1
|
Powell TL, Barentsen K, Vaughan O, Uhlson C, Zemski Berry K, Erickson K, Faer K, Chassen SS, Jansson T. Knockdown of Placental Major Facilitator Superfamily Domain Containing 2a in Pregnant Mice Reduces Fetal Brain Growth and Phospholipid Docosahexaenoic Acid Content. Nutrients 2023; 15:4956. [PMID: 38068814 PMCID: PMC10708493 DOI: 10.3390/nu15234956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Docosahexaenoic acid (DHA) is an n-3 long chain polyunsaturated fatty acid critical for fetal brain development that is transported to the fetus from the mother by the placenta. The lysophosphatidylcholine (LPC) transporter, Major Facilitator Superfamily Domain Containing 2a (MFSD2a), is localized in the basal plasma membrane of the syncytiotrophoblast of the human placenta, and MFSD2a expression correlates with umbilical cord blood LPC-DHA levels in human pregnancy. We hypothesized that placenta-specific knockdown of MFSD2a in pregnant mice reduces phospholipid DHA accumulation in the fetal brain. METHODS Mouse blastocysts (E3.5) were transduced with an EGFP-expressing lentivirus containing either an shRNA targeting MFSD2a or a non-coding sequence (SCR), then transferred to pseudopregnant females. At E18.5, fetuses were weighed and their placenta, brain, liver and plasma were collected. MFSD2a mRNA expression was determined by qPCR in the brain, liver and placenta and phospholipid DHA was quantified by LC-MS/MS. RESULTS MFSD2a-targeting shRNA reduced placental mRNA MFSD2a expression by 38% at E18.5 (n = 45, p < 0.008) compared with SCR controls. MFSD2a expression in the fetal brain and liver were unchanged. Fetal brain weight was reduced by 13% (p = 0.006). Body weight, placenta and liver weights were unaffected. Fetal brain phosphatidyl choline and phosphatidyl ethanolamine DHA content was lower in fetuses with placenta-specific MFSD2a knockdown. CONCLUSIONS Placenta-specific reduction in expression of the LPC-DHA transporter MFSD2a resulted in reduced fetal brain weight and lower phospholipid DHA content in the fetal brain. These data provide mechanistic evidence that placental MFSD2a mediates maternal-fetal transfer of LPC-DHA, which is critical for brain growth.
Collapse
Affiliation(s)
- Theresa L. Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kenneth Barentsen
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Owen Vaughan
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Heath, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Charis Uhlson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Karin Zemski Berry
- Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kathryn Erickson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kelsey Faer
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Stephanie S. Chassen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Watkins OC, Pillai RA, Selvam P, Yong HE, Cracknell‐Hazra VK, Sharma N, Cazenave‐Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan S. Myo-inositol alters the effects of glucose, leptin and insulin on placental palmitic acid and oleic acid metabolism. J Physiol 2023; 601:4151-4169. [PMID: 37602663 PMCID: PMC10952252 DOI: 10.1113/jp285036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Well-regulated placental palmitic acid (PA) and oleic acid (OA) metabolism is vital for optimal placental function and fetal development, but dysregulation occurs with gestational diabetes (GDM). We hypothesized that such dysregulation might arise from increased maternofetal glucose, leptin or insulin concentrations present in GDM, and that dysregulated PA and OA lipid metabolism could be moderated by myo-inositol, a natural polyol and potential GDM intervention. Placental explants from 21 women were incubated with stable isotope-labelled 13 C-PA or 13 C-OA for 48 h. Explants were treated with glucose (5, 10 mm) or leptin (13 nm) or insulin (150 nm) in combination with myo-inositol (0.3, 30, 60 μm). Forty-seven 13 C-PA lipids and 37 13 C-OA lipids were measured by liquid chromatography-mass spectrometry (LCMS). Compared with controls (5 mm glucose), glucose (10 mm) increased 19 13 C-OA lipids and nine 13 C-PA lipids, but decreased 13 C-OA phosphatidylethanolamine 38:5 and 13 C-PA phosphatidylethanolamine 