1
|
Oyarce P, Xiao TT, Henkel C, Frederiksen SF, Gonzalez-Kise JK, Smet W, Wang JY, Al-Babili S, Blilou I. Microscopy and spatial-metabolomics identify tissue-specific metabolic pathways uncovering salinity and drought tolerance mechanisms in Avicennia marina and Phoenix dactylifera roots. Sci Rep 2025; 15:1076. [PMID: 39775192 PMCID: PMC11707284 DOI: 10.1038/s41598-025-85416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
In arid and semi-arid climates, native plants have developed unique strategies to survive challenging conditions. These adaptations often rely on molecular pathways that shape plant architecture to enhance their resilience. Date palms (Phoenix dactylifera) and mangroves (Avicennia marina) endure extreme heat and high salinity, yet the metabolic pathways underlying this resilience remain underexplored. Here, we integrate tissue imaging with spatial metabolomics to uncover shared and distinct adaptive features in these species. We found that mangrove roots accumulate suberin and lignin in meristematic tissues, this is unlike other plant species, where only the differentiation zones contain these compounds. Our metabolomic analysis shows that date palm roots are enriched in metabolites involved in amino acid biosynthesis, whereas compounds involved in lignin and suberin production were more abundant in mangrove roots. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) revealed tissue- and species-specific metabolite distributions in root tissues. We identified common osmoprotectants accumulating in the exodermis/epidermis of date palm and mangrove root meristems, along with a unique metabolite highly abundant in the inner cortex of date palm roots. These findings provide valuable insights into stress adaptation pathways and highlight key tissue types involved in root stress response.
Collapse
Affiliation(s)
- Paula Oyarce
- BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ting Ting Xiao
- BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | - Signe Frost Frederiksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Jose Kenyi Gonzalez-Kise
- BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Wouter Smet
- BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jian You Wang
- BESE Division, BioActives Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- BESE Division, BioActives Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ikram Blilou
- BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Wamhoff D, Gündel A, Wagner S, Ortleb S, Borisjuk L, Winkelmann T. Anatomical limitations in adventitious root formation revealed by magnetic resonance imaging, infrared spectroscopy, and histology of rose genotypes with contrasting rooting phenotypes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4784-4801. [PMID: 38606898 PMCID: PMC11350080 DOI: 10.1093/jxb/erae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Adventitious root (AR) formation is one of the most important developmental processes in vegetative propagation. Although genotypic differences in rose rooting ability are well known, the causal factors are not well understood. The rooting of two contrasting genotypes, 'Herzogin Friederike' and 'Mariatheresia', was compared following a multiscale approach. Using magnetic resonance imaging, we non-invasively monitored the inner structure of stem cuttings during initiation and progression of AR formation for the first time. Spatially resolved Fourier-transform infrared spectroscopy characterized the chemical composition of the tissues involved in AR formation. The results were validated through light microscopy and complemented by immunolabelling. The outcome demonstrated similarity of both genotypes in root primordia formation, which did not result in root protrusion through the shoot cortex in the difficult-to-root genotype 'Mariatheresia'. The biochemical composition of the contrasting genotypes highlighted main differences in cell wall-associated components. Further spectroscopic analysis of 15 contrasting rose genotypes confirmed the biochemical differences between easy- and difficult-to-root groups. Collectively, our data indicate that it is not the lack of root primordia limiting AR formation in these rose genotypes, but the firmness of the outer stem tissue and/or cell wall modifications that pose a mechanical barrier and prevent root extension and protrusion.
Collapse
Affiliation(s)
- David Wamhoff
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Hannover, Germany
| | - André Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
- Stockholm University, Department of Ecology, Environment and Plant Sciences, Svante Arrhenius Väg 21 A Frescati Backe Stockholm SE-106 91, Sweden
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
3
|
Hu H, Qiu K, Hao Q, He X, Qin L, Chen L, Yang C, Dai X, Liu H, Xu H, Guo H, Li J, Wu R, Feng J, Zhou Y, Han J, Xiao C, Wang X. Electromagnetic Field-Assisted Frozen Tissue Planarization Enhances MALDI-MSI in Plant Spatial Omics. Anal Chem 2024; 96:11809-11822. [PMID: 38975729 DOI: 10.1021/acs.analchem.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.
Collapse
Affiliation(s)
- Hao Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Kaidi Qiu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Qichen Hao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing 100038, China
| | - Liang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Chenyu Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaoyan Dai
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Haiqiang Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hualei Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hua Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinrong Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Ran Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jun Han
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| |
Collapse
|
4
|
Rhaman MS, Ali M, Ye W, Li B. Opportunities and Challenges in Advancing Plant Research with Single-cell Omics. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae026. [PMID: 38996445 PMCID: PMC11423859 DOI: 10.1093/gpbjnl/qzae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 07/14/2024]
Abstract
Plants possess diverse cell types and intricate regulatory mechanisms to adapt to the ever-changing environment of nature. Various strategies have been employed to study cell types and their developmental progressions, including single-cell sequencing methods which provide high-dimensional catalogs to address biological concerns. In recent years, single-cell sequencing technologies in transcriptomics, epigenomics, proteomics, metabolomics, and spatial transcriptomics have been increasingly used in plant science to reveal intricate biological relationships at the single-cell level. However, the application of single-cell technologies to plants is more limited due to the challenges posed by cell structure. This review outlines the advancements in single-cell omics technologies, their implications in plant systems, future research applications, and the challenges of single-cell omics in plant systems.
Collapse
Affiliation(s)
- Mohammad Saidur Rhaman
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, China
| | - Muhammad Ali
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, China
| | - Wenxiu Ye
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, China
| |
Collapse
|
5
|
Hou R, Liu J, Yang P, Liu H, Yuan R, Ji Y, Zhao H, Chen Z, Zhou B, Chen H. Metabolomic reveals the responses of sludge properties and microbial communities to high nitrite stress in denitrifying phosphorus removal systems. ENVIRONMENTAL RESEARCH 2024; 252:118924. [PMID: 38631473 DOI: 10.1016/j.envres.2024.118924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Nitrite, as an electron acceptor, plays a good role in denitrifying phosphorus removal (DPR); however, high nitrite concentration has adverse affects on sludge performance. We investigated the precise mechanisms of responses of sludge to high nitrite stress, including surface characteristics, intracellular and extracellular components, microbial and metabolic responses. When the nitrite stress reached 90 mg/L, the sludge settling performance was improved, but the activated sludge was aging. FTIR and XPS analysis revealed a significant increase in the hydrophobicity of the sludge, resulting in improve settling performance. However, the intracellular carbon sources synthesis was inhibited. In addition, the components in the tightly bound extracellular polymeric substances (TB-EPS) of sludge were significantly reduced and indicated the disturb of metabolism. Notably, Exiguobacterium emerged as a new genus when face high nitrite stress that could maintaining survival in hostile environments. Moreover, metabolomic analysis demonstrated strong biological response to nitrite stress further supported above results that include the inhibited of carbohydrate and amino acid metabolism. More importantly, some lipids (PS, PA, LysoPA, LysoPC and LysoPE) were significantly upregulated that related enhanced membrane lipid remodeling. The comprehensive analyses provide novel insights into the high nitrite stress responses mechanisms in activated sludge systems.
Collapse
Affiliation(s)
- Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiandong Liu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Ying Ji
- Bureau of Ecology and Environment of Beijing Miyun, Miyun, 101599, China
| | - Hongfei Zhao
- Bureau of Ecology and Environment of Beijing Miyun, Miyun, 101599, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha Suchdol, 16500, Czech Republic
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
6
|
Vats M, Cillero-Pastor B, Flinders B, Cuypers E, Heeren RMA. Mass spectrometry imaging reveals flavor distribution in edible mushrooms. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:888-896. [PMID: 38487283 PMCID: PMC10933231 DOI: 10.1007/s13197-023-05883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 03/17/2024]
Abstract
The spatial distribution of molecules and compounds responsible for the flavor profile of edible button mushrooms (Agaricus bisporous) has never been determined. The food industry is interested in knowing the localization of these compounds. Such knowledge would enable extraction of flavor compounds from a particular regions of the mushroom, which is safer for consumption compared to alternatives such as synthetic flavoring agents. The present study utilizes matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI), to determine the spatial distribution of flavor compounds in a mushroom. As MALDI-MSI requires very thin sections, a sample preparation protocol was optimized and sectioning fresh frozen mushrooms at 35 µm thickness was considered the best method to evaluate the distribution of flavor compounds. Further, the effect of heat on the spatial distribution of flavor compounds was investigated by heating whole mushrooms to 140 ℃ prior to sectioning. Heating reduced the water content of the mushroom and thus enabled the generation of even-thinner 17 µm thick sections. MALDI-MSI measurements performed on underivatized and on-tissue derivatized fresh frozen and heat-treated mushroom sections elucidated the spatial distribution of several flavor-related compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05883-0.
