1
|
Singh T, Saffeullah P, Umar S. Foliar application of zinc oxide (ZnO) nanoparticles ameliorates growth, yield traits, osmolytes, cell viability, and antioxidant system of Brassica juncea (L.) Czern. grown in lead (Pb) stress. CHEMOSPHERE 2025; 370:143950. [PMID: 39675583 DOI: 10.1016/j.chemosphere.2024.143950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Heavy metal stress is one of the exorbitant problems faced by plants. Lead (Pb) stress is one of the prevalent stressors in agricultural fields. Nanofertilizers are being currently employed for mitigating heavy metal stress in plants. This study assessed the suitability of zinc oxide nanoparticles (ZnONPs) in ameliorating Pb stress in Brassica juncea (L.) Czern. var. Pusa Jagannath. The tested plants were grown in pots using a randomized block design, placed in herbal garden of Jamia Hamdard and treated with different amounts of Pb and nanozinc viz. control (T0), 250 ppm ZnONPs (T1), 500 ppm ZnONPs (T2), 1000 ppm ZnONPs (T3), 250 μM Pb (T4), 500 μM Pb (T5), and their combinations i.e. 250 μM Pb and 500 ppm ZnONPs (T6), 500 μM Pb and 500 ppm ZnONPs (T7), 250 μM Pb and 1000 ppm ZnONPs (T8) and 500 μM Pb and 1000 ppm ZnONPs (T9). The plants were tested for variations in morpho-physiological parameters, yield traits, biochemical attributes, antioxidant enzyme activity, and cell viability using confocal microscopy. Maximum dose of Pb (500 μM) decreased morphological and yield traits such as leaf area (-51%), shoot length (-17%), root length (-34%), number of seeds per plant (-73%), weight of the seeds (-35%), pod number (-47%), shoot and root fresh weight by -63% and -56%, along with reduction in total chlorophyll (-12%), carotenoid (-38%) content, nitrate reductase (-64%) activity, total soluble protein (-40%), total soluble sugar (-31%) and antioxidant enzymes (SOD, CAT and APX by -14%, -4%, -15% respectively) in comparison to control. Stress markers like proline (195%) and MDA (266%) were elevated in Pb-treated plants.The increased level of total phenol content (89%) and total flavonoid content (478%) was also noted in Pb treated plants which acted as non-enzymatic antioxidant defense. The foliar application of ZnONPs (1000 ppm) was found to be effective in ameliorating Pb induced stress, as depicted by the increases in root length (43%), shoot length (38%), pod number (46%), seed weight (70%), number of seeds per plant (105%), chlorophyll content (41%), carotenoid content (28%), total soluble protein content (20%), and nitrate reductase activity (59%) in comparison to control. When ZnONPs (1000 ppm) was supplemented in Pb (250 μM) treated plants, antioxidant enzymes (SOD and CAT increased by 83%, and APX by 75%) and stress markers such as proline amplified by 387%, and total soluble sugar (61%), with respect to control. ZnONPs also improved the cell viability under Pb stress as revealed by confocal microscopy. In summary, foliar spray of ZnONPs proved effective in mitigating the Pb-induced stress in mustard which could be an effective strategy to alleviate the deleterious effects of Pb stress (500 μM) in mustard plants so as to realize its sustainable production under abiotic stress.
Collapse
Affiliation(s)
- Tina Singh
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India
| | - Peer Saffeullah
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
| | - Shahid Umar
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Das A, Pal S, Hasanuzzaman M, Adak MK, Sil SK. Mitigation of aluminum toxicity in rice seedlings using biofabricated selenium nanoparticles and nitric oxide: Synergistic effects on oxidative stress tolerance and sulfur metabolism. CHEMOSPHERE 2025; 370:143940. [PMID: 39674411 DOI: 10.1016/j.chemosphere.2024.143940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Biofabricated selenium nanoparticles (Se-NPs) and sodium nitroprusside-derived nitric oxide (NO) singly or in combination was evaluated to improve tolerance to aluminum (Al) stress in rice (Oryza sativa L. cv. Swarna Sub1). The major objective was to elucidate contribution of sulfur reduction processes in oxidative stress tolerance along with cellular responses. Rice seedlings were primed against Al stress (550 μM) by the exogenous application of 100 μM NO and 20 ppm Se-NPs synthesized from a Salvinia molesta D. Mitch. extract. Green-synthesized Se-NPs (∼67 nm) had a crystalline, amorphous structure, high stability with functional groups in capping agents. The seedlings reduced bioaccumulation of Al in root tissues under SNP, Se-NPs, and in combination. Bioexclusion of Al was done in endodermal tissues by callose formation and binding in a fluorescent complex in the root tips. An upregulation of sulfur metabolism, including total sulfur, cysteine, cysteine synthase, and ATP sulfurylase activity was modulated by SNP + Se-NPs combination. Oxidative stress inducing metal stress for membrane oxidation into malondialdehyde, superoxide radical, and hydrogen peroxide, were also moderated by the SNP + Se-NPs combination. The Al-induced oxidative stress was relieved by a proportionate increase in superoxide dismutase and peroxidase activity. A higher ratio of ascorbate to dehydroascorbate and reduced to oxidized glutathione induced by the SNP + Se-NPs combination was supported antioxidation. These findings may substantiate the efficiency of green-synthesized Se-NPs together with SNP (as an NO donor) for amelioration of Al hazardous in crops like rice.
Collapse
Affiliation(s)
- Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Shar-e-Bangla Agricultural University, Dhaka-1207, Bangladesh.
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda, 732103, West Bengal, India
| |
Collapse
|
3
|
Cao Y, Turk K, Bibi N, Ghafoor A, Ahmed N, Azmat M, Ahmed R, Ghani MI, Ahanger MA. Nanoparticles as catalysts of agricultural revolution: enhancing crop tolerance to abiotic stress: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1510482. [PMID: 39898270 PMCID: PMC11782286 DOI: 10.3389/fpls.2024.1510482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025]
Abstract
Ensuring global food security and achieving sustainable agricultural productivity remains one of the foremost challenges of the contemporary era. The increasing impacts of climate change and environmental stressors like drought, salinity, and heavy metal (HM) toxicity threaten crop productivity worldwide. Addressing these challenges demands the development of innovative technologies that can increase food production, reduce environmental impacts, and bolster the resilience of agroecosystems against climate variation. Nanotechnology, particularly the application of nanoparticles (NPs), represents an innovative approach to strengthen crop resilience and enhance the sustainability of agriculture. NPs have special physicochemical properties, including a high surface-area-to-volume ratio and the ability to penetrate plant tissues, which enhances nutrient uptake, stress resistance, and photosynthetic efficiency. This review paper explores how abiotic stressors impact crops and the role of NPs in bolstering crop resistance to these challenges. The main emphasis is on the potential of NPs potential to boost plant stress tolerance by triggering the plant defense mechanisms, improving growth under stress, and increasing agricultural yield. NPs have demonstrated potential in addressing key agricultural challenges, such as nutrient leaching, declining soil fertility, and reduced crop yield due to poor water management. However, applying NPs must consider regulatory and environmental concerns, including soil accumulation, toxicity to non-target organisms, and consumer perceptions of NP-enhanced products. To mitigate land and water impacts, NPs should be integrated with precision agriculture technologies, allowing targeted application of nano-fertilizers and nano-pesticides. Although further research is necessary to assess their advantages and address concerns, NPs present a promising and cost-effective approach for enhancing food security in the future.
Collapse
Affiliation(s)
- Yahan Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Khalid Turk
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nabila Bibi
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Ghafoor
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nazeer Ahmed
- Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Muhammad Azmat
- Department of Biology, College of Science, University of Lahore, Lahore, Pakistan
| | - Roshaan Ahmed
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Imran Ghani
- College of Agriculture, Guizhou University/College of Life Sciences, Guiyang, China
| | - Muhammad Abass Ahanger
- Key Laboratory for Tropical Plant Improvement and Sustainable Use, Xishuangbanna Tropical 20 Botanical Garden, Chinese Academy of Sciences, Menglun, China
| |
Collapse
|
4
|
Feng G, Li S, Yang X, Hu Y, Zhang X, Chen D, Liu W, Yu G, Nie G, Huang L, Zhang X. Integrative multi-omic analyses reveal the molecular mechanisms of silicon nanoparticles in enhancing hyperaccumulator under Pb stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125677. [PMID: 39805468 DOI: 10.1016/j.envpol.2025.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Lead (Pb), one of the most ubiquitous and harmful contaminants of farmland, seriously threatens soil health and food security. Silicon nanoparticles (SiNPs) have potential applications in soil remediation and phytoremediation. Yet, how SiNPs influence plant growth under Pb stress remains poorly understood. In this study, the candidate Pb-hyperaccumulator Lolium multiflorum was selected to investigate the toxicity of Pb and the mitigation of Pb stress by SiNPs. The application of SiNPs was able to enhance Pb enrichment and maintain proper photosynthesis and root growth of L. multiflorum. Transcriptomic and metabolomic analyses indicated that Pb exposure interfered with nitrogen metabolism and alanine, aspartate and glutamate metabolism pathways in roots, which changed the root exudate composition. Besides, SiNPs altered both the accumulation of metabolites and correlated gene expression in roots, further affecting root exudates and stimulating the defense system, consequently increasing Pb tolerance. Our findings both demonstrated that co-application of L. multiflorum with SiNPs has potential for phytoremediation of Pb-polluted soil and revealed the contributions of SiNP amendment to mitigating Pb toxicity, and provided a new strategy for phytoremediation of farmland ecosystems.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shunfeng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiangyu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Youshuang Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xianfang Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dongming Chen
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Guohui Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Xiao X, Ma Z, Zhou K, Niu Q, Luo Q, Yang X, Chu X, Shan G. Elucidating the Underlying Allelopathy Effects of Euphorbia jolkinii on Arundinella hookeri Using Metabolomics Profiling. PLANTS (BASEL, SWITZERLAND) 2025; 14:123. [PMID: 39795383 PMCID: PMC11723091 DOI: 10.3390/plants14010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Euphorbia jolkinii dominates the subalpine meadows in Shangri-La (Southwest China) owing to its potent allelopathic effects. However, the effects underlying its allelopathy require further characterization at the physiological and molecular levels. In this study, the physiological, biochemical, and metabolic mechanisms underlying E. jolkinii allelopathy were investigated using Arundinella hookeri as a receptor plant. The treatment of A. hookeri seedlings with E. jolkinii aqueous extract (EJAE) disrupted their growth by inhibiting photosynthesis, disrupting oxidation systems, and increasing soluble sugar accumulation and chlorophyll synthesis. Collectively, this causes severe impairment accompanied by abnormal photosynthesis and reduced biomass accumulation. Moreover, EJAE treatment suppressed gibberellin, indoleacetic acid, zeatin, salicylic acid, and jasmonic acid levels while promoting abscisic acid accumulation. Further metabolomic analyses identified numerous differentially abundant metabolites primarily enriched in the α-linolenic, phenylpropanoid, and flavonoid biosynthesis pathways in EJAE-treated A. hookeri seedlings. This study demonstrated that E. jolkinii exhibits potent and comprehensive allelopathic effects on receptor plants, including a significant disruption of endogenous hormone synthesis, the inhibition of photosynthesis, an impairment of membrane and oxidation systems, and changes in crucial metabolic processes associated with α-linolenic, phenylpropanoid, and flavonoid biosynthesis. Thus, our study provides a solid theoretical foundation for understanding the regulatory mechanisms underlying E. jolkinii allelopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaohui Chu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (Z.M.); (K.Z.); (Q.N.); (Q.L.); (X.Y.)
| | - Guilian Shan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (Z.M.); (K.Z.); (Q.N.); (Q.L.); (X.Y.)
| |
Collapse
|
6
|
Abbas G, Tariq ML, Khan MN, Ahmed K, Amjad M, Jabeen Z, Ali Q, Raza M. Multivariate characterization of salicylic acid and potassium induced physio-biochemical and phytoremediation responses in quinoa exposed to lead and cadmium contamination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109029. [PMID: 39137682 DOI: 10.1016/j.plaphy.2024.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The levels of soils pollutants such as lead (Pb) and cadmium (Cd) have significantly increased recently resulting in ecological disturbances and threatening crop production. Various amendments have been employed to enhance the tolerance of crops to withstand Cd and Pb stresses. However, the role of combined application of potassium (K) and of salicylic acid (SA) for Cd and Pb stress mitigation and phytoremediation by quinoa (Chenopodium quinoa Willd) has not been comprehended well. In the present study, the effect of 10 mM K and 0.1 mM SA was tested on the quinoa plants subjected to 250 μM Pb and/or 100 μM Cd. The Pb and Cd treatments were applied separately or together. Phytotoxicity induced by Pb and Cd resulted in drastic decrease (>60%) in chlorophyll contents, stomatal conductance, and plant biomass. The collective treatment of Pb and Cd induced an increase in the concentration of hydrogen peroxide (13-fold) and lipid peroxidation (16-fold) that resulted in a 61% reduction in membrane stability. The application of 10 mM K and/or 0.1 mM SA was remarkable in mitigating the adverse effect of Pb and Cd. The reduction in plant biomass was 17% when 10 mM K and 0.1 mM SA were applied together under the combined treatment of both the metals. The simultaneous application of K and SA effectively mitigated oxidative stress by enhancing the activities of superoxide dismutase, peroxidase, ascorbate peroxidase, and catalase by 12, 10, 7 and 10-folds respectively. The positive effect of K and SA on these attributes resulted in a remarkable reduction in metal accumulation and translocation and lipid peroxidation. The stressed plants supplemented with K and SA exhibited a significant improvement in the membrane stability index, chlorophyll content, and stomatal conductance. This study concluded that the combined application of K and SA could be a good approach for reducing Pb and Cd phytotoxicity in quinoa and enhancing their phytostabilization potential in the contaminated soils.
