1
|
Lempicki MD, Gray JA, Abuna G, Murata RM, Divanovic S, McNamara CA, Meher AK. BAFF neutralization impairs the autoantibody-mediated clearance of dead adipocytes and aggravates obesity-induced insulin resistance. Front Immunol 2024; 15:1436900. [PMID: 39185417 PMCID: PMC11341376 DOI: 10.3389/fimmu.2024.1436900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
B cell-activating factor (BAFF) is a critical TNF-family cytokine that regulates homeostasis and peripheral tolerance of B2 cells. BAFF overproduction promotes autoantibody generation and autoimmune diseases. During obesity, BAFF is predominantly produced by white adipose tissue (WAT), and IgG autoantibodies against adipocytes are identified in the WAT of obese humans. However, it remains to be determined if the autoantibodies formed during obesity affect WAT remodeling and systemic insulin resistance. Here, we show that IgG autoantibodies are generated in high-fat diet (HFD)-induced obese mice that bind to apoptotic adipocytes and promote their phagocytosis by macrophages. Next, using murine models of obesity in which the gonadal WAT undergoes remodeling, we found that BAFF neutralization depleted IgG autoantibodies, increased the number of dead adipocytes, and exacerbated WAT inflammation and insulin resistance. RNA sequencing of the stromal vascular fraction from the WAT revealed decreased expression of immunoglobulin light-chain and heavy-chain variable genes suggesting a decreased repertoire of B cells after BAFF neutralization. Further, the B cell activation and the phagocytosis pathways were impaired in the WAT of BAFF-neutralized mice. In vitro, plasma IgG fractions from BAFF-neutralized mice reduced the phagocytic clearance of apoptotic adipocytes. Altogether, our study suggests that IgG autoantibodies developed during obesity, at least in part, dampens exacerbated WAT inflammation and systemic insulin resistance.
Collapse
Affiliation(s)
- Melissa D. Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jake A. Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Gabriel Abuna
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Ramiro M. Murata
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Senad Divanovic
- Department of Pediatrics University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Coleen A. McNamara
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
2
|
Sim KY, An J, Bae SE, Yang T, Ko GH, Hwang JR, Choi KY, Park JE, Lee JS, Kim BC, Lee KH, Park SG. Alzheimer's disease risk associated with changes in Epstein-Barr virus nuclear antigen 1-specific epitope targeting antibody levels. J Infect Public Health 2024; 17:102462. [PMID: 38824738 DOI: 10.1016/j.jiph.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder influenced by age, sex, genetic factors, immune alterations, and infections. Multiple lines of evidence suggest that changes in antibody response are linked to AD pathology. METHODS To elucidate the mechanisms underlying AD development, we investigated antibodies that target autoimmune epitopes using high-resolution epitope microarrays. Our study compared two groups: individuals with AD (n = 19) and non-demented (ND) controls (n = 19). To validate the results, we measured antibody levels in plasma samples from AD patients (n = 96), mild cognitive impairment (MCI; n = 91), and ND controls (n = 97). To further explore the invlovement of EBV, we performed epitope masking immunofluorescence microscopy analysis and tests to induce lytic replication using the B95-8 cell line. RESULTS In this study, we analyzed high-resolution epitope-specific serum antibody levels in AD, revealing significant disparities in antibodies targeting multiple epitopes between the AD and control groups. Particularly noteworthy was the significant down-regulation of antibody (anti-DG#29) targeting an epitope of Epstein-Barr virus nuclear antigen 1 (EBNA1). This down-regulation increased AD risk in female patients (odds ratio up to 6.6), but not in male patients. Our investigation further revealed that the down-regulation of the antibody (anti-DG#29) is associated with EBV reactivation in AD, as indicated by the analysis of EBV VCA IgG or IgM levels. Additionally, our data demonstrated that the epitope region on EBNA1 for the antibody is hidden during the EBV lytic reactivation of B95-8 cells. CONCLUSION Our findings suggest a potential relationship of EBV in the development of AD in female. Moreover, we propose that antibodies targeting the epitope (DG#29) of EBNA1 could serve as valuable indicators of AD risk in female.
Collapse
Affiliation(s)
- Kyu-Young Sim
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jaekyeung An
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - So-Eun Bae
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Taewoo Yang
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Gwang-Hoon Ko
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Ryul Hwang
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Kyu Yeong Choi
- Asian Dementia Research Initiative, Chosun University, Republic of Korea
| | - Jung Eun Park
- Asian Dementia Research Initiative, Chosun University, Republic of Korea; Department of Biomedical Science and BK21-plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Jung Sup Lee
- Asian Dementia Research Initiative, Chosun University, Republic of Korea; Department of Biomedical Science and BK21-plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Byeong C Kim
- Asian Dementia Research Initiative, Chosun University, Republic of Korea; Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kun Ho Lee
- Asian Dementia Research Initiative, Chosun University, Republic of Korea; Department of Biomedical Science and BK21-plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea; Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sung-Gyoo Park
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Bodansky A, Yu DJ, Rallistan A, Kalaycioglu M, Boonyaratanakornkit J, Green DJ, Gauthier J, Turtle CJ, Zorn K, O’Donovan B, Mandel-Brehm C, Asaki J, Kortbawi H, Kung AF, Rackaityte E, Wang CY, Saxena A, de Dios K, Masi G, Nowak RJ, O’Connor KC, Li H, Diaz VE, Saloner R, Casaletto KB, Gontrum EQ, Chan B, Kramer JH, Wilson MR, Utz PJ, Hill JA, Jackson SW, Anderson MS, DeRisi JL. Unveiling the proteome-wide autoreactome enables enhanced evaluation of emerging CAR T cell therapies in autoimmunity. J Clin Invest 2024; 134:e180012. [PMID: 38753445 PMCID: PMC11213466 DOI: 10.1172/jci180012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Given the global surge in autoimmune diseases, it is critical to evaluate emerging therapeutic interventions. Despite numerous new targeted immunomodulatory therapies, comprehensive approaches to apply and evaluate the effects of these treatments longitudinally are lacking. Here, we leveraged advances in programmable-phage immunoprecipitation methodology to explore the modulation, or lack thereof, of autoantibody profiles, proteome-wide, in both health and disease. Using a custom set of over 730,000 human-derived peptides, we demonstrated that each individual, regardless of disease state, possesses a distinct and complex constellation of autoreactive antibodies. For each individual, the set of resulting autoreactivites constituted a unique immunological fingerprint, or "autoreactome," that was remarkably stable over years. Using the autoreactome as a primary output, we evaluated the relative effectiveness of various immunomodulatory therapies in altering autoantibody repertoires. We found that therapies targeting B cell maturation antigen (BCMA) profoundly altered an individual's autoreactome, while anti-CD19 and anti-CD20 therapies had minimal effects. These data both confirm that the autoreactome comprises autoantibodies secreted by plasma cells and strongly suggest that BCMA or other plasma cell-targeting therapies may be highly effective in treating currently refractory autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Aaron Bodansky
- Department of Pediatrics, Division of Critical Care, and
| | - David J.L. Yu
- Diabetes Center, School of Medicine, UCSF, San Francisco, California, USA
| | - Alysa Rallistan
- Department of Medicine, Division of Immunology and Rheumatology, and
| | - Muge Kalaycioglu
- Institute of Immunity, Transplantation, and Infection, Stanford University, Stanford, California, USA
| | - Jim Boonyaratanakornkit
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Damian J. Green
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Jordan Gauthier
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Cameron J. Turtle
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | | | | - Hannah Kortbawi
- Department of Biochemistry and Biophysics
- Medical Scientist Training Program, and
| | - Andrew F. Kung
- Department of Biochemistry and Biophysics
- Biological and Medical Informatics Program, UCSF, San Francisco, California, USA
| | | | - Chung-Yu Wang
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| | - Aditi Saxena
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| | - Kimberly de Dios
- Diabetes Center, School of Medicine, UCSF, San Francisco, California, USA
| | - Gianvito Masi
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Richard J. Nowak
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Hao Li
- Department of Biochemistry and Biophysics
| | - Valentina E. Diaz
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences
| | - Rowan Saloner
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences
| | - Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences
| | - Eva Q. Gontrum
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences
| | - Brandon Chan
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences
| | - Michael R. Wilson
- Weill Institute for Neurosciences, and
- Department of Neurology, UCSF, San Francisco, California, USA
| | - Paul J. Utz
- Department of Medicine, Division of Immunology and Rheumatology, and
| | - Joshua A. Hill
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Shaun W. Jackson
- Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark S. Anderson
- Diabetes Center, School of Medicine, UCSF, San Francisco, California, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Mara AB, Rawat K, King WT, Jakubzick CV. Natural antibodies drive type 2 immunity in response to damage-associated molecular patterns. JCI Insight 2024; 9:e177230. [PMID: 38470489 PMCID: PMC11141869 DOI: 10.1172/jci.insight.177230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
Allergic airway disease (AAD) is an example of type 2 inflammation that leads to chronic airway eosinophilia controlled by CD4 Th2 cells. Inflammation is reinforced by mast cells and basophils armed with allergen-specific IgE made by allergen-specific B2 B cells of the adaptive immune system. Little is known about how AAD is affected by innate B1 cells, which produce natural antibodies (NAbs) that facilitate apoptotic cell clearance and detect damage- and pathogen-associated molecular patterns (DAMPS and PAMPS). We used transgenic mice lacking either B cells or NAbs in distinct mouse models of AAD that require either DAMPS or PAMPS as the initial trigger for type 2 immunity. In a DAMP-induced allergic model, driven by alum and uric acid, mouse strains lacking B cells (CD19DTA), NAbs (IgHEL MD4), or all secreted antibodies (sIgm-/-Aid-/-) displayed a significant reduction in both eosinophilia and Th2 priming compared with WT or Aid-/- mice lacking only germinal center-dependent high-affinity class-switched antibodies. Replenishing B cell-deficient mice with either unimmunized B1 B cells or NAbs during sensitization restored eosinophilia, suggesting that NAbs are required for licensing antigen-presenting cells to prime type 2 immunity. Conversely, PAMP-dependent type 2 priming to house dust mite or Aspergillus was not dependent on NAbs. This study reveals an underappreciated role of B1 B cell-generated NAbs in selectively driving DAMP-induced type 2 immunity.
Collapse
|
5
|
Samodova D, Hoel A, Hansen TH, Clausen L, Telléus GK, Marti HP, Pedersen O, Støving RK, Deshmukh AS. Plasma proteome profiling reveals metabolic and immunologic differences between Anorexia Nervosa subtypes. Metabolism 2024; 152:155760. [PMID: 38104923 DOI: 10.1016/j.metabol.2023.155760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
AIMS/HYPOTHESIS Anorexia Nervosa (AN) is a severe psychiatric disorder of an unknown etiology with a crude mortality rate of about 5 % per decade, making it one of the deadliest of all psychiatric illnesses. AN is broadly classified into two main subtypes, restricting and binge/purging disorder. Despite extensive research efforts during several decades, the underlying pathophysiology of AN remains poorly understood. In this study, we aimed to identify novel protein biomarkers for AN by performing a proteomics analysis of fasting plasma samples from 78 females with AN (57 restrictive and 21 binge/purge type) and 70 healthy controls. METHODS Using state-of-the-art mass spectrometry-based proteomics technology in conjunction with an advanced bioinformatics pipeline, we quantify >500 plasma proteins. RESULTS Differential expression analysis and correlation of proteomics data with clinical variables led to identification of a panel of novel protein biomarkers with potential pathophysiological significance for AN. Our findings demonstrate evidence of a humoral immune system response, altered lipid metabolism and potential alteration of plasma cells in AN patients. Additionally, we stratified AN patients based on the quantified proteins and suggest a potential autoimmune nature in the restrictive subtype of AN. CONCLUSIONS/INTERPRETATION In summary, on top of biomarkers of AN subtypes, this study provides a comprehensive map of plasma proteins that constitute a resource for further studies of the pathophysiology of AN.