Collapse
Affiliation(s)
- Mudita Vats
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Bryn Flinders
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Eva Cuypers
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
7
|
Dixon RA, Dickinson AJ. A century of studying plant secondary metabolism-From "what?" to "where, how, and why?". PLANT PHYSIOLOGY 2024; 195:48-66. [PMID: 38163637 PMCID: PMC11060662 DOI: 10.1093/plphys/kiad596] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/15/2023] [Indexed: 01/03/2024]
Abstract
Over the past century, early advances in understanding the identity of the chemicals that collectively form a living plant have led scientists to deeper investigations exploring where these molecules localize, how they are made, and why they are synthesized in the first place. Many small molecules are specific to the plant kingdom and have been termed plant secondary metabolites, despite the fact that they can play primary and essential roles in plant structure, development, and response to the environment. The past 100 yr have witnessed elucidation of the structure, function, localization, and biosynthesis of selected plant secondary metabolites. Nevertheless, many mysteries remain about the vast diversity of chemicals produced by plants and their roles in plant biology. From early work characterizing unpurified plant extracts, to modern integration of 'omics technology to discover genes in metabolite biosynthesis and perception, research in plant (bio)chemistry has produced knowledge with substantial benefits for society, including human medicine and agricultural biotechnology. Here, we review the history of this work and offer suggestions for future areas of exploration. We also highlight some of the recently developed technologies that are leading to ongoing research advances.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Alexandra Jazz Dickinson
- Department of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Horn PJ, Chapman KD. Imaging plant metabolism in situ. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1654-1670. [PMID: 37889862 PMCID: PMC10938046 DOI: 10.1093/jxb/erad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Mass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles. In this review, we present recent MSI studies that demonstrate the advances made in visualizing the plant spatial metabolome. Moreover, we emphasize the technical progress that enhances the identification and interpretation of spatial metabolite maps. Within a mere decade since the inception of plant MSI studies, this robust technology is poised to continue as a vital tool for tackling complex challenges in plant metabolism.
Collapse
Affiliation(s)
- Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| |
Collapse
|
9
|
Balasubramanian VK, Veličković D, Rubio Wilhelmi MDM, Anderton CR, Stewart CN, DiFazio S, Blumwald E, Ahkami AH. Spatiotemporal metabolic responses to water deficit stress in distinct leaf cell-types of poplar. FRONTIERS IN PLANT SCIENCE 2024; 15:1346853. [PMID: 38495374 PMCID: PMC10940329 DOI: 10.3389/fpls.2024.1346853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
The impact of water-deficit (WD) stress on plant metabolism has been predominantly studied at the whole tissue level. However, plant tissues are made of several distinct cell types with unique and differentiated functions, which limits whole tissue 'omics'-based studies to determine only an averaged molecular signature arising from multiple cell types. Advancements in spatial omics technologies provide an opportunity to understand the molecular mechanisms underlying plant responses to WD stress at distinct cell-type levels. Here, we studied the spatiotemporal metabolic responses of two poplar (Populus tremula× P. alba) leaf cell types -palisade and vascular cells- to WD stress using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). We identified unique WD stress-mediated metabolic shifts in each leaf cell type when exposed to early and prolonged WD stresses and recovery from stress. During water-limited conditions, flavonoids and phenolic metabolites were exclusively accumulated in leaf palisade cells. However, vascular cells mainly accumulated sugars and fatty acids during stress and recovery conditions, respectively, highlighting the functional divergence of leaf cell types in response to WD stress. By comparing our MALDI-MSI metabolic data with whole leaf tissue gas chromatography-mass spectrometry (GC-MS)-based metabolic profile, we identified only a few metabolites including monosaccharides, hexose phosphates, and palmitic acid that showed a similar accumulation trend at both cell-type and whole leaf tissue levels. Overall, this work highlights the potential of the MSI approach to complement the whole tissue-based metabolomics techniques and provides a novel spatiotemporal understanding of plant metabolic responses to WD stress. This will help engineer specific metabolic pathways at a cellular level in strategic perennial trees like poplars to help withstand future aberrations in environmental conditions and to increase bioenergy sustainability.
Collapse
Affiliation(s)
- Vimal Kumar Balasubramanian
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | | | - Christopher R. Anderton
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Stephen DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
- Adjoint Faculty, School of Biological Science (SBS), Washington State University (WSU), Pullman, WA, United States
| |
Collapse
|
10
|
Chen YJ, Zeng HS, Jin HL, Wang HB. Applications of mass spectrometry imaging in botanical research. ADVANCED BIOTECHNOLOGY 2024; 2:6. [PMID: 39883274 DOI: 10.1007/s44307-024-00014-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 01/31/2025]
Abstract
Mass spectrometry imaging (MSI) serves as a valuable tool enabling researchers to scrutinize various compounds, peptides, and proteins within a sample, providing detailed insights at both elemental and molecular levels. This innovative technology transforms information obtained from a mass spectrometer- encompassing ionic strength, mass-to-charge ratio, and ionized molecule coordinates-within a defined region into a pixel-based model. Consequently, it reconstructs the spatial distribution of ions, allowing for a comprehensive understanding of molecular landscapes. The significance of MSI lies in its ability to offer multiple advantages, including straightforward sample preparation and remarkable sensitivity, all achieved without the necessity for labeling. Particularly in the realm of plant biology, MSI finds frequent application in examining the distribution of target metabolites and other components within plant tissues. This review delves into the fundamental principles, distinguishing features, merits, and applications of three prominent MSI technologies. Furthermore, we aim to assist readers in navigating the utilization of MSI in their plant biology research by discussing primary challenges, proposing potential solutions, and elucidating future prospects associated with this cutting-edge technology.
Collapse
Affiliation(s)
- Yi-Jun Chen
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangdong Provincial Kye Laboratory of Prescription and Syndrome, Guangzhou, 510006, China
| | - Hai-Sheng Zeng
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Pharmaceutical Department, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Hong-Lei Jin
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangzhou Key Laboratory of Chinese Medicine Research On Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Hong-Bin Wang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Key Laboratory of Chinese Medicinal Resource From Lingnan, (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Mao J, Gao Z, Wang X, Lin M, Chen L, Ning X. Combined Widely Targeted Metabolomic, Transcriptomic, and Spatial Metabolomic Analysis Reveals the Potential Mechanism of Coloration and Fruit Quality Formation in Actinidia chinensis cv. Hongyang. Foods 2024; 13:233. [PMID: 38254533 PMCID: PMC10814455 DOI: 10.3390/foods13020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Postharvest kiwifruit (Actinidia chinensis cv. Hongyang) pulp is mainly composed of outer yellow-flesh (LR) and inner red-flesh (HR). However, information about the differences in coloration and fruit quality between these two parts are limited. In this study, widely targeted metabolomic, transcriptomic, and spatial metabolomic analyses were used to reveal the potential mechanism of coloration and fruit quality formation. The results show that a total of 1001 metabolites were identified in Hongyang kiwifruit, and the accumulation of 211 metabolites were significantly higher in the HR than LR, including 69 flavonoids, 53 phenolic acids, and 38 terpenoids. There were no significant differences in the content of citric acid, quinic acid, glucose, fructose, or sucrose between the LR and HR. These results were consistent with the results from the RNA-seq profile and spatial metabolomic analysis. In addition, a total of 23 key candidate genes related to flesh color and fruit quality formation were identified and validated by qRT-PCR analysis. This study provides a theoretical basis for elucidating the underlying mechanism of the formation of kiwifruit flesh color and fruit quality.
Collapse
Affiliation(s)
- Jipeng Mao
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Zhu Gao
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Xiaoling Wang
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Mengfei Lin
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Lu Chen
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an 343009, China;
| | - Xinyi Ning
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
12
|
Hunt H, Leape S, Sidhu JS, Ajmera I, Lynch JP, Ratcliffe RG, Sweetlove LJ. A role for fermentation in aerobic conditions as revealed by computational analysis of maize root metabolism during growth by cell elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1553-1570. [PMID: 37831626 DOI: 10.1111/tpj.16478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
The root is a well-studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional-structural model captured the cell-anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end-products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues.
Collapse
Affiliation(s)
- Hilary Hunt
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stefan Leape
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ishan Ajmera
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - R George Ratcliffe
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
13
|
Xu H, Halford NG, Guo G, Chen Z, Li Y, Zhou L, Liu C, Xu R. Transcriptomic and Metabolomic Analyses Reveal the Importance of Lipid Metabolism and Photosynthesis Regulation in High Salinity Tolerance in Barley ( Hordeum vulgare L.) Leaves Derived from Mutagenesis Combined with Microspore Culture. Int J Mol Sci 2023; 24:16757. [PMID: 38069082 PMCID: PMC10705989 DOI: 10.3390/ijms242316757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Barley is the most salt-tolerant cereal crop. However, little attention has been paid to the salt-tolerant doubled haploids of barley derived from mutagenesis combined with isolated microspore culture. In the present study, barley doubled haploid (DH) line 20, which was produced by mutagenesis combined with isolated microspore culture, showed stably and heritably better salt tolerance than the wild type H30 in terms of fresh shoot weight, dry shoot weight, K+/Na+ ratio and photosynthetic characteristics. Transcriptome and metabolome analyses were performed to compare the changes in gene expression and metabolites between DH20 and H30. A total of 462 differentially expressed genes (DEGs) and 152 differentially accumulated metabolites (DAMs) were identified in DH20 compared to H30 under salt stress. Among the DAMs, fatty acids were the most accumulated in DH20 under salt stress. The integration of transcriptome and metabolome analyses revealed that nine key biomarkers, including two metabolites and seven genes, could distinguish DH20 and H30 when exposed to high salt. The pathways of linoleic acid metabolism, alpha-linolenic acid metabolism, glycerolipid metabolism, photosynthesis, and alanine, aspartate and glutamate metabolism were significantly enriched in DH20 with DEGs and DAMs in response to salt stress. These results suggest that DH20 may enhance resilience by promoting lipid metabolism, maintaining energy metabolism and decreasing amino acids metabolism. The study provided novel insights for the rapid generation of homozygous mutant plants by mutagenesis combined with microspore culture technology and also identified candidate genes and metabolites that may enable the mutant plants to cope with salt stress.
