1
|
Razzaq S, Sidra S, Javid A, Mehmood S. Impact of dietary exposure to polyester microfibers on hematology, serology and histology in a mouse model. ENVIRONMENTAL RESEARCH 2024; 263:120175. [PMID: 39424032 DOI: 10.1016/j.envres.2024.120175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Synthetic fabrics, especially polyester, are a primary source of microplastic fibers (MFs), but there is limited data on their accumulation and dose related health impact in living organisms. This study examined the effects of ingested polyester microfibers (PE-MFs) on hematology, histopathology, and serum biochemistry in albino mice. Mice were given varying doses of PE-MFs (100, 200, 400 and 800 μg/d/mice) for a duration of thirty-five days and a notable decreases in certain hematological parameters such as RBCs, Hb, and platelets, and increases in MCV and MCH was noted at (p < 0.05) thereby indicating possible inflammatory response within the body resulting from ingestion of these MFs. Liver enzymes (ALT, AST, and alkaline phosphatase) and histopathological changes in the liver and gastrointestinal tract also exhibited significant variations, with higher levels seen in the group receiving the highest dose of PE-MFs (800 μg/d/mice). In summary, increased exposure to PE-MFs led to a dose-related impact and notable alterations in histopathological, hematological, and serum biomarkers in albino mice. This study highlights the potential hazards associated with dietary exposure to PE-MFs in mammals and emphasizes the need for further research in this field.
Collapse
Affiliation(s)
- Saira Razzaq
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Safdar Sidra
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Arshad Javid
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Shahid Mehmood
- Department of Poultry Production, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
2
|
Goswami S, Adhikary S, Bhattacharya S, Agarwal R, Ganguly A, Nanda S, Rajak P. The alarming link between environmental microplastics and health hazards with special emphasis on cancer. Life Sci 2024; 355:122937. [PMID: 39103046 DOI: 10.1016/j.lfs.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Microplastic contamination is a burgeoning environmental issue that poses serious threats to animal and human health. Microplastics enter the human body through nasal, dermal, and oral routes to contaminate multiple organs. Studies have advocated the existence of microplastics in human breast milk, sputum, faeces, and blood. Microplastics can find their ways to the sub-cellular moiety via active and passive approaches. At cellular level, microplastics follow clathrin and caveolae-dependent pathways to invade the sub-cellular environment. These environmental contaminants modulate the epigenetic control of gene expression, status of inflammatory mediators, redox homeostasis, cell-cycle proteins, and mimic the endocrine mediators like estrogen and androgen to fuel carcinogenesis. Furthermore, epidemiological studies have suggested potential links between the exposure to microplastics and the onset of various chronic diseases. Microplastics trigger uncontrolled cell proliferation and ensue tissue growth leading to various cancers affecting the lungs, blood, breasts, prostate, and ovaries. Additionally, such contamination can potentially affect sub-cellular signaling and injure multiple organs. In essence, numerous reports have claimed microplastic-induced toxicity and tumorigenesis in human and model animals. Nonetheless, the underlying molecular mechanism is still elusive and warrants further investigations. This review provides a comprehensive analysis of microplastics, covering their sources, chemistry, human exposure routes, toxicity, and carcinogenic potential at the molecular level.
Collapse
Affiliation(s)
- Sohini Goswami
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | | | - Ruchika Agarwal
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India.
| |
Collapse
|
3
|
Yang J, Peng Z, Sun J, Chen Z, Niu X, Xu H, Ho KF, Cao J, Shen Z. A review on advancements in atmospheric microplastics research: The pivotal role of machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173966. [PMID: 38897457 DOI: 10.1016/j.scitotenv.2024.173966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs), recognized as emerging pollutants, pose significant potential impacts on the environment and human health. The investigation into atmospheric MPs is nascent due to the absence of effective characterization methods, leaving their concentration, distribution, sources, and impacts on human health largely undefined with evidence still emerging. This review compiles the latest literature on the sources, distribution, environmental behaviors, and toxicological effects of atmospheric MPs. It delves into the methodologies for source identification, distribution patterns, and the contemporary approaches to assess the toxicological effects of atmospheric MPs. Significantly, this review emphasizes the role of Machine Learning (ML) and Artificial Intelligence (AI) technologies as novel and promising tools in enhancing the precision and depth of research into atmospheric MPs, including but not limited to the spatiotemporal dynamics, source apportionment, and potential health impacts of atmospheric MPs. The integration of these advanced technologies facilitates a more nuanced understanding of MPs' behavior and effects, marking a pivotal advancement in the field. This review aims to deliver an in-depth view of atmospheric MPs, enhancing knowledge and awareness of their environmental and human health impacts. It calls upon scholars to focus on the research of atmospheric MPs based on new technologies of ML and AI, improving the database as well as offering fresh perspectives on this critical issue.
Collapse
Affiliation(s)
- Jiaer Yang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zezhi Peng
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Sun
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhiwen Chen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Costa MBD, Schuab JM, Sad CMDS, Ocaris ERY, Otegui MBP, Motta DG, Menezes KM, Caniçali FB, Marins AAL, Dalbó GZ, Marçal M, Paqueli BF, Zamprogno GC. Microplastic atmospheric pollution in an urban Southern Brazil region: What can spider webs tell us? JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135190. [PMID: 39053063 DOI: 10.1016/j.jhazmat.2024.135190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
The World Health Organization categorizes air pollution as the presence of one or more contaminants in the atmosphere such as smoke, dust, and particulate matter like microplastics, which are considered a priority pollutant. However, only a few studies have been developed on atmospheric pollution, and knowledge about MPs in the atmosphere is still limited. Spider webs have been tested and used as a passive sampling approach to study anthropogenic pollution. Despite this, studies on microplastic contamination using spiderwebs as samplers are scarce. Thus, this study uses spider webs as passive indicators to investigate air quality regarding microplastic contamination in an urbanized area. Therefore, 30 sampling points were selected, and webs of Nephilingis cruentata were collected. The spider webs were dipped in KOH 10 %. After digestion, the solution was washed and sieved through a 90 µm geological sieve. The remaining material was transferred to a Petri dish with filter paper, quantified, and identified by type and color. The chemical composition of the polymers was determined using Raman spectroscopy. 3138 microplastics were identified (2973 filaments and 165 fragments). The most frequent colors were blue and black. Raman spectroscopy revealed five types of polymers: Isotactic Polypropylene, Polyethylene Terephthalate, Polyurethane, Polyamide, and Direct Polyethylene.
Collapse
Affiliation(s)
- Mercia Barcellos da Costa
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil.
| | - João Marcos Schuab
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Cristina Maria Dos Santos Sad
- Laboratory of Research and Methodologies Development for Petroleum Analysis (LABPETRO), Chemistry Department, Federal University of Espírito Santo, Brazil
| | | | - Mariana Beatriz Paz Otegui
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil; Institute of Biodiversity and Applied Experimental Biology (CONICET-UBA), Buenos Aires University, Argentina
| | - Daniel Gosser Motta
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Karina Machado Menezes
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Felipe Barcellos Caniçali
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil; Post Graduation Program in Environmental Oceanography, Federal University of Espírito Santo, Brazil
| | - Antônio Augusto Lopes Marins
- Department of Chemistry, Multiusual Laboratory of Instrumentation (LabMIinst - LabPetro), Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo 29075-910, Brazil; Department of Chemistry, Corrosion, and Materials Laboratory (LabCorrMAT - LabPetro), Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo 29075-910, Brazil
| | - Gustavo Zambon Dalbó
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Mateus Marçal
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Bruno Fioresi Paqueli
- Laboratory of Research and Methodologies Development for Petroleum Analysis (LABPETRO), Chemistry Department, Federal University of Espírito Santo, Brazil
| | - Gabriela Carvalho Zamprogno
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| |
Collapse
|
5
|
Naqash A, Anwar J, Qadir A, Hussain R, Jamil N. Source identification, characteristics, and spatial distribution of airborne microplastic deposition in Lahore City, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54905-54919. [PMID: 39215916 DOI: 10.1007/s11356-024-34819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
A large volume of atmospheric microplastics (MPs) has been observed worldwide and is considered an emerging global environmental issue. Nevertheless, no significant assessment of the atmospheric deposition of MPs in Pakistan has been reported yet. The present study was designed to highlight the source, type, and spatial distribution of MPs in atmospheric fallout in Lahore, Pakistan. A total of 23 sites were sampled in Lahore with a heterogeneous background of human activities. All samples were collected in a box with a one-foot depth fitted with a steel tray of 0.1 m2 at the bottom. Fenton's reagent and hydrogen peroxide were used to remove organic matter, and sodium chloride for density separation, while the MPs were quantified through a stereomicroscope, and polymers were identified through ATR-FTIR spectroscopy. The highest deposition rate (particles/m2/day) was observed at Badami Bagh, i.e., 6819, followed by Mall Road 4414, and Chung 4263, while the lowest was in Sabzazaar (i.e., 524) and Township (1047) with an average deposition rate of 2340 ± 1392. Among the MPs, the major portion was fiber, i.e., 96%, while fragment was 1.9%, sheets 0.78%, foams 1.12%, beads 0.04%, and other MPs 0.06%. At all sampling sites, 20 different types of polymers were identified with different percentages, of which polyester fibers were predominant with an abundance of 96.09% associated with clothes and textiles. A high frequency of MPs was found in populated areas with dense traffic, plastic wastes, household plastic materials, and mismanagement of wastes, which accelerates the atmospheric deposition of airborne microplastics. Evaluation and characterization of MP help assess health and environmental impacts, cleanup efforts, and guiding regulations. It also provides valuable information for waste management innovation to reduce plastic pollution.
Collapse
Affiliation(s)
- Arhum Naqash
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Punjab, Pakistan
| | - Jamil Anwar
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Punjab, Pakistan
- School of Chemistry, University of the Punjab, Lahore, 54590, Punjab, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Punjab, Pakistan
| | - Rahib Hussain
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Punjab, Pakistan.
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan.
| | - Nadia Jamil
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Punjab, Pakistan
| |
Collapse
|
6
|
Yalameha B, Rezabakhsh A, Rahbarghazi R, Khaki-Khatibi F, Nourazarian A. Plastic particle impacts on the cardiovascular system and angiogenesis potential. Mol Cell Biochem 2024:10.1007/s11010-024-05081-2. [PMID: 39126457 DOI: 10.1007/s11010-024-05081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
The extensive application of plastics in different sectors such as packaging, building, textiles, consumer products, and several industries has increased in recent years. Emerging data have confirmed that plastic wastes and segregates are problematic issues in aquatic and terrestrial ecosystems. The decomposition of plastic particles (PPs) leads to the release of microplastics (MPs) and nanoplastics (NPs) into the surrounding environment and entry of these particles will be problematic in unicellular and multicellular creatures. It was suggested that PPs can easily cross all biological barriers and reach different organs, especially the cardiovascular system, with the potential to modulate several molecular pathways. It is postulated that the direct interaction of PPs with cellular and subcellular components induces genotoxicity and cytotoxicity within the cardiovascular system. Meanwhile, being inert carriers, PPs can intensify the toxicity of other contaminants inside the cardiovascular system. Here, in this review article, several underlying mechanisms related to PP toxicity in the cardiovascular system were discussed in detail.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51666-14733, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51666-14733, Iran.
| | - Fatemeh Khaki-Khatibi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51666-14733, Iran.