Collapse
Affiliation(s)
- Diana Samodova
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - August Hoel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tue Haldor Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Loa Clausen
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Gry Kjaersdam Telléus
- Unit for Psychiatric Research, Aalborg University Hospital, Aalborg, Denmark; Department of Communication and Psychology, Aalborg University, Aalborg, Denmark
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Clinical Metabolic Research, Gentofte University Hospital, Copenhagen, Denmark
| | - Rene Klinkby Støving
- Center for Eating Disorders and Research Unit for Medical Endocrinology, Odense University Hospital, Mental Health Services in the Region of Southern Denmark, Denmark; Clinical Institute, University of Southern Denmark, Department of Endocrinology and Center for Eating Disorders, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark.
| | - Atul Shahaji Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
6
|
Jimura T, Kurono Y, Hirano T, Kawabata M, Yamashita M. Application of phosphorylcholine derivative as mucosal adjuvant enhancing mucosal immune responses in the upper respiratory tract. Auris Nasus Larynx 2024; 51:221-229. [PMID: 37532644 DOI: 10.1016/j.anl.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE A phosphorylcholine (PC)-derivative with high binding ability (PCDB) was intranasally administered to mice with ovalbumin (OVA), and immune responses were investigated to determine whether PCDB has antigenicity and adjuvanticity. METHODS BALB/c mice were intranasally immunized with PCDB coupled with OVA, unbound PCDB plus OVA, cholera toxin (CT) plus OVA, OVA alone, and PCDB alone. Then, the production of OVA- and PC-specific antibodies in external secretions and serum, and the secretion of cytokines such as IL-4 and IFN-γ from splenic mononuclear cells by stimulation with PCDB and OVA were examined. Furthermore, the secretion of IL-12p40 from CD11c+ cells following stimulation with PCDB was observed to clarify the adjuvant effect of PCDB through TLR4. RESULTS Intranasal immunization with PCDB plus OVA increased OVA- and PC-specific IgA in external secretions and OVA- and PC-specific antibodies in the serum. The analysis of IgG subclasses specific to OVA and PC showed a higher production of IgG1 than IgG2, and the secretion of both IL-4 and IFN-γ was enhanced. However, IL-12p40 secretion from CD11c+ cells was increased and OVA-specific IgE production was not promoted by PCDB stimulation. CONCLUSION Intranasal administration of the protein antigen with PCDB enhanced immune responses specific to the mixed antigen and PC. Although PCDB acted to bias the immune response toward the Th2-type, antigen-specific IgE production did not increase. These findings suggest that PCDB has the potential to be a mucosal vaccine with both adjuvanticity and antigenicity without causing side effects due to type I allergy.
Collapse
Affiliation(s)
- Tomohiro Jimura
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yuichi Kurono
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Takashi Hirano
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan
| | - Masaki Kawabata
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Masaru Yamashita
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
7
|
Guntermann A, Marcus K, May C. The good or the bad: an overview of autoantibodies in traumatic spinal cord injury. Biol Chem 2024; 405:79-89. [PMID: 37786927 DOI: 10.1515/hsz-2023-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Infections remain the most common cause of death after traumatic spinal cord injury, likely due to a developing immune deficiency syndrome. This, together with a somewhat contradictory development of autoimmunity in many patients, are two major components of the maladaptive systemic immune response. Although the local non-resolving inflammation in the lesioned spinal cord may lead to an antibody formation against autoantigens of the injured spinal cord tissue, there are also natural (pre-existing) autoantibodies independent of the injury. The way in which these autoantibodies with different origins affect the neuronal and functional outcome of spinal cord-injured patients is still controversial.
Collapse
Affiliation(s)
- Annika Guntermann
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| | - Katrin Marcus
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| | - Caroline May
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| |
Collapse
|
8
|
Simon D, Erdő-Bonyár S, Böröcz K, Balázs N, Badawy A, Bajnok A, Nörenberg J, Serény-Litvai T, Várnagy Á, Kovács K, Hantosi E, Mezősi E, Németh P, Berki T. Altered Levels of Natural Autoantibodies against Heat Shock Proteins in Pregnant Women with Hashimoto's Thyroiditis. Int J Mol Sci 2024; 25:1423. [PMID: 38338701 PMCID: PMC10855109 DOI: 10.3390/ijms25031423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
The function of natural autoantibodies (nAAbs) in maintaining immunological tolerance has been comprehensively explained; however, their function in pregnant patients dealing with autoimmune diseases has not been thoroughly investigated. As Hashimoto's thyroiditis (HT) is the predominant organ-specific autoimmune condition of women of childbearing age, this study's objective was to evaluate IgM and IgG nAAbs targeting mitochondrial citrate synthase (CS) and heat shock proteins (Hsp60 and Hsp70) in women diagnosed with HT who were pregnant (HTP). Serum samples collected from HTP and healthy pregnant (HP) women in the first and third trimesters were tested using in-house-developed enzyme-linked immunosorbent assays (ELISAs). Our findings indicate the stability of nAAbs against CS and Hsps throughout the pregnancies of both healthy women and those with HT. However, during both trimesters, HTP patients displayed elevated levels of IgM isotype nAAbs against Hsp60 and Hsp70 compared to HP women, suggesting a regulatory role of IgM nAAbs during the pregnancies of patients with HT. Nonetheless, levels of IgG isotype nAAbs against Hsps were lower solely in the third trimester among HTP patients, resulting in a higher IgM/IgG ratio, which indicates their importance in alterations of the nAAb network during pregnancy in patients with HT.
Collapse
Affiliation(s)
- Diána Simon
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Szabina Erdő-Bonyár
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Katalin Böröcz
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Noémi Balázs
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Ahmed Badawy
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Anna Bajnok
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Jasper Nörenberg
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Tímea Serény-Litvai
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Ákos Várnagy
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Kálmán Kovács
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Eszter Hantosi
- Department of Obstetrics and Gynecology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Emese Mezősi
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- First Department of Internal Medicine, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
9
|
Ottens K, Schneider J, Satterthwaite AB. B-1a Cells, but Not Marginal Zone B Cells, Are Implicated in the Accumulation of Autoreactive Plasma Cells in Lyn-/- Mice. Immunohorizons 2024; 8:47-56. [PMID: 38189742 PMCID: PMC10835670 DOI: 10.4049/immunohorizons.2300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
Mice deficient in Lyn, a tyrosine kinase that limits B cell activation, develop a lupus-like autoimmune disease characterized by the accumulation of splenic plasma cells and the production of autoantibodies. Lyn-/- mice have reduced numbers of marginal zone (MZ) B cells, a B cell subset that is enriched in autoreactivity and prone to plasma cell differentiation. We hypothesized that this is due to unchecked terminal differentiation of this potentially pathogenic B cell subpopulation. However, impairing MZ B cell development in Lyn-/- mice did not reduce plasma cell accumulation or autoantibodies, and preventing plasma cell differentiation did not restore MZ B cell numbers. Instead, Lyn-/- mice accumulated B-1a cells when plasma cell differentiation was impaired. Similar to MZ B cells, B-1a cells tend to be polyreactive or weakly autoreactive and are primed for terminal differentiation. Our results implicate B-1a cells, but not MZ B cells, as contributors to the autoreactive plasma cell pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
10
|
Bodansky A, Yu DJL, Rallistan A, Kalaycioglu M, Boonyaratanakornkit J, Green DJ, Gauthier J, Turtle CJ, Zorn K, O’Donovan B, Mandel-Brehm C, Asaki J, Kortbawi H, Kung AF, Rackaityte E, Wang CY, Saxena A, de Dios K, Masi G, Nowak RJ, O’Connor KC, Li H, Diaz VE, Casaletto KB, Gontrum EQ, Chan B, Kramer JH, Wilson MR, Utz PJ, Hill JA, Jackson SW, Anderson MS, DeRisi JL. Unveiling the autoreactome: Proteome-wide immunological fingerprints reveal the promise of plasma cell depleting therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.19.23300188. [PMID: 38196603 PMCID: PMC10775319 DOI: 10.1101/2023.12.19.23300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The prevalence and burden of autoimmune and autoantibody mediated disease is increasing worldwide, yet most disease etiologies remain unclear. Despite numerous new targeted immunomodulatory therapies, comprehensive approaches to apply and evaluate the effects of these treatments longitudinally are lacking. Here, we leverage advances in programmable-phage immunoprecipitation (PhIP-Seq) methodology to explore the modulation, or lack thereof, of proteome-wide autoantibody profiles in both health and disease. We demonstrate that each individual, regardless of disease state, possesses a distinct set of autoreactivities constituting a unique immunological fingerprint, or "autoreactome", that is remarkably stable over years. In addition to uncovering important new biology, the autoreactome can be used to better evaluate the relative effectiveness of various therapies in altering autoantibody repertoires. We find that therapies targeting B-Cell Maturation Antigen (BCMA) profoundly alter an individual's autoreactome, while anti-CD19 and CD-20 therapies have minimal effects, strongly suggesting a rationale for BCMA or other plasma cell targeted therapies in autoantibody mediated diseases.
Collapse
Affiliation(s)
- Aaron Bodansky
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA
| | - David JL Yu
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA
| | - Alysa Rallistan
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305
| | - Muge Kalaycioglu
- Institute of Immunity, Transplantation, and Infection (ITI), Stanford University, Stanford, CA 94305
| | - Jim Boonyaratanakornkit
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington School of Medicine, Seattle, WA, USA
| | - Damian J. Green
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington School of Medicine, Seattle, WA, USA
| | - Jordan Gauthier
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington School of Medicine, Seattle, WA, USA
| | - Cameron J. Turtle
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington School of Medicine, Seattle, WA, USA
| | - Kelsey Zorn
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Brian O’Donovan
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - James Asaki
- Biomedical Sciences Program, University of California San Francisco, San Francisco, CA
| | - Hannah Kortbawi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA
| | - Andrew F. Kung
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
- Biological and Medical Informatics Program, University of California San Francisco, San Francisco, CA
| | - Elze Rackaityte
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | | | | | - Kimberly de Dios
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA
| | - Gianvito Masi
- Department of Neurology, Yale School of Medicine, New Haven, CT
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT
| | | | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Valentina E. Diaz
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Eva Q. Gontrum
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Brandon Chan
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Michael R. Wilson
- Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA
- Department of Neurology, University of California San Francisco; San Francisco, CA
| | - Paul J. Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305
| | - Joshua A. Hill
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington School of Medicine, Seattle, WA, USA
| | - Shaun W. Jackson
- Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
- Seattle Children’s Research Institute, Seattle, WA
- Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Mark S. Anderson
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub SF, San Francisco, CA
| |
Collapse
|
11
|
Oskam N, den Boer MA, Lukassen MV, Ooijevaar-de Heer P, Veth TS, van Mierlo G, Lai SH, Derksen NIL, Yin V, Streutker M, Franc V, Šiborová M, Damen MJA, Kos D, Barendregt A, Bondt A, van Goudoever JB, de Haas CJC, Aerts PC, Muts RM, Rooijakkers SHM, Vidarsson G, Rispens T, Heck AJR. CD5L is a canonical component of circulatory IgM. Proc Natl Acad Sci U S A 2023; 120:e2311265120. [PMID: 38055740 PMCID: PMC10723121 DOI: 10.1073/pnas.2311265120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
Immunoglobulin M (IgM) is an evolutionary conserved key component of humoral immunity, and the first antibody isotype to emerge during an immune response. IgM is a large (1 MDa), multimeric protein, for which both hexameric and pentameric structures have been described, the latter additionally containing a joining (J) chain. Using a combination of single-particle mass spectrometry and mass photometry, proteomics, and immunochemical assays, we here demonstrate that circulatory (serum) IgM exclusively exists as a complex of J-chain-containing pentamers covalently bound to the small (36 kDa) protein CD5 antigen-like (CD5L, also called apoptosis inhibitor of macrophage). In sharp contrast, secretory IgM in saliva and milk is principally devoid of CD5L. Unlike IgM itself, CD5L is not produced by B cells, implying that it associates with IgM in the extracellular space. We demonstrate that CD5L integration has functional implications, i.e., it diminishes IgM binding to two of its receptors, the FcαµR and the polymeric Immunoglobulin receptor. On the other hand, binding to FcµR as well as complement activation via C1q seem unaffected by CD5L integration. Taken together, we redefine the composition of circulatory IgM as a J-chain containing pentamer, always in complex with CD5L.
