1
|
Cui Y, Wu K, Yao X. The CDPK-related protein kinase HvCRK2 and HvCRK4 interact with HvCML32 to negatively regulate drought tolerance in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108909. [PMID: 38971089 DOI: 10.1016/j.plaphy.2024.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Calcium-dependent protein kinase (CDPK) as one of calcium sensors were play important roles in stress responses. CDPK-related protein kinase (CRK) was identified as subgroup III of CDPK has been characterized in many plants, but the members and functions of CRK genes in hulless barley (Hordeum vulgare L.) has not been clarified. Here, we identified four HvCRK genes and named HvCRK1-4 according to chromosomes localization. Moreover, the physiological function of highly induced genes of HvCRK2 and HvCRK4 were investigated in drought stress tolerance by examining their overexpression transgenic lines functions generated in Arabidopsis thaliana. Under drought stress, both overexpression HvCRK2 and HvCRK4 displayed reduced drought resistance, and accompanied by higher accumulation levels of ROS. Notably, overexpression of HvCRK2 and HvCRK4 reduced sensitivity to exogenous ABA, meanwhile the expression of ABA-responsive genes in transgenic plants were down-regulated compared to the wild type in response to drought stress. Furthermore, the physically interaction of HvCRK2 and HvCRK4 with calmodulin (CaM) and calmodulin-like (CML) proteins were determined in vivo, the further results showed that HvCML32 binds to HvCRK2/4 S_TKC structural domains and negatively regulates drought tolerance. In summary, this study identified HvCRK members and indicated that HvCRK2 and HvCRK4 genes play negative roles in drought tolerance, and provide insight into potential molecular mechanism of HvCRK2 and HvCRK4 in response to drought stress.
Collapse
Affiliation(s)
- Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China.
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China.
| |
Collapse
|
2
|
Wang F, Liang S, Wang G, Hu T, Fu C, Wang Q, Xu Z, Fan Y, Che L, Min L, Li B, Long L, Gao W, Zhang X, Jin S. CRISPR-Cas9-mediated construction of a cotton CDPK mutant library for identification of insect-resistance genes. PLANT COMMUNICATIONS 2024:101047. [PMID: 39138865 DOI: 10.1016/j.xplc.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/10/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Calcium-dependent protein kinases (CDPKs) act as key signal transduction enzymes in plants, especially in response to diverse stresses, including herbivory. In this study, a comprehensive analysis of the CDPK gene family in upland cotton revealed that GhCPKs are widely expressed in multiple cotton tissues and respond positively to various biotic and abiotic stresses. We developed a strategy for screening insect-resistance genes from a CRISPR-Cas9 mutant library of GhCPKs. The library was created using 246 single-guide RNAs targeting the GhCPK gene family to generate 518 independent T0 plants. The average target-gene coverage was 86.18%, the genome editing rate was 89.49%, and the editing heritability was 82%. An insect bioassay in the field led to identification of 14 GhCPK mutants that are resistant or susceptible to insects. The mutant that showed the clearest insect resistance, cpk33/74 (in which the homologous genes GhCPK33 and GhCPK74 were knocked out), was selected for further study. Oral secretions from Spodoptera litura induced a rapid influx of Ca2+ in cpk33/74 leaves, resulting in a significant increase in jasmonic acid content. S-adenosylmethionine synthase is an important protein involved in plant stress response, and protein interaction experiments provided evidence for interactions of GhCPK33 and GhCPK74 with GhSAMS1 and GhSAM2. In addition, virus-induced gene silencing of GhSAMS1 and GhSAM2 in cotton impaired defense against S. litura. This study demonstrates an effective strategy for constructing a mutant library of a gene family in a polyploid plant species and offers valuable insights into the role of CDPKs in the interaction between plants and herbivorous insects.
Collapse
Affiliation(s)
- Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Liang
- Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, Henan 463000, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyu Hu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyang Fu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Fan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianlian Che
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Min
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091 Xinjiang, China.
| | - Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Henan 475004, China.
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Henan 475004, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Feng YX, Lin YJ, Tian P, Yu XZ. Proline interacts with Ca 2+-dependent signaling to enhance chromium tolerance in rice by manipulating nitrate reductase and sucrose phosphate synthase. Int J Biol Macromol 2023; 253:126655. [PMID: 37660866 DOI: 10.1016/j.ijbiomac.2023.126655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
The entrance of chromium (Cr) into the agricultural system would exert a negative influence on the carbon/nitrogen metabolism (CNM) of plants. In this study, we investigated the role of exogenous proline-mediated Ca2+-dependent signaling in the regulation of CNM in rice subjected to Cr(VI) stress, with emphasis on the involvement of nitrate reductase (NR) and sucrose phosphate synthase (SPS). Results demonstrated that proline effectively mitigated the growth inhibition of rice imposed by Cr(VI) stress, which is achieved by a reduction in cytoplasmic Ca and Cr content and the activation of the downstream Ca2+-dependent signaling pathway. Additionally, proline displayed a positive effect in modulating the expression and activities of NR and SPS under Cr(VI) stress, which are attributed to the cross-regulation between calcium-dependent protein kinases (CDPKs) and 14-3-3 proteins (14-3-3s). Consequently, nitrogen use efficiency and sucrose content in rice under Cr(VI) + proline treatments were higher than Cr(VI) treatments. Gene expression variation factors underscored that the regulation of proline on NR is crucial to the Ca2+-dependent signaling pathway, initiated by the interaction between CDPKs and 14-3-3s in rice plants during Cr(VI) stress. These results reveal that proline interacts with Ca2+-dependent signaling pathways to enhance Cr tolerance in rice by regulating NR and SPS.
Collapse
Affiliation(s)
- Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China.
| |
Collapse
|
4
|
Kong H, Hou M, Ma B, Xie Z, Wang J, Zhu X. Calcium-dependent protein kinase GhCDPK4 plays a role in drought and abscisic acid stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111704. [PMID: 37037298 DOI: 10.1016/j.plantsci.2023.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Drought is an important factor limiting the yield and quality of cotton. In the present study, the gene encoding the cotton calcium-dependent protein kinase GhCDPK4 was identified and characterized in the transcriptome of cotton under PEG-induced drought stress. In RT-qPCR experiments, GhCDPK4 expression was found to be up-regulated under drought and abscisic acid (ABA) stress. Under drought conditions, heterologous overexpression of GhCDPK4 in tobacco showed a better phenotypic status, higher antioxidant enzyme activity, and lower relative electrolyte leakage (REL) and malondialdehyde (MDA) content. Meanwhile, ghcdpk4-silenced cotton plants, which were extremely sensitive to drought, exhibited higher levels of O2-,H2O2, and MDA contents compared to the control. Meanwhile, silenced lines showed impaired stomatal closure under drought stress, resulting in increased water loss from transpiration in silenced lines. GhCDPK4 expression was induced by ABA, and there are five ABA-responsive elements in its promoter. and C2-DOMAIN ABA-RELATED 4(CAR4, Gh_D09G1653) were found to interact and be co-expressed in the GhCDPK4 interaction network. Therefore, GhCDPK4 may reduce the extent of water loss and oxidative damage in cotton under drought by positively regulating ABA-controlled stomatal closure and reactive oxygen species (ROS) scavenging systems. This study demonstrates the great potential of GhCDPK4 in improving drought resistance in crops.
Collapse
Affiliation(s)
- Hui Kong
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Mengjuan Hou
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Bin Ma
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhaosong Xie
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jiameng Wang
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xinxia Zhu
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
5
|
Liu M, Wang C, Xu Q, Pan Y, Jiang B, Zhang L, Zhang Y, Tian Z, Lu J, Ma C, Chang C, Zhang H. Genome-wide identification of the CPK gene family in wheat (Triticum aestivum L.) and characterization of TaCPK40 associated with seed dormancy and germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:608-623. [PMID: 36780723 DOI: 10.1016/j.plaphy.2023.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Calcium-dependent protein kinases (CPKs), important sensors of calcium signals, play an essential role in plant growth, development, and stress responses. Although the CPK gene family has been characterized in many plants, the functions of the CPK gene family in wheat, including their relationship to seed dormancy and germination, remain unclear. In this study, we identified 84 TaCPK genes in wheat (TaCPK1-84). According to their phylogenetic relationship, they were divided into four groups (I-IV). TaCPK genes in the same group were found to have similar gene structures and motifs. Chromosomal localization indicated that TaCPK genes were unevenly distributed across 21 wheat chromosomes. TaCPK gene expansion occurred through segmental duplication events and underwent strong negative selection. A large number of cis-regulatory elements related to light response, phytohormone response, and abiotic stress response were identified in the upstream promoter sequences of TaCPK genes. TaCPK gene expression was found to be tissue- and growth-stage-diverse. Analysis of the expression patterns of several wheat varieties with contrasting seed dormancy and germination phenotypes resulted in the identification of 11 candidate genes (TaCPK38/-40/-43/-47/-50/-60/-67/-70/-75/-78/-80) which are likely associated with seed dormancy and germination. The ectopic expression of TaCPK40 in Arabidopsis promoted seed germination and reduced abscisic acid (ABA) sensitivity during germination, indicating that TaCPK40 negatively regulates seed dormancy and positively regulates seed germination. These findings advance our understanding of the multifaceted functions of CPK genes in seed dormancy and germination, and provide potential candidate genes for controlling wheat seed dormancy and germination.