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
7
|
Prikler B, Bordós G, Kriszt B, Micsinai A, Szabó I, Nyírő-Fekete B, Palotai Z, Kaszab E, Szoboszlay S, Csenki Z. Detection of microplastics in zebrafish housing systems: Can microplastic background contamination affect the final results of microplastic-related toxicological tests? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107020. [PMID: 39002427 DOI: 10.1016/j.aquatox.2024.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Concentrations of microplastics (MPs) were determined in three commonly used zebrafish housing systems to see if their levels could affect the final results of laboratory microplastic-related toxicology tests. MPs have received notable attention in the last few years, and their toxicology tests have also come to the fore. Zebrafish (Danio rerio), kept in fish housing systems, are widely used as models for MPs studies. Most of these systems contain a significant number of parts made of different polymers. As usage and amortization can erode these parts, MPs might appear in the keeping water or the fish body, which may represent a background load and possibly influence the results of microplastic-related toxicological tests. To take representative water samples from systems, two in-situ filtration techniques, a newly developed peristaltic pump-, and a jet pump-driven method were applied. The collected MP particles were analyzed with a Fourier-transform infrared microscope (detection limit 50 μm), and their possible origin was also investigated. The newly developed technique was more sufficient for sampling as it had a higher MPs recovery, especially in the smaller size range. Polyester, polyethylene and polypropylene were the most frequently detected polymers in the examined fish housing systems, the highest detected concentration was 0.31±0.12 particles/liter (0.22±0.16 μg/liter). These values are negligible compared to the literature data reporting enormously high applied MPs concentrations (104 - 2.21 × 108 particles/liter) during toxicology tests. The results also show that some detected MPs did not originate from the systems, their origin was presumed to be external.
Collapse
Affiliation(s)
- Bence Prikler
- Eurofins Analytical Services Hungary Ltd., Budapest 1045, Hungary; Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Gábor Bordós
- Eurofins Analytical Services Hungary Ltd., Budapest 1045, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Adrienn Micsinai
- Eurofins Analytical Services Hungary Ltd., Budapest 1045, Hungary
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | | | - Zoltán Palotai
- Eurofins Analytical Services Hungary Ltd., Budapest 1045, Hungary
| | - Edit Kaszab
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary.
| | - Sándor Szoboszlay
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| |
Collapse
|
8
|
Li M, Wang Z, Zhu L, Zhu Y, Yi J, Fu X. Research advances on microplastics contamination in terrestrial geoenvironment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173259. [PMID: 38761947 DOI: 10.1016/j.scitotenv.2024.173259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The contamination of microplastics in terrestrial geoenvironment (CMTG) is widespread and severe and has, received considerable attention. However, studies on CMTG are in their initial stages. The literature on CMTG published in the past decade was analyzed through bibliometric analysis, such as the annual publications, countries with the highest contributions, prolific authors, and author keywords. The sources, compositions, migrations and environmental impacts of CMTG are summarized, and possible future directions are proposed. This study analyzed the annual publications, countries with the highest contributions, prolific authors, and author keywords related to microplastics. The results demonstrated that 15,306 articles were published between 2014 and 2023. China is the leading country in terms of the total number of publications. The main sources of CMTG include landfills, agricultural non-point sources, sewage treatment systems and transportation systems. The composition of the CMTG exhibits significantly temporal and spatial variability from different sources. The migration paths of the CMTG were within the soil, groundwater seepage and wind transportation of suspended particles. Microplastics increase soil cohesion, decrease porosity, reduce pore scale, decrease air circulation, and increase water retention capacity, and the exudation of highly water-soluble additives in microplastics can cause secondary contamination of geological entities. Microplastics have an adverse effect on plant growth, animal digestion, microbial activity, energy and lipid metabolism, oxidative stress, and respiratory diseases in humans. It is recommended to develop more efficient and convenient quantitative testing methods for microplastics, formulate globally harmonized testing and evaluation standards, include microplastic testing in testing programs for contaminated soils, and develop efficient methods for the remediation of microplastic contaminated geological bodies.
Collapse
Affiliation(s)
- Mingdong Li
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| | - Zhicheng Wang
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| | - Liping Zhu
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| | - Yating Zhu
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| | - Jinxiang Yi
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| | - Xiaojie Fu
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
9
|
Sucharitakul P, Wu WM, Zhang Y, Peng BY, Gao J, Wang L, Hou D. Exposure Pathways and Toxicity of Microplastics in Terrestrial Insects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11887-11900. [PMID: 38885123 DOI: 10.1021/acs.est.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.
Collapse
Affiliation(s)
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Lam TWL, Chow ASY, Fok L. Human exposure to microplastics via the consumption of nonalcoholic beverages in various packaging materials: The case of Hong Kong. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134575. [PMID: 38749245 DOI: 10.1016/j.jhazmat.2024.134575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
There is growing concern over microplastics in food and beverages, with potential implications for human health. However, little is known about microplastics in nonwater, nonalcoholic packaged beverages. This study addresses this research gap by implementing a dual-method approach that includes laboratory analysis to quantify microplastics in 50 packaged nonalcoholic beverages sold in Hong Kong, coupled with a beverage frequency questionnaire survey to provide a more accurate estimate of microplastic intake from these beverages. The beverages analysed spanned five categories-juice drinks, ready-to-drink teas, soda waters, soft drinks, and sports and energy drinks-and were packaged in four forms: aluminium cans, aseptic cartons, plastic bottles and glass bottles. The results showed that all beverage samples contained microplastics, with an average abundance of 42.1 ± 41.2 n/L (interquartile range [IQR]: 17.8-54.1 n/L), and these particles were predominantly smaller than 150 µm in size. Additionally, based on an annual beverage consumption rate of 157.3 ± 209.7 L/capita (IQR: 42.9-183.0 L/capita), it is estimated that Hong Kong adults ingest approximately 6200 microplastics per capita each year. The potential primary sources of these microplastics are atmospheric fallout and the packaging materials that endure mechanical stresses during the manufacturing and transportation of beverages. Compared to other known routes of exposure, including air, seafood, sugar, salt and honey, packaged nonalcoholic beverages present a comparable level of microplastic exposure, being lower than the first three but higher than the latter two. Nevertheless, the high prevalence of smaller microplastics in the samples is concerning. This study is considered to be important for food safety and human health, as it not only raises public awareness about microplastic contamination in packaged beverages but also serves as a call to action for the beverage industry to adopt more robust safety measures and for policymakers to revise packaging standards to reduce microplastic contamination and safeguard public health.
Collapse
Affiliation(s)
- Theresa Wing Ling Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, the Hong Kong Special Administrative Region of China
| | - Alice Sin Yin Chow
- Department of Social Sciences and Policy Studies, The Education University of Hong Kong, Tai Po, the Hong Kong Special Administrative Region of China
| | - Lincoln Fok
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, the Hong Kong Special Administrative Region of China.
| |
Collapse
|
11
|
Lin HT, Schneider F, Aziz MA, Wong KY, Arunachalam KD, Praveena SM, Sethupathi S, Chong WC, Nafisyah AL, Parthasarathy P, Chelliapan S, Kunz A. Microplastics in Asian rivers: Geographical distribution, most detected types, and inconsistency in methodologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123985. [PMID: 38621450 DOI: 10.1016/j.envpol.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Microplastics pose a significant environmental threat, with potential implications for toxic chemical release, aquatic life endangerment, and human food chain contamination. In Asia, rapid economic growth coupled with inadequate waste management has escalated plastic pollution in rivers, positioning them as focal points for environmental concern. Despite Asia's rivers being considered the most polluted with plastics globally, scholarly attention to microplastics in the region's freshwater environments is a recent development. This study undertakes a systematic review of 228 scholarly articles to map microplastic hotspots in Asian freshwater systems and synthesize current research trends within the continent. Findings reveal a concentration of research in China and Japan, primarily investigating riverine and surface waters through net-based sampling methods. Polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) emerge as the predominant microplastic types, frequently observed as fibers or fragments. However, the diversity of sampling methodologies and reporting metrics complicates data synthesis, underscoring the need for standardized analytical frameworks to facilitate comparative analysis. This paper delineates the distribution of microplastic hotspots and outlines the prevailing challenges and prospects in microplastic research within Asian freshwater contexts.
Collapse
Affiliation(s)
- Hsin-Tien Lin
- National Cheng Kung University, Department of Environmental Engineering, No.1 University Road, Tainan City 701, Taiwan.
| | - Falk Schneider
- National Cheng Kung University, Department of Environmental Engineering, No.1 University Road, Tainan City 701, Taiwan
| | - Muhamad Afiq Aziz
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | | | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia
| | - Sumathi Sethupathi
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar Perak, Malaysia
| | - Woon Chan Chong
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Ayu Lana Nafisyah
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, East Java, 60115, Indonesia
| | - Purushothaman Parthasarathy
- Department of Civil Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu, 603 203, India
| | - Shreeshivadasan Chelliapan
- Department of Engineering & Technology, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Alexander Kunz
- Research Center for Environmental Changes, Academia Sinica, No. 128, Sec. 2, Academia Road, 115201 Taipei City, Taiwan
| |
Collapse
|
12
|
Li G, Pei Z, Li Y, Yang R, Wang P, Liang Y, Zhang J, Zhang Q, Jiang G. A high-precision, effective method for extraction and identification of small-sized microplastics from soil. Talanta 2024; 272:125802. [PMID: 38368834 DOI: 10.1016/j.talanta.2024.125802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
A growing evidence showed that the terrestrial ecosystem was a greater sink for microplastics (MPs) compared with ocean. Owing to the limitation of pretreatment methods, there are few reports on the identification of small-sized MPs(<60 μm) in soil currently, which may led to an underestimation of the environmental risk of MPs in soil system. In this study, we established an efficient pretreatment method for MPs in soils by developing a novel device, Plastic Flotation and Separator system (PFSS). The device integrated the suspension, digestion and filtration procedures into one system, reducing the losses of pretreatment process. It was shown that the recovery of MPs with size of 45 μm was 90%, significantly surpassing that of the traditional pretreatment methods in this particle size range. Combined with the SEM-Raman technique, MPs with small size were accurately determined. This work provides an effective method for the extraction and determination of MPs in soils and is of significance for the risk assessment of MPs in soil system.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Taishan Institute for Eco-Environment, Jinan, 250100, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Taishan Institute for Eco-Environment, Jinan, 250100, China
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jilong Zhang
- State Nuclear Security Technology Center, Beijing, 102445, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
13
|
Eisen A, Pioro EP, Goutman SA, Kiernan MC. Nanoplastics and Neurodegeneration in ALS. Brain Sci 2024; 14:471. [PMID: 38790450 PMCID: PMC11119293 DOI: 10.3390/brainsci14050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Plastic production, which exceeds one million tons per year, is of global concern. The constituent low-density polymers enable spread over large distances and micro/nano particles (MNPLs) induce organ toxicity via digestion, inhalation, and skin contact. Particles have been documented in all human tissues including breast milk. MNPLs, especially weathered particles, can breach the blood-brain barrier, inducing neurotoxicity. This has been documented in non-human species, and in human-induced pluripotent stem cell lines. Within the brain, MNPLs initiate an inflammatory response with pro-inflammatory cytokine production, oxidative stress with generation of reactive oxygen species, and mitochondrial dysfunction. Glutamate and GABA neurotransmitter dysfunction also ensues with alteration of excitatory/inhibitory balance in favor of reduced inhibition and resultant neuro-excitation. Inflammation and cortical hyperexcitability are key abnormalities involved in the pathogenic cascade of amyotrophic lateral sclerosis (ALS) and are intricately related to the mislocalization and aggregation of TDP-43, a hallmark of ALS. Water and many foods contain MNPLs and in humans, ingestion is the main form of exposure. Digestion of plastics within the gut can alter their properties, rendering them more toxic, and they cause gut microbiome dysbiosis and a dysfunctional gut-brain axis. This is recognized as a trigger and/or aggravating factor for ALS. ALS is associated with a long (years or decades) preclinical period and neonates and infants are exposed to MNPLs through breast milk, milk substitutes, and toys. This endangers a time of intense neurogenesis and establishment of neuronal circuitry, setting the stage for development of neurodegeneration in later life. MNPL neurotoxicity should be considered as a yet unrecognized risk factor for ALS and related diseases.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Erik P. Pioro
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | | |
Collapse
|
14
|
Taurozzi D, Gallitelli L, Cesarini G, Romano S, Orsini M, Scalici M. Passive biomonitoring of airborne microplastics using lichens: A comparison between urban, natural and protected environments. ENVIRONMENT INTERNATIONAL 2024; 187:108707. [PMID: 38692149 DOI: 10.1016/j.envint.2024.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/28/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Currently, natural and urban ecosystems are affected by different types of atmospheric deposition, which can compromise the balance of the environment. Plastic pollution represents one of the major threats for biota, including lichens. Epiphytic lichens have value as bioindicators of environmental pollution, climate change, and anthropic impacts. In this study, we aim to investigate the lichen bioaccumulation of airborne microplastics along an anthropogenic pollution gradient. We sampled lichens from the Genera Cladonia and Xanthoria to highlight the effectiveness of lichens as tools for passive biomonitoring of microplastics. We chose three sites, a "natural site" in Altipiani di Arcinazzo, a "protected site" in Castelporziano Presidential estate and an "urban site" in the centre of Rome. Overall, we sampled 90 lichens, observed for external plastic entrapment, melt in oxygen peroxide and analysed for plastic entrapment. To validate the method, we calculated recovery rates of microplastics in lichen. Particularly, 253 MPs particles were detected across the 90 lichen samples: 97 % were fibers, and 3 % were fragments. A gradient in the number of microplastic fibers across the sites emerged, with increasing accumulation of microplastics from the natural site (n = 58) to the urban site (n = 116), with a direct relationship between the length and abundance of airborne microplastic fibers. Moreover, we detected the first evidences of airborne mesoplastics entrapped by lichens. On average, the natural site experienced the shortest fibre length and the centre of Rome the longest. No differences in microplastics accumulation emerged from the two genera. Our results indicated that lichens can effectively be used for passive biomonitoring of microplastic deposition. In this scenario, the role of lichens in entrapping microplastics and protecting pristine areas must be investigated. Furthermore, considering the impact that airborne microplastics can have on human health and the effectiveness of lichens as airborne microplastic bioindicators, their use is encouraged.