Collapse
Affiliation(s)
- Ghulam Abbas
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan.
| | - Muhammad Luqman Tariq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Khalil Ahmed
- Soil Salinity Research Institute Pindi Bhattian, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mohsin Raza
- Department of Chemistry, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| |
Collapse
|
7
|
Gupta A, Bharati R, Kubes J, Popelkova D, Praus L, Yang X, Severova L, Skalicky M, Brestic M. Zinc oxide nanoparticles application alleviates salinity stress by modulating plant growth, biochemical attributes and nutrient homeostasis in Phaseolus vulgaris L. FRONTIERS IN PLANT SCIENCE 2024; 15:1432258. [PMID: 39297008 PMCID: PMC11408239 DOI: 10.3389/fpls.2024.1432258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024]
Abstract
Salt stress poses a significant challenge to global agriculture, adversely affecting crop yield and food production. The current study investigates the potential of Zinc Oxide (ZnO) nanoparticles (NPs) in mitigating salt stress in common beans. Salt-stressed bean plants were treated with varying concentrations of NPs (25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L) using three different application methods: foliar application, nano priming, and soil application. Results indicated a pronounced impact of salinity stress on bean plants, evidenced by a reduction in fresh weight (24%), relative water content (27%), plant height (33%), chlorophyll content (37%), increased proline (over 100%), sodium accumulation, and antioxidant enzyme activity. Application of ZnO NPs reduced salt stress by promoting physiological growth parameters. The NPs facilitated enhanced plant growth and reduced reactive oxygen species (ROS) generation by regulating plant nutrient homeostasis and chlorophyll fluorescence activity. All the tested application methods effectively mitigate salt stress, with nano-priming emerging as the most effective approach, yielding results comparable to control plants for the tested parameters. This study provides the first evidence that ZnO NPs can effectively mitigate salt stress in bean plants, highlighting their potential to address salinity-induced growth inhibition in crops.
Collapse
Affiliation(s)
- Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Rohit Bharati
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jan Kubes
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Daniela Popelkova
- Materials Chemistry Department, Institute of Inorganic Chemistry AS CR v.v.i., Husinec-Řež, Czechia
| | - Lukas Praus
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Xinghong Yang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Lucie Severova
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| |
Collapse
|
8
|
Ahsan M, Radicetti E, Jamal A, Ali HM, Sajid M, Manan A, Bakhsh A, Naeem M, Khan JA, Valipour M. Silicon nanoparticles and indole butyric acid positively regulate the growth performance of Freesia refracta by ameliorating oxidative stress under chromium toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1437276. [PMID: 39157509 PMCID: PMC11327035 DOI: 10.3389/fpls.2024.1437276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024]
Abstract
Chromium (Cr) toxicity hampers ornamental crops' growth and post-harvest quality, especially in cut flower plants. Nano-enabled approaches have been developing with phenomenal potential towards improving floricultural crop production under heavy metal-stressed conditions. The current pot experiment aims to explore the ameliorative impact of silicon nanoparticles (Si-NPs; 10 mM) and indole butyric acid (IBA; 20 mM) against Cr stress (0.8 mM) in Freesia refracta. The results showed that Cr stress significantly reduced morphological traits, decreased roots-stems biomass, abridged chlorophyll (14.7%) and carotenoid contents (27.2%), limited gas exchange attributes (intercellular CO2 concentration (Ci) 24.8%, stomatal conductance (gs) 19.3% and photosynthetic rate (A) 28.8%), condensed proline (39.2%) and total protein (40%) contents and reduced vase life (15.3%) of freesia plants by increasing oxidative stress. Contrarily, antioxidant enzyme activities, MDA and H2O2 levels, and Cr concentrations in plant parts were remarkably enhanced in Cr-stressed plants than in the control. However, foliar supplementation of Si-NPs + IBA (combined form) to Cr-stressed plants increased defense mechanism and tolerance as revealed by improved vegetative and reproductive traits, increased biomass, photosynthetic pigments (chlorophyll 30.3%, carotenoid 57.2%) and gaseous exchange attributes (Ci 33.3%, gs 25.6%, A 31.1%), proline (54.5%), total protein (55.1%), and vase life (34.9%) of metal contaminated plants. Similarly, the improvement in the activities of peroxidase, catalase, and superoxide dismutase was recorded by 30.8%, 52.4%, and 60.8%, respectively, compared with Cr-stressed plants. Meanwhile, MDA (54.3%), H2O2 (32.7%) contents, and Cr levels in roots (43.3), in stems (44%), in leaves (52.8%), and in flowers (78.5%), were remarkably reduced due to combine application of Si-NPs + IBA as compared with Cr-stressed nontreated freesia plants. Thus, the hypothesis that the synergistic application of Si-NPs + IBA will be an effective approach in ameliorating Cr stress is authenticated from the results of this experiment. Furthermore, the study will be significant since it will demonstrate how Si-NPs and IBA can work synergistically to combat Cr toxicity, and even when added separately, they can improve growth characteristics both under stressed and un-stressed conditions.
Collapse
Affiliation(s)
- Muhammad Ahsan
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferara, Ferrara, Italy
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mateen Sajid
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Abdul Manan
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ali Bakhsh
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Naeem
- Department of Pharmacy, Shah Abdul Latif University Khairpur, Khairpur, Pakistan
| | - Jawad Ahmad Khan
- Department of Pharmacy, Shah Abdul Latif University Khairpur, Khairpur, Pakistan
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, United States
| |
Collapse
|
9
|
Heydari R, Kolahi M, Mohajel Kazemi E, Nosrati H, Movafeghi A. The role of nano-chelated iron on anatomical and biochemical characteristics and concentration of mineral nutrients in lettuce ( Lactuca sativa L.) under cadmium toxicity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1383-1400. [PMID: 39184560 PMCID: PMC11341518 DOI: 10.1007/s12298-024-01490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024]
Abstract
Cadmium is one of the most hazardous environmental pollutants for plants due to its mobility and high toxicity. One effective method that may be utilized to decrease heavy metal pollution in the soil is the use of nano-chelated iron. In the present study, lettuce plants were treated with four different concentrations of cadmium chloride, two different concentrations of nano-chelated iron, and six combinations of cadmium chloride+nano-chelated iron. Application of 0.5 and 1 g/L nano-chelated iron reduced the adverse effects of cadmium on photosynthetic pigments and growth parameters. Combined application of cadmium chloride and nano-chelated iron (90 μg CdCl2/g perlite+0.5 g/L nano-chelated iron) led to an increase in soluble sugar content compared to the control lettuce plants. Lettuce had a high capacity to absorb cadmium from the contaminated medium. Interestingly, the levels of cadmium that accumulated in the roots (1.641 mg/g DW) were much higher than in the aerial parts of the plant (0.998 mg/g DW). The results showed that there was a decline in the mineral content of lettuce treated with cadmium, while the application of nano-chelated iron led to its increase. This study suggests that the application of nano-chelated iron is a cost-effective and practical method that can be used in the agricultural soil systems to enhance crop tolerance in cadmium-polluted soil.
Collapse
Affiliation(s)
- Roghayeh Heydari
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Mohajel Kazemi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Houshang Nosrati
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
10
|
Shafi Z, Shahid M, AlGarawi AM, Zeyad MT, Marey SA, Hatamleh AA, Wang S, Singh UB. The Exogenous Application of 24-Epibrassinolide (24-EBL) Increases the Cd and Pb Resilience in Zea mays (L.) by Regulating the Growth and Physiological Mechanism. Appl Biochem Biotechnol 2024; 196:3949-3973. [PMID: 37792177 DOI: 10.1007/s12010-023-04730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Heavy metals (HMs) at a concentration above the threshold level act as environmental pollutants and very often threaten the agricultural productivity globally. Finding affordable and environmentally sustainable deliverables to address this issue is therefore a top focus. Phytohormones alleviate the HMs-induced toxicity and positively influence the plant growth. Considering the importance of phytohormones, the present study aimed to assess the effect of 24-epibrassinolide (24-EBL; 10 µM) as seed soaking treatment on growth performance of Zea mays (L.) contaminated separately with increasing concentrations (50-400 mg.kg-1) of lead (Pb) and cadmium (Cd). With increasing metal concentrations, growth and plant biometric criteria were reduced. For instance, Cd at 400 mg.kg-1 soil reduced the germination efficiency (56%), root (77%) and shoot (69%) dry weight, total chlorophyll (64%), and carotenoid content (45%). Contrarily, both HMs caused increase in stress biomarkers and antioxidant enzymes in seedling. However, exogenous administration of 24-EBL significantly enhanced the growth attributes, photosynthetic pigments, proline, MDA, and antioxidant enzyme activity while reducing the harmful effects of HMs stress on Z. mays. For instance, 24-EBL (10 µM) improved the germination percentage, root biomass, chl a, chl b, total chlorophyll, and carotenoid content by 16, 21, 17, 34, 18, and 15%, respectively, in 50 mg.Pb.kg-1 soil-treated Z. mays plants. Furthermore, the amounts of proline, MDA, and antioxidant enzymes in foliage of Z. mays were interestingly and dramatically lowered by 24-EBL application. Uptake of metals in plant organs was significantly reduced when 24-EBL was applied to Pb- and Cd-treated Z. mays. The recent findings help us better understand how 24-EBL regulates growth and development of Z. mays as well as how it boosts HMs' resilience, which could increase the possibility of employing 24-EBL to increase Z. mays productivity. Thus, the present findings confirmed the potentiality of pre-soaking the seed in 24-EBL solution that neutralizes the toxic effects of heavy metals in Z. mays plants. Therefore, it is suggested that applying phytohormones including 24-EBL in removal of heavy metal stress in plants is the best possible solution in sustainable agriculture.
Collapse
Affiliation(s)
- Zaryab Shafi
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-NBAIM, Kushmaur, Mau, U.P, India
| | - Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-NBAIM, Kushmaur, Mau, U.P, India.
| | - Amal Mohamed AlGarawi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University (A.M.U), Aligarh, UP-20202, India
| | - Samy A Marey
- King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Shifa Wang
- School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, 404000, Wanzhou, China
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-NBAIM, Kushmaur, Mau, U.P, India
| |
Collapse
|
11
|
Singh R, Širić I, Alhag SK, Al-Shuraym LA, Al-Shahari EA, Alsudays IM, Bachheti A, Goala M, Abou Fayssal S, Kumar P, Eid EM. Impact of titanium dioxide (TiO 2) nanoparticle and liquid leachate of mushroom compost on agronomic and biochemical response of marigold (Tagetes erecta L.) under saline stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43731-43742. [PMID: 38907815 DOI: 10.1007/s11356-024-33999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The cultivation of ornamental horticultural crops under salinity stress has been a challenge for growers all over the world. In this study, an attempt was made for pot cultivation of Marigold (Tagetes erecta L. var. Pusa Basanti Gainda) in salt-stressed (SS) soil (150 mM) with the combined use of mushroom compost leachate (CL) and foliar application of titanium dioxide nanoparticles (TiO2-NPs). For this purpose, a total of six pot treatments, i.e., borewell water (BW; control), T1 (BW with SS), T2 (BW with SS and TiO2-NPs), T3 (CL supplemented), T4 (CL with SS), and T5 (CL with SS and TiO2-NPs) were conducted in triplicate. The results of this study showed that CL supplementation significantly (p < 0.05) improved the physicochemical i.e., pH (14.5%), electrical conductivity (32.9%), total nitrogen (27.4%), total phosphorus (247.6%)), and nutrient (organic matter: 119.6%) profiles of soil which later helped in higher growth (30-35%) and yield (5.4-40.7%) of T. erecta. In CL-based treatments, the biochemical constituents were significantly (p < 0.05) higher than those in BW-irrigated ones. Also, the levels of selected stress defense enzymes were significantly increased under SS treatment but reduced under TiO2-NP application. Overall, it was observed that the combined application of CL and TiO2-NPs (T5 treatment) was the most helpful treatment for enhanced germination, growth, yield, biochemical parameters, and better plant enzymatic activities to cope with saline stress. This study provides a mechanistic understanding of T. erecta plants under saline stress which is crucial for the development of targeted interventions aimed at improving plant tolerance to saline conditions.
