1
|
Anwar T, Qureshi H, Jabeen M, Siddiqi EH, Zaman W, Alharbi SA, Ansari MJ. Exploring the synergistic benefits of biochar and gibberellic acid in alleviating cadmium toxicity. Sci Rep 2024; 14:24196. [PMID: 39406739 PMCID: PMC11480094 DOI: 10.1038/s41598-024-73678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Cadmium (Cd) toxicity significantly threatens agricultural productivity and food safety. Developing effective strategies to enhance plant tolerance to Cd stress is essential. This study investigates the synergistic effects of biochar (BC) and gibberellic acid (GA3) on mitigating Cd toxicity in maize (Zea mays), focusing on their impact on oxidative stress markers and antioxidant enzyme activities. Soil samples were collected from the Cholistan Institute of Desert Studies (CIDS) and analyzed for trace metal ions and other properties. Biochar was produced from fruit and vegetable waste, washed, washed, deashed, and mixed with 10 ppm GA3. FH-1036 hybrid maize seeds were sterilized and planted in pots containing soil with varying Cd levels (0, 8, and 16 mg Cd/kg soil). Twelve treatments were established, including control, GA3, BC, and their combinations under different Cd stress levels. Plants were irrigated to maintain 60% field capacity and harvested at the V10 growth stage. Hydrogen peroxide (H2O2) contents and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were measured in roots, stems, and leaves. Statistical analysis was performed using OriginPro 2021, with ANOVA and Fisher's LSD test used to determine significant differences. GA3 and BC treatments significantly reduced H2O2 levels in maize roots, stems and leaves under Cd stress. The combined treatment of GA3 + BC showed the most significant reduction in H2O2 levels across all plant parts, reducing root H2O2 by 50%, stem H2O2 by 55%, and leaf H2O2 by 53% under severe Cd stress (16 mg Cd/kg). SOD activity increased under non-stress conditions but decreased under Cd stress, with the highest activity observed in the combined treatment. POD activity followed a similar pattern, with GA3 + BC treatment resulting in the most significant increases under non-stress conditions and the least reductions under Cd stress. CAT activity showed substantial increases with GA3 + BC treatment, particularly under severe Cd stress, with a notable rise over the control. APX activity also exhibited enhancements with GA3 and BC treatments, especially in the combined treatment under various Cd stress levels. This study highlights the potential of combined BC and GA3 treatments in improving Cd stress tolerance in maize. Future research should focus on field trials and the long-term impacts of these treatments on crop productivity and soil health.
Collapse
Affiliation(s)
- Tauseef Anwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, 48800, Pakistan.
| | - Mah Jabeen
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Mahatma Jyotiba Phule Rohilkhand University, Moradabad, Bareilly, 244001, India
| |
Collapse
|
2
|
Ramzan M, Haider STA, Hussain MB, Ehsan A, Datta R, Alahmadi TA, Ansari MJ, Alharbi SA. Potential of kaempferol and caffeic acid to mitigate salinity stress and improving potato growth. Sci Rep 2024; 14:21657. [PMID: 39294197 PMCID: PMC11410995 DOI: 10.1038/s41598-024-72420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Salinity stress adversely affects plant growth by disrupting water uptake, inducing ion toxicity, initiating osmotic stress, impairing growth, leaf scorching, and reducing crop yield. To mitigate this issue, the application of kaempferol (KP), caffeic acid (CA), and plant growth-promoting rhizobacteria (PGPR) emerges as a promising technology. Kaempferol, a flavonoid, protects plants from oxidative stress, while caffeic acid, a plant-derived compound, promotes growth by regulating physiological processes. PGPR enhances plant health and productivity through growth promotion, nutrient uptake, and stress mitigation, providing a sustainable solution. However, combining these compounds against drought requires further scientific justification. That's why the current study was conducted using 4 treatments, i.e., 0, 20 µM KP, 30 μM CA, and 20 µM KP + 30 μM CA without and with PGPR (Bacillus altitudinis). There were 4 replications following a completely randomized design. Results showed that 20 µM KP + 30 μM CA with PGPR caused significant enhancement in potato stem length (14.32%), shoot root, and leaf dry weight (16.52%, 11.04%, 67.23%), than the control. The enrichment in potato chlorophyll a, b, and total (31.86%, 46.05%, and 35.52%) was observed over the control, validating the potential of 20 µM KP + 30 μM CA + PGPR. Enhancement in shoot N, P, K, and Ca concentration validated the effective functioning of 20 µM KP + 30 μM CA with PGPR evaluated to control. In conclusion, 20 µM KP + 30 μM CA with PGPR is the recommended amendment to alleviate salinity stress in potatoes.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sakeena Tul Ain Haider
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Baqir Hussain
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Abdullah Ehsan
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, 11461, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Shirin J, Chen Y, Hussain Shah A, Da Y, Zhou G, Sun Q. Micro plastic driving changes in the soil microbes and lettuce growth under the influence of heavy metals contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1427166. [PMID: 39323532 PMCID: PMC11422782 DOI: 10.3389/fpls.2024.1427166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on Lactuca sativa by conducting a greenhouse experiment. According to our results, the combination of HMs and polystyrene microplastic (PS-MPs), especially the smaller PS-MPs (T3), was more lethal for the lettuce growth, microbes and soil. The toxicity of combined contaminants directly reduced the physio-biochemical attributes of lettuce, altered the lettuce's antioxidant activity and soil health. T3 at the final point led to a significant increase in bacterial and fungal diversity. In contrast, overall bacterial diversity was higher in the rhizosphere, and fungal diversity was higher in the bulk soil. Moreover, the decrease in MPs size played an important role in decreasing AMF and increasing both bacterial and fungal pathogens, especially in the rhizosphere soil. Functional prediction was found to be significantly different in the control treatment, with larger MPs compared to smaller PS-MPs. Environmental factors also played an important role in the alteration of the microbial community. This study also demonstrated that the varied distribution of microbial populations could be an ecological indicator for tracking the environmental health of soil. Overall, our work showed that the combination of HMs and smaller sizes of MPs was more lethal for the soil biota and lettuce and also raised many questions for further studying the ecological risk of PS-MPs and HMs.
Collapse
Affiliation(s)
- Jazbia Shirin
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Yongjing Chen
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Azhar Hussain Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Yanmei Da
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Guowei Zhou
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Qingye Sun
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| |
Collapse
|
4
|
Malik N, Ahmad M, Malik Z, Hussain A, Waseem M, Ali A, Rizwan M. Isolation and characterization of chromium-resistant bacteria and their effects on germination, growth, and Cr accumulation in Capsicum annum (L.) under Cr stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108955. [PMID: 39053317 DOI: 10.1016/j.plaphy.2024.108955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Chromium (Cr) is a well-known environmental pollutant while less information is available on the role of Cr-resistant bacteria in the alleviation of Cr-stress in chili (Capsicum annum L.) plants. Effect of Cr-resistant bacterial strains on growth and Cr uptake by chili plants was investigated. The results revealed that Cr-stress showed a negative effect on germination, photosynthesis, and relative water content but the inoculation ameliorated the plant stress. Chromium-resistant bacterial strains enhanced the shoot and root growth (33% SL, 19.7% RL), shoot and root dry weight (35%, 32.9%), relative water content (32.25%), membrane stability index (46.52%) SPAD value (50.76%), Cr concentration in shoots and roots (19.87 and 18.52 mg kg-1), bioaccumulation and translocation factor (0.396 mgkg-1), and seedling vigor index (40.8%) of plants. Chromium-resistant bacterial strains enhanced the NPK uptake while reduced Cr uptake by plants. The morphological and biochemical examination of rhizobacterial strains (and NM28) resistant to Cr-stress revealed smooth, off-white colonies of bacteria composed of rod-shaped cells which are Gram positive in reaction while negative in catalase activity. High quantities of malic acid were produced by bacterial strains under study i.e. NM8 (926.12 μgmL-2) and NM28 (992.25 μgmL-2). These strains were identified as Bacillus cereus strain NM8 and Bacillus subtilis strain NM28 through 16S rRNA sequencing. Results showed that B. cereus strain NM28 is more effective than B. cereus strain NM8 in promoting the growth of Cr-stressed Chili that might be suitable to develop biofertilizer for sustainable production of vegetables under metal stress.
Collapse
Affiliation(s)
- Natasha Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Azhar Hussain
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ahmad Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
5
|
Sharma I, Sharma S, Sharma V, Singh AK, Sharma A, Kumar A, Singh J, Sharma A. PGPR-Enabled bioremediation of pesticide and heavy metal-contaminated soil: A review of recent advances and emerging challenges. CHEMOSPHERE 2024; 362:142678. [PMID: 38908452 DOI: 10.1016/j.chemosphere.2024.142678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
The excessive usage of agrochemicals, including pesticides, along with various reckless human actions, has ensued discriminating prevalence of pesticides and heavy metals (HMs) in crop plants and the environment. The enhanced exposure to these chemicals is a menace to living organisms. The pesticides may get bioaccumulated in the food chain, thereby leading to several deteriorative changes in the ecosystem health and a rise in the cases of some serious human ailments including cancer. Further, both HMs and pesticides cause some major metabolic disturbances in plants, which include oxidative burst, osmotic alterations and reduced levels of photosynthesis, leading to a decline in plant productivity. Moreover, the synergistic interaction between pesticides and HMs has a more serious impact on human and ecosystem health. Various attempts have been made to explore eco-friendly and environmentally sustainable methods of improving plant health under HMs and/or pesticide stress. Among these methods, the employment of PGPR can be a suitable and effective strategy for managing these contaminants and providing a long-term remedy. Although, the application of PGPR alone can alleviate HM-induced phytotoxicities; however, several recent reports advocate using PGPR with other micro- and macro-organisms, biochar, chelating agents, organic acids, plant growth regulators, etc., to further improve their stress ameliorative potential. Further, some PGPR are also capable of assisting in the degradation of pesticides or their sequestration, reducing their harmful effects on plants and the environment. This present review attempts to present the current status of our understanding of PGPR's potential in the remediation of pesticides and HMs-contaminated soil for the researchers working in the area.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Life Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Shivika Sharma
- Department of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, India
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, India
| | - Anil Kumar Singh
- Department of Agriculture Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Aksh Sharma
- Department of Life Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Joginder Singh
- Department of Botany, Nagaland University, Hqrs. Lumami, Zunheboto, Nagaland, 798627, India.
| | - Ashutosh Sharma
- Faculty of Agricultural Sciences, DAV University, Jalandhar, Punjab, 144012, India.
| |
Collapse
|
6
|
Alshaal T, Alharbi K, Naif E, Rashwan E, Omara AED, Hafez EM. Strengthen sunflowers resilience to cadmium in saline-alkali soil by PGPR-augmented biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116555. [PMID: 38870735 DOI: 10.1016/j.ecoenv.2024.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
In the center of the Nile Delta in Egypt, the Kitchener drain as the primary drainage discharges about 1.9 billion m3 per year of water, which comprises agricultural drainage (75 %), domestic water (23 %), and industrial water (2 %), to the Mediterranean Sea. Cadmium (Cd) stands out as a significant contaminant in this drain; therefore, this study aimed to assess the integration of biochar (0, 5, and 10 ton ha-1) and three PGPRs (PGPR-1, PGPR-2, and PGPR-3) to alleviate the negative impacts of Cd on sunflowers (Helianthus annuus L.) in saline-alkali soil. The treatment of biochar (10 ton ha-1) and PGPR-3 enhanced the soil respiration, dehydrogenase, nitrogenase, and phosphatase activities by 137 %, 129 %, 326 %, and 127 %, while it declined soil electrical conductivity and available Cd content by 31.7 % and 61.3 %. Also, it decreased Cd content in root, shoot, and seed by 55.3 %, 50.7 %, and 92.5 %, and biological concentration and translocation factors by 55 % and 5 %. It also declined the proline, lipid peroxidation, H2O2, and electrolyte leakage contents by 48 %, 94 %, 80 %, and 76 %, whereas increased the catalase, peroxidase, superoxide dismutase, and polyphenol oxidase activities by 80 %, 79 %, 61 %, and 116 %. Same treatment increased seed and oil yields increased by 76.1 % and 76.2 %. The unique aspect of this research is its investigation into the utilization of biochar in saline-alkali soil conditions, coupled with the combined application of biochar and PGPR to mitigate the adverse effects of Cd contamination on sunflower cultivation in saline-alkali soil.
Collapse
Affiliation(s)
- Tarek Alshaal
- Department of Applied Plant Biology, Institute of Crop Sciences, University of Debrecen, AGTC. 4032 Debrecen, Hungary; Soil and Water Department, Faculty of Agriculture, University of Kafrelsheikh, 33516 Kafr El-Sheikh, Egypt.