Collapse
Affiliation(s)
- Davide Taurozzi
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Luca Gallitelli
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy; National Research Council - Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922 Verbania, Italy
| | - Susanna Romano
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - Monica Orsini
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
15
|
Nandi S, Kumar RN, Dhandapani A, Iqbal J. Characterization of microplastics in outdoor and indoor air in Ranchi, Jharkhand, India: First insights from the region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123543. [PMID: 38367691 DOI: 10.1016/j.envpol.2024.123543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
The study focused on detecting and characterizing microplastics in outdoor and indoor air in Ranchi, Jharkhand, India during post-monsoon (2022) and winter (2023). Stereo microscopic analysis showed that plastic fibres had a dominant presence, fragments were less abundant, whereas fewer films could be detected in indoor and outdoor air. The atmospheric deposition of microplastics outdoors observed 465 ± 27 particles/m2/day in PM10 and 12104 ± 665 and 13833 ± 1152 particles/m2/day in PM2.5 in quartz and PTFE, respectively during the post-monsoon months. During winter, microplastic deposition rates in PM10 samples were found to be 689 ± 52 particles/m2/day and 19789 ± 2957 and 30087 ± 13402 in quartz and PTFE particles/m2/day respectively in PM2.5. The mean deposition rate in indoor environment during post-monsoon was 8.3 × 104 and 1.03 × 105 particles/m2/day in winter. During the post-monsoon period in PM10, there were fibres from 7.7 to 40 μm and fragments from 2.3 μm to 8.6 μm. Indoor atmospheric microplastics, fibres ranged from 1.2 to 47 μm and fragments from 0.9 to 16 μm present respectively during the post-monsoon season. Fibres and fragment sizes witnessed during winter were 3.6-6.9 μm and 2.3-34 μm, respectively. Indoor air films measured in the range of 4.1-9.6 μm. Fourier transform infrared analysis showed that outdoor air contained polyethylene, polypropylene, Polystyrene, whereas indoor air had polyvinyl chloride. Polyethylene mainly was present in outdoor air, with lesser polypropylene and polystyrene than indoors, where polyvinyl chloride and polyethylene were in dominant proportions. Elemental mapping of outdoor and indoor air samples showed the presence of elements on the microplastics. The HYSPLIT models suggest that the particles predominantly were coming from North-West during the post-monsoon season. Principal component analysis indicated wind speed and direction influencing the abundance of microplastics. Microplastics concentration showed strong seasonal influence and potential to act as reservoir of contaminants.
Collapse
Affiliation(s)
- Shreya Nandi
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, 835215, Jharkhand, India.
| | - Radhakrishnan Naresh Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, 835215, Jharkhand, India.
| | - Abisheg Dhandapani
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, 835215, Jharkhand, India.
| | - Jawed Iqbal
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
16
|
Ahn S, Kim N, Choi Y, Kim J, Hwang H, Kim C, Lee HY, Kim S, Kim JS, Lee HH, Choi J. Peptide-Decorated Microneedles for the Detection of Microplastics. BIOSENSORS 2024; 14:140. [PMID: 38534247 DOI: 10.3390/bios14030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
The escalating utilization of plastics in daily life has resulted in pervasive environmental pollution and consequent health hazards. The challenge of detecting and capturing microplastics, which are imperceptible to the naked eye, is exacerbated by their diminutive size, hydrophobic surface properties, and capacity to absorb organic compounds. This study focuses on the application of peptides, constituted of specific amino acid sequences, and microneedles for the rapid and selective identification of microplastics. Peptides, due to their smaller size and greater environmental stability compared with antibodies, emerge as a potent solution to overcome the limitations inherent in existing detection methodologies. To immobilize peptides onto microneedles, this study employed microneedles embedded with gold nanorods, augmenting them with sulfhydryl (SH) groups at the peptides' termini. The sensor developed through this methodology exhibited efficient peptide binding to the microneedle tips, thereby facilitating the capture of microplastics. Raman spectroscopy was employed for the detection of microplastics, with the results demonstrating successful attachment to the microneedles. This novel approach not only facilitates localized analysis but also presents a viable strategy for the detection of microplastics across diverse environmental settings.
Collapse
Affiliation(s)
- Suyeon Ahn
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Namju Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyeryun Hwang
- Department of Chemical Engineering, Myongji University, Yongin-si 17058, Republic of Korea
| | - Cholong Kim
- Department of Chemical Engineering, Myongji University, Yongin-si 17058, Republic of Korea
| | - Hee-Young Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi-si 39177, Republic of Korea
| | - Seungyoun Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Republic of Korea
| | - Jin Su Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Republic of Korea
| | - Hyun Ho Lee
- Department of Chemical Engineering, Myongji University, Yongin-si 17058, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| |
Collapse
|
17
|
Shi H, He F, Huo C, Wan J, Song H, Du F, Liu R. Molecular mechanisms of polystyrene nanoplastics and alpha-amylase interactions and their binding model: A multidimensional analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170036. [PMID: 38242479 DOI: 10.1016/j.scitotenv.2024.170036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Plastic fragments are widely distributed in different environmental media and has recently drawn special attention due to its difficulty in degradation and serious health and environmental problems. Among, nanoplastics (NPs) are smaller in size, larger in surface/volume ratio, and more likely to easily adsorb ambient pollutants than macro plastic particles. Moreover, NPs can be easily absorbed by wide variety of organisms and accumulate in multiple tissues/organs and cells, thus posing a more serious threat to living organisms. Alpha-amylase (α-amylase) is a hydrolase, which can be derived from various sources such as animals, plants, and microorganisms. Currently, no studies have concentrated on the binding of NPs with α-amylase and their interaction mechanisms by employing a multidimensional strategy. Hence, we explored the interaction mechanisms of polystyrene nanoplastics (PS-NPs) with α-amylase by means of multispectral analysis, in vitro enzymatic activity analysis, and molecular simulation techniques under in vitro conditions. The findings showed that PS-NPs had the capability to bind with the intrinsic fluorescence chromophores, leading to fluorescence changes of these specific amino acids. This interaction also caused the alterations in the micro-environment of the fluorophore residues mainly tryptophan (TRP) and tyrosine (TYR) residues of α-amylase. PS-NPs interaction promoted the unfolding and partial expansion of polypeptide chains and the loosening of protein skeletons, and destroyed the secondary structure (increased random coil contents and decreased α-helical contents) of this protein, forming a larger particle size of the PS-NPs-α-amylase complex. Moreover, the enzymatic activity of α-amylase in vitro was found to be inhibited in a concentration dependent manner, thereby impairing its physiological functions. Further molecular simulation found that PS-NPs had a higher tendency to bind to the active site of α-amylase, which is the cause for its structural and functional changes. Additionally, the hydrophobic force played a major role in mediating the binding interactions between PS-NPs and α-amylase. Taken together, our study indicated that PS-NPs interaction can initiate the abnormal physiological functions of α-amylase through PS-NPs-induced structural and conformational alternations.
Collapse
Affiliation(s)
- Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hengyu Song
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Fei Du
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
18
|
López-Rosales A, Ferreiro B, Andrade J, Fernández-Amado M, González-Pleiter M, López-Mahía P, Rosal R, Muniategui-Lorenzo S. A reliable method to determine airborne microplastics using quantum cascade laser infrared spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169678. [PMID: 38159775 DOI: 10.1016/j.scitotenv.2023.169678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
The number of studies dealing with airborne microplastics (MPs) is increasing but sampling and sample treatment are not standardized, yet. Here, a fast and reliable method to characterize MPs is presented. It involves the study of two passive sampling devices to collect atmospheric bulk deposition (wet and dry deposition) and three digestion methods (two alkaline-oxidative and an oxidative) to treat the samples. The alkaline-oxidative method based on KOH and NaClO was selected for a mild organic matrix digestion. In addition, some operational parameters of a high-throughput quantum cascade laser-based infrared device (LDIR) were optimized: an effective automatic tiered approach to differentiate fibres from particles (>90 % success in validation) and a criterion to establish positive matches when comparing an unknown spectrum against the spectral database (proposed match index > 0.85). The procedural analytical recoveries were very good for particles (82-90 %) and slightly lower for fibres (62-73 %). Finally, the amount and type of MPs deposited at a sub-urban area NW Spain were evaluated. Most common polymers were Polyethylene (PE), Polypropylene (PP) and Polyethylene terephthalate (PET). The deposition rates ranged 98-1220 MP/m2/day, ca. 1.7 % of the total collected particles. More than 50 % of the total MPs deposited were in the 20-50 μm size range, whereas fibres were mostly in the 50-500 μm size range.
