1
|
Krause HJ, Engelmann UM. Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416838. [PMID: 39985275 DOI: 10.1002/advs.202416838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Superparamagnetic nanoparticles (MNP) offer exciting applications for engineering and biomedicine in imaging, diagnostics, and therapy upon magnetic excitation. Specifically, if excited at two distinct frequencies f1 and f2, MNP responds with magnetic intermodulation frequencies m·f1 ± n·f2 caused by their nonlinear magnetization. These mixing frequencies are highly specific for MNP properties, uniquely characterizing their presence. In this review, the fundamentals of frequency mixing magnetic detection (FMMD) as a special case of magnetic particle spectroscopy (MPS) are reviewed, elaborating its functional principle that enables a large dynamic range of detection of MNP. Mathematical descriptions derived from Langevin modeling and micromagnetic Monte-Carlo simulations show matching predictions. The latest applications of FMMD in nanomaterials characterization as well as diagnostic and therapeutic biomedicine are highlighted: analysis of the phase of the FMMD signal characterizes the magnetic relaxation of MNP, allowing to determine hydrodynamic size and binding state. Variation of excitation amplitudes or magnetic offset fields enables determining the size distribution of the particles' magnetic cores. This permits multiplex detection of polydisperse MNP in magnetic immunoassays, realized successfully for various biomolecular targets such as viruses, bacteria, proteins, and toxins. A portable magnetic reader enables portable immunodetection at point-of-care. Future applications toward theranostics are summarized and elaborated.
Collapse
Affiliation(s)
- Hans-Joachim Krause
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Ulrich M Engelmann
- Medical Engineering and Applied Mathematics, FH Aachen University of Applied Sciences, 52428, Jülich, Germany
| |
Collapse
|
2
|
Paesani M, Ilie IM. Metaparticles: Computationally engineered nanomaterials with tunable and responsive properties. J Chem Phys 2024; 161:244905. [PMID: 39718149 DOI: 10.1063/5.0232274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
In simulations, particles are traditionally treated as rigid platforms with variable sizes, shapes, and interaction parameters. While this representation is applicable for rigid core platforms, particles consisting of soft platforms (e.g., micelles, polymers, elastomers, and lipids) inevitably deform upon application of external stress. We introduce a generic model for flexible particles, which we refer to as MetaParticles (MPs). These particles have tunable properties, can respond to applied tension, and can deform. A MP is represented as a collection of Lennard-Jones beads interconnected by spring-like potentials. We model a series of MPs of variable sizes and symmetries, which we subject to external stress, followed by relaxation upon stress release. The positions and the orientations of the individual beads are propagated by Brownian dynamics. The simulations show that the mechanical properties of the MPs vary with size, bead arrangement, and area of applied stress, and share an elastomer-like response to applied stress. Furthermore, MPs deform following different mechanisms, i.e., small MPs change shape in one step, while larger ones follow a multi-step deformation pathway, with internal rearrangements of the beads. This model is the first step toward the development and understanding of particles with adaptable properties with applications in the biomedical field and in the design of bioinspired metamaterials.
Collapse
Affiliation(s)
- Massimiliano Paesani
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, Amsterdam, The Netherlands
- Computational Soft Matter (CSM), University of Amsterdam, Amsterdam, The Netherlands
| | - Ioana M Ilie
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, Amsterdam, The Netherlands
- Computational Soft Matter (CSM), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Islam MA, Syed IM, Mamun MA, Hoque SM. Effect of particle size and composition on local magnetic hyperthermia of chitosan-Mg1-xCoxFe2O4 nanohybrid. Front Chem 2024; 12:1347423. [PMID: 38524916 PMCID: PMC10958782 DOI: 10.3389/fchem.2024.1347423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
In this study, Mg1-xCoxFe2O4 (0≤x ≤ 1 with ∆x = 0.1) or MCFO nanoparticles were synthesized using a chemical co-precipitation method and annealed at 200, 400, 600, and 800°C respectively to investigate the structural properties of the materials by X-ray diffractometer (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). Controlled annealing increased particle size for each value of x. The aim was to investigate how specific loss power (SLP) and maximum temperature (Tmax) during local magnetic hyperthermia were affected by structural alterations associated with particle size and composition. The lattice parameter, X-ray density, ionic radius, hopping length, bond length, cation-cation distance, and cation-anion distance increase with an increase in Co2+ content. Raman and FTIR spectroscopy reveal changes in cation distribution with Co2+ content and particle size. Magnetic properties measured by the physical property measurement system (PPMS) showed saturation magnetization (Ms), coercivity (Hc), remanent magnetization (Mr/Ms), and anisotropy constant (K1) of the Mg1-xCoxFe2O4 nanoparticles increase with Co2+ content and particle size. When exposed to an rf magnetic field, the nanohybrids experienced an increase in both the SLP (specific loss power) and Tmax (maximum temperature) as the particle size initially increased. However, these values reached their peak at critical particle size and subsequently decreased. This occurs since a modest increase in anisotropy, resulting from the presence of Co2+ and larger particle size, facilitates Néel and Brownian relaxation. However, for high anisotropy values and particle size, the Néel and Brownian relaxations are hindered, leading to the emergence of a critical size. The critical size increases as the Co2+ content decreases, but it decreases as the Co2+ content increases, a consequence of higher anisotropy with the increase in Co2+. Additionally, it is noteworthy that the maximum temperature (Tmax) rises as the concentration of nanohybrids grows, but the specific loss power (SLP) decreases. An increased concentration of chitosan-MCFO nanohybrids inhibits both the Néel and Brownian relaxation processes, reducing specific loss power.
Collapse
Affiliation(s)
- M. Aminul Islam
- Materials Science Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
- Department of Physics, University of Dhaka, Dhaka, Bangladesh
- Department of Physics, Magura Govt. Mahila College, Magura, Bangladesh
| | | | - M. Al Mamun
- Materials Science Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - S. Manjura Hoque
- Materials Science Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| |
Collapse
|
4
|
Inam H, Sprio S, Tavoni M, Abbas Z, Pupilli F, Tampieri A. Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine. Int J Mol Sci 2024; 25:2809. [PMID: 38474056 DOI: 10.3390/ijms25052809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.
Collapse
Affiliation(s)
- Hina Inam
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Zahid Abbas
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, 35122 Padova, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| |
Collapse
|
5
|
Moniruzzaman M, Karal MAS, Wadud MA, Rashid MMO. Increase in anionic Fe 3O 4 nanoparticle-induced membrane poration and vesicle deformation due to membrane potential - an experimental study. Phys Chem Chem Phys 2023; 25:23111-23124. [PMID: 37602684 DOI: 10.1039/d3cp02702c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The membrane potential plays a significant role in various cellular processes while interacting with membrane active agents. So far, all the investigations of the interaction of nanoparticles (NPs) with lipid vesicles have been performed in the absence of membrane potential. In this study, the anionic magnetite NP-induced poration along with deformation of cell-mimetic giant unilamellar vesicles (GUVs) has been studied in the presence of various membrane potentials. Lipids 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and channel forming protein gramicidin A (GrA) are used to synthesize the DOPG/DOPC/GrA-GUVs. The static and dynamic nature of GUVs is investigated using phase contrast fluorescent microscopy. The presence of GrA in the membrane decreases the leakage constant of the encapsulating fluorescent probe (calcein) in the absence of membrane potential. With the increase of negative membrane potential, the leakage shifts from a single exponential to two exponential functions, obtaining two leakage constants. The leakage became faster at the initial stage, and at the final stage, it became slower with the increase in negative membrane potential. Both the fraction of poration and deformation increase with the increase of negative membrane potential. These results suggested that the membrane potential enhances the NP-induced poration along with the deformation of DOPG/DOPC/GrA-GUVs. The increase of the binding constant in the NPs with membrane potential is one of the important factors for increasing membrane permeation and vesicle deformation.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.
| | - Md Abdul Wadud
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.
| | - Md Mamun Or Rashid
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| |
Collapse
|
6
|
Karimi S, Tabatabaei SN, Novin MG, Kazemi M, Mofarahe ZS, Ebrahimzadeh-Bideskan A. Nanowarming improves survival of vitrified ovarian tissue and follicular development in a sheep model. Heliyon 2023; 9:e18828. [PMID: 37636467 PMCID: PMC10448434 DOI: 10.1016/j.heliyon.2023.e18828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Tissue cryopreservation has allowed long term banking of biomaterials in medicine. Ovarian tissue cryopreservation in particular helps patients by extending their fertility window. However, protection against tissue injury during the thawing process has proven to be challenging. This is mainly due to the heterogenous and slow distribution of the thermal energy across the vitrified tissue during a conventional warming process. Nanowarming is a technique that utilizes hyperthermia of magnetic nanoparticles to accelerate this process. Herein, hyperthermia of synthesized PEGylated silica-coated iron oxide nanoparticles was used to deter the injury of cryopreserved ovarian tissue in a sheep model. When compared to the conventional technique, our findings suggest that follicular development and gene expression in tissues warmed by the proposed technique have been improved. In addition, Nanowarming prevented cellular apoptosis and oxidative stress. We therefore conclude that Nanowarming is a potential complementary candidate to increase efficiency in the ovarian cryopreservation field.