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Eman Naif
- Department of Crop Science, Faculty of Agriculture, Damanhour University, El-Beheira 22511, Egypt
| | - Emadelden Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Emad M Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
7
|
Hareem M, Danish S, Pervez M, Irshad U, Fahad S, Dawar K, Alharbi SA, Ansari MJ, Datta R. Optimizing chili production in drought stress: combining Zn-quantum dot biochar and proline for improved growth and yield. Sci Rep 2024; 14:6627. [PMID: 38503869 PMCID: PMC10951368 DOI: 10.1038/s41598-024-57204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The reduction in crop productivity due to drought stress, is a major concern in agriculture. Drought stress usually disrupts photosynthesis by triggering oxidative stress and generating reactive oxygen species (ROS). The use of zinc-quantum dot biochar (ZQDB) and proline (Pro) can be effective techniques to overcome this issue. Biochar has the potential to improve the water use efficiency while proline can play an imperative role in minimization of adverse impacts of ROS Proline, functioning as an osmotic protector, efficiently mitigates the adverse effects of heavy metals on plants by maintaining cellular structure, scavenging free radicals, and ensuring the stability of cellular integrity. That's why current study explored the impact of ZQDB and proline on chili growth under drought stress. Four treatments, i.e., control, 0.4%ZQDB, 0.1 mM Pro, and 0.4%ZQDB + Pro, were applied in 4 replications following the complete randomized design. Results exhibited that 0.4%ZQDB + Pro caused an increases in chili plant dry weight (29.28%), plant height (28.12%), fruit length (29.20%), fruit girth (59.81%), and fruit yield (55.78%) over control under drought stress. A significant increment in chlorophyll a (18.97%), chlorophyll b (49.02%), and total chlorophyll (26.67%), compared to control under drought stress, confirmed the effectiveness of 0.4%ZQDB + Pro. Furthermore, improvement in leaves N, P, and K concentration over control validated the efficacy of 0.4%ZQDB + Pro against drought stress. In conclusion, 0.4%ZQDB + Pro can mitigate drought stress in chili. More investigations are suggested to declare 0.4%ZQDB + Pro as promising amendment for mitigation of drought stress in other crops as well under changing climatic situations.
Collapse
Affiliation(s)
- Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Mahnoor Pervez
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Usman Irshad
- Department of Environmental Sciences, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.
| |
Collapse
|
8
|
Qian L, Huang S, Song Z, Fahad S, Dawar K, Danish S, Saif H, Shahzad K, Ansari MJ, Salmen SH. Effect of carboxymethyl cellulose and gibberellic acid-enriched biochar on osmotic stress tolerance in cotton. BMC PLANT BIOLOGY 2024; 24:137. [PMID: 38408939 PMCID: PMC10895763 DOI: 10.1186/s12870-024-04792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
The deleterious impact of osmotic stress, induced by water deficit in arid and semi-arid regions, poses a formidable challenge to cotton production. To protect cotton farming in dry areas, it's crucial to create strong plans to increase soil water and reduce stress on plants. The carboxymethyl cellulose (CMC), gibberellic acid (GA3) and biochar (BC) are individually found effective in mitigating osmotic stress. However, combine effect of CMC and GA3 with biochar on drought mitigation is still not studied in depth. The present study was carried out using a combination of GA3 and CMC with BC as amendments on cotton plants subjected to osmotic stress levels of 70 (70 OS) and 40 (40 OS). There were five treatment groups, namely: control (0% CMC-BC and 0% GA3-BC), 0.4%CMC-BC, 0.4%GA3-BC, 0.8%CMC-BC, and 0.8%GA3-BC. Each treatment was replicated five times with a completely randomized design (CRD). The results revealed that 0.8 GA3-BC led to increase in cotton shoot fresh weight (99.95%), shoot dry weight (95.70%), root fresh weight (73.13%), and root dry weight (95.74%) compared to the control group under osmotic stress. There was a significant enhancement in cotton chlorophyll a (23.77%), chlorophyll b (70.44%), and total chlorophyll (35.44%), the photosynthetic rate (90.77%), transpiration rate (174.44%), and internal CO2 concentration (57.99%) compared to the control group under the 40 OS stress. Thus 0.8GA3-BC can be potential amendment for reducing osmotic stress in cotton cultivation, enhancing agricultural resilience and productivity.
Collapse
Affiliation(s)
- Lisheng Qian
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhihua Song
- College of Food Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| | - Khadim Dawar
- Department of Soil and Environmental Science, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Hina Saif
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan
| | - Khurram Shahzad
- Department of Soil Science, University College of Dera Murad Jamali, LUAWMS, Dera Murad Jamali, Balochistan, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
9
|
Younis U, Danish S, Datta R, Alahmadi TA, Ansari MJ. Sustainable remediation of chromium-contaminated soils: boosting radish growth with deashed biochar and strigolactone. BMC PLANT BIOLOGY 2024; 24:115. [PMID: 38365582 PMCID: PMC10870680 DOI: 10.1186/s12870-024-04791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Chromium (Cr) stress significantly hinders crop production by disrupting nutrient uptake, impairing plant growth, and contaminating soil, posing a substantial threat to agricultural sustainability. The use of deashed biochar (DAB) and strigolactone can be an effective solution to mitigate this issue. Deashed biochar enhances crop production by improving soil structure, water retention, and nutrient availability while mitigating the bioavailability of toxic substances. Strigolactone boosts plant growth by stimulating root growth, branching, shoot formation, and overall plant physiology. Nevertheless, the scientific rationale behind their collective use as an amendment to counter Cr stress remains to be substantiated. Therefore, in this study, a blend of DAB and strigolactone was employed as additives in radish cultivation, both in the absence of Cr stress and under the influence of 200Cr stress. Four treatments, i.e., 0, 20µM Strigolactone, DAB, and 20µM Strigolactone + DAB, were applied in four replications following a completely randomized design. Results demonstrate that 20µM Strigolactone + DAB produced significant improvement in radish shoot length (27.29%), root length (45.60%), plant fresh weight (33.25%), and plant dry weight (78.91%), compared to the control under Cr stress. Significant enrichment in radish chlorophyll a (20.41%), chlorophyll b (58.53%), and total chlorophyll (31.54%) over the control under Cr stress, prove the efficacy of 20µM Strigolactone + DAB treatment. In conclusion, 20µM Strigolactone + DAB is the recommended amendment for mitigating Cr stress in radish. Farmers should consider using Strigolactone + DAB amendments to combat Cr stress and enhance radish growth, contributing to a more resilient agricultural ecosystem.
Collapse
Affiliation(s)
- Uzma Younis
- Botany Department, The Islamia University of Bahawalpur, Sub Campus Rahim Yar Khan, Rahim Yar Khan, Punjab, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, 11461, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| |
Collapse
|
10
|
Huang P, Huang S, Ma Y, Danish S, Hareem M, Syed A, Elgorban AM, Eswaramoorthy R, Wong LS. Alleviation of salinity stress by EDTA chelated-biochar and arbuscular mycorrhizal fungi on maize via modulation of antioxidants activity and biochemical attributes. BMC PLANT BIOLOGY 2024; 24:63. [PMID: 38262953 PMCID: PMC10804780 DOI: 10.1186/s12870-024-04753-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Salinity stress adversely affects agricultural productivity by disrupting water uptake, causing nutrient imbalances, and leading to ion toxicity. Excessive salts in the soil hinder crops root growth and damage cellular functions, reducing photosynthetic capacity and inducing oxidative stress. Stomatal closure further limits carbon dioxide uptake that negatively impact plant growth. To ensure sustainable agriculture in salt-affected regions, it is essential to implement strategies like using biofertilizers (e.g. arbuscular mycorrhizae fungi = AMF) and activated carbon biochar. Both amendments can potentially mitigate the salinity stress by regulating antioxidants, gas exchange attributes and chlorophyll contents. The current study aims to explore the effect of EDTA-chelated biochar (ECB) with and without AMF on maize growth under salinity stress. Five levels of ECB (0, 0.2, 0.4, 0.6 and 0.8%) were applied, with and without AMF. Results showed that 0.8ECB + AMF caused significant enhancement in shoot length (~ 22%), shoot fresh weight (~ 15%), shoot dry weight (~ 51%), root length (~ 46%), root fresh weight (~ 26%), root dry weight (~ 27%) over the control (NoAMF + 0ECB). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll content, photosynthetic rate, transpiration rate and stomatal conductance was also observed in the condition 0.8ECB + AMF relative to control (NoAMF + 0ECB), further supporting the efficacy of such a combined treatment. Our results suggest that adding 0.8% ECB in soil with AMF inoculation on maize seeds can enhance maize production in saline soils, possibly via improvement in antioxidant activity, chlorophyll contents, gas exchange and morphological attributes.
Collapse
Affiliation(s)
- Ping Huang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, 233100, China.
| | - Yuhan Ma
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, 233100, China
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, 60000, Pakistan.
| | - Misbah Hareem
- Department of Environmental Sciences, The Woman University Multan, Multan, Punjab, 60000, Pakistan.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Rajalakshmanan Eswaramoorthy
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, Negeri Sembilan, Nilai, 71800, Malaysia
| |
Collapse
|
11
|
Ramzan M, Jamshaid T, Ali L, Dawar K, Saba R, Jamshaid U, Fahad S, Salmen SH, Ansari MJ, Danish S, Hareem M, Saif H, Shahzad K. Modulation of sunflower growth via regulation of antioxidants, oil content and gas exchange by arbuscular mycorrhizal fungi and quantum dot biochar under chromium stress. BMC PLANT BIOLOGY 2023; 23:629. [PMID: 38062351 PMCID: PMC10704615 DOI: 10.1186/s12870-023-04637-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Chromium (Cr) toxicity significantly threatens sunflower growth and productivity by interfering with enzymatic activity and generating reactive oxygen species (ROS). Zinc quantum dot biochar (ZQDB) and arbuscular mycorrhizal fungi (AMF) have become popular to resolve this issue. AMF can facilitate root growth, while biochar tends to minimize Cr mobility in soil. The current study aimed to explore AMF and ZQDB combined effects on sunflower plants in response to Cr toxicity. Four treatments were applied, i.e. NoAMF + NoZQDB, AMF + 0.40%ZQDB, AMF + 0.80%ZQDB, and AMF + 1.20%ZQDB, under different stress levels of Cr, i.e. no Cr (control), 150 and 200 mg Cr/kg soil. Results showed that AMF + 1.20%ZQDB was the treatment that caused the greatest improvement in plant height, stem diameter, head diameter, number of leaves per plant, achenes per head, 1000 achenes weight, achene yield, biological yield, transpiration rate, stomatal conductance, chlorophyll content and oleic acid, relative to the condition NoAMF + No ZQDB at 200 mg Cr/kg soil. A significant decline in peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) while improvement in ascorbate peroxidase (APx), oil content, and protein content further supported the effectiveness of AMF + 1.20%ZQDB against Cr toxicity. Our results suggest that the treatment AMF + 1.20%ZQDB can efficiently alleviate Cr stress in sunflowers.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Liaqat Ali
- Cholistan institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Khadim Dawar
- Department of Soil and Environmental Science, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Rabia Saba
- Department of Biological Science, University of Thal Bhakkar, Bhakkar, Pakistan
| | - Usama Jamshaid
- Faculty of Pharmacy, University Des Strasbourg, Strasbourg, France
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Misbah Hareem
- Department of Environmental Sciences, The Woman University Multan, Multan, Punjab, Pakistan
| | - Hina Saif
- Department of Environmental Sciences, The Woman University Multan, Multan, Punjab, Pakistan
| | - Khurrum Shahzad
- Department of Soil Science, Water and Marine Sciences, Lasbela university of Agriculture, Uthal, Balochistan, Pakistan
| |
Collapse
|
12
|
Sarwar G, Anwar T, Malik M, Rehman HU, Danish S, Alahmadi TA, Ansari MJ. Evaluation of potassium-enriched biochar and GA3 effectiveness for Improving wheat growth under drought stress. BMC PLANT BIOLOGY 2023; 23:615. [PMID: 38049735 PMCID: PMC10696804 DOI: 10.1186/s12870-023-04613-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023]
Abstract
Osmotic stress is a significant concern in agricultural crop production as it can harm crop growth, development, and productivity. Agriculture crops are particularly vulnerable to osmotic stress due to their reliance on water availability for various physiological processes. Organic amendments like activated carbon biochar and growth hormone gibberellic acid (GA3) can play a vital role. However, the time needed is to modify the established amendment to achieve better results. That's why the current study used potassium-enriched biochar (KBC = 0.75%) with and without GA3 (15 mg/L) as amendments under no osmotic stress and osmotic stress in wheat. Results showed that GA3 + KBC caused significant enhancement in germination (9.44%), shoot length (29.30%), root length (21.85%), shoot fresh weight (13.56%), shoot dry weight (68.38), root fresh weight (32.68%) and root dry weight (28.79%) of wheat over control under osmotic stress (OS). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll, while the decline in electrolyte leakage of wheat, also validated the effectiveness of GA3 + KBC over control in OS. In conclusion, GA3 + KBC is the most effective among all applied treatments for improving wheat growth attributes under no osmotic and osmotic stress. Further research is needed at the field level, focusing on various cereal crops, to establish GA3 + KBC as the optimal treatment for effectively mitigating the impacts of osmotic stress.