Collapse
Affiliation(s)
- Adrián López-Rosales
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - Borja Ferreiro
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - José Andrade
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - María Fernández-Amado
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Purificación López-Mahía
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Soledad Muniategui-Lorenzo
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain.
| |
Collapse
|
19
|
Liu P, Shao L, Zhang Y, Silvonen V, Oswin H, Cao Y, Guo Z, Ma X, Morawska L. Comparative study on physicochemical characteristics of atmospheric microplastics in winter in inland and coastal megacities: A case of Beijing and Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169308. [PMID: 38101632 DOI: 10.1016/j.scitotenv.2023.169308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Atmospheric microplastics (MPs) have received global attention across various sectors of society due to their potential negative impacts. This study aims to understand the physicochemical characteristics of MPs in inland and coastal megacities for raising awareness about the urgent need to reduce plastic pollution. Laser Direct Infrared Imaging (LDIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDX) techniques were employed to characterize atmospheric MPs in megacities (inland megacity Beijing and coastal megacity Shanghai) in China, focusing on their physicochemical characteristics, including compositional types, number concentration, morphology, size, possible sources, and potential health risks. The LDIR analysis identified sixteen different types of MPs present in the atmospheres of Beijing and Shanghai. The number concentration of atmospheric MPs in Beijing (3.0 items/m3) is 1.8 times that of Shanghai (1.7 items/m3). The study found that the variations in MP pollution between Beijing and Shanghai are influenced by the urban industrial structure and geographical location. Morphological analysis indicates that fragment MPs have the highest relative abundance in Beijing, while fibrous MPs dominate the atmosphere of Shanghai. Additionally, the study assessed the potential health risks of atmospheric MPs to urban residents. The results suggest that residents of Beijing face more severe health risks from atmospheric MPs compared to those in Shanghai. These findings underscore the urgency to address the issue of atmospheric MPs and provide crucial evidence for the formulation of relevant environmental and health policies.
Collapse
Affiliation(s)
- Pengju Liu
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Yaxing Zhang
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Ville Silvonen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Henry Oswin
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yaxin Cao
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Ziyu Guo
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xuying Ma
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
20
|
Kaushik A, Gupta P, Kumar A, Saha M, Varghese E, Shukla G, Suresh K, Gunthe SS. Identification and physico-chemical characterization of microplastics in marine aerosols over the northeast Arabian Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168705. [PMID: 38000750 DOI: 10.1016/j.scitotenv.2023.168705] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Microplastics (MPs) in the atmosphere can undergo long-range transport from emission regions to pristine terrestrial and oceanic ecosystems. Due to their inherent toxic and hazardous characteristics, MPs pose serious risks to both human well-being and the equilibrium of ecosystem. The present study outlines the comprehensive characterization, spanning physical and chemical attributes of MPs associated with atmospheric aerosols. Total suspended particulates (TSPs) were collected on a quartz fibre filter by operating a high-volume sampler for 24 h during distinct years (March, 2016 and November, 2020) at a coastal location in the northeast Arabian Sea. Subsequent to the sampling, a series of techniques were applied including density separation. The assessment and scrutiny of the MPs was carried out using stereo-zoom microscopy with supplementary validation using advanced fluorescence microscopy for enhanced precision in identification. Our comparative assessment suggests peroxide treatment followed by density separation could be a robust procedure for the definitive identification and characterization of MPs in the atmosphere. Average total abundance of MPs was found to be 1.30 ± 0.14 n/m3 in 2016 and 1.46 ± 0.12 n/m3 in 2020 with fibres, fragments and films having similar relative contributions (41 %, 31 %, 28 % in 2016 and 40 %, 35 %, 25 % in 2020). Fibres were found to be dominant morphotype followed by fragments and films over the coastal region of the Arabian Sea. In order to unravel the detailed chemical nature of these MPs, spectral analysis using μ-FTIR was carried out. The outcome of the analysis showed prevailing polymers as polyvinyl chloride and polymethyl methacrylate (50545 %) as dominant polymers followed by polyester (15 %), styrene butyl methacrylate (11 %), and polyacetal (9 %). MPs present in the vicinity of the Arabian Sea have potential to supply nutrients and toxicants, consequently can contribute to the modulation of the surface water biogeochemical processes.
Collapse
Affiliation(s)
- Ankush Kaushik
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India
| | - Priyansha Gupta
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashwini Kumar
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Emil Varghese
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Garima Shukla
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K Suresh
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
| | - Sachin S Gunthe
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
21
|
Rafa N, Ahmed B, Zohora F, Bakya J, Ahmed S, Ahmed SF, Mofijur M, Chowdhury AA, Almomani F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123190. [PMID: 38142809 DOI: 10.1016/j.envpol.2023.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/25/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Microplastic pollution has emerged as a new environmental concern due to our reliance on plastic. Recent years have seen an upward trend in scholarly interest in the topic of microplastics carrying contaminants; however, the available review studies have largely focused on specific aspects of this issue, such as sorption, transport, and toxicological effects. Consequently, this review synthesizes the state-of-the-art knowledge on these topics by presenting key findings to guide better policy action toward microplastic management. Microplastics have been reported to absorb pollutants such as persistent organic pollutants, heavy metals, and antibiotics, leading to their bioaccumulation in marine and terrestrial ecosystems. Hydrophobic interactions are found to be the predominant sorption mechanism, especially for organic pollutants, although electrostatic forces, van der Waals forces, hydrogen bonding, and pi-pi interactions are also noteworthy. This review reveals that physicochemical properties of microplastics, such as size, structure, and functional groups, and environmental compartment properties, such as pH, temperature, and salinity, influence the sorption of pollutants by microplastic. It has been found that microplastics influence the growth and metabolism of organisms. Inadequate methods for collection and analysis of environmental samples, lack of replication of real-world settings in laboratories, and a lack of understanding of the sorption mechanism and toxicity of microplastics impede current microplastic research. Therefore, future research should focus on filling in these knowledge gaps.
Collapse
Affiliation(s)
- Nazifa Rafa
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, United Kingdom
| | - Bushra Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Fatema Zohora
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Jannatul Bakya
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Samiya Ahmed
- Biological and Biomedical Sciences Department, College of Health and Life sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ashfaque Ahmed Chowdhury
- School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia; Centre for Intelligent Systems, Clean Energy Academy, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
22
|
Zhu Y, Che R, Zong X, Wang J, Li J, Zhang C, Wang F. A comprehensive review on the source, ingestion route, attachment and toxicity of microplastics/nanoplastics in human systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120039. [PMID: 38218169 DOI: 10.1016/j.jenvman.2024.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/15/2024]
Abstract
Microplastics (MPs)/nanoplastics (NPs) are widely found in the natural environment, including soil, water and the atmosphere, which are essential for human survival. In the recent years, there has been a growing concern about the potential impact of MPs/NPs on human health. Due to the increasing interest in this research and the limited number of studies related to the health effects of MPs/NPs on humans, it is necessary to conduct a systematic assessment and review of their potentially toxic effects on human organs and tissues. Humans can be exposed to microplastics through ingestion, inhalation and dermal contact, however, ingestion and inhalation are considered as the primary routes. The ingested MPs/NPs mainly consist of plastic particles with a particle size ranging from 0.1 to 1 μm, that distribute across various tissues and organs within the body, which in turn have a certain impact on the nine major systems of the human body, especially the digestive system and respiratory system, which are closely related to the intake pathway of MPs/NPs. The harmful effects caused by MPs/NPs primarily occur through potential toxic mechanisms such as induction of oxidative stress, generation of inflammatory responses, alteration of lipid metabolism or energy metabolism or expression of related functional factors. This review can help people to systematically understand the hazards of MPs/NPs and related toxicity mechanisms from the level of nine biological systems. It allows MPs/NPs pollution to be emphasized, and it is also hoped that research on their toxic effects will be strengthened in the future.
Collapse
Affiliation(s)
- Yining Zhu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ruijie Che
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Xinyan Zong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinhan Wang
- School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
23
|
Chenappan NK, Ibrahim YS, Anuar ST, Yusof KMKK, Jaafar M, Ahamad F, Sulaiman WZW, Mohamad N. Quantification and characterization of airborne microplastics in the coastal area of Terengganu, Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:242. [PMID: 38324118 DOI: 10.1007/s10661-024-12381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024]
Abstract
Microplastics (MPs) pose a threat to ecosystems due to their capacity to bind with toxic chemicals. While the occurrence of MPs in aquatic environmental matrices like water, sediments, and biota is well studied, their presence in the atmosphere remains less understood. This study aimed to determine the presence of airborne MPs and their characteristics through ground-based sampling in the coastal city of Kuala Nerus, Terengganu, Malaysia. Airborne MP samples were collected using passive sampling technique in December 2019. MPs were manually counted and identified using a stereomicroscope based on their colour and shape. The average deposition rate of airborne MPs during the sampling period was 5476 ± 3796 particles/m2/day, ranging from 576 to 15,562 particles/m2/day. Various colours such as transparent (38%), blue (25%), black (20%), red (13%), and others (4%) were observed. The predominant shape of airborne MPs was fibres (> 99%). The morphology structure of MPs observed using a scanning electron microscope (SEM) showed a cracked surface on MPs, suggesting weathering and irregular fragmentation. Further elemental analysis using energy dispersive X-ray spectroscopy (EDS) showed the presence of heavy metals such as aluminium (Al) and cadmium (Cd) on the surface of MPs, attributed to the adsorption capacities of MPs. Polymer types of airborne MPs were analysed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), which revealed particles composed of polyester (PES), polyethylene (PE), and polypropylene (PP). The preliminary findings could provide additional information for further investigations of MPs, especially in the atmosphere, to better understand their sources and potential human exposure.
Collapse
Affiliation(s)
- Naresh Kumar Chenappan
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sabiqah Tuan Anuar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Ku Mohd Kalkausar Ku Yusof
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Maisarah Jaafar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Fatimah Ahamad
- Sunway Centre for Planetary Health, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | | | - Noorlin Mohamad
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Atmospheric, Air Quality and Climate Change Research Interest Group, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
24
|
Khatoon N, Mallah MA, Yu Z, Qu Z, Ali M, Liu N. Recognition and detection technology for microplastic, its source and health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11428-11452. [PMID: 38183545 DOI: 10.1007/s11356-023-31655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/17/2023] [Indexed: 01/08/2024]
Abstract
Microplastic (MP) is ubiquitous in the environment which appeared as an immense intimidation to human and animal health. The plastic fragments significantly polluted the ocean, fresh water, food chain, and other food items. Inadequate maintenance, less knowledge of adverse influence along with inappropriate usage in addition throwing away of plastics items revolves present planet in to plastics planet. The present study aims to focus on the recognition and advance detection technologies for MPs and the adverse effects of micro- and nanoplastics on human health. MPs have rigorous adverse effect on human health that leads to condensed growth rates, lessened reproductive capability, ulcer, scrape, and oxidative nervous anxiety, in addition, also disturb circulatory and respiratory mechanism. The detection of MP particles has also placed emphasis on identification technologies such as scanning electron microscopy, Raman spectroscopy, optical detection, Fourier transform infrared spectroscopy, thermo-analytical techniques, flow cytometry, holography, and hyperspectral imaging. It suggests that further research should be explored to understand the source, distribution, and health impacts and evaluate numerous detection methodologies for the MPs along with purification techniques.