Collapse
Affiliation(s)
- Hongwei Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | | | - Guimei Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Zhiwei Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yingbo Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Longhua Zhou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
15
|
Pandian K, Matsui M, Hankemeier T, Ali A, Okubo-Kurihara E. Advances in single-cell metabolomics to unravel cellular heterogeneity in plant biology. PLANT PHYSIOLOGY 2023; 193:949-965. [PMID: 37338502 PMCID: PMC10517197 DOI: 10.1093/plphys/kiad357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/21/2023]
Abstract
Single-cell metabolomics is a powerful tool that can reveal cellular heterogeneity and can elucidate the mechanisms of biological phenomena in detail. It is a promising approach in studying plants, especially when cellular heterogeneity has an impact on different biological processes. In addition, metabolomics, which can be regarded as a detailed phenotypic analysis, is expected to answer previously unrequited questions which will lead to expansion of crop production, increased understanding of resistance to diseases, and in other applications as well. In this review, we will introduce the flow of sample acquisition and single-cell techniques to facilitate the adoption of single-cell metabolomics. Furthermore, the applications of single-cell metabolomics will be summarized and reviewed.
Collapse
Affiliation(s)
- Kanchana Pandian
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einstein Road 55, 2333 CC Leiden, The Netherlands
| | - Minami Matsui
- RIKEN, Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einstein Road 55, 2333 CC Leiden, The Netherlands
| | - Ahmed Ali
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einstein Road 55, 2333 CC Leiden, The Netherlands
| | - Emiko Okubo-Kurihara
- RIKEN, Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
- College of Science, Rikkyo University, Tokyo 171-8501, Japan
| |
Collapse
|
16
|
Oh SW, Imran M, Kim EH, Park SY, Lee SG, Park HM, Jung JW, Ryu TH. Approach strategies and application of metabolomics to biotechnology in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1192235. [PMID: 37636096 PMCID: PMC10451086 DOI: 10.3389/fpls.2023.1192235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Metabolomics refers to the technology for the comprehensive analysis of metabolites and low-molecular-weight compounds in a biological system, such as cells or tissues. Metabolites play an important role in biological phenomena through their direct involvement in the regulation of physiological mechanisms, such as maintaining cell homeostasis or signal transmission through protein-protein interactions. The current review aims provide a framework for how the integrated analysis of metabolites, their functional actions and inherent biological information can be used to understand biological phenomena related to the regulation of metabolites and how this information can be applied to safety assessments of crops created using biotechnology. Advancement in technology and analytical instrumentation have led new ways to examine the convergence between biology and chemistry, which has yielded a deeper understanding of complex biological phenomena. Metabolomics can be utilized and applied to safety assessments of biotechnology products through a systematic approach using metabolite-level data processing algorithms, statistical techniques, and database development. The integration of metabolomics data with sequencing data is a key step towards improving additional phenotypical evidence to elucidate the degree of environmental affects for variants found in genome associated with metabolic processes. Moreover, information analysis technology such as big data, machine learning, and IT investment must be introduced to establish a system for data extraction, selection, and metabolomic data analysis for the interpretation of biological implications of biotechnology innovations. This review outlines the integrity of metabolomics assessments in determining the consequences of genetic engineering and biotechnology in plants.
Collapse
|
17
|
Borisjuk L, Horn P, Chapman K, Jakob PM, Gündel A, Rolletschek H. Seeing plants as never before. THE NEW PHYTOLOGIST 2023; 238:1775-1794. [PMID: 36895109 DOI: 10.1111/nph.18871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023]
Abstract
Imaging has long supported our ability to understand the inner life of plants, their development, and response to a dynamic environment. While optical microscopy remains the core tool for imaging, a suite of novel technologies is now beginning to make a significant contribution to visualize plant metabolism. The purpose of this review was to provide the scientific community with an overview of current imaging methods, which rely variously on either nuclear magnetic resonance (NMR), mass spectrometry (MS) or infrared (IR) spectroscopy, and to present some examples of their application in order to illustrate their utility. In addition to providing a description of the basic principles underlying these technologies, the review discusses their various advantages and limitations, reveals the current state of the art, and suggests their potential application to experimental practice. Finally, a view is presented as to how the technologies will likely develop, how these developments may encourage the formulation of novel experimental strategies, and how the enormous potential of these technologies can contribute to progress in plant science.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Patrick Horn
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Kent Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Peter M Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| |
Collapse
|
18
|
Yu X, Liu Z, Sun X. Single-cell and spatial multi-omics in the plant sciences: Technical advances, applications, and perspectives. PLANT COMMUNICATIONS 2023; 4:100508. [PMID: 36540021 DOI: 10.1016/j.xplc.2022.100508] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
Plants contain a large number of cell types and exhibit complex regulatory mechanisms. Studies at the single-cell level have gradually become more common in plant science. Single-cell transcriptomics, spatial transcriptomics, and spatial metabolomics techniques have been combined to analyze plant development. These techniques have been used to study the transcriptomes and metabolomes of plant tissues at the single-cell level, enabling the systematic investigation of gene expression and metabolism in specific tissues and cell types during defined developmental stages. In this review, we present an overview of significant breakthroughs in spatial multi-omics in plants, and we discuss how these approaches may soon play essential roles in plant research.
Collapse
Affiliation(s)
- Xiaole Yu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China.
| |
Collapse
|
19
|
Zhang T, Noll SE, Peng JT, Klair A, Tripka A, Stutzman N, Cheng C, Zare RN, Dickinson AJ. Chemical imaging reveals diverse functions of tricarboxylic acid metabolites in root growth and development. Nat Commun 2023; 14:2567. [PMID: 37142569 PMCID: PMC10160030 DOI: 10.1038/s41467-023-38150-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Understanding how plants grow is critical for agriculture and fundamental for illuminating principles of multicellular development. Here, we apply desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to the chemical mapping of the developing maize root. This technique reveals a range of small molecule distribution patterns across the gradient of stem cell differentiation in the root. To understand the developmental logic of these patterns, we examine tricarboxylic acid (TCA) cycle metabolites. In both Arabidopsis and maize, we find evidence that elements of the TCA cycle are enriched in developmentally opposing regions. We find that these metabolites, particularly succinate, aconitate, citrate, and α-ketoglutarate, control root development in diverse and distinct ways. Critically, the developmental effects of certain TCA metabolites on stem cell behavior do not correlate with changes in ATP production. These results present insights into development and suggest practical means for controlling plant growth.
Collapse
Affiliation(s)
- Tao Zhang
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sarah E Noll
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Pomona College, Claremont, CA, 91711, USA
| | - Jesus T Peng
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amman Klair
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abigail Tripka
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nathan Stutzman
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Casey Cheng
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Alexandra J Dickinson
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Bradshaw R. MALDI MS Imaging of Cucumbers. Methods Mol Biol 2023; 2688:63-69. [PMID: 37410284 DOI: 10.1007/978-1-0716-3319-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
There are many different methodologies in the literature for the preparation of plant material for subsequent MALDI MSI analysis. This chapter overviews preparation of cucumbers (Cucumis sativus L.), with emphasis on sample freezing, cryosectioning, and matrix deposition. This should act as a representative example of sample preparation for plant tissue, and due to wide sample variation (e.g., leaves, seeds, and fruit) and analytes of interest, method optimization will be required for different samples.
Collapse
Affiliation(s)
- Robert Bradshaw
- Biomolecular Sciences Research Centre (BMRC), Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
22
|
Visualizing the Spatial Distribution of Arctium lappa L. Root Components by MALDI-TOF Mass Spectrometry Imaging. Foods 2022; 11:foods11243957. [PMID: 36553700 PMCID: PMC9778511 DOI: 10.3390/foods11243957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
This study is aimed at developing novel analytical methods to accurately visualize the spatial distribution of various endogenous components in Arctium lappa L. (A. lappa) roots, and to precisely guide the setting of pre-treatment operations during processing technologies and understand plant metabolism process. The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) imaging technology was used for visual demonstration of the in situ spatial distribution in A. lappa roots. This work consisted of four steps: matrix selection, section preparation, matrix coating, and MALDI-TOF MS imaging analysis. Consequently, eight saccharides, four caffeoylquinic acids, four flavonoids, six amino acids, one choline, and one phospholipid were imaged and four unidentified components were found. Saccharides were distributed in the center, whereas caffeoylquinic acids and flavonoids were mainly present in the epidermis and cortex. Furthermore, amino acids were mainly detected in the phloem, and choline in the cambium, while phosphatidylserine was found in the secondary phloem and cambium. This study demonstrated that MALDI-TOF MS imaging technology could provide a technical support to understand the spatial distribution of components in A. lappa roots, which would promote the processing technologies for A. lappa roots and help us to understand the plant metabolism process.