Collapse
Affiliation(s)
- Ghulam Sarwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tauseef Anwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Mehvish Malik
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Haseeb Ur Rehman
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, Medical City, King Saud University, PO Box-2925, 11461, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, (MJP Rohilkhand University Bareilly), Moradabad, India, 244001
- Al-Waili Foundation of Science, New York, USA
| |
Collapse
|
13
|
Haroun M, Xie S, Awadelkareem W, Wang J, Qian X. Influence of biofertilizer on heavy metal bioremediation and enzyme activities in the soil to revealing the potential for sustainable soil restoration. Sci Rep 2023; 13:20684. [PMID: 38001100 PMCID: PMC10673865 DOI: 10.1038/s41598-023-44986-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/14/2023] [Indexed: 11/26/2023] Open
Abstract
Overuse of chemical fertilizer and pesticides in agricultural activity is frequently damaging to soil health and can accumulate heavy metals in the soil environment, causing harm to plants, humans, and the ecosystem. This study was done to evaluate the effectiveness of biofertilizers in reducing heavy metal levels in contaminated soil and enhancing the activity of soil enzymes that are crucial to plant growth and development. Two bacteria strains, Pseudomonas aeruginosa. and Bacillus firmus, were chosen to develop biofertilizers based on molasses. The pot experiment was setup using a completely randomized design with four treatments and five levels; Bacillus firmus and Pseudomonas aeruginosa were used separately, and they were combined for the biofertilizer dose (20, 40, 60, 80, and 100 mL). Utilizing contaminated soils taken from a greenhouse farm the effect of biofertilizer on heavy metal bioremediation and soil enzyme activity was examined. Methods of soil agrochemical analysis were used to determine the soil physiochemical properties and the concentrations of heavy metals Cu, Fe, Zn, Cd, Mo, Mn, were determined by inductively coupled plasma-mass spectrometry ICP-MS, following DTPA extraction methods. In results, soil pH decreased from 8.28 to 7.39, Ec increased from 0.91 to 1.12, organic matter increased from 18.88 to 20.63 g/kg, N increased gradually from 16.7 to 24.4 mg/kg, and K increased from 145.25 to 201.4 mg/kg. The effect of biofertilizer treatment on soil physiochemical characteristics was significantly positive. Application of biofertilizer significantly increased the heavy metal bioavailability and the activities of soil enzymes. Soil pH were positively correlated with soil Zn (0.99819*), APK (0.95869*) activity and negatively correlated with Fe (0.96759*) also statistically significant at (p < 0.05). The soil Cu positively correlated with Fe (0.99645*), Cd (0.97866*), β.D.GLU (0.99769*) and negatively correlated with PAK (- 0.9624*). Soil ARY had positive correlation with soil Mn (0.99683*), Cd (0.95695*), and negative correlation with PAK (- 0.99424*) at (p < 0.05). Soil enzyme activities were negatively correlated to heavy metals at a significant level. Collectively, the study highlights the potential of biofertilizers as a sustainable and effective approach to enhance soil health and remediate heavy metal-contaminated soils in greenhouses.
Collapse
Affiliation(s)
- Mohammed Haroun
- Department of Agriproduct and Environmental Safety, College of Agriculture, Yangzhou University, Yangzhou, 225012, China
- Department of Biotechnology, Africa City of Technology, Khartoum, 11111, Sudan
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Yangzhou, 225127, China
| | - Shifan Xie
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Yangzhou, 225127, China
- Environment Science and Engineering College, Yangzhou University, Yangzhou, 225127, China
| | - Waleed Awadelkareem
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Yangzhou, 225127, China
- Department of Botany, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Department of Soil Science, College of Agriculture, Red Sea University, Port Sudan, 33319, Sudan
| | - Juanjuan Wang
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Yangzhou, 225127, China
- Environment Science and Engineering College, Yangzhou University, Yangzhou, 225127, China
| | - Xiaoqing Qian
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Yangzhou, 225127, China.
- Environment Science and Engineering College, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
14
|
Daraz U, Ahmad I, Li QS, Zhu B, Saeed MF, Li Y, Ma J, Wang XB. Plant growth promoting rhizobacteria induced metal and salt stress tolerance in Brassica juncea through ion homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115657. [PMID: 37924800 DOI: 10.1016/j.ecoenv.2023.115657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Soil heavy metal contamination and salinity constitute a major environmental problem worldwide. The affected area and impact of these problems are increasing day by day; therefore, it is imperative to restore their potential using environmentally friendly technology. Plant growth-promoting rhizobacteria (PGPR) provides a better option in this context. Thirty-seven bacteria were isolated from the rhizosphere of maize cultivated in metal- and salt-affected soils. Some selected bacterial strains grew well under a wide range of pH (4-10), salt (5-50 g/L), and Cd (50-1000 mg/L) stress. Three bacterial strains, Exiguobacterium aestuarii (UM1), Bacillus cereus (UM8), and Bacillus megaterium (UM35), were selected because of their robust growth and high tolerance to both stress conditions. The bacterial strains UM1, UM8, and UM35 showed P-solubilization, whereas UM8 and UM35 exhibited 1-aminocyclopropane-1-carboxylate deaminase activity and indole acetic acid (IAA) production, respectively. The bacterial strains were inoculated on Brassica juncea plants cultivated in Cd and salt-affected soils due to the above PGP activities and stress tolerance. Plants inoculated with the bacterial strains B. cereus and B. megaterium significantly (p < 0.05) increased shoot fresh weight (17 ± 1.17-29 ± 0.88 g/plant), shoot dry weight (2.50 ± 0.03-4.40 ± 0.32 g/plant), root fresh weight (7.30 ± 0.58-13.30 ± 0.58 g/plant), root dry weight (0.80 ± 0.04-2.00 ± 0.01 g/plant), and shoot K contents (62.76 ± 1.80-105.40 ± 1.15 mg/kg dwt) in normal and stressful conditions. The bacterial strain B. megaterium significantly (p < 0.05) decreased shoot Na+ and Cd++ uptake in single and dual stress conditions. Both bacterial strains, E. aestuarii and B. cereus, efficiently reduced Cd++ translocation and bioaccumulation in the shoot. Bacterial inoculation improved the uptake of K+ and Ca++, while restricted Na+ and Cd++ in B. juncea shoots indicated their potential to mitigate the dual stresses of salt and Cd in B. juncea through ion homeostasis.
Collapse
Affiliation(s)
- Umar Daraz
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China
| | - Jianguo Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Bo Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
15
|
El Rasafi T, Haouas A, Tallou A, Chakouri M, Aallam Y, El Moukhtari A, Hamamouch N, Hamdali H, Oukarroum A, Farissi M, Haddioui A. Recent progress on emerging technologies for trace elements-contaminated soil remediation. CHEMOSPHERE 2023; 341:140121. [PMID: 37690564 DOI: 10.1016/j.chemosphere.2023.140121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Abiotic stresses from potentially toxic elements (PTEs) have devastating impacts on health and survival of all living organisms, including humans, animals, plants, and microorganisms. Moreover, because of the rapid growing industrial activities together with the natural processes, soil contamination with PTEs has pronounced, which required an emergent intervention. In fact, several chemical and physical techniques have been employed to overcome the negative impacts of PTEs. However, these techniques have numerous drawback and their acceptance are usually poor as they are high cost, usually ineffectiveness and take longer time. In this context, bioremediation has emerged as a promising approach for reclaiming PTEs-contaminated soils through biological process using bacteria, fungus and plants solely or in combination. Here, we comprehensively reviews and critically discusses the processes by which microorganisms and hyperaccumulator plants extract, volatilize, stabilize or detoxify PTEs in soils. We also established a multi-technology repair strategy through the combination of different strategies, such as the application of biochar, compost, animal minure and stabilized digestate for stimulation of PTE remediation by hyperaccumulators plants species. The possible use of remote sensing of soil in conjunction with geographic information system (GIS) integration for improving soil bio-remediation of PTEs was discussed. By synergistically combining these innovative strategies, the present review will open very novel way for cleaning up PTEs-contaminated soils.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Health and Environment Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, B.P 5366, Maarif, Casablanca, Morocco.
| | - Ayoub Haouas
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Anas Tallou
- Department of Soil, Plant and Food Sciences - University of Bari "Aldo Moro", Italy
| | - Mohcine Chakouri
- Team of Remote Sensing and GIS Applied to Geosciences and Environment, Department of Earth Sciences, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Yassine Aallam
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco; Mohammed VI Polytechnic (UM6P) University, Ben Guerir, Morocco
| | - Ahmed El Moukhtari
- Ecology and Environment Laboratory, Faculty of Sciences Ben Msik, Hassan II University, PO 7955, Sidi Othmane, Casablanca, Morocco
| | - Noureddine Hamamouch
- Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fes, Morocco
| | - Hanane Hamdali
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| | | | - Mohamed Farissi
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty, USMS, Beni Mellal, Morocco
| | - Abdelmajid Haddioui
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| |
Collapse
|
16
|
Anwar T, Shehzadi A, Qureshi H, Shah MN, Danish S, Salmen SH, Ansari MJ. Alleviation of cadmium and drought stress in wheat by improving growth and chlorophyll contents amended with GA3 enriched deashed biochar. Sci Rep 2023; 13:18503. [PMID: 37898671 PMCID: PMC10613229 DOI: 10.1038/s41598-023-45670-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023] Open
Abstract
Drought and cadmium (Cd) stress are both major issues that significantly affect the growth and development of wheat plants. Both drought stress and Cd toxicity disrupt physiological processes i.e., nutrient uptake, cell expansion, and enzymatic reactions resulting in poor crop growth. To overcome these issues, the use of activated carbon and gibberellic acid (GA3) are considered valuable amendments. However, the current study aimed to add value using GA3-enriched biochar (GA3-BC). That's why, a lab experiment was conducted on wheat to assess the effectiveness of GA3-BC against Cd and drought stress. For GA3 enrichment in biochar, 10 µg GA3/g biochar was mixed. There were 3 levels of GA3-BC i.e., 0, 0.6 (GA3-BC1), and 0.9% (GA3-BC). All levels were applied in 3 replicates under no stress (0Cd + no drought), drought stress (DS), and 6 mg Cd/ kg soil (6Cd). Results showed that GA3-BC2 caused a significant improvement in shoot length (44.99%), root length (99.73%), seedling length (60.13%) and shoot fresh weight (63.59%) over control at 6Cd + drought stress. A significant improvement in chlorophyll a, chlorophyll b, and total chlorophyll while a decrease in electrolyte leakage and regulation of antioxidants i.e., lipid peroxidation, SOD, CAT, APx, GR, GPx, GST, and DPHH also signified the effectiveness of GA3-BC2 compared to control at 6Cd + drought stress. In conclusion, GA3-BC2 is an efficacious amendment for simultaneously alleviating drought and Cd stress in wheat. More investigations are recommended at the field level on different cereal crops cultivated in different soil textures to declare GA3-BC2 as the best treatment for mitigation of drought stress and Cd toxicity.
Collapse
Affiliation(s)
- Tauseef Anwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Asma Shehzadi
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, Pakistan
| | - Muhammad Nadeem Shah
- Department of Agriculture, Government College University, Lahore, Pakistan
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, USA
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, 244001, India
| |
Collapse
|
17
|
Wang Y, Li P, Tian Y, Xiong Z, Zheng Z, Yi Z, Ao H, Wang Q, Li J. Bacterial seed endophyte and abiotic factors influence cadmium accumulation in rice (Oryza sativa) along the Yangtze River area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115352. [PMID: 37579590 DOI: 10.1016/j.ecoenv.2023.115352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Cadmium (Cd) contamination in rice (Oryza sativa) is particularly problematic due to its high risk to human health. Investigating the hidden roles of seed endophytes of rice in influencing Cd accumulation is essential to comprehensively understand the effects of biotic and abiotic factors to food security. Here, the content of Cd in soils and rice (Huanghuazhan) seeds from 19 sites along the Yangtze River exhibited considerable differences. From a biotic perspective, we observed the dominant endophytic bacteria, Stenotrophomonas (7.25 %), contribute to Cd control of rice (below 0.2 mg kg-1). Partial Least Squares (PLS) analysis further suggested that Enterobacteriaceae (15.48 %), altitude and pH were found to be the strong variables that might reduce the Cd uptake of rice. In contrast, Cytophagaceae (0.58 %), latitude and mean annual air pressure had the opposite effect. In pot experiments, after respectively inoculating the isolated endophytic bacteria Stenotrophomonas T4 and Enterobacter R1, N1 (f_Enterobacteriaceae), the Cd contents in shoot decreased by 47.6 %, 21.9 % and 33.0 % compared to controls. The distribution of Cd resistant genes (e.g., czcABC, nccAB, cznA) of Stenotrophomonas, Enterobacteriaceaea and Cytophagaceae further suggested their distinct manners in influencing the Cd uptake of rice. Overall, this study provides new insights into the food security threatened by globally widespread Cd pollution.