Collapse
Affiliation(s)
- Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
| | - Manthar Ali Mallah
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risk Assessment, School of Nursing, Henan University, Kaifeng, 475004, People's Republic of China
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology (QUEST), Nawabshah, 67480, Sindh, Pakistan
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
- Institute of Chronic Disease Risk Assessment, School of Nursing, Henan University, Kaifeng, 475004, People's Republic of China
- Health Science Center, South China Hospital, Shenzhen University, Shenzhen, 518116, People's Republic of China
| |
Collapse
|
25
|
Fox S, Stefánsson H, Peternell M, Zlotskiy E, Ásbjörnsson EJ, Sturkell E, Wanner P, Konrad-Schmolke M. Physical characteristics of microplastic particles and potential for global atmospheric transport: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:122938. [PMID: 37981185 DOI: 10.1016/j.envpol.2023.122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Recent interest in microplastic pollution of natural environments has brought forth samples which confirm the pollutant's omnipresence in a variety of ecosystems. This includes locations furthest removed from human activity. Atmospheric transport and deposition are suspected as the primary transport pathway to these remote locations. The factors most influential on participation in atmospheric transport are yet to be determined. This meta-analysis aims to identify patterns that exist between physical characteristics of microplastic particles and their potential for atmospheric transport. Our review addresses the following questions: Which characteristics of microplastic particles promote atmospheric transport and deposition into remote regions, and how significant are these factors in determining distance transported from their sources? This article analyzes commonly reported physical attributes-- shape, polymer composition and color-- from studies in urban and remote areas. The analysis of 68 studies, composed of data from 2078 samples, shows higher occurrence of microplastic particles in remote samples with fiber shapes, polyester compositions, and red, blue, and transparent colors. This meta-analysis is the first to identify patterns between physical properties of microplastic particles and extent of their participation in atmospheric transport to global remote locations.
Collapse
Affiliation(s)
- Sydney Fox
- Department of Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - Mark Peternell
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Edward Zlotskiy
- Albert Nenken School of Engineering, The Cooper Union for the Advancement of Science and Art, Brooklyn, NY, USA
| | | | - Erik Sturkell
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Wanner
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
26
|
Bansal M, Santhiya D, Sharma JG. Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8354-8368. [PMID: 38170356 DOI: 10.1007/s11356-023-31680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Contaminated soil is one of today's most difficult environmental issues, posing serious hazards to human health and the environment. Contaminants, particularly micro-nano plastics, have become more prevalent around the world, eventually ending up in the soil. Numerous studies have been conducted to investigate the interactions of micro-nano plastics in plants and agroecosystems. However, viable remediation of micro-nano plastics in soil remains limited. In this review, a powerful in situ soil remediation technology known as phytoremediation is emphasized for addressing micro-nano-plastic contamination in soil and plants. It is based on the synergistic effects of plants and the microorganisms that live in their rhizosphere. As a result, the purpose of this review is to investigate the mechanism of micro-nano plastic (MNP) uptake by plants as well as the limitations of existing MNP removal methods. Different phytoremediation options for removing micro-nano plastics from soil are also described. Phytoremediation improvements (endophytic-bacteria, hyperaccumulator species, omics investigations, and CRISPR-Cas9) have been proposed to enhance MNP degradation in agroecosystems. Finally, the limitations and future prospects of phytoremediation strategies have been highlighted in order to provide a better understanding for effective MNP decontamination from soil.
Collapse
Affiliation(s)
- Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
27
|
Shanmugiah J, Zaheer J, Im C, Kang CM, Kim JS. Comparison of PET tracing and biodistribution between 64Cu-labeled micro-and nano-polystyrene in a murine inhalation model. Part Fibre Toxicol 2024; 21:2. [PMID: 38297341 PMCID: PMC10829228 DOI: 10.1186/s12989-023-00561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024] Open
Abstract
INTRODUCTION Recent studies showed the presence of microplastic in human lungs. There remains an unmet need to identify the biodistribution of microplastic after inhalation. In this study, we traced the biodistribution of inhaled micro-sized polystyrene (mPS) and/or nano-sized PS (nPS) using 64Cu with PET in mice. METHODS We used 0.2-0.3-µm sized mPS and 20-nm sized nPS throughout. 64Cu-DOTA-mPS, 64Cu-DOTA-nPS and/or 64CuCl2 were used to trace the distribution in the murine inhalation model. PET images were acquired using an INVEON PET scanner at 1, 12, 24, 48, and 72 h after intratracheal instillation, and the SUVmax for interesting organs were determined, biodistribution was then determined in terms of percentage injected dose/gram of tissue (%ID/g). Ex vivo tissue-radio thin-layer chromatography (Ex vivo-radioTLC) was used to demonstrate the existence of 64Cu-DOTA-PS in tissue. RESULTS PET image demonstrated that the amount of 64Cu-DOTA-mPS retained within the lung was significantly higher than 64Cu-DOTA-nPS until 72 h; SUVmax values of 64Cu-DOTA-mPS in lungs was 11.7 ± 5.0, 48.3 ± 6.2, 65.5 ± 2.3, 42.2 ± 13.1, and 13.2 ± 2.3 at 1, 12, 24, 48, and 72 h respectively whereas it was 31.2 ± 3.1, 17.3 ± 5.9, 10.0 ± 3.4, 8.1 ± 2.4 and 8.9 ± 3.6 for 64Cu-DOTA-nPS at the corresponding timepoints. The biodistribution data supported the PET data with a similar pattern of clearance of the radioactivity from the lung. nPS cleared rapidly post instillation in comparison to mPS within the lungs. Higher accumulation of %ID/g for nPS (roughly 2 times) were observed compared to mPS in spleen, liver, intestine, thymus, kidney, brain, salivary gland, ovary, and urinary bladder. Ex vivo-radioTLC was used to demonstrate that the detected gamma rays originated from 64Cu-DOTA-mPS or nPS. CONCLUSION PET image demonstrated the differences in accumulations of mPS and/or nPS between lungs and other interesting organs. The information provided may be used as the basis for future studies on the toxicity of mPS and/or nPS.
Collapse
Affiliation(s)
- Joycie Shanmugiah
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812, Korea
- Radiological and Medico-Oncological Sciences, Korea National University of Science and Technology, Seoul, 01812, Republic of Korea
| | - Javeria Zaheer
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812, Korea
| | - Changkeun Im
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812, Korea
- Radiological and Medico-Oncological Sciences, Korea National University of Science and Technology, Seoul, 01812, Republic of Korea
| | - Choong Mo Kang
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812, Korea
- Radiological and Medico-Oncological Sciences, Korea National University of Science and Technology, Seoul, 01812, Republic of Korea
| | - Jin Su Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812, Korea.
- Radiological and Medico-Oncological Sciences, Korea National University of Science and Technology, Seoul, 01812, Republic of Korea.
| |
Collapse
|
28
|
Sharaf Din K, Khokhar MF, Butt SI, Qadir A, Younas F. Exploration of microplastic concentration in indoor and outdoor air samples: Morphological, polymeric, and elemental analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168398. [PMID: 37952657 DOI: 10.1016/j.scitotenv.2023.168398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Microplastics are ubiquitously pervasive throughout the environment, but unlike aquatic and terrestrial microplastics, airborne microplastics have received less scientific attention. This study is the first of its kind to explicitly examine microplastics in the indoor and outdoor air (PM2.5) samples collected using active air samplers in Islamabad, Pakistan. The suspected synthetic particles were analyzed using ATR-FTIR, μ-Raman and SEM-EDX to categorize them based on their morphological characteristics, polymeric composition, and elemental makeup. Microplastics were found in all indoor and outdoor air samples, with indoor air samples (4.34 ± 1.93 items/m3) being significantly more contaminated than outdoor air samples (0.93 ± 0.32 items/m3) (P < 0.001). Among all the indoor air samples, samples taken from classroom (6.12 ± 0.51 items/m3) were more contaminated than samples taken from hallway (4.94 ± 0.78 items/m3) and laboratory (1.96 ± 0.44 items/m3). Fibers were found to be the prevalent shape type in indoor and outdoor airborne microplastics followed by fragments. Transparent- and black colored microplastic particles were predominant in both indoor and outdoor air samples. According to ATR-FTIR analysis, polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), and polystyrene (PS) were the most prevalent polymer types in both indoor and outdoor environments. Results from μ-Raman analysis corroborated the presence of the polymers identified by ATR-FTIR. Morphological analysis of particles by SEM indicated signs of weathering on particles' surface i.e., grooves, breaks, shredded edges, pits etc. SEM-EDX of randomly chosen particles unraveled the presence of C and O as core elements, along with the presence of heavy metals at some spots due to foreign material adhering to their surface. Correlation analysis of environmental factors i.e., PM2.5, relative humidity, temperature, and wind speed with MPs abundance revealed non-significant relationships. The findings of this study call for further research on airborne MPs to better comprehend their dispersion, toxicity, interactions with other air pollutants, and attributable health risks.
Collapse
Affiliation(s)
- Khadija Sharaf Din
- Institute of Environmental Sciences and Engineering (IESE), SCEE, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Fahim Khokhar
- Institute of Environmental Sciences and Engineering (IESE), SCEE, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Shahid Ikramullah Butt
- Department of design and manufacturing Engineering (DME), SMME, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Farhan Younas
- Center for Interdisciplinary Research in Basic Science (CIRBS), Faculty of Sciences, International Islamic University, Islamabad 44000, Pakistan
| |
Collapse
|
29
|
Maione A, Norcia M, Sinoca M, Galdiero M, Maselli V, Feola A, Carotenuto R, Cuomo P, Capparelli R, Guida M, Galdiero E. Polystyrene Microplastics Exacerbate Candida albicans Infection Ability In Vitro and In Vivo. Int J Mol Sci 2023; 25:12. [PMID: 38203182 PMCID: PMC10778850 DOI: 10.3390/ijms25010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Plastic pollution is an important environmental problem, and microplastics have been shown to have harmful effects on human and animal health, affecting immune and metabolic physiological functions. Further, microplastics can interfere with commensal microorganisms and exert deleterious effects on exposure to pathogens. Here, we compared the effects of 1 µm diameter polystyrene microplastic (PSMPs) on Candida albicans infection in both in vitro and in vivo models by using HT29 cells and Galleria mellonella larvae, respectively. The results demonstrated that PSMPs could promote Candida infection in HT29 cells and larvae of G. mellonella, which show immune responses similar to vertebrates. In this study, we provide new experimental evidence for the risk to human health posed by PSMPs in conjunction with Candida infections.
Collapse
Affiliation(s)
- Angela Maione
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.M.); (M.N.); (M.S.); (V.M.); (A.F.); (R.C.)
| | - Mariangela Norcia
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.M.); (M.N.); (M.S.); (V.M.); (A.F.); (R.C.)
| | - Marica Sinoca
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.M.); (M.N.); (M.S.); (V.M.); (A.F.); (R.C.)
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Valeria Maselli
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.M.); (M.N.); (M.S.); (V.M.); (A.F.); (R.C.)
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.M.); (M.N.); (M.S.); (V.M.); (A.F.); (R.C.)
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.M.); (M.N.); (M.S.); (V.M.); (A.F.); (R.C.)
| | - Paola Cuomo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (P.C.); (R.C.)
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (P.C.); (R.C.)
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.M.); (M.N.); (M.S.); (V.M.); (A.F.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.M.); (M.N.); (M.S.); (V.M.); (A.F.); (R.C.)