Collapse
Affiliation(s)
- Mingli Liu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Chenchen Wang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qing Xu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yonghao Pan
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Bingli Jiang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Litian Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yue Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhuangbo Tian
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Chuanxi Ma
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
6
|
Du H, Chen J, Zhan H, Li S, Wang Y, Wang W, Hu X. The Roles of CDPKs as a Convergence Point of Different Signaling Pathways in Maize Adaptation to Abiotic Stress. Int J Mol Sci 2023; 24:ijms24032325. [PMID: 36768648 PMCID: PMC9917105 DOI: 10.3390/ijms24032325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The calcium ion (Ca2+), as a well-known second messenger, plays an important role in multiple processes of growth, development, and stress adaptation in plants. As central Ca2+ sensor proteins and a multifunctional kinase family, calcium-dependent protein kinases (CDPKs) are widely present in plants. In maize, the signal transduction processes involved in ZmCDPKs' responses to abiotic stresses have also been well elucidated. In addition to Ca2+ signaling, maize ZmCDPKs are also regulated by a variety of abiotic stresses, and they transmit signals to downstream target molecules, such as transport proteins, transcription factors, molecular chaperones, and other protein kinases, through protein interaction or phosphorylation, etc., thus changing their activity, triggering a series of cascade reactions, and being involved in hormone and reactive oxygen signaling regulation. As such, ZmCDPKs play an indispensable role in regulating maize growth, development, and stress responses. In this review, we summarize the roles of ZmCDPKs as a convergence point of different signaling pathways in regulating maize response to abiotic stress, which will promote an understanding of the molecular mechanisms of ZmCDPKs in maize tolerance to abiotic stress and open new opportunities for agricultural applications.
Collapse
|
7
|
Ranjan R, Malik N, Sharma S, Agarwal P, Kapoor S, Tyagi AK. OsCPK29 interacts with MADS68 to regulate pollen development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111297. [PMID: 35696904 DOI: 10.1016/j.plantsci.2022.111297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Pollen development and its germination are obligatory for the reproductive success of flowering plants. Calcium-dependent protein kinases (CPKs, also known as CDPKs) regulate diverse signaling pathways controlling plant growth and development. Here, we report the functional characterization of a novel OsCPK29 from rice, which is mainly expressed during pollen maturation stages of the anther. OsCPK29 exclusively localizes in the nucleus, and its N-terminal variable domain is responsible for retaining it in the nucleus. OsCPK29 knockdown rice plants exhibit reduced fertility, set fewer seeds, and produce collapsed non-viable pollen grains that do not germinate. Cytological analysis of anther semi-thin sections during different developmental stages suggested that pollen abnormalities appear after the vacuolated pollen stage. Detailed microscopic study of pollen grains further revealed that they were lacking the functional intine layer although exine layer was present. Consistent with that, downregulation of known intine development-related rice genes was also observed in OsCPK29 silenced anthers. Furthermore, it has been demonstrated that OsCPK29 interacts in vitro as well as in vivo with the MADS68 transcription factor which is a known regulator of pollen development. Therefore, phenotypic observations and molecular studies suggest that OsCPK29 is an important regulator of pollen development in rice.
Collapse
Affiliation(s)
- Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India; Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India; Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India.
| |
Collapse
|
8
|
Chu Z, Wang H, Wang Y, Chang S, Jia S, Pang L, Xi C, Liu J, Zhao H, Zhou X, Han S, Wang Y. OsHSD2 interaction with and phosphorylation by OsCPK21 is essential for lipid metabolism during rice caryopsis development. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153714. [PMID: 35569367 DOI: 10.1016/j.jplph.2022.153714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Rice calcium-dependent protein kinase 21 (OsCPK21) is specifically and highly expressed throughout reproductive development and plays a critical role in rice pollen development by indirectly regulating the MIKC*-type MADS box transcription factor. However, little is known about the function of OsCPK21 in rice caryopsis development. In this study, we performed an in vitro pull-down experiment followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and identified hydroxysteroid dehydrogenase 2 (HSD2) as a candidate OsCPK21-interacting protein in 25 DAF (days after flowering) rice caryopses. Then, we verified the interaction between OsCPK21 and OsHSD2 using yeast two-hybrid and bimolecular fluorescence assays and revealed the in vitro phosphorylation of OsHSD2 by OsCPK21. Furthermore, oscpk21 and oshsd2 mutants were generated by the CRISPR/Cas9 technique, and we found that the lipid profiles were drastically changed in both oscpk21 and oshsd2, implying that OsHSD2 phosphorylated by OsCPK21 regulates lipid abundance in caryopsis development, thereby providing a potential target for the genetic improvement of rice grain quality in future lipid-related breeding and biotechnology applications.
Collapse
Affiliation(s)
- Zhilin Chu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hanmeng Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shu Chang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shenghua Jia
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lu Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaojin Zhou
- Department of Crop Genomic & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining, 810008, Qinghai, China.
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining, 810008, Qinghai, China.
| |
Collapse
|
9
|
Wang R, Himschoot E, Chen J, Boudsocq M, Geelen D, Friml J, Beeckman T, Vanneste S. Constitutive Active CPK30 Interferes With Root Growth and Endomembrane Trafficking in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:862398. [PMID: 35783951 PMCID: PMC9245594 DOI: 10.3389/fpls.2022.862398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Calcium-dependent protein kinases (CPK) are key components of a wide array of signaling pathways, translating stress and nutrient signaling into the modulation of cellular processes such as ion transport and transcription. However, not much is known about CPKs in endomembrane trafficking. Here, we screened for CPKs that impact on root growth and gravitropism, by overexpressing constitutively active forms of CPKs under the control of an inducible promoter in Arabidopsis thaliana. We found that inducible overexpression of an constitutive active CPK30 (CA-CPK30) resulted in a loss of root gravitropism and ectopic auxin accumulation in the root tip. Immunolocalization revealed that CA-CPK30 roots have reduced PIN protein levels, PIN1 polarity defects and impaired Brefeldin A (BFA)-sensitive trafficking. Moreover, FM4-64 uptake was reduced, indicative of a defect in endocytosis. The effects on BFA-sensitive trafficking were not specific to PINs, as BFA could not induce aggregation of ARF1- and CHC-labeled endosomes in CA-CPK30. Interestingly, the interference with BFA-body formation, could be reverted by increasing the extracellular pH, indicating a pH-dependence of this CA-CPK30 effect. Altogether, our data reveal an important role for CPK30 in root growth regulation and endomembrane trafficking in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jian Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marie Boudsocq
- Université Paris-Saclay, CNRS, INRAE, Univ. Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, South Korea
| |
Collapse
|
10
|
Identification of CDPK Gene Family in Solanum habrochaites and Its Function Analysis under Stress. Int J Mol Sci 2022; 23:ijms23084227. [PMID: 35457042 PMCID: PMC9031491 DOI: 10.3390/ijms23084227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Tomato is an important vegetable crop. In the process of tomato production, it will encounter abiotic stress, such as low temperature, drought, and high salt, and biotic stress, such as pathogen infection, which will seriously affect the yield of tomato. Calcium-dependent protein kinase (CDPK) is a class of major calcium signal receptor which has an important regulatory effect on the perception and decoding of calcium signals. CDPK plays a key role in many aspects of plant growth, such as the elongation of pollen tubes, plant growth, and response to biotic and abiotic stress. While some studies have concentrated on Arabidopsis and pepper, Solanum habrochaites is a wild species relative of cultivated tomato and there is no report on CDPK in Solanum habrochaites to date. Using tomato genomic data, this study identified 33 members of the CDPK gene family. Evolutionary analysis divides family members into four Asian groups, of which the CDPK family members have 11 gene replication pairs. Subcellular location analysis showed that most proteins were predicted to be located in the cytoplasm, and less protein existed on the cell membrane. Not all CDPK family members have a transmembrane domain. Cis regulatory elements relating to light, hormones, and drought stress are overrepresented in the promoter region of the CDPK genes in Solanum habrochaites. The expression levels of each gene under biotic stress and abiotic stress were quantified by qRT-PCR. The results showed that members of the CDPK family in Solanum habrochaites respond to different biotic and abiotic stresses. Among them, the expression of ShCDPK6 and ShCDPK26 genes change significantly. ShCDPK6 and ShCDPK26 genes were silenced using VIGS (virus-induced gene silencing), and the silenced plants illustrated reduced stress resistance to Botrytis cinerea, cold, and drought stress. The results of this study will provide a basis for the in-depth study of the CDPK gene family in Solanum habrochaites, laying the foundation for further analysis of the function of the gene family.
Collapse
|
11
|
Li X, Zhao L, Zhang H, Liu Q, Zhai H, Zhao N, Gao S, He S. Genome-Wide Identification and Characterization of CDPK Family Reveal Their Involvements in Growth and Development and Abiotic Stress in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2022; 23:ijms23063088. [PMID: 35328509 PMCID: PMC8952862 DOI: 10.3390/ijms23063088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium-dependent protein kinase (CDPKs) is one of the calcium-sensing proteins in plants. They are likely to play important roles in growth and development and abiotic stress responses. However, these functions have not been explored in sweet potato. In this study, we identified 39 CDPKs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), 35 CDPKs in diploid relative Ipomoea trifida (2n = 2x = 30), and 35 CDPKs in Ipomoea triloba (2n = 2x = 30) via genome structure analysis and phylogenetic characterization, respectively. The protein physiological property, chromosome localization, phylogenetic relationship, gene structure, promoter cis-acting regulatory elements, and protein interaction network were systematically investigated to explore the possible roles of homologous CDPKs in the growth and development and abiotic stress responses of sweet potato. The expression profiles of the identified CDPKs in different tissues and treatments revealed tissue specificity and various expression patterns in sweet potato and its two diploid relatives, supporting the difference in the evolutionary trajectories of hexaploid sweet potato. These results are a critical first step in understanding the functions of sweet potato CDPK genes and provide more candidate genes for improving yield and abiotic stress tolerance in cultivated sweet potato.