Collapse
Affiliation(s)
- Yujie Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Peng Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ziqin Xiong
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhongyi Zheng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qiming Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
18
|
Mandal S, Anand U, López-Bucio J, Radha, Kumar M, Lal MK, Tiwari RK, Dey A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. ENVIRONMENTAL RESEARCH 2023; 233:116357. [PMID: 37295582 DOI: 10.1016/j.envres.2023.116357] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Pesticide and fertilizer usage is at the center of agricultural production to meet the demands of an ever-increasing global population. However, rising levels of chemicals impose a serious threat to the health of humans, animals, plants, and even the entire biosphere because of their toxic effects. Biostimulants offer the opportunity to reduce the agricultural chemical footprint owing their multilevel, beneficial properties helping to make agriculture more sustainable and resilient. When applied to plants or to the soil an increased absorption and distribution of nutrients, tolerance to environmental stress, and improved quality of plant products explain the mechanisms by which these probiotics are useful. In recent years, the use of plant biostimulants has received widespread attention across the globe as an ecologically acceptable alternative to sustainable agricultural production. As a result, their worldwide market continues to grow, and further research will be conducted to broaden the range of the products now available. Through this review, we present a current understanding of biostimulants, their mode of action and their involvement in modulating abiotic stress responses, including omics research, which may provide a comprehensive assessment of the crop's response by correlating molecular changes to physiological pathways activated under stress conditions aggravated by climate change.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India; Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra, 411018, India.
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
19
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
20
|
Zhang X, Ma M, Wu C, Huang S, Danish S. Mitigation of heat stress in wheat (Triticum aestivum L.) via regulation of physiological attributes using sodium nitroprusside and gibberellic acid. BMC PLANT BIOLOGY 2023; 23:302. [PMID: 37280509 PMCID: PMC10242961 DOI: 10.1186/s12870-023-04321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/27/2023] [Indexed: 06/08/2023]
Abstract
Heat stress poses a threat to plants in arid and semiarid regions, leading to soil salinization and plant mortality. Researchers are exploring remedies to alleviate these effects, including using gibberellic acid (GA3) to regulate plant enzymes and antioxidants. Additionally, sodium nitroprusside (SNP) is gaining attention, but its combined effect with GA3 requires further research. To address this gap, we investigated the effects of GA3 and SNP on plants under heat stress conditions. For that, wheat plants were cultivated under 40 °C for 6 h per day (15 days). Sodium nitroprusside (donor of NO and SNP) and gibberellic acid (GA3), respectively, with 100 µM and 5 µg/ml concentrations, were applied as foliar sprays at 10 days after sowing (DAS). Results showed that SNP + GA3 treatment had the highest plant height (4.48% increase), plant fresh weight (29.7%), plant dry weight (87%), photosynthetic rate (39.76%) and stomatal conductance (38.10%), and Rubisco (54.2%) compared to the control. Our findings indicate a significant increase in NO, H2O2, TBARS, SOD, POD, APX, proline, GR, and GB that greatly scavenged reactive oxygen species (ROS) for decreasing the adverse effect of stress. Such findings confirmed the efficacy of the combined treatment of SNP + GA3 under high-temperature stress compared to the solitary application of GA3, SNP, and control. In conclusion, using SNP + GA3 is a better strategy for mitigating heat stress in wheat than individual applications. Further research is recommended to validate the effectiveness of SNP + GA3 in other cereal crops.
Collapse
Affiliation(s)
- Xueping Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Mingjun Ma
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Chengcheng Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100 China
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab Pakistan
| |
Collapse
|
21
|
Saharan BS, Chaudhary T, Mandal BS, Kumar D, Kumar R, Sadh PK, Duhan JS. Microbe-Plant Interactions Targeting Metal Stress: New Dimensions for Bioremediation Applications. J Xenobiot 2023; 13:252-269. [PMID: 37367495 DOI: 10.3390/jox13020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
In the age of industrialization, numerous non-biodegradable pollutants like plastics, HMs, polychlorinated biphenyls, and various agrochemicals are a serious concern. These harmful toxic compounds pose a serious threat to food security because they enter the food chain through agricultural land and water. Physical and chemical techniques are used to remove HMs from contaminated soil. Microbial-metal interaction, a novel but underutilized strategy, might be used to lessen the stress caused by metals on plants. For reclaiming areas with high levels of heavy metal contamination, bioremediation is effective and environmentally friendly. In this study, the mechanism of action of endophytic bacteria that promote plant growth and survival in polluted soils-known as heavy metal-tolerant plant growth-promoting (HMT-PGP) microorganisms-and their function in the control of plant metal stress are examined. Numerous bacterial species, such as Arthrobacter, Bacillus, Burkholderia, Pseudomonas, and Stenotrophomonas, as well as a few fungi, such as Mucor, Talaromyces, Trichoderma, and Archaea, such as Natrialba and Haloferax, have also been identified as potent bioresources for biological clean-up. In this study, we additionally emphasize the role of plant growth-promoting bacteria (PGPB) in supporting the economical and environmentally friendly bioremediation of heavy hazardous metals. This study also emphasizes future potential and constraints, integrated metabolomics approaches, and the use of nanoparticles in microbial bioremediation for HMs.
Collapse
Affiliation(s)
- Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Twinkle Chaudhary
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Balwan Singh Mandal
- Department of Forestry, CCS Haryana Agricultural University, Hisar 125004, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India
| | - Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | | |
Collapse
|
22
|
Li J, Guo YK, Zhao QX, He JZ, Zhang Q, Cao HY, Liang CQ. Microbial cell wall sorption and Fe-Mn binding in rhizosphere contribute to the obstruction of cadmium from soil to rice. Front Microbiol 2023; 14:1162119. [PMID: 37138638 PMCID: PMC10149983 DOI: 10.3389/fmicb.2023.1162119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 05/05/2023] Open
Abstract
Screening high-tolerant microorganisms to cadmium (Cd) and revealing their bio-obstruction mechanism could be significant for Cd regulation from farmland to the food chain. We examined the tolerance and bio-removal efficiency of Cd ions of two bacterial strains, Pseudomonas putida 23483 and Bacillus sp. GY16, and measured the accumulation of Cd ions in rice tissues and its different chemical forms in soil. The results showed that the two strains had high tolerance to Cd, but the removal efficiency was decreased successively with increasing Cd concentrations (0.05 to 5 mg kg-1). Cell-sorption accounted for the major proportion of Cd removal compared with excreta binding in both strains, which was conformed to the pseudo-second-order kinetics. At the subcellular level, Cd was mostly taken up by the cell mantle and cell wall, and only a small amount entered into the cytomembrane and cytoplasmic with time progressed (0 to 24 h) in each concentration. The cell mantle and cell wall sorption decreased with increasing Cd concentration, especially in the cytomembrane and cytoplasmic. The scanning electron microscope (SEM) and energy dispersive X-ray (EDS) analysis verified that Cd ions were attached to the cell surface, and the functional groups of C-H, C-N, C=O, N-H, and O-H in the cell surface may participate in cell-sorption process tested by the FTIR analysis. Furthermore, inoculation of the two strains significantly decreased Cd accumulation in rice straw and grain but increased in the root, increased Cd enrichment ratio in root from soil, decreased Cd translocation ratio from root to straw and grain, and increased the Cd concentrations of Fe-Mn binding form and residual form in rhizosphere soil. This study highlights that the two strains mainly removed Cd ions in solution through biosorption and passivated soil Cd as Fe-Mn combined form ascribe to its characteristics of manganese-oxidizing, eventually achieving bio-obstruction of Cd from soil to rice grain.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Kai Guo
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining, China
| | - Qing-Xia Zhao
- Institute of New Rural Development, Guizhou University, Guiyang, China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Qian Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Hong-Ying Cao
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hong-Ying Cao
| | | |
Collapse
|
23
|
Khan AR, Mustafa A, Hyder S, Valipour M, Rizvi ZF, Gondal AS, Yousuf Z, Iqbal R, Daraz U. Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. BIOLOGY 2022; 11:biology11121763. [PMID: 36552272 PMCID: PMC9775066 DOI: 10.3390/biology11121763] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Food security will be a substantial issue in the near future due to the expeditiously growing global population. The current trend in the agriculture industry entails the extravagant use of synthesized pesticides and fertilizers, making sustainability a difficult challenge. Land degradation, lower production, and vulnerability to both abiotic and biotic stresses are problems caused by the usage of these pesticides and fertilizers. The major goal of sustainable agriculture is to ameliorate productivity and reduce pests and disease prevalence to such a degree that prevents large-scale damage to crops. Agriculture is a composite interrelation among plants, microbes, and soil. Plant microbes play a major role in growth promotion and improve soil fertility as well. Bacillus spp. produces an extensive range of bio-chemicals that assist in plant disease control, promote plant development, and make them suitable for agricultural uses. Bacillus spp. support plant growth by N fixation, P and K solubilization, and phytohormone synthesis, in addition to being the most propitious biocontrol agent. Moreover, Bacilli excrete extracellular metabolites, including antibiotics, lytic enzymes, and siderophores, and demonstrate antagonistic activity against phytopathogens. Bacillus spp. boosts plant resistance toward pathogens by inducing systemic resistance (ISR). The most effective microbial insecticide against insects and pests in agriculture is Bacillus thuringiensis (Bt). Additionally, the incorporation of toxin genes in genetically modified crops increases resistance to insects and pests. There is a constant increase in the identified Bacillus species as potential biocontrol agents. Moreover, they have been involved in the biosynthesis of metallic nanoparticles. The main objective of this review article is to display the uses and application of Bacillus specie as a promising biopesticide in sustainable agriculture. Bacillus spp. strains that are antagonistic and promote plant yield attributes could be valuable in developing novel formulations to lead the way toward sustainable agriculture.
Collapse
Affiliation(s)
- Aimen Razzaq Khan
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Adeena Mustafa
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
- Correspondence: (S.H.); (M.V.)
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO 80217, USA
- Correspondence: (S.H.); (M.V.)
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University Multan, Multan 60000, Pakistan
| | - Zubaida Yousuf
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Umar Daraz
- State Key Laboratory of Grassland Agroecosystem, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
24
|
Xie H, Chen J, Qiao Y, Xu K, Lin Z, Tian S. Biofortification Technology for the Remediation of Cadmium-Contaminated Farmland by the Hyperaccumulator Sedum alfredii under Crop Rotation and Relay Cropping Mode. TOXICS 2022; 10:691. [PMID: 36422899 PMCID: PMC9692257 DOI: 10.3390/toxics10110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Soil cadmium (Cd) extraction for hyperaccumulators is one of the most important technologies for the remediation of Cd-contaminated farmland soil. However, a phytoremediation model using a single hyperaccumulator cannot guarantee normal agricultural production in contaminated areas. To solve this problem, a combination of efficient remediation and safe production has been developed. Based on two-period field experiments, this study explored the effect of biofortification on soil Cd remediation using the fruit tree Sedum alfredii Hance and oil sunflower crop rotation and relay cropping mode. BioA and BioB treatments could markedly improve the efficiency of Cd extraction and remediation, and the maximum increase in Cd accumulation was 243.29%. When BioB treatment was combined with papaya-S. alfredii and oil sunflower crop rotation and relay cropping mode, the highest soil Cd removal rate in the two periods was 40.84%, whereas the Cd concentration of papaya fruit was lower than safety production standards (0.05 mg/kg). These results demonstrate that biofortification measures can significantly improve the Cd extraction effect of S. alfredii crop rotation and relay cropping restoration modes, which has guiding significance for Cd pollution remediation and safe production in farmland.