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| |
Collapse
|
30
|
Le VG, Nguyen MK, Nguyen HL, Lin C, Hadi M, Hung NTQ, Hoang HG, Nguyen KN, Tran HT, Hou D, Zhang T, Bolan NS. A comprehensive review of micro- and nano-plastics in the atmosphere: Occurrence, fate, toxicity, and strategies for risk reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166649. [PMID: 37660815 DOI: 10.1016/j.scitotenv.2023.166649] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Micro- and nano-plastics (MNPs) have received considerable attention over the past 10 years due to their environmental prevalence and potential toxic effects. With the increase in global plastic production and disposal, MNP pollution has become a topic of emerging concern. In this review, we describe MNPs in the atmospheric environment, and potential toxicological effects of exposure to MNPs. Studies have reported the occurrence of MNPs in outdoor and indoor air at concentrations ranging from 0.0065 items m-3 to 1583 items m-3. Findings have identified plastic fragments, fibers, and films in sizes predominantly <1000 μm with polyamide (PA), polyester (PES), polyethylene terephthalate (PET), polypropylene (PP), rayon, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and ethyl vinyl acetate (EVA) as the major compounds. Exposure through indoor air and dust is an important pathway for humans. Airborne MNPs pose health risks to plants, animals, and humans. Atmospheric MNPs can enter organism bodies via inhalation and subsequent deposition in the lungs, which triggers inflammation and other adverse health effects. MNPs could be eliminated through source reduction, policy/regulation, environmental awareness and education, biodegradable materials, bioremediation, and efficient air-filtration systems. To achieve a sustainable society, it is crucial to implement effective strategies for reducing the usage of single-use plastics (SUPs). Further, governments play a pivotal role in addressing the pressing issue of MNPs pollution and must establish viable solutions to tackle this significant challenge.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Mohammed Hadi
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Norway
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 810000, Viet Nam
| | - Khoi Nghia Nguyen
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City 270000, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
31
|
Vattanasit U, Kongpran J, Ikeda A. Airborne microplastics: A narrative review of potential effects on the human respiratory system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166745. [PMID: 37673257 DOI: 10.1016/j.scitotenv.2023.166745] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
There has been growing evidence showing the widespread of airborne microplastics (AMPs) in many regions of the world, raising concerns about their impact on human health. This review aimed to consolidate recent literature on AMPs regarding their physical and chemical characteristics, deposition in the human respiratory tract, translocation, occurrence from human studies, and toxic effects determined in vitro and in vivo. The physical characteristics influence interactions with cell membranes, cellular internalization, accumulation, and cytotoxicity resulting from cell membrane damage and oxidative stress. In addition, prolonged exposure to AMP-associated toxic chemicals might lead to significant health effects. Most toxicological assessments of AMPs in vitro and in vivo have demonstrated that oxidative stress and inflammation are major mechanisms of action for their toxic effects. Elevated reactive oxygen species production could lead to mitochondrial dysfunction, inflammatory responses, and subsequent apoptosis in experimental models. To date, there has been some evidence suggesting exposure in humans. However, the data are still insufficient, and adverse human health effects need to be investigated. Future research on the existence, exposure, and health effects of AMPs is required for developing preventive and mitigation measures to protect human health.
Collapse
Affiliation(s)
- Udomratana Vattanasit
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Jira Kongpran
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Sapporo 0600812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| |
Collapse
|
32
|
Zhang L, Wang J, Gong X, Song Y, Li D, Huang H, Yu C, Liang X, Fang H. Removal characteristics of microplastics in sewage flowing through a long-term operation surface flow wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165714. [PMID: 37487891 DOI: 10.1016/j.scitotenv.2023.165714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Microplastics (MPs) in sewage pose significant threats to aquatic system. Surface flow wetland (SFW) is a common natural wetland type, and is also used as a cheap and easy-to-build sewage treatment system for small and scattered settlements. However, seasonal variation patterns of MPs in sewage removed by SFW are still limited. Therefore, a field investigation was conducted in an SFW that has been operated for 17 years. The concentration of microplastics in the influent of the SFW (CMPs, in) ranged from 56 ± 6 to 250 ± 14 items L-1. The dominant plastic types were fibers and polyethylene terephthalate (PET). CMPs, in were high in summer and winter, significantly related to the seasonal dressing habits. The removal efficiencies of MPs in SFW were 48.03-92.32 % in different seasons, and the mechanisms of MP removal were different with traditional pollutants. Before flowing out occasionally or by heavy precipitation, MPs were primarily trapped in the SFW and underwent certain oxidation. Simulation experiments demonstrated that 47.5-92.9 % of MPs would be trapped in the SFW, and plants would significantly enhance the trapping capacities. This study sheds light on the seasonal variation characteristics and patterns of MPs in actual sewage, and clarifies the fate of MPs in a long-term operation SFW.
Collapse
Affiliation(s)
- Le Zhang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingxin Wang
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Xia Gong
- College of Chemistry and Material, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaohua Song
- School of Electrical Engineering, Jiujiang Vocational and Technical College, Jiujiang 332007, China
| | - Danping Li
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huajun Huang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chenglong Yu
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ximei Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Hansun Fang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
33
|
Goyal T, Singh S, Das Gupta G, Verma SK. Microplastics in environment: a comprehension on sources, analytical detection, health concerns, and remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114707-114721. [PMID: 37897575 DOI: 10.1007/s11356-023-30526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Contamination of ecosystems by microplastics (MPs) has been reported intensively worldwide in the recent decade. A trend of reports indicated their presence in the atmosphere; food items and soil ecosystems are rising continuously. Literature evidenced that MPs are abundant in seawater, beach sand, drinking water, agricultural soils, wastewater treatment plant (WWTP) effluent, and the atmosphere. The greater abundance of MPs in the environment has led to their invasion of seafood, human-consumed food items such as table salts, beverages, takeout food containers, and disposable cups, marine biological lives, and creating serious health hazards in humans. Moreover, the absence of guidelines and specifications for controlling MPs in the environment makes the situation alarming, and the human toxicity data of MPs is scarce. Thereby, the toxicity assessment of MPs in humans is of greater concern. This review compiles the updated information on the potential sources of MPs in different components of the environment (viz. soil, water, and air), their analysis methods, effects on human health, and remediation methods.
Collapse
Affiliation(s)
- Tanish Goyal
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Sukhwinder Singh
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142 001, Punjab, India.
| |
Collapse
|
34
|
Gupta S, Kumar R, Rajput A, Gorka R, Gupta A, Bhasin N, Yadav S, Verma A, Ram K, Bhagat M. Atmospheric Microplastics: Perspectives on Origin, Abundances, Ecological and Health Risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107435-107464. [PMID: 37452254 DOI: 10.1007/s11356-023-28422-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Microplastic (MP) pollution has aroused a tremendous amount of public and scientific interest worldwide. MPs are found widely ranging from terrestrial to aquatic ecosystems primarily due to the over-exploitation of plastic products and unscientific disposal of plastic waste. There is a large availability of scientific literature on MP pollution in the terrestrial and aquatic ecosystems, especially the marine environments; however, only recently has greater scientific attention been focused on the presence of MPs in the air and its retrospective health implications. Besides, atmospheric transport has been reported to be an important pathway of transport of MPs to the pristine regions of the world. From a health perspective, existing studies suggest that airborne MPs are priority pollutant vectors, that may penetrate deep into the body through inhalation leading to adverse health impacts such as neurotoxicity, cancer, respiratory problems, cytotoxicity, and many more. However, their effects on indoor and outdoor air quality, and on human health are not yet clearly understood due to the lack of enough research studies on that and the non-availability of established scientific protocols for their characterization. This scientific review entails important information concerning the abundance of atmospheric MPs worldwide within the existing literature. A thorough comparison of existing sampling and analytical protocols has been presented. Besides, this review has unveiled the areas of scientific concern especially air quality monitoring which requires immediate attention, with the information gaps to be filled have been addressed.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Rakesh Kumar
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006.
| | - Akanksha Rajput
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Ruby Gorka
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Antima Gupta
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Nazuk Bhasin
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
- IESD, Banaras Hindu University, Varanasi, India, 221005
| | - Sudesh Yadav
- Jawaharlal Nehru University, New Delhi, India, 110067
| | - Anju Verma
- Jawaharlal Nehru University, New Delhi, India, 110067
| | - Kirpa Ram
- IESD, Banaras Hindu University, Varanasi, India, 221005
| | - Madulika Bhagat
- Department of Biotechnology, University of Jammu (J&K), Jammu, India, 180006
| |
Collapse
|
35
|
Chen C, Liu F, Quan S, Chen L, Shen A, Jiao A, Qi H, Yu G. Microplastics in the Bronchoalveolar Lavage Fluid of Chinese Children: Associations with Age, City Development, and Disease Features. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12594-12601. [PMID: 37578997 DOI: 10.1021/acs.est.3c01771] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
This study characterized the occurrence patterns of microplastics (MPs) in the bronchoalveolar lavage fluid (BALF) of children with pulmonary diseases. MPs were detected in 89.6% of BALF samples with an average of 4.31 ± 2.77 items/10 mL, supporting the hypothesis that inhalation is a significant pathway of airborne MP exposure to pediatric lungs. Inhaled MPs were predominantly composed of 10 polymer types [e.g., polypropylene (41.9%), polyethylene (19.4%), and polyester (13.6%)], with the majority being smaller than 20 μm. MP levels in BALF exhibited a negative correlation with children's age, probably owing to the preferential crawling and tumbling actions in indoor environments and underdeveloped immune systems of young children. Participants living in urban areas suffered from higher pulmonary MP exposure, likely due to higher environmental levels, compared with suburban/rural residents (P < 0.05). Although no significant differences were found between MP levels in pediatric lungs with community-acquired pneumonia (CAP) and asthma (P > 0.05), the severe CAP group displayed significantly higher MP contamination than the nonsevere group (P < 0.05), indicating that some yet undiscovered relationship(s) between inhaled MPs and pediatric pulmonary diseases may exist.
Collapse
Affiliation(s)
- Chunzhao Chen
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519000, China
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory of Environmental Frontier Technologies, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Fang Liu
- Department of Interventional Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing 100045, China
| | - Shuting Quan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing 100045, China
| | - Lanqin Chen
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing 100045, China
| | - Adong Shen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing 100045, China
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Anxia Jiao
- Department of Interventional Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing 100045, China
| | - Hui Qi
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing 100045, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519000, China
| |
Collapse
|
36
|
Hasan M, Islam ARMT, Jion MMMF, Rahman MN, Peu SD, Das A, Bari ABMM, Islam MS, Pal SC, Islam A, Choudhury TR, Rakib MRJ, Idris AM, Malafaia G. Personal protective equipment-derived pollution during Covid-19 era: A critical review of ecotoxicology impacts, intervention strategies, and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164164. [PMID: 37187394 PMCID: PMC10182863 DOI: 10.1016/j.scitotenv.2023.164164] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
During the COVID-19 pandemic, people used personal protective equipment (PPE) to lessen the spread of the virus. The release of microplastics (MPs) from discarded PPE is a new threat to the long-term health of the environment and poses challenges that are not yet clear. PPE-derived MPs have been found in multi-environmental compartments, e.g., water, sediments, air, and soil across the Bay of Bengal (BoB). As COVID-19 spreads, healthcare facilities use more plastic PPE, polluting aquatic ecosystems. Excessive PPE use releases MPs into the ecosystem, which aquatic organisms ingest, distressing the food chain and possibly causing ongoing health problems in humans. Thus, post-COVID-19 sustainability depends on proper intervention strategies for PPE waste, which have received scholarly interest. Although many studies have investigated PPE-induced MPs pollution in the BoB countries (e.g., India, Bangladesh, Sri Lanka, and Myanmar), the ecotoxicity impacts, intervention strategies, and future challenges of PPE-derived waste have largely gone unnoticed. Our study presents a critical literature review covering the ecotoxicity impacts, intervention strategies, and future challenges across the BoB countries (e.g., India (162,034.45 tons), Bangladesh (67,996 tons), Sri Lanka (35,707.95 tons), and Myanmar (22,593.5 tons). The ecotoxicity impacts of PPE-derived MPs on human health and other environmental compartments are critically addressed. The review's findings infer a gap in the 5R (Reduce, Reuse, Recycle, Redesign, and Restructure) Strategy's implementation in the BoB coastal regions, hindering the achievement of UN SDG-12. Despite widespread research advancements in the BoB, many questions about PPE-derived MPs pollution from the perspective of the COVID-19 era still need to be answered. In response to the post-COVID-19 environmental remediation concerns, this study highlights the present research gaps and suggests new research directions considering the current MPs' research advancements on COVID-related PPE waste. Finally, the review suggests a framework for proper intervention strategies for reducing and monitoring PPE-derived MPs pollution in the BoB countries.