Collapse
Affiliation(s)
- Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Limeng Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
- Sanya Institute of China Agricultural University, Hainan 572025, China
- Correspondence: ; Tel./Fax: +86-010-6273-2559
| |
Collapse
|
12
|
Yang X, Chen Z, Yin X, Wang Y, Yang Y, Yang Y. Genome-Wide Survey Indicates Diverse Physiological Roles of Dendrobium officinale Calcium-Dependent Protein Kinase Genes. Int J Mol Sci 2022; 23:ijms23031298. [PMID: 35163223 PMCID: PMC8835911 DOI: 10.3390/ijms23031298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/03/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are crucial calcium ions (Ca2+) sensors in plants with important roles in signal transduction, plant growth, development, and stress responses. Here, we identified 24 genes encoding CDPKs in Dendrobium officinale using genome-wide analysis. The phylogenetic analysis revealed that these genes formed four groups, with similar structures in the same group. The gene expression patterns following hormone treatments and yeast two-hybrid of homologous CDPK gene pairs with Rbohs showed differences, indicating functional divergence between homologous genes. In addition, the rapid accumulation of hydrogen peroxide (H2O2) and stomatal closure was observed in response to salicylic acid (SA)/jasmonic acid (JA) stress. Our data showed that CDPK9-2 and CDPK20-4 interacted with Rboh D and Rboh H, respectively, and were implicated in the generation of H2O2 and regulation of the stomatal aperture in response to salicylic acid/jasmonic acid treatment. We believe these results can provide a foundation for the functional divergence of homologous genes in D. officinale.
Collapse
Affiliation(s)
- Xingyu Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (Z.C.); (X.Y.)
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Academy of Biological Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyu Chen
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (Z.C.); (X.Y.)
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Academy of Biological Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yin
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (Z.C.); (X.Y.)
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuhua Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Yunqiang Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (Z.C.); (X.Y.)
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Correspondence: (Y.Y.); (Y.Y.)
| | - Yongping Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (Z.C.); (X.Y.)
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Correspondence: (Y.Y.); (Y.Y.)
| |
Collapse
|
13
|
Arefian M, Bhagya N, Prasad TSK. Phosphorylation-mediated signalling in flowering: prospects and retrospects of phosphoproteomics in crops. Biol Rev Camb Philos Soc 2021; 96:2164-2191. [PMID: 34047006 DOI: 10.1111/brv.12748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
Protein phosphorylation is a major post-translational modification, regulating protein function, stability, and subcellular localization. To date, annotated phosphorylation data are available mainly for model organisms and humans, despite the economic importance of crop species and their large kinomes. Our understanding of the phospho-regulation of flowering in relation to the biology and interaction between the pollen and pistil is still significantly lagging, limiting our knowledge on kinase signalling and its potential applications to crop production. To address this gap, we bring together relevant literature that were previously disconnected to present an overview of the roles of phosphoproteomic signalling pathways in modulating molecular and cellular regulation within specific tissues at different morphological stages of flowering. This review is intended to stimulate research, with the potential to increase crop productivity by providing a platform for novel molecular tools.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - N Bhagya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
14
|
Wu Y, Zhang L, Zhou J, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Feng H, Zhu H. Calcium-Dependent Protein Kinase GhCDPK28 Was Dentified and Involved in Verticillium Wilt Resistance in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:772649. [PMID: 34975954 PMCID: PMC8715758 DOI: 10.3389/fpls.2021.772649] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 05/12/2023]
Abstract
Verticillium dahliae is a soil-borne fungus that causes vascular wilt through the roots of plants. Verticillium wilt caused by V. dahliae is one of the main diseases in cotton producing areas of the world, resulting in huge economic losses. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. Calcium-dependent protein kinases (CDPKs) play a pivotal role in plant innate immunity, including regulation of oxidative burst, gene expression as well as hormone signal transduction. However, the function of cotton CDPKs in response to V. dahliae stress remains unexplored. In this study, 96, 44 and 57 CDPKs were identified from Gossypium hirsutum, Gossypium raimondii and Gossypium arboretum, respectively. Phylogenetic analysis showed that these CDPKs could be divided into four branches. All GhCDPKs of the same clade are generally similar in gene structure and conserved domain arrangement. Cis-acting elements related to hormones, stress response, cell cycle and development were predicted in the promoter region. The expression of GhCDPKs could be regulated by various stresses. Gh_D11G188500.1 and Gh_A11G186100.1 was up-regulated under Vd0738 and Vd991 stress. Further phosphoproteomics analysis showed that Gh_A11G186100.1 (named as GhCDPK28-6) was phosphorylated under the stress of V. dahliae. Knockdown of GhCDPK28-6 expression, the content of reactive oxygen species was increased, a series of defense responses were enhanced, and the sensitivity of cotton to V. dahliae was reduced. Moreover, overexpression of GhCDPK28-6 in Arabidopsis thaliana weakened the resistance of plants to this pathogen. Subcellular localization revealed that GhCDPK28-6 was localized in the cell membrane. We also found that GhPBL9 and GhRPL12C may interact with GhCDPK28-6. These results indicate that GhCDPK28-6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.
Collapse
Affiliation(s)
- Yajie Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jinglong Zhou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiaojian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- *Correspondence: Hongjie Feng,
| | - Heqin Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Heqin Zhu,
| |
Collapse
|
15
|
Genetic and Physiological Characterization of a Calcium Deficiency Phenotype in Maize. G3-GENES GENOMES GENETICS 2020; 10:1963-1970. [PMID: 32238423 PMCID: PMC7263677 DOI: 10.1534/g3.120.401069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calcium (Ca) is an essential plant nutrient, required for signaling, cell wall fortification and growth and development. Calcium deficiency (Ca-deficiency) in maize causes leaf tip rot and a so-called “bull-whipping” or “buggy-whipping” phenotype. Seedlings of the maize line B73 displayed these Ca-deficiency-like symptoms when grown in the greenhouse with excess fertilizer during the winter months, while seedlings of the Mo17 maize line did not display these symptoms under the same conditions. These differential phenotypes could be recapitulated in ‘mini-hydroponic’ systems in the laboratory in which high ammonium, but not nitrate, levels induced the symptoms in B73 but not Mo17 seedlings. Consistent with this phenotype being caused by Ca-deficiency, addition of Ca2+ completely relieved the symptoms. These data suggest that ammonium reduces the seedling’s ability to absorb calcium, which causes the Ca-deficiency phenotype, and that this trait varies among genotypes. A recombinant inbred line (RIL) population derived from a B73 x Mo17 cross was used to map quantitative trait loci (QTL) associated with the Ca-deficiency phenotype. QTL associated with variation in susceptibility to Ca-deficiency were detected on chromosomes 1, 2, 3, 6 which explained between 3.30–9.94% of the observed variation. Several genes predicted to bind or be activated by calcium map to these QTL on chromosome 1, 2, 6. These results describe for the first time the genetics of Ca-deficiency symptoms in maize and in plants in general.
Collapse
|
16
|
Shkryl Y, Veremeichik G, Silantieva S, Bulgakov V. Differential expression of calcium-dependent protein kinase genes (CDPK1–14) in Rubia cordifolia callus cultures transformed with the rolB and rolC genes. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.plgene.2019.100215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Khalid MHB, Raza MA, Yu HQ, Khan I, Sun FA, Feng LY, Qu JT, Fu FL, Li WC. Expression, Subcellular Localization, and Interactions of CPK Family Genes in Maize. Int J Mol Sci 2019; 20:E6173. [PMID: 31817801 PMCID: PMC6940914 DOI: 10.3390/ijms20246173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Calcium-dependent protein kinase (CPKs) is a key player in the calcium signaling pathway to decode calcium signals into various physiological responses. cDNA sequences of 9 ZmCPK genes were successfully cloned from all four phylogenetic groups in maize. qRT-PCR analysis showed the expression variation of these selected genes under abscisic acid (ABA) and calcium chloride (CaCl2) treatment. Due to the presence of N-myristoylation/palmitoylation sites, the selected ZmCPK members were localized in a plasma membrane. To clarify whether ZmCPK, a key player in calcium signaling, interacts with key players of ABA, protein phosphatase 2Cs (PP2Cs) and the SNF1-related protein kinase 2s (SnRK2s) and mitogen-activated protein kinase (MAPK) signaling pathways in maize, we examined the interaction between 9 CPKs, 8 PP2Cs, 5 SnRKs, and 20 members of the MPK family in maize by using yeast two-hybrid assay. Our results showed that three ZmCPKs interact with three different members of ZmSnRKs while four ZmCPK members had a positive interaction with 13 members of ZmMPKs in different combinations. These four ZmCPK proteins are from three different groups in maize. These findings of physical interactions between ZmCPKs, ZmSnRKs, and ZmMPKs suggested that these signaling pathways do not only have indirect influence but also have direct crosstalk that may involve the defense mechanism in maize. The present study may improve the understanding of signal transduction in plants.