Collapse
Affiliation(s)
- Rattan Singh
- Department of Food Technology, Uttaranchal University, 248007, Dehradun, India
| | - Ivan Širić
- Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000, Zagreb, Croatia
| | - Sadeq K Alhag
- Biology Department, College of Science and Arts, King Khalid University, 61913, Muhayl Asser, Saudi Arabia
| | - Laila A Al-Shuraym
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Eman A Al-Shahari
- Biology Department, College of Science and Arts, King Khalid University, 61321, Abha, Saudi Arabia
| | - Ibtisam M Alsudays
- Biology Department, College of Science, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Archana Bachheti
- Department of Environment Science, Graphic Era (Deemed to Be University), Dehradun, 248002, India
| | - Madhumita Goala
- Department of Environment Science, Graphic Era (Deemed to Be University), Dehradun, 248002, India
| | - Sami Abou Fayssal
- Department of Agronomy, Faculty of Agronomy, University of Forestry, 10 Kliment Ohridski Blvd, Sofia, 1797, Bulgaria
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, 1302, Lebanon
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India.
- Research and Development Division, Society for AgroEnvironmental Sustainability, Dehradun, 248007, India.
| | - Ebrahem M Eid
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| |
Collapse
|
12
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
13
|
Ni X, Bai H, Han J, Zhou Y, Bai Z, Luo S, Xu J, Jin C, Li Z. Inhibitory activities of essential oils from Syzygium aromaticum inhibition of Echinochloa crus-galli. PLoS One 2024; 19:e0304863. [PMID: 38905259 PMCID: PMC11192376 DOI: 10.1371/journal.pone.0304863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/23/2024] Open
Abstract
Echinochloa crus-galli is a serious weed species in rice paddies. To obtain a new potential bioherbicide, we evaluated the inhibitory activities of 13 essential oils and their active substances against E. crus-galli. Essential oil from Syzygium aromaticum (L.) Merr. & L. M. Perry (SAEO) exhibited the highest herbicidal activity (EC50 = 3.87 mg mL-1) among the 13 essential oils evaluated. The SAEO was isolated at six different temperatures by vacuum fractional distillation, including 164°C, 165°C (SAEO-165), 169°C, 170°C 175°C and 180°C. The SAEO-165 had the highest inhibitory rate against E. crus-galli. Gas chromatography-mass spectrometry and high phase liquid chromatography identified eugenol (EC50 = 4.07 mg mL-1), α-caryophyllene (EC50 = 17.34 mg mL-1) and β-caryophyllene (EC50 = 96.66 mg mL-1) as the three compounds in SAEO. Results from a safety bioassay showed that the tolerance of rice seedling (~ 20% inhibition) was higher than that of E. crus-galli (~ 70% inhibition) under SAEO stress. SAEO induced excessive generation of reactive oxygen species leading to oxidative stress and ultimately tissue damage in E. crus-galli. Our results indicate that SAEO has a potential for development into a new selective bio-herbicide. They also provide an example of a sustainable management strategy for E. crus-galli in rice paddies.
Collapse
Affiliation(s)
- Xianzhi Ni
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haodong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jincai Han
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Zhou
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhendong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Siquan Luo
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
| | - Jingjing Xu
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chenzhong Jin
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
| | - Zuren Li
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
14
|
Kumari A, Gupta AK, Sharma S, Jadon VS, Sharma V, Chun SC, Sivanesan I. Nanoparticles as a Tool for Alleviating Plant Stress: Mechanisms, Implications, and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1528. [PMID: 38891334 PMCID: PMC11174413 DOI: 10.3390/plants13111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Plants, being sessile, are continuously exposed to varietal environmental stressors, which consequently induce various bio-physiological changes in plants that hinder their growth and development. Oxidative stress is one of the undesirable consequences in plants triggered due to imbalance in their antioxidant defense system. Biochemical studies suggest that nanoparticles are known to affect the antioxidant system, photosynthesis, and DNA expression in plants. In addition, they are known to boost the capacity of antioxidant systems, thereby contributing to the tolerance of plants to oxidative stress. This review study attempts to present the overview of the role of nanoparticles in plant growth and development, especially emphasizing their role as antioxidants. Furthermore, the review delves into the intricate connections between nanoparticles and plant signaling pathways, highlighting their influence on gene expression and stress-responsive mechanisms. Finally, the implications of nanoparticle-assisted antioxidant strategies in sustainable agriculture, considering their potential to enhance crop yield, stress tolerance, and overall plant resilience, are discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Ashish Kumar Gupta
- ICAR—National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India;
| | - Shivika Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Vikash S. Jadon
- School of Biosciences, Swami Rama Himalayan University, JollyGrant, Dehradun 248016, Uttarakhand, India;
| | - Vikas Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Se Chul Chun
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
15
|
Afzal S, Alghanem SMS, Alsudays IM, Malik Z, Abbasi GH, Ali A, Noreen S, Ali M, Irfan M, Rizwan M. Effect of biochar, zeolite and bentonite on physiological and biochemical parameters and lead and zinc uptake by maize (Zea mays L.) plants grown in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133927. [PMID: 38447373 DOI: 10.1016/j.jhazmat.2024.133927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Heavy metals (HMs) are common contaminants with major concern of severe environmental and health problems. This study evaluated the effects of organo-mineral amendments (mesquite biochar (MB), zeolite (ZL) and bentonite (BN) alone and in combination) applied at different rates to promote the maize (Zea mays L.) growth by providing essential nutrient and improving the soil physio-chemical properties under zinc (Zn) and lead (Pb) contamination. Result revealed that the incorporation of organo-mineral amendments had significantly alleviated Pb and Zn contamination by maize plants and improved the physiological and biochemical attributes of plants. Combined application of organo-mineral amendments including BMA-1, BMA-2 and BMA-3 performed excellently in terms of reducing Pb and Zn concentrations in both leaves (19-60%, 43-75%, respectively) and roots (24-59%, 42-68%, respectively) of maize. The amendments decreased the extractable, reducible, oxidisable and residual fractions of metals in soil and significantly reduced the soil DTPA-extractable Pb and Zn. BMA-1 substantially improved antioxidant enzyme activities in metal-stressed plants. This study indicated that combined use of organo-mineral amendments can effectively reduce the bioavailability and mobility of Pb and Zn in co-contaminated soils. Combined application of organo-mineral amendments could be viable remediation technology for immobilization and metal uptake by plants in polluted soils.
Collapse
Affiliation(s)
- Sobia Afzal
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | | | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Ghulam Hassan Abbasi
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ahmad Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sana Noreen
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ali
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Irfan
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
16
|
Huang Q, Ayyaz A, Farooq MA, Zhang K, Chen W, Hannan F, Sun Y, Shahzad K, Ali B, Zhou W. Silicon dioxide nanoparticles enhance plant growth, photosynthetic performance, and antioxidants defence machinery through suppressing chromium uptake in Brassica napus L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123013. [PMID: 38012966 DOI: 10.1016/j.envpol.2023.123013] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Chromium (Cr) is a highly toxic heavy metal that is extensively released into the soil and drastically reduces plant yield. Silicon nanoparticles (Si NPs) were chosen to mitigate Cr toxicity due to their ability to interact with heavy metals and reduce their uptake. This manuscript explores the mechanisms of Cr-induced toxicity and the potential of Si NPs to mitigate Cr toxicity by regulating photosynthesis, oxidative stress, and antioxidant defence, along with the role of transcription factors and heavy metal transporter genes in rapeseed (Brassica napus L.). Rapeseed plants were grown hydroponically and subjected to hexavalent Cr stress (50 and 100 μM) in the form of K2Cr2O7 solution. Si NPs were foliar sprayed at concentrations of 50, 100 and 150 μM. The findings showed that 100 μM Si NPs under 100 μM Cr stress significantly increased the leaf Si content by 169% while reducing Cr uptake by 92% and 76% in roots and leaves, respectively. The presence of Si NPs inside the plant leaf cells was confirmed by using energy-dispersive spectroscopy, inductively coupled plasma‒mass spectrometry, and confocal laser scanning microscopy. The study's findings showed that Cr had adverse effects on plant growth, photosynthetic gas exchange attributes, leaf mesophyll ultrastructure, PSII performance and the activity of enzymatic and nonenzymatic antioxidants. However, Si NPs minimized Cr-induced toxicity by reducing total Cr accumulation and decreasing oxidative damage, as evidenced by reduced ROS production (such as H2O2 and MDA) and increased enzymatic and nonenzymatic antioxidant activities in plants. Interestingly, Si NPs under Cr stress effectively increased the NPQ, ETR and QY of PSII, indicating a robust protective response of PSII against stress. Furthermore, the enhancement of Cr tolerance facilitated by Si NPs was linked to the upregulation of genes associated with antioxidant enzymes and transcription factors, alongside the concurrent reduction in metal transporter activity.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Kangni Zhang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Weiqi Chen
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Fakhir Hannan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yongqi Sun
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Khuram Shahzad
- Department of Botany, University of Sargodha, Sargodha, 40162, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Weijun Zhou
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Asgher M, Rehaman A, Nazar Ul Islam S, Khan NA. Multifaceted roles of silicon nano particles in heavy metals-stressed plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122886. [PMID: 37952923 DOI: 10.1016/j.envpol.2023.122886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Heavy metal (HM) contamination has emerged as one of the most damaging abiotic stress factors due to their prominent release into the environment through industrialization and urbanization worldwide. The increase in HMs concentration in soil and the environment has invited attention of researchers/environmentalists to minimize its' impact by practicing different techniques such as application of phytohormones, gaseous molecules, metalloids, and essential nutrients etc. Silicon (Si) although not considered as the essential nutrient, has received more attention in the last few decades due to its involvement in the amelioration of wide range of abiotic stress factors. Silicon is the second most abundant element after oxygen on earth, but is relatively lesser available for plants as it is taken up in the form of mono-silicic acid, Si(OH)4. The scattered information on the influence of Si on plant development and abiotic stress adaptation has been published. Moreover, the use of nanoparticles for maintenance of plant functions under limited environmental conditions has gained momentum. The current review, therefore, summarizes the updated information on Si nanoparticles (SiNPs) synthesis, characterization, uptake and transport mechanism, and their effect on plant growth and development, physiological and biochemical processes and molecular mechanisms. The regulatory connect between SiNPs and phytohormones signaling in counteracting the negative impacts of HMs stress has also been discussed.
Collapse
Affiliation(s)
- Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Abdul Rehaman
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Syed Nazar Ul Islam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
18
|
Gautam A, Rusli LS, Yaacob JS, Kumar V, Guleria P. Nanopriming with magnesium oxide nanoparticles enhanced antioxidant potential and nutritional richness of radish leaves grown in field. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2024. [DOI: 10.1007/s10098-023-02697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2025]
|
19
|
Verma T, Bhardwaj S, Raza A, Djalovic I, Prasad PVV, Kapoor D. Mitigation of salt stress in Indian mustard ( Brassica juncea L.) by the application of triacontanol and hydrogen sulfide. PLANT SIGNALING & BEHAVIOR 2023; 18:2189371. [PMID: 36934336 PMCID: PMC10026909 DOI: 10.1080/15592324.2023.2189371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Salinity stress is a well-known abiotic stress that has been shown to have a negative impact on crop growth, production, and soil richness. The current study was intended to ameliorate salt stress in Indian mustard (Brassica juncea L.), keeping in mind the detrimental influence of salt stress. A pot experimentation was executed on B. juncea to examine the efficacy of exogenous application of triacontanol (TRIA) and hydrogen sulfide (H2S) (NaHS donor), either alone or in combination, on growth attributes, metabolites, and antioxidant defense system exposed to salt stress at three distinct concentrations (50, 100 and 150 mM NaCl). Increase in the concentration of oxidative markers (malondialdehyde and hydrogen peroxide) was found which results in inhibited growth of B. juncea. The growth characteristics of plant, such as root and shoot length, fresh and dry weight under salt stress, were improved by foliar application of TRIA (150 µM) and H2S (25 µM) alone as well as in combination. Additionally, salt stress reduced the levels of protein, metabolites (flavonoids, phenolic and anthocyanin), antioxidant enzyme activity including that of ascorbate peroxidase, catalase, polyphenol oxidase and guaiacol peroxidase as well as the level of ascorbic acid and glutathione (non-enzymatic antioxidants). However, application of TRIA and H2S alone or in grouping substantially raised the content of protein, metabolites and antioxidant defense system in plants of B. juncea.