Collapse
|
23
|
Wang X, Chen Y, Liu Y, Ouyang L, Yao R, Wang Z, Kang Y, Yan L, Huai D, Jiang H, Lei Y, Liao B. Visualizing the Distribution of Lipids in Peanut Seeds by MALDI Mass Spectrometric Imaging. Foods 2022; 11:foods11233888. [PMID: 36496696 PMCID: PMC9739101 DOI: 10.3390/foods11233888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Peanut (also called groundnut, Arachis hypogaea L.) seeds are used for producing edible oils and functional foods, and offer a rich source of lipids, proteins and carbohydrates. However, the location of these metabolites has not yet been firmly established. In the present study, the matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) technique was applied to investigate spatial distribution of lipids and other key components in seeds of three peanut cultivars (ZH9, KQBH, HP). A total of 103 metabolites, including 34 lipid compounds, were putatively identified by MALDI-MSI. The abundance and spatial distribution of glycerolipids (GLs) and glycerophospholipids (GPs) were compared among the three peanut cultivars. All the identified lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE) and phosphatidylcholines (PCs) were distributed mainly in the inner part of seeds. The visualization of phosphatidic acids (PAs) and triacylglycerols (TGs) revealed a dramatic metabolic heterogeneity between the different tissues making up the seed. The non-homogeneous spatial distribution of metabolites appeared to be related to the different functions of particular tissue regions. These results indicated that MALDI-MSI could be useful for investigating the lipids of foodstuffs from a spatial perspective. The present study may contribute to the development of oil crops with higher oil yields, and to improvement of food processing.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yue Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Lei Ouyang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ruonan Yao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Correspondence:
| |
Collapse
|
24
|
Maia M, McCann A, Malherbe C, Far J, Cunha J, Eiras-Dias J, Cordeiro C, Eppe G, Quinton L, Figueiredo A, De Pauw E, Sousa Silva M. Grapevine leaf MALDI-MS imaging reveals the localisation of a putatively identified sucrose metabolite associated to Plasmopara viticola development. FRONTIERS IN PLANT SCIENCE 2022; 13:1012636. [PMID: 36299787 PMCID: PMC9589281 DOI: 10.3389/fpls.2022.1012636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Despite well-established pathways and metabolites involved in grapevine-Plasmopara viticola interaction, information on the molecules involved in the first moments of pathogen contact with the leaf surface and their specific location is still missing. To understand and localise these molecules, we analysed grapevine leaf discs infected with P. viticola with MSI. Plant material preparation was optimised, and different matrices and solvents were tested. Our data shows that trichomes hamper matrix deposition and the ion signal. Results show that putatively identified sucrose presents a higher accumulation and a non-homogeneous distribution in the infected leaf discs in comparison with the controls. This accumulation was mainly on the veins, leading to the hypothesis that sucrose metabolism is being manipulated by the development structures of P. viticola. Up to our knowledge this is the first time that the localisation of a putatively identified sucrose metabolite was shown to be associated to P. viticola infection sites.
Collapse
Affiliation(s)
- Marisa Maia
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Andréa McCann
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Cédric Malherbe
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Jorge Cunha
- Estação Vitivinícola Nacional, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Torres-Vedras, Portugal
| | - José Eiras-Dias
- Estação Vitivinícola Nacional, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Torres-Vedras, Portugal
| | - Carlos Cordeiro
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Gauthier Eppe
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Edwin De Pauw
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
25
|
Liu Z, Zhang M, Chen P, Harnly JM, Sun J. Mass Spectrometry-Based Nontargeted and Targeted Analytical Approaches in Fingerprinting and Metabolomics of Food and Agricultural Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11138-11153. [PMID: 35998657 DOI: 10.1021/acs.jafc.2c01878] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS)-based techniques have been extensively applied in food and agricultural research. This review aims to address the advances and applications of MS-based analytical strategies in nontargeted and targeted analysis and summarizes the recent publications of MS-based techniques, including flow injection MS fingerprinting, chromatography-tandem MS metabolomics, direct analysis using ambient mass spectrometry, as well as development in MS data deconvolution software packages and databases for metabolomic studies. Various nontargeted and targeted approaches are employed in marker compounds identification, material adulteration detection, and the analysis of specific classes of secondary metabolites. In the newly emerged applications, the recent advances in computer tools for the fast deconvolution of MS data in targeted secondary metabolite analysis are highlighted.
Collapse
Affiliation(s)
- Zhihao Liu
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Pei Chen
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| | - James M Harnly
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| | - Jianghao Sun
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| |
Collapse
|
26
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|
27
|
Cheong BE, Yu D, Martinez-Seidel F, Ho WWH, Rupasinghe TWT, Dolferus R, Roessner U. The Effect of Cold Stress on the Root-Specific Lipidome of Two Wheat Varieties with Contrasting Cold Tolerance. PLANTS 2022; 11:plants11101364. [PMID: 35631789 PMCID: PMC9147729 DOI: 10.3390/plants11101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Complex glycerolipidome analysis of wheat upon low temperature stress has been reported for above-ground tissues only. There are no reports on the effects of cold stress on the root lipidome nor on tissue-specific responses of cold stress wheat roots. This study aims to investigate the changes of lipid profiles in the different developmental zones of the seedling roots of two wheat varieties with contrasting cold tolerance exposed to chilling and freezing temperatures. We analyzed 273 lipid species derived from 21 lipid classes using a targeted profiling approach based on MS/MS data acquired from schedule parallel reaction monitoring assays. For both the tolerant Young and sensitive Wyalkatchem species, cold stress increased the phosphatidylcholine and phosphatidylethanolamine compositions, but decreased the monohexosyl ceramide compositions in the root zones. We show that the difference between the two varieties with contrasting cold tolerance could be attributed to the change in the individual lipid species, rather than the fluctuation of the whole lipid classes. The outcomes gained from this study may advance our understanding of the mechanisms of wheat adaptation to cold and contribute to wheat breeding for the improvement of cold-tolerance.
Collapse
Affiliation(s)
- Bo Eng Cheong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan Universiti, Kota Kinabalu 88400, Malaysia
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Correspondence: ; Tel.: +60-88-320000 (ext. 8530)
| | - Dingyi Yu
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Protein Chemistry and Metabolism Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Federico Martinez-Seidel
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - William Wing Ho Ho
- Advanced Genomics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | | | - Rudy Dolferus
- CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT 2601, Australia;
| | - Ute Roessner
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
28
|
Xu Y, Fu X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int J Mol Sci 2022; 23:5716. [PMID: 35628526 PMCID: PMC9143615 DOI: 10.3390/ijms23105716] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Abiotic stresses rewire plant central metabolism to maintain metabolic and energy homeostasis. Metabolites involved in the plant central metabolic network serve as a hub for regulating carbon and energy metabolism under various stress conditions. In this review, we introduce recent metabolomics techniques used to investigate the dynamics of metabolic responses to abiotic stresses and analyze the trend of publications in this field. We provide an updated overview of the changing patterns in central metabolic pathways related to the metabolic responses to common stresses, including flooding, drought, cold, heat, and salinity. We extensively review the common and unique metabolic changes in central metabolism in response to major abiotic stresses. Finally, we discuss the challenges and some emerging insights in the future application of metabolomics to study plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
29
|
Richardson LT, Neumann EK, Caprioli RM, Spraggins JM, Solouki T. Referenced Kendrick Mass Defect Annotation and Class-Based Filtering of Imaging MS Lipidomics Experiments. Anal Chem 2022; 94:5504-5513. [PMID: 35344335 PMCID: PMC10124143 DOI: 10.1021/acs.analchem.1c03715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Because of their diverse functionalities in cells, lipids are of primary importance when characterizing molecular profiles of physiological and disease states. Imaging mass spectrometry (IMS) provides the spatial distributions of lipid populations in tissues. Referenced Kendrick mass defect (RKMD) analysis is an effective mass spectrometry (MS) data analysis tool for classification and annotation of lipids. Herein, we extend the capabilities of RKMD analysis and demonstrate an integrated method for lipid annotation and chemical structure-based filtering for IMS datasets. Annotation of lipid features with lipid molecular class, radyl carbon chain length, and degree of unsaturation allows image reconstruction and visualization based on each structural characteristic. We show a proof-of-concept application of the method to a computationally generated IMS dataset and validate that the RKMD method is highly specific for lipid components in the presence of confounding background ions. Moreover, we demonstrate an application of the RKMD-based annotation and filtering to matrix-assisted laser desorption/ionization (MALDI) IMS lipidomic data from human kidney tissue analysis.