Collapse
Affiliation(s)
- Muhammad Hayder Bin Khalid
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (M.A.R.); (L.Y.F.)
| | - Hao Qiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Imran Khan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - Fu Ai Sun
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Ling Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (M.A.R.); (L.Y.F.)
| | - Jing Tao Qu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Feng Ling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Wan Chen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| |
Collapse
|
18
|
Yang J, Xie MY, Yang XL, Liu BH, Lin HH. Phosphoproteomic Profiling Reveals the Importance of CK2, MAPKs and CDPKs in Response to Phosphate Starvation in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:2785-2796. [PMID: 31424513 DOI: 10.1093/pcp/pcz167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus is one of the most important macronutrients required for plant growth and development. The importance of phosphorylation modification in regulating phosphate (Pi) homeostasis in plants is emerging. We performed phosphoproteomic profiling to characterize proteins whose degree of phosphorylation is altered in response to Pi starvation in rice root. A subset of 554 proteins, including 546 down-phosphorylated and eight up-phosphorylated proteins, exhibited differential phosphorylation in response to Pi starvation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with the differentially phosphorylated proteins indicated that RNA processing, transport, splicing and translation and carbon metabolism played critical roles in response to Pi starvation in rice. Levels of phosphorylation of four mitogen-activated protein kinases (MAPKs), including OsMAPK6, five calcium-dependent protein kinases (CDPKs) and OsCK2β3 decreased in response to Pi starvation. The decreased phosphorylation level of OsMAPK6 was confirmed by Western blotting. Mutation of OsMAPK6 led to Pi accumulation under Pi-sufficient conditions. Motif analysis indicated that the putative MAPK, casein kinase 2 (CK2) and CDPK substrates represented about 54.4%, 21.5% and 4.7%, respectively, of the proteins exhibiting differential phosphorylation. Based on the motif analysis, 191, 151 and 46 candidate substrates for MAPK, CK2 and CDPK were identified. These results indicate that modification of phosphorylation profiles provides complementary information on Pi-starvation-induced processes, with CK2, MAPK and CDPK protein kinase families playing key roles in these processes in rice.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Meng-Yang Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Xiao-Li Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Bao-Hui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| |
Collapse
|
19
|
Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, Azeem F, Nawaz MA, Wani SH, Chung G. Insights on Calcium-Dependent Protein Kinases (CPKs) Signaling for Abiotic Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E5298. [PMID: 31653073 PMCID: PMC6862689 DOI: 10.3390/ijms20215298] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Abiotic stresses are the major limiting factors influencing the growth and productivity of plants species. To combat these stresses, plants can modify numerous physiological, biochemical, and molecular processes through cellular and subcellular signaling pathways. Calcium-dependent protein kinases (CDPKs or CPKs) are the unique and key calcium-binding proteins, which act as a sensor for the increase and decrease in the calcium (Ca) concentrations. These Ca flux signals are decrypted and interpreted into the phosphorylation events, which are crucial for signal transduction processes. Several functional and expression studies of different CPKs and their encoding genes validated their versatile role for abiotic stress tolerance in plants. CPKs are indispensable for modulating abiotic stress tolerance through activation and regulation of several genes, transcription factors, enzymes, and ion channels. CPKs have been involved in supporting plant adaptation under drought, salinity, and heat and cold stress environments. Diverse functions of plant CPKs have been reported against various abiotic stresses in numerous research studies. In this review, we have described the evaluated functions of plant CPKs against various abiotic stresses and their role in stress response signaling pathways.
Collapse
Affiliation(s)
- Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Luqman Shahid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Babar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Abdul Rehman Rashid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38040, Pakistan.
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia.
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190001, India.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
20
|
Wen K, Chen Y, Zhou X, Chang S, Feng H, Zhang J, Chu Z, Han X, Li J, Liu J, Xi C, Zhao H, Han S, Wang Y. OsCPK21 is required for pollen late-stage development in rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153000. [PMID: 31220626 DOI: 10.1016/j.jplph.2019.153000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
In flowering plants, pollen development is a critical step for reproductive success and necessarily involves complex genetic regulatory networks. Calcium-dependent protein kinases (CPKs) are plant-specific calcium sensors involved in the regulation of plant development and adaption to the environment; however, whether they play a role in regulating male reproduction remains elusive. Here, we found that the knockdown of spikelet-specific OsCPK21 causes pollen abortion in OsCPK21-RNAi transgenic plants. Severe defects in pollen development initiated at stage 10 of anther development and simultaneous cell death occurred in the pollen cells of OsCPK21-RNAi plants. Microarray analysis and qRT-PCR revealed that the transcription of OsCPK21 is coordinated with that of MIKC*-type MADS box transcription factors OsMADS62, OsMADS63, and OsMADS68 during rice anther development. We further showed that OsCPK21 indirectly up-regulates the transcription of OsMADS62, OsMADS63, and OsMADS68 through the potential MYB binding site, DRE/CRT element, and/or new ERF binding motif localised in the promoter region of these three MADS genes. These findings suggest that OsCPK21 plays an essential role in pollengenesis, possibly via indirectly regulating the transcription of MIKC*-type MADS box proteins.
Collapse
Affiliation(s)
- Kexin Wen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yixing Chen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xiaojin Zhou
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Department of Crop Genomic & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shu Chang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Hao Feng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jing Zhang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Zhilin Chu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xiaogang Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
21
|
Li M, Hu W, Ren L, Jia C, Liu J, Miao H, Guo A, Xu B, Jin Z. Identification, Expression, and Interaction Network Analyses of the CDPK Gene Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana. Biochem Genet 2019; 58:40-62. [PMID: 31144068 DOI: 10.1007/s10528-019-09916-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/27/2019] [Indexed: 11/25/2022]
Abstract
Calcium-dependent protein kinases (CDPKs) play vital roles in the regulation of plant growth, development, and tolerance to various abiotic stresses. However, little information is available for this gene family in banana. In this study, 44 CDPKs were identified in banana and were classified into four groups based on phylogenetic, gene structure, and conserved motif analyses. The majority of MaCDPKs generally exhibited similar expression patterns in the different tissues. Transcriptome analyses revealed that many CDPKs showed strong transcript accumulation at the early stages of fruit development and postharvest ripening in both varieties. Interaction network and co-expression analysis further identified some CDPKs-mediated network that was potentially active at the early stages of fruit development. Comparative expression analysis suggested that the high levels of CDPK expression in FJ might be related to its fast ripening characteristic. CDPK expression following the abiotic stress treatments indicated a significant transcriptional response to osmotic, cold, and salt treatment, as well as differential expression profiles, between BX and FJ. The findings of this study elucidate the transcriptional control of CDPKs in development, ripening, and the abiotic stress response in banana. Some tissue-specific, development/ripening-dependent, and abiotic stress-responsive candidate MaCDPK genes were identified for further genetic improvement of banana.
Collapse
Affiliation(s)
- Meiying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Licheng Ren
- Department of Biology, Hainan Medical College, Haikou, China
| | - Caihong Jia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Hongxia Miao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| |
Collapse
|
22
|
Wang B, Zhang Y, Bi Z, Liu Q, Xu T, Yu N, Cao Y, Zhu A, Wu W, Zhan X, Anis GB, Yu P, Chen D, Cheng S, Cao L. Impaired Function of the Calcium-Dependent Protein Kinase, OsCPK12, Leads to Early Senescence in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:52. [PMID: 30778363 PMCID: PMC6369234 DOI: 10.3389/fpls.2019.00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Premature leaf senescence affects plant yield and quality, and numerous researches about it have been conducted until now. In this study, we identified an early senescent mutant es4 in rice (Oryza sativa L.); early senescence appeared approximately at 60 dps and became increasingly senescent with the growth of es4 mutant. We detected that content of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as activity of superoxide dismutase (SOD) were elevated, while chlorophyll content, soluble protein content, activity of catalase (CAT), activity of peroxidase (POD) and photosynthetic rate were reduced in the es4 mutant leaves. We mapped es4 in a 33.5 Kb physical distance on chromosome 4 by map-based cloning. Sequencing analysis in target interval indicated there was an eight bases deletion mutation in OsCPK12 which encoded a calcium-dependent protein kinase. Functional complementation of OsCPK12 in es4 completely restored the normal phenotype. We used CRISPR/Cas9 for targeted disruption of OsCPK12 in ZH8015 and all the mutants exhibited the premature senescence. All the results indicated that the phenotype of es4 was caused by the mutation of OsCPK12. Overexpression of OsCPK12 in ZH8015 enhanced the net photosynthetic rate (P n) and chlorophyll content. OsCPK12 was mainly expressed in green organs. The results of qRT-PCR analysis showed that the expression levels of some key genes involved in senescence, chlorophyll biosynthesis, and photosynthesis were significantly altered in the es4 mutant. Our results demonstrate that the mutant of OsCPK12 triggers the premature leaf senescence; however, the overexpression of OsCPK12 may delay its growth period and provide the potentially positive effect on productivity in rice.
Collapse
Affiliation(s)
- Beifang Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenzhen Bi
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Xu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ning Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yongrun Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Aike Zhu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Galal Bakr Anis
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafr El Sheikh, Egypt
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
23
|
Shi S, Li S, Asim M, Mao J, Xu D, Ullah Z, Liu G, Wang Q, Liu H. The Arabidopsis Calcium-Dependent Protein Kinases (CDPKs) and Their Roles in Plant Growth Regulation and Abiotic Stress Responses. Int J Mol Sci 2018; 19:E1900. [PMID: 29958430 PMCID: PMC6073581 DOI: 10.3390/ijms19071900] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
As a ubiquitous secondary messenger in plant signaling systems, calcium ions (Ca2+) play essential roles in plant growth and development. Within the cellular signaling network, the accurate decoding of diverse Ca2+ signal is a fundamental molecular event. Calcium-dependent protein kinases (CDPKs), identified commonly in plants, are a kind of vital regulatory protein deciphering calcium signals triggered by various developmental and environmental stimuli. This review chiefly introduces Ca2+ distribution in plant cells, the classification of Arabidopsis thaliana CDPKs (AtCDPKs), the identification of the Ca2+-AtCDPK signal transduction mechanism and AtCDPKs’ functions involved in plant growth regulation and abiotic stress responses. The review presents a comprehensive overview of AtCDPKs and may contribute to the research of CDPKs in other plants.