Collapse
Affiliation(s)
- Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | | | - Md Naimur Rahman
- Department of Geography and Environmental Science, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Susmita Datta Peu
- Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Arnob Das
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, 6 Rajshahi 6204, Bangladesh
| | - A B M Mainul Bari
- Department of Industrial and Production Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Aznarul Islam
- Department of Geography, Aliah University, 17 Gorachand Road, Kolkata 700 014, West Bengal, India.
| | - Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre Dhaka (AECD), Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
37
|
Conowall P, Schreiner KM, Minor EC, Hrabik T, Schoenebeck CW. Variability of microplastic loading and retention in four inland lakes in Minnesota, USA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121573. [PMID: 37044256 DOI: 10.1016/j.envpol.2023.121573] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Microplastic pollution (plastic particles < 5 mm) has potentially harmful impacts on aquatic ecosystems. Understanding the factors that impact microplastic loading and distribution within aquatic ecosystems is crucial for assessing potential threats from microplastics. Here we examine the extent of microplastic pollution in the surface waters and sediments of four small inland lakes in Minnesota, USA that represent a range of human impacts as well as a variety of watershed and lake characteristics. Surface water particulates and benthic sediments were collected in the summers of 2019 and 2020 to examine the loading of microplastics into these lakes and their distribution throughout the ecosystems. Lower size cut offs were set at 330 μm for surface water particulate samples and 250 μm for sediment samples. Watershed to surface area ratio (WS:SA) and urban development were the most influential factors on microplastic loading. Surface water microplastic concentrations ranged from 27,000 microplastics km-2 in Elk Lake (small WS:SA and minimally developed) to 152,000 microplastics km-2 in White Iron Lake (large WS:SA and low development). Concentrations in benthic sediments ranged from 30 microplastics kg-1 dry sediment in White Iron Lake (forested watershed) to 270 microplastics kg-1 dry sediment in Peltier Lake (urbanized watershed) and were not directly correlated to surface water concentrations. Results from this study highlight the characteristics of small lakes that influence spatial and temporal variability in microplastic loading, retention, and deposition of microplastics to sediments. Further, this study demonstrates the difficulties of accurately predicting microplastic loading and the importance of comprehensive sampling to account for the variability of microplastic loading and distribution in smaller inland lakes.
Collapse
Affiliation(s)
- Peter Conowall
- Large Lakes Observatory, University of Minnesota Duluth, 2205 E 5th St, Duluth, MN, 55812, USA
| | - Kathryn M Schreiner
- Large Lakes Observatory, University of Minnesota Duluth, 2205 E 5th St, Duluth, MN, 55812, USA; Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Dr., Duluth, MN, 55812, USA.
| | - Elizabeth C Minor
- Large Lakes Observatory, University of Minnesota Duluth, 2205 E 5th St, Duluth, MN, 55812, USA; Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Dr., Duluth, MN, 55812, USA
| | - Thomas Hrabik
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Dr., Duluth, MN, 55812, USA
| | - Casey W Schoenebeck
- Sentinel Lakes Program, Fisheries Research Unit, Minnesota Department of Natural Resources, 23070 North Lakeshore Drive, Glenwood, MN, 56334, USA
| |
Collapse
|
38
|
Shang Z, Wang R, Zhang X, Tu Y, Sheng C, Yuan H, Wen L, Li Y, Zhang J, Wang X, Yang G, Feng Y, Ren G. Differential effects of petroleum-based and bio-based microplastics on anaerobic digestion: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162674. [PMID: 36894074 DOI: 10.1016/j.scitotenv.2023.162674] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The number of plastics is increasing owing to the rapid development of the plastics industry. Microplastics (MPs) are formed during the use of both petroleum-based plastics and newly developed bio-based plastics. These MPs are inevitably released into the environment and are enriched in wastewater treatment plant sludge. Anaerobic digestion is a popular sludge stabilization method for wastewater treatment plants. Understanding the potential impacts of different MPs on anaerobic digestion is critical. This paper provides a comprehensive review of the mechanisms of petroleum-based MPs and bio-based MPs in anaerobic digestion methane production and compares their potential effects on biochemical pathways, key enzyme activities, and microbial communities. Finally, it identifies problems that must be solved in the future, proposes the focus of future research, and predicts the future development direction of the plastics industry.
Collapse
Affiliation(s)
- Zezhou Shang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Rui Wang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Xiyi Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yongle Tu
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chenjing Sheng
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Huan Yuan
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Lei Wen
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yulu Li
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Jing Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Xiaojiao Wang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China.
| | - Gaihe Yang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yongzhong Feng
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Guangxin Ren
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| |
Collapse
|
39
|
Sharma S, Sharma V, Chatterjee S. Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162627. [PMID: 36889403 DOI: 10.1016/j.scitotenv.2023.162627] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Plastics are fossil fuel-derived products. The emissions of greenhouse gases (GHG) during different processes involved in the lifecycle of plastic-related products are a significant threat to the environment as it contributes to global temperature rise. By 2050, a high volume of plastic production will be responsible for up to 13 % of our planet's total carbon budget. The global emissions of GHG and their persistence in the environment have depleted Earth's residual carbon resources and have generated an alarming feedback loop. Each year at least 8 million tonnes of discarded plastics are entering our oceans, creating concerns regarding plastic toxicity on marine biota as they end up in the food chain and ultimately affect human health. The unsuccessful management of plastic waste and its presence on the riverbanks, coastlines, and landscapes leads to the emission of a higher percentage of GHG in the atmosphere. The persistence of microplastics is also a significant threat to the fragile and extreme ecosystem containing diverse life forms with low genetic variation, making them vulnerable to climatic change. In this review, we have categorically discussed the contribution of plastic and plastic waste to global climate change covering the current plastic production and future trends, the types of plastics and plastic materials used globally, plastic lifecycle and GHG emission, and how microplastics become a major threat to ocean carbon sequestration and marine health. The conjoining impact of plastic pollution and climate change on the environment and human health has also been discussed in detail. In the end, we have also discussed some strategies to reduce the climate impact of plastics.
Collapse
Affiliation(s)
- Shivika Sharma
- Biochemical Conversion Division, Sardar Swaran Singh, National Institute of Bioenergy, Kapurthala, Punjab, India
| | - Vikas Sharma
- Department of Molecular Biology & Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-Jalandhar, India
| | - Subhankar Chatterjee
- Bioremediation and Metabolomics Research Group, Dept. of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605 014, India.
| |
Collapse
|
40
|
Choudhury A, Simnani FZ, Singh D, Patel P, Sinha A, Nandi A, Ghosh A, Saha U, Kumari K, Jaganathan SK, Kaushik NK, Panda PK, Suar M, Verma SK. Atmospheric microplastic and nanoplastic: The toxicological paradigm on the cellular system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115018. [PMID: 37216859 DOI: 10.1016/j.ecoenv.2023.115018] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
The increasing demand for plastic in our daily lives has led to global plastic pollution. The improper disposal of plastic has resulted in a massive amount of atmospheric microplastics (MPs), which has further resulted in the production of atmospheric nanoplastics (NPs). Because of its intimate relationship with the environment and human health, microplastic and nanoplastic contamination is becoming a problem. Because microplastics and nanoplastics are microscopic and light, they may penetrate deep into the human lungs. Despite several studies demonstrating the abundance of microplastics and nanoplastics in the air, the potential risks of atmospheric microplastics and nanoplastics remain unknown. Because of its small size, atmospheric nanoplastic characterization has presented significant challenges. This paper describes sampling and characterization procedures for atmospheric microplastics and nanoplastics. This study also examines the numerous harmful effects of plastic particles on human health and other species. There is a significant void in research on the toxicity of airborne microplastics and nanoplastics upon inhalation, which has significant toxicological potential in the future. Further study is needed to determine the influence of microplastic and nanoplastic on pulmonary diseases.
Collapse
Affiliation(s)
- Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Saravana Kumar Jaganathan
- School of Engineering, College of Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
41
|
Kim D, Mo K, Kim M, Cui F. Occurrence and sources of micro-plastics in various water bodies, sediments, and fishes in Ansan, South Korea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62579-62589. [PMID: 36944838 DOI: 10.1007/s11356-023-26562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
In this study, the Pearson correlation coefficients were determined to derive correlations between micro-plastics (MPs) in carp and river crabs. MPs were detected for various water sources, including four rivers and four main waterways, sediments, and fish, using Fourier transform infrared spectrometry (FTIR), microscopic analysis, and image mapping. Carp and river crabs had coefficients of 0.888 and 0.724, respectively, which showed a high positive correlation. In water samples, the MPs detected in rivers were higher than those in the main waterway. However, in sediment samples, the MPs detected in the main waterway were higher than those in the rivers. It is believed that MPs are carried toward shore by ocean tide. The size of most of the sediment MPs was 20-49 µm, representing 64.1% of the entire population. The plastics detected in this study were polyethylene terephthalate (PET), polypropylene (PP), and polyethylene (PE), which originate from synthetic fibers, scrubs, and packing material. MP pollution by non-point pollution sources was investigated, with the abundance of MPs increasing by 2 to 3 times between the dry and wet seasons in water and sediment, respectively. It was determined that the inflow of MPs into rivers could have been due to non-point source pollutants from household items, roads, plants, and soil around the water sources.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan-Si, Kyeonggi-Do, 15588, Republic of Korea
| | - Kyung Mo
- Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan-Si, Kyeonggi-Do, 15588, Republic of Korea
| | - Moonil Kim
- Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan-Si, Kyeonggi-Do, 15588, Republic of Korea
| | - Fenghao Cui
- Center for Creative Convergence Education, Hanyang University, 55 Hanyangdaehak-Ro, Ansan City, Kyeonggi-Do, 426-791, Republic of Korea.
| |
Collapse
|
42
|
Rukmangada R, Naidu BC, Nayak BB, Balange A, Chouksey MK, Xavier KAM. Microplastic contamination in salted and sun dried fish and implications for food security - A study on the effect of location, style and constituents of dried fish on microplastics load. MARINE POLLUTION BULLETIN 2023; 191:114909. [PMID: 37086549 DOI: 10.1016/j.marpolbul.2023.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The presence of microplastics in 21 different species of marine dried fish products from four locations in India is reported in this study. All samples have microplastics, and majority of the MPs were found to be fragments (56 %) and are of <100 μm size (47 %). Eviscerated fish found to have significantly higher MPs than whole fish. Micro FTIR spectroscopy was used to recognize the polymer of identified MPs, which included polypropylene (21 %), low density polyethylene (17.5 %), polystyrene (15.5 %), and others. Anguilla bengalensis from station 1 had the greatest concentration of microplastics (99 ± 18.91 MPs/g) among all the samples. High value of microplastics polymer induced risk index (H) of different stations, suggesting a significant level of threat to consumer safety. Additional research is required to determine the potential effects on human health caused by consuming dried fish that contains variety of microplastics and their associated compounds.