36:4. The effects of leptin and insulin were less prominent than glucose, with leptin increasing 13 C-OA acylcarnitine 18:1, and insulin increasing four 13 C-PA triacylglycerides. Most glucose, leptin and insulin-induced alterations in lipids were attenuated by co-incubation with myo-inositol (30 or 60 μm), with attenuation also occurring in all subgroups stratified by GDM status and fetal sex. However, glucose-induced increases in acylcarnitine were not attenuated by myo-inositol and were even exaggerated in some instances. Myo-inositol therefore appears to generally act as a moderator, suppressing the perturbation of lipid metabolic processes by glucose, leptin and insulin in placenta in vitro. Whether myo-inositol protects the fetus and pregnancy from unfavourable outcomes requires further research. KEY POINTS: Incubation of placental explants with additional glucose, or to a lesser extent insulin or leptin, alters the placental production of 13 C-lipids from 13 C-palmitic acid (PA) and 13 C-oleic acid (OA) in vitro compared with untreated controls from the same placenta. Co-incubation with myo-inositol attenuated most alterations induced by glucose, insulin or leptin in 13 C-lipids, but did not affect alterations in 13 C-acylcarnitines. Alterations induced by glucose and leptin in 13 C-PA triacylglycerides and 13 C-PA phospholipids were influenced by fetal sex and gestational diabetes status, but were all still attenuated by myo-inositol co-incubation. Insulin differently affected 13 C-PA triacylglycerides and 13 C-PA phospholipids depending on fetal sex, with alterations also attenuated by myo-inositol co-incubation.
Collapse
Affiliation(s)
- Oliver C. Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Hannah E.J. Yong
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
| | - Victoria K.B. Cracknell‐Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustUK
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Amaury Cazenave‐Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine and Precision Medicine TRPNational University of SingaporeSingapore
- Singapore Lipidomics Incubator, Life Sciences InstituteNational University of SingaporeSingapore
| | - Anne K. Bendt
- Singapore Lipidomics Incubator, Life Sciences InstituteNational University of SingaporeSingapore
| | - Keith M. Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustUK
| | - Rohan M. Lewis
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustUK
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine and Precision Medicine TRPNational University of SingaporeSingapore
- Singapore Lipidomics Incubator, Life Sciences InstituteNational University of SingaporeSingapore
| | - Shiao‐Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
| |
Collapse
|
3
|
Joshi NP, Madiwale SD, Sundrani DP, Joshi SR. Fatty acids, inflammation and angiogenesis in women with gestational diabetes mellitus. Biochimie 2023; 212:31-40. [PMID: 37059350 DOI: 10.1016/j.biochi.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder in pregnancy whose prevalence is on the rise. Reports suggest a likely association between inflammation and maternal GDM. A balance between pro and anti-inflammatory cytokines is necessary for the regulation of maternal inflammation system throughout pregnancy. Along with various inflammatory markers, fatty acids also act as pro-inflammatory molecules. However, studies reporting the role of inflammatory markers in GDM are contradictory, suggesting the need of more studies to better understand the role of inflammation in pregnancies complicated by GDM. Inflammatory response can be regulated by angiopoietins suggesting a link between inflammation and angiogenesis. Placental angiogenesis is a normal physiological process which is tightly regulated during pregnancy. Various pro and anti-angiogenic factors influence the regulation of the feto-placental vascular development. Studies evaluating the levels of angiogenic markers in women with GDM are limited and the findings are inconsistent. This review summarizes the available literature on fatty acids, inflammatory markers and angiogenesis in women with GDM. We also discuss the possible link between them and their influence on placental development in GDM.