Collapse
Affiliation(s)
- Nienke Oskam
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Maurits A. den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Marie V. Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Tim S. Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Gerard van Mierlo
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Szu-Hsueh Lai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Ninotska I. L. Derksen
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Marij Streutker
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Marta Šiborová
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Mirjam J. A. Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Dorien Kos
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Johannes B. van Goudoever
- Amsterdam University Medical Center, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam1105 AZ, the Netherlands
| | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Piet C. Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Remy M. Muts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Gestur Vidarsson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| |
Collapse
|
12
|
Atisha-Fregoso Y, Diamond B. Decoding B cell receptors in autoimmune diseases. Ann Rheum Dis 2023; 82:1369-1370. [PMID: 37591659 DOI: 10.1136/ard-2023-224779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Yemil Atisha-Fregoso
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| |
Collapse
|
13
|
Qin R, Wu H, Guan H, Tang C, Zheng Z, Deng C, Chen C, Zou Q, Lu L, Ma K. Anti-phospholipid autoantibodies in human diseases. Clin Immunol 2023; 256:109803. [PMID: 37821073 DOI: 10.1016/j.clim.2023.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Anti-phospholipid autoantibodies are a group of antibodies that can specifically bind to anionic phospholipids and phospholipid protein complexes. Recent studies have reported elevated serum anti-phospholipid autoantibody levels in patients with antiphospholipid syndrome, systemic lupus erythematosus, rheumatoid arthritis, metabolic disorders, malaria, SARS-CoV-2 infection, obstetric diseases and cardiovascular diseases. However, the underlying mechanisms of anti-phospholipid autoantibodies in disease pathogenesis remain largely unclear. Emerging evidence indicate that anti-phospholipid autoantibodies modulate NETs formation, monocyte activation, blockade of apoptotic cell phagocytosis in macrophages, complement activation, dendritic cell activation and vascular endothelial cell activation. Herein, we provide an update on recent advances in elucidating the effector mechanisms of anti-phospholipid autoantibodies in the pathogenesis of various diseases, which may facilitate the development of potential therapeutic targets for the treatment of anti-phospholipid autoantibody-related disorders.
Collapse
Affiliation(s)
- Rencai Qin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Haiqi Wu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Hui Guan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Chun Tang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Zhihua Zheng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Chong Deng
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China
| | - Chengshun Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qinghua Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China.
| | - Kongyang Ma
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
14
|
Szinger D, Berki T, Németh P, Erdo-Bonyar S, Simon D, Drenjančević I, Samardzic S, Zelić M, Sikora M, Požgain A, Böröcz K. Following Natural Autoantibodies: Further Immunoserological Evidence Regarding Their Silent Plasticity and Engagement in Immune Activation. Int J Mol Sci 2023; 24:14961. [PMID: 37834409 PMCID: PMC10573785 DOI: 10.3390/ijms241914961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Contradictory reports are available on vaccine-associated hyperstimulation of the immune system, provoking the formation of pathological autoantibodies. Despite being interconnected within the same network, the role of the quieter, yet important non-pathological and natural autoantibodies (nAAbs) is less defined. We hypothesize that upon a prompt immunological trigger, physiological nAAbs also exhibit a moderate plasticity. We investigated their inducibility through aged and recent antigenic triggers. Anti-viral antibodies (anti-MMR n = 1739 and anti-SARS-CoV-2 IgG n = 330) and nAAbs (anti-citrate synthase IgG, IgM n = 1739) were measured by in-house and commercial ELISAs using Croatian (Osijek) anonymous samples with documented vaccination backgrounds. The results were subsequently compared for statistical evaluation. Interestingly, the IgM isotype nAAb showed a statistically significant connection with anti-MMR IgG seropositivity (p < 0.001 in all cases), while IgG isotype nAAb levels were elevated in association with anti-SARS CoV-2 specific seropositivity (p = 0.019) and in heterogeneous vaccine regimen recipients (unvaccinated controls vector/mRNA vaccines p = 0.002). Increasing evidence supports the interplay between immune activation and the dynamic expansion of nAAbs. Consequently, further questions may emerge regarding the ability of nAAbs silently shaping the effectiveness of immunization. We suggest re-evaluating the impact of nAAbs on the complex functioning of the immunological network.
Collapse
Affiliation(s)
- David Szinger
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Timea Berki
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Diana Simon
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Scientific Centre for Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Samardzic
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
| | - Marija Zelić
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
| | - Magdalena Sikora
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
| | - Arlen Požgain
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
- Department of Microbiology, Parasitology, and Clinical Laboratory Diagnostics, Medical Faculty of Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Katalin Böröcz
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| |
Collapse
|
15
|
Trier NH, Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. Int J Mol Sci 2023; 24:13609. [PMID: 37686415 PMCID: PMC10487534 DOI: 10.3390/ijms241713609] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Autoimmunity is defined by the presence of antibodies and/or T cells directed against self-components. Although of unknown etiology, autoimmunity commonly is associated with environmental factors such as infections, which have been reported to increase the risk of developing autoimmune diseases. Occasionally, similarities between infectious non-self and self-tissue antigens may contribute to immunological cross-reactivity in autoimmune diseases. These reactions may be interpreted as molecular mimicry, which describes cross-reactivity between foreign pathogens and self-antigens that have been reported to cause tissue damage and to contribute to the development of autoimmunity. By focusing on the nature of antibodies, cross-reactivity in general, and antibody-antigen interactions, this review aims to characterize the nature of potential cross-reactive immune reactions between infectious non-self and self-tissue antigens which may be associated with autoimmunity but may not actually be the cause of disease onset.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
16
|
Sánchez-Vera I, Escudero E, Muñoz Ú, Sádaba MC. IgM to phosphatidylcholine in multiple sclerosis patients: from the diagnosis to the treatment. Ther Adv Neurol Disord 2023; 16:17562864231189919. [PMID: 37599706 PMCID: PMC10437209 DOI: 10.1177/17562864231189919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system. It affects young people, and a considerable percentage of patients need the help of a wheelchair in 15 years of evolution. Currently, there is not a specific technique for the diagnosis of MS. The detection of oligoclonal IgG bands (OIgGBs) is the most sensitive assay for it, but it is not standardizable, only reference laboratories develop it, and uses cerebrospinal fluid. To obtain this sample, a lumbar puncture is necessary, an invasive proceeding with important side effects. It is important to develop and implement standard assays to obtain a rapid diagnosis because the earlier the treatment, the better the evolution of the disease. There are numerous modifying disease therapies, which delay the progression of the disease, but they have important side effects, and a considerable percentage of patients give up the treatment. In addition, around 40% of MS patients do not respond to the therapy and the disease progresses. Numerous researches have been focused on the characterization of predictive biomarkers of response to treatment, in order to help physicians to decide when to change to a second-line treatment, and then the best therapeutic option. Here, we review the new biomarkers for the diagnosis and response to treatment in MS. We draw attention in a new assay, the detection of serum IgM to phosphatidylcholine, that showed a similar sensitivity as OIgGBs and predicts the response to disease modifying treatments.
Collapse
Affiliation(s)
- Isabel Sánchez-Vera
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Esther Escudero
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Úrsula Muñoz
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María C. Sádaba
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (INMA), Universidad San Pablo-CEU, CEU Universities, Crta Boadilla del Monte Km 5,3, Madrid 28668, Spain
| |
Collapse
|
17
|
Piédrola I, Martínez S, Gradillas A, Villaseñor A, Alonso-Herranz V, Sánchez-Vera I, Escudero E, Martín-Antoniano IA, Varona JF, Ruiz A, Castellano JM, Muñoz Ú, Sádaba MC. Deficiency in the production of antibodies to lipids correlates with increased lipid metabolism in severe COVID-19 patients. Front Immunol 2023; 14:1188786. [PMID: 37426663 PMCID: PMC10327431 DOI: 10.3389/fimmu.2023.1188786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Background Antibodies to lipids are part of the first line of defense against microorganisms and regulate the pro/anti-inflammatory balance. Viruses modulate cellular lipid metabolism to enhance their replication, and some of these metabolites are proinflammatory. We hypothesized that antibodies to lipids would play a main role of in the defense against SARS-CoV-2 and thus, they would also avoid the hyperinflammation, a main problem in severe condition patients. Methods Serum samples from COVID-19 patients with mild and severe course, and control group were included. IgG and IgM to different glycerophospholipids and sphingolipids were analyzed using a high-sensitive ELISA developed in our laboratory. A lipidomic approach for studying lipid metabolism was performed using ultra-high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). Results Mild and severe COVID-19 patients had higher levels of IgM to glycerophosphocholines than control group. Mild COVID-19 patients showed higher levels of IgM to glycerophosphoinositol, glycerophosphoserine and sulfatides than control group and mild cases. 82.5% of mild COVID-19 patients showed IgM to glycerophosphoinositol or glycerophosphocholines plus sulfatides or glycerophosphoserines. Only 35% of severe cases and 27.5% of control group were positive for IgM to these lipids. Lipidomic analysis identify a total of 196 lipids, including 172 glycerophospholipids and 24 sphingomyelins. Increased levels of lipid subclasses belonging to lysoglycerophospholipids, ether and/or vinyl-ether-linked glycerophospholipids, and sphingomyelins were observed in severe COVID-19 patients, when compared with those of mild cases and control group. Conclusion Antibodies to lipids are essential for defense against SARS-CoV-2. Patients with low levels of anti-lipid antibodies have an elevated inflammatory response mediated by lysoglycerophospholipids. These findings provide novel prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ignacio Piédrola
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Sara Martínez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Alma Villaseñor
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Vanesa Alonso-Herranz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Isabel Sánchez-Vera
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Esther Escudero
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Isabel A. Martín-Antoniano
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jose Felipe Varona
- Servicio de Medicina Interna, Hospital Universitario Hospitales de Madrid (HM), Boadilla del Monte, Madrid, Spain
| | - Andrés Ruiz
- Servicio de Medicina Interna, Hospital Universitario Hospitales de Madrid (HM), Boadilla del Monte, Madrid, Spain
| | - Jose María Castellano
- Servicio de Medicina Interna, Hospital Universitario Hospitales de Madrid (HM), Boadilla del Monte, Madrid, Spain
| | - Úrsula Muñoz
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - María C. Sádaba
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
18
|
Wang M, Zhou M, Tan Q, Yu L, Dong C, Liang R, Liu W, Zhang Y, Li M, Nie X, Jing T, Chen W. Triazine herbicides exposure, natural immunoglobulin M antibodies, and fasting plasma glucose changes: Association and mediation analyses in general Chinese urban adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121833. [PMID: 37201570 DOI: 10.1016/j.envpol.2023.121833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
The effects of triazine herbicides on glucose metabolism remain unclear. In this study, we aimed to assess the associations between serum triazine herbicides and glycemia-related risk indicators in general adults, and to evaluate the mediating role of natural immunoglobulin M antibodies (IgM) in the above associations among uninfected participants. We measured the concentrations of atrazine, cyanazine, and IgM in serum, as well as fasting plasma glucose (FPG), and fasting plasma insulin in 4423 adult participants from the Wuhan-Zhuhai cohort baseline population, enrolled in 2011-2012. Generalized linear models were used to evaluate the associations of serum triazine herbicides with glycemia-related risk indicators, and mediation analyses were performed to evaluate the mediating role of serum IgM in the above associations. The median levels of serum atrazine and cyanazine were 0.0237 μg/L and 0.0786 μg/L, respectively. Our study found significant positive associations of serum atrazine, cyanazine, and Σtriazine with FPG levels, risk of impaired fasting glucose (IFG), abnormal glucose regulation (AGR), and type 2 diabetes (T2D). Additionally, serum cyanazine and Σtriazine were found to be significant positive associated with the homeostatic model assessment of insulin resistance (HOMA-IR) levels. Significant negative linear relationships were observed in associations of serum IgM with serum triazine herbicides, FPG, HOMA-IR levels, the prevalence of T2D, and AGR (P < 0.05). Furthermore, we observed a significant mediating role by IgM in the associations of serum triazine herbicides with FPG, HOMA-IR, and AGR, with the proportions ranging from 2.96% to 7.71%. To ensure the stability of our findings, we conducted sensitivity analyses in normoglycemic participants and found that the association of serum IgM with FPG and the mediating role by IgM remained stable. Our results suggest that triazine herbicides exposure is positively associated with abnormal glucose metabolism, and decreasing serum IgM may partly mediate these associations.