Collapse
Affiliation(s)
- Sareh Karimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyed Nasrollah Tabatabaei
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Physiology and Pharmacology, University of Montreal, Montreal, Qc, Canada
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Stiharu I, Andronenko S, Zinnatullin A, Vagizov F. SiCNFe Ceramics as Soft Magnetic Material for MEMS Magnetic Devices: A Mössbauer Study. MICROMACHINES 2023; 14:mi14050925. [PMID: 37241549 DOI: 10.3390/mi14050925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Polymer-derived SiCNFe ceramics is a prospective material that can be used as soft magnets in MEMS magnetic applications. The optimal synthesis process and low-cost appropriate microfabrication should be developed for best result. Homogeneous and uniform magnetic material is required for developing such MEMS devices. Therefore, the knowledge of exact composition of SiCNFe ceramics is very important for the microfabrication of magnetic MEMS devices. The Mössbauer spectrum of SiCN ceramics, doped with Fe (III) ions, and annealed at 1100 °C, was investigated at room temperature to accurately establish the phase composition of Fe-containing magnetic nanoparticles, which were formed in this material at pyrolysis and which determine their magnetic properties. The analysis of Mössbauer data shows the formation of several Fe-containing magnetic nanoparticles in SiCN/Fe ceramics, such as α-Fe, FexSiyCz, traces of Fe-N and paramagnetic Fe3+ with octahedral oxygen environment. The presence of iron nitride and paramagnetic Fe3+ ions shows that the pyrolysis process was not completed in SiCNFe ceramics annealed at 1100 °C. These new observations confirm the formation of different Fe-containing nanoparticles with complex composition in SiCNFe ceramic composite.
Collapse
Affiliation(s)
- Ion Stiharu
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Sergey Andronenko
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Almaz Zinnatullin
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Farit Vagizov
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
8
|
Che Nan SNB, Wan Hazman D, Miskon MF, Abd Hamid S, Mohd. Salim R, Razali A. Reduced Graphene Oxide Functionalized Magnetic Nanocomposites for Environmental Pollutant Removal. MATERIALS SCIENCE FORUM 2022; 1076:109-117. [DOI: 10.4028/p-io4k1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Nowadays, the excessive and uncontrolled discharge of chemicals are imposing major health threats. The demands for clean and safe water amplifies the need to develop improved technologies for environmental contaminant removal. Considering the limitations of conventional methods for contaminants removal, we have prepared magnetic iron oxide nanoparticles functionalised with reduced graphene oxide as a potential material for environmental pollutants removal. The magnetic properties in potential adsorbent materials are highly desirable due to several advantages. Among which are their large adsorptive surface area, low diffusion resistance, high adsorption capacity and fast separation in large volumes of solution. The surface functionalised magnetic iron oxide nanoparticles (MNP) were fabricated using a one-pot hydrothermal method by adding reduced graphene oxide (rGO) into the reaction system. The graphene oxide were reduced prior to the addition in the hydrothemal decomposition step. The resultant rGO-MNP nanocomposites were characterised using FT-IR, SEM and VSM to investigate the functional groups, morphology and magnetic properties, resepectively. We also demonstrated the potential of the hybridised magnetic material with hydrophobic reduced graphene oxide for environmental pollutant removal.
Collapse
|
9
|
Chan MH, Li CH, Chang YC, Hsiao M. Iron-Based Ceramic Composite Nanomaterials for Magnetic Fluid Hyperthermia and Drug Delivery. Pharmaceutics 2022; 14:2584. [PMID: 36559083 PMCID: PMC9788200 DOI: 10.3390/pharmaceutics14122584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Because of the unique physicochemical properties of magnetic iron-based nanoparticles, such as superparamagnetism, high saturation magnetization, and high effective surface area, they have been applied in biomedical fields such as diagnostic imaging, disease treatment, and biochemical separation. Iron-based nanoparticles have been used in magnetic resonance imaging (MRI) to produce clearer and more detailed images, and they have therapeutic applications in magnetic fluid hyperthermia (MFH). In recent years, researchers have used clay minerals, such as ceramic materials with iron-based nanoparticles, to construct nanocomposite materials with enhanced saturation, magnetization, and thermal effects. Owing to their unique structure and large specific surface area, iron-based nanoparticles can be homogenized by adding different proportions of ceramic minerals before and after modification to enhance saturation magnetization. In this review, we assess the potential to improve the magnetic properties of iron-based nanoparticles and in the preparation of multifunctional composite materials through their combination with ceramic materials. We demonstrate the potential of ferromagnetic enhancement and multifunctional composite materials for MRI diagnosis, drug delivery, MFH therapy, and cellular imaging applications.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
10
|
Taccola S, da Veiga T, Chandler JH, Cespedes O, Valdastri P, Harris RA. Micro-scale aerosol jet printing of superparamagnetic Fe 3O 4 nanoparticle patterns. Sci Rep 2022; 12:17931. [PMID: 36289308 PMCID: PMC9606284 DOI: 10.1038/s41598-022-22312-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 01/20/2023] Open
Abstract
The opportunity to create different patterns of magnetic nanoparticles on surfaces is highly desirable across many technological and biomedical applications. In this paper, this ability is demonstrated for the first time using a computer-controlled aerosol jet printing (AJP) technology. AJP is an emerging digitally driven, non-contact and mask-less printing process which has distinguishing advantages over other patterning technologies as it offers high-resolution and versatile direct-write deposition of a wide range of materials onto a variety of substrates. This research demonstrates the ability of AJP to reliably print large-area, fine-feature patterns of superparamagnetic iron oxide nanoparticles (SPIONs) onto both rigid material (glass) and soft and flexible materials (polydimethylsiloxane (PDMS) films and poly-L-lactic acid (PLLA) nanofilms). Investigation identified and controlled influential process variables which permitted feature sizes in the region of 20 μm to be realised. This method could be employed for a wide range of applications that require a flexible and responsive process that permits high yield and rapid patterning of magnetic material over large areas. As a first proof of concept, we present patterned magnetic nanofilms with enhanced manipulability under external magnetic field gradient control and which are capable of performing complex movements such as rotation and bending, with applicability to soft robotics and biomedical engineering applications.
Collapse
Affiliation(s)
- Silvia Taccola
- grid.9909.90000 0004 1936 8403Future Manufacturing Processes Research Group, University of Leeds, Leeds, UK
| | - Tomas da Veiga
- grid.9909.90000 0004 1936 8403STORM Lab, University of Leeds, Leeds, UK
| | - James H. Chandler
- grid.9909.90000 0004 1936 8403STORM Lab, University of Leeds, Leeds, UK
| | - Oscar Cespedes
- grid.9909.90000 0004 1936 8403School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Pietro Valdastri
- grid.9909.90000 0004 1936 8403STORM Lab, University of Leeds, Leeds, UK
| | - Russell A. Harris
- grid.9909.90000 0004 1936 8403Future Manufacturing Processes Research Group, University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Duong HTK, Abdibastami A, Gloag L, Barrera L, Gooding JJ, Tilley RD. A guide to the design of magnetic particle imaging tracers for biomedical applications. NANOSCALE 2022; 14:13890-13914. [PMID: 36004758 DOI: 10.1039/d2nr01897g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic Particle Imaging (MPI) is a novel and emerging non-invasive technique that promises to deliver high quality images, no radiation, high depth penetration and nearly no background from tissues. Signal intensity and spatial resolution in MPI are heavily dependent on the properties of tracers. Hence the selection of these nanoparticles for various applications in MPI must be carefully considered to achieve optimum results. In this review, we will provide an overview of the principle of MPI and the key criteria that are required for tracers in order to generate the best signals. Nanoparticle materials such as magnetite, metal ferrites, maghemite, zero valent iron@iron oxide core@shell, iron carbide and iron-cobalt alloy nanoparticles will be discussed as well as their synthetic pathways. Since surface modifications play an important role in enabling the use of these tracers for biomedical applications, coating options including the transfer from organic to inorganic media will also be discussed. Finally, we will discuss different biomedical applications and provide our insights into the most suitable tracer for each of these applications.