Collapse
Affiliation(s)
- Nikita P Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Shweta D Madiwale
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India.
| |
Collapse
|
4
|
Rodolaki K, Pergialiotis V, Iakovidou N, Boutsikou T, Iliodromiti Z, Kanaka-Gantenbein C. The impact of maternal diabetes on the future health and neurodevelopment of the offspring: a review of the evidence. Front Endocrinol (Lausanne) 2023; 14:1125628. [PMID: 37469977 PMCID: PMC10352101 DOI: 10.3389/fendo.2023.1125628] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Maternal health during gestational period is undoubtedly critical in shaping optimal fetal development and future health of the offspring. Gestational diabetes mellitus is a metabolic disorder occurring in pregnancy with an alarming increasing incidence worldwide during recent years. Over the years, there is a growing body of evidence that uncontrolled maternal hyperglycaemia during pregnancy can potentially have detrimental effect on the neurodevelopment of the offspring. Both human and animal data have linked maternal diabetes with motor and cognitive impairment, as well as autism spectrum disorders, attention deficit hyperactivity disorder, learning abilities and psychiatric disorders. This review presents the available data from current literature investigating the relationship between maternal diabetes and offspring neurodevelopmental impairment. Moreover, possible mechanisms accounting for the detrimental effects of maternal diabetes on fetal brain like fetal neuroinflammation, iron deficiency, epigenetic alterations, disordered lipid metabolism and structural brain abnormalities are also highlighted. On the basis of the evidence demonstrated in the literature, it is mandatory that hyperglycaemia during pregnancy will be optimally controlled and the impact of maternal diabetes on offspring neurodevelopment will be more thoroughly investigated.
Collapse
Affiliation(s)
- Kalliopi Rodolaki
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios Pergialiotis
- First Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoleta Iakovidou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Boutsikou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Zoe Iliodromiti
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Watkins OC, Selvam P, Pillai RA, Cracknell-Hazra VKB, Yong HEJ, Sharma N, Cazenave-Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Myo-inositol moderates maternal BMI and glycemia related variations in in-vitro placental 13C-DHA-metabolism, altering their relationships with birthweight. Sci Rep 2022; 12:14895. [PMID: 36050341 PMCID: PMC9437079 DOI: 10.1038/s41598-022-18309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
Transplacental docosahexaenoic-acid (DHA) supply for fetal development is regulated by placental DHA-lipid metabolism. Both maternal diabetes and obesity are linked to possible decreased fetal circulating DHA and increased placental DHA-lipids. Since myo-inositol is a promising intervention for gestational diabetes (GDM), we aimed to determine whether myo-inositol could rectify perturbations in placental DHA metabolism associated with maternal increasing glycemia and obesity and examine links with birthweight. Term placental villous explants from 17 women representing a range of BMIs and mid-gestational glycemia, were incubated with 13C-labeled-DHA for 48 h, in 0.3 µmol/L (control) or 60 µmol/L myo-inositol. Individual newly synthesized 13C-DHA-labeled lipid species were quantified by liquid-chromatography-mass-spectrometry. Compared with controls, incubation with myo-inositol decreased most 13C-DHA-lipids in placental explants from women with higher BMI or higher glycemia, but increased 13C-DHA-lipids with normal BMI or lower glycemia. Myo-inositol also increased 13C-DHA-labeled lipids in cases of lower birthweight centile, but induced decreases at higher centiles. Myo-inositol therefore lowered DHA-lipids in placenta with high basal placental DHA-lipid production (higher BMI and glycemia) but increased DHA-lipids where basal processing capacity is low. Myo-inositol thus moderates placental DHA metabolism towards a physiological mean which may in turn moderate birthweight.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Victoria K B Cracknell-Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Keith M Godfrey
- Faculty of Medicine, University of Southampton, Southampton, UK.,MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Rohan M Lewis
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore. .,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
6
|
Simon Sarkadi L, Zhang M, Muránszky G, Vass RA, Matsyura O, Benes E, Vari SG. Fatty Acid Composition of Milk from Mothers with Normal Weight, Obesity, or Gestational Diabetes. Life (Basel) 2022; 12:life12071093. [PMID: 35888181 PMCID: PMC9323340 DOI: 10.3390/life12071093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 05/31/2023] Open
Abstract
Gestation and the neonatal period are crucial periods in infant development. Many components of breast milk, including fatty acids, play an important role in strengthening the immune system. The aim of our research was to evaluate the fatty acid profiles of milk from 69 mothers, including subjects having a normal weight, obesity, or gestational diabetes. For the analyses, we used gas chromatography (GC) with flame ionization detection (FID) and GC coupled with mass spectrometry (GC/MS). The main fatty acids found in breast milk were palmitic acid (C16:0; 26-28%), linoleic acid (C18:2; 23-28%), and α-linolenic acid linoleic acid (C18:3; 15-17%), followed by myristic acid (C14:0; 5-8%), lauric acid (C12:0; 4-6%) and stearic acid (C18:0; 4-5%). The average breakdown of fatty acids was 50% saturated, 44% polyunsaturated, and 6% monounsaturated. Breast milk samples were classified using principal component analysis and linear discriminant analysis. Results showed that milk from the two major groups of obese and normal body mass index (BMI) could be distinguished with an accuracy of 89.66%. Breast milk samples of Hungarian and Ukrainian mothers showed significant differences based on the fatty acid composition, which variations are attributable to the mothers' dietary habits.