Collapse
Affiliation(s)
- Luke T Richardson
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76706, United States
| | - Elizabeth K Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States.,Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States.,Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States.,Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States.,Department of Medicine, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States.,Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States.,Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States.,Department of Cell and Development Biology, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76706, United States
| |
Collapse
|
30
|
Mugume Y, Ding G, Dueñas ME, Liu M, Lee YJ, Nikolau BJ, Bassham DC. Complex Changes in Membrane Lipids Associated with the Modification of Autophagy in Arabidopsis. Metabolites 2022; 12:190. [PMID: 35208263 PMCID: PMC8876039 DOI: 10.3390/metabo12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
Autophagy is a conserved mechanism among eukaryotes that degrades and recycles cytoplasmic components. Autophagy is known to influence the plant metabolome, including lipid content; however, its impact on the plant lipidome is not fully understood, and most studies have analyzed a single or few mutants defective in autophagy. To gain more insight into the effect of autophagy on lipid concentrations and composition, we quantitatively profiled glycerolipids from multiple Arabidopsis thaliana mutants altered in autophagy and compared them with wild-type seedlings under nitrogen replete (+N; normal growth) and nitrogen starvation (-N; autophagy inducing) conditions. Mutants include those in genes of the core autophagy pathway, together with other genes that have been reported to affect autophagy. Using Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-MS), we imaged the cellular distribution of specific lipids in situ and demonstrated that autophagy and nitrogen treatment did not affect their spatial distribution within Arabidopsis seedling leaves. We observed changes, both increases and decreases, in the relative amounts of different lipid species in the mutants compared to WT both in +N and -N conditions, although more changes were seen in -N conditions. The relative amounts of polyunsaturated and very long chain lipids were significantly reduced in autophagy-disrupted mutants compared to WT plants. Collectively, our results provide additional evidence that autophagy affects plant lipid content and that autophagy likely affects lipid properties such as chain length and unsaturation.
Collapse
Affiliation(s)
- Yosia Mugume
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Geng Ding
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (G.D.); (B.J.N.)
| | - Maria Emilia Dueñas
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; (M.E.D.); (Y.-J.L.)
| | - Meiling Liu
- Department of Statistics, Iowa State University, Ames, IA 50011, USA;
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Young-Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; (M.E.D.); (Y.-J.L.)
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (G.D.); (B.J.N.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
31
|
Honeker LK, Hildebrand GA, Fudyma JD, Daber LE, Hoyt D, Flowers SE, Gil-Loaiza J, Kübert A, Bamberger I, Anderton CR, Cliff J, Leichty S, AminiTabrizi R, Kreuzwieser J, Shi L, Bai X, Velickovic D, Dippold MA, Ladd SN, Werner C, Meredith LK, Tfaily MM. Elucidating Drought-Tolerance Mechanisms in Plant Roots through 1H NMR Metabolomics in Parallel with MALDI-MS, and NanoSIMS Imaging Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2021-2032. [PMID: 35048708 DOI: 10.1021/acs.est.1c06772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As direct mediators between plants and soil, roots play an important role in metabolic responses to environmental stresses such as drought, yet these responses are vastly uncharacterized on a plant-specific level, especially for co-occurring species. Here, we aim to examine the effects of drought on root metabolic profiles and carbon allocation pathways of three tropical rainforest species by combining cutting-edge metabolomic and imaging technologies in an in situ position-specific 13C-pyruvate root-labeling experiment. Further, washed (rhizosphere-depleted) and unwashed roots were examined to test the impact of microbial presence on root metabolic pathways. Drought had a species-specific impact on the metabolic profiles and spatial distribution in Piper sp. and Hibiscus rosa sinensis roots, signifying different defense mechanisms; Piper sp. enhanced root structural defense via recalcitrant compounds including lignin, while H. rosa sinensis enhanced biochemical defense via secretion of antioxidants and fatty acids. In contrast, Clitoria fairchildiana, a legume tree, was not influenced as much by drought but rather by rhizosphere presence where carbohydrate storage was enhanced, indicating a close association with symbiotic microbes. This study demonstrates how multiple techniques can be combined to identify how plants cope with drought through different drought-tolerance strategies and the consequences of such changes on below-ground organic matter composition.
Collapse
Affiliation(s)
- Linnea K Honeker
- BIO5 Institute, The University of Arizona, 1657 East Helen Street., Tucson, Arizona 85719, United States
- Biosphere 2, University of Arizona, 32540 South Biosphere Road, Oracle, Arizona 85739, United States
| | - Gina A Hildebrand
- Department of Environmental Science, University of Arizona, 1177 East Fourth Street, Tucson, Arizona 85721, United States
| | - Jane D Fudyma
- Department of Environmental Science, University of Arizona, 1177 East Fourth Street, Tucson, Arizona 85721, United States
| | - L Erik Daber
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - David Hoyt
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Sarah E Flowers
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Sreet, Tucson, Arizona 85721, United States
| | - Angelika Kübert
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Ines Bamberger
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Christopher R Anderton
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - John Cliff
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Sarah Leichty
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Roya AminiTabrizi
- Department of Environmental Science, University of Arizona, 1177 East Fourth Street, Tucson, Arizona 85721, United States
| | - Jürgen Kreuzwieser
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Lingling Shi
- Biogeochemistry of Agroecosystems, Department of Crop Science, Georg August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xuejuan Bai
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100 Shaanxi, China
| | - Dusan Velickovic
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Michaela A Dippold
- Biogeochemistry of Agroecosystems, Department of Crop Science, Georg August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - S Nemiah Ladd
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Christiane Werner
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Laura K Meredith
- BIO5 Institute, The University of Arizona, 1657 East Helen Street., Tucson, Arizona 85719, United States
- Biosphere 2, University of Arizona, 32540 South Biosphere Road, Oracle, Arizona 85739, United States
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Sreet, Tucson, Arizona 85721, United States
| | - Malak M Tfaily
- BIO5 Institute, The University of Arizona, 1657 East Helen Street., Tucson, Arizona 85719, United States
- Department of Environmental Science, University of Arizona, 1177 East Fourth Street, Tucson, Arizona 85721, United States
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
32
|
Lohse M, Haag R, Lippold E, Vetterlein D, Reemtsma T, Lechtenfeld OJ. Direct Imaging of Plant Metabolites in the Rhizosphere Using Laser Desorption Ionization Ultra-High Resolution Mass Spectrometry. FRONTIERS IN PLANT SCIENCE 2021; 12:753812. [PMID: 34925405 PMCID: PMC8678481 DOI: 10.3389/fpls.2021.753812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
The interplay of rhizosphere components such as root exudates, microbes, and minerals results in small-scale gradients of organic molecules in the soil around roots. The current methods for the direct chemical imaging of plant metabolites in the rhizosphere often lack molecular information or require labeling with fluorescent tags or isotopes. Here, we present a novel workflow using laser desorption ionization (LDI) combined with mass spectrometric imaging (MSI) to directly analyze plant metabolites in a complex soil matrix. Undisturbed samples of the roots and the surrounding soil of Zea mays L. plants from either field- or laboratory-scale experiments were embedded and cryosectioned to 100 μm thin sections. The target metabolites were detected with a spatial resolution of 25 μm in the root and the surrounding soil based on accurate masses using ultra-high mass resolution laser desorption ionization Fourier-transform ion cyclotron resonance mass spectrometry (LDI-FT-ICR-MS). Using this workflow, we could determine the rhizosphere gradients of a dihexose (e.g., sucrose) and other plant metabolites (e.g., coumaric acid, vanillic acid). The molecular gradients for the dihexose showed a high abundance of this metabolite in the root and a strong depletion of the signal intensity within 150 μm from the root surface. Analyzing several sections from the same undisturbed soil sample allowed us to follow molecular gradients along the root axis. Benefiting from the ultra-high mass resolution, isotopologues of the dihexose could be readily resolved to enable the detection of stable isotope labels on the compound level. Overall, the direct molecular imaging via LDI-FT-ICR-MS allows for the first time a non-targeted or targeted analysis of plant metabolites in undisturbed soil samples, paving the way to study the turnover of root-derived organic carbon in the rhizosphere with high chemical and spatial resolution.
Collapse
Affiliation(s)
- Martin Lohse
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Rebecca Haag
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Ansbach University of Applied Sciences, Ansbach, Germany
| | - Eva Lippold
- Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
- Soil Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Oliver J. Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- ProVIS – Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
33
|
Maia M, Figueiredo A, Cordeiro C, Sousa Silva M. FT-ICR-MS-based metabolomics: A deep dive into plant metabolism. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34545595 DOI: 10.1002/mas.21731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics involves the identification and quantification of metabolites to unravel the chemical footprints behind cellular regulatory processes and to decipher metabolic networks, opening new insights to understand the correlation between genes and metabolites. In plants, it is estimated the existence of hundreds of thousands of metabolites and the majority is still unknown. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is a powerful analytical technique to tackle such challenges. The resolving power and sensitivity of this ultrahigh mass accuracy mass analyzer is such that a complex mixture, such as plant extracts, can be analyzed and thousands of metabolite signals can be detected simultaneously and distinguished based on the naturally abundant elemental isotopes. In this review, FT-ICR-MS-based plant metabolomics studies are described, emphasizing FT-ICR-MS increasing applications in plant science through targeted and untargeted approaches, allowing for a better understanding of plant development, responses to biotic and abiotic stresses, and the discovery of new natural nutraceutical compounds. Improved metabolite extraction protocols compatible with FT-ICR-MS, metabolite analysis methods and metabolite identification platforms are also explored as well as new in silico approaches. Most recent advances in MS imaging are also discussed.