Collapse
|
25
|
Abeed AHA, Mahdy RE, Alshehri D, Hammami I, Eissa MA, Abdel Latef AAH, Mahmoud GAE. Induction of resilience strategies against biochemical deteriorations prompted by severe cadmium stress in sunflower plant when Trichoderma and bacterial inoculation were used as biofertilizers. FRONTIERS IN PLANT SCIENCE 2022; 13:1004173. [PMID: 36340332 PMCID: PMC9631322 DOI: 10.3389/fpls.2022.1004173] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/23/2022] [Indexed: 05/28/2023]
Abstract
Background Cadmium (Cd) is a highly toxic heavy metal. Its emission is suspected to be further increased due to the dramatic application of ash to agricultural soils and newly reclaimed ones. Thereby, Cd stress encountered by plants will exacerbate. Acute and chronic exposure to Cd can upset plant growth and development and ultimately causes plant death. Microorganisms as agriculturally important biofertilizers have constantly been arising as eco-friendly practices owing to their ability to built-in durability and adaptability mechanisms of plants. However, applying microbes as a biofertilizer agent necessitates the elucidation of the different mechanisms of microbe protection and stabilization of plants against toxic elements in the soil. A greenhouse experiment was performed using Trichoderma harzianum and plant growth-promoting (PGP) bacteria (Azotobacter chroococcum and Bacillus subtilis) individually and integrally to differentiate their potentiality in underpinning various resilience mechanisms versus various Cd levels (0, 50, 100, and 150 mg/kg of soil). Microorganisms were analyzed for Cd tolerance and biosorption capacity, indoleacetic acid production, and phosphate and potassium solubilization in vitro. Plant growth parameters, water relations, physiological and biochemical analysis, stress markers and membrane damage traits, and nutritional composition were estimated. Results Unequivocal inversion from a state of downregulation to upregulation was distinct under microbial inoculations. Inoculating soil with T. harzianum and PGPB markedly enhanced the plant parameters under Cd stress (150 mg/kg) compared with control plants by 4.9% and 13.9%, 5.6% and 11.1%, 55.6% and 5.7%, and 9.1% and 4.6% for plant fresh weight, dry weight, net assimilation rate, and transpiration rate, respectively; by 2.3% and 34.9%, 26.3% and 69.0%, 26.3% and 232.4%, 135.3% and 446.2%, 500% and 95.6%, and 60% and 300% for some metabolites such as starch, amino acids, phenolics, flavonoids, anthocyanin, and proline, respectively; by 134.0% and 604.6% for antioxidants including reduced glutathione; and by 64.8% and 91.2%, 21.9% and 72.7%, and 76.7% and 166.7% for enzymes activity including ascorbate peroxidase, glutathione peroxidase, and phenylalanine ammonia-lyase, respectively. Whereas a hampering effect mediated by PGP bacterial inoculation was registered on levels of superoxide anion, hydroxyl radical, electrolyte leakage, and polyphenol oxidase activity, with a decrease of 0.53%, 14.12%, 2.70%, and 5.70%, respectively, under a highest Cd level (150 mg/kg) compared with control plants. The available soil and plant Cd concentrations were decreased by 11.5% and 47.5%, and 3.8% and 45.0% with T. harzianum and PGP bacterial inoculation, respectively, compared with non-inoculated Cd-stressed plants. Whereas, non-significant alternation in antioxidant capacity of sunflower mediated by T. harzianum action even with elevated soil Cd concentrations indicates stable oxidative status. The uptake of nutrients, viz., K, Ca, Mg, Fe, nitrate, and phosphorus, was interestingly increased (34.0, 4.4, 3.3, 9.2, 30.0, and 1.0 mg/g dry weight, respectively) owing to the synergic inoculation in the presence of 150 mg of Cd/kg. Conclusions However, strategies of microbe-induced resilience are largely exclusive and divergent. Biofertilizing potential of T. harzianum showed that, owing to its Cd biosorption capability, a resilience strategy was induced via reducing Cd bioavailability to be in the range that turned its effect from toxicity to essentiality posing well-known low-dose stimulation phenomena (hormetic effect), whereas using Azotobacter chroococcum and Bacillus subtilis, owing to their PGP traits, manifested a resilience strategy by neutralizing the potential side effects of Cd toxicity. The synergistic use of fungi and bacteria proved the highest efficiency in imparting sunflower adaptability under Cd stress.
Collapse
Affiliation(s)
- Amany H. A. Abeed
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Rasha E. Mahdy
- Agronomy Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Inès Hammami
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mamdouh A. Eissa
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | | | | |
Collapse
|
26
|
Jabeen Z, Irshad F, Habib A, Hussain N, Sajjad M, Mumtaz S, Rehman S, Haider W, Hassan MN. Alleviation of cadmium stress in rice by inoculation of Bacillus cereus. PeerJ 2022; 10:e13131. [PMID: 35529485 PMCID: PMC9070326 DOI: 10.7717/peerj.13131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Heavy metal resistant bacteria are of great importance because they play a crucial role in bioremediation. In the present study, 11 bacterial strains isolated from industrial waste were screened under different concentrations of cadmium (Cd) (100 µM and 200 µM). Among 11 strains, the Cd tolerant Bacillus cereus (S6D1-105) strain was selected for in vitro and in vivo studies. B. cereus was able to solubilize potassium, and phosphate as well as produce protease and siderophores during plate essays. Moreover, we observed the response of hydroponically grown rice plants, inoculated with B. cereus which was able to promote plant growth, by increasing plant biomass, chlorophyll contents, relative water content, different antioxidant enzymatic activity such as catalase, superoxide dismutase, ascorbate peroxidase, polyphenol oxidase and phenylalanine ammonia-lyase and reducing malondialdehyde content in both roots and leaves of rice plants under Cd stress. Our results showed that the B. cereus can be used as a biofertilizer which might be beneficial for rice cultivation in Cd contaminated soils.
Collapse
Affiliation(s)
- Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Faiza Irshad
- Zhejiang University, Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Hangzhou, PR China
| | - Ayesha Habib
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazim Hussain
- Zhejiang University, Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Hangzhou, PR China
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Waseem Haider
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | |
Collapse
|
27
|
Qadri H, Uqab B, Javeed O, Dar GH, Bhat RA. Ceratophyllum demersum-An accretion biotool for heavy metal remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150548. [PMID: 34597963 DOI: 10.1016/j.scitotenv.2021.150548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Freshwater habitats are under serious threat due to the diverse pressures of development and restoration of these ecosystems is an important challenge in the present era. With a number of scientifically advanced methods available for restoration of these systems, phytoremediation finds its unique space as an ecologically sustainable technique. In this paper, a case study of Certophyllum demersum as a tool of heavy metal remediation in Dal lake, a natural freshwater system in Kashmir, India is presented. At all concentrations (2 ppm, 4 ppm, 6 ppm) the metal accumulation efficiency of C. demersum is of the order of Co2+ > Cd2+ > Mn2+ followed by other metals. The carbohydrate- protein plot reveals positive correlation (0.696) with the heavy metal uptake while the lipid-protein plot overall shows a weak correlation (0.296) and the carbohydrate-lipid plot shows an insignificant correlation (0.019). The results of the present study revealed attenuation of protein levels at low doses which lowered with increased heavy metal concentrations. Further, the overall lipid and carbohydrate content of the cultured C. demersum displayed a general decline with a rise in the concentration of heavy metals The overall study indicates the efficiency of C. demersum to adapt in polluted conditions and its potential to remove heavy metals for sustainable restoration of the degraded aquatic systems.
Collapse
Affiliation(s)
- Humaira Qadri
- Sri Pratap College, School of Sciences, Cluster University Srinagar, Srinagar-1, India.
| | - Baba Uqab
- Sri Pratap College, School of Sciences, Cluster University Srinagar, Srinagar-1, India
| | - Ovais Javeed
- Sri Pratap College, School of Sciences, Cluster University Srinagar, Srinagar-1, India
| | - Gowhar Hamid Dar
- Sri Pratap College, School of Sciences, Cluster University Srinagar, Srinagar-1, India
| | - Rouf Ahmad Bhat
- Sri Pratap College, School of Sciences, Cluster University Srinagar, Srinagar-1, India
| |
Collapse
|
28
|
Ullah I, Mateen A, Ahmad MA, Munir I, Iqbal A, Alghamdi KMS, Al-Solami HM, Siddiqui MF. Heavy metal ATPase genes (HMAs) expression induced by endophytic bacteria, "AI001, and AI002" mediate cadmium translocation and phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118508. [PMID: 34793914 DOI: 10.1016/j.envpol.2021.118508] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Contamination of heavy metals is a serious threat, which causes threats to the environment. Our study aimed to determine the role of endophytic bacteria in Cd phytoremediation and heavy metal ATPase gene expression. Cadmium (Cd) resistant endophytic bacteria were isolated from Solanum nigrum on LB agar plates, contaminated with 0-30 mg/L Cd. The phosphate solubilization and indole-3-acetic acid (IAA) production of endophytes were estimated by growing them on Pikovskaya agar medium and GC-MS analysis, respectively. An experiment in a pot was performed to evaluate the effects of bacteria on rice plants contaminated with 5-25 mg/L of Cd. Expression of Cd response genes was quantified through qRT-PCR and Cd translocation from one part to another part of the plant was measured through the ICP. BLAST alignment of 16 S-rDNA gene sequences confirmed the bacterial isolates as Serratia sp. AI001 and Klebsiella sp. Strain AI002. Both strains tolerated Cd up to 25 mg/L and produced 27-30 μg/mL of IAA. Inoculation of AI001 and AI002 improved plant growth dynamics (i.e., plant length, biomass, chlorophyll contents), relieved electrolyte leakage, and improved reduced glutathione significantly (P < 0.05). The inoculation of AI001 and AI002 significantly (P < 0.05) induced the expression of heavy metal ATPase genes ie., "HMA2, HMA3, and HMA4" and Cd translocation compared to uninoculated plants. Both AI001 and AI002 exhibited very prominent plant-growth-promoting and Cd phytoremediation properties. The results revealed that isolates also contributed a lot to the expression of rice plant heavy metal ATPase genes and in the Cd translocation in the plant.
Collapse
Affiliation(s)
- Ihsan Ullah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Aisha Mateen
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Mian Afaq Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Khalid M S Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Habeeb M Al-Solami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
29
|
Ghosh A, Pramanik K, Bhattacharya S, Mondal S, Ghosh SK, Maiti TK. A potent cadmium bioaccumulating Enterobacter cloacae strain displays phytobeneficial property in Cd-exposed rice seedlings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100101. [PMID: 35024643 PMCID: PMC8724972 DOI: 10.1016/j.crmicr.2021.100101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/30/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Cd-resistant and halotolerant PGPR enterobacter cloacae AS10 was isolated. AS10 showed IAA, HCN production, P-solubilization, N2 fixation, ACCD activity. AAS-TEM-EDAX-XRD-XRF-FTIR studies confirmed Cd bioaccumulation by AS10. AS10 reduced oxidative stress, Cd uptake and improved rice seedling growth in vitro.
In agricultural soil, cadmium (Cd) pollution compromises soil health, reduces crop yield, and produces Cd-contaminated crops. Bio-based approaches are necessary as an eco-friendly and sustainable solution to mitigate Cd-polluted areas. A heavy metal-resistant rhizobacterial strain (AS10) has been isolated from a heavy metal-defiled rice field. The 16S rDNA sequence and MALDI-TOF MS analyses of ribosomal protein reveal its identity closely similar to Enterobacter cloacae. The strain was found to withstand up to 4000 μg/ml Cd2+, 3312 µg/ml Pb2+ and 1500 µg/ml As3+. The Cd2+ removal efficiency was recorded as high as 72.11% when grown in 4000 μg/ml Cd2+. The strain's Cd-accumulation efficiency was also apprehended by TEM-EDAX followed by XRD-XRF-FTIR analyses. Besides, the strain showed solubilization of inorganic phosphate, ACC deaminase activity, nitrogen fixation and IAA production ability. Added further, the strain, as an efficient bioinoculant, significantly improved rice plant growth at the seedling stage through Cd immobilization. It prevented the surge of stress ethylene and oxidative stress in rice seedlings, resulting in overall plant growth improvement. Hence, the strain AS10 as potent plant growth-promoting rhizobacteria (PGPR) may be beneficial, especially in heavy metal-contaminated crop fields.