Collapse
Affiliation(s)
- Mengyi Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qiyou Tan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chaoqian Dong
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruyi Liang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yongfang Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Minjing Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - XiuQuan Nie
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tao Jing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
19
|
Hassan S, Habashy W, Ghoname M, Elnaggar A. Blood hematology and biochemical of four laying hen strains exposed to acute heat stress. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:675-686. [PMID: 36853273 DOI: 10.1007/s00484-023-02445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/10/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
This study is aimed at defining physiological responses to heat stress (HS) in four different lines to better understand the underlying mechanisms of various responses in these genotypes when exposed to heat for a short period. At the age of 30 weeks, 176 laying hens (44 each from the Fayoumi, Golden Sabahia, White Leghorn, and Lohman Brown) were allotted to 2 groups (thermoneutral temperature (26.0 ± 1 °C) and HS (35 ± 1 °C) with relative humidity 55 ± 5% for 6 h/day). Blood samples were collected after 6 h of heat. According to the findings of this study, acute HS increased the concentration of LH in hens by 20.2% while decreasing the concentration of FSH by 4.24. Genotype was found to have a significant effect on blood hematology and most blood biochemical. Significant differences were found between heat stress and genotype in most of the blood parameters. Golden sabahia laying hens had significantly higher WBC, IgY, and LH levels than other groups under HS. The findings of the current study suggested that Lohman Brown was less tolerant to acute HS than another genotype.
Collapse
Affiliation(s)
- Saber Hassan
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, 22511, Egypt
| | - Walid Habashy
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, 22511, Egypt.
| | - Mennatallah Ghoname
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, 22511, Egypt
| | - Asmaa Elnaggar
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
20
|
Cunningham KY, Hur B, Gupta VK, Arment CA, Wright KA, Mason TG, Peterson LS, Bekele DI, Schaffer DE, Bailey ML, Delger KE, Crowson CS, Myasoedova E, Zeng H, Rodriguez M, Weyand CM, Davis JM, Sung J. Patients with ACPA-positive and ACPA-negative rheumatoid arthritis show different serological autoantibody repertoires and autoantibody associations with disease activity. Sci Rep 2023; 13:5360. [PMID: 37005480 PMCID: PMC10066987 DOI: 10.1038/s41598-023-32428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
Patients with rheumatoid arthritis (RA) can test either positive or negative for circulating anti-citrullinated protein antibodies (ACPA) and are thereby categorized as ACPA-positive (ACPA+) or ACPA-negative (ACPA-), respectively. In this study, we aimed to elucidate a broader range of serological autoantibodies that could further explain immunological differences between patients with ACPA+ RA and ACPA- RA. On serum collected from adult patients with ACPA+ RA (n = 32), ACPA- RA (n = 30), and matched healthy controls (n = 30), we used a highly multiplex autoantibody profiling assay to screen for over 1600 IgG autoantibodies that target full-length, correctly folded, native human proteins. We identified differences in serum autoantibodies between patients with ACPA+ RA and ACPA- RA compared with healthy controls. Specifically, we found 22 and 19 autoantibodies with significantly higher abundances in ACPA+ RA patients and ACPA- RA patients, respectively. Among these two sets of autoantibodies, only one autoantibody (anti-GTF2A2) was common in both comparisons; this provides further evidence of immunological differences between these two RA subgroups despite sharing similar symptoms. On the other hand, we identified 30 and 25 autoantibodies with lower abundances in ACPA+ RA and ACPA- RA, respectively, of which 8 autoantibodies were common in both comparisons; we report for the first time that the depletion of certain autoantibodies may be linked to this autoimmune disease. Functional enrichment analysis of the protein antigens targeted by these autoantibodies showed an over-representation of a range of essential biological processes, including programmed cell death, metabolism, and signal transduction. Lastly, we found that autoantibodies correlate with Clinical Disease Activity Index, but associate differently depending on patients' ACPA status. In all, we present candidate autoantibody biomarker signatures associated with ACPA status and disease activity in RA, providing a promising avenue for patient stratification and diagnostics.
Collapse
Affiliation(s)
- Kevin Y Cunningham
- Bioinformatics and Computational Biology Program, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Benjamin Hur
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vinod K Gupta
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Courtney A Arment
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kerry A Wright
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Thomas G Mason
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lynne S Peterson
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Delamo I Bekele
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Daniel E Schaffer
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Marissa L Bailey
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kara E Delger
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Cynthia S Crowson
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elena Myasoedova
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Cornelia M Weyand
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - John M Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
21
|
Erdei E, Zhou X, Shuey C, Ass'ad N, Page K, Gore B, Zhu C, Kanda D, Luo L, Sood A, Zychowski KE. Serum autoantibodies and exploratory molecular pathways in rural miners: A pilot study. J Transl Autoimmun 2023; 6:100197. [PMID: 36942097 PMCID: PMC10023988 DOI: 10.1016/j.jtauto.2023.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction The Southwestern United States (SWUS) has an extensive history of coal and metal mining, including uranium (U) mining. Lung diseases, including but not limited to, lung cancer and pulmonary fibrosis, have been studied extensively in miners due to occupational, dust-related exposures. However, high-throughput autoimmune biomarkers are largely understudied in miners, despite the fact that ore miners, such as U-miners, are at an increased risk for the development of autoimmune diseases such as systemic sclerosis and systemic lupus erythematosus (SLE). Additionally, there are current gaps in knowledge regarding which signaling pathways may play a role in occupational exposure-associated autoimmunity. Methods Most current and former miners in the SWUS live close to their previous workplaces, in remote areas, with limited access to healthcare. In this pilot study, by leveraging a mobile clinical platform for patient care and clinical outreach, we recruited 44 miners who self-identified as either U (n = 10) or non-U miners (n = 34) and received health screenings. Serum IgG and IgM autoantibodies against 128 antigens were assessed using a high-throughput molecular technique, as a preliminary health screening opportunity. Results Even when adjusting for age as a covariate, there was a significant (p < 0.05) association between self-reported U-mining exposure and biomarkers including IgM alpha-actinin, histones H2B, and H4, myeloperoxidase (MPO) and myelin basic protein. However, adjusting for age did not result in significant associations for IgG autoantibody production in U-miners. Bioinformatic pathway analysis revealed several altered signaling pathways between IgM and IgG autoantibodies among both U and non-U miners. Conclusions Further research is warranted regarding the mechanistic connection between U-exposure and autoantibody development, especially regarding histone-related alterations and IgM autoantibody production.
Collapse
Affiliation(s)
- Esther Erdei
- College of Pharmacy, University of New Mexico- Health Sciences Center, 905 Vassar Drive NE, Albuquerque, NM, 87106, USA
| | - Xixi Zhou
- College of Pharmacy, University of New Mexico- Health Sciences Center, 905 Vassar Drive NE, Albuquerque, NM, 87106, USA
| | - Chris Shuey
- Southwest Research and Information Center, 105 Stanford Drive SE, Albuquerque, NM, 87106, USA
| | - Nour Ass'ad
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Kimberly Page
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Bobbi Gore
- Miners' Colfax Medical Center, 203 Hospital Drive, Raton, NM, 87740, USA
| | - Chengsong Zhu
- Department of Immunology and Microarray Core, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Deborah Kanda
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Li Luo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Akshay Sood
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Miners' Colfax Medical Center, 203 Hospital Drive, Raton, NM, 87740, USA
| | - Katherine E. Zychowski
- College of Nursing, University of New Mexico- Health Sciences Center, 2502 Marble Ave NE, Albuquerque, NM, 87131, USA
| |
Collapse
|
22
|
Ferdinandov D, Kostov V, Hadzhieva M, Shivarov V, Petrov P, Bussarsky A, Pashov AD. Reactivity Graph Yields Interpretable IgM Repertoire Signatures as Potential Tumor Biomarkers. Int J Mol Sci 2023; 24:ijms24032597. [PMID: 36768923 PMCID: PMC9917253 DOI: 10.3390/ijms24032597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Combining adaptive and innate immunity induction modes, the repertoire of immunoglobulin M (IgM) can reflect changes in the internal environment including malignancies. Previously, it was shown that a mimotope library reflecting the public IgM repertoire of healthy donors (IgM IgOme) can be mined for efficient probes of tumor biomarker antibody reactivities. To better explore the interpretability of this approach for IgM, solid tumor-related profiles of IgM reactivities to linear epitopes of actual tumor antigens and viral epitopes were studied. The probes were designed as oriented planar microarrays of 4526 peptide sequences (as overlapping 15-mers) derived from 24 tumor-associated antigens and 209 cancer-related B cell epitopes from 30 viral antigens. The IgM reactivity in sera from 21 patients with glioblastoma multiforme, brain metastases of other tumors, and non-tumor-bearing neurosurgery patients was thus probed in a proof-of-principle study. A graph representation of the binding data was developed, which mapped the cross-reactivity of the mixture of IgM (poly)specificities, delineating different antibody footprints in the features of the graph-neighborhoods and cliques. The reactivity graph mapped the major features of the IgM repertoire such as the magnitude of the reactivity (titer) and major cross-reactivities, which correlated with blood group reactivity, non-self recognition, and even idiotypic specificities. A correlation between an aspect of this image of the IgM IgOme, namely, small cliques reflecting rare self-reactivities and the capacity of subsets of the epitopes to separate the diagnostic groups studied was found. In this way, the graph representation helped the feature selection in its filtering step and provided reduced feature sets, which, after recursive feature elimination, produced a classifier containing 51 peptide reactivities separating the three diagnostic groups with an unexpected efficiency. Thus, IgM IgOme approaches to repertoire studies is greatly augmented when self/viral antigens are used and the data are represented as a reactivity graph. This approach is most general, and if it is applicable to tumors in immunologically privileged sites, it can be applied to any solid tumors, for instance, breast or lung cancer.
Collapse
Affiliation(s)
- Dilyan Ferdinandov
- Clinic of Neurosurgery, St. Ivan Rilski University Hospital, 1431 Sofia, Bulgaria
| | - Viktor Kostov
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Maya Hadzhieva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Velizar Shivarov
- Department of Experimental Research, Medical University—Pleven, 5800 Pleven, Bulgaria
| | - Peter Petrov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Assen Bussarsky
- Clinic of Neurosurgery, St. Ivan Rilski University Hospital, 1431 Sofia, Bulgaria
| | - Anastas Dimitrov Pashov
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
23
|
TLR7 and IgM: Dangerous Partners in Autoimmunity. Antibodies (Basel) 2023; 12:antib12010004. [PMID: 36648888 PMCID: PMC9844493 DOI: 10.3390/antib12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The B cell antigen receptor (BCR)-repertoire is capable of recognizing a nearly unlimited number of antigens. Inevitably, the random nature of antibody gene segment rearrangement, needed in order to provide mature B cells, will generate autoreactive specificities. Once tolerance mechanisms fail to block the activation and differentiation of autoreactive B cells, harmful autoantibodies may get secreted establishing autoimmune diseases. Besides the hallmark of autoimmunity, namely IgG autoantibodies, IgM autoantibodies are also found in many autoimmune diseases. In addition to pathogenic functions of secreted IgM the IgM-BCR expressing B cell might be the initial check-point where, in conjunction with innate receptor signals, B cell mediated autoimmunity starts it fateful course. Recently, pentameric IgM autoantibodies have been shown to contribute significantly to the pathogenesis of various autoimmune diseases, such as rheumatoid arthritis (RA), autoimmune hemolytic anemia (AIHA), pemphigus or autoimmune neuropathy. Further, recent studies suggest differences in the recognition of autoantigen by IgG and IgM autoantibodies, or propose a central role of anti-ACE2-IgM autoantibodies in severe COVID-19. However, exact mechanisms still remain to be uncovered in detail. This article focuses on summarizing recent findings regarding the importance of autoreactive IgM in establishing autoimmune diseases.
Collapse
|
24
|
Cascalho M, Platt JL. TNFRSF13B in B cell responses to organ transplantation. Hum Immunol 2023; 84:27-33. [PMID: 36333165 PMCID: PMC10429825 DOI: 10.1016/j.humimm.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
Antibodies directed against organ transplants are thought to pose the most vexing hurdle to enduring function and survival of the transplants, particularly organ xenotransplants, and accordingly basic and clinical investigation has focused on elucidating the specificity and pathogenicity of graft-specific antibodies. While much has been learned about these matters, far less is known about the B cells producing graft-specific antibodies and why these antibodies appear to injure some grafts but not others. With the goal of addressing those questions, we have investigated the properties of tumor necrosis factor receptor super family-13B (TNFRSF13B), which regulates various aspects of B cell responses. A full understanding of the functions of TNFRSF13B however is hindered by extreme polymorphism and by diversity of interactions of the protein. Nevertheless, TNFRSF13B variants have been found to exert distinct impact on natural and elicited antibody responses and host defense and mutations of TNFRSF13B have been found to influence the propensity for development of antibody-mediated rejection of organ transplants. Because B cell responses potentially limit application of xenotransplantation, understanding how TNFRSF13B diversity and TNFRSF13B variants govern immunity in xenotransplantation could inspire development of novel therapeutics that could in turn accelerate clinical implementation of xenotransplantation.