Collapse
Affiliation(s)
- Sujuan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Shugui Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China.
| | - Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jingjing Mao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Dizhi Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zia Ullah
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
24
|
Li J, Li Y, Deng Y, Chen P, Feng F, Chen W, Zhou X, Wang Y. A calcium-dependent protein kinase, ZmCPK32, specifically expressed in maize pollen to regulate pollen tube growth. PLoS One 2018; 13:e0195787. [PMID: 29813101 PMCID: PMC5973587 DOI: 10.1371/journal.pone.0195787] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/29/2018] [Indexed: 01/10/2023] Open
Abstract
Calcium-dependent protein kinases (CPKs) play an essential role in the regulation of pollen tube growth. Although CPK genes have been identified in maize, and some have been functionally characterized, the molecular function of ZmCPKs associated with pollen tube development remains less well studied. Here, we report that a pollen-specific CPK, ZmCPK32, is involved in the regulation of pollen germination and tube extension. ZmCPK32 exhibited CPK activity and was localized on the plasma membrane and punctate internal membrane compartments via N-terminal acylation. In situ hybridization and real-time PCR revealed that ZmCPK32 transcripts accumulated in pollen and expression was dramatically upregulated during shedding. To elucidate the function of this gene, we transiently expressed a ZmCPK32-GFP fusion protein in tobacco pollen using microparticle bombardment. ZmCPK32 accumulation inhibited pollen germination and reduced pollen tube growth, but this effect was abolished when the kinase-inactive variant was expressed, indicating that kinase activity is critical for its regulatory function. In addition, the plasma membrane localization of ZmCPK32 is essential for regulating polar growth, as pollen expressing the cytosol-localized kinase displayed reduced tube length but germinated well. Moreover, the constitutively active form of ZmCPK32 enhanced the reduction in the germination rate, indicating that the specific activation of ZmCPK32 via calcium ions at the cortical growth point is essential for regulating appropriate germination. The results suggest that ZmCPK32 is functionally associated with pollen tube growth, and could represent a potential target for breeding male-sterile maize.
Collapse
Affiliation(s)
- Jie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yihao Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yanling Deng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ping Chen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Fen Feng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wanwan Chen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xiaojin Zhou
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- Department of Crop Genomic & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (YDW); (XJZ)
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail: (YDW); (XJZ)
| |
Collapse
|
25
|
Functional characterization of calcium-dependent protein kinase (CPK) 2 gene from oilseed rape (Brassica napus L.) in regulating reactive oxygen species signaling and cell death control. Gene 2018; 651:49-56. [PMID: 29408396 DOI: 10.1016/j.gene.2018.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 11/24/2022]
Abstract
Calcium-dependent protein kinases (CPKs), being Ser/Thr protein kinases found only in plants and some protozoans are calcium sensors that regulate diverse biological processes. However, the function and mode of CPKs in oilseed rape (Brassica napus) remain elusive. In this study, we identified CPK2 from oilseed rape as a novel regulator of reactive oxygen species (ROS) and cell death. BnaCPK2 was identified to be located at the endoplasmic reticulum membrane. Expression of BnaCPK2 was induced during Bax-induced cell death. Overexpression of the constitutively active form of BnaCPK2 led to significantly more accumulation of ROS and cell death than the full-length CPK2, which is supported by various measurements of physiological data. In addition, a quantitative RT-PCR survey revealed that the expression levels of a few marker genes are significantly changed as a result of CPK2 expression. Mating-based split ubiquitin system (mbSUS) and bimolecular fluorescence complementation (BiFC) were used to screen and confirm the BnaCPK2 interacting proteins. We identified and confirmed that CPK2 interacted with NADPH oxidase-like respiratory burst oxidase homolog D (RbohD), but not with RbohF. Based on its function and interacting partners, we propose that BnaCPK2 plays an important role in ROS and cell death control through interacting with RbohD.
Collapse
|
26
|
Huang R, Zhao J, Liu J, Wang Y, Han S, Zhao H. Genome-wide analysis and expression profiles of NTMC2 family genes in Oryza sativa. Gene 2017; 637:130-137. [PMID: 28947303 DOI: 10.1016/j.gene.2017.09.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/06/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
N-terminal-TM-C2 domain proteins (NTMC2), which share domain architecture and sequence similarity to synaptotagmins (Syts) in mammals and FAM62 (extended Syts) in metazoans, form a small gene family in plants. Previous studies showed that the Arabidopsis thaliana NTMC2 type 1.1 protein (NTMC2T1.1, named AtSyt1) possesses calcium- and membrane-binding activities that allow it to function in a plasma membrane repair pathway induced by stress. However, we lack understanding of the diverse biological roles of plant NTMC2 family genes. In this study, a total of 13 OsNTMC2 genes was identified through a comprehensive bioinformatics analysis of the rice (Oryza sativa L.) genome and classified into six OsNTMC2 groups (OsNTMC2T1 to OsNTMC2T6) based on phylogeny and motif constitution. OsNTMC2T1 to OsNTMC2T3 have two calcium-binding domains (C2A and C2B), but OsNTMC2T4 to OsNTMC2T6 have single C2 domain. The expression profiles of OsNTMC2 genes were analysed at different stages of vegetative and reproductive development. This analysis revealed that at least one OsNTMC2 gene was abundantly expressed at each stage of development. These results should facilitate research on this gene family and provide new insights elucidating their functions in higher plants.
Collapse
Affiliation(s)
- Rui Huang
- College of Medicine, Northwest Minzu University, Lanzhou 730030, China; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jin Zhao
- College of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
27
|
Wang Q, Yin X, Chen Q, Xiang N, Sun X, Yang Y, Yang Y. Genome-wide survey indicates diverse physiological roles of the turnip (Brassica rapa var. rapa) calcium-dependent protein kinase genes. Sci Rep 2017; 7:15803. [PMID: 29150669 PMCID: PMC5693941 DOI: 10.1038/s41598-017-16102-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) as crucial sensors of calcium concentration changes play important roles in responding to abiotic and biotic stresses. In this study, 55 BrrCDPK genes, which were phylogenetically clustered into four subfamilies, were identified. Chromosome locations indicated that the CDPK family in turnip expanded by segmental duplication and genome rearrangement. Moreover, gene expression profiles showed that different BrrCDPKs were expressed in specific tissues or stages. Transcript levels of BrrCDPKs indicated that they were involved in abiotic and biotic stresses and that paralogs exhibited functional divergence. Additionally, we identified 15 Rboh genes in turnip; the results of yeast two-hybrid analysis suggested that BrrRbohD1 interacted only with BrrCDPK10 and that BrrRbohD2 interacted with BrrCDPK4/7/9/10/17/22/23. Most of the genes play an important role in pst DC3000 defense by regulating the accumulation of H2O2 and stomatal closure. Our study may provide an important foundation for future functional analysis of BrrCDPKs and reveal further biological roles.
Collapse
Affiliation(s)
- Qiuli Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xin Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Nan Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xudong Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
28
|
Caló G, Scheidegger D, Martínez-Noël GMA, Salerno GL. Ancient signal for nitrogen status sensing in the green lineage: Functional evidence of CDPK repertoire in Ostreococcus tauri. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:377-384. [PMID: 28710945 DOI: 10.1016/j.plaphy.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 05/08/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) regulate plant development and many stress signalling pathways through the complex cytosolic [Ca2+] signalling. The genome of Ostreococcus tauri (Ot), a model prasinophyte organism that is on the base of the green lineage, harbours three sequences homologous to those encoding plant CDPKs with the three characteristic conserved domains (protein kinase, autoregulatory/autoinhibitory, and regulatory domain). Phylogenetic and structural analyses revealed that putative OtCDPK proteins are closely related to CDPKs from other Chlorophytes. We functionally characterised the first marine picophytoeukaryote CDPK gene (OtCDPK1) and showed that the expression of the three OtCDPK genes is up-regulated by nitrogen depletion. We conclude that CDPK signalling pathway might have originated early in the green lineage and may play a key role in prasinophytes by sensing macronutrient changes in the marine environment.
Collapse
Affiliation(s)
- Gonzalo Caló
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Dana Scheidegger
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Graciela L Salerno
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina.
| |
Collapse
|
29
|
Yang Y, Wang Q, Chen Q, Yin X, Qian M, Sun X, Yang Y. Genome-wide survey indicates diverse physiological roles of the barley (Hordeum vulgare L.) calcium-dependent protein kinase genes. Sci Rep 2017; 7:5306. [PMID: 28706292 PMCID: PMC5509701 DOI: 10.1038/s41598-017-05646-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/01/2017] [Indexed: 11/23/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors that play important roles in the regulation of plant growth and developmental processes, as well as protective responses to environmental stress. Here, we identified 28 CDPK genes from barley and cloned 5 new, full-length CDPK genes, MLOC_58648a, MLOC_19618a, MLOC_71733a, AK249361a and MLOC_4965a, using their expressed sequence tags. Phylogenetic and gene structural analyses revealed that the CDPK could be divided into four subgroups. Significant site-specific altered constraints and a high evolutionary rate may have contributed to the functional divergences among CDPK gene subfamilies. Expression profiles of different tissues and developmental stages suggested that several CDPK genes are involved in the functional development of plants. Different expression levels under a variety of abiotic stresses also indicated that the CDPK family underwent functional divergence during long-term evolution. Furthermore, several CDPK genes responded to single treatments and individual CDPK genes responded to multiple treatments, suggesting that barley CDPKs may be involved in mediating cross-talk among different signalling pathways. Our data provide an important foundation for the functional and evolutionary analyses of this important gene family in barley.
Collapse
Affiliation(s)
- Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qiuli Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qian Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xin Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Qian
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xudong Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
30
|
Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, Ramalho JC, Lam TT, Negrão S, Abreu IA, Oliveira MM. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. PLANT, CELL & ENVIRONMENT 2017; 40:1197-1213. [PMID: 28102545 DOI: 10.1111/pce.12916] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 05/20/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here, we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analysing OsCPK17 knockout, silencing and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose-phosphate synthase OsSPS4 and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.