Collapse
Affiliation(s)
- Livia Simon Sarkadi
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Miaomiao Zhang
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Géza Muránszky
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Réka Anna Vass
- Department of Obstetrics and Gynecology, University of Pécs Medical School, 7624 Pecs, Hungary;
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pecs, Hungary
| | - Oksana Matsyura
- Department of Pediatrics No. 2, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Eszter Benes
- Department of Food and Analytical Chemistry, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
7
|
Mauro AK, Rengarajan A, Albright C, Boeldt DS. Fatty acids in normal and pathological pregnancies. Mol Cell Endocrinol 2022; 539:111466. [PMID: 34610360 DOI: 10.1016/j.mce.2021.111466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
Long chain fatty acids, namely omega-3 and omega-6, are essential fatty acids and are necessary for proper pregnancy progression and fetal growth and development. Maternal fatty acid consumption and release of fatty acids from lipid stores provide increased availability of fatty acids for the placenta to transport to the growing fetus. Both omega-3 and omega-6 fatty acids are then utilized for generation of signaling molecules, such as eicosanoids, and for promoting of growth and developmental, most notably in the nervous system. Perturbations in fatty acid concentration and fatty acid signaling have been implicated in three major pregnancy complications - gestational diabetes, preeclampsia, and preterm birth. In this review we discuss the growing literature surrounding the role of fatty acids in normal and pathological pregnancies. Differences in maternal, placental, and fetal fatty acids and molecular regulation of fatty acid signaling and transport are presented. A look into novel fatty acid-based therapies for each of the highlighted disorders are discussed, and may present exciting bench to bedside alternatives to traditional pharmacological intervention.
Collapse
Affiliation(s)
- Amanda K Mauro
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Aishwarya Rengarajan
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Carly Albright
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA.
| |
Collapse
|
8
|
Ni LF, Han Y, Wang CC, Ye Y, Ding MM, Zheng T, Wang YH, Yan HT, Yang XJ. Relationships Between Placental Lipid Activated/Transport-Related Factors and Macrosomia in Healthy Pregnancy. Reprod Sci 2021; 29:904-914. [PMID: 34750770 DOI: 10.1007/s43032-021-00755-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/25/2021] [Indexed: 10/19/2022]
Abstract
To assess associations between infants with macrosomia and placental expression levels of lipid activated/transport-related factors and umbilical cord blood lipid concentrations in healthy pregnancy. We conducted a case-control study of 38 macrosomic neonates (MS group) and 39 normal-birth-weight newborns (NC group) in a healthy pregnancy. Cord blood lipid levels were measured by automatic biochemical analyzer, mRNA and protein expression levels of placental lipid activated/transport-related factors were determined by real-time polymerase chain reaction and western blot, respectively. Compared with NC group, cord blood total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), and non-esterified fatty acid (NEFA) concentrations were decreased in the MS group. The mRNA and protein expression levels of placental peroxisome proliferator-activated receptors (PPARα, PPARγ), plasma membrane fatty acid-binding protein (FABPpm), and fatty acid translocase (FAT/CD36) were significantly higher in the MS group than the NC group. And there was a weak positive correlation between the expression of PPARγ, FABP4, and FABP3 mRNA in the placenta and the HDLC (rs = 0.439; P = 0.005), NEFA (rs = 0.342; P = 0.041), and TG (rs = 0.349; P = 0.034) levels in the cord blood in the MS group, respectively. After multivariate adjustment, the logistic regression analysis showed that high placental PPARα (adjusted odds ratio [AOR] = 3.022; 95% confidence interval [CI] 1.032-8.853) and FAT/CD36 (AOR=2.989; 95%CI 1.029-8.679) and low LDLC concentration in the cord blood (AOR=0.246; 95%CI 0.080-0.759) increased the risk of macrosomia. The increased PPARα and FAT/CD36 expression levels may influence the occurrence of fetal macrosomia through regulating placental lipid transport.