Collapse
Affiliation(s)
- Marilia Cascalho
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States.
| | - Jeffrey L Platt
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
25
|
Mora VP, Loaiza RA, Soto JA, Bohmwald K, Kalergis AM. Involvement of trained immunity during autoimmune responses. J Autoimmun 2022:102956. [DOI: 10.1016/j.jaut.2022.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
|
26
|
Rodriguez-Zhurbenko N, Quach TD, Rothstein TL, Hernandez AM. Human B-1 cells are important contributors to the naturally-occurring IgM pool against the tumor-associated ganglioside Neu5GcGM3. Front Immunol 2022; 13:1061651. [PMID: 36524112 PMCID: PMC9747505 DOI: 10.3389/fimmu.2022.1061651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Only few studies have described the anti-tumor properties of natural antibodies (NAbs). In particular, natural IgM have been linked to cancer immunosurveillance due to its preferential binding to tumor-specific glycolipids and carbohydrate structures. Neu5GcGM3 ganglioside is a sialic acid-containing glycosphingolipid that has been considered an attractive target for cancer immunotherapy, since it is not naturally expressed in healthy human tissues and it is overexpressed in several tumors. Screening of immortalized mouse peritoneal-derived hybridomas showed that peritoneal B-1 cells contain anti-Neu5GcGM3 antibodies on its repertoire, establishing a link between B-1 cells, NAbs and anti-tumor immunity. Previously, we described the existence of naturally-occurring anti-Neu5GcGM3 antibodies with anti-tumor properties in healthy young humans. Interestingly, anti-Neu5GcGM3 antibodies level decreases with age and is almost absent in non-small cell lung cancer patients. Although anti-Neu5GcGM3 antibodies may be clinically relevant, the identity of the human B cells participating in this anti-tumor antibody response is unknown. In this work, we found an increased percentage of circulating human B-1 cells in healthy individuals with anti-Neu5GcGM3 IgM antibodies. Furthermore, anti-Neu5GcGM3 IgMs were generated predominantly by human B-1 cells and the antibodies secreted by these B-1 lymphocytes also recognized Neu5GcGM3-positive tumor cells. These data suggest a protective role for human B-1 cells against malignant transformation through the production of NAbs reactive to tumor-specific antigens such as Neu5GcGM3 ganglioside.
Collapse
Affiliation(s)
- Nely Rodriguez-Zhurbenko
- Immunology and Immunotherapy Division, Center of Molecular Immunology, Havana, Cuba,*Correspondence: Nely Rodriguez-Zhurbenko,
| | - Tam D. Quach
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Thomas L. Rothstein
- Center for Immunobiology and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Michigan, MI, United States
| | - Ana M. Hernandez
- Biochemistry Department, Faculty of Biology, Havana University, Havana, Cuba
| |
Collapse
|
27
|
Lee T, Kim W, Park J, Lee G. Hemolysis-Inspired, Highly Sensitive, Label-Free IgM Detection Using Erythrocyte Membrane-Functionalized Nanomechanical Resonators. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7738. [PMID: 36363329 PMCID: PMC9654754 DOI: 10.3390/ma15217738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Immunoglobulin detection is important for immunoassays, such as diagnosing infectious diseases, evaluating immune status, and determining neutralizing antibody concentrations. However, since most immunoassays rely on labeling methods, there are limitations on determining the limit of detection (LOD) of biosensors. In addition, although the antigen must be immobilized via complex chemical treatment, it is difficult to precisely control the immobilization concentration. This reduces the reproducibility of the biosensor. In this study, we propose a label-free method for antibody detection using microcantilever-based nanomechanical resonators functionalized with erythrocyte membrane (EM). This label-free method focuses on the phenomenon of antibody binding to oligosaccharides (blood type antigen) on the surface of the erythrocyte. We established a method for extracting the EM from erythrocytes and fabricated an EM-functionalized microcantilever (MC), termed EMMC, by surface-coating EM layers on the MC. When the EMMC was treated with immunoglobulin M (IgM), the bioassay was successfully performed in the linear range from 2.2 pM to 22 nM, and the LOD was 2.0 pM. The EMMC also exhibited excellent selectivity compared to other biomolecules such as serum albumin, γ-globulin, and IgM with different paratopes. These results demonstrate that EMMC-based nanotechnology may be utilized in criminal investigations to identify blood types with minimal amounts of blood or to evaluate individual immunity through virus-neutralizing antibody detection.
Collapse
Affiliation(s)
- Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Korea
| | - Woong Kim
- Department of Mechanical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Korea
| |
Collapse
|
28
|
Folci M, Ramponi G, Solitano V, Brunetta E. Serum ANCA as Disease Biomarkers: Clinical Implications Beyond Vasculitis. Clin Rev Allergy Immunol 2022; 63:107-123. [PMID: 34460071 DOI: 10.1007/s12016-021-08887-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 01/13/2023]
Abstract
Usually associated with autoimmune diseases, anti-neutrophil cytoplasmic antibodies are also detected in other conditions, such as infections, malignancies, and after intake of certain drugs. Even if the mechanisms of production and their pathogenic role have not been fully elucidated yet, ANCA are widely recognized as a clinically alarming finding due to their association with various disorders. While ANCA target several autoantigens, proteinase-3, and myeloperoxidase are the ones proved to be most frequently related to chronic inflammation and tissue damage in murine models. Albeit these autoantibodies could be present as an isolated observation without any implications, ANCA are frequently used in clinical practice to guide the diagnosis in a suspect of small vessel vasculitis. Conditions that should prompt the clinician to test ANCA status range from various forms of lung disease to renal or peripheral nervous system impairment. ANCA positivity in the presence of an autoimmune disease, especially rheumatoid arthritis, or connective tissue diseases, is frequently correlated with more clinical complications and treatment inefficacy, even in the absence of signs of vasculitis. For this reason, it has been postulated that ANCA could represent the final expression of an immune dysregulation rather than a pathogenic event responsible for organs damage. Recently, it has also been proposed that ANCA specificity (PR3 or MPO) could possibly define ANCA-associated vasculitides better than clinical phenotype. This review aims at summarizing the latest advancements in the field of ANCA study and clinical interpretation.
Collapse
Affiliation(s)
- Marco Folci
- Humanitas Clinical and Research Center - IRCCS, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| | | | - Virginia Solitano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Enrico Brunetta
- Humanitas Clinical and Research Center - IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
29
|
Rawat K, Soucy SM, Kolling FW, Diaz KM, King WT, Tewari A, Jakubzick CV. Natural Antibodies Alert the Adaptive Immune System of the Presence of Transformed Cells in Early Tumorigenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1252-1259. [PMID: 36028292 PMCID: PMC9515310 DOI: 10.4049/jimmunol.2200447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/07/2022]
Abstract
Recent studies have revealed a critical role for natural Abs (NAbs) in antitumor immune responses. However, the role of NAbs in cancer immunosurveillance remains unexplored, mainly because of the lack of in vivo models that mimic the early recognition and elimination of transforming cells. In this article, we propose a role for NAbs in alerting the immune system against precancerous neoantigen-expressing cells immediately after they escape intrinsic tumor suppression mechanisms. We identify four distinct reproducible, trackable, MHC-matched neoantigen-expressing cell models that do not form tumors as the end point. This amplified readout in the critical window prior to tumor formation allows investigation of new mediators of cancer immunosurveillance. We found that neoantigen-expressing cells adoptively transferred in NAb-deficient mice persisted, whereas they were eliminated in wild-type mice, indicating that the circulating NAb repertoire alerts the immune system to the presence of transformed cells. Moreover, immunity is mounted against immunogenic and nonimmunogenic neoantigens contained in the NAb-tagged cells, regardless of whether the NAb directly recognizes the neoantigens. Beyond these neoantigen-expressing model systems, we observed a significantly greater tumor burden in chemically and virally induced tumor models in NAb-deficient mice compared with wild-type mice. Restoration of the NAb repertoire in NAb-deficient mice elicited the recognition and elimination of neoantigen-expressing cells and cancer. These data show that NAbs are required and sufficient for elimination of transformed cells early in tumorigenesis. These models can now be used to investigate how NAbs stimulate immunity via recognition receptors to eliminate precancerous cells.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH; and
| | - Shannon M Soucy
- Department of Biomedical Data Science, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Fred W Kolling
- Department of Biomedical Data Science, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Kiara Manohar Diaz
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH; and
| | - William T King
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH; and
| | - Anita Tewari
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH; and
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH; and
| |
Collapse
|
30
|
Khanfar E, Olasz K, Gajdócsi E, Jia X, Berki T, Balogh P, Boldizsár F. Splenectomy modulates the immune response but does not prevent joint inflammation in a mouse model of RA. Clin Exp Immunol 2022; 209:201-214. [PMID: 35576510 PMCID: PMC9390846 DOI: 10.1093/cei/uxac052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
The spleen is the largest secondary lymphoid organ which is involved in the development of B cells and also in systemic (auto)immune responses. Using the recombinant human G1 domain-induced arthritis (GIA) model in splenectomized and control BALB/c mice, we investigated the role of the spleen in the induction and pathogenesis of autoimmune arthritis. Splenectomized mice developed GIA with a similar clinical picture to the control group. However, we observed significant alterations in the humoral and cellular immune responses in splenectomized mice. In the sera of the splenectomized mice, we found lower pro-inflammatory cytokine and anti-rhG1 IgM levels, but higher IL-4, anti-rhG1 IgG1 and anti-CCP and RF antibodies. The arthritis induction in the splenectomized group was associated with a significant expansion of activated helper T cells and an increase in the proportion of the circulating B1 and marginal zone B cell subsets. Importantly, immunization of the splenectomized mice with rhG1 induced the formation of germinal centers in the inguinal- and mesenteric lymph nodes (i/mLNs) which showed an active immune response to rhG1. Finally, both B and T cells from the mLNs of the splenectomized mice showed decreased intracellular Ca2+ signaling than those of the control group. Collectively, these findings indicate that the presence of the spleen is not critical for the induction of GIA, and in its absence the autoimmune arthritis is most likely promoted through the compensatory activity of the i/mLNs. However, our data implies the immunological role of the spleen in arthritis which could be further assessed in human RA.
Collapse
Affiliation(s)
- Esam Khanfar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Erzsébet Gajdócsi
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Xinkai Jia
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
- Lymphoid Organogenesis Research Group, Szentagothai Research Center, University of Pécs, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
- Lymphoid Organogenesis Research Group, Szentagothai Research Center, University of Pécs, Hungary
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| |
Collapse
|
31
|
Checkpoints and Immunity in Cancers: Role of GNG12. Pharmacol Res 2022; 180:106242. [DOI: 10.1016/j.phrs.2022.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
|
32
|
Temporal reproducibility of IgG and IgM autoantibodies in serum from healthy women. Sci Rep 2022; 12:6192. [PMID: 35418192 PMCID: PMC9008031 DOI: 10.1038/s41598-022-10174-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Autoantibodies are present in healthy individuals and altered in chronic diseases. We used repeated samples collected from participants in the NYU Women's Health Study to assess autoantibody reproducibility and repertoire stability over a one-year period using the HuProt array. We included two samples collected one year apart from each of 46 healthy women (92 samples). We also included eight blinded replicate samples to assess laboratory reproducibility. A total of 21,211 IgG and IgM autoantibodies were interrogated. Of those, 86% of IgG (n = 18,303) and 34% of IgM (n = 7,242) autoantibodies showed adequate lab reproducibility (coefficient of variation [CV] < 20%). Intraclass correlation coefficients (ICCs) were estimated to assess temporal reproducibility. A high proportion of both IgG and IgM autoantibodies with CV < 20% (76% and 98%, respectively) showed excellent temporal reproducibility (ICC > 0.8). Temporal reproducibility was lower after using quantile normalization suggesting that batch variability was not an important source of error, and that normalization removed some informative biological information. To our knowledge this study is the largest in terms of sample size and autoantibody numbers to assess autoantibody reproducibility in healthy women. The results suggest that for many autoantibodies a single measurement may be used to rank individuals in studies of autoantibodies as etiologic markers of disease.