Collapse
Affiliation(s)
- H T Kim Duong
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | | | - Lucy Gloag
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | - Liam Barrera
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
12
|
Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Mahmood AU, Yingling YG. All-Atom Simulation Method for Zeeman Alignment and Dipolar Assembly of Magnetic Nanoparticles. J Chem Theory Comput 2022; 18:3122-3135. [PMID: 35271259 DOI: 10.1021/acs.jctc.1c01253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetic nanoparticles (MNPs) can organize into novel structures in solutions with excellent order and unique geometries. However, studies of the self-assembly of smaller MNPs are challenging due to a complicated interplay between external magnetic fields and van der Waals, electrostatic, dipolar, steric, and hydrodynamic interactions. Here, we present a novel all-atom molecular dynamics simulation method to enable detailed studies of the dynamics, self-assembly, structure, and properties of MNPs as a function of core sizes and shapes, ligand chemistry, solvent properties, and external field. We demonstrate the use and effectiveness of the model by simulating the self-assembly of oleic acid ligand-functionalized magnetite (Fe3O4) nanoparticles, with spherical and cubic shapes, into rings, lines, chains, and clusters under a uniform external magnetic field. We found that the long-range electrostatic interactions can favor the formation of a chain over a ring, the ligands promote MNP cluster growth, and the solvent can reduce the rotational diffusion of the MNPs. The algorithm has been parallelized to take advantage of multiple processors of a modern computer and can be used as a plugin for the popular simulation software LAMMPS to study the behavior of small MNPs and gain insights into the physics and chemistry of different magnetic assembly processes with atomistic details.
Collapse
Affiliation(s)
- Akhlak U Mahmood
- Department of Materials Science and Engineering, NC State University, Raleigh, North Carolina 27695, United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
14
|
Liu Z, Zhou J, Li Y, Zhuo X, Shi X, Jing D. Evaporation and drying characteristics of the sessile ferrofluid droplet under a horizontal magnetic field. FUNDAMENTAL RESEARCH 2022; 2:222-229. [PMID: 38933170 PMCID: PMC11197769 DOI: 10.1016/j.fmre.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022] Open
Abstract
In this study, the evaporation characteristics and drying patterns of various sessile ferrofluid droplets on certain substrate under horizontal magnetic fields of controlled intensities are reported. The effects of droplet concentration and magnetic field intensity on the duration of each evaporation stage and drying patterns of droplets have been systematically investigated. It turned out that a plateau appears at the initial stage of evaporation in the absence of magnetic field and it was found that the plateau value is positively correlated with the concentration of ferrofluid droplets. Under the external magnetic field, the evaporation time of droplets decreases, the stage of contact line retreat extends, the stage of late pinning mode shortens, and the deposition area of ferrofluid droplet decreases compared to that of without magnetics field. The deposition area increases gradually and becomes more uniform with the increase of magnetic field. The decrease of friction force which is due to the decrease of the number of nanoparticles at the contact line under external magnetic field is the main reason for the observed phenomena. We found that the coffee ring and the uniform deposition inside the droplet will be destroyed when the magnetic field intensity is higher than a critical value. Our work has a significant reference value for the evaporation of sessile magnetic fluid droplets under the applied magnetic field, especially when the drying pattern needs to be precisely controlled, such as in spray or biomedicine.
Collapse
Affiliation(s)
- Zhaonan Liu
- State Key Laboratory of Multiphase Flow in Power Engineering and International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiandong Zhou
- State Key Laboratory of Multiphase Flow in Power Engineering and International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Li
- State Key Laboratory of Multiphase Flow in Power Engineering and International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Zhuo
- State Key Laboratory of Multiphase Flow in Power Engineering and International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiujuan Shi
- State Key Laboratory of Multiphase Flow in Power Engineering and International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dengwei Jing
- State Key Laboratory of Multiphase Flow in Power Engineering and International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
15
|
Kiseleva TY, Uyangaa E, Kostenko OV, Tyapkin PY, Ivanenko IP, Zholudev SI, Markov GP, Devyatkina ET, Jargalan N, Grigorieva TF, Sangaa D, Ilyushin AS. STRUCTURE, MAGNETIC, AND MAGNETOCALORIC PROPERTIES OF SUBMICRONIC YTTRIUM IRON GARNET PARTICLES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Saleem H, Zaidi SJ, Ismail AF, Goh PS. Advances of nanomaterials for air pollution remediation and their impacts on the environment. CHEMOSPHERE 2022; 287:132083. [PMID: 34488054 DOI: 10.1016/j.chemosphere.2021.132083] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/18/2021] [Accepted: 08/27/2021] [Indexed: 05/28/2023]
Abstract
One of the most favorable environmental applications of nanotechnology has been in air pollution remediation in which different nanomaterials are used as nanoadsorbents, nanocatalysts, nanofilters, and nanosensors. The nanomaterials have the ability to adsorb several contaminants existing in the air. Also, certain semiconducting nanomaterials materials can be used for photocatalytic remediation. Air contamination control can also be achieved by nanostructured membranes with pores sufficiently small to separate various pollutants from the exhaust. Nanomaterial enabled sensors are also used for the detection of harmful gases such as hydrogen sulfide, sulphur dioxide, and nitrogen dioxide. Conversely, because of the uncertainties in addition to irregularities in size, shape as well as chemical compositions, the existence of some nanomaterials might cause harmful effects on the environment along with the health of people. Thus, concerns were expressed about the transport and conversion of nanoparticles discharged into the surroundings. This review critically examined and assessed the present literature on the application of nanomaterials in the air, together with its negative impacts. The main focus is placed on the application of carbon-based and metal-based nanomaterials for air pollution remediation. It is noted that these nanomaterials demonstrating fascinating properties for improving the environmental pollution remediation system.
Collapse
Affiliation(s)
- Haleema Saleem
- Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
| | | | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
18
|
Liu Y, Lai X, Zhu Y, Guo F, Su L, Arkin G, He T, Xu J, Ran H. Contrast-enhanced ultrasound imaging using long-circulating cationic magnetic microbubbles in vitro and in vivo validations. Int J Pharm 2021; 616:121299. [PMID: 34929311 DOI: 10.1016/j.ijpharm.2021.121299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Traditional encapsulated microbubbles are recently used as delivery carriers for drugs and genes, but they have low efficiency. If the local microbubble concentration could be increased, this might be able to improve the therapeutic efficacy of diseases. In this study, we developed novel cationic magnetic microbubbles (MBM), which could simultaneously realize targeted aggregation under a magnetic field as well as ultrasonographic real-time visualization. Their physicochemical properties, biocompatibility, ultrasonography, magnetic response characteristics, and biodistribution were systematically evaluated. Here, the MBM were 2.55±0.14µm in size with a positive zeta potential, and had a good biocompatibility. They were able to enhance ultrasonographic contrast both in vitro and in vivo. MBM could be attracted by an external magnet for directional movement and aggregation in vitro. We confirmed that MBM also had a great magnetic response in vivo, by means of fluorescence imaging and contrast-enhanced ultrasound imaging. Following intravenous injection into tumor-bearing mice, MBM showed excellent stability in the internal circulation, and could accumulate in the tumor vasculature through magnetic targeting. With the excellent combination of magnetic response and acoustic properties, cationic magnetic microbubbles (MBM) have promising potential for use as a new kind of drug/gene carrier for theranostics in the future.