Collapse
Affiliation(s)
- Marisa Maia
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Figueiredo
- Departamento de Biologia Vegetal, Faculdade de Ciências, Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisboa, Portugal
| | - Carlos Cordeiro
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Sousa Silva
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
34
|
Hu W, Han Y, Sheng Y, Wang Y, Pan Q, Nie H. Mass spectrometry imaging for direct visualization of components in plants tissues. J Sep Sci 2021; 44:3462-3476. [PMID: 34245221 DOI: 10.1002/jssc.202100138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry is considered the most informative technique for components identification and has been widely adopted in plant sciences. However, the spatial distribution of compounds in the plant, which is vital for the exploration of plant physiological mechanisms, is missed in MS analysis. In recent years, mass spectrometry imaging has brought a great breakthrough in plant analysis because it can determine both the molecular compositions and spatial distributions, which is conducive to understand functions and regulation pathways of specific components in plants. Mass spectrometry imaging analysis of plant tissue is toward high sensitivity, high spatial resolution, and even single-cell analysis. Despite many challenges and technical barriers, such as difficulties of sample pretreatment caused by morphological diversity of plant tissues, obstacles for high spatial resolution imaging, and so on, lots of researches have contributed to remarkable progress, including improvement in tissue preparation, matrix innovation, and ionization mode development. This review focuses on the advances of mass spectrometry imaging analysis of plants in the last 5 years, including commonly used ionization techniques, technical advances, and recent applications of mass spectrometry imaging in plants.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yiqi Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
35
|
Kehelpannala C, Rupasinghe T, Pasha A, Esteban E, Hennessy T, Bradley D, Ebert B, Provart NJ, Roessner U. An Arabidopsis lipid map reveals differences between tissues and dynamic changes throughout development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:287-302. [PMID: 33866624 PMCID: PMC8361726 DOI: 10.1111/tpj.15278] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 05/24/2023]
Abstract
Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi.
Collapse
Affiliation(s)
- Cheka Kehelpannala
- School of BioSciencesThe University of MelbourneMelbourneVIC3010Australia
| | | | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - Thomas Hennessy
- Agilent Technologies Australia Pty Ltd679 Springvale RoadMulgraveVIC3170Australia
| | - David Bradley
- Agilent Technologies Australia Pty Ltd679 Springvale RoadMulgraveVIC3170Australia
| | - Berit Ebert
- School of BioSciencesThe University of MelbourneMelbourneVIC3010Australia
| | - Nicholas J. Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - Ute Roessner
- School of BioSciencesThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
36
|
In Situ Localization of Plant Lipid Metabolites by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI). Methods Mol Biol 2021. [PMID: 34047991 DOI: 10.1007/978-1-0716-1362-7_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has emerged as a major analytical platform for the determination and localization of lipid metabolites directly from tissue sections. Unlike analysis of lipid extracts, where lipid localizations are lost due to homogenization and/ or solvent extraction, MALDI-MSI analysis is capable of revealing spatial localization of metabolites while simultaneously collecting high chemical resolution mass spectra. Important considerations for obtaining high quality MALDI-MS images include tissue preservation, section preparation, MS data collection and data processing. Errors in any of these steps can lead to poor quality metabolite images and increases the chance for metabolite misidentification and/ or incorrect localization. Here, we present detailed methods and recommendations for specimen preparation, MALDI-MS instrument parameters, software analysis platforms for data processing, and practical considerations for each of these steps to ensure acquisition of high-quality chemical and spatial resolution data for reconstructing MALDI-MS images of plant tissues.
Collapse
|
37
|
Rawat N, Singla-Pareek SL, Pareek A. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. PHYSIOLOGIA PLANTARUM 2021; 171:653-676. [PMID: 32949408 DOI: 10.1111/ppl.13217] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 09/13/2020] [Indexed: 05/15/2023]
Abstract
The plasma membrane (PM) is possibly the most diverse biological membrane of plant cells; it separates and guards the cell against its external environment. It has an extremely complex structure comprising a mosaic of lipids and proteins. The PM lipids are responsible for maintaining fluidity, permeability and integrity of the membrane and also influence the functioning of membrane proteins. However, the PM is the primary target of environmental stress, which affects its composition, conformation and properties, thereby disturbing the cellular homeostasis. Maintenance of integrity and fluidity of the PM is a prerequisite for ensuring the survival of plants during adverse environmental conditions. The ability of plants to remodel membrane lipid and protein composition plays a crucial role in adaptation towards varying abiotic environmental cues, including high or low temperature, drought, salinity and heavy metals stress. The dynamic changes in lipid composition affect the functioning of membrane transporters and ultimately regulate the physical properties of the membrane. Plant membrane-transport systems play a significant role in stress adaptation by cooperating with the membrane lipidome to maintain the membrane integrity under stressful conditions. The present review provides a holistic view of stress responses and adaptations in plants, especially the changes in the lipidome and proteome of PM under individual or combined abiotic stresses, which cause alterations in the activity of membrane transporters and modifies the fluidity of the PM. The tools to study the varying lipidome and proteome of the PM are also discussed.
Collapse
Affiliation(s)
- Nishtha Rawat
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
38
|
Zhang K, Lyu W, Gao Y, Zhang X, Sun Y, Huang B. Choline-Mediated Lipid Reprogramming as a Dominant Salt Tolerance Mechanism in Grass Species Lacking Glycine Betaine. PLANT & CELL PHYSIOLOGY 2021; 61:2018-2030. [PMID: 32931553 DOI: 10.1093/pcp/pcaa116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Choline, as a precursor of glycine betaine (GB) and phospholipids, is known to play roles in plant tolerance to salt stress, but the downstream metabolic pathways regulated by choline conferring salt tolerance are still unclear for non-GB-accumulating species. The objectives were to examine how choline affects salt tolerance in a non-GB-accumulating grass species and to determine major metabolic pathways of choline regulating salt tolerance involving GB or lipid metabolism. Kentucky bluegrass (Poa pratensis) plants were subjected to salt stress (100 mM NaCl) with or without foliar application of choline chloride (1 mM) in a growth chamber. Choline or GB alone and the combined application increased leaf photochemical efficiency, relative water content and osmotic adjustment and reduced leaf electrolyte leakage. Choline application had no effects on the endogenous GB content and GB synthesis genes did not show responses to choline under nonstress and salt stress conditions. GB was not detected in Kentucky bluegrass leaves. Lipidomic analysis revealed an increase in the content of monogalactosyl diacylglycerol, phosphatidylcholine and phosphatidylethanolamine and a decrease in the phosphatidic acid content by choline application in plants exposed to salt stress. Choline-mediated lipid reprogramming could function as a dominant salt tolerance mechanism in non-GB-accumulating grass species.
Collapse
Affiliation(s)
- Kun Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weiting Lyu
- Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yanli Gao
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Xiaxiang Zhang
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
39
|
Veličković D, Chu RK, Henkel C, Nyhuis A, Tao N, Kyle JE, Adkins JN, Anderton CR, Paurus V, Bloodsworth K, Bramer LM, Cornett DS, Curtis WR, Burnum‐Johnson KE. Preserved and variable spatial-chemical changes of lipids across tomato leaves in response to central vein wounding reveals potential origin of linolenic acid in signal transduction cascade. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:28-35. [PMID: 37283847 PMCID: PMC10168036 DOI: 10.1002/pei3.10038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/08/2023]
Abstract
Membrane lipids serve as substrates for the generation of numerous signaling lipids when plants are exposed to environmental stresses, and jasmonic acid, an oxidized product of 18-carbon unsaturated fatty acids (e.g., linolenic acid), has been recognized as the essential signal in wound-induced gene expression. Yet, the contribution of individual membrane lipids in linolenic acid generation is ill-defined. In this work, we performed spatial lipidomic experiments to track lipid changes that occur locally at the sight of leaf injury to better understand the potential origin of linolenic and linoleic acids from individual membrane lipids. The central veins of tomato leaflets were crushed using surgical forceps, leaves were cryosectioned and analyzed by two orthogonal matrix-assisted laser desorption/ionization mass spectrometry imaging platforms for insight into lipid spatial distribution. Significant changes in lipid composition are only observed 30 min after wounding, while after 60 min lipidome homeostasis has been re-established. Phosphatidylcholines exhibit a variable pattern of spatial behavior in individual plants. Among lysolipids, lysophosphatidylcholines strongly co-localize with the injured zone of wounded leaflets, while, for example, lysophosphatidylglycerol (LPG) (16:1) accumulated preferentially toward the apex in the injured zone of wounded leaflets. In contrast, two other LPGs (LPG [18:3] and LPG [18:2]) are depleted in the injured zone. Our high-resolution co-localization imaging analyses suggest that linolenic acids are predominantly released from PCs with 16_18 fatty acid composition along the entire leaf, while it seems that in the apex zone PG (16:1_18:3) significantly contributes to the linolenic acid pool. These results also indicate distinct localization and/or substrate preferences of phospholipase isoforms in leaf tissue.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | - Rosalie K. Chu
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | | | | | | | - Jennifer E. Kyle
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Joshua N. Adkins
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Christopher R. Anderton
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | - Vanessa Paurus
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Kent Bloodsworth
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Lisa M. Bramer
- Computing & Analytics DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | | | - Wayne R. Curtis
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPAUSA
| | | |
Collapse
|
40
|
Villate A, San Nicolas M, Gallastegi M, Aulas PA, Olivares M, Usobiaga A, Etxebarria N, Aizpurua-Olaizola O. Review: Metabolomics as a prediction tool for plants performance under environmental stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110789. [PMID: 33487364 DOI: 10.1016/j.plantsci.2020.110789] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 12/05/2020] [Indexed: 05/05/2023]
Abstract
Metabolomics as a diagnosis tool for plant performance has shown good features for breeding and crop improvement. Additionally, due to limitations in land area and the increasing climate changes, breeding projects focusing on abiotic stress tolerance are becoming essential. Nowadays no universal method is available to identify predictive metabolic markers. As a result, research aims must dictate the best method or combination of methods. To this end, we will introduce the key aspects to consider regarding growth scenarios and sampling strategies and discuss major analytical and data treatment approaches that are available to find metabolic markers of plant performance.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - Markel San Nicolas
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain
| | - Mara Gallastegi
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain
| | - Pierre-Antoine Aulas
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Oier Aizpurua-Olaizola
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain.