Collapse
Affiliation(s)
- Tunisha Verma
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Savita Bhardwaj
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Dhriti Kapoor
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
20
|
Ilyas MZ, Sa KJ, Ali MW, Lee JK. Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. PLANTA 2023; 259:18. [PMID: 38085368 DOI: 10.1007/s00425-023-04296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Lead disrupts plant metabolic homeostasis and key structural elements. Utilizing modern biotechnology tools, it's feasible to develop Pb-tolerant varieties by discovering biological players regulating plant metabolic pathways under stress. Lead (Pb) has been used for a variety of purposes since antiquity despite its toxic nature. After arsenic, lead is the most hazardous heavy metal without any known beneficial role in the biological system. It is a crucial inorganic pollutant that affects plant biochemical and morpho-physiological attributes. Lead toxicity harms plants throughout their life cycle and the extent of damage depends on the concentration and duration of exposure. Higher levels of lead exposure disrupt numerous key metabolic activities of plants including oxygen-evolving complex, organelles integrity, photosystem II connectivity, and electron transport chain. This review summarizes the detrimental effects of lead toxicity on seed germination, crop growth, and yield, oxidative and ultra-structural alterations, as well as nutrient absorption, transport, and assimilation. Further, it discusses the Pb-induced toxic modulation of stomatal conductance, photosynthesis, respiration, metabolic-enzymatic activity, osmolytes accumulation, and antioxidant activity. It is a comprehensive review that reports on omics-based studies along with morpho-physiological and biochemical modifications caused by lead stress. With advances in DNA sequencing technologies, genomics and transcriptomics are gradually becoming popular for studying Pb stress effects in plants. Proteomics and metabolomics are still underrated and there is a scarcity of published data, and this review highlights both their technical and research gaps. Besides, there is also a discussion on how the integration of omics with bioinformatics and the use of the latest biotechnological tools can aid in developing Pb-tolerant crops. The review concludes with core challenges and research directions that need to be addressed soon.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyu Jin Sa
- Department of Crop Science, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, 37224, Korea
| | - Muhammad Waqas Ali
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Crop Genetics, John Innes Center, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
21
|
Hussain B, Riaz L, Li K, Hayat K, Akbar N, Hadeed MZ, Zhu B, Pu S. Abiogenic silicon: Interaction with potentially toxic elements and its ecological significance in soil and plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122689. [PMID: 37804901 DOI: 10.1016/j.envpol.2023.122689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Abiogenic silicon (Si), though deemed a quasi-nutrient, remains largely inaccessible to plants due to its prevalence within mineral ores. Nevertheless, the influence of Si extends across a spectrum of pivotal plant processes. Si emerges as a versatile boon for plants, conferring a plethora of advantages. Notably, it engenders substantial enhancements in biomass, yield, and overall plant developmental attributes. Beyond these effects, Si augments the activities of vital antioxidant enzymes, encompassing glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), among others. It achieves through the augmentation of reactive oxygen species (ROS) scavenging gene expression, thus curbing the injurious impact of free radicals. In addition to its effects on plants, Si profoundly ameliorates soil health indicators. Si tangibly enhances soil vitality by elevating soil pH and fostering microbial community proliferation. Furthermore, it exerts inhibitory control over ions that could inflict harm upon delicate plant cells. During interactions within the soil matrix, Si readily forms complexes with potentially toxic metals (PTEs), encapsulating them through Si-PTEs interactions, precipitative mechanisms, and integration within colloidal Si and mineral strata. The amalgamation of Si with other soil amendments, such as biochar, nanoparticles, zeolites, and composts, extends its capacity to thwart PTEs. This synergistic approach enhances soil organic matter content and bolsters overall soil quality parameters. The utilization of Si-based fertilizers and nanomaterials holds promise for further increasing food production and fortifying global food security. Besides, gaps in our scientific discourse persist concerning Si speciation and fractionation within soils, as well as its intricate interplay with PTEs. Nonetheless, future investigations must delve into the precise functions of abiogenic Si within the physiological and biochemical realms of both soil and plants, especially at the critical juncture of the soil-plant interface. This review seeks to comprehensively address the multifaceted roles of Si in plant and soil systems during interactions with PTEs.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Kun Li
- Sichuan Academy of Forestry, Chengdu, 610081, Sichuan, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Naveed Akbar
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | | | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
22
|
Rai PK, Song H, Kim KH. Nanoparticles modulate heavy-metal and arsenic stress in food crops: Hormesis for food security/safety and public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166064. [PMID: 37544460 DOI: 10.1016/j.scitotenv.2023.166064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Heavy metal and arsenic (HM-As) contamination at the soil-food crop interface is a threat to food security/safety and public health worldwide. The potential ecotoxicological effects of HM-As on food crops can perturb normal physiological, biochemical, and molecular processes. To protect food safety and human health, nanoparticles (NPs) can be applied to seed priming and soil amendment, as 'manifestation of hormesis' to modulate HM-As-induced oxidative stress in edible crops. This review provides a comprehensive overview of NPs-mediated alleviation of HM-As stress in food crops and resulting hormetic effects. The underlying biochemical and molecular mechanisms in the amelioration of HM-As-induced oxidative stress is delineated by covering the various aspects of the interaction of NPs (e.g., magnetic particles, silicon, metal oxides, selenium, and carbon nanotubes) with plant microbes, phytohormone, signaling molecules, and plant-growth bioregulators (e.g., salicylic acid and melatonin). With biotechnical advances (such as clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and omics), the efficacy of NPs and associated hormesis has been augmented to produce "pollution-safe designer cultivars" in HM-As-stressed agriculture systems. Future research into nanoscale technological innovations should thus be directed toward achieving food security, sustainable development goals, and human well-being, with the aid of HM-As stress resilient food crops.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
23
|
Okeke ES, Nweze EJ, Ezike TC, Nwuche CO, Ezeorba TPC, Nwankwo CEI. Silicon-based nanoparticles for mitigating the effect of potentially toxic elements and plant stress in agroecosystems: A sustainable pathway towards food security. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165446. [PMID: 37459984 DOI: 10.1016/j.scitotenv.2023.165446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
Due to their size, flexibility, biocompatibility, large surface area, and variable functionality nanoparticles have enormous industrial, agricultural, pharmaceutical and biotechnological applications. This has led to their widespread use in various fields. The advancement of knowledge in this field of research has altered our way of life from medicine to agriculture. One of the rungs of this revolution, which has somewhat reduced the harmful consequences, is nanotechnology. A helpful ingredient for plants, silicon (Si), is well-known for its preventive properties under adverse environmental conditions. Several studies have shown how biogenic silica helps plants recover from biotic and abiotic stressors. The majority of research have demonstrated the benefits of silicon-based nanoparticles (Si-NPs) for plant growth and development, particularly under stressful environments. In order to minimize the release of brine, heavy metals, and radioactive chemicals into water, remove metals, non-metals, and radioactive components, and purify water, silica has also been used in environmental remediation. Potentially toxic elements (PTEs) have become a huge threat to food security through their negative impact on agroecosystem. Si-NPs have the potentials to remove PTEs from agroecosystem and promote food security via the promotion of plant growth and development. In this review, we have outlined the various sources and ecotoxicological consequences of PTEs in agroecosystems. The potentials of Si-NPs in mitigating PTEs were extensively discussed and other applications of Si-NPs in agriculture to foster food security were also highlighted.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Ekene John Nweze
- Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Tobechukwu Christian Ezike
- Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Charles Ogugua Nwuche
- Department of Microbiology, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, B15 2TT Edgbaston, United Kingdom.
| | - Chidiebele Emmanuel Ikechukwu Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Microbiology, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
24
|
Aqeel U, Parwez R, Aftab T, Khan MMA, Naeem M. Silicon dioxide nanoparticles suppress copper toxicity in Mentha arvensis L. by adjusting ROS homeostasis and antioxidant defense system and improving essential oil production. ENVIRONMENTAL RESEARCH 2023; 236:116851. [PMID: 37558115 DOI: 10.1016/j.envres.2023.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Copper (Cu) is an essential micronutrient for plants; however, the excessive accumulation of Cu due to various anthropogenic activities generates progressive pollution of agricultural land and that causes a major constraint for crop production. Excess Cu (80 mg kg-1) in the soil diminished growth and biomass, photosynthetic efficiency and essential oil (EO) content in Mentha arvensis L., while amplifying the antioxidant enzyme's function and reactive oxygen species (ROS) production. Therefore, there is a pressing need to explore effective approaches to overcome Cu toxicity in M. arvensis plants. Thus, the present study unveils the potential of foliar supplementation of two distinct forms of silicon dioxide nanoparticles (SiO2 NPs) i.e., Aerosil 200F and Aerosil 300 to confer Cu stress tolerance attributes to M. arvensis. The experiment demonstrated that applied forms of SiO2 NPs (120 mg L-1), enhanced plants' growth and augmented the photosynthetic efficiency along with the activities of CA (carbonic anhydrase) and NR (nitrate reductase), however, the effects were more accentuated by Aerosil 200F application. Supplementation of SiO2 NPs also exhibited a beneficial effect on the antioxidant machinery of Cu-disturbed plants by raising the level of proline and total phenol as well as the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR), thereby lowering ROS and electrolytic leakage (EL). Interestingly, SiO2 NPs supplementation upscaled EO production in Cu-stressed plants with more pronounced effects received in the case of Aerosil 200F over Aerosil 300. We concluded that the nano form (Aerosil 200F) of SiO2 proved to be the best in improving the Cu-stress tolerance in plants.
Collapse
Affiliation(s)
- Umra Aqeel
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Rukhsar Parwez
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India.
| |
Collapse
|
25
|
Bhattacharya S, Gupta S, Saha J. Nanoparticles regulate redox metabolism in plants during abiotic stress within hormetic boundaries. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:850-869. [PMID: 37757867 DOI: 10.1071/fp23068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Abiotic stress management remains under scrutiny because of the unpredictable nature of climate, which undergoes abrupt alterations. Population pressure, loss of cultivable lands, environmental pollution and other anthropogenic disturbances add to the problem and grossly hinder ongoing management strategies. This has driven increasing effort to find better performing, eco-friendly and reliable alternatives that can contribute to sustainable agricultural practices to manage abiotic stress. Nanotechnology and its implementation in agriculture have emerged as a promising option to cater to the problem of abiotic stress. Induction of reactive oxygen species (ROS) is an inevitable phenomenon linked to stress. Nanoparticles (NPs) perform dual actions in regulating ROS biology. The bidirectional roles of NPs in modulating ROS generation and/or ROS detoxification is tightly coupled within the hormetic boundaries. Nonetheless, how these NPs control the ROS metabolism within hormetic limits demands extensive investigation. This review focuses on the details of ROS metabolism under normal versus stressed conditions. It shall elaborate on the types, modes and process of uptake and translocation of NPs. The molecular dissection of the role of NPs in controlling transcriptomic expressions and modulating molecular crosstalks with other growth regulators, ions, reactive nitrogen species and other signalling molecules shall also be detailed. Throughout, this review aims to summarise the potential roles and regulation of NPs and consider how they can be used for green synthesis within a sustainable agricultural industry.