Collapse
Affiliation(s)
- Yingying Liu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xiaoshu Lai
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Fengjuan Guo
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Lili Su
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Gulzira Arkin
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Tianzhen He
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Jinfeng Xu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
19
|
Ley S, Sachs J, Faenger B, Hilger I, Helbig M. MNP-Enhanced Microwave Medical Imaging by Means of Pseudo-Noise Sensing. SENSORS 2021; 21:s21196613. [PMID: 34640933 PMCID: PMC8512575 DOI: 10.3390/s21196613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 12/16/2022]
Abstract
Magnetic nanoparticles have been investigated for microwave imaging over the last decade. The use of functionalized magnetic nanoparticles, which are able to accumulate selectively within tumorous tissue, can increase the diagnostic reliability. This paper deals with the detecting and imaging of magnetic nanoparticles by means of ultra-wideband microwave sensing via pseudo-noise technology. The investigations were based on phantom measurements. In the first experiment, we analyzed the detectability of magnetic nanoparticles depending on the magnetic field intensity of the polarizing magnetic field, as well as the viscosity of the target and the surrounding medium in which the particles were embedded, respectively. The results show a nonlinear behavior of the magnetic nanoparticle response depending on the magnetic field intensity for magnetic nanoparticles diluted in distilled water and for magnetic nanoparticles embedded in a solid medium. Furthermore, the maximum amplitude of the magnetic nanoparticles responses varies for the different surrounding materials of the magnetic nanoparticles. In the second experiment, we investigated the influence of the target position on the three-dimensional imaging of the magnetic nanoparticles in a realistic measurement setup for breast cancer imaging. The results show that the magnetic nanoparticles can be detected successfully. However, the intensity of the particles in the image depends on its position due to the path-dependent attenuation, the inhomogeneous microwave illumination of the breast, and the inhomogeneity of the magnetic field. Regarding the last point, we present an approach to compensate for the inhomogeneity of the magnetic field by computing a position-dependent correction factor based on the measured magnetic field intensity and the magnetic susceptibility of the magnetic particles. Moreover, the results indicate an influence of the polarizing magnetic field on the measured ultra-wideband signals even without magnetic nanoparticles. Such a disturbing influence of the polarizing magnetic field on the measurements should be reduced for a robust magnetic nanoparticles detection. Therefore, we analyzed the two-state (ON/OFF) and the sinusoidal modulation of the external magnetic field concerning the detectability of the magnetic nanoparticles with respect to these spurious effects, as well as their practical application.
Collapse
Affiliation(s)
- Sebastian Ley
- Biosignal Processing Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany;
- Correspondence: ; Tel.: +49-3677-691308
| | - Jürgen Sachs
- Electronic Measurements and Signal Processing Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany;
- ILMSENS GmbH, 98693 Ilmenau, Germany
| | - Bernd Faenger
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany; (B.F.); (I.H.)
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany; (B.F.); (I.H.)
| | - Marko Helbig
- Biosignal Processing Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany;
| |
Collapse
|
20
|
Karimkhah F, Elhamifar D, Shaker M. Ag 2CO 3 containing magnetic nanocomposite as a powerful and recoverable catalyst for Knoevenagel condensation. Sci Rep 2021; 11:18736. [PMID: 34548589 PMCID: PMC8455631 DOI: 10.1038/s41598-021-98287-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
In this paper, the synthesis, characterization and catalytic application of a novel magnetic silica-supported Ag2CO3 (MS/Ag2CO3) with core-shell structure are developed. The MS/Ag2CO3 nanocomposite was prepared through chemical modification of magnetic MS nanoparticles with AgNO3 under alkaline conditions. The structure, chemical composition and magnetic properties of MS/Ag2CO3 were investigated by using VSM, PXRD, FT-IR, EDX and SEM techniques. The MS/Ag2CO3 nanocomposite was used as an effective catalyst for the Knoevenagel condensation under solvent-free conditions at 60 °C in an ultrasonic bath. The recovery and leaching tests were performed to study the nature of the MS/Ag2CO3 catalyst under applied conditions.
Collapse
Affiliation(s)
- Fatemeh Karimkhah
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran
| | - Dawood Elhamifar
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran.
| | - Masoumeh Shaker
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran
| |
Collapse
|
21
|
Mahajan R, Suriyanarayanan S, Nicholls IA. Improved Solvothermal Synthesis of γ-Fe 2O 3 Magnetic Nanoparticles for SiO 2 Coating. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1889. [PMID: 34443719 PMCID: PMC8398533 DOI: 10.3390/nano11081889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 01/16/2023]
Abstract
Monodisperse magnetic γ-Fe2O3 nanoparticles (MNPs) were prepared by a simple, improved, one-pot solvothermal synthesis using SDS and PEG 6000 as double capping reagents. This double protecting layer afforded better MNP uniformity (Z average 257 ± 11.12 nm, PDI = 0.18) and colloidal stability. Materials were characterized by DLS, SEM, TEM, XPS, and XRD. The use of these MNPs in the synthesis of core-shell structures with uniform and tunable silica coatings was demonstrated, as silica coated MNPs are important for use in a range of applications, including magnetic separation and catalysis and as platforms for templated nanogel synthesis.
Collapse
Affiliation(s)
- Rashmi Mahajan
- Linnaeus University Centre for Biomaterials Chemistry, Bioorganic and Biophysical Chemistry Laboratory, Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden;
| | - Subramanian Suriyanarayanan
- Linnaeus University Centre for Biomaterials Chemistry, Bioorganic and Biophysical Chemistry Laboratory, Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden;
| | | |
Collapse
|
22
|
Billings C, Langley M, Warrington G, Mashali F, Johnson JA. Magnetic Particle Imaging: Current and Future Applications, Magnetic Nanoparticle Synthesis Methods and Safety Measures. Int J Mol Sci 2021; 22:ijms22147651. [PMID: 34299271 PMCID: PMC8306580 DOI: 10.3390/ijms22147651] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have a wide range of applications; an area of particular interest is magnetic particle imaging (MPI). MPI is an imaging modality that utilizes superparamagnetic iron oxide particles (SPIONs) as tracer particles to produce highly sensitive and specific images in a broad range of applications, including cardiovascular, neuroimaging, tumor imaging, magnetic hyperthermia and cellular tracking. While there are hurdles to overcome, including accessibility of products, and an understanding of safety and toxicity profiles, MPI has the potential to revolutionize research and clinical biomedical imaging. This review will explore a brief history of MPI, MNP synthesis methods, current and future applications, and safety concerns associated with this newly emerging imaging modality.
Collapse
Affiliation(s)
- Caroline Billings
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Mitchell Langley
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.L.); (G.W.); (F.M.)
| | - Gavin Warrington
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.L.); (G.W.); (F.M.)
| | - Farzin Mashali
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.L.); (G.W.); (F.M.)
| | - Jacqueline Anne Johnson
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
- Correspondence:
| |
Collapse
|
23
|
El-Nekeety AA, Hassan ME, Hassan RR, Elshafey OI, Hamza ZK, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Nanoencapsulation of basil essential oil alleviates the oxidative stress, genotoxicity and DNA damage in rats exposed to biosynthesized iron nanoparticles. Heliyon 2021; 7:e07537. [PMID: 34345731 PMCID: PMC8319530 DOI: 10.1016/j.heliyon.2021.e07537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
The application of essential oils in food and pharmaceutical sectors face several challenges due to their sensitivity to oxidation process. Additionally, the biosynthesis of nanometals is growing rapidly; however, the toxicity of these particles against living organisms did not well explore yet. This study aimed to determine the bioactive compounds in basil essential oil (BEO) using GC-MS, to encapsulate and characterize BEO and to evaluate its protective role against the oxidative stress and genotoxicity of biosynthesized iron nanoparticles (Fe-NPs) in rats. Six groups of male Sprague-Dawley rats were treated orally for 4 weeks included the control group, Fe-NPs-treated group (100 mg/kg b.w.); EBEO-treated groups at low (100 mg/kg b.w.) or high (200 mg/kg b.w.) dose and the groups treated with Fe-NPs plus the low or the high dose of EBEO. The GC-MS analysis revealed the identification of 48 compounds and linalool was the major compound. The average sizes and zeta potential of the synthesized Fe-NPs and EBEO were 60 ± 4.76 and 120 ± 3.2 nm and 42.42 mV and -6.4 mV, respectively. Animals treated with Fe-NPs showed significant increase in serum biochemical analysis, oxidative stress markers, cytokines, lipid profile, DNA fragmentation and antioxidant enzymes and their gene expression and severe changes in the histology of liver and kidney tissues. Administration of Fe-NPs plus EBEO alleviated these disturbances and the high dose could normalize most of the tested parameters and improved the histology of liver and kidney. It could be concluded that caution should be taken in using the biosynthesized metal nanoparticles in different application. EBEO is a potent candidate to protect against the hazards of metal nanoparticles and can be applied in food and medical applications.
Collapse
Affiliation(s)
- Aziza A. El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Centre, Dokki, Cairo, Egypt
| | - Marwa E. Hassan
- Toxicology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | - Rasha R. Hassan
- Immunology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | - Ola I. Elshafey
- Physical Chemistry Dept., National Research Centre, Dokki, Cairo, Egypt
| | - Zeinab K. Hamza
- Food Toxicology & Contaminants Dept., National Research Centre, Dokki, Cairo, Egypt
| | | | | | | |
Collapse
|
24
|
Mason EE, Mattingly E, Herb K, Śliwiak M, Franconi S, Cooley CZ, Slanetz PJ, Wald LL. Concept for using magnetic particle imaging for intraoperative margin analysis in breast-conserving surgery. Sci Rep 2021; 11:13456. [PMID: 34188077 PMCID: PMC8242088 DOI: 10.1038/s41598-021-92644-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Breast-conserving surgery (BCS) is a commonly utilized treatment for early stage breast cancers but has relatively high reexcision rates due to post-surgical identification of positive margins. A fast, specific, sensitive, easy-to-use tool for assessing margins intraoperatively could reduce the need for additional surgeries, and while many techniques have been explored, the clinical need is still unmet. We assess the potential of Magnetic Particle Imaging (MPI) for intraoperative margin assessment in BCS, using a passively or actively tumor-targeted iron oxide agent and two hardware devices: a hand-held Magnetic Particle detector for identifying residual tumor in the breast, and a small-bore MPI scanner for quickly imaging the tumor distribution in the excised specimen. Here, we present both hardware systems and demonstrate proof-of-concept detection and imaging of clinically relevant phantoms.
