together, these findings increase our understanding of the variations in ecological adaptations of desert plants as well as adaption strategies of different life forms in an arid environment.
Collapse
Affiliation(s)
- Muhammad Adnan Akram
- School of Economics, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yahui Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoting Wang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Kamran Malik
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Imran Khan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Weijing Ma
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ying Sun
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fan Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinzhi Ran
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
49
|
Li Y, Jiang Y, Zhao K, Chen Y, Wei W, Shipley B, Chu C. Exploring trait-performance relationships of tree seedlings along experimentally manipulated light and water gradients. Ecology 2022; 103:e3703. [PMID: 35357001 DOI: 10.1002/ecy.3703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 11/11/2022]
Abstract
A foundational assumption of trait-based ecology is that individual performances should be predicted by its functional traits. However, the trait-performance relationships reported in literature were typically weak, probably due to the ignorance of interactions between traits and environments, intraspecific trait variability and hard traits (directly linked to physiological processes of interest). We conducted an experiment of planting 900 seedlings of six tree species separately (one seedling per pot) along experimentally manipulated light and water gradients, monitored their survival and growth, and measured their morphological, photosynthetic and hydraulic traits. Most trait-performance relationships depended on the environments, either marginally changing (weak trait × environment interaction) or even reversing (strong trait × environment interaction) along light or water gradients in our experiment. Such trait × environment interactions were more likely to be detected in growth models using individual-level traits than models using species mean traits, but seedling growth was not better modelled with individual-level traits than species mean traits. Additionally, none of the hard traits (photosynthetic and hydraulic traits) were better predictors than soft traits (morphological traits) modeling seedling growth and survival along light and water gradients. Our study highlights the necessities of considering trait × environment interactions when predicting response of plants to changing environments. The benefits of using individual-level traits or hard traits to predict plant performance might be reduced or even cancelled if their measurement errors are not well controlled.
Collapse
Affiliation(s)
- Yuanzhi Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yuan Jiang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Kangning Zhao
- School of Architecture, University of South China, Hengyang, Hunan, China
| | - Yang Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bill Shipley
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Álvarez-Cansino L, Comita LS, Jones FA, Manzané-Pinzón E, Browne L, Engelbrecht BMJ. Turgor loss point predicts survival responses to experimental and natural drought in tropical tree seedlings. Ecology 2022; 103:e3700. [PMID: 35352828 DOI: 10.1002/ecy.3700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
Identifying key traits that can serve as proxies for species drought resistance is crucial for predicting and mitigating effects of climate change in diverse plant communities. Turgor loss point (πtlp ) is a recently emerged trait that has been linked to species distributions across gradients of water availability. However, a direct relationship between πtlp and species ability to survive drought has yet to be established for woody species. Using a manipulative field experiment to quantify species drought resistance (i.e. their survival response to drought), combined with measurements of πtlp for 16 tree species, we show a negative relationship between πtlp and seedling drought resistance. Using long-term forest plot data, we also show that πtlp predicts seedling survival responses to a severe El Niño-related drought, although additional factors are clearly also important. Our study demonstrates that species with lower πtlp exhibit higher survival under both experimental and natural drought. These results provide a missing cornerstone in the assessment of the traits underlying drought resistance in woody species and strengthen πtlp as a proxy for evaluating which species will lose or win under projections of exacerbating drought regimes.
Collapse
Affiliation(s)
- Leonor Álvarez-Cansino
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany.,Department of Plant Biology and Ecology, Faculty of Biology, University of Seville Avda. Reina Mercedes s/n, Seville, Spain
| | - Liza S Comita
- School of the Environment, Yale University, New Haven, Connecticut, USA.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| | - F Andrew Jones
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Eric Manzané-Pinzón
- Eric Manzané-Pinzón: Departamento de Ciencias Naturales, Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá
| | - Luke Browne
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Bettina M J Engelbrecht
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| |
Collapse
|