Collapse
Affiliation(s)
- M Cecília Almadanim
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Bruno M Alexandre
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Margarida T G Rosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - António E Leitão
- Plant Stress and Biodiversity, Linking Landscape, Environment, Agriculture and Food (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, Universidade de Lisboa, 2784-505, Oeiras, Portugal
| | - José C Ramalho
- Plant Stress and Biodiversity, Linking Landscape, Environment, Agriculture and Food (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, Universidade de Lisboa, 2784-505, Oeiras, Portugal
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520-8024, USA
- MS and Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, 06520-8024, USA
| | - Sónia Negrão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| |
Collapse
|
31
|
Zhang H, Wei C, Yang X, Chen H, Yang Y, Mo Y, Li H, Zhang Y, Ma J, Yang J, Zhang X. Genome-wide identification and expression analysis of calcium‑dependent protein kinase and its related kinase gene families in melon (Cucumis melo L.). PLoS One 2017; 12:e0176352. [PMID: 28437432 PMCID: PMC5402965 DOI: 10.1371/journal.pone.0176352] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
The calcium-dependent protein kinase (CDPK) is a ser/thr protein kinase that plays vital roles in plant growth, development, and responses to multiple stresses. Despite an important member of the stress responsive gene family, little is known about the evolutionary history and expression patterns of CDPK genes in melon. Herein, a total of 18 CDPK genes and 7 CDPK-related protein kinases (CRK) genes were identified in the melon genome via bioinformatic analysis, which were unevenly distributed across eleven chromosomes with an apparent exception for chromosome 3. Comparative syntenic analysis between Cucumis melo L. and Arabidopsis thaliana revealed that 13 CmCDPKs and 19 AtCPKs existed in 20 corresponding syntenic blocks. In addition, based on gene structure and phylogenetic analyses, all CmCDPKs were divided into four groups (CDPK I-IV) and CmCRKs clustered into one group (CRK I). Interestingly, group CDPK IV was clearly distinct from the other three CDPK groups, but clustered with CRK I on the phylogenetic tree, implying their origination from a common ancestor. Furthermore, CmCDPKand CmCRK genes were differentially expressed in response to various stimuli, such as biotic stress (Podosphaera xanthii), abiotic stress (salt and cold), and hormone (abscisic acid) treatment. To our knowledge, this is the first report on CDPK and CRK gene families in melon, which provides a basic foundation for functional characterizations of CmCDPK and CmCRK genes in the future.
Collapse
Affiliation(s)
- Haifei Zhang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Chunhua Wei
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaozhen Yang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Hejie Chen
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Yongchao Yang
- Department of Horticulture, Northwest A&F University, Yangling, China
- Wenshan Academy of Agricultural Sciences, Wenshan, China
| | - Yanling Mo
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Hao Li
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Jianxiang Ma
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Jianqiang Yang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Xian Zhang
- Department of Horticulture, Northwest A&F University, Yangling, China
- * E-mail:
| |
Collapse
|
32
|
Manimaran P, Mangrauthia SK, Sundaram RM, Balachandran SM. Constitutive expression and silencing of a novel seed specific calcium dependent protein kinase gene in rice reveals its role in grain filling. JOURNAL OF PLANT PHYSIOLOGY 2015; 174:41-8. [PMID: 25462965 DOI: 10.1016/j.jplph.2014.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/20/2014] [Accepted: 09/20/2014] [Indexed: 05/04/2023]
Abstract
Ca(2+) sensor protein kinases are prevalent in most plant species including rice. They play diverse roles in plant signaling mechanism. Thirty one CDPK genes have been identified in rice and some are functionally characterized. In the present study, the newly identified rice CDPK gene OsCPK31 was functionally validated by overexpression and silencing in Taipei 309 rice cultivar. Spikelets of overexpressing plants showed hard dough stage within 15d after pollination (DAP) with rapid grain filling and early maturation. Scanning electron microscopy of endosperm during starch granule formation confirmed early grain filling. Further, seeds of overexpressing transgenic lines matured early (20-22 DAP) and the average number of maturity days reduced significantly. On the other hand, silencing lines showed more number of unfilled spikelet without any difference in maturity duration. It will be interesting to further decipher the role of OsCPK31 in biological pathways associated with distribution of photosynthetic assimilates during grain filling stage.
Collapse
Affiliation(s)
- P Manimaran
- Biotechnology Laboratory, Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, Andhra Pradesh, India
| | - Satendra K Mangrauthia
- Biotechnology Laboratory, Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, Andhra Pradesh, India
| | - R M Sundaram
- Biotechnology Laboratory, Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, Andhra Pradesh, India
| | - S M Balachandran
- Biotechnology Laboratory, Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, Andhra Pradesh, India.
| |
Collapse
|
33
|
Cai H, Cheng J, Yan Y, Xiao Z, Li J, Mou S, Qiu A, Lai Y, Guan D, He S. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum. FRONTIERS IN PLANT SCIENCE 2015; 6:737. [PMID: 26442050 PMCID: PMC4584942 DOI: 10.3389/fpls.2015.00737] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/29/2015] [Indexed: 05/09/2023]
Abstract
As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs) play important roles in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a genome wide comprehensive analysis of genes encoding CDPKs and CDPK-related protein kinases (CRKs) was performed in pepper, a total of 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CDPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the C. annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and 8 CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.
Collapse
Affiliation(s)
- Hanyang Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Junbin Cheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yan Yan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhuoli Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jiazhi Li
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Shaoliang Mou
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ailian Qiu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yan Lai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Shuilin He, National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
34
|
Hufnagel B, de Sousa SM, Assis L, Guimaraes CT, Leiser W, Azevedo GC, Negri B, Larson BG, Shaff JE, Pastina MM, Barros BA, Weltzien E, Rattunde HFW, Viana JH, Clark RT, Falcão A, Gazaffi R, Garcia AAF, Schaffert RE, Kochian LV, Magalhaes JV. Duplicate and conquer: multiple homologs of PHOSPHORUS-STARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. PLANT PHYSIOLOGY 2014; 166:659-77. [PMID: 25189534 PMCID: PMC4213096 DOI: 10.1104/pp.114.243949] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/01/2014] [Indexed: 05/02/2023]
Abstract
Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil.
Collapse
Affiliation(s)
- Barbara Hufnagel
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Sylvia M de Sousa
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Lidianne Assis
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Claudia T Guimaraes
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Willmar Leiser
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Gabriel C Azevedo
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Barbara Negri
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Brandon G Larson
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Jon E Shaff
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Maria Marta Pastina
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Beatriz A Barros
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Eva Weltzien
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Henry Frederick W Rattunde
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Joao H Viana
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Randy T Clark
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Alexandre Falcão
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Rodrigo Gazaffi
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Antonio Augusto F Garcia
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Robert E Schaffert
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Leon V Kochian
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Jurandir V Magalhaes
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| |
Collapse
|
35
|
Shumakova OA, Kiselev KV. Regulation of somatic embryogenesis in Panax ginseng C. A. Meyer cell cultures by PgCDPK2DS1. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414060106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Molecular Characterization ofHbCDPK1, an Ethephon-Induced Calcium-Dependent Protein Kinase Gene ofHevea brasiliensis. Biosci Biotechnol Biochem 2014; 74:2183-8. [DOI: 10.1271/bbb.100293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Veremeichik GN, Shkryl YN, Pinkus SA, Bulgakov VP. Expression profiles of calcium-dependent protein kinase genes (CDPK1-14) in Agrobacterium rhizogenes pRiA4-transformed calli of Rubia cordifolia under temperature- and salt-induced stresses. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:467-474. [PMID: 24655382 DOI: 10.1016/j.jplph.2013.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 06/03/2023]
Abstract
Agrobacterium rhizogenes genetically transform plant cells naturally via horizontal gene transfer by the introduction of T-DNA from the Ri plasmid into genomic DNA to create favorable conditions for successful colonization. An intriguing feature of pRiA4-transformed cells is their recently discovered enhanced tolerance to abiotic stress stimuli and activation of antioxidant enzyme expression. The mechanism by which A. rhizogenes modulates the defense responses of transformed cells remains unclear. It has been established that calcium-dependent protein kinase (CDPK) genes mediate crosstalk of signaling pathways in plants, and these genes have been implicated in biotic and abiotic stress signaling. In this study, we identified fourteen CDPK genes from Rubia cordifolia and examined their expression in aerial plant organs as well as in non-transformed and A. rhizogenes A4-transformed calli. Expression of RcCDPK4, RcCDPK5, RcCDPK7, and RcCDPK10 was 1.2- to 3.9-fold higher in pRiA4-transformed cells than in non-transformed cells, whereas expression of RcCDPK1, RcCDPK9, RcCDPK11, and RcCDPK14 was 1.2- to 1.9-fold lower. Agrobacterium transformation substantially modified the transcriptional responses of specific RcCDPK isoforms in pRiA4-transformed cells under conditions of temperature- and salinity-induced stress. On the basis of the results, we suggest that A. rhizogenes T-DNA genes exert their diverse biological functions by altering the expression of various CDPK genes.
Collapse
Affiliation(s)
- G N Veremeichik
- Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Y N Shkryl
- Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; Far Eastern Federal University, Vladivostok 690950, Russia.
| | - S A Pinkus
- Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - V P Bulgakov
- Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; Far Eastern Federal University, Vladivostok 690950, Russia
| |
Collapse
|
38
|
Zhang H, Liu WZ, Zhang Y, Deng M, Niu F, Yang B, Wang X, Wang B, Liang W, Deyholos MK, Jiang YQ. Identification, expression and interaction analyses of calcium-dependent protein kinase (CPK) genes in canola (Brassica napus L.). BMC Genomics 2014; 15:211. [PMID: 24646378 PMCID: PMC4000008 DOI: 10.1186/1471-2164-15-211] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/07/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a well-known ubiquitous intracellular secondary messenger in plants. Calcium-dependent protein kinases (CPKs) are Ser/Thr protein kinases found only in plants and some protozoans. CPKs are Ca2+ sensors that have both Ca2+ sensing function and kinase activity within a single protein and play crucial roles in plant development and responses to various environmental stresses. RESULTS In this study, we mined the available expressed sequence tags (ESTs) of B. napus and identified a total of 25 CPK genes, among which cDNA sequences of 23 genes were successfully cloned from a double haploid cultivar of canola. Phylogenetic analysis demonstrated that they could be clustered into four subgroups. The subcellular localization of five selected BnaCPKs was determined using green fluorescence protein (GFP) as the reporter. Furthermore, the expression levels of 21 BnaCPK genes in response to salt, drought, cold, heat, abscisic acid (ABA), low potassium (LK) and oxidative stress were studied by quantitative RT-PCR and were found to respond to multiple stimuli, suggesting that canola CPKs may be convergence points of different signaling pathways. We also identified and cloned five and eight Clade A basic leucine zipper (bZIP) and protein phosphatase type 2C (PP2C) genes from canola and, using yeast two-hybrid and bimolecular fluorescence complementation (BiFC), determined the interaction between individual BnaCPKs and BnabZIPs or BnaPP2Cs (Clade A). We identified novel, interesting interaction partners for some of the BnaCPK proteins. CONCLUSION We present the sequences and characterization of CPK gene family members in canola for the first time. This work provides a foundation for further crop improvement and improved understanding of signal transduction in plants.