Collapse
Affiliation(s)
- Erica E Mason
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| | - Eli Mattingly
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Konstantin Herb
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Monika Śliwiak
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Sofia Franconi
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Clarissa Zimmerman Cooley
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Priscilla J Slanetz
- Department of Radiology, Boston University Medical Center, Boston, MA, 02118, USA
| | - Lawrence L Wald
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
25
|
El-Gendy NS, Nassar HN. Biosynthesized magnetite nanoparticles as an environmental opulence and sustainable wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145610. [PMID: 33609818 DOI: 10.1016/j.scitotenv.2021.145610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
This review emphasizes the win-win one-pot valorization process of different waste biomass that composed of many biological macromolecules (e.g. polysaccharides, polyphenols, carbohydrates, lipids, enzymes, proteins, etc.) and other biomolecules (e.g. alkaloids, terpenoids, tannins, phenolics, carotenoids, amino acids, sugars, vitamins, etc.) into biofunctionalized magnetite (Fe3O4) nanoparticles (BMNPs). It illustrates the sustainable recruitment of microbial intra- and extra-cellular metabolites, proteins, and/or enzymes in the biosynthesis of BMNPs. It elucidates the environmental affluence of such sustainable, cost-effective, and ecofriendly BMNPs as an antimicrobial agent for water disinfection, photo-degrader, and adsorbent for different xenobiotics, organic and inorganic water pollutants. It confers the future environmental aspects of BMNPs in biofuels production from lipids and lignocellulosic wastes, biosensors manufacturing and bio-upgrading of petroleum fractions, etc. It discusses the circular economy, challenges, and opportunities for scaling up the zero-waste green synthesis of MNPs. Nevertheless, imminent investigations are still needed to elucidate the exact rule of biological macro- and micro- molecules in BMNPs synthesis and mechanisms involved in its microbicidal and photodegradation activities. Accentuated researches are more required on the toxicity and/or biosafety of the green synthesized BMNPs to humans and other non-target organisms to ensure its eco-safety upon environmental applications.
Collapse
Affiliation(s)
- Nour Sh El-Gendy
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza PO 12566, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza PO 12588, Egypt.
| | - Hussein N Nassar
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO 11727, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza PO 12588, Egypt; Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza PO 12566, Egypt
| |
Collapse
|
26
|
Satpathy S, Panigrahi U, Panda S, Biswal R, Luyten W, Mallick P. Structural, optical, antimicrobial and ferromagnetic properties of Zn1−xLaxO nanorods synthesized by chemical route. JOURNAL OF ALLOYS AND COMPOUNDS 2021; 865:158937. [DOI: 10.1016/j.jallcom.2021.158937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
|
27
|
Akram F, Saeed M, Akhtar J, Raza Naqvi SA, Haq AU. Fabrication and characterization of Fe2O3, Bi2O3 and BiFeO3 and evaluation of their photo catalytic performances on degradation of methylene blue dye. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study reports the fabrication of Fe2O3, Bi2O3, and BiFeO3, characterization and evaluation of the photocatalytic performances for methylene blue dye degradation. The materials were synthesized by precipitation method and characterized by scanning electron microscopy, X-ray diffraction, energy dispersive X-rays analyses, and Fourier transform infrared analyses. The photocatalytic activities of Fe2O3, Bi2O3, and BiFeO3 were compared by performing degradation experiments with 50 mL of 100 mg/L methylene blue solution. The as-prepared BiFeO3 was found as 2.4 times and 1.7 times more effective than Fe2O3 and Bi2O3, with a 79, 47, and 57% catalytic activity, respectively. The degradation of methylene blue over the BiFeO3 catalyst was optimized in terms of pH, catalyst dosage, temperature, and methylene blue concentration. The Eley–Rideal mechanism was proposed to describe the reaction kinetics in terms of the first order and second order kinetics model. Activation energy E (kJ/mol), enthalpy ΔH (kJ/mol), entropy ΔS (J/mol) and free energy ΔG (kJ/mol) were calculated as 20.8, 18.2, 197.5 and −45.3 respectively. The negative value of free energy shows that photodegradation is favored in present conditions.
Collapse
Affiliation(s)
- Fiza Akram
- Department of Chemistry , Government College University , Faisalabad , Pakistan
| | - Muhammad Saeed
- Department of Chemistry , Government College University , Faisalabad , Pakistan
| | - Javaid Akhtar
- Department of Chemical & Material Engineering , College of Engineering, King Abdul Aziz University , Jeddah , Kingdom of Saudi Arabia
| | - Syed Ali Raza Naqvi
- Department of Chemistry , Government College University , Faisalabad , Pakistan
| | - Atta ul Haq
- Department of Chemistry , Government College University , Faisalabad , Pakistan
| |
Collapse
|
28
|
Ferrofluids-based microextraction systems to process organic and inorganic targets: The state-of-the-art advances and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Arlt CR, Brekel D, Neumann S, Rafaja D, Franzreb M. Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2040-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractThe size fractionation of magnetic nanoparticles is a technical problem, which until today can only be solved with great effort. Nevertheless, there is an important demand for nanoparticles with sharp size distributions, for example for medical technology or sensor technology. Using magnetic chromatography, we show a promising method for fractionation of magnetic nanoparticles with respect to their size and/or magnetic properties. This was achieved by passing magnetic nanoparticles through a packed bed of fine steel spheres with which they interact magnetically because single domain ferro-/ferrimagnetic nanoparticles show a spontaneous magnetization. Since the strength of this interaction is related to particle size, the principle is suitable for size fractionation. This concept was transferred into a continuous process in this work using a so-called simulated moving bed chromatography. Applying a suspension of magnetic nanoparticles within a size range from 20 to 120 nm, the process showed a separation sharpness of up to 0.52 with recovery rates of 100%. The continuous feed stream of magnetic nanoparticles could be fractionated with a space-time-yield of up to 5 mg/(L∙min). Due to the easy scalability of continuous chromatography, the process is a promising approach for the efficient fractionation of industrially relevant amounts of magnetic nanoparticles.
Collapse
|
30
|
Hammouche J, Gaidi M, Columbus S, Omari M. Enhanced Photocatalytic Performance of Zinc Ferrite Nanocomposites for Degrading Methylene Blue: Effect of Nickel Doping Concentration. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01960-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Yamoah MA, Thai PN, Zhang XD. Transgene Delivery to Human Induced Pluripotent Stem Cells Using Nanoparticles. Pharmaceuticals (Basel) 2021; 14:334. [PMID: 33917388 PMCID: PMC8067386 DOI: 10.3390/ph14040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) and hiPSCs-derived cells have the potential to revolutionize regenerative and precision medicine. Genetically reprograming somatic cells to generate hiPSCs and genetic modification of hiPSCs are considered the key procedures for the study and application of hiPSCs. However, there are significant technical challenges for transgene delivery into somatic cells and hiPSCs since these cells are known to be difficult to transfect. The existing methods, such as viral transduction and chemical transfection, may introduce significant alternations to hiPSC culture which affect the potency, purity, consistency, safety, and functional capacity of hiPSCs. Therefore, generation and genetic modification of hiPSCs through non-viral approaches are necessary and desirable. Nanotechnology has revolutionized fields from astrophysics to biology over the past two decades. Increasingly, nanoparticles have been used in biomedicine as powerful tools for transgene and drug delivery, imaging, diagnostics, and therapeutics. The most successful example is the recent development of SARS-CoV-2 vaccines at warp speed to combat the 2019 coronavirus disease (COVID-19), which brought nanoparticles to the center stage of biomedicine and demonstrated the efficient nanoparticle-mediated transgene delivery into human body. Nanoparticles have the potential to facilitate the transgene delivery into the hiPSCs and offer a simple and robust approach. Nanoparticle-mediated transgene delivery has significant advantages over other methods, such as high efficiency, low cytotoxicity, biodegradability, low cost, directional and distal controllability, efficient in vivo applications, and lack of immune responses. Our recent study using magnetic nanoparticles for transfection of hiPSCs provided an example of the successful applications, supporting the potential roles of nanoparticles in hiPSC biology. This review discusses the principle, applications, and significance of nanoparticles in the transgene delivery to hiPSCs and their successful application in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Megan A. Yamoah
- Department of Economics, University of Oxford, Oxford OX1 3UQ, UK;
| | - Phung N. Thai
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Xiao-Dong Zhang
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA;
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
32
|
Barjesteh T, Mansur S, Bao Y. Inorganic Nanoparticle-Loaded Exosomes for Biomedical Applications. Molecules 2021; 26:1135. [PMID: 33672706 PMCID: PMC7924372 DOI: 10.3390/molecules26041135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Exosomes are intrinsic cell-derived membrane vesicles in the size range of 40-100 nm, serving as great biomimetic nanocarriers for biomedical applications. These nanocarriers are known to bypass biological barriers, such as the blood-brain barrier, with great potential in treating brain diseases. Exosomes are also shown to be closely associated with cancer metastasis, making them great candidates for tumor targeting. However, the clinical translation of exosomes are facing certain critical challenges, such as reproducible production and in vivo tracking of their localization, distribution, and ultimate fate. Recently, inorganic nanoparticle-loaded exosomes have been shown great benefits in addressing these issues. In this review article, we will discuss the preparation methods of inorganic nanoparticle-loaded exosomes, and their applications in bioimaging and therapy. In addition, we will briefly discuss their potentials in exosome purification.