Collapse
Affiliation(s)
- Li-Fang Ni
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Han
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen-Chen Wang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Ye
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miao-Miao Ding
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tian Zheng
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Huan Wang
- Department of Obstetrics, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Tao Yan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin-Jun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Watkins OC, Selvam P, Appukuttan Pillai R, Cracknell-Hazra VKB, Yong HEJ, Sharma N, Cazenave-Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Placental 13C-DHA metabolism and relationship with maternal BMI, glycemia and birthweight. Mol Med 2021; 27:84. [PMID: 34362294 PMCID: PMC8349043 DOI: 10.1186/s10020-021-00344-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fetal docosahexaenoic acid (DHA) supply relies on preferential transplacental transfer, which is regulated by placental DHA lipid metabolism. Maternal hyperglycemia and obesity associate with higher birthweight and fetal DHA insufficiency but the role of placental DHA metabolism is unclear. METHODS Explants from 17 term placenta were incubated with 13C-labeled DHA for 48 h, at 5 or 10 mmol/L glucose treatment, and the production of 17 individual newly synthesized 13C-DHA labeled lipids quantified by liquid chromatography mass spectrometry. RESULTS Maternal BMI positively associated with 13C-DHA-labeled diacylglycerols, triacylglycerols, lysophospholipids, phosphatidylcholine and phosphatidylethanolamine plasmalogens, while maternal fasting glycemia positively associated with five 13C-DHA triacylglycerols. In turn, 13C-DHA-labeled phospholipids and triacylglycerols positively associated with birthweight centile. In-vitro glucose treatment increased most 13C-DHA-lipids, but decreased 13C-DHA phosphatidylethanolamine plasmalogens. However, with increasing maternal BMI, the magnitude of the glucose treatment induced increase in 13C-DHA phosphatidylcholine and 13C-DHA lysophospholipids was curtailed, with further decline in 13C-DHA phosphatidylethanolamine plasmalogens. Conversely, with increasing birthweight centile glucose treatment induced increases in 13C-DHA triacylglycerols were exaggerated, while glucose treatment induced decreases in 13C-DHA phosphatidylethanolamine plasmalogens were diminished. CONCLUSIONS Maternal BMI and glycemia increased the production of different placental DHA lipids implying impact on different metabolic pathways. Glucose-induced elevation in placental DHA metabolism is moderated with higher maternal BMI. In turn, findings of associations between many DHA lipids with birthweight suggest that BMI and glycemia promote fetal growth partly through changes in placental DHA metabolism.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Victoria K B Cracknell-Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Rohan M Lewis
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
10
|
Hai-Tao Y, Zhi-Heng G, Yi-Ru C, Yue-Ting L, Hai-Ying Z, Ya-Juan L, Lin X. Gestational diabetes mellitus decreased umbilical cord blood polyunsaturated fatty acids: a meta-analysis of observational studies. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102318. [PMID: 34246926 DOI: 10.1016/j.plefa.2021.102318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Polyunsaturated fatty acid (PUFA) is important for the development of the fetal brain, and the retina. Gestational diabetes mellitus (GDM) may influence maternal and fetal fatty acid metabolism, in turn affecting fetal growth and development. In several studies, maternal and fetal PUFA metabolic differences have been reported between mothers with and without GDM, but not in other studies. Thus, the aim of this meta-analysis (registration number: CRD42020220448) was to compare levels of linoleic acid (LA), α-linolenic acid (ALA), arachidonic acid (AA), docosahexaenoic