| |
Collapse
|
41
|
Hofferek V, Su H, Reid GE. Chemical Derivatization-Aided High Resolution Mass Spectrometry for Shotgun Lipidome Analysis. Methods Mol Biol 2021; 2306:61-75. [PMID: 33954940 DOI: 10.1007/978-1-0716-1410-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemical derivatization coupled with nano-electrospray ionization (nESI) and ultra-high resolution accurate mass spectrometry (UHRAMS) is an established approach to overcome isobaric and isomeric mass interference limitations, and improve the analytical performance, of direct-infusion (i.e., "shotgun") lipidome analysis strategies for "sum composition" level identification and quantification of individual lipid species from within complex mixtures. Here, we describe a protocol for sequential functional group selective derivatization of aminophospholipids and O-alk-1'-enyl (i.e., plasmalogen) lipids, that when integrated into a shotgun lipidomics workflow involving deuterium-labeled internal lipid standard addition, monophasic lipid extraction, and nESI-UHRAMS analysis, enables the routine identification and quantification of >500 individual lipid species at the "sum composition" level, across four lipid categories and from >30 lipid classes and subclasses.
Collapse
Affiliation(s)
- Vinzenz Hofferek
- School of Chemistry, The University of Melbourne, Parkville, VIC, Australia
| | - Huaqi Su
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, VIC, Australia. .,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia. .,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
42
|
Liu B, Meng X, Li K, Guo J, Cai Z. Visualization of lipids in cottonseeds by matrix-assisted laser desorption/ionization mass spectrometry imaging. Talanta 2021; 221:121614. [DOI: 10.1016/j.talanta.2020.121614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022]
|
43
|
Piasecka A, Sawikowska A, Kuczyńska A, Ogrodowicz P, Mikołajczak K, Krajewski P, Kachlicki P. Phenolic Metabolites from Barley in Contribution to Phenome in soil Moisture Deficit. Int J Mol Sci 2020; 21:E6032. [PMID: 32825802 PMCID: PMC7503775 DOI: 10.3390/ijms21176032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
Eight barley varieties from Europe and Asia were subjected to moisture deficit at various development stages. At the seedling stage and the flag leaf stage combined stress was applied. The experiment was designed for visualization of the correlation between the dynamics of changes in phenolic compound profiles and the external phenome. The most significant increase of compound content in water deficiency was observed for chrysoeriol and apigenin glycoconjugates acylated with methoxylated hydroxycinnamic acids that enhanced the UV-protection effectiveness. Moreover, other good antioxidants such as derivatives of luteolin and hordatines were also induced by moisture deficit. The structural diversity of metabolites of the contents changed in response to water deficiency in barley indicates their multipath activities under stress. Plants exposed to moisture deficit at the seedling stage mobilized twice as many metabolites as plants exposed to this stress at the flag leaf stage. Specific metabolites such as methoxyhydroxycinnamic acids participated in the long-term acclimation. In addition, differences in phenolome mobilization in response to moisture deficit applied at the vegetative and generative phases were correlated with the phenotypical consequences. Observations of plant yield and biomass gave us the possibility to discuss the developmentally related consequences of moisture deficit for plants' fitness.
Collapse
Affiliation(s)
- Anna Piasecka
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | | | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Piotr Kachlicki
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| |
Collapse
|
44
|
Ritmejerytė E, Boughton BA, Bayly MJ, Miller RE. Unique and highly specific cyanogenic glycoside localization in stigmatic cells and pollen in the genus Lomatia (Proteaceae). ANNALS OF BOTANY 2020; 126:387-400. [PMID: 32157299 PMCID: PMC7424758 DOI: 10.1093/aob/mcaa038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/06/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Floral chemical defence strategies remain understudied despite the significance of flowers to plant fitness, and the fact that many flowers contain secondary metabolites that confer resistance to herbivores. Optimal defence and apparency theories predict that the most apparent plant parts and/or those most important to fitness should be most defended. To test whether within-flower distributions of chemical defence are consistent with these theories we used cyanogenic glycosides (CNglycs), which are constitutive defence metabolites that deter herbivores by releasing hydrogen cyanide upon hydrolysis. METHODS We used cyanogenic florets of the genus Lomatia to investigate at what scale there may be strategic allocation of CNglycs in flowers, what their localization reveals about function, and whether levels of floral CNglycs differ between eight congeneric species across a climatic gradient. Within-flower distributions of CNglycs during development were quantified, CNglycs were identified and their localization was visualized in cryosectioned florets using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). KEY RESULTS Florets of all congeneric species studied were cyanogenic, and concentrations differed between species. Within florets there was substantial variation in CNglyc concentrations, with extremely high concentrations (up to 14.6 mg CN g-1 d. wt) in pollen and loose, specialized surface cells on the pollen presenter, among the highest concentrations reported in plant tissues. Two tyrosine-derived CNglycs, the monoglycoside dhurrin and diglycoside proteacin, were identified. MALDI-MSI revealed their varying ratios in different floral tissues; proteacin was primarily localized to anthers and ovules, and dhurrin to specialized cells on the pollen presenter. The mix of transient specialized cells and pollen of L. fraxinifolia was ~11 % dhurrin and ~1.1 % proteacin by mass. CONCLUSIONS Tissue-specific distributions of two CNglycs and substantial variation in their concentrations within florets suggests their allocation is under strong selection. Localized, high CNglyc concentrations in transient cells challenge the predictions of defence theories, and highlight the importance of fine-scale metabolite visualization, and the need for further investigation into the ecological and metabolic roles of CNglycs in floral tissues.
Collapse
Affiliation(s)
- Edita Ritmejerytė
- School of Ecosystem and Forest Sciences, The University of Melbourne, Richmond, Victoria, Australia
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Berin A Boughton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca E Miller
- School of Ecosystem and Forest Sciences, The University of Melbourne, Richmond, Victoria, Australia
| |
Collapse
|
45
|
Correa SM, Fernie AR, Nikoloski Z, Brotman Y. Towards model-driven characterization and manipulation of plant lipid metabolism. Prog Lipid Res 2020; 80:101051. [PMID: 32640289 DOI: 10.1016/j.plipres.2020.101051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel; Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modelling Group, Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
46
|
Montini L, Crocoll C, Gleadow RM, Motawia MS, Janfelt C, Bjarnholt N. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Metabolites during Sorghum Germination. PLANT PHYSIOLOGY 2020; 183:925-942. [PMID: 32350122 PMCID: PMC7333723 DOI: 10.1104/pp.19.01357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
Dhurrin is the most abundant cyanogenic glucoside found in sorghum (Sorghum bicolor) where it plays a key role in chemical defense by releasing toxic hydrogen cyanide upon tissue disruption. Besides this well-established function, there is strong evidence that dhurrin plays additional roles, e.g. as a transport and storage form of nitrogen, released via endogenous recycling pathways. However, knowledge about how, when and why dhurrin is endogenously metabolized is limited. We combined targeted metabolite profiling with matrix-assisted laser desorption/ionization-mass spectrometry imaging to investigate accumulation of dhurrin, its recycling products and key general metabolites in four different sorghum lines during 72 h of grain imbibition, germination and early seedling development, as well as the spatial distribution of these metabolites in two of the lines. Little or no dhurrin or recycling products were present in the dry grain, but their de novo biosynthesis started immediately after water uptake. Dhurrin accumulation increased rapidly within the first 24 h in parallel with an increase in free amino acids, a key event in seed germination. The trajectories and final concentrations of dhurrin, the recycling products and free amino acids reached within the experimental period were dependent on genotype. Matrix-assisted laser desorption/ionization-mass spectrometry imaging demonstrated that dhurrin primarily accumulated in the germinating embryo, confirming its function in protecting the emerging tissue against herbivory. The dhurrin recycling products, however, were mainly located in the scutellum and/or pericarp/seed coat region, suggesting unknown key functions in germination.