Collapse
Affiliation(s)
| | | | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, USA; (T.B.); (S.M.)
| |
Collapse
|
33
|
Aguilera-Del-Toro RH, Aguilera-Granja F, Torres MB, Vega A. Relation between structural patterns and magnetism in small iron oxide clusters: reentrance of the magnetic moment at high oxidation ratios. Phys Chem Chem Phys 2021; 23:246-272. [PMID: 33325468 DOI: 10.1039/d0cp03795h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to quantum confinement effects, the understanding of iron oxide nanoparticles is a challenge that opens the possibility of designing nanomaterials with new capacities. In this work, we report a theoretical density functional theory study of the structural, electronic, and magnetic properties of neutral and charged iron oxide clusters FenOm0/± (n = 1-6), with m values until oxygen saturation is achieved. We determine the putative ground state configuration and low-energy structural and spin isomers. Based on the total energy differences between the obtained global minimum structure of the parent clusters and their possible fragments, we explore the fragmentation channels for cationic oxides, comparing with experiments. Our results provide fundamental insight on how the structural pattern develops upon oxidation and its connection with the magnetic couplings and net total moment. Upon addition of oxygen, electronic charge transfer from iron to oxygen is found which weakens the iron-iron bond and consequently the direct exchange coupling in Fe. The binding energy increases as the oxygen ratio increases, rising faster at low oxidation rates. When molecular oxygen adsorption starts to take place, the binding energy increases more slowly. The oxygen environment is a crucial factor related to the stabilities and to the magnetic character of iron oxides. We identified certain iron oxide clusters of special relevance in the context of magnetism due to their high stability, expected abundance and parallel magnetic couplings that cause large total magnetic moments even at high oxidation ratios.
Collapse
Affiliation(s)
- R H Aguilera-Del-Toro
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, E-47011 Valladolid, Spain
| | | | | | | |
Collapse
|
34
|
Bhattacharjee S, Brayden DJ. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin Drug Discov 2020; 16:235-254. [PMID: 33108229 DOI: 10.1080/17460441.2021.1826434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nanotechnology is in a growth phase for drug delivery and medical imaging. Nanomaterials with unique properties present opportunities for encapsulation of therapeutics and imaging agents, along with conjugation to ligands for targeting. Favorable chemistry of nanomaterials can create formulations that address critical challenges for therapeutics, such as insolubility and a low capacity to cross the blood-brain-barrier (BBB) and intestinal wall. AREAS COVERED The authors investigate challenges faced during translation of nanomedicines while suggesting reasons as to why some nanoformulations have under-performed in clinical trials. They assess physiological barriers such as the BBB and gut mucus that nanomedicines must overcome to deliver cargos. They also provide an overview with examples of how nanomedicines can be designed to improve localization and site-specific delivery (e.g., encapsulation, bioconjugation, and triggered-release). EXPERT OPINION There are examples where nanomedicines have demonstrated improved efficacy of payload in humans; however, most of the advantages conferred were in improved pharmacokinetics and reduced toxicity. Problematic data show susceptibility of nanoformulations against natural protective mechanisms present in the body, including distribution impediment by physiological barriers and activation of the reticuloendothelial system. Further initiatives should address current challenges while expanding the scope of nanomedicine into advanced biomedical imaging and antibiotic delivery.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - David J Brayden
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
35
|
Mohd Şuan M, Chin CK, Razak JA, Hasib H, Abid M‘AM, Nurdin I. Synthesis and Characterizations of Fe 3O 4 Added with Al 2O 3 Nanoparticles via Sol-Gel Technique. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2020; 957:012040. [DOI: 10.1088/1757-899x/957/1/012040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
A single step sol-gel has been established as a new route for synthesizing AkCb-added Fe3O4 nanoparticles. In this work, the effects of Al2O3 composition towards the micro structure and magnetic properties of AkCb-added Fe3O4 samples were investigated. A series of Fe and Al nitrate mixture solutions were prepared by varying the Al nitrate composition from 2.0 wt. % to 10.0 wt. %. A dropwise of propylene oxide has dimed out the clear red mixture solution with a significant release of heat before turned into a gel. The gel was dried at 90 °C for 48 h in a ventilated oven which then pulverized into a powder by using mortar grinder. The powder was calcinated at 900 °C for 1 h in a normal furnace atmosphere. The XRD results revealed that the existence of polycrystalline Fe3O4 were completed at calcination temperature 900 °C. The SEM images of the Fe3O4 with 10.0 wt.% of Al2O3 samples showed a distinct nanoparticles micro structure due to the increased of Fe3O4 nucleation initiated by Al2O3 nanoparticles. The Vickers microhardness of the Al2O3 added Fe3O4 samples were significantly increased as the Al2O3 content was increased up to 10.0 wt.% attributed from good distribution of Al2O3 nanoparticles in the sample. Subsequently, the magnetic properties of Fe3O4 investigated by alternating gradient magnetometer, AGM was insignificantly reduced by the addition of Al2O3 nanoparticles. This work indicated that the sol-gel reaction is an effective method to achieve uniform distribution and high purity of AkCb-added Fe3O4 nanoparticles with optimum microhardness and ferromagnetic performances.
Collapse
|
36
|
Miguel MG, Lourenço JP, Faleiro ML. Superparamagnetic Iron Oxide Nanoparticles and Essential Oils: A New Tool for Biological Applications. Int J Mol Sci 2020; 21:E6633. [PMID: 32927821 PMCID: PMC7555169 DOI: 10.3390/ijms21186633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Essential oils are complex mixtures of volatile compounds with diverse biological properties. Antimicrobial activity has been attributed to the essential oils as well as their capacity to prevent pathogenic microorganisms from forming biofilms. The search of compounds or methodologies with this capacity is of great importance due to the fact that the adherence of these pathogenic microorganisms to surfaces largely contributes to antibiotic resistance. Superparamagnetic iron oxide nanoparticles have been assayed for diverse biomedical applications due to their biocompatibility and low toxicity. Several methods have been developed in order to obtain functionalized magnetite nanoparticles with adequate size, shape, size distribution, surface, and magnetic properties for medical applications. Essential oils have been evaluated as modifiers of the surface magnetite nanoparticles for improving their stabilization but particularly to prevent the growth of microorganisms. This review aims to provide an overview on the current knowledge about the use of superparamagnetic iron oxide nanoparticles and essential oils on the prevention of microbial adherence and consequent biofilm formation with the goal of being applied on the surface of medical devices. Some limitations found in the studies are discussed.