acid (DHA), and total n-3 and n-6 PUFA between mothers with and without GMD and their fetuses. METHODS We performed a meta-analysis of observational studies on maternal and fetal fatty acid metabolism, published until May 2021. In addition, we performed subgroup analysis depending on the analyzed tissues (plasma/serum, erythrocyte membrane, or placenta) and the expression modes of fatty acids (concentration or percentage). RESULTS We included 24 observational studies involving 4335 maternal datasets and 12 studies involving 1675 fetal datasets in the meta-analysis. Levels of AA, DHA, and n-6 and n-3 PUFA were lower in the cord blood of mothers with GDM than in controls (P < 0.05). Compared to that in controls, in erythrocyte membranes, the percentages of AA, DHA, and n-6 and n-3 PUFA in total fatty acid were lower in mothers with GDM (P < 0.05), but in plasma/serum, the percentages of AA, DHA, and n-6 PUFA in total fatty acid were higher in mothers with GDM (P < 0.05). CONCLUSIONS GDM appears to influence the transfer of PUFAs from mothers to fetuses. The percentage of PUFAs in maternal plasma/serum was higher, and that in erythrocyte membranes was lower in mothers with GDM compared to those with normal glucose tolerance.
Collapse
Affiliation(s)
- Yu Hai-Tao
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun,Jilin Province, 130021, China
| | - Guo Zhi-Heng
- Department of Obstetrics, The First Hospital of Jilin University, Changchun city, Jilin Province,130021, China
| | - Chen Yi-Ru
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun,Jilin Province, 130021, China
| | - Li Yue-Ting
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun,Jilin Province, 130021, China
| | - Zhang Hai-Ying
- Experimental Teaching Center for Radiation Medicine, School of Public Health, Jilin University, Changchun city, Jilin Province,130021, China
| | - Liu Ya-Juan
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun,Jilin Province, 130021, China
| | - Xie Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun,Jilin Province, 130021, China.
| |
Collapse
|
11
|
Gázquez A, Giménez-Bañón MJ, Prieto-Sánchez MT, Martínez-Graciá C, Suárez C, Santaella-Pascual M, Galdo-Castiñeira L, Ballesteros-Meseguer C, Vioque J, Martínez-Villanueva M, Avilés-Plaza F, Noguera-Velasco JA, Morales E, García-Marcos L, Larqué E. Self-Reported DHA Supplementation during Pregnancy and Its Association with Obesity or Gestational Diabetes in Relation to DHA Concentration in Cord and Maternal Plasma: Results from NELA, a Prospective Mother-Offspring Cohort. Nutrients 2021; 13:843. [PMID: 33806689 PMCID: PMC8000695 DOI: 10.3390/nu13030843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal supplementation of docosahexaenoic acid (DHA) during pregnancy has been recommended due to its role in infant development, but its effect on materno-fetal DHA status is not well established. We evaluated the associations between DHA supplementation in pregnant women with obesity or gestational diabetes mellitus (GDM) and maternal and neonatal DHA status. Serum fatty acids (FA) were analyzed in 641 pregnant women (24 weeks of gestation) and in 345 venous and 166 arterial cord blood samples of participants of the NELA cohort. Obese women (n = 47) presented lower DHA in serum than those lean (n = 397) or overweight (n = 116) before pregnancy. Linoleic acid in arterial cord was elevated in obese women, which indicates lower fetal retention. Maternal DHA supplementation (200 mg/d) during pregnancy was associated with enhanced maternal and fetal DHA levels regardless of pre-pregnancy body mass index (BMI), although higher arterial DHA in overweight women indicated an attenuated response. Maternal DHA supplementation was not associated with cord venous DHA in neonates of mothers with GDM. The cord arteriovenous difference was similar for DHA between GDM and controls. In conclusion, maternal DHA supplementation during pregnancy enhanced fetal DHA status regardless of the pre-pregnancy BMI while GDM may reduce the effect of DHA supplementation in newborns.