Collapse
Affiliation(s)
- Antara Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | - Krishnendu Pramanik
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Siksha Bhavana, Birbhum, Santiniketan, West Bengal 731235, India
| | - Shatabda Bhattacharya
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| |
Collapse
|
30
|
Haider FU, Farooq M, Naveed M, Cheema SA, Ain NU, Salim MA, Liqun C, Mustafa A. Influence of biochar and microorganism co-application on stabilization of cadmium (Cd) and improved maize growth in Cd-contaminated soil. FRONTIERS IN PLANT SCIENCE 2022; 13:983830. [PMID: 36160996 PMCID: PMC9493347 DOI: 10.3389/fpls.2022.983830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) is one the leading environmental contaminants. The Cd toxicity and its potential stabilization strategies have been investigated in the recent years. However, the combined effects of biochar and microorganisms on the adsorption of Cd and maize plant physiology, still remained unclear. Therefore, this experiment was conducted to evaluate the combined effects of biochar (BC) pyrolyzed from (maize-straw, cow-manure, and poultry-manure, and microorganisms [Trichoderma harzianum (fungus) and Bacillus subtilis (bacteria)], on plant nutrient uptake under various Cd-stress levels (0, 10, and 30 ppm). The highest level of Cd stress (30 ppm) caused the highest reduction in maize plant biomass, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate as compared to control Cd0 (0 ppm). The sole application of BC and microorganisms significantly improved plant growth, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate and caused a significant reduction in root and shoot Cd. However, the co-application of BC and microorganisms was more effective than the sole applications. In this regard, the highest improvement in plant growth and carbon assimilation, and highest reduction in root and shoot Cd was recorded from co-application of cow-manure and combined inoculation of Trichoderma harzianum (fungus) + Bacillus subtilis (bacteria) under Cd stress. However, due to the aging factor and biochar leaching alkalinity, the effectiveness of biochar in removing Cd may diminish over time, necessitating long-term experiments to improve understanding of biochar and microbial efficiency for specific bioremediation aims.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Seeb, Oman
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | | | - Noor ul Ain
- Centre of Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Cai Liqun
| | - Adnan Mustafa
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
31
|
Tahir M, Khan MB, Shahid M, Ahmad I, Khalid U, Akram M, Dawood A, Kamran M. Metal-tolerant Pantoea sp. WP-5 and organic manures enhanced root exudation and phytostabilization of cadmium in the rhizosphere of maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6026-6039. [PMID: 34431061 DOI: 10.1007/s11356-021-16018-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/13/2021] [Indexed: 05/15/2023]
Abstract
This study investigated the phytoremediation potential of maize (Zea mays L.) in Cd-contaminated soil through co-inoculation of metal-tolerant plant beneficial rhizobacteria (MtPBR: Pantoea sp. strain WP-5) with organic manures (PM, poultry manure, and BGR, biogas residues). The objectives of this study were to (i) examine comparative efficiency of MtPBR, PM and BGR alone or in combined form to improve maize biomass and physiology and (ii) understand the role of organic acid production in root exudates of maize for Cd accumulation and translocation. Pantoea sp. WP-5 showed organic acid production and tolerance to high Cd concentration (1000 mg L-1), thereby inoculated to maize seeds sown in soil spiked with 75 mg Cd kg-1 soil and 500 g each of the organic manures per pot. The co-inoculation of MtPBR + BGR significantly (P<0.05) increased chlorophyll contents, root/shoot dry weight, photosynthetic rate, stomatal conductance, and relative water contents and decreased electrolyte leakage, malondialdehyde contents, ascorbate peroxidase, and catalase activity in maize over the control treatment. The co-inoculation of MtPBR + BGR produced significantly (P<0.05) higher concentrations of acetic and citric acid (52.7±0.5 and 22.8±0.08 μg g-1 root fwt, respectively) in root exudates of maize, which immobilized Cd within plant roots inferred by the positive relation (root Cd vs. organic acids; R2 = 0.80-0.92) and reduced Cd translocation to shoots inferred by the negative relation (shoot Cd vs. organic acids; R2 = 0.81-0.90). It is concluded that the application of MtPBR + BGR enhanced organic acid induced phytostabilization and accumulation of Cd in roots and restricted its translocation to shoots.
Collapse
Affiliation(s)
- Muhammad Tahir
- Department of Environmental Sciences, COMSATS University Islamabad, Campus, Vehari, Pakistan.
| | - Muhammad Bismillah Khan
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Campus, Vehari, Pakistan.
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai, 200240, China.
| | - Umaira Khalid
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Akram
- Department of Environmental Sciences, COMSATS University Islamabad, Campus, Vehari, Pakistan
| | - Ahmad Dawood
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Kamran
- Department of Environmental Sciences, COMSATS University Islamabad, Campus, Vehari, Pakistan
| |
Collapse
|
32
|
Gholizadeh F, Mirzaghaderi G, Danish S, Farsi M, Marashi SH. Evaluation of morphological traits of wheat varieties at germination stage under salinity stress. PLoS One 2021; 16:e0258703. [PMID: 34735471 PMCID: PMC8568147 DOI: 10.1371/journal.pone.0258703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/02/2021] [Indexed: 12/04/2022] Open
Abstract
Salinity stress is one of the major plant growth-limiting factors in agriculture. It causes ionic imbalance, thus decrease the growth and yield attributes of crops especially wheat. Seedling stage is considered as one of the most sensitive stages under salinity stress. Survival of seeds at seedling stage can overcome the adverse impacts of salinity stress to some extent. Selection of salt tolerant varieties in seedling stage is considered as an effective strategy. Hence, current study was conducted to examine the seed germination responses of four wheat varieties under different levels of salinity. The wheat varieties such as ‘Rakhshan’, ‘Sirvan’, ‘Pishgam’ and ‘Heidari’ were grown and four salinity levels of 0, 4, 8 and 12 dS/m were applied under completely randomized design. The varieties such as ‘Sirvan’, ‘Rakhshan’ and ‘Heidari’ showed significant response for germination compared to ‘Pishgam’ at 12 dS/m salinity. Furthermore, the variety ‘Rakhshan’ showed significantly higher germination rate (20.3%), higher root length (33.4%) and higher shoot length (84.3%) than ‘Pishgam’, ‘Sirvan’ and ‘Sirvan’ respectively. However, contrasting results were obtained for dry weight of seedlings where 12.2% increase was observed in ‘Pishgam’ over ‘Rakhshan’ at 12 dS/m salinity that might be due to higher capability to uptake of Na and Cl ions. In conclusion, ‘Rakhshan’ wheat variety proved to be the most salinity tolerant as it grew better under saline soil conditions. More investigations at field level are recommended to declare ‘Rakhshan’ as salinity tolerant cultivar.
Collapse
Affiliation(s)
- Fatemeh Gholizadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan
- * E-mail:
| | - Mohammad Farsi
- Department of Crop Biotechnology and Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Hasan Marashi
- Department of Crop Biotechnology and Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
33
|
Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M, Mustafa A. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. Int J Mol Sci 2021; 22:10529. [PMID: 34638870 PMCID: PMC8509026 DOI: 10.3390/ijms221910529] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
Agriculture in the 21st century is facing multiple challenges, such as those related to soil fertility, climatic fluctuations, environmental degradation, urbanization, and the increase in food demand for the increasing world population. In the meanwhile, the scientific community is facing key challenges in increasing crop production from the existing land base. In this regard, traditional farming has witnessed enhanced per acre crop yields due to irregular and injudicious use of agrochemicals, including pesticides and synthetic fertilizers, but at a substantial environmental cost. Another major concern in modern agriculture is that crop pests are developing pesticide resistance. Therefore, the future of sustainable crop production requires the use of alternative strategies that can enhance crop yields in an environmentally sound manner. The application of rhizobacteria, specifically, plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides has gained much attention from the scientific community. These rhizobacteria harbor a number of mechanisms through which they promote plant growth, control plant pests, and induce resistance to various abiotic stresses. This review presents a comprehensive overview of the mechanisms of rhizobacteria involved in plant growth promotion, biocontrol of pests, and bioremediation of contaminated soils. It also focuses on the effects of PGPR inoculation on plant growth survival under environmental stress. Furthermore, the pros and cons of rhizobacterial application along with future directions for the sustainable use of rhizobacteria in agriculture are discussed in depth.
Collapse
Affiliation(s)
- Qudsia Saeed
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jiří Kučerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road, Lahore 54000, Pakistan;
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Munaza Naseem
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
- Agricultural Research, Ltd., Zahradni 400/1, 664 41 Troubsko, Czech Republic
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Adnan Mustafa
- Biology Center CAS, SoWa RI, Na Sadkach 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
34
|
Rhizobacteria Inoculation and Caffeic Acid Alleviated Drought Stress in Lentil Plants. SUSTAINABILITY 2021. [DOI: 10.3390/su13179603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lentil (Lens culinaris Medik) is an important component of the human diet due to its high mineral and protein contents. Abiotic stresses, i.e., drought, decreases plant growth and yield. Drought causes the synthesis of reactive oxygen species, which decrease a plant’s starch contents and growth. However, ACC-deaminase (1-aminocyclopropane-1-carboxylate deaminase) producing rhizobacteria can alleviate drought stress by decreasing ethylene levels. On the other hand, caffeic acid (CA) can also positively affect cell expansion and turgor pressure maintenance under drought stress. Therefore, the current study was planned with an aim to assess the effect of CA (0, 20, 50 and 100 ppm) and ACC-deaminase rhizobacteria (Lysinibacillus fusiform, Bacillus amyloliquefaciens) on lentils under drought stress. The combined application of CA and ACC-deaminase containing rhizobacteria significantly improved plant height (55%), number of pods per plant (51%), 1000-grain weight (45%), nitrogen concentration (56%), phosphorus concentration (19%), potassium concentration (21%), chlorophyll (54%), relative water contents RWC (60%) and protein contents (55%). A significant decrease in electrolyte leakage (30%), proline contents (44%), and hydrogen peroxide contents (54%), along with an improvement in cell membrane stability (34% over control) validated the combined use of CA and rhizobacteria. In conclusion, co-application of CA (20 ppm) and ACC-deaminase producing rhizobacteria can significantly improve plant growth and yield for farmers under drought stress. More investigations are suggested at the field level to select the best rhizobacteria and CA level for lentils under drought.
Collapse
|
35
|
Bacillus pumilus induced tolerance of Maize (Zea mays L.) against Cadmium (Cd) stress. Sci Rep 2021; 11:17196. [PMID: 34433897 PMCID: PMC8387377 DOI: 10.1038/s41598-021-96786-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Heavy metals contaminate the soil that alters the properties of soil and negatively affect plants growth. Using microorganism and plant can remove these pollutants from soil. The present investigation was designed to evaluate the induced effect of Bacillus pumilus on maize plant in Cadmium (Cd) contaminated soil. Three different concentrations of Cd (i.e. 0.25, 0.50 and 0.75 mg kg-1) were applied in soil under which maize plants were grown. The germination percentage, shoot length, leaf length, number of leaves, root length, fresh weight and nutrient uptake by maize plant were determined. The experiment was conducted by using complete randomized design (CRD) with three replicates. The result indicated that germination percentage, Shoot length, leaf length, root length, number of leaves, and plant fresh weight were reduced by 37, 39, 39, 32 and 59% respectively at 0.75 mg kg-1 of CdSO4 concentration but when maize seeds inoculated with Bacillus pumilus significantly increased the germination percentage, shoot length, leaf length, number of leaves, plant fresh weight at different concentrations of CdSO4. Moreover, the plant protein were significantly increased by 60% in T6 (0.25 mg kg-1 of CdSO4 + inoculated seed) and Peroxidase dismutase (POD) was also significantly higher by 346% in T6 (0.25 mg kg-1 of CdSO4 + inoculated seed), however, the Superoxide dismutase (SOD) was significantly higher in T5 (0.75 mg kg-1 of CdSO4 + uninoculated seed) and was 769% higher as compared to control. The Cd contents in Bacillus pumilus inoculated maize roots and shoots were decreased. The present investigations indicated that the inoculation of maize plant with Bacillus pumilus can help maize plants to withstand Cd stress but higher concentration of Cd can harm the plant. The Bacillus pumilus has good potential to remediate Cd from soil, and also have potential to reduce the phyto availability and toxicity of Cd.
Collapse
|
36
|
Ali A, Guo D, Li Y, Shaheen SM, Wahid F, Antoniadis V, Abdelrahman H, Al-Solaimani SG, Li R, Tsang DCW, Rinklebe J, Zhang Z. Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial. CHEMOSPHERE 2021; 273:129692. [PMID: 33515961 DOI: 10.1016/j.chemosphere.2021.129692] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 05/21/2023]
Abstract
Streptomyces pactum (Act12), an agent of a gentle in situ remediation approach, has been recently used in few works in phytoextraction trials; however, the impact of Act12 on soil quality and metal phytoavailability has not been assessed in multi-metal contaminated soils. Consequently, here we assessed the potential impact of Act12 on the wheat (Triticum aestivum L.) growth, antioxidants activity, and the metal bioavailability in three industrial and mining soils collected from China and contained up to 118, 141, 339, and 6625 mg Cd, Cu, Pb, and Zn kg-1 soil, respectively. The Act12 was applied at 0 (control), 0.75 (Act-0.75), 1.50 (Act-1.5), and 2.25 (Act-2.25) g kg-1 (dry weight base) to the three soils; thereafter, the soils were cultivated with wheat (bio-indicator plant) in a pot experiment. The addition of Act12 (at Act-1.5 and Act-2.25) promoted wheat growth in the three soils and significantly increased the content of Cd, Cu, and Zn in the roots and shoots and Pb only in the roots (up to 121%). The Act12-induced increase in metals uptake by wheat might be attributed to the associated decrease in soil pH and/or the increase of metal chelation and production of indole acetic acid and siderophores. The Act12 significantly decreased the antioxidant activities and lipid peroxidation in wheat, which indicates that Act12 may mitigate metals stress in contaminated soils. Enhancing metals phytoextraction using Act12 is a promising ecofriendly approach for phytoremediation of metal-contaminated mining soils that can be safely utilized with non-edible plants and/or bioenergy crops.