Collapse
|
33
|
Fernández-Velasco JI, Monreal E, Kuhle J, Meca-Lallana V, Meca-Lallana J, Izquierdo G, Oreja-Guevara C, Gascón-Giménez F, Sainz de la Maza S, Walo-Delgado PE, Lapuente-Suanzes P, Maceski A, Rodríguez-Martín E, Roldán E, Villarrubia N, Saiz A, Blanco Y, Diaz-Pérez C, Valero-López G, Diaz-Diaz J, Aladro Y, Brieva L, Íñiguez C, González-Suárez I, Rodríguez de Antonio LA, García-Domínguez JM, Sabin J, Llufriu S, Masjuan J, Costa-Frossard L, Villar LM. Baseline Inflammatory Status Reveals Dichotomic Immune Mechanisms Involved In Primary-Progressive Multiple Sclerosis Pathology. Front Immunol 2022; 13:842354. [PMID: 35386690 PMCID: PMC8977599 DOI: 10.3389/fimmu.2022.842354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To ascertain the role of inflammation in the response to ocrelizumab in primary-progressive multiple sclerosis (PPMS). Methods Multicenter prospective study including 69 patients with PPMS who initiated ocrelizumab treatment, classified according to baseline presence [Gd+, n=16] or absence [Gd-, n=53] of gadolinium-enhancing lesions in brain MRI. Ten Gd+ (62.5%) and 41 Gd- patients (77.4%) showed non-evidence of disease activity (NEDA) defined as no disability progression or new MRI lesions after 1 year of treatment. Blood immune cell subsets were characterized by flow cytometry, serum immunoglobulins by nephelometry, and serum neurofilament light-chains (sNfL) by SIMOA. Statistical analyses were corrected with the Bonferroni formula. Results More than 60% of patients reached NEDA after a year of treatment, regardless of their baseline characteristics. In Gd+ patients, it associated with a low repopulation rate of inflammatory B cells accompanied by a reduction of sNfL values 6 months after their first ocrelizumab dose. Patients in Gd- group also had low B cell numbers and sNfL values 6 months after initiating treatment, independent of their treatment response. In these patients, NEDA status was associated with a tolerogenic remodeling of the T and innate immune cell compartments, and with a clear increase of serum IgA levels. Conclusion Baseline inflammation influences which immunological pathways predominate in patients with PPMS. Inflammatory B cells played a pivotal role in the Gd+ group and inflammatory T and innate immune cells in Gd- patients. B cell depletion can modulate both mechanisms.
Collapse
Affiliation(s)
| | - Enric Monreal
- Neurology Department, Ramon y Cajal University Hospital, Madrid, Spain
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - José Meca-Lallana
- Multiple Sclerosis and Clinical Neuroimmunology Unit, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | | | - Celia Oreja-Guevara
- Neurology Department, Cliínico San Carlos Hospital, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | | | | | | | | | - Aleksandra Maceski
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Ernesto Roldán
- Immunology Department, Ramon y Cajal University Hospital, Madrid, Spain
| | | | - Albert Saiz
- Center of Neuroimmunology, Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Center of Neuroimmunology, Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | | | - Gabriel Valero-López
- Multiple Sclerosis and Clinical Neuroimmunology Unit, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Judit Diaz-Diaz
- Neurology Department, Cliínico San Carlos Hospital, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Yolanda Aladro
- Neurology Department, Getafe University Hospital, Madrid, Spain
| | - Luis Brieva
- Neurology Department, Arnau de Vilanova Hospital, Lleida, Spain
| | - Cristina Íñiguez
- Neurology Department, Lozano Blesa Clinic University Hospital, Zaragoza, Spain
| | | | | | | | - Julia Sabin
- Neurology Department, Puerta de Hierro University Hospital, Madrid, Spain
| | - Sara Llufriu
- Center of Neuroimmunology, Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jaime Masjuan
- Neurology Department, Ramon y Cajal University Hospital, Madrid, Spain
| | | | - Luisa M Villar
- Immunology Department, Ramon y Cajal University Hospital, Madrid, Spain
| |
Collapse
|
34
|
Bovenhuis H, Berghof TVL, Visker MHPW, Arts JAJ, Visscher J, van der Poel JJ, Parmentier HK. Divergent selection for natural antibodies in poultry in the presence of a major gene. Genet Sel Evol 2022; 54:24. [PMID: 35313798 PMCID: PMC8939063 DOI: 10.1186/s12711-022-00715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background Natural antibodies (NAb) are antibodies that are present in a healthy individual without requiring previous exposure to an exogenous antigen. Selection for high NAb levels might contribute to improved general disease resistance. Our aim was to analyse the genetic background of NAb based on a divergent selection experiment in poultry, and in particular the effect of a polymorphism in the TLR1A gene. Methods The study population consisted of a base population from a commercial pure-bred elite white leghorn layer line and seven generations of birds from a High and Low selection line. Birds were selected for total KLH-binding NAb titer (IgTotal). An enzyme-linked immunosorbent assay was performed to determine NAb titers in blood plasma for IgTotal and the antibody isotypes IgM and IgG. NAb titers were available for 10,878 birds. Genotypes for a polymorphism in TLR1A were determined for chickens in generations 5, 6 and 7. The data were analysed using mixed linear animal models. Results The heritability estimate for IgM was 0.30 and higher than that for IgG and IgTotal (0.12). Maternal environmental effects explained 2 to 3% of the phenotypic variation in NAb. Selection for IgTotal resulted in a genetic difference between the High and Low line of 2.4 titer points (5.1 genetic standard deviation) in generation 7. For IgM, the selection response was asymmetrical and higher in the Low than the High line. The frequency of the TLR1A C allele was 0.45 in the base population and 0.66 and 0.04 in generation 7 of the High and Low line, respectively. The TLR1A polymorphism had large and significant effects on IgTotal and IgM. Estimated genotypic effects suggest full dominance of the TLR1A C allele. Significant TLR1A by generation interactions were detected for IgM and IgTotal. Conclusions The effect of a polymorphism in the TLR1A gene on IgTotal and IgM NAb was confirmed. Furthermore, we provide experimental verification of changes in allele frequencies at a major gene with dominant gene action on a quantitative trait that is subjected to mass selection. TLR1A by generation interactions indicate sensitivity to environmental factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00715-9.
Collapse
Affiliation(s)
- Henk Bovenhuis
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| | - Tom V L Berghof
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.,Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.,Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Strasse 1, 85354, Freising, Germany
| | - Marleen H P W Visker
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Joop A J Arts
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Jeroen Visscher
- Hendrix Genetics Research Technology & Service B.V, P.O. Box 114, 5830 AC, Boxmeer, The Netherlands
| | - Jan J van der Poel
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Henk K Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
35
|
Halperin ST, ’t Hart BA, Luchicchi A, Schenk GJ. The Forgotten Brother: The Innate-like B1 Cell in Multiple Sclerosis. Biomedicines 2022; 10:606. [PMID: 35327408 PMCID: PMC8945227 DOI: 10.3390/biomedicines10030606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS), traditionally considered a chronic autoimmune attack against the insulating myelin sheaths around axons. However, the exact etiology has not been identified and is likely multi-factorial. Recently, evidence has been accumulating that implies that autoimmune processes underlying MS may, in fact, be triggered by pathological processes initiated within the CNS. This review focuses on a relatively unexplored immune cell-the "innate-like" B1 lymphocyte. The B1 cell is a primary-natural-antibody- and anti-inflammatory-cytokine-producing cell present in the healthy brain. It has been recently shown that its frequency and function may differ between MS patients and healthy controls, but its exact involvement in the MS pathogenic process remains obscure. In this review, we propose that this enigmatic cell may play a more prominent role in MS pathology than ever imagined. We aim to shed light on the human B1 cell in health and disease, and how dysregulation in its delicate homeostatic role could impact MS. Furthermore, novel therapeutic avenues to restore B1 cells' beneficial functions will be proposed.
Collapse
Affiliation(s)
| | | | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| |
Collapse
|
36
|
Hau L, Tényi T, László N, Kovács MÁ, Erdö-Bonyár S, Csizmadia Z, Berki T, Simon D, Csábi G. Anti-Neuronal Autoantibodies (Cell Surface and Onconeural) and Their Association With Natural Autoantibodies in Synthetic Cannabinoid-Induced Psychosis. Front Psychiatry 2022; 13:850955. [PMID: 35586416 PMCID: PMC9108165 DOI: 10.3389/fpsyt.2022.850955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Patients suffering from encephalitis may present psychiatric symptoms; however, the clinical relevance of anti-neuronal antibodies in patients experiencing a psychotic episode without encephalitis is still unclear. In this study, we examined the presence of anti-neuronal cell surface autoantibodies and onconeural autoantibodies in serum samples of 22 synthetic cannabinoid users presenting with psychosis. We found only two positive cases; however, seven patients had borderline results. Nonetheless, we found no significant correlation between anti-neuronal autoantibodies and the intensity of psychosis indicated by the Positive and Negative Syndrome Scale (PANSS) scores. The length of drug use and the combination of other drugs with synthetic cannabinoids have no significant effect on anti-neuronal autoantibody positivity. Nonetheless, the ratio of anti-citrate synthase (anti-CS) IgM and IgG natural autoantibodies was significantly lower (p = 0.036) in the anti-neuronal autoantibody-positive/borderline samples, than in the negative group. Interestingly, anti-CS IgM/IgG showed a significant negative correlation with PANSS-positive score (p = 0.04, r = -0.464). Our results demonstrated that anti-neuronal autoantibody positivity occurs in synthetic cannabinoid users, and the alteration of anti-CS IgM/IgG natural autoantibody levels points to immunological dysfunctions in these cases.
Collapse
Affiliation(s)
- Lídia Hau
- Department of Pediatrics, Clinical Centre, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Tényi
- Department of Psychiatry and Psychotherapy, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Natália László
- Department of Pediatrics, Clinical Centre, University of Pécs Medical School, Pécs, Hungary
| | - Márton Áron Kovács
- Department of Psychiatry and Psychotherapy, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Szabina Erdö-Bonyár
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Zsuzsanna Csizmadia
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Diána Simon
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Györgyi Csábi
- Department of Pediatrics, Clinical Centre, University of Pécs Medical School, Pécs, Hungary
| |
Collapse
|
37
|
Sobia P, Pillay T, Liebenberg LJP, Sivro A, Mansoor LE, Osman F, Passmore JAS, Abdool Karim Q, Abdool Karim SS, Baxter C, McKinnon LR, Archary D. Higher mucosal antibody concentrations in women with genital tract inflammation. Sci Rep 2021; 11:23514. [PMID: 34873252 PMCID: PMC8648917 DOI: 10.1038/s41598-021-02954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
Inflammatory cytokines augment humoral responses by stimulating antibody production and inducing class-switching. In women, genital inflammation (GI) significantly modifies HIV risk. However, the impact of GI on mucosal antibodies remains undefined. We investigated the impact of GI, pre-HIV infection, on antibody isotypes and IgG subclasses in the female genital tract. Immunoglobulin (Ig) isotypes, IgG subclasses and 48 cytokines were measured prior to HIV infection in cervicovaginal lavages (CVL) from 66 HIV seroconverters (cases) and 66 matched HIV-uninfected women (controls) enrolled in the CAPRISA 004 and 008 1% tenofovir gel trials. Pre-HIV infection, cases had significantly higher genital IgM (4.13; IQR, 4.04-4.19) compared to controls (4.06; IQR, 3.90-4.20; p = 0.042). More than one-quarter of cases (27%) had GI compared to just over one-tenth (12%) in controls. Significantly higher IgG1, IgG3, IgG4 and IgM (all p < 0.05) were found in women stratified for GI compared to women without. Adjusted linear mixed models showed several pro-inflammatory, chemotactic, growth factors, and adaptive cytokines significantly correlated with higher titers of IgM, IgA and IgG subclasses (p < 0.05). The strong and significant positive correlations between mucosal antibodies and markers of GI suggest that GI may impact mucosal antibody profiles. These findings require further investigation to establish a plausible biological link between the local inflammatory milieu and its consequence on these genital antibodies.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
| | - Thevani Pillay
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
| | - Lenine J P Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Department of Medical Microbiology, University of Kwazulu-Natal, Durban, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Department of Medical Microbiology, University of Kwazulu-Natal, Durban, South Africa
| | - Leila E Mansoor
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
| | - Farzana Osman
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
| | - Jo-Ann S Passmore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa.