Collapse
Affiliation(s)
- Antonio Gázquez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | - María J. Giménez-Bañón
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | - María T. Prieto-Sánchez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Carmen Martínez-Graciá
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Clara Suárez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Marina Santaella-Pascual
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Lina Galdo-Castiñeira
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Carmen Ballesteros-Meseguer
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Jesús Vioque
- Health and Biomedical Research Institute of Alicante (ISABIAL-UMH), 46020 Alicante, Spain;
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Miriam Martínez-Villanueva
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - Francisco Avilés-Plaza
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - José A. Noguera-Velasco
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Public Health Sciences, University of Murcia, 30100 Murcia, Spain
| | - Luís García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Elvira Larqué
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | | |
Collapse
|
12
|
Rasool A, Alvarado-Flores F, O'Tierney-Ginn P. Placental Impact of Dietary Supplements: More Than Micronutrients. Clin Ther 2020; 43:226-245. [PMID: 33358257 DOI: 10.1016/j.clinthera.2020.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Maternal nutrition is a key modifier of fetal growth and development. However, many maternal diets in the United States do not meet nutritional recommendations. Dietary supplementation is therefore necessary to meet nutritional goals. The effects of many supplements on placental development and function are poorly understood. In this review, we address the therapeutic potential of maternal dietary supplementation on placental development and function in both healthy and complicated pregnancies. METHODS This is a narrative review of original research articles published between February 1970 and July 2020 on dietary supplements consumed during pregnancy and placental outcomes (including nutrient uptake, metabolism and delivery, as well as growth and efficiency). Impacts of placental changes on fetal outcomes were also reviewed. Both human and animal studies were included. FINDINGS We found evidence of a potential therapeutic benefit of several supplements on maternal and fetal outcomes via their placental impacts. Our review supports a role for probiotics as a placental therapeutic, with effects that include improved inflammation and lipid metabolism, which may prevent preterm birth and poor placental efficiency. Supplementation with omega-3 fatty acids (as found in fish oil) during pregnancy tempers the negative effects of maternal obesity but may have little placental impact in healthy lean women. The beneficial effects of choline supplementation on maternal health and fetal growth are largely attributable to its placental impacts. l-arginine supplementation has a potent provascularization effect on the placenta, which may underlie its fetal growth-promoting properties. IMPLICATIONS The placenta is exquisitely sensitive to dietary supplements. Pregnant women should consult their health care practitioner before continuing or initiating use of a dietary supplement. Because little is known about impacts of many supplements on placental and long-term offspring health, more research is required before robust clinical recommendations can be made.
Collapse
Affiliation(s)
- Aisha Rasool
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | | | | |
Collapse
|
13
|
Godhamgaonkar AA, Wadhwani NS, Joshi SR. Exploring the role of LC-PUFA metabolism in pregnancy complications. Prostaglandins Leukot Essent Fatty Acids 2020; 163:102203. [PMID: 33227645 DOI: 10.1016/j.plefa.2020.102203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/09/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
Maternal nutrition during pregnancy plays a significant role in growth and development of the placenta and influencing pregnancy outcome. Suboptimal nutritional status during early gestational period compromises the normal course of pregnancy leading to adverse maternal and fetal outcomes. Omega-3 and omega-6 long chain polyunsaturated fatty acids (LC-PUFA) are important for the growth and development of the placenta. Maternal fatty acids and their metabolites influence the normal course of pregnancy by regulating cell growth and development, cell signaling, regulate angiogenesis, modulate inflammatory responses and influence various structural and functional processes. Alterations in LC-PUFA and their metabolites may result in inadequate spiral artery remodeling or placental angiogenesis leading to structural and functional deficiency of the placenta which contributes to several pregnancy complications like preeclampsia, gestational diabetes mellitus, intrauterine growth restriction, and results in adverse birth outcomes. In this review