Collapse
Affiliation(s)
- Hanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wu-Zhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yupeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Min Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Fangfang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaoling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Boya Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wanwan Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
39
|
Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. Calcium-dependent protein kinases in plants: evolution, expression and function. PLANT & CELL PHYSIOLOGY 2014; 55:551-69. [PMID: 24363288 DOI: 10.1093/pcp/pct200] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in metabolism, osmosis, hormone response and stress signaling pathways. CPKs are a large multigene family of proteins that are present in all plants studied to date, as well as in protists, oomycetes and green algae, but are not found in animals and fungi. Despite the increasing evidence of the importance of CPKs in developmental and stress responses from various plants, a comprehensive genome-wide analysis of CPKs from algae to higher plants has not been undertaken. This paper describes the evolution of CPKs from green algae to plants using a broadly sampled phylogenetic analysis and demonstrates the functional diversification of CPKs based on expression and functional studies in different plant species. Our findings reveal that CPK sequence diversification into four major groups occurred in parallel with the terrestrial transition of plants. Despite significant expansion of the CPK gene family during evolution from green algae to higher plants, there is a high level of sequence conservation among CPKs in all plant species. This sequence conservation results in very little correlation between CPK evolutionary groupings and functional diversity, making the search for CPK functional orthologs a challenge.
Collapse
Affiliation(s)
- Gardette R Valmonte
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, New Zealand
| | | | | | | |
Collapse
|
40
|
Chen F, Fasoli M, Tornielli GB, Dal Santo S, Pezzotti M, Zhang L, Cai B, Cheng ZM. The evolutionary history and diverse physiological roles of the grapevine calcium-dependent protein kinase gene family. PLoS One 2013; 8:e80818. [PMID: 24324631 PMCID: PMC3855637 DOI: 10.1371/journal.pone.0080818] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are molecular switches that bind Ca2+, ATP, and protein substrates, acting as sensor relays and responders that convert Ca2+ signals, created by developmental processes and environmental stresses, into phosphorylation events. The precise functions of the CDPKs in grapevine (Vitis vinifera) are largely unknown. We therefore investigated the phylogenetic relationships and expression profiles of the 17 CDPK genes identified in the 12x grapevine genome sequence, resolving them into four subfamilies based on phylogenetic tree topology and gene structures. The origins of the CDPKs during grapevine evolution were characterized, involving 13 expansion events. Transcriptomic analysis using 54 tissues and developmental stages revealed three types of CDPK gene expression profiles: constitutive (housekeeping CDPKs), partitioned functions, and prevalent in pollen/stamen. We identified two duplicated CDPK genes that had evolved from housekeeping to pollen-prevalent functions and whose origin correlated with that of seed plants, suggesting neofunctionalization with an important role in pollen development and also potential value in the breeding of seedless varieties. We also found that CDPKs were involved in three abiotic stress signaling pathways and could therefore be used to investigate the crosstalk between stress responses.
Collapse
Affiliation(s)
- Fei Chen
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Marianna Fasoli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | | | - Silvia Dal Santo
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Mario Pezzotti
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Liangsheng Zhang
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bin Cai
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zong-Ming Cheng
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
41
|
Dubrovina AS, Kiselev KV, Khristenko VS. Expression of calcium-dependent protein kinase (CDPK) genes under abiotic stress conditions in wild-growing grapevine Vitis amurensis. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1491-500. [PMID: 23886738 DOI: 10.1016/j.jplph.2013.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 05/09/2023]
Abstract
Calcium-dependent protein kinases (CDPKs), which are important sensors of Ca(2+) flux in plants, are known to play essential roles in plant development and adaptation to abiotic stresses. In the present work, we studied expression of CDPK genes under osmotic and temperature stress treatments in wild-growing grapevine Vitis amurensis Rupr., which is known to possess high adaptive potential and a high level of resistance against adverse environmental conditions. In this study, using RT-PCR with degenerate primers, DNA sequencing and frequency analysis of RT-PCR products, we identified 13 CDPK genes that are actively expressed in healthy V. amurensis cuttings under high salt, high mannitol, desiccation, and temperature stress conditions. 12 CDPKs, namely VaCPK1, VaCPK2, VaCPK3, VaCPK9, VaCPK13, VaCPK16, VaCPK20, VaCPK21, VaCPK25, VaCPK26, VaCPK29 and VaCPK30, were novel for Vitaceae, and their full cDNAs were obtained and described. Quantitative real-time RT-PCR demonstrated that mRNA levels of 10 VaCPK genes were differentially up-regulated under the osmotic and temperature stress treatments, while the abundance of 3 VaCPK transcript variants, VaCPK3a, VaCPK25, and VaCPK30, was not markedly changed. Expression profiling of the VaCPK genes in leaves, leaf petioles, stems, inflorescences, berries, and seeds of V. amurensis revealed that the genes exhibit different organ-specific expression patterns. The stimulatory effect of abiotic stress on the expression of the VaCPK1, 2, 3, 9, 13, 16, 20, 21, 26, and VaCPK29 genes is suggestive of their implication in the grapevine response to osmotic and temperature stresses, while the variability in their organ-specific expression patterns indicates that the enzymes perform distinct biological functions.
Collapse
Affiliation(s)
- Alexandra S Dubrovina
- Laboratory of Biotechnology, Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | | | | |
Collapse
|
42
|
Jamshidiha M, Ishida H, Sutherland C, Gifford JL, Walsh MP, Vogel HJ. Structural analysis of a calmodulin variant from rice: the C-terminal extension of OsCaM61 regulates its calcium binding and enzyme activation properties. J Biol Chem 2013; 288:32036-49. [PMID: 24052265 PMCID: PMC3814798 DOI: 10.1074/jbc.m113.491076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/02/2013] [Indexed: 02/04/2023] Open
Abstract
OsCaM61 is one of five calmodulins known to be present in Oryza sativa that relays the increase of cytosolic [Ca(2+)] to downstream targets. OsCaM61 bears a unique C-terminal extension with a prenylation site. Using nuclear magnetic resonance (NMR) spectroscopy we studied the behavior of the calmodulin (CaM) domain and the C-terminal extension of OsCaM61 in the absence and presence of Ca(2+). NMR dynamics data for OsCaM61 indicate that the two lobes of the CaM domain act together unlike the independent behavior of the lobes seen in mammalian CaM and soybean CaM4. Also, data demonstrate that the positively charged nuclear localization signal region in the tail in apo-OsCaM61 is helical, whereas it becomes flexible in the Ca(2+)-saturated protein. The extra helix in apo-OsCaM61 provides additional interactions in the C-lobe and increases the structural stability of the closed apo conformation. This leads to a decrease in the Ca(2+) binding affinity of EF-hands III and IV in OsCaM61. In Ca(2+)-OsCaM61, the basic nuclear localization signal cluster adopts an extended conformation, exposing the C-terminal extension for prenylation or enabling OsCaM61 to be transferred to the nucleus. Moreover, Ser(172) and Ala(173), residues in the tail, interact with different regions of the protein. These interactions affect the ability of OsCaM61 to activate different target proteins. Altogether, our data show that the tail is not simply a linker between the prenyl group and the protein but that it also provides a new regulatory mechanism that some plants have developed to fine-tune Ca(2+) signaling events.
Collapse
Affiliation(s)
- Mostafa Jamshidiha
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Hiroaki Ishida
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Cindy Sutherland
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1,Canada
| | - Jessica L. Gifford
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Michael P. Walsh
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1,Canada
| | - Hans J. Vogel
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| |
Collapse
|
43
|
Lu SX, Hrabak EM. The myristoylated amino-terminus of an Arabidopsis calcium-dependent protein kinase mediates plasma membrane localization. PLANT MOLECULAR BIOLOGY 2013; 82:267-78. [PMID: 23609608 PMCID: PMC3668125 DOI: 10.1007/s11103-013-0061-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 04/15/2013] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CDPK) are a major group of calcium-stimulated kinases found in plants and some protists. Many CDPKs are membrane-associated, presumably because of lipid modifications at their amino termini. We investigated the subcellular location and myristoylation of AtCPK5, a member of the Arabidopsis CDPK family. Most AtCPK5 was associated with the plasma membrane as demonstrated by two-phase fractionation of plant microsomes and by in vivo detection of AtCPK5-GFP fusion proteins. AtCPK5 was a substrate for plant N-myristoyltransferase and myristoylation was prevented by converting the glycine at the proposed site of myristate attachment to alanine (G2A). In transgenic plants, a G2A mutation completely abolished AtCPK5 membrane association, indicating that myristoylation was essential for membrane binding. The first sixteen amino acids of AtCPK5 were sufficient to direct plasma membrane localization. In addition, differentially phosphorylated forms of AtCPK5 were detected both in planta and after expression of AtCPK5 in a cell-free plant extract. Our results demonstrate that AtCPK5 is myristoylated at its amino terminus and that myristoylation is required for membrane binding.