Collapse
Affiliation(s)
- Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Di Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yiman Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, Kafr El-Sheikh, 33516, Egypt.
| | - Fazli Wahid
- Department of Agriculture, University of Swabi, Swabi, 23340, Pakistan
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza, 12613, Egypt
| | - Samir G Al-Solaimani
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, South Korea.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
37
|
Ramzan M, Sana S, Javaid N, Shah AA, Ejaz S, Malik WN, Yasin NA, Alamri S, Siddiqui MH, Datta R, Fahad S, Tahir N, Mubeen S, Ahmed N, Ali MA, El Sabagh A, Danish S. Mitigation of bacterial spot disease induced biotic stress in Capsicum annuum L. cultivars via antioxidant enzymes and isoforms. Sci Rep 2021; 11:9445. [PMID: 33941790 PMCID: PMC8093210 DOI: 10.1038/s41598-021-88797-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
Bacterial spot, caused by a group of Xanthomonads (Xanthomonas spp.), is a devastating disease. It can adversely affect the Capsicum annum productivity. Scientists are working on the role of antioxidants to meet this challenge. However, research is lacking on the role of antioxidant enzymes and their isoforms in the non-compatible pathogen and host plant interaction and resistance mechanisms in capsicum varieties. The present study was conducted to ascertain the defensive role of antioxidant enzymes and their isoforms in chilli varieties Hybrid, Desi, Serrano, Padron, and Shehzadi against bacterial spot disease-induced Xanthomonas sp. The seedlings were inoculated with bacterial pathogen @ 107 CFU/mL, and samples were harvested after regular intervals of 24 h for 4 days followed by inoculation. Total plant proteins were extracted in phosphate buffer and quantified through Bradford assay. The crude protein extracts were analyzed through quantitative enzymatic assays in order to document activity levels of various antioxidant enzymes, including peroxidase (POD), Catalase (CAT), Ascorbate peroxidase (APX), and Superoxide dismutase (SOD). Moreover, the profiles appearance of these enzymes and their isoforms were determined using native polyacrylamide gel electrophoresis (PAGE) analysis. These enzymes exhibited maximum activity in Hybrid (HiR) cultivar followed by Desi (R), Serrano (S), Padron, and Shehzadi (HS). Both the number of isoforms and expression levels were higher in highly resistant cultivars compared to susceptible and highly susceptible cultivars. The induction of POD, CAT, and SOD occurs at the early stages of growth in resistant Capsicum cultivars. At the same time, APX seems to make the second line of antioxidant defense mechanisms. We found that modulating antioxidant enzymes and isoforms activity at the seedling stage was an important mechanism for mitigating plant growth inhibition in the resistant ones.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Sundas Sana
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Nida Javaid
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, 51801, Pakistan
| | - Samina Ejaz
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Waqas Nazir Malik
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Gardens, Resident Officer-II Office Department, University of the Punjab, Lahore, 54590, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 61300, Brno, Czech Republic.
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China.
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| | - Nazia Tahir
- Department of Agriculture, AbdulWali Khan University, Mardan, Pakistan
- Institute of Agriculture Resource and Regional Planning, Graduate School of Chinese Academy of Agriculture Sciences China, Changchun, China
| | - Sidra Mubeen
- Department of Chemistry, The Women University Multan, Punjab, 60800, Pakistan
| | - Niaz Ahmed
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Arif Ali
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Shaikh, Egypt
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
38
|
Efficacy of Indole Acetic Acid and Exopolysaccharides-Producing Bacillus safensis Strain FN13 for Inducing Cd-Stress Tolerance and Plant Growth Promotion in Brassica juncea (L.). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Untreated wastewater used for irrigating crops is the major source of toxic heavy metals and other pollutants in soils. These heavy metals affect plant growth and deteriorate the quality of edible parts of growing plants. Phytohormone (IAA) and exopolysaccharides (EPS) producing plant growth-promoting rhizobacteria can reduce the toxicity of metals by stabilizing them in soil. The present experiment was conducted to evaluate the IAA and EPS-producing rhizobacterial strains for improving growth, physiology, and antioxidant activity of Brassica juncea (L.) under Cd-stress. Results showed that Cd-stress significantly decreased the growth and physiological parameters of mustard plants. Inoculation with Cd-tolerant, IAA and EPS-producing rhizobacterial strains, however, significantly retrieved the inhibitory effects of Cd-stress on mustard growth, and physiology by up regulating antioxidant enzyme activities. Higher Cd accumulation and proline content was observed in the roots and shoot tissues upon Cd-stress in mustard plants while reduced proline and Cd accumulation was recorded upon rhizobacterial strains inoculation. Maximum decrease in proline contents (12.4%) and Cd concentration in root (26.9%) and shoot (29%) in comparison to control plants was observed due to inoculation with Bacillus safensis strain FN13. The activity of antioxidant enzymes was increased due to Cd-stress; however, the inoculation with Cd-tolerant, IAA-producing rhizobacterial strains showed a non-significant impact in the case of the activity of superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) in Brassica juncea (L.) plants under Cd-stress. Overall, Bacillus safensis strain FN13 was the most effective strain in improving the Brassica juncea (L.) growth and physiology under Cd-stress. It can be concluded, as the strain FN13 is a potential phytostabilizing biofertilizer for heavy metal contaminated soils, that it can be recommended to induce Cd-stress tolerance in crop plants.
Collapse
|
39
|
Ghosh A, Pramanik K, Bhattacharya S, Mondal S, Ghosh SK, Ghosh PK, Maiti TK. Abatement of arsenic-induced phytotoxic effects in rice seedlings by an arsenic-resistant Pantoea dispersa strain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21633-21649. [PMID: 33411291 DOI: 10.1007/s11356-020-11816-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Population detonation and rapid industrialization are the major factors behind the reduction in cultivable land that affects crop production seriously. This situation is further being deteriorated due to the negative effects of abiotic stresses. Under such conditions, plant growth-promoting rhizobacteria (PGPR) are found to improve crop production which is essential for sustainable agriculture. This study is focused on the isolation of potent arsenic (As)-resistant PGPR from the agricultural land of West Bengal, India, and its application to reduce As translocation in rice seedlings. After screening, an As-resistant PGPR strain AS18 was identified by phenotypic characters and 16S rDNA sequence-based homology as Pantoea dispersa. This strain displayed nitrogen fixation, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) activity, indole-3-acetic acid (IAA) production, in addition to As (III) resistance up to 3750 μg/mL. The As removal efficiency of this strain was up to 93.12% from the culture medium as evidenced by AAS. The bioaccumulation property of AS18 strain was further validated by TEM-EDAX-XRD-XRF-FTIR studies. This strain showed significant morpho-biochemical improvements including antioxidant enzymatic activities and As-minimization in plant (rice) cells. Thus, being an As-resistant potent PGPR, AS18 strain is expected to be applied in As-spiked agricultural fields for bioremediation and phytostimulation.
Collapse
Affiliation(s)
- Antara Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Krishnendu Pramanik
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, West Bengal, 731235, India
| | - Shatabda Bhattacharya
- Nanospinics Laboratory, Department of Materials Science & Engineering, Seoul National University, Seoul, 151-744, South Korea
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | | | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
40
|
Haider FU, Coulter JA, Cheema SA, Farooq M, Wu J, Zhang R, Shuaijie G, Liqun C. Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112112. [PMID: 33714140 DOI: 10.1016/j.ecoenv.2021.112112] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 05/08/2023]
Abstract
Sole biochar addition or microbial inoculation as a soil amendment helps to reduce cadmium (Cd) toxicity in polluted agricultural soils. Yet the synergistic effects of microorganisms and biochar application on Cd absorption and plant productivity remain unclear. Therefore, a pot experiment was conducted to investigate the combined effect of microorganisms (Trichoderma harzianum L. and Bacillus subtilis L.), biochar (maize straw, cow manure, and poultry manure), and Cd (0, 10, and 30 ppm) on plant physiology and growth to test how biochar influences microbial growth and plant nutrient uptake, and how biochar ameliorates under Cd-stressed soil. Results showed that in comparison to non-Cd polluted soil, the highest reduction in chlorophyll content, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and intercellular CO2 were observed in Cd2 (30 ppm), which were 9.34%, 22.95%, 40.45%, 29.07%, 20.67%, and 22.55% respectively less than the control Cd0 (0 ppm). Among sole inoculation of microorganisms, highest stomatal conductance, water use efficiency, and intercellular CO2 were recorded with combined inoculation of both microorganisms (M3), which were 5.92%, 7.65%, and 7.28% respectively higher than the control, and reduced the Cd concentration in soil, root, and shoot by 21.34%, 28.36%, and 20.95%, respectively, compared to the control. Similarly, co-application of microorganisms and biochar ameliorated the adverse effect of Cd in soybean as well as significantly improved plant biomass, photosynthetic activity, nutrient contents, and antioxidant enzyme activities, and minimized the production of reactive oxygen species and Cd content in plants. Soil amended with poultry manure biochar had significantly improved the soil organic carbon, total nitrogen, total phosphorous, and available potassium by 43.53%, 36.97%, 22.28%, and 4.24%, respectively, and decreased the concentration of Cd in plant root and shoot by 34.68% and 47.96%, respectively, compared to the control. These findings indicate that the combined use of microorganisms and biochar as an amendment have important synergistic effects not only on the absorption of nutrients but also on the reduction of soybean Cd intake, and improve plant physiology of soybean cultivated in Cd-polluted soils as compared to sole application of microorganisms or biochar.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Jun Wu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Renzhi Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Guo Shuaijie
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
41
|
Ali S, Khan N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 2021; 249:126771. [PMID: 33930840 DOI: 10.1016/j.micres.2021.126771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 11/24/2022]
Abstract
Drought stress is expected to increase in intensity, frequency, and duration in many parts of the world, with potential negative impacts on plant growth and productivity. The plants have evolved complex physiological and biochemical mechanisms to respond and adjust to water-deficient environments. The physiological and biochemical mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. Besides these adaptive and mitigating strategies, the plant growth-promoting rhizobacteria (PGPR) play a significant role in alleviating plant drought stress. These beneficial microorganisms colonize the endo-rhizosphere/rhizosphere of plants and enhance drought tolerance. The common mechanism by which these microorganisms improve drought tolerance included the production of volatile compounds, phytohormones, siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), accumulation of antioxidant, stress-induced metabolites such as osmotic solutes proline, alternation in leaf and root morphology and regulation of the stress-responsive genes. The PGPR is an easy and efficient alternative approach to genetic manipulation and crop enhancement practices because plant breeding and genetic modification are time-consuming and expensive processes for obtaining stress-tolerant varieties. In this review, we will elaborate on PGPR's mechanistic approaches in enhancing the plant stress tolerance to cope with the drought stress.
Collapse
Affiliation(s)
- Shahid Ali
- Plant Epigenetic and Development, Northeast Forestry University, Harbin, 150040, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
42
|
Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111887. [PMID: 33450535 DOI: 10.1016/j.ecoenv.2020.111887] [Citation(s) in RCA: 477] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) is an unessential trace element in plants that is ubiquitous in the environment. Anthropogenic activities such as disposal of urban refuse, smelting, mining, metal manufacturing, and application of synthetic phosphate fertilizers enhance the concentration of Cd in the environment and are carcinogenic to human health. In this manuscript, we reviewed the sources of Cd contamination to the environment, soil factors affecting the Cd uptake, the dynamics of Cd in the soil rhizosphere, uptake mechanisms, translocation, and toxicity of Cd in plants. In crop plants, the toxicity of Cd reduces uptake and translocation of nutrients and water, increases oxidative damage, disrupts plant metabolism, and inhibits plant morphology and physiology. In addition, the defense mechanism in plants against Cd toxicity and potential remediation strategies, including the use of biochar, minerals nutrients, compost, organic manure, growth regulators, and hormones, and application of phytoremediation, bioremediation, and chemical methods are also highlighted in this review. This manuscript may help to determine the ecological importance of Cd stress in interdisciplinary studies and essential remediation strategies to overcome the contamination of Cd in agricultural soils.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jun Wu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Renzhi Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ma Wenjun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
43
|
Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, A. Elsayed E, El Enshasy HA. Role of Bacillus cereus in Improving the Growth and Phytoextractability of Brassica nigra (L.) K. Koch in Chromium Contaminated Soil. Molecules 2021; 26:1569. [PMID: 33809305 PMCID: PMC7998664 DOI: 10.3390/molecules26061569] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 01/10/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.