- Department of Medical Microbiology, University of Kwazulu-Natal, Durban, South Africa.
| |
Collapse
|
38
|
Renal Outcome of IgM Nephropathy: A Comparative Prospective Cohort Study. J Clin Med 2021; 10:jcm10184191. [PMID: 34575298 PMCID: PMC8466757 DOI: 10.3390/jcm10184191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
Immunoglobulin M nephropathy (IgMN) is an idiopathic glomerulonephritis characterized by diffuse deposits of IgM in the glomerular mesangium. However, its renal prognosis remains unknown. We compared renal outcomes of IgMN patients with those of patients with minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), or mesangial proliferative glomerulonephritis (MsPGN) from a prospective observational cohort, with 1791 patients undergoing native kidney biopsy in eight hospitals affiliated with The Catholic University of Korea between December 2014 and October 2020. IgMN had more mesangial proliferation and matrix expansion than MsPGN and more tubular atrophy and interstitial fibrosis than MCD. IgMN patients had decreased eGFR than MCD patients in the earlier follow-up. However, there was no significant difference in urine protein or eGFR among all patients at the last follow-up. When IgMN was divided into three subtypes, patients with FSGS-like IgMN tended to have lower eGFR than those with MCD-like or MsPGN-like IgMN but higher proteinuria than MsPGN-like IgMN without showing a significant difference. The presence of hypertension at the time of kidney biopsy predicted ≥20% decline of eGFR over two years in IgMN patients. Our data indicate that IgMN would have a clinical course and renal prognosis similar to MCD, FSGS, and MsPGN.
Collapse
|
39
|
Kadam K, Peerzada N, Karbhal R, Sawant S, Valadi J, Kulkarni-Kale U. Antibody Class(es) Predictor for Epitopes (AbCPE): A Multi-Label Classification Algorithm. FRONTIERS IN BIOINFORMATICS 2021; 1:709951. [PMID: 36303781 PMCID: PMC9581038 DOI: 10.3389/fbinf.2021.709951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023] Open
Abstract
Development of vaccines and therapeutic antibodies to deal with infectious and other diseases are the most perceptible scientific interventions that have had huge impact on public health including that in the current Covid-19 pandemic. From inactivation methodologies to reverse vaccinology, vaccine development strategies of 21st century have undergone several transformations and are moving towards rational design approaches. These developments are driven by data as the combinatorials involved in antigenic diversity of pathogens and immune repertoire of hosts are enormous. The computational prediction of epitopes is central to these developments and numerous B-cell epitope prediction methods developed over the years in the field of immunoinformatics have contributed enormously. Most of these methods predict epitopes that could potentially bind to an antibody regardless of its type and only a few account for antibody class specific epitope prediction. Recent studies have provided evidence of more than one class of antibodies being associated with a particular disease. Therefore, it is desirable to predict and prioritize ‘peptidome’ representing B-cell epitopes that can potentially bind to multiple classes of antibodies, as an open problem in immunoinformatics. To address this, AbCPE, a novel algorithm based on multi-label classification approach has been developed for prediction of antibody class(es) to which an epitope can potentially bind. The epitopes binding to one or more antibody classes (IgG, IgE, IgA and IgM) have been used as a knowledgebase to derive features for prediction. Multi-label algorithms, Binary Relevance and Label Powerset were applied along with Random Forest and AdaBoost. Classifier performance was assessed using evaluation measures like Hamming Loss, Precision, Recall and F1 score. The Binary Relevance model based on dipeptide composition, Random Forest and AdaBoost achieved the best results with Hamming Loss of 0.1121 and 0.1074 on training and test sets respectively. The results obtained by AbCPE are promising. To the best of our knowledge, this is the first multi-label method developed for prediction of antibody class(es) for sequential B-cell epitopes and is expected to bring a paradigm shift in the field of immunoinformatics and immunotherapeutic developments in synthetic biology. The AbCPE web server is available at http://bioinfo.unipune.ac.in/AbCPE/Home.html.
Collapse
Affiliation(s)
- Kiran Kadam
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Noor Peerzada
- Centre for Modeling and Simulation, Savitribai Phule Pune University, Pune, India
| | - Rajiv Karbhal
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Sangeeta Sawant
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Jayaraman Valadi
- Department of Computer Science, FLAME University, Pune, India
- *Correspondence: Jayaraman Valadi, ; Urmila Kulkarni-Kale, ,
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
- *Correspondence: Jayaraman Valadi, ; Urmila Kulkarni-Kale, ,
| |
Collapse
|
40
|
Beutgen VM, Schmelter C, Pfeiffer N, Grus FH. Contribution of the Commensal Microflora to the Immunological Homeostasis and the Importance of Immune-Related Drug Development for Clinical Applications. Int J Mol Sci 2021; 22:8896. [PMID: 34445599 PMCID: PMC8396286 DOI: 10.3390/ijms22168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Not long ago, self-reactive immune activity was considered as pathological trait. A paradigm shift has now led to the recognition of autoimmune processes as part of natural maintenance of molecular homeostasis. The immune system is assigned further roles beneath the defense against pathogenic organisms. Regarding the humoral immune system, the investigation of natural autoantibodies that are frequently found in healthy individuals has led to further hypotheses involving natural autoimmunity in other processes as the clearing of cellular debris or decrease in inflammatory processes. However, their role and origin have not been entirely clarified, but accumulating evidence links their formation to immune reactions against the gut microbiome. Antibodies targeting highly conserved proteins of the commensal microflora are suggested to show self-reactive properties, following the paradigm of the molecular mimicry. Here, we discuss recent findings, which demonstrate potential links of the commensal microflora to the immunological homeostasis and highlight the possible implications for various diseases. Furthermore, specific components of the immune system, especially antibodies, have become a focus of attention for the medical management of various diseases and provide attractive treatment options in the future. Nevertheless, the development and optimization of such macromolecules still represents a very time-consuming task, shifting the need to more medical agents with simple structural properties and low manufacturing costs. Synthesizing only the biologically active sites of antibodies has become of great interest for the pharmaceutical industry and offers a wide range of therapeutic application areas as it will be discussed in the present review article.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center, 55131 Mainz, Germany; (V.M.B.); (C.S.); (N.P.)
| |
Collapse
|
41
|
Ajeganova S, Andersson MLE, Frostegård J, Hafström I. Higher levels of anti-phosphorylcholine autoantibodies in early rheumatoid arthritis indicate lower risk of incident cardiovascular events. Arthritis Res Ther 2021; 23:201. [PMID: 34311770 PMCID: PMC8314464 DOI: 10.1186/s13075-021-02581-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background The increased risk of cardiovascular events (CVE) in rheumatoid arthritis (RA) is not fully explained by traditional risk factors. Immuno-inflammatory mechanisms and autoantibodies could be involved in the pathogenesis of atherosclerotic disease. It has been suggested that anti-phosphorylcholine antibodies (anti-PC) of the IgM subclass may have atheroprotective effects. Here, we aimed to investigate the association between levels of IgM anti-PC antibodies with CVE in patients with early RA. Methods The study population was derived from the BARFOT early RA cohort, recruited in 1994–1999. The outcome of incident CVE (AMI, angina pectoris, coronary intervention, ischemic stroke, TIA) was tracked through the Swedish Hospital Discharge and the National Cause of Death Registries. Sera collected at inclusion and the 2-year visit were analyzed with ELISA to determine levels of anti-PC IgM. The Kaplan-Meier estimates and Cox proportional hazards regression models were used to compare CV outcome in the groups categorized by baseline median level of IgM anti-PC. Results In all, 653 patients with early RA, 68% women, mean (SD) age 54.8 (14.7) years, DAS28 5.2 (1.3), 68% seropositive, and without prevalent CVD, were included. During the follow-up of mean 11.7 years, 141 incident CVE were recorded. Baseline IgM anti-PC above median was associated with a reduction in risk of incident CVE in patients aged below 55 years at inclusion, HR 0.360 (95% CI, 0.142–0.916); in males, HR 0.558 (0.325–0.958); in patients with BMI above 30 kg/m2, HR 0.235 (0.065–0.842); and in those who did not achieve DAS28 remission at 1 year, HR 0.592 (0.379–0.924). The pattern of associations was confirmed in the models with AUC IgM anti-PC over 2 years. Conclusion Protective effects of higher levels of innate IgM anti-PC autoantibodies on CVE were detected in younger patients with RA and those at high risk of CVE: males, presence of obesity, and non-remission at 1 year.
Collapse
Affiliation(s)
- Sofia Ajeganova
- Division of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, 171 77, Stockholm, Sweden. .,Department of Clinical Sciences, Rheumatology Division, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Maria L E Andersson
- Faculty of Medicine, Department of Rheumatology, Lund University, Lund and Spenshult Research and Development Centre, Halmstad, Sweden
| | - Johan Frostegård
- Section of Immunology and Chronic disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingiäld Hafström
- Division of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, 171 77, Stockholm, Sweden.,Rheumatology Unit, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Multiomics Profiling Reveals Signatures of Dysmetabolism in Urban Populations in Central India. Microorganisms 2021; 9:microorganisms9071485. [PMID: 34361920 PMCID: PMC8307859 DOI: 10.3390/microorganisms9071485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Non-communicable diseases (NCDs) have become a major cause of morbidity and mortality in India. Perturbation of host–microbiome interactions may be a key mechanism by which lifestyle-related risk factors such as tobacco use, alcohol consumption, and physical inactivity may influence metabolic health. There is an urgent need to identify relevant dysmetabolic traits for predicting risk of metabolic disorders, such as diabetes, among susceptible Asian Indians where NCDs are a growing epidemic. Methods: Here, we report the first in-depth phenotypic study in which we prospectively enrolled 218 adults from urban and rural areas of Central India and used multiomic profiling to identify relationships between microbial taxa and circulating biomarkers of cardiometabolic risk. Assays included fecal microbiota analysis by 16S ribosomal RNA gene amplicon sequencing, quantification of serum short chain fatty acids by gas chromatography-mass spectrometry, and multiplex assaying of serum diabetic proteins, cytokines, chemokines, and multi-isotype antibodies. Sera was also analysed for N-glycans and immunoglobulin G Fc N-glycopeptides. Results: Multiple hallmarks of dysmetabolism were identified in urbanites and young overweight adults, the majority of whom did not have a known diagnosis of diabetes. Association analyses revealed several host–microbe and metabolic associations. Conclusions: Host–microbe and metabolic interactions are differentially shaped by body weight and geographic status in Central Indians. Further exploration of these links may help create a molecular-level map for estimating risk of developing metabolic disorders and designing early interventions.
Collapse
|
43
|
DNA glycosylase deficiency leads to decreased severity of lupus in the Polb-Y265C mouse model. DNA Repair (Amst) 2021; 105:103152. [PMID: 34186496 DOI: 10.1016/j.dnarep.2021.103152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The Polb gene encodes DNA polymerase beta (Pol β), a DNA polymerase that functions in base excision repair (BER) and microhomology-mediated end-joining. The Pol β-Y265C protein exhibits low catalytic activity and fidelity, and is also deficient in microhomology-mediated end-joining. We have previously shown that the PolbY265C/+ and PolbY265C/C mice develop lupus. These mice exhibit high levels of antinuclear antibodies and severe glomerulonephritis. We also demonstrated that the low catalytic activity of the Pol β-Y265C protein resulted in accumulation of BER intermediates that lead to cell death. Debris released from dying cells in our mice could drive development of lupus. We hypothesized that deletion of the Neil1 and Ogg1 DNA glycosylases that act upstream of Pol β during BER would result in accumulation of fewer BER intermediates, resulting in less severe lupus. We found that high levels of antinuclear antibodies are present in the sera of PolbY265C/+ mice deleted of Ogg1 and Neil1 DNA glycosylases. However, these mice develop significantly less severe renal disease, most likely due to high levels of IgM in their sera.