Collapse
Affiliation(s)
- Maria Graça Miguel
- Mediterranean Institute for Agriculture, Environment and Development, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Paulo Lourenço
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Centro de Investigação em Química do Algarve (CIQA), Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Leonor Faleiro
- CBMR, Algarve Biomedical Center, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|
37
|
Saini A, Borchers JA, George S, Maranville BB, Krycka KL, Dura JA, Theis-Bröhl K, Wolff M. Layering of magnetic nanoparticles at amorphous magnetic templates with perpendicular anisotropy. SOFT MATTER 2020; 16:7676-7684. [PMID: 32804181 DOI: 10.1039/d0sm01088j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We reveal the assembly of magnetite nanoparticles of sizes 5 nm, 15 nm and 25 nm from dilute water-based ferrofluids onto an amorphous magnetic template with out-of-plane anisotropy. From neutron reflectometry experiments we extract density profiles and show that the particles self-assemble into layers at the magnetic surface. The layers are extremely stable against cleaning and rinsing of the substrate. The density of the layers is determined by and increases with the remanent magnetic moment of the particles.
Collapse
Affiliation(s)
- Apurve Saini
- Department for Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden.
| | - Julie A Borchers
- NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, 20899-6102, USA
| | - Sebastian George
- Department for Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden.
| | - Brian B Maranville
- NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, 20899-6102, USA
| | - Kathryn L Krycka
- NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, 20899-6102, USA
| | - Joseph A Dura
- NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, 20899-6102, USA
| | - Katharina Theis-Bröhl
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany
| | - Max Wolff
- Department for Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden.
| |
Collapse
|
38
|
Theis-Bröhl K, Saini A, Wolff M, Dura JA, Maranville BB, Borchers JA. Self-Assembly of Magnetic Nanoparticles in Ferrofluids on Different Templates Investigated by Neutron Reflectometry. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1231. [PMID: 32599954 PMCID: PMC7353075 DOI: 10.3390/nano10061231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
In this article we review the process by which magnetite nanoparticles self-assemble onto solid surfaces. The focus is on neutron reflectometry studies providing information on the density and magnetization depth profiles of buried interfaces. Specific attention is given to the near-interface "wetting" layer and to examples of magnetite nanoparticles on a hydrophilic silicon crystal, one coated with (3-Aminopropyl)triethoxysilane, and finally, one with a magnetic film with out-of-plane magnetization.
Collapse
Affiliation(s)
- Katharina Theis-Bröhl
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany
| | - Apurve Saini
- Department for Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden; (A.S.); (M.W.)
| | - Max Wolff
- Department for Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden; (A.S.); (M.W.)
| | - Joseph A. Dura
- NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899-6102, USA; (J.A.D.); (B.B.M.); (J.A.B.)
| | - Brian B. Maranville
- NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899-6102, USA; (J.A.D.); (B.B.M.); (J.A.B.)
| | - Julie A. Borchers
- NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899-6102, USA; (J.A.D.); (B.B.M.); (J.A.B.)
| |
Collapse
|
39
|
Velázquez-Galván Y, Encinas A. Analytical magnetostatic model for 2D arrays of interacting magnetic nanowires and nanotubes. Phys Chem Chem Phys 2020; 22:13320-13328. [PMID: 32510074 DOI: 10.1039/d0cp00808g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A fully analytical model to describe the magnetostatic properties of these 2D nanocylinder arrays (tubes and wires) is presented. The model allows calculating the components of the effective demagnetizing field as a function of the cylinder height, inner and outer diameters, and the center-to-center distance. From these components, it is possible to calculate the shape anisotropy of the cylinder, the dipolar interaction between them, and the total magnetostatic energy. The model allows performing calculations very simply, using a simple spreadsheet or open-access software such as Geogebra. This allows analyzing the effect of each geometrical parameter in the different contributions to the magnetostatic energy. Amongst the most interesting findings is that the model describes naturally the magnetization easy-axis reorientation transition induced by the dipolar interaction, for which a general phase diagram has been calculated for both tubes and wires. For the case of nanowires, our results show a very good agreement with previously published results. While for nanotubes, the model predicts that the magnetization easy-axis reorientation transition is frustrated as the tube wall thickness decreases and reaches a critical value even when the distance between tubes is reduced to its lowest possible value.
Collapse
Affiliation(s)
- Yenni Velázquez-Galván
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, Caminio a la Presa San José 2055, 78216 San Luis Potosí, SLP, Mexico.
| | | |
Collapse
|
40
|
Caspani S, Magalhães R, Araújo JP, Sousa CT. Magnetic Nanomaterials as Contrast Agents for MRI. MATERIALS 2020; 13:ma13112586. [PMID: 32517085 PMCID: PMC7321635 DOI: 10.3390/ma13112586] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 01/17/2023]
Abstract
Magnetic Resonance Imaging (MRI) is a powerful, noninvasive and nondestructive technique, capable of providing three-dimensional (3D) images of living organisms. The use of magnetic contrast agents has allowed clinical researchers and analysts to significantly increase the sensitivity and specificity of MRI, since these agents change the intrinsic properties of the tissues within a living organism, increasing the information present in the images. Advances in nanotechnology and materials science, as well as the research of new magnetic effects, have been the driving forces that are propelling forward the use of magnetic nanostructures as promising alternatives to commercial contrast agents used in MRI. This review discusses the principles associated with the use of contrast agents in MRI, as well as the most recent reports focused on nanostructured contrast agents. The potential applications of gadolinium- (Gd) and manganese- (Mn) based nanomaterials and iron oxide nanoparticles in this imaging technique are discussed as well, from their magnetic behavior to the commonly used materials and nanoarchitectures. Additionally, recent efforts to develop new types of contrast agents based on synthetic antiferromagnetic and high aspect ratio nanostructures are also addressed. Furthermore, the application of these materials in theragnosis, either as contrast agents and controlled drug release systems, contrast agents and thermal therapy materials or contrast agents and radiosensitizers, is also presented.
Collapse
|
41
|
Local structure investigation of cobalt ferrite-based nanoparticles by synchrotron X-ray diffraction and absorption spectroscopy. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Li Y, Wang N, Huang X, Li F, Davis TP, Qiao R, Ling D. Polymer-Assisted Magnetic Nanoparticle Assemblies for Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 3:121-142. [DOI: 10.1021/acsabm.9b00896] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
43
|
Abstract
In recent years, various reports related to sensing application research have suggested that combining the synergistic impacts of optical, electrical or magnetic properties in a single technique can lead to a new multitasking platform. Owing to their unique features of the magnetic moment, biocompatibility, ease of surface modification, chemical stability, high surface area, high mass transference, magnetic nanoparticles have found a wide range of applications in various fields, especially in sensing systems. The present review is comprehensive information about magnetic nanoparticles utilized in the optical sensing platform, broadly categorized into four types: surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence spectroscopy and near-infrared spectroscopy and imaging (NIRS) that are commonly used in various (bio) analytical applications. The review also includes some conclusions on the state of the art in this field and future aspects.
Collapse
|
44
|
Kleinfeldt L, Gädke J, Biedendieck R, Krull R, Garnweitner G. Spray-Dried Hierarchical Aggregates of Iron Oxide Nanoparticles and Their Functionalization for Downstream Processing in Biotechnology. ACS OMEGA 2019; 4:16300-16308. [PMID: 31616807 PMCID: PMC6787900 DOI: 10.1021/acsomega.9b01549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
In this work, the structuring of iron oxide nanoparticles via spray-drying (SD) of aqueous suspensions is investigated, leading to micrometer-sized aggregates with saturation magnetization comparable to that of the individual nanoparticles. Interestingly, the superparamagnetic behavior is retained despite the multicore structure. Modification of the aggregates via the addition of silica nanoparticles to the suspension allows for control of the resulting magnetization by adjusting the iron oxide content. Moreover, the morphology of the produced aggregates is gradually shifted from irregular inflated-like shapes in case of pure iron oxide aggregates to reach spherical structures when bringing the silica content to only 20%. The aggregates with different magnetization can be effectively separated in a simple column with an attached permanent magnet. Functionalization of pure iron oxide aggregates with a previously coupled ligand holding a nitrilotriacetic acid (NTA)-like moiety and subsequent loading with Ni2+ ions leads to the ability to bind 6-histidine (His6)-tagged target proteins via chelation complexes for magnetic separation. The application of the presented system for the purification of recombinant protein A in multiple cycles is shown. The recyclability of the separation system in combination with the high degree of magnetic separation is promising for future applications in the field of preparative in situ protein purification.