Collapse
Affiliation(s)
- Sheen X. Lu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
- Present Address: Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA 09905 USA
| | - Estelle M. Hrabak
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
44
|
Isolation of differentially expressed genes in wheat caryopses with contrasting starch granule size. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn order to identify genes responsible for starch granule initiation during early development of wheat caryopsis, nine winter wheat breeding lines were studied. Two breeding lines, which are the most diverse in A-type granule size (26.85 µm versus 23.65 µm) were chosen for further differential gene expression analysis in developing caryopses at 10 and 15 days post-anthesis (DPA). cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis resulted in 384 transcript-derived fragments, out of which 18 were identified as being differentially expressed. Six differentially expressed genes, together with the six well-known starch biosynthesis genes, were chosen for semi-quantitative gene expression analysis in developing wheat caryopses at 10 and 15 DPA. This study provides genomic information on 18 genes differentially expressed at early stages of wheat caryopses development and reports on the identification of genes putatively involved in the production of large A-type granules. These genes are targets for further validation on their role in starch granule synthesis control and provide the basis for the development of DNA marker tools in winter wheat breeding for enhanced starch quality.
Collapse
|
45
|
Grandellis C, Giammaria V, Bialer M, Santin F, Lin T, Hannapel DJ, Ulloa RM. The novel Solanum tuberosum calcium dependent protein kinase, StCDPK3, is expressed in actively growing organs. PLANTA 2012; 236:1831-48. [PMID: 22922879 DOI: 10.1007/s00425-012-1732-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/30/2012] [Indexed: 05/11/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are key components of calcium regulated signaling cascades in plants. In this work, isoform StCDPK3 from Solanum tuberosum was studied and fully described. StCDPK3 encodes a 63 kDa protein with an N-terminal variable domain (NTV), rich in prolines and glutamines, which presents myristoylation and palmitoylation consensus sites and a PEST sequence indicative of rapid protein degradation. StCDPK3 gene (circa 11 kb) is localized in chromosome 3, shares the eight exons and seven introns structure with other isoforms from subgroup IIa and contains an additional intron in the 5'UTR region. StCDPK3 expression is ubiquitous being transcripts more abundant in early elongating stolons (ES), leaves and roots, however isoform specific antibodies only detected the protein in leaf particulate extracts. The recombinant 6xHis-StCDPK3 is an active kinase that differs in its kinetic parameters and calcium requirements from StCDPK1 and 2 isoforms. In vitro, StCDPK3 undergoes autophosphorylation regardless of the addition of calcium. The StCDPK3 promoter region (circa 1,800 bp) was subcloned by genome walking and fused to GUS. Light and ABRE responsive elements were identified in the promoter region as well as elements associated to expression in roots. StCDPK3 expression was enhanced by ABA while GA decreased it. Potato transgenic lines harboring StCDPK3 promoter∷GUS construct were generated by Agrobacterium tumefaciens mediated plant transformation. Promoter activity was detected in leaves, root tips and branching points, early ES, tuber eyes and developing sprouts indicating that StCDPK3 is expressed in actively growing organs.
Collapse
Affiliation(s)
- Carolina Grandellis
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Hector N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
46
|
Monshausen GB. Visualizing Ca(2+) signatures in plants. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:677-682. [PMID: 23044039 DOI: 10.1016/j.pbi.2012.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/08/2012] [Accepted: 09/18/2012] [Indexed: 06/01/2023]
Abstract
Ca(2+) is a key player in an astonishing variety of plant signal transduction pathways where transient, spiking or oscillatory changes in cytosolic Ca(2+) levels help to couple environmental or developmental cues to appropriate cellular responses. Understanding whether and how much Ca(2+) signaling contributes to defining stimulus-response specificity has long been a challenge, but recent work has provided strong evidence that specific information can indeed be encoded in the spatiotemporal characteristics of Ca(2+) signals. Identification of the Ca(2+) binding proteins that transduce Ca(2+) signals by regulating downstream effector proteins has revealed a complex network of Ca(2+) sensor families, of which some members show distinct patterns of expression and subcellular localization. By utilizing genetically encoded fluorescent Ca(2+) probes to monitor Ca(2+) changes at high spatiotemporal resolution, it is now possible to explore whether such spatial heterogeneities in Ca(2+) sensor distribution are coordinated with subcellular microdomains of Ca(2+) signaling. Such visualization of Ca(2+) signaling will also help to address which cellular compartments and transporters contribute to mobilizing and sequestering Ca(2+) and thus define stimulus-specific Ca(2+) signatures.
Collapse
|
47
|
Spatial and temporal activity of upstream regulatory regions of rice anther-specific genes in transgenic rice and Arabidopsis. Transgenic Res 2012; 22:31-46. [PMID: 22684614 DOI: 10.1007/s11248-012-9621-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Upstream regulatory regions (URRs) of rice anther-specific genes, namely OSbHLH (coding for basic helix-loop-helix-containing protein) and OSFbox (F-box protein encoding gene), selected from the microarray data have been cloned to control expression of GUS and GFP reporter genes in stably transformed rice. Quantitative real time PCR analysis shows maximum transcript accumulation of these two genes in the meiotic anthers. Analysis of OSbHLH and OSFbox URRs by PLACE database reveal the presence of known pollen-specific cis elements. The URRs of both OSbHLH and OSFbox genes have maximum activity in the meiotic anther stage in rice, but confer constitutive expression in the heterologous dicot system, Arabidopsis, indicative of monocot specificity. Another rice gene (OSIPK; with homology to genes encoding calcium-dependent protein kinases) URR already reported to have anther-specific activity in Arabidopsis and tobacco also confers anther-specific expression in rice and is active in the pollen tubes, suggesting it belongs to the category of late expressed genes. The spatial activity of three URRs has also been analysed by histochemical evaluation of GUS activity in different anther cells/tissues. The activity of OSIPK URR in rice is strongest among the three URRs.
Collapse
|
48
|
Sarwat M, Ahmad P, Nabi G, Hu X. Ca(2+) signals: the versatile decoders of environmental cues. Crit Rev Biotechnol 2012; 33:97-109. [PMID: 22568501 DOI: 10.3109/07388551.2012.672398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plants are often subjected to various environmental stresses that lead to deleterious effects on growth, production, sustainability, etc. The information of the incoming stress is read by the plants through the mechanism of signal transduction. The plant Ca(2+) serves as secondary messenger during adaptations to stressful conditions and developmental processes. A plethora of Ca(2+) sensors and decoders functions to bring about these changes. The cellular concentrations of Ca(2+), their subcellular localization, and the specific interaction affinities of Ca(2+) decoder proteins all work together to make this process a complex but synchronized signaling network. In this review, we focus on the versatility of these sensors and decoders in the model plant Arabidopsis as well as plants of economical importance. Here, we have also thrown light on the possible mechanism of action of these important components.
Collapse
Affiliation(s)
- Maryam Sarwat
- Pharmaceutical Biotechnology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| | | | | | | |
Collapse
|
49
|
Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64. Mol Genet Genomics 2012; 287:389-410. [PMID: 22526427 PMCID: PMC3336058 DOI: 10.1007/s00438-012-0686-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/26/2012] [Indexed: 12/27/2022]
Abstract
The NAC (NAM, ATAF1/2 and CUC2) genes are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. We describe the rice (Oryza sativa) OsNAC genes expression profiles (GEPs) under normal and water-deficit treatments (WDTs). The GEPs of the OsNAC genes were analyzed in 25 tissues covering the entire life cycle of Minghui 63. High expression levels of 17 genes were demonstrated in certain tissues under normal conditions suggesting that these genes may play important roles in specific organs. We determined that 16 genes were differentially expressed under at least 1 phytohormone (NAA, GA3, KT, SA, ABA, and JA) treatment. To investigate the GEPs in the root, leaf, and panicle of three rice genotypes [e.g., 2 near-isogenic lines (NILs) and IR64], we used two NILs from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water at severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from the two NILs under both WDTs, and the majority of the OsNAC genes that were activated were in the drought-tolerant IR77298-14-1-2-B-10 line compared with the drought-susceptible IR77298-14-1-2-B-13 or IR64. In IR77298-14-1-2-B-10, seventeen genes were very specific in their expression levels. Approximately 70 % of the genes from subgroups SNAC and NAM/CUC3 were activated in the leaf, but 37 % genes from subgroup SND were inactivated in the root compared with the control under severe stress conditions. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis.
Collapse
|
50
|
Jogaiah S, Govind SR, Tran LSP. Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol 2012; 33:23-39. [PMID: 22364373 DOI: 10.3109/07388551.2012.659174] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Economically important crops, such as maize, wheat, rice, barley, and other food crops are affected by even small changes in water potential at important growth stages. Developing a comprehensive understanding of host response to drought requires a global view of the complex mechanisms involved. Research on drought tolerance has generally been conducted using discipline-specific approaches. However, plant stress response is complex and interlinked to a point where discipline-specific approaches do not give a complete global analysis of all the interlinked mechanisms. Systems biology perspective is needed to understand genome-scale networks required for building long-lasting drought resistance. Network maps have been constructed by integrating multiple functional genomics data with both model plants, such as Arabidopsis thaliana, Lotus japonicus, and Medicago truncatula, and various food crops, such as rice and soybean. Useful functional genomics data have been obtained from genome-wide comparative transcriptome and proteome analyses of drought responses from different crops. This integrative approach used by many groups has led to identification of commonly regulated signaling pathways and genes following exposure to drought. Combination of functional genomics and systems biology is very useful for comparative analysis of other food crops and has the ability to develop stable food systems worldwide. In addition, studying desiccation tolerance in resurrection plants will unravel how combination of molecular genetic and metabolic processes interacts to produce a resurrection phenotype. Systems biology-based approaches have helped in understanding how these individual factors and mechanisms (biochemical, molecular, and metabolic) "interact" spatially and temporally. Signaling network maps of such interactions are needed that can be used to design better engineering strategies for improving drought tolerance of important crop species.
Collapse
Affiliation(s)
- Sudisha Jogaiah
- Downy Mildew Research Laboratory, Department of Studies in Biotechnology, University of Mysore, Mysore, Karnataka, India
| | | | | |
Collapse
|