Collapse
Affiliation(s)
- Rakesh Rukmangada
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | | | - Binaya Bhusan Nayak
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Amjad Balange
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | | | - K A Martin Xavier
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India.
| |
Collapse
|
43
|
Marina-Montes C, Abás E, Buil-García J, Anzano J. From multi to single-particle analysis: A seasonal spectroscopic study of airborne particulate matter in Zaragoza, Spain. Talanta 2023; 259:124550. [PMID: 37062086 DOI: 10.1016/j.talanta.2023.124550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
It is distinguished that deficient outdoor air quality is responsible for substantial health and climate issues. The aim of our study was to investigate the air quality in the city of Zaragoza (Spain) by characterizing atmospheric particulate matter (PM10) during two seasons (winter and spring). PM10 samples were collected in 2022 in quartz filters through a low-volume sampler and chemically analysed by complementary analytical techniques: Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), Laser Induced Breakdown Spectroscopy (LIBS), Raman Spectroscopy (RS) and Field Emission Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (FESEM-EDS). Results have revealed, together with a temperature inversion phenomenon in winter, the presence of both natural (Al, Ca, Mg, Ti, Sr, Fe, etc.) and anthropogenic particles. The latter mainly formed by black carbon with an origin on fossil fuel combustion emissions. Additionally, chemical analyses of PM10 filters showed the presence of three types of microplastics suspended in the air of the city: polyethylene terephthalate (PET), polyamides (PA) and polystyrene (PS). The results obtained from this research are of special interest to take into account for future air quality policies, particularly those with the aim of reducing air pollution in cities.
Collapse
Affiliation(s)
- César Marina-Montes
- Laser Lab, Chemistry & Environment Group, Department of Analytical Chemistry, Faculty of Sciences, University of Zaragoza. Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Elisa Abás
- Laser Lab, Chemistry & Environment Group, Department of Analytical Chemistry, Faculty of Sciences, University of Zaragoza. Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Juan Buil-García
- Laser Lab, Chemistry & Environment Group, Department of Analytical Chemistry, Faculty of Sciences, University of Zaragoza. Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Jesús Anzano
- Laser Lab, Chemistry & Environment Group, Department of Analytical Chemistry, Faculty of Sciences, University of Zaragoza. Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
44
|
Nicole W. An Ill Wind? Growing Recognition of Airborne Nano- and Microplastic Exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:42001. [PMID: 37116008 PMCID: PMC10146709 DOI: 10.1289/ehp12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
|
45
|
Zhang J, Li Z, Zhou X, Ding W, Wang X, Zhao M, Li H, Zou G, Chen Y. Long-term application of organic compost is the primary contributor to microplastic pollution of soils in a wheat-maize rotation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161123. [PMID: 36586695 DOI: 10.1016/j.scitotenv.2022.161123] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are posing new threats to soil ecosystems. Organic fertilizers are considered as an emerging contributor to MPs accumulation in agricultural soils. However, few studies have focused on the MPs fate in soils under long-term organic fertilizer application. Based on an 11-year field test with wheat-maize cropping rotation, this study investigated the characteristics of MPs in pig manure and cow manure composts, and examined the impact of long-term compost application on soil MPs accumulation, surface morphology, and distribution. The MPs contents in pig manure and cow manure composts were 3547 and 4520 items kg-1, respectively. Microplastics abundances in soils under long-term use of these two composts were 144 to 287 and 140 to 316 items kg-1, respectively, which increased significantly with increasing compost application amount and was substantially higher than that in soils without compost. Accumulated soil MPs sourced from long-term compost application were 1.73 × 108 to 7.22 × 108 items ha-1, accounting for 43.0 %-75.9 % of the total, and the contribution value doubled as the compost application rate doubled. The proportion of MPs <1 mm in composts (31.0 %) was lower when compared with that in compost-amended soils (43.8 %), and size and abundance reduced with increasing soil depth. Microplastics shapes and polymer types in composts and compost-amended soils were similar and mostly included fragments of polyethylene and polypropylene and fibers of polyethylene terephthalate. Microplastics in compost-amended soils showed complicated weathered surface morphologies, and soil mineral colloids were attached. These results demonstrate that compost-derived MPs in soils can be gradually weathered and degraded into smaller particles under long-term compost application. These findings provide key insights into the pollution level of soil MPs with organic fertilizer application and serve as a scientific basis for developing MPs mitigation measures in agricultural soils.
Collapse
Affiliation(s)
- Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zishuang Li
- Dezhou Academy of Agricultural Sciences, Dezhou 253015, China
| | - XiaoLin Zhou
- Dezhou Academy of Agricultural Sciences, Dezhou 253015, China
| | - Wencheng Ding
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuexia Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongjie Li
- Dezhou Academy of Agricultural Sciences, Dezhou 253015, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
46
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
47
|
Wang C, Wu W, Pang Z, Liu J, Qiu J, Luan T, Deng J, Fang Z. Polystyrene microplastics significantly facilitate influenza A virus infection of host cells. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130617. [PMID: 36623344 DOI: 10.1016/j.jhazmat.2022.130617] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are emerging pollutants which exist in various environments and pose a potential threat to human health. However, the effect of MP on respiratory pathogens-infected organisms is unknown. In order to explore the effect of MP on respiratory pathogen infection, we studied the effect of polystyrene microplastics (PS) on influenza A virus (IAV)-infected A549 cells. Western blot, qPCR, and viral plaque assay demonstrated that PS could promote IAV infection. Further study by bioluminescence imaging showed that a large number of IAV could be enriched on PS and entered cells through endocytosis. Meanwhile, the expression of IFITM3 in cells was significantly reduced. In addition, our results showed that PS down-regulated IRF3 and its active form P-IRF3 by down-regulating RIG-I and inhibiting TBK1 phosphorylation activation, which then significantly reduced IFN-β expression and affected the cellular innate antiviral immune system. Taken together, our results indicate the potential threat of MPs to respiratory diseases caused by IAV and provide new insights into human health protection.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Wenjiao Wu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Zefen Pang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China
| | - Jiaxin Liu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Jianxiang Qiu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory 7 (Rongjiang Laboratory), Jieyang 515200, Guangdong, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China.
| | - Zhixin Fang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China.
| |
Collapse
|
48
|
Microplastics (MPs) in marine food chains: Is it a food safety issue? ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:101-140. [PMID: 36863833 DOI: 10.1016/bs.afnr.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enormous usage of plastic over the last seven decades has resulted in a massive quantity of plastic waste, much of it eventually breaking down into microplastic (MP) and nano plastic (NP). The MPs and NPs are regarded as emerging pollutants of serious concern. Both MPs and NPs can have a primary or secondary origin. Their ubiquitous presence and ability to sorb, desorb, and leach chemicals have raised concern over their presence in the aquatic environment and, particularly, the marine food chain. MPs and NPs are also considered vectors for pollutant transfer along with the marine food chain, and people who consume seafood have began significant concerns about the toxicity of seafood. The exact consequences and risk of MP exposure to marine foods are largely unknown and should be a priority research area. Although several studies have documented an effective clearance mechanism by defecation, significant aspect has been less emphasized for MPs and NPs and their capability to translocate in organs and clearance is not well established. The technological limitations to study these ultra-fine MPs are another challenge to be addressed. Therefore, this chapter discusses the recent findings of MPs in different marine food chains, their translocation and accumulations potential, MPs as a critical vector for pollutant transfer, toxicology impact, cycling in the marine environment and seafood safety. Besides, the concerns and challenges that are overshadowed by findings for the significance of MPs were covered.
Collapse
|
49
|
Abad López AP, Trilleras J, Arana VA, Garcia-Alzate LS, Grande-Tovar CD. Atmospheric microplastics: exposure, toxicity, and detrimental health effects. RSC Adv 2023; 13:7468-7489. [PMID: 36908531 PMCID: PMC9993231 DOI: 10.1039/d2ra07098g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Microplastics (MPs) are micro-particulate pollutants present in all environments whose ubiquity leads humans to unavoidable exposure. Due to low density, MPs also accumulate in the atmosphere, where they are easily transported worldwide and come into direct contact with the human body by inhalation or ingestion, causing detrimental health effects. This literature review presents the sources of atmospheric MPs pollution, transport routes, physicochemical characteristics, and environmental interactions. The document also explains the implications for human health and analyzes the risk of exposure based on the potential toxicity and the concentration in the atmosphere. MPs' toxicity lies in their physical characteristics, chemical composition, environmental interactions, and degree of aging. The abundance and concentration of these microparticles are associated with nearby production sources and their displacement in the atmosphere. The above elements are presented in an integrated way to facilitate a better understanding of the associated risk. The investigation results encourage the development of future research that delves into the health implications of exposure to airborne MPs and raises awareness of the risks of current plastic pollution to promote the establishment of relevant mitigation policies and procedures.
Collapse
Affiliation(s)
- Angela Patricia Abad López
- Grupo de Investigación de Fotoquímica y Fotobiología, Programa de Maestría en Ciencias Químicas. Universidad del Atlántico Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia +57-5-3599-484
| | - Jorge Trilleras
- Grupo de Investigación en Compuestos Heterocíclicos, Programa de Doctorado en Ciencias Químicas, Universidad del Atlántico Carrera 30 No 8-49 Puerto Colombia 081007 Colombia
| | - Victoria A Arana
- Grupo de Investigación Ciencias, Educación y Tecnología-CETIC, Programa de Doctorado en Ciencias Químicas, Universidad del Atlántico Carrera 30 No 8-49 Puerto Colombia 081007 Colombia
| | - Luz Stella Garcia-Alzate
- Grupo de Investigación Ciencias, Educación y Tecnología-CETIC, Programa de Doctorado en Ciencias Químicas, Universidad del Atlántico Carrera 30 No 8-49 Puerto Colombia 081007 Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Programa de Maestría en Ciencias Químicas. Universidad del Atlántico Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia +57-5-3599-484
| |
Collapse
|
50
|
Crosta A, Parolini M, De Felice B. Microplastics Contamination in Nonalcoholic Beverages from the Italian Market. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4122. [PMID: 36901131 PMCID: PMC10002432 DOI: 10.3390/ijerph20054122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
A growing number of studies have confirmed that microplastics (MPs) contamination represents a worrisome issue of global concern. MPs have been detected in the atmosphere, in aquatic and terrestrial ecosystems, as well as in the biota. Moreover, MPs have been recently detected in some food products and in drinking water. However, only limited information is currently available for beverages, although they are largely consumed by humans and might contribute to the ingestion of MPs. Thus, estimating the contamination in beverages represents a crucial step in assessing human MP ingestion. The aim of the present study was to explore the presence of MPs in nonalcoholic beverages, namely soft drinks and cold tea, of different brands purchased in supermarkets and to estimate the contribution of beverage consumption to MP ingestion by humans. The results of the present study confirmed the presence of MPs, mainly fibers, in most of the analyzed beverages, with a mean (± SEM) number of 9.19 ± 1.84 MPs/L. In detail, the number of MPs detected in soft drinks and cold tea was 9.94 ± 0.33 MPs/L and 7.11 ± 2.62 MPs/L, respectively. Our findings confirmed that beverage consumption can be considered one of the main pathways for MP ingestion by humans.
Collapse
|