Collapse
Affiliation(s)
- Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, India
| | - Sumanti Gupta
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| | - Jayita Saha
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| |
Collapse
|
26
|
Ahmed T, Noman M, Qi Y, Xu S, Yao Y, Masood HA, Manzoor N, Rizwan M, Li B, Qi X. Dynamic crosstalk between silicon nanomaterials and potentially toxic trace elements in plant-soil systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115422. [PMID: 37660529 DOI: 10.1016/j.ecoenv.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Agricultural soil pollution with potentially toxic trace elements (PTEs) has emerged as a significant environmental concern, jeopardizing food safety and human health. Although, conventional remediation approaches have been used for PTEs-contaminated soils treatment; however, these techniques are toxic, expensive, harmful to human health, and can lead to environmental contamination. Nano-enabled agriculture has gained significant attention as a sustainable approach to improve crop production and food security. Silicon nanomaterials (SiNMs) have emerged as a promising alternative for PTEs-contaminated soils remediation. SiNMs have unique characteristics, such as higher chemical reactivity, higher stability, greater surface area to volume ratio and smaller size that make them effective in removing PTEs from the environment. The review discusses the recent advancements and developments in SiNMs for the sustainable remediation of PTEs in agricultural soils. The article covers various synthesis methods, characterization techniques, and the potential mechanisms of SiNMs to alleviate PTEs toxicity in plant-soil systems. Additionally, we highlight the potential benefits and limitations of SiNMs and discusses future directions for research and development. Overall, the use of SiNMs for PTEs remediation offers a sustainable platform for the protection of agricultural soils and the environment.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China
| | | | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.
| | | |
Collapse
|
27
|
Sahito ZA, Zehra A, Yu S, Chen S, He Z, Yang X. Chinese sapindaceous tree species (Sapindus mukorosii) exhibits lead tolerance and long-term phytoremediation potential for moderately contaminated soils. CHEMOSPHERE 2023; 338:139376. [PMID: 37437621 DOI: 10.1016/j.chemosphere.2023.139376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Heavy metal pollution in metropolitan soils poses significant risks to human health and the entire ecosystem. Effective mitigation strategies and technologies are crucial for addressing these environmental issues. Fast-growing trees are an essential part of phytoremediation projects all over the world and provide long-term ecological benefits to mankind. This study assessed the lead tolerance and phytoremediation potential of a fast-growing soapberry tree species (Sapindus mukorossi) in moderately contaminated soil. Two independent experiments were conducted to assess its tolerance at (i) germination level and (ii) prolonged growth stage. In the germination experiments, seeds were exposed to lead (II) nitrate Pb (NO₃)₂ at various concentrations (0, 5, 10, 20, 50, 100, 200, 300, 400 and 500 μM) for 120 days. Results showed significant differences in germination time, germination index, seedling vigor index, energy of germination, final germination, germination inhibition, seedling height and root/shoot weight compared to the control experiments. In the prolonged growth experiments, seedlings were grown for six months in soils amended/spiked with different Pb concentrations (T0 = 0, T1 = 20, T2 = 50, T3 = 100, T4 = 150 and T5 = 200 mg kg-1 soil) and their biomass was determined. The highest biomass achieved in six months (T0: 12.62 g plant-1), followed by (T1: 12.33 g plant-1), (T2: 12.42 g plant-1), (T3: 11.86 g plant-1), (T4: 10.86 g plant-1) and (T5: 10.06 g plant-1) respectively. S. mukorossi showed no visible signs of Pb toxicity over a six-month period. During six months of exposure, the total Pb content in S. mucrossi tissues were classified as roots > leaves > stems. The highest cumulative absorption of Pb occurred between the fourth and fifth months of exposure. Maximum transfer factor (TF) was detected during the fourth month ranging from 0.888 to 1.012 for the different Pb concentrations. Furthermore, the growth behavior, lead accumulation, bioconcentration factors (BCF) and tolerance index (TI) indicated that S. mucrossi may tolerate moderate Pb concentrations for longer periods. These findings suggest that S. mukorossi may be deployed for long-term phytoremediation coupled with urban forest applications in the future.
Collapse
Affiliation(s)
- Zulfiqar Ali Sahito
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Afsheen Zehra
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Song Yu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shaoning Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech, University, Hangzhou, 310018, China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida, 34945, United States
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
28
|
Yadav M, George N, Dwibedi V. Emergence of toxic trace elements in plant environment: Insights into potential of silica nanoparticles for mitigation of metal toxicity in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122112. [PMID: 37392865 DOI: 10.1016/j.envpol.2023.122112] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/31/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Emergence of trace elements at potentially toxic concentrations in the environment has become a global issue in recent times. Owing to the rapid population growth, unregulated industrialisation, intensive farming practices and excessive mining activities, these elements are accumulating in environment at high toxic concentrations. The exposure of plants to metal-contaminated environments severely influences their reproductive and vegetative growth, eventually affecting crop performance and production. Hence, it is crucial to find alternatives to mitigate the stress caused by toxic elements, in plants of agricultural importance. In this context, silicon (Si) has been widely recognized to alleviate metal toxicity and promote plant growth during various stress conditions. Amending soil with silicates has shown to ameliorate the lethal effects of metals and stimulates crop development. However, in comparison to silicon in bulk form, nano-sized silica particles (SiNPs) have been demonstrated to be more efficient in their beneficial roles. SiNPs can be used for various technological applications, viz. Improving soil fertility, agricultural yield, and remediating heavy metal-polluted soil. The research outcomes of studies focussing on role of silica nanoparticles to specifically mitigate the metal toxicity in plants have not been reviewed earlier in depth. The aim of this review is to explore the potential of SiNPs in alleviating metal stress and improving plant growth. The benefits of nano-silica over bulk-Si fertilizers in farming, their performance in diverse plant varieties, and the possible mechanisms to mitigate metal toxicity in plants have been discussed in detail. Further, research gaps are identified and future prospects are envisioned for advanced investigations in this field. The growing interest towards nano-silica related research will facilitate exploration of the true prospective of these nanoparticles for mitigation of metal stress in crops and in other fields of agriculture as well.
Collapse
Affiliation(s)
- Mohini Yadav
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Nancy George
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India; Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
29
|
Liang F, Shi Z, Wei S, Yan S. Biogas slurry purification-lettuce growth nexus: Nutrients absorption and pollutants removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164383. [PMID: 37216991 DOI: 10.1016/j.scitotenv.2023.164383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
As a main by-product of anaerobic digestion in biogas plants, biogas slurry contains a high concentration of mineral elements (such as ammonia‑nitrogen and potassium) and chemical oxygen demand (COD). So determining how to dispose the biogas slurry in a harmless and value-added ways is crucial from the perspective of ecological and environmental protections. This study explored a novel nexus between biogas slurry and lettuce, in which the biogas slurry was concentrated and saturated with carbon dioxide (CO2) to serve as a hydroponic solution for lettuce growth. Meanwhile, the lettuce was used to purify the biogas slurry through removing pollutants. Results showed that when concentrating the biogas slurry, the total nitrogen and ammonia nitrogen contents in the biogas slurry decreased with the increase of concentration factor. The CO2-rich 5-time-concentrated biogas slurry (CR-5CBS) was screened as the most suitable hydroponic solution for lettuce growth after comprehensively considering the nutrient element balance, energy consumption of concentrating the biogas slurry and CO2 absorption performance. The quality of lettuce cultivated in CR-5CBS was comparable to that of the Hoagland-Arnon nutrient solution in terms of physiological toxicity, nutritional quality, and mineral uptake. Obviously, the hydroponic lettuce could effectively utilize the nutrients in CR-5CBS to purify CR-5CBS, meeting the standard of reclaimed water quality for agricultural reuse. Interestingly, when the same yield of lettuce is targeted, using CR-5CBS as the hydroponic solution to cultivate lettuce can save about US $151/m3-CR-5CBS for lettuce production compared to the Hoagland-Arnon nutrient solution. This study might provide a feasible method for high-value utilization and harmless disposal of biogas slurry.
Collapse
Affiliation(s)
- Feihong Liang
- Technology & Equipment Center for Carbon Neutrality in Agriculture, College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China; College of Life Science, Yulin University, Yilin 719000, PR China
| | - Zhan Shi
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro, PD 350207, Italy
| | - Shihui Wei
- Technology & Equipment Center for Carbon Neutrality in Agriculture, College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuiping Yan
- Technology & Equipment Center for Carbon Neutrality in Agriculture, College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
30
|
Abdi MJ, Ghanbari Jahromi M, Mortazavi SN, Kalateh Jari S, Nazarideljou MJ. Foliar-applied silicon and selenium nanoparticles modulated salinity stress through modifying yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100513-100525. [PMID: 37632614 DOI: 10.1007/s11356-023-29450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Soil salinity is a major environmental problem owing to its negative impact on agricultural productivity and sustainability. Nanoparticles (NPs) have recently been highlighted for their ability to alleviate salinity stress. The current study aimed to alleviate salt stress by using silicon (Si) and selenium (Se) NPs on the growth and physiological attributes of Physalis alkekengi L. Plants were irrigated with saline water at 50, 100, and 200 mM NaCl, and Si NPs (200 mg L-1) and Se NPs (50 mg L-1) were sprayed on leaves three times in a pot experiment in 2022. Leaf chlorophyll (Chl) content, antioxidant capacity, and fatty acid (FA) profile of fruits were measured to find the effects of NPs and salinity in the plants. Salinity at 50 mM did not significantly differ from the control, but at 100-200 mM, salt stress had a substantial impact on the majority of traits. Compared with non-saline conditions, 200 mM NaCl led to decreases in shoot weight (40%), fruit weight (30%), Chl a (30%), Chl b (39%), anthocyanin (31%), ascorbic acid (16%), total phenolic content (TPC, 11%) but increases in total soluble solids (TSS, 79%), titration acidity (TA, 17%), and TSS/TA (52%) in plants without spraying the NPs. However, Si and Se NPs modulated salinity stress by increasing shoot and fruit weight, Chl content, anthocyanin, and TPC, and with decreasing TSS and TSS/TA. Salinity elevated polyunsaturated fatty acids (PUFAs) and lowered monounsaturated fatty acids (MUFAs). According to multivariate analysis, 50 mM and control were found to be in the same cluster, whereas 100 and 200 mM were shown to be in different clusters. Foliar application of Si and Se NPs at 200 and 50 mg L-1, respectively, can be recommended for mitigating salt stress at 100-200 mM NaCl in P. alkekengi L. Plants. Farmers can use the findings to increase the ability of Si and Se NPs to protect plants against salt.
Collapse
Affiliation(s)
- Mohammad Javad Abdi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sepideh Kalateh Jari
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
31
|
Liu S, Zhang L, Luo N, Wang M, Tang C, Jing J, Chen H, Hu Q, Tan L, Ma X, Zou Y. Metal mixture exposure and the risk for immunoglobulin A nephropathy: Evidence from weighted quantile sum regression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87783-87792. [PMID: 37434053 DOI: 10.1007/s11356-023-28706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common type of glomerulonephritis in adults worldwide. Environmental metal exposure has been reported to be involved in the pathogenic mechanisms of kidney diseases, yet no further epidemiological study has been conducted to assess the effects of metal mixture exposure on IgAN risk. In this study, we conducted a matched case‒control design with three controls for each patient to investigate the association between metal mixture exposure and IgAN risk. A total of 160 IgAN patients and 480 healthy controls were matched for age and sex. Plasma levels of arsenic, lead, chromium, manganese, cobalt, copper, zinc, and vanadium were measured using inductively coupled plasma mass spectrometry. We used a conditional logistic regression model to assess the association between individual metals and IgAN risk, and a weighted quantile sum (WQS) regression model to analyze the effects of metal mixtures on IgAN risk. Restricted cubic splines were used to evaluate overall associations between plasma metal concentrations and estimated glomerular filtration rate (eGFR) levels. We observed that except for Cu, all the metals analyzed were nonlinearly associated with decreased eGFR, and higher concentrations of arsenic and lead were associated with elevated IgAN risk in both single-metal [3.29 (1.94, 5.57), 6.10 (3.39, 11.0), respectively] and multiple-metal [3.04 (1.66, 5.57), 4.70 (2.47, 8.97), respectively] models. Elevated manganese [1.76 (1.09, 2.83)] levels were associated with increased IgAN risk in the single-metal model. Copper was inversely related to IgAN risk in both single-metal [0.392 (0.238, 0.645)] and multiple-metal [0.357 (0.200, 0.638)] models. The WQS indices in both positive [2.04 (1.68, 2.47)] and negative [0.717 (0.603, 0.852)] directions were associated with IgAN risk. Lead, arsenic, and vanadium contributed significant weights (0.594, 0.195, and 0.191, respectively) in the positive direction; copper, cobalt, and chromium carried significant weights (0.538, 0.253, and 0.209, respectively). In conclusion, metal exposure was related to IgAN risk. Lead, arsenic, and copper were all significantly weighted factors of IgAN development, which may require further investigation.