Collapse
|
44
|
Massalska MA, Gober HJ. How Children Are Protected From COVID-19? A Historical, Clinical, and Pathophysiological Approach to Address COVID-19 Susceptibility. Front Immunol 2021; 12:646894. [PMID: 34177895 PMCID: PMC8226076 DOI: 10.3389/fimmu.2021.646894] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
The origin and the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) in early 2020 was accompanied by high rates of mortality in regions belonging to the ancient silk road, such as the south of China, Iran, Turkey and the northern parts of Italy. However, children seem to be spared in the epidemic as very small percentage worldwide being ill. The protection of children and neonates suggests the involvement of a specific component of adaptive immunity present at early development. Native immunoglobulin belonging to the class of IgM is abundantly present in neonates and children and is known for its recognition of self- and altered self-antigens. Native IgM may be able to neutralize virus by the recognition of endogenous "danger signal" encoded in the viral envelope and originally imprinted in the membranes of infected and stressed cells. Noteworthy, thrombosis and vasculitis, two symptoms in severely affected adult and pediatric patients are shared between COVID-19 and patients with Behcet's disease, an autoimmune disorder exhibiting a region-specific prevalence in countries of the former silk road. Molecular mechanisms and clinical indicators suggest reactive oxygen species as trigger factor for severe progression of COVID-19 and establish a link to the innate immune defense against bacteria. The selective pressure exerted by bacterial pathogens may have shaped the genetics of inhabitants at this ancient trade route in favor of bacterial defense, to the detriment of severe COVID-19 progression in the 21th century.
Collapse
Affiliation(s)
- Magdalena Anna Massalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, Warsaw, Poland
| | | |
Collapse
|
45
|
Albarrak SM. Antioxidant and immune responses of broiler chickens supplemented with Rhazya stricta extract in drinking water. Vet World 2021; 14:1437-1449. [PMID: 34316190 PMCID: PMC8304433 DOI: 10.14202/vetworld.2021.1437-1449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Rhazya stricta is a herbal plant widely used in traditional medicine due to its proficiency and naturalness with few side effects. In this study, we investigated the impact of using an R. stricta extract supplement on broiler chickens' performance, especially the immune system. Materials and Methods In addition to the control group, one group received the methanol extract of R. stricta in drinking water for the first 2 weeks before being challenged with sheep erythrocytes (SRBCs), while the other group was challenged with SRBCs without receiving the R. stricta treatment. We evaluated cellular immunity by determining the phagocytic activity and lymphocyte (L) proliferation and assessed humoral immunity by quantification of the serum total IgM and IgG. We measured the serum levels of antioxidant enzymes and performed a histological examination of the spleen and the bursa of Fabricius (BF). Results Our results indicate a significant enhancement in cellular immunity in the group supplemented with R. stricta as demonstrated by a significant increase in the phagocytic activity, L proliferation, and percentages of circulating L (p<0.05). The chickens treated with R. stricta exhibit an enhanced humoral response shown by a significant elevation in the serum levels of the total antibodies of the IgM and IgG isotypes, along with a notable increase in BF activity. Furthermore, R. stricta supplementation is associated with a significant increase in the serum levels of catalase and superoxide dismutase (p<0.05), along with a significant improvement in broilers' general performance, body weight, and feed efficiency. Conclusion Our results suggest an immunomodulatory effect for the methanol extract of R. stricta and highlight the potential use of this plant in preventive and therapeutic medicine.
Collapse
Affiliation(s)
- Saleh M Albarrak
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
46
|
Zwicky SN, Stroka D, Zindel J. Sterile Injury Repair and Adhesion Formation at Serosal Surfaces. Front Immunol 2021; 12:684967. [PMID: 34054877 PMCID: PMC8160448 DOI: 10.3389/fimmu.2021.684967] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Most multicellular organisms have a major body cavity containing vital organs. This cavity is lined by a mucosa-like serosal surface and filled with serous fluid which suspends many immune cells. Injuries affecting the major body cavity are potentially life-threatening. Here we summarize evidence that unique damage detection and repair mechanisms have evolved to ensure immediate and swift repair of injuries at serosal surfaces. Furthermore, thousands of patients undergo surgery within the abdominal and thoracic cavities each day. While these surgeries are potentially lifesaving, some patients will suffer complications due to inappropriate scar formation when wound healing at serosal surfaces defects. These scars called adhesions cause profound challenges for health care systems and patients. Therefore, reviewing the mechanisms of wound repair at serosal surfaces is of clinical importance. Serosal surfaces will be introduced with a short embryological and microanatomical perspective followed by a discussion of the mechanisms of damage recognition and initiation of sterile inflammation at serosal surfaces. Distinct immune cells populations are free floating within the coelomic (peritoneal) cavity and contribute towards damage recognition and initiation of wound repair. We will highlight the emerging role of resident cavity GATA6+ macrophages in repairing serosal injuries and compare serosal (mesothelial) injuries with injuries to the blood vessel walls. This allows to draw some parallels such as the critical role of the mesothelium in regulating fibrin deposition and how peritoneal macrophages can aggregate in a platelet-like fashion in response to sterile injury. Then, we discuss how serosal wound healing can go wrong, causing adhesions. The current pathogenetic understanding of and potential future therapeutic avenues against adhesions are discussed.
Collapse
Affiliation(s)
- Simone N Zwicky
- Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Joel Zindel
- Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Simeonova D, Stoyanov D, Leunis JC, Murdjeva M, Maes M. Construction of a nitro-oxidative stress-driven, mechanistic model of mood disorders: A nomothetic network approach. Nitric Oxide 2020; 106:45-54. [PMID: 33186727 DOI: 10.1016/j.niox.2020.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022]
Abstract
Major depression is accompanied by increased IgM-mediated autoimmune responses to oxidative specific epitopes (OSEs) and nitric oxide (NO)-adducts. These responses were not examined in bipolar disorder type 1 (BP1) and BP2. IgM responses to malondialdehyde (MDA), phosphatidinylinositol, oleic acid, azelaic acid, and NO-adducts were determined in 35 healthy controls, and 47 major depressed (MDD), 29 BP1, and 25 BP2 patients. We also measured serum peroxides, IgG to oxidized LDL (oxLDL), and IgM/IgA directed to lipopolysaccharides (LPS). IgM responses to OSEs and NO-adducts (OSENO) were significantly higher in MDD and BP1 as compared with controls, and IgM to OSEs higher in MDD than in BP2. Partial Least Squares (PLS) analysis showed that 57.7% of the variance in the clinical phenome of mood disorders was explained by number of episodes, a latent vector extracted from IgM to OSENO, IgG to oxLDL, and peroxides. There were significant specific indirect effects of IgA/IgM to LPS on the clinical phenome, which were mediated by peroxides, IgM OSENO, and IgG oxLDL. Using PLS we have constructed a data-driven nomothetic network which ensembled causome (increased plasma LPS load), adverse outcome pathways (namely neuro-affective toxicity), and clinical phenome features of mood disorders in a data-driven model. Based on those feature sets, cluster analysis discovered a new diagnostic class characterized by increased plasma LPS load, peroxides, autoimmune responses to OSENO, and increased phenome scores. Using the new nomothetic network approach, we constructed a mechanistically transdiagnostic diagnostic class indicating neuro-affective toxicity in 74.3% of the mood disorder patients.
Collapse
Affiliation(s)
- Denitsa Simeonova
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University, Plovdiv, Bulgaria
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University, Plovdiv, Bulgaria
| | | | - Marianna Murdjeva
- Research Institute, Medical University, Plovdiv, Bulgaria; Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria; Section of Immunological Assessment of Chronic Stress, Technological Center of Emergency Medicine, Plovdiv, Bulgaria
| | - Michael Maes
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
48
|
Keyt BA, Baliga R, Sinclair AM, Carroll SF, Peterson MS. Structure, Function, and Therapeutic Use of IgM Antibodies. Antibodies (Basel) 2020; 9:E53. [PMID: 33066119 PMCID: PMC7709107 DOI: 10.3390/antib9040053] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Natural immunoglobulin M (IgM) antibodies are pentameric or hexameric macro-immunoglobulins and have been highly conserved during evolution. IgMs are initially expressed during B cell ontogeny and are the first antibodies secreted following exposure to foreign antigens. The IgM multimer has either 10 (pentamer) or 12 (hexamer) antigen binding domains consisting of paired µ heavy chains with four constant domains, each with a single variable domain, paired with a corresponding light chain. Although the antigen binding affinities of natural IgM antibodies are typically lower than IgG, their polyvalency allows for high avidity binding and efficient engagement of complement to induce complement-dependent cell lysis. The high avidity of IgM antibodies renders them particularly efficient at binding antigens present at low levels, and non-protein antigens, for example, carbohydrates or lipids present on microbial surfaces. Pentameric IgM antibodies also contain a joining (J) chain that stabilizes the pentameric structure and enables binding to several receptors. One such receptor, the polymeric immunoglobulin receptor (pIgR), is responsible for transcytosis from the vasculature to the mucosal surfaces of the lung and gastrointestinal tract. Several naturally occurring IgM antibodies have been explored as therapeutics in clinical trials, and a new class of molecules, engineered IgM antibodies with enhanced binding and/or additional functional properties are being evaluated in humans. Here, we review the considerable progress that has been made regarding the understanding of biology, structure, function, manufacturing, and therapeutic potential of IgM antibodies since their discovery more than 80 years ago.
Collapse
Affiliation(s)
- Bruce A. Keyt
- IGM Biosciences Inc, 325 East Middlefield Road, Mountain View, CA 94043, USA; (R.B.); (A.M.S.); (S.F.C.); (M.S.P.)
| | | | | | | | | |
Collapse
|
49
|
Franke K, Pillai SY, Hoogenboezem M, Gijbels MJJ, Matlung HL, Geissler J, Olsman H, Pottgens C, van Gorp PJ, Ozsvar-Kozma M, Saito Y, Matozaki T, Kuijpers TW, Hendriks RW, Kraal G, Binder CJ, de Winther MPJ, van den Berg TK. SIRPα on Mouse B1 Cells Restricts Lymphoid Tissue Migration and Natural Antibody Production. Front Immunol 2020; 11:570963. [PMID: 33162986 PMCID: PMC7581795 DOI: 10.3389/fimmu.2020.570963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/17/2020] [Indexed: 01/19/2023] Open
Abstract
The inhibitory immunoreceptor SIRPα is expressed on myeloid and neuronal cells and interacts with the broadly expressed CD47. CD47-SIRPα interactions form an innate immune checkpoint and its targeting has shown promising results in cancer patients. Here, we report expression of SIRPα on B1 lymphocytes, a subpopulation of murine B cells responsible for the production of natural antibodies. Mice defective in SIRPα signaling (SIRPαΔCYT mice) displayed an enhanced CD11b/CD18 integrin-dependent B1 cell migration from the peritoneal cavity to the spleen, local B1 cell accumulation, and enhanced circulating natural antibody levels, which was further amplified upon immunization with T-independent type 2 antigen. As natural antibodies are atheroprotective, we investigated the involvement of SIRPα signaling in atherosclerosis development. Bone marrow (SIRPαΔCYT>LDLR−/−) chimaeric mice developed reduced atherosclerosis accompanied by increased natural antibody production. Collectively, our data identify SIRPα as a unique B1 cell inhibitory receptor acting to control B1 cell migration, and imply SIRPα as a potential therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Katka Franke
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Mark Hoogenboezem
- Sanquin Research and Landsteiner Laboratory, Department of Plasma Protein, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marion J J Gijbels
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, CARIM, Cardiovascular Research Institute Maastricht, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Judy Geissler
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hugo Olsman
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Chantal Pottgens
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Patrick J van Gorp
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maria Ozsvar-Kozma
- Department of Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Hematology, Immunology and Infectious Disease, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Georg Kraal
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Christoph J Binder
- Department of Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention (IPEK), Munich, Germany
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
50
|
Jani PK, Kubagawa H, Melchers F. A rheostat sets B-cell receptor repertoire selection to distinguish self from non-self. Curr Opin Immunol 2020; 67:42-49. [PMID: 32916645 DOI: 10.1016/j.coi.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
In bone marrow VDJ-recombination continuously generates original repertoires of immature B cells expressing IgM-B cell receptor (BcR), in which each cell recognizes the wide variety of self and non-self antigens with an individually different spectrum of avidities. High avidity self-reactive B cells try to edit their BcRs by secondary or multiple VL-rearrangements to JL-rearrangements. If they do not manage to change their self reactivity, they are deleted by apoptosis. Low avidity self-reactive B cells are anergized, while B cells with no avidity to self are ignored. A rheostat crosslinking antigen-binding BcRs, self antigen complexed with pentameric IgM and Fcμ-receptor monitors high, low or no binding. PI3K and PTEN are the effectors of this self antigen-sensing device. In mature B cells this rheostat continues to function in the activation of resting B cells by foreign antigens which crosslink BcR, antigen and pentameric IgM with Fcμ-receptors.
Collapse
Affiliation(s)
- Peter K Jani
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|