Collapse
Affiliation(s)
- Lucia Montini
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Roslyn M Gleadow
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Mohammed Saddik Motawia
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Nanna Bjarnholt
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| |
Collapse
|
47
|
Ho WWH, Hill CB, Doblin MS, Shelden MC, van de Meene A, Rupasinghe T, Bacic A, Roessner U. Integrative Multi-omics Analyses of Barley Rootzones under Salinity Stress Reveal Two Distinctive Salt Tolerance Mechanisms. PLANT COMMUNICATIONS 2020; 1:100031. [PMID: 33367236 PMCID: PMC7748018 DOI: 10.1016/j.xplc.2020.100031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/02/2020] [Accepted: 02/06/2020] [Indexed: 05/02/2023]
Abstract
The mechanisms underlying rootzone-localized responses to salinity during early stages of barley development remain elusive. In this study, we performed the analyses of multi-root-omes (transcriptomes, metabolomes, and lipidomes) of a domesticated barley cultivar (Clipper) and a landrace (Sahara) that maintain and restrict seedling root growth under salt stress, respectively. Novel generalized linear models were designed to determine differentially expressed genes (DEGs) and abundant metabolites (DAMs) specific to salt treatments, genotypes, or rootzones (meristematic Z1, elongation Z2, and maturation Z3). Based on pathway over-representation of the DEGs and DAMs, phenylpropanoid biosynthesis is the most statistically enriched biological pathway among all salinity responses observed. Together with histological evidence, an intense salt-induced lignin impregnation was found only at stelic cell wall of Clipper Z2, compared with a unique elevation of suberin deposition across Sahara Z2. This suggests two differential salt-induced modulations of apoplastic flow between the genotypes. Based on the global correlation network of the DEGs and DAMs, callose deposition that potentially adjusted symplastic flow in roots was almost independent of salinity in rootzones of Clipper, and was markedly decreased in Sahara. Taken together, we propose two distinctive salt tolerance mechanisms in Clipper (growth-sustaining) and Sahara (salt-shielding), providing important clues for improving crop plasticity to cope with deteriorating global soil salinization.
Collapse
Affiliation(s)
- William Wing Ho Ho
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Camilla B. Hill
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Monika S. Doblin
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Megan C. Shelden
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Allison van de Meene
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thusitha Rupasinghe
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Metabolomics Australia, The University of Melbourne, Parkville, VIC 3010, Australia
- Corresponding author
| |
Collapse
|
48
|
Both EB, Stonehouse GC, Lima LW, Fakra SC, Aguirre B, Wangeline AL, Xiang J, Yin H, Jókai Z, Soós Á, Dernovics M, Pilon-Smits EAH. Selenium tolerance, accumulation, localization and speciation in a Cardamine hyperaccumulator and a non-hyperaccumulator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135041. [PMID: 31767332 PMCID: PMC7060786 DOI: 10.1016/j.scitotenv.2019.135041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 05/23/2023]
Abstract
Cardamine violifolia (family Brassicaceae) is the first discovered selenium hyperaccumulator from the genus Cardamine with unique properties in terms of selenium accumulation, i.e., high abundance of selenolanthionine. In our study, a fully comprehensive experiment was conducted with the comparison of a non-hyperaccumulator Cardamine species, Cardamine pratensis, covering growth characteristics, chlorophyll fluorescence, spatial selenium/sulfur distribution patterns through elemental analyses (synchrotron-based X-Ray Fluorescence and ICP-OES) and speciation data through selenium K-edge micro X-ray absorption near-edge structure analysis (μXANES) and strong cation exchange (SCX)-ICP-MS. The results revealed remarkable differences in contrast to other selenium hyperaccumulators as neither Cardamine species showed evidence of growth stimulation by selenium. Also, selenite uptake was not inhibited by phosphate for either of the Cardamine species. Sulfate inhibited selenate uptake, but the two Cardamine species did not show any difference in this respect. However, μXRF derived speciation maps and selenium/sulfur uptake characteristics provided results that are similar to other formerly reported hyperaccumulator and non-hyperaccumulator Brassicaceae species. μXANES showed organic selenium, "C-Se-C", in seedlings of both species and also in mature C. violifolia plants. In contrast, selenate-supplied mature C. pratensis contained approximately half "C-Se-C" and half selenate. SCX-ICP-MS data showed evidence of the lack of selenocystine in any of the Cardamine plant extracts. Thus, C. violifolia shows clear selenium-related physiological and biochemical differences compared to C. pratensis and other selenium hyperaccumulators.
Collapse
Affiliation(s)
- Eszter Borbála Both
- Department of Applied Chemistry, Szent István University, Villányi út 29-43., 1118 Budapest, Hungary; Department of Biology, Colorado State University, 251 West Pitkin Street, Fort Collins, CO 80523, USA
| | - Gavin C Stonehouse
- Department of Biology, Colorado State University, 251 West Pitkin Street, Fort Collins, CO 80523, USA
| | - Leonardo Warzea Lima
- Department of Biology, Colorado State University, 251 West Pitkin Street, Fort Collins, CO 80523, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Bernadette Aguirre
- Biology Department, Laramie County Community College, 1400 E. College Drive, Cheyenne, WY 82007, USA
| | - Ami L Wangeline
- Biology Department, Laramie County Community College, 1400 E. College Drive, Cheyenne, WY 82007, USA
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, 517 Shizhou Road, Enshi, Hubei Province 445002, China
| | - Hongqing Yin
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, 517 Shizhou Road, Enshi, Hubei Province 445002, China
| | - Zsuzsa Jókai
- Department of Applied Chemistry, Szent István University, Villányi út 29-43., 1118 Budapest, Hungary
| | - Áron Soós
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138., 4032 Debrecen, Hungary
| | - Mihály Dernovics
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2., 2462 Martonvásár, Hungary.
| | - Elizabeth A H Pilon-Smits
- Department of Biology, Colorado State University, 251 West Pitkin Street, Fort Collins, CO 80523, USA
| |
Collapse
|
49
|
Yu D, Boughton BA, Hill CB, Feussner I, Roessner U, Rupasinghe TWT. Insights Into Oxidized Lipid Modification in Barley Roots as an Adaptation Mechanism to Salinity Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:1. [PMID: 32117356 PMCID: PMC7011103 DOI: 10.3389/fpls.2020.00001] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/01/2020] [Indexed: 05/18/2023]
Abstract
Lipidomics is an emerging technology, which aims at the global characterization and quantification of lipids within biological matrices including biofluids, cells, whole organs and tissues. The changes in individual lipid molecular species in stress treated plant species and different cultivars can indicate the functions of genes affecting lipid metabolism or lipid signaling. Mass spectrometry-based lipid profiling has been used to track the changes of lipid levels and related metabolites in response to salinity stress. We have developed a comprehensive lipidomics platform for the identification and direct qualification and/or quantification of individual lipid species, including oxidized lipids, which enables a more systematic investigation of peroxidation of individual lipid species in barley roots under salinity stress. This new lipidomics approach has improved with an advantage of analyzing the composition of acyl chains at the molecular level, which facilitates to profile precisely the 18:3-containing diacyl-glycerophosphates and allowed individual comparison of lipids across varieties. Our findings revealed a general decrease in most of the galactolipids in plastid membranes, and an increase of glycerophospholipids and acylated steryl glycosides, which indicate that plastidial and extraplastidial membranes in barley roots ubiquitously tend to form a hexagonal II (HII) phase under salinity stress. In addition, salt-tolerant and salt-sensitive cultivars showed contrasting changes in the levels of oxidized membrane lipids. These results support the hypothesis that salt-induced oxidative damage to membrane lipids can be used as an indication of salt stress tolerance in barley.
Collapse
Affiliation(s)
- Dingyi Yu
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- St. Vincent’s Institute of Medical Research, University of Melbourne, Fitzroy, VIC, Australia
| | - Berin A. Boughton
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Camilla B. Hill
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
50
|
Liew LC, Narsai R, Wang Y, Berkowitz O, Whelan J, Lewsey MG. Temporal tissue-specific regulation of transcriptomes during barley (Hordeum vulgare) seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:700-715. [PMID: 31628689 DOI: 10.1111/tpj.14574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/09/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
The distinct functions of individual cell types require cells to express specific sets of genes. The germinating seed is an excellent model to study genome regulation between cell types since the majority of the transcriptome is differentially expressed in a short period, beginning from a uniform, metabolically inactive state. In this study, we applied laser-capture microdissection RNA-sequencing to small numbers of cells from the plumule, radicle tip and scutellum of germinating barley seeds every 8 h, over a 48 h time course. Tissue-specific gene expression was notably common; 25% (910) of differentially expressed transcripts in plumule, 34% (1876) in radicle tip and 41% (2562) in scutellum were exclusive to that organ. We also determined that tissue-specific storage of transcripts occurs during seed development and maturation. Co-expression of genes had strong spatiotemporal structure, with most co-expression occurring within one organ and at a subset of specific time points during germination. Overlapping and distinct enrichment of functional categories were observed in the tissue-specific profiles. We identified candidate transcription factors amongst these that may be regulators of spatiotemporal gene expression programs. Our findings contribute to the broader goal of generating an integrative model that describes the structure and function of individual cells within seeds during germination.
Collapse
Affiliation(s)
- Lim Chee Liew
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Yan Wang
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| |
Collapse
|