Collapse
Affiliation(s)
- Shaohui Liu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Li'e Zhang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Na Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
- Department of Clinical Nutriology, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, China
| | - Mingjun Wang
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Chuanqiao Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jiajun Jing
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Hao Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Qiuhua Hu
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Lina Tan
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaoli Ma
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
32
|
Santibáñez A, Jiménez-Ferrer E, Angulo-Bejarano PI, Sharma A, Herrera-Ruiz M. Coriandrum sativum and Its Utility in Psychiatric Disorders. Molecules 2023; 28:5314. [PMID: 37513187 PMCID: PMC10385770 DOI: 10.3390/molecules28145314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The negative impact on worldwide social well-being by the increasing rate of psychiatric diseases has led to a continuous new drug search. Even though the current therapeutic options exert their activity on multiple neurological targets, these have various adverse effects, causing treatment abandonment. Recent research has shown that Coriandrum sativum offers a rich source of metabolites, mainly terpenes and flavonoids, as useful agents against central nervous system disorders, with remarkable in vitro and in vivo activities on models related to these pathologies. Furthermore, studies have revealed that some compounds exhibit a chemical interaction with γ-aminobutyric acid, 5-hydroxytryptamine, and N-methyl-D-aspartate receptors, which are key components in the pathophysiology associated with psychiatric and neurological diseases. The current clinical evaluations of standardized extracts of C. sativum are scarce; however, one or more of its compounds represents an area of opportunity to test the efficacy of the plant as an anxiolytic, antidepressant, antiepileptic, or sleep enhancer. For this, the aim of the review was based on the pharmacological activities offered by the compounds identified and isolated from coriander and the processes involved in achieving their effect. In addition, lines of technological research, like molecular docking and nanoparticles, are proposed for the future development of phytomedicines, based on the bioactive molecules of C. sativum, for the treatment of psychiatric and neurological disorders addressed in the present study.
Collapse
Affiliation(s)
- Anislada Santibáñez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| | - Paola Isabel Angulo-Bejarano
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Ashutosh Sharma
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| |
Collapse
|
33
|
Ali A, Saeed S, Hussain R, Afzal G, Siddique AB, Parveen G, Hasan M, Caprioli G. Synthesis and Characterization of Silica, Silver-Silica, and Zinc Oxide-Silica Nanoparticles for Evaluation of Blood Biochemistry, Oxidative Stress, and Hepatotoxicity in Albino Rats. ACS OMEGA 2023; 8:20900-20911. [PMID: 37332821 PMCID: PMC10269246 DOI: 10.1021/acsomega.3c01674] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Evaluation of nanoparticles (NPs) for biomedical applications has received a lot of attention for detailed study on pharmacokinetics prior to clinical application. In this study, pure C-SiO2 (crystalline silica) NPs and SiO2 nanocomposites with silver (Ag) and zinc oxide (ZnO) were prepared by utilizing different synthesis routes such as sol-gel and co-precipitation techniques. The prepared NPs showed highly crystalline nature as confirmed by X-ray diffraction analysis where average crystallite sizes of 35, 16, and 57 nm for C-SiO2, Ag-SiO2, and ZnO-SiO2 NPs, respectively, were calculated. Fourier transform infrared analysis confirmed the presence of functional groups related to the chemicals and procedures used for sample preparation. Due to agglomeration of the prepared NPs, the scanning electron microscope images showed large particle sizes when compared to their crystalline sizes. The optical properties of the prepared NPs such as absorption were obtained with UV-Vis spectroscopy. For in vivo biological evaluation, albino rats, both male and female, kept in different groups were exposed to NPs with 500 μg/kg dose. Hematological, serum biochemistry, histo-architecture, oxidative stress biomarkers, and antioxidant parameters in liver tissues along with various biomarkers for the evaluation of erythrocytes were estimated. The results on hemato-biochemistry, histopathological ailments, and oxidative stress parameters exhibited 95% alteration in the liver and erythrocytes of C-SiO2 NPs-treated rats while 75 and 60% alteration in the liver tissues of rats due to exposure to Ag-SiO2 and ZnO-SiO2 NPs, respectively, when compared with the albino rats of the control (untreated) group. Therefore, the current study showed that the prepared NPs had adverse effects on the liver and erythrocytes causing hepatotoxicity in the albino rats in respective order C-SiO2 > Ag SiO2 > ZnO-SiO2. As the C-SiO2 NPs appeared to be the most toxic, it has been concluded that coating SiO2 on Ag and ZnO reduced their toxicological impact on albino rats. Consequently, it is suggested that Ag-SiO2 and ZnO-SiO2 NPs are more biocompatible than C-SiO2 NPs.
Collapse
Affiliation(s)
- Arooj Ali
- Institute
of Physics, Faculty of Physical & Mathematical Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Saba Saeed
- Institute
of Physics, Faculty of Physical & Mathematical Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Riaz Hussain
- Department
of Pathology, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Gulnaz Afzal
- Department
of Zoology, Faculty of Chemical & Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Abu Baker Siddique
- Department
of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab 38000, Pakistan
| | - Gulnaz Parveen
- Department
of Botany, Faculty of Science, Women University
Swabi, Swabi, Khyber Pakhtunkhwa 23430, Pakistan
| | - Murtaza Hasan
- Department
of Biotechnology, Faculty of Chemical & Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
- College
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
| | - Giovanni Caprioli
- Chemistry
Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino 62032, Italy
| |
Collapse
|
34
|
Mahawar L, Ramasamy KP, Suhel M, Prasad SM, Živčák M, Brestic M, Rastogi A, Skalicky M. Silicon nanoparticles: Comprehensive review on biogenic synthesis and applications in agriculture. ENVIRONMENTAL RESEARCH 2023:116292. [PMID: 37276972 DOI: 10.1016/j.envres.2023.116292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Recent advancements in nanotechnology have opened new advances in agriculture. Among other nanoparticles, silicon nanoparticles (SiNPs), due to their unique physiological characteristics and structural properties, offer a significant advantage as nanofertilizers, nanopesticides, nanozeolite and targeted delivery systems in agriculture. Silicon nanoparticles are well known to improve plant growth under normal and stressful environments. Nanosilicon has been reported to enhance plant stress tolerance against various environmental stress and is considered a non-toxic and proficient alternative to control plant diseases. However, a few studies depicted the phytotoxic effects of SiNPs on specific plants. Therefore, there is a need for comprehensive research, mainly on the interaction mechanism between NPs and host plants to unravel the hidden facts about silicon nanoparticles in agriculture. The present review illustrates the potential role of silicon nanoparticles in improving plant resistance to combat different environmental (abiotic and biotic) stresses and the underlying mechanisms involved. Furthermore, our review focuses on providing the overview of various methods exploited in the biogenic synthesis of silicon nanoparticles. However, certain limitations exist in synthesizing the well-characterized SiNPs on a laboratory scale. To bridge this gap, in the last section of the review, we discussed the possible use of the machine learning approach in future as an effective, less labour-intensive and time-consuming method for silicon nanoparticle synthesis. The existing research gaps from our perspective and future research directions for utilizing SiNPs in sustainable agriculture development have also been highlighted.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | | | - Mohammad Suhel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Marek Živčák
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
35
|
Bakhtiari M, Raeisi Sadati F, Raeisi Sadati SY. Foliar application of silicon, selenium, and zinc nanoparticles can modulate lead and cadmium toxicity in sage (Salvia officinalis L.) plants by optimizing growth and biochemical status. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54223-54233. [PMID: 36872405 DOI: 10.1007/s11356-023-25959-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Different techniques have been used to alleviate metal toxicity in medicinal plants; accordingly, nanoparticles (NPs) have a noticeable interest in modulating oxidative stresses. Therefore, this work aimed to compare the impacts of silicon (Si), selenium (Se), and zinc (Zn) NPs on the growth, physiological status, and essential oil (EO) of sage (Salvia officinalis L.) treated with foliar application of Si, Se, and Zn NPs upon lead (Pb) and cadmium (Cd) stresses. The results showed that Se, Si, and Zn NPs decreased Pb accumulation by 35, 43, and 40%, and Cd concentration by 29, 39, and 36% in sage leaves. Shoot plant weight showed a noticeable reduction upon Cd (41%) and Pb (35%) stress; however, NPs, particularly Si and Zn improved plant weight under metal toxicity. Metal toxicity diminished relative water content (RWC) and chlorophyll, whereas NPs significantly enhanced these variables. The noticeable raises in malondialdehyde (MDA) and electrolyte leakage (EL) were observed in plants exposed to metal toxicity; however, they were alleviated with foliar application of NPs. The EO content and EO yield of sage plants decreased by the heavy metals but increased by the NPs. Accordingly, Se, Si, and Zn NPS elevated EO yield by 36, 37, and 43%, respectively, compared with non-NPs. The primary EO constituents were 1,8-cineole (9.42-13.41%), α-thujone (27.40-38.73%), β-thujone (10.11-12.94%), and camphor (11.31-16.45%). This study suggests that NPs, particularly Si and Zn, boosted plant growth by modulating Pb and Cd toxicity, which could be advantageous for cultivating this plant in areas with heavy metal-polluted soils.
Collapse
Affiliation(s)
- Mitra Bakhtiari
- Department of Agronomy, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Fereshteh Raeisi Sadati
- Department of Landscape Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyede Yalda Raeisi Sadati
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
36
|
Ogunkunle CO, Balogun GY, Olatunji OA, Han Z, Adeleye AS, Awe AA, Fatoba PO. Foliar application of nanoceria attenuated cadmium stress in okra (Abelmoschus esculentus L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130567. [PMID: 37055974 DOI: 10.1016/j.jhazmat.2022.130567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Foliar application of nanoparticles (NPs) as a means for ameliorating abiotic stress is increasingly employed in crop production. In this study, the potential of CeO2-NPs as stress suppressants for cadmium (Cd)-stressed okra (Abelmoschus esculentus) plants was investigated, using two cycles of foliar application of CeO2-NPs at 200, 400, and 600 mg/l. Compared to untreated stressed plants, Cd-stressed plants treated with CeO2-NPs presented higher pigments (chlorophyll a and carotenoids). In contrast, foliar applications did not alter Cd root uptake and leaf bioaccumulation. Foliar CeO2-NPs application modulated stress enzymes (APX, SOD, and GPx) in both roots and leaves of Cd-stressed plants, and led to decreases in Cd toxicity in plant's tissues. In addition, foliar application of CeO2-NPs in Cd-stressed okra plants decreased fruit Cd contents, and improved fruit mineral elements and bioactive compounds. The infrared spectroscopic analysis of fruit tissues showed that foliar-applied CeO2-NPs treatments did not induce chemical changes but induced conformational changes in fruit macromolecules. Additionally, CeO2-NPs applications did not alter the eating quality indicator (Mg/K ratio) of okra fruits. Conclusively, the present study demonstrated that foliar application of CeO2-NPs has the potential to ameliorate Cd toxicity in tissues and improve fruits of okra plants.