Collapse
Affiliation(s)
- Lennart Kleinfeldt
- Institute for Particle
Technology, Technische Universität
Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Center
of Pharmaceutical Engineering—PVZ, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Johannes Gädke
- Center
of Pharmaceutical Engineering—PVZ, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rebekka Biedendieck
- Institute of Microbiology, Technische Universität
Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
- Braunschweig
Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Rainer Krull
- Center
of Pharmaceutical Engineering—PVZ, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Georg Garnweitner
- Institute for Particle
Technology, Technische Universität
Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Center
of Pharmaceutical Engineering—PVZ, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| |
Collapse
|
45
|
Paris JL, Baeza A, Vallet-Regí M. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opin Drug Deliv 2019; 16:1095-1112. [DOI: 10.1080/17425247.2019.1662786] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Juan L. Paris
- Department of Life Sciences, Nano4Health Unit, Nanomedicine Group. International Iberian Nanotechnology Laboratory (INL). Av. Mestre José Veiga s/n, Braga, Portugal
| | - Alejandro Baeza
- Materials and Aeroespatial Production Department, Polymer Materials Research Group, Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas (Unidad Docente de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
46
|
Anokhin EO, Trusov LA, Kozlov DA, Chumakov RG, Sleptsova AE, Uvarov OV, Kozlov MI, Petukhov DI, Eliseev AA, Kazin PE. Silica coated hard-magnetic strontium hexaferrite nanoparticles. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Calderón-Garcidueñas L, González-Maciel A, Mukherjee PS, Reynoso-Robles R, Pérez-Guillé B, Gayosso-Chávez C, Torres-Jardón R, Cross JV, Ahmed IAM, Karloukovski VV, Maher BA. Combustion- and friction-derived magnetic air pollution nanoparticles in human hearts. ENVIRONMENTAL RESEARCH 2019; 176:108567. [PMID: 31344533 DOI: 10.1016/j.envres.2019.108567] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 05/20/2023]
Abstract
Air pollution is a risk factor for cardiovascular and Alzheimer's disease (AD). Iron-rich, strongly magnetic, combustion- and friction-derived nanoparticles (CFDNPs) are abundant in particulate air pollution. Metropolitan Mexico City (MMC) young residents have abundant brain CFDNPs associated with AD pathology. We aimed to identify if magnetic CFDNPs are present in urbanites' hearts and associated with cell damage. We used magnetic analysis and transmission electron microscopy (TEM) to identify heart CFDNPs and measured oxidative stress (cellular prion protein, PrPC), and endoplasmic reticulum (ER) stress (glucose regulated protein, GRP78) in 72 subjects age 23.8 ± 9.4y: 63 MMC residents, with Alzheimer Continuum vs 9 controls. Magnetite/maghemite nanoparticles displaying the typical rounded crystal morphologies and fused surface textures of CFDNPs were more abundant in MMC residents' hearts. NPs, ∼2-10 × more abundant in exposed vs controls, were present inside mitochondria in ventricular cardiomyocytes, in ER, at mitochondria-ER contact sites (MERCs), intercalated disks, endothelial and mast cells. Erythrocytes were identified transferring 'hitchhiking' NPs to activated endothelium. Magnetic CFDNP concentrations and particle numbers ranged from 0.2 to 1.7 μg/g and ∼2 to 22 × 109/g, respectively. Co-occurring with cardiomyocyte NPs were abnormal mitochondria and MERCs, dilated ER, and lipofuscin. MMC residents had strong left ventricular PrPC and bi-ventricular GRP78 up-regulation. The health impact of up to ∼22 billion magnetic NPs/g of ventricular tissue are likely reflecting the combination of surface charge, ferrimagnetism, and redox activity, and includes their potential for disruption of the heart's electrical impulse pathways, hyperthermia and alignment and/or rotation in response to magnetic fields. Exposure to solid NPs appears to be directly associated with early and significant cardiac damage. Identification of strongly magnetic CFDNPs in the hearts of children and young adults provides an important novel layer of information for understanding CVD pathogenesis emphasizing the urgent need for prioritization of particulate air pollution control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Janet V Cross
- Biomedical Sciences Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Imad A M Ahmed
- Department of Earth Sciences, University of Oxford, OX1 3AN, Oxford, United Kingdom
| | - Vassil V Karloukovski
- Centre for Environmental Magnetism and Palaeomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, United Kingdom
| | - Barbara A Maher
- Centre for Environmental Magnetism and Palaeomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, United Kingdom
| |
Collapse
|
48
|
Daniel YS, Aziz ZA, Ismail Z, Bahar A, Salah F. Stratified electromagnetohydrodynamic flow of nanofluid supporting convective role. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0247-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Thitichai N, Thanapongpibul C, Theerasilp M, Sungkarat W, Nasongkla N. Study of biodistribution and systemic toxicity of glucose functionalized SPIO/DOX micelles. Pharm Dev Technol 2019; 24:935-946. [PMID: 30652923 DOI: 10.1080/10837450.2019.1569679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study examined the cytotoxicity and magnetic resonance imaging (MRI) distribution of cancer-targeted, MRI-visible polymeric micelles that encapsulate doxorubicin (DOX) and superparamagnetic iron oxide (SPIO) and are conjugated with glucose as a targeting ligand. In this study, the micelles were investigated the clinical potential of glucose-micelles, in vitro cytotoxicity assays of nonencapsulating or SPIO-and-DOX-coencapsulating micelles were performed on L929 mouse fibroblasts, and we found that glucose-micelles did not exert in vitro cytotoxic effects. Next, in vitro MRI detectability of glucose SPIO micelles was evaluated at the loaded SPIO content of 2.5% and 50%, and it was found that glucose-micelles can increase MRI relaxivity (r2*) at high SPIO loading. Furthermore, 50% SPIO micelles persisted in the blood circulation for up to 5 days (slow liver clearance) as determined by in vivo MRI. For in vivo toxicity evaluation, 50% SPIO/DOX micelles at a dose up to 18 (mg DOX)/(kg body weight) showed no impact on animal health according to clinical chemistry and clinical hematology laboratory testing. Altogether, these results indicate that glucose-micelles can serve as an effective and safe drug delivery system.
Collapse
Affiliation(s)
- Nussana Thitichai
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University, Puttamonthon , Nakorn Pathom , Thailand.,b Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Mahidol University , Bangkok , Thailand
| | - Chalaisorn Thanapongpibul
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University, Puttamonthon , Nakorn Pathom , Thailand
| | - Man Theerasilp
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University, Puttamonthon , Nakorn Pathom , Thailand.,c Department of Materials Science and Engineering School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Rayong , Thailand
| | - Witaya Sungkarat
- d Advanced Diagnostic Imaging Center (AIMC), Faculty of Medicine , Ramathibodi Hospital, Mahidol University , Bangkok , Thailand
| | - Norased Nasongkla
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University, Puttamonthon , Nakorn Pathom , Thailand.,b Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Mahidol University , Bangkok , Thailand
| |
Collapse
|
50
|
Terekhov RP, Selivanova IA, Tyukavkina NA, Shylov GV, Utenishev AN, Porozov YB. Taxifolin tubes: crystal engineering and characteristics. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2019; 75:175-182. [PMID: 32830742 DOI: 10.1107/s2052520619000969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/19/2019] [Indexed: 06/11/2023]
Abstract
Taxifolin, also known as dihydroquercetin, is the major flavonoid in larch wood. It is well known as an antioxidant and a bioactive substance. Taxifolin as an active pharmaceutical ingredient is produced industrially in crystalline form during the processing of larch wood. Some information is available on nano- and microstructured particles of taxifolin. This paper reports on the generation of a new form of taxifolin as microtubes. These self-assembled tubes were obtained from raw taxifolin by crystal engineering with urea at ambient temperature and pressure. The parameters of temperature, pH value, molar ratio of taxifolin and urea, and time duration were optimized for yield enhancement of the microtubes. The water solubility and melting point of the new form of taxifolin were established. The microtubes were characterized by X-ray diffraction, X-ray powder diffraction, microscopy, mass spectrometry, 1H NMR spectroscopy, UV spectroscopy and Fourier transform infrared spectroscopy methods. The experimental results demonstrate that the microtubes and raw taxifolin both exist in crystalline form with the same structure of the crystal unit. However, they are characterized by different morphological and physicochemical properties. Computer simulation was performed to explain the mechanism of the self-assembly process.
Collapse
Affiliation(s)
- Roman P Terekhov
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya st. 8-2, Moscow, 119991, Russian Federation
| | - Irina A Selivanova
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya st. 8-2, Moscow, 119991, Russian Federation
| | - Nonna A Tyukavkina
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya st. 8-2, Moscow, 119991, Russian Federation
| | - Genadiy V Shylov
- Laboratory of Structural Chemistry, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Acad. Semenov av. 1, Chernogolovka, Moscow Region 143432, Russian Federation
| | - Andrey N Utenishev
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya st. 8-2, Moscow, 119991, Russian Federation
| | - Yuri B Porozov
- Laboratory of Bioinformatics, Sechenov First Moscow State Medical University, Trubetskaya st. 8-2, Moscow, 119991, Russian Federation
| |
Collapse
|