Collapse
Affiliation(s)
- Nosheen Akhtar
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University, Islamabad (CUI), Islamabad 46300, Pakistan;
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science, and Commerce College, Shahada, Maharashtra 425409, India;
| | - Zuhair Hasnain
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Elsayed A. Elsayed
- Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Natural & Microbial Products Dept., National Research Centre, Dokki, Cairo 1165, Egypt
| | - Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 81310, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria 21934, Egypt
| |
Collapse
|
44
|
Dresler S, Hawrylak-Nowak B, Kováčik J, Woźniak M, Gałązka A, Staniak M, Wójciak M, Sowa I. Organic nitrogen modulates not only cadmium toxicity but also microbial activity in plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123887. [PMID: 33254823 DOI: 10.1016/j.jhazmat.2020.123887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/22/2020] [Indexed: 06/12/2023]
Abstract
It is known that organic nitrogen may modify uptake and toxicity of metals but direct metabolic and microbial comparison of various organic N sources is not available. We therefore studied comparative impact of additional N sources (nitrate, urea or allantoin as 1 mM of N for each compound in addition to 15 mM of inorganic N in the Hoagland solution) on Cd toxicity and microbial activity in common crop cucumber. Organic N significantly elevated the growth, chlorophyll content and photosynthetic activity under Cd excess in comparison with inorganic N though the impact on Cd uptake was negligible. Both organic N compounds also affected accumulation of mineral nutrients, total N, amino acids, and protein content in Cd-stressed plants. Among organic acids, mainly allantoin and partially urea affected accumulation of citrate and tartrate. The most notably, we detected that allantoin was decomposed even within 24 h by microbes into the urea, but it significantly elevated rhizosphere microbial activity. All these data indicate that allantoin is metabolized by plants/microbes into the urea and that it affects microbes mainly in the rhizosphere, which could contribute to amelioration of Cd toxicity.
Collapse
Affiliation(s)
- Sławomir Dresler
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic
| | - Małgorzata Woźniak
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Michał Staniak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| |
Collapse
|
45
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
46
|
Shah AA, Bibi F, Hussain I, Yasin NA, Akram W, Tahir MS, Ali HM, Salem MZM, Siddiqui MH, Danish S, Fahad S, Datta R. Synergistic Effect of Bacillus thuringiensis IAGS 199 and Putrescine on Alleviating Cadmium-Induced Phytotoxicity in Capsicum annum. PLANTS 2020; 9:plants9111512. [PMID: 33171611 PMCID: PMC7695146 DOI: 10.3390/plants9111512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/15/2023]
Abstract
Plant growth-promoting bacteria (PGPB) and putrescine (Put) have shown a promising role in the mitigation of abiotic stresses in plants. The present study was anticipated to elucidate the potential of Bacillus thuringiensis IAGS 199 and Put in mitigation of cadmium (Cd)-induced toxicity in Capsicum annum. Cadmium toxicity decreased growth, photosynthetic rate, gas exchange attributes and activity of antioxidant enzymes in C. annum seedlings. Moreover, higher levels of protein and non-protein bound thiols besides increased Cd contents were also observed in Cd-stressed plants. B. thuringiensis IAGS 199 and Put, alone or in combination, reduced electrolyte leakage (EL), hydrogen peroxide (H2O2) and malondialdehyde (MDA) level in treated plants. Synergistic effect of B. thuringiensis IAGS 199 and Put significantly enhanced the activity of stress-responsive enzymes including peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD). Furthermore, Put and microbial interaction enhanced the amount of proline, soluble sugars, and total soluble proteins in C. annum plants grown in Cd-contaminated soil. Data obtained during the current study advocates that application of B. thuringiensis IAGS 199 and Put establish a synergistic role in the mitigation of Cd-induced stress through modulating physiochemical features of C. annum plants.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, University of Narowal, Narowal 51801, Pakistan; (A.A.S.); (F.B.)
| | - Fatima Bibi
- Department of Botany, University of Narowal, Narowal 51801, Pakistan; (A.A.S.); (F.B.)
| | - Iqtidar Hussain
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Nasim Ahmad Yasin
- Senior Suprintendent Gardens, Resident Officer-II office Department, University of the Punjab, Lahore 54590, Pakistan
- Correspondence: (N.A.Y.); (S.D.); (S.F.); (R.D.); Tel.: +92-304-799-6951 (S.D.); +42-077-399-0283 (R.D)
| | - Waheed Akram
- Vegetable research institute, Guangdong Academy of Agriculture Science, Guangzhou 510640, China;
| | - Muhammad Saeed Tahir
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia; (H.M.A.); (M.H.S.)
- Timber Trees Research Department, Sabahia Horticulture Research Station, Horticulture Research Institute, Agriculture Research Center, Alexandria 21526, Egypt
| | - Mohamed Z. M. Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia; (H.M.A.); (M.H.S.)
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
- Correspondence: (N.A.Y.); (S.D.); (S.F.); (R.D.); Tel.: +92-304-799-6951 (S.D.); +42-077-399-0283 (R.D)
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
- Correspondence: (N.A.Y.); (S.D.); (S.F.); (R.D.); Tel.: +92-304-799-6951 (S.D.); +42-077-399-0283 (R.D)
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 61300 Brno, Czech Republic
- Correspondence: (N.A.Y.); (S.D.); (S.F.); (R.D.); Tel.: +92-304-799-6951 (S.D.); +42-077-399-0283 (R.D)
| |
Collapse
|
47
|
A Review on Practical Application and Potentials of Phytohormone-Producing Plant Growth-Promoting Rhizobacteria for Inducing Heavy Metal Tolerance in Crops. SUSTAINABILITY 2020. [DOI: 10.3390/su12219056] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Water scarcity and high input costs have compelled farmers to use untreated wastewater and industrial effluents to increase profitability of their farms. Normally, these effluents improve crop productivity by serving as carbon source for microbes, providing nutrients to plants and microbes, and improving soil physicochemical and biological properties. They, however, may also contain significant concentrations of potential heavy metals, the main inorganic pollutants affecting plant systems, in addition to soil deterioration. The continuous use of untreated industrial wastes and agrochemicals may lead to accumulation of phytotoxic concentration of heavy metals in soils. Phytotoxic concentration of heavy metals in soils has been reported in Pakistan along the road sides and around metropolitan areas, which may cause its higher accumulation in edible plant parts. A number of bacterial that can induce heavy metal tolerance in plants due to their ability to produce phytohormones strains have been reported. Inoculation of crop plants with these microbes can help to improve their growth and productivity under normal, as well as stressed, conditions. This review reports the recent developments in heavy metal pollution as one of the major inorganic sources, the response of plants to these contaminants, and heavy metal stress mitigation strategies. We have also summarized the exogenous application of phytohormones and, more importantly, the use of phytohormone-producing, heavy metal-tolerant rhizobacteria as one of the recent tools to deal with heavy metal contamination and improvement in productivity of agricultural systems.
Collapse
|
48
|
Agarwal P, Giri BS, Rani R. Unravelling the Role of Rhizospheric Plant-Microbe Synergy in Phytoremediation: A Genomic Perspective. Curr Genomics 2020; 21:334-342. [PMID: 33093797 PMCID: PMC7536802 DOI: 10.2174/1389202921999200623133240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/27/2022] Open
Abstract
Background Accretion of organic and inorganic contaminants in soil interferes in the food chain, thereby posing a serious threat to the ecosystem and adversely affecting crop productivity and human life. Both endophytic and rhizospheric microbial communities are responsible for the biodegradation of toxic organic compounds and have the capability to enhance the uptake of heavy metals by plants via phytoremediation approaches. The diverse set of metabolic genes encoding for the production of biosurfactants and biofilms, specific enzymes for degrading plant polymers, modification of cell surface hydrophobicity and various detoxification pathways for the organic pollutants, plays a significant role in bacterial driven bioremediation. Various genetic engineering approaches have been demonstrated to modulate the activity of specific microbial species in order to enhance their detoxification potential. Certain rhizospheric bacterial communities are genetically modified to produce specific enzymes that play a role in degrading toxic pollutants. Few studies suggest that the overexpression of extracellular enzymes secreted by plant, fungi or rhizospheric microbes can improve the degradation of specific organic pollutants in the soil. Plants and microbes dwell synergistically, where microbes draw benefit by nutrient acquisition from root exudates whereas they assist in plant growth and survival by producing certain plant growth promoting metabolites, nitrogen fixation, phosphate solubilization, auxin production, siderophore production, and inhibition or suppression of plant pathogens. Thus, the plant-microbe interaction establishes the foundation of the soil nutrient cycle as well as decreases soil toxicity by the removal of harmful pollutants. Conclusion The perspective of integrating genetic approach with bioremediation is crucial to evaluate connexions among microbial communities, plant communities and ecosystem processes with a focus on improving phytoremediation of contaminated sites.
Collapse
Affiliation(s)
- Priyanka Agarwal
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, Uttar Pradesh, India; 2Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology Banaras Hindu University, Varanasi221005, India
| | - Balendu Shekher Giri
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, Uttar Pradesh, India; 2Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology Banaras Hindu University, Varanasi221005, India
| | - Radha Rani
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, Uttar Pradesh, India; 2Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology Banaras Hindu University, Varanasi221005, India
| |
Collapse
|
49
|
Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity. PLANTS 2020; 9:plants9101386. [PMID: 33080896 PMCID: PMC7603194 DOI: 10.3390/plants9101386] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022]
Abstract
Cadmium (Cd) is one of the heavy metals that negatively affects the growth of plants. High solubilization in water leads Cd to enter into plants quite easily, thus decreasing seed germination, photosynthesis, and transpiration. It also shows an antagonistic effect with many of the plants’ nutrients like Mn, Ca, K, Mg and Fe. Nowadays, inoculation of plants with ACC deaminase (ACCD) rhizobacteria to mitigate Cd’s adverse effects has drawn the attention of environmental microbiologists. The rhizobacteria secrete organic compounds that can immobilize Cd in soil. Therefore, this study was accomplished to investigate the effect of ACCD plant growth promoting rhizobacteria (PGPR) on the bitter gourd under Cd stress. There were six treatments consisting of two ACCD PGPR (Stenotrophomonas maltophilia and Agrobacterium fabrum) strains and inorganic fertilizers at two levels of Cd, i.e., 2 (Cd2) and 5 mg kg−1 soil (Cd5). The results showed A. fabrum with the recommended NPK fertilizer (RNPKF) significantly increased the vine length (48 and 55%), fresh weight (24 and 22%), and contents of chlorophyll a (79 and 50%), chlorophyll b (30 and 33%) and total chlorophyll (61 and 36%), over control at the two Cd levels i.e., Cd2 and Cd5, respectively. In conclusion, the recommended NPK fertilizer + A. fabrum combination is a very effective treatment with which to immobilize Cd in soil for the improvement of bitter gourd growth.
Collapse
|
50
|
Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without Timber Waste Biochar in Maize. SUSTAINABILITY 2020. [DOI: 10.3390/su12156286] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The high consumption of water in industries, domestic areas and increasing earth temperature are major hurdles for the optimization of maize yield. Being the third most widely cultivated cereal crop, improvement in maize yield is a big challenge under the limited availability of irrigation. As the water requirement for maize cultivation is high, it is time to introduce technologies that can mitigate drought stress and are environmentally friendly. The inoculation of rhizobacteria with ‘1-aminocyclopropane-1-carboxylate deaminase’ (ACCD) can play an imperative role in that regard by decreasing stress ethylene in plants. Biochar (BC) can also alleviate drought stress. Therefore, a field study was conducted, to examine the single and combined application of drought-tolerant plant-growth-promoting rhizobacteria (PGPRs) Achromobacter xylosoxidans and Enterobacter cloacae, with 15 Mg ha−1 of timber waste biochar (TWBC) at normal irrigation = 16 irrigations, mild drought = 14 irrigations and severe drought = 12 irrigation for maize cultivation. A significant improvement in shoot dry weight (28%), 1000-grains weight (19%), grain yield (27%), concentrations of N (43%), P (92%) and K (71%) in grains, rate of photosynthesis (33%), transpiration rate (55%), stomatal conductance (104%), chlorophyll A (33%), chlorophyll B (62%) and total chlorophyll (45%) of maize was noted under drought stress where E. cloacae + TWBC was applied. Likewise, the application of A. xylosoxidans + TWBC also significantly enhanced the plant height (24%) and cob length (9%) of maize under drought stress. In conclusion, E. cloacae is more effective than A. xylosoxidans, with 15 Mg ha−1 TWBC to increase maize yield under drought stress, due to the potential of higher ‘1-aminocyclopropane-1-carboxylate’ (ACC)-deaminase synthesis, better nutrient solubilization and indole acetic acid (IAA) production.
Collapse
|