Collapse
Affiliation(s)
- C O Ogunkunle
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria.
| | - G Y Balogun
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| | - O A Olatunji
- Department of Plant Biology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Z Han
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697-2175 CA, USA
| | - A S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697-2175 CA, USA
| | - A A Awe
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - P O Fatoba
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
37
|
Mukarram M, Khan MMA, Kurjak D, Lux A, Corpas FJ. Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass ( Cymbopogon flexuosus) under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1116769. [PMID: 36875580 PMCID: PMC9981966 DOI: 10.3389/fpls.2023.1116769] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Lemongrass (Cymbopogon flexuosus) has great relevance considering the substantial commercial potential of its essential oil. Nevertheless, the increasing soil salinity poses an imminent threat to lemongrass cultivation given its moderate salt-sensitivity. For this, we used silicon nanoparticles (SiNPs) to stimulate salt tolerance in lemongrass considering SiNPs special relevance to stress settings. Five foliar sprays of SiNPs 150 mg L-1 were applied weekly to NaCl 160 and 240 mM-stressed plants. The data indicated that SiNPs minimised oxidative stress markers (lipid peroxidation, H2O2 content) while triggering a general activation of growth, photosynthetic performance, enzymatic antioxidant system including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and osmolyte proline (PRO). SiNPs amplified stomatal conductance and photosynthetic CO2 assimilation rate by about 24% and 21% in NaCl 160 mM-stressed plants. Associated benefits contributed to pronounced plant phenotype over their stressed counterparts, as we found. Foliar SiNPs sprays assuaged plant height by 30% and 64%, dry weight by 31% and 59%, and leaf area by 31% and 50% under NaCl 160 and 240 mM concentrations, respectively. SiNPs relieved enzymatic antioxidants (SOD, CAT, POD) and osmolyte (PRO) in lemongrass plants stressed with NaCl 160 mM (9%, 11%, 9%, and 12%, respectively) and NaCl 240 mM (13%, 18%, 15%, and 23%, respectively). The same treatment supported the oil biosynthesis improving essential oil content by 22% and 44% during 160 and 240 mM salt stress, respectively. We found SiNPs can completely overcome NaCl 160 mM stress while significantly palliating NaCl 240 mM stress. Thus, we propose that SiNPs can be a useful biotechnological tool to palliate salinity stress in lemongrass and related crops.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Francisco J. Corpas
- Department of Stress, Development and Signaling in Plants, Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
38
|
Chen S, Zhao CB, Ren RM, Jiang JH. Salicylic acid had the potential to enhance tolerance in horticultural crops against abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1141918. [PMID: 36875563 PMCID: PMC9978390 DOI: 10.3389/fpls.2023.1141918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Horticultural crops are greatly disturbed by severe abiotic stress conditions. This is considered one of the major threats to the healthy lives of the human population. Salicylic acid (SA) is famous as one of the multifunctional phytohormones that are widely found in plants. It is also an important bio-stimulator involved in the regulation of growth and the developmental stages of horticultural crops. The productivity of horticultural crops has been improved with the supplemental use of even small amounts of SA. It has good capability to reduce oxidative injuries that occur from the over-production of reactive oxygen species (ROS), potentially elevated photosynthesis, chlorophyll pigments, and stomatal regulation. Physiological and biochemical processes have revealed that SA enhances signaling molecules, enzymatic and non-enzymatic antioxidants, osmolytes, and secondary metabolites activities within the cell compartments of plants. Numerous genomic approaches have also explored that SA regulates transcriptions profiling, transcriptional apprehensions, genomic expression, and metabolism of stress-related genes. Many plant biologists have been working on SA and its functioning in plants; however, its involvement in the enhancement of tolerance against abiotic stress in horticultural crops is still unidentified and needs more attention. Therefore, the current review is focused on a detailed exploration of SA in physiological and biochemical processes in horticultural crops subjected to abiotic stress. The current information is comprehensive and aims to be more supportive of the development of higher-yielding germplasm against abiotic stress.
Collapse
|
39
|
Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, Aldaej MI, Rezk AAS, Shehata WF, Almaghasla MI. The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:292. [PMID: 36679005 PMCID: PMC9865530 DOI: 10.3390/plants12020292] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 05/22/2023]
Abstract
In recent years, the global agricultural system has been unfavorably impacted by adverse environmental changes. These changes in the climate, in turn, have altered the abiotic conditions of plants, affecting plant growth, physiology and production. Abiotic stress in plants is one of the main obstacles to global agricultural production and food security. Therefore, there is a need for the development of novel approaches to overcome these problems and achieve sustainability. Nanotechnology has emerged as one such novel approach to improve crop production, through the utilization of nanoscale products, such as nanofertilizer, nanofungicides, nanoherbicides and nanopesticides. Their ability to cross cellular barriers makes nanoparticles suitable for their application in agriculture. Since they are easily soluble, smaller, and effective for uptake by plants, nanoparticles are widely used as a modern agricultural tool. The implementation of nanoparticles has been found to be effective in improving the qualitative and quantitative aspects of crop production under various biotic and abiotic stress conditions. This review discusses various abiotic stresses to which plants are susceptible and highlights the importance of the application of nanoparticles in combating abiotic stress, in addition to the major physiological, biochemical and molecular-induced changes that can help plants tolerate stress conditions. It also addresses the potential environmental and health impacts as a result of the extensive use of nanoparticles.
Collapse
Affiliation(s)
- Jameel Mohammed Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ramakrishnan Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Rutwick Surya Ulhas
- Faculty of Biological Sciences, Institute of Biochemistry and Biophysics, Friedrich-Schiller-Universität, Furstengraben 1, 07743 Jena, Germany
| | - Wudali N. Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Mohammed Ibrahim Aldaej
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Virus & Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 3725005, Egypt
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
40
|
Bai H, Ni X, Han J, Luo D, Hu Y, Jin C, Li Z. Phytochemical profiling and allelopathic effect of garlic essential oil on barnyard grass (Echinochloa crusgalli L.). PLoS One 2023; 18:e0272842. [PMID: 37098009 PMCID: PMC10128991 DOI: 10.1371/journal.pone.0272842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/08/2022] [Indexed: 04/26/2023] Open
Abstract
In agriculture, barnyard grass (Echinochloa crusgalli L.) is one of the most harmful weeds in rice fields now. In order to identify active ingredients which had inhibiting effect on barnyard grass (Echinochloa crusgalli L.), we evaluated several possible natural plant essential oils. Essential oils from twelve plant species showed inhibitory activity against barnyard grass seedlings and root length. The garlic essential oil (GEO) had the most significant allelopathic effect (EC50 = 0.0126 g mL-1). Additionally, the enzyme activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) increased during the first 8 hours of treatment at a concentration of 0.1 g mL-1 and then declined. The activities of CAT, SOD and POD increased by 121%, 137% and 110% (0-8h, compared to control), and decreased (8-72h, compared to the maximum value) by 100%, 185% and 183%, respectively. The total chlorophyll content of barnyard grass seedlings decreased by 51% (0-72h) continuously with the same dosage treatment. Twenty constituents of GEO were identified by gas chromatography-mass spectrometry, and the herbicidal activity of two main components (diallyl sulfide and diallyl disulfide) was evaluated. Results showed that both components had herbicidal activity against barnyard grass. GEO had a strong inhibitory effect (~88.34% inhibition) on barnyard grass growth, but safety studies on rice showed it did not have much inhibitory effect on rice seed germination. Allelopathy of GEO provide ideas for the development of new plant-derived herbicides.
Collapse
Affiliation(s)
- Haodong Bai
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Xianzhi Ni
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Jincai Han
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
| | - Dingfeng Luo
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
| | - Yihong Hu
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Chenzhong Jin
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Zuren Li
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|
41
|
Chamekh A, Kharbech O, Fersi C, Driss Limam R, Brandt KK, Djebali W, Chouari R. Insights on strain 115 plant growth-promoting bacteria traits and its contribution in lead stress alleviation in pea (Pisum sativum L.) plants. Arch Microbiol 2022; 205:1. [PMID: 36436136 DOI: 10.1007/s00203-022-03341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/20/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
The present study aims to characterize the plant growth-promoting bacterial traits of Bacillus simplex (strain 115). This bacterium was inoculated in hydroponically conditions to improve pea (Pisum sativum L.) growth submitted to lead (Pb) toxicity. Root nodulation system was developed enough in 23-day-old plants attesting the interaction between the two organisms. In addition to its phosphate solubilization and siderophore production traits that reached 303.8 μg P mL-1 and 49.6 psu respectively, the Bacillus strain 115 exhibited Pb bio-sorption ability. Inoculation of Pb-stressed pea with strain 115 showed roots and shoots biomass recovery (+ 70% and + 61%, respectively). Similarly, water and protein contents were increased in Pb-treated plants after bacterial inoculation. In the presence of strain 115, Pb relative toxicity level decreased (- 39.3% compared to Pb stress only). Moreover, catalase and superoxide dismutase activities were upregulated in Pb-exposed plants (+ 56% and + 51%, respectively). After inoculation with strain 115, catalase and superoxide dismutase activities were restored by - 38% and - 44% respectively. Simultaneously, oxidant stress indicator (H2O2 and 4-hydroxynonenal) and osmo-regulators (proline and glycine-betaine) contents as well as lipoxygenase activity decreased significantly in Pb-treated plants after Bacillus strain's inoculation. Taken together, the results give some evidences for the plant growth-promoting capacity of strain 115 in helping alleviation of Pb stress.
Collapse
Affiliation(s)
- Anissa Chamekh
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Oussama Kharbech
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia
| | - Cheima Fersi
- National Institute for Research and Physico-Chemical Analyses, 2020, Sidi Thabet, Tunisia
| | - Rim Driss Limam
- National Center for Nuclear Sciences and Technologies, 2020, Sidi Thabet, Tunisia
| | - Kristian Koefed Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Wahbi Djebali
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia
| | - Rakia Chouari
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia.
| |
Collapse
|
42
|
Khalid MF, Iqbal Khan R, Jawaid MZ, Shafqat W, Hussain S, Ahmed T, Rizwan M, Ercisli S, Pop OL, Alina Marc R. Nanoparticles: The Plant Saviour under Abiotic Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213915. [PMID: 36364690 PMCID: PMC9658632 DOI: 10.3390/nano12213915] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 05/15/2023]
Abstract
Climate change significantly affects plant growth and productivity by causing different biotic and abiotic stresses to plants. Among the different abiotic stresses, at the top of the list are salinity, drought, temperature extremes, heavy metals and nutrient imbalances, which contribute to large yield losses of crops in various parts of the world, thereby leading to food insecurity issues. In the quest to improve plants' abiotic stress tolerance, many promising techniques are being investigated. These include the use of nanoparticles, which have been shown to have a positive effect on plant performance under stress conditions. Nanoparticles can be used to deliver nutrients to plants, overcome plant diseases and pathogens, and sense and monitor trace elements that are present in soil by absorbing their signals. A better understanding of the mechanisms of nanoparticles that assist plants to cope with abiotic stresses will help towards the development of more long-term strategies against these stresses. However, the intensity of the challenge also warrants more immediate approaches to mitigate these stresses and enhance crop production in the short term. Therefore, this review provides an update of the responses (physiological, biochemical and molecular) of plants affected by nanoparticles under abiotic stress, and potentially effective strategies to enhance production. Taking into consideration all aspects, this review is intended to help researchers from different fields, such as plant science and nanoscience, to better understand possible innovative approaches to deal with abiotic stresses in agriculture.
Collapse
Affiliation(s)
- Muhammad Fasih Khalid
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
- Southwest Florida Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Science, University of Florida, Immokalee, FL 34142, USA
| | - Rashid Iqbal Khan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | | | - Waqar Shafqat
- Department of Forestry, College of Forest Resources, Mississippi State University, Starkville, MI 39759, USA
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Science & Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Romina Alina Marc
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| |
Collapse
|
43
|
Application of Exogenous Silicon for Alleviating Photosynthetic Inhibition in Tomato Seedlings under Low−Calcium Stress. Int J Mol Sci 2022; 23:ijms232113526. [DOI: 10.3390/ijms232113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
To address the low Ca−induced growth inhibition of tomato plants, the mitigation effect of exogenous Si on tomato seedlings under low−Ca stress was investigated using different application methods. We specifically analyzed the effects of root application or foliar spraying of 1 mM Si on growth conditions, leaf photosynthetic properties, stomatal status, chlorophyll content, chlorophyll fluorescence, ATP activity and content, Calvin cycle−related enzymatic activity, and gene expression in tomato seedlings under low vs. adequate calcium conditions. We found that the low−Ca environment significantly affected (reduced) these parameters, resulting in growth limitation. Surprisingly, the application of 1 mM Si significantly increased plant height, stem diameter, and biomass accumulation, protected photosynthetic pigments, improved gas exchange, promoted ATP production, enhanced the activity of Calvin cycle key enzymes and expression of related genes, and ensured efficient photosynthesis to occur in plants under low−Ca conditions. Interestingly, when the same amount of Si was applied, the beneficial effects of Si were more pronounced under low−Ca conditions that under adequate Ca. We speculate that Si might promote the absorption and transport of calcium in plants. The effects of Si also differed depending on the application method; foliar spraying was better in alleviating photosynthetic inhibition in plants under low−Ca stress, whereas root application of Si significantly promoted root growth and development. Enhancing the photosynthetic capacity by foliar Si application is an effective strategy for ameliorating the growth inhibition of plants under low−Ca stress.
Collapse
|
44
|
Babashpour-Asl M, Farajzadeh-Memari-Tabrizi E, Yousefpour-Dokhanieh A. Foliar-applied selenium nanoparticles alleviate cadmium stress through changes in physio-biochemical status and essential oil profile of coriander (Coriandrum sativum L.) leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80021-80031. [PMID: 35397029 DOI: 10.1007/s11356-022-19941-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Since large areas of agricultural soils around the world are contaminated by Cd, a cost-effective and practical method is needed for the safe production of edible plants. The effective role of many nanomaterials to improve plant yield by mitigating environmental pollutions is addressed; however, the impacts of selenium nanoparticles (Se-NPs) have not been well-known yet. The aim of this work was to investigate foliar application of Se-NPs on yield, water content, proline concentration, phenolic content, lipid peroxidation, and essential oil (EO) attributes of coriander (Coriandrum sativum L.) under Cd stress. The plants were exposed to Cd contamination (0, 4, and 8 mg L-1) and foliar application of Se-NPs (0, 20, 40, and 60 mg L-1). The results showed increased Cd accumulation in roots and shoots of coriander plants upon Cd stress; however, Se-NPs alleviated the uptake of Cd. Cd toxicity, particularly 8 mg L-1, decreased shoot and root weight, chlorophyll (Chl), and relative water content (RWC), while Se-NPs improved these attributes. The Cd concentration at 4 mg L-1 and Se-NPs at 40 or 60 mg L-1 increased phenolic and flavonoid contents as well as EO yield. Proline concentration and malondialdehyde (MDA) increased by enhancing Cd stress, but Se-NPs decreased MDA. The GC/MS analysis showed that the main EO constitutes were n-decanal (18.80-29.70%), 2E-dodecanal (14.23-19.87%), 2E-decanal (12.60-19.40%), and n-nonane (7.23-12.87%), representing different amounts under Cd pollution and Se-NPs. To sum up, Se-NPs at 40-60 mg L-1 are effective in alleviating Cd stress.
Collapse
Affiliation(s)
- Marzieh Babashpour-Asl
- Department of Horticultural Science, Maragheh Branch, Islamic Azad University, Maragheh, Iran.
| | | | | |
Collapse
|
45
|
Mukarram M, Petrik P, Mushtaq Z, Khan MMA, Gulfishan M, Lux A. Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119855. [PMID: 35940485 DOI: 10.1016/j.envpol.2022.119855] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca2+, K+, Na+, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India; Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia.
| | - Peter Petrik
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Zeenat Mushtaq
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Gulfishan
- Glocal School of Agricultural Science, Glocal University, Saharanpur, 247121, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia; Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, Slovakia
| |
Collapse
|
46
|
Dhakate P, Kandhol N, Raturi G, Ray P, Bhardwaj A, Srivastava A, Kaushal L, Singh A, Pandey S, Chauhan DK, Dubey NK, Sharma S, Singh VP, Sahi S, Grillo R, Peralta-Videa J, Deshmukh R, Tripathi DK. Silicon nanoforms in crop improvement and stress management. CHEMOSPHERE 2022; 305:135165. [PMID: 35667508 DOI: 10.1016/j.chemosphere.2022.135165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Although, silicon - the second most abundant element in the earth crust could not supersede carbon (C) in the competition of being the building block of life during evolution, yet its presence has been reported in some life forms. In case of the plants, silicon has been reported widely to promote the plant growth under normal as well as stressful situations. Nanoform of silicon is now being explored for its potential to improve plant productivity and its tolerance against various stresses. Silicon nanoparticles (SiNPs) in the form of nanofertilizers, nanoherbicides, nanopesticides, nanosensors and targeted delivery systems, find great utilization in the field of agriculture. However, the mechanisms underlying their uptake by plants need to be deciphered in detail. Silicon nanoformss are reported to enhance plant growth, majorly by improving photosynthesis rate, elevating nutrient uptake and mitigating reactive oxygen species (ROS)-induced oxidative stress. Various studies have reported their ability to provide tolerance against a range of stresses by upregulating plant defense responses. Moreover, they are proclaimed not to have any detrimental impacts on environment yet. This review includes the up-to-date information in context of the eminent role of silicon nanoforms in crop improvement and stress management, supplemented with suggestions for future research in this field.
Collapse
Affiliation(s)
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Priyanka Ray
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Anupriya Bhardwaj
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Aakriti Srivastava
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Laveena Kaushal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Akanksha Singh
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Sangeeta Pandey
- Plant-Microbe Interaction Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, UP India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology,Allahabad, Prayagraj, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, University of Allahabad, Allahabad-211002, India
| | - Shivendra Sahi
- Department of Biology, Saint Joseph's University, University City Campus, 600 S. 43rd St. Philadelphia, PA 19104, USA
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP, 15385-000, Brazil
| | - Jose Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, USA
| | - Rupesh Deshmukh
- National Institute of Plant Genome Research, New Delhi, India.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
47
|
Mnafgui W, Rizzo V, Muratore G, Hajlaoui H, Elleuch A. Evaluation of Trigonella foenum-graecum L. Plant Food Safety after Lead Exposure: Phytochemical Processes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2526. [PMID: 36235392 PMCID: PMC9573592 DOI: 10.3390/plants11192526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 06/16/2023]
Abstract
Lead stands as a food contaminant through its accumulation in consumed plants. In this study, the effects of lead (II) chloride (PbCl2) and its levels of uptake on morphological and phytochemical responses of fenugreek were assessed to evaluate its tolerance and safety for human consumption. Results revealed that PbCl2 (50−2000 mg L−1) did not affect the germination rate, but it decreased the radicle length and amylase activity. After three months of Pb treatments, the elemental analysis showed that Pb accumulation was greater in roots than shoots, and it was not present in harvested seeds. The bioaccumulation factor > 1 and the translocation factor << 1 observed for 1000 mg L−1 PbCl2 suggested appropriateness of fenugreek as a phytostabilizer. Additionally, increased lipid peroxidation, hydrogen peroxide, flavonoid levels and catalase activity were observed in Pb-treated fenugreek. Meanwhile, decreased chlorophyll content was detected under these conditions. In turn, the total phenol was correlated with Pb treatment only in roots. HPLC analysis proved that under Pb stress, gallic acid was the most produced compound in treated roots compared to shoots, followed by quercetin. Syringic and chlorogenic acids were more produced in shoots. In conclusion, fenugreek can be used for Pb phytoremediation and is safe for consumption after Pb treatments in the traditional medicine system.
Collapse
Affiliation(s)
- Wiem Mnafgui
- Laboratory of Plant Biotechnology, Faculty of Sciences, University of Sfax, Sfax 3000, Tunisia
| | - Valeria Rizzo
- Di3A, Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Giuseppe Muratore
- Di3A, Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Hicham Hajlaoui
- Regional Center for Agricultural Research in Sidi Bouzid, Laboratory of Non-Conventional Water Valuation (INRGREF), University of Carthage, Tunis 9100, Tunisia
| | - Amine Elleuch
- Laboratory of Plant Biotechnology, Faculty of Sciences, University of Sfax, Sfax 3000, Tunisia
| |
Collapse
|
48
|
Chen F, Aqeel M, Maqsood MF, Khalid N, Irshad MK, Ibrahim M, Akhter N, Afzaal M, Ma J, Hashem M, Alamri S, Noman A, Lam SS. Mitigation of lead toxicity in Vigna radiata genotypes by silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119606. [PMID: 35716894 DOI: 10.1016/j.envpol.2022.119606] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/12/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal (HM) contamination of the soil through anthropogenic activities influences the living systems and drastically impacts food chain. This study examined the application of silver nanoparticles (AgNPs) in two genotypes (G1 and G2) of Mung bean (Vigna radiata) for ameliorating the Pb toxicity. Different doses of Pb (0, 25, 50 μM) were differentially tackled by AgNPs with the aim of ameliorating the plant attributes. Both genotypes displayed statistically significant quantitative and qualitative modulations for Pb tolerance. In G2, the most prominent increase in plant height (43.79%), fresh biomass (49.56%) and total chlorophyll (20%) was observed at L2 (AgNPs 10 mg/L) in comparison with the control. Overall, photosynthetic rate was increased by 26% in G2 at L6 (AgNPs 25 mg/L + Pb 25 μM). In addition, the results presented 78.5% increase in water use efficiency of G2 while G1 experienced a maximum internal CO2 concentration (209.8%) at L8 (Pb 50 μM). AgNPs triggered balanced uptake of minerals and improved growth of Vigna genotypes. 50 μM Pb was most hazardous and caused maximum reduction in growth of Vigna plants along with a significant suppression in photosynthetic activity, increase in MDA (199.7%) in G1 and H2O2 (292.8%) in G2. In comparison to control, maximum superoxide dismutase (376%), peroxidase (659.8%) and catalase (9.3%) activity was observed in G2 at L11. The application of AgNPs substantially enhanced plant growth and helped them in surviving well in absence as well as presence of Pb. G2 genotype exhibited substantial tolerance capability and revealed less impairment in the studied attributes than G1 and treatment of AgNPs i.e. 25 mg/L was the best level that yielded best results in both genotypes. The results demonstrate that AgNPs mediate response(s) of plants under Pb stress and particularly contributed to HM tolerance of plants and thus showing great promise for use in phytoremediation.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing, 210098, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | | | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Noreen Akhter
- Department of Botany, Government College Women University, Faisalabad, 38060, Pakistan
| | - Muhammad Afzaal
- School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, 210098, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Mohamed Hashem
- Department of Biology, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Saad Alamri
- Department of Biology, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
49
|
Hlihor RM, Roșca M, Hagiu-Zaleschi L, Simion IM, Daraban GM, Stoleru V. Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health. TOXICS 2022; 10:toxics10090499. [PMID: 36136464 PMCID: PMC9504071 DOI: 10.3390/toxics10090499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/31/2023]
Abstract
Accelerating heavy metal pollution is a hot issue due to a continuous growth in consumerism and increased activities in various global industries. Soil contamination with heavy metals has resulted in their incorporation into the human food web via plant components. Accumulation and amplification of heavy metals in human tissues through the consumption of medicinal plants can have hazardous health outcomes. Therefore, in this critical review we aim to bring together published information on this subject, with a special highlight on the knowledge gaps related to heavy metal stress in medicinal plants, their responses, and human health related risks. In this respect, this review outlines the key contamination sources of heavy metals in plants, as well as the absorption, mobilization and translocation of metal ions in plant compartments, while considering their respective mechanisms of detoxification. In addition, this literature review attempts to highlight how stress and defensive strategies operate in plants, pointing out the main stressors, either biotic or abiotic (e.g., heavy metals), and the role of reactive oxygen species (ROS) in stress answers. Finally, in our research, we further aim to capture the risks caused by heavy metals in medicinal plants to human health through the assessment of both a hazard quotient (HQ) and hazard index (HI).
Collapse
Affiliation(s)
- Raluca Maria Hlihor
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Mihaela Roșca
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Laura Hagiu-Zaleschi
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Isabela Maria Simion
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Gabriel Mihăiță Daraban
- Department of Organic, Biochemical and Food Engineering, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania
| | - Vasile Stoleru
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
50
|
Lyu J, Jin N, Meng X, Jin L, Wang S, Xiao X, Liu Z, Tang Z, Yu J. Exogenous silicon alleviates the adverse effects of cinnamic acid-induced autotoxicity stress on cucumber seedling growth. FRONTIERS IN PLANT SCIENCE 2022; 13:968514. [PMID: 36035700 PMCID: PMC9399776 DOI: 10.3389/fpls.2022.968514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Autotoxicity is a key factor that leads to obstacles in continuous cropping systems. Although Si is known to improve plant resistance to biotic and abiotic stresses, little is known about its role in regulating leaf water status, mineral nutrients, nitrogen metabolism, and root morphology of cucumber under autotoxicity stress. Here, we used cucumber seeds (Cucumis sativus L. cv. "Xinchun No. 4") to evaluate how exogenous Si (1 mmol L-1) affected the leaf water status, mineral nutrient uptake, N metabolism-related enzyme activities, root morphology, and shoot growth of cucumber seedlings under 0.8 mmol L-1 CA-induced autotoxicity stress. We found that CA-induced autotoxicity significantly reduced the relative water content and water potential of leaves and increase their cell sap concentration. CA-induced stress also inhibited the absorption of major (N, P, K, Ca, Mg) and trace elements (Fe, Mn, Zn). However, exogenous Si significantly improved the leaf water status (relative water content and water potential) of cucumber leaves under CA-induced stress. Exogenous Si also promoted the absorption of mineral elements by seedlings under CA-induced stress and alleviated the CA-induced inhibition of N metabolism-related enzyme activities (including nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, glutamate dehydrogenase). Moreover, exogenous Si improved N uptake and utilization, promoted root morphogenesis, and increased the growth indexes of cucumber seedlings under CA-induced stress. Our findings have far-reaching implications for overcoming the obstacles to continuous cropping in cucumber cultivation.
Collapse
Affiliation(s)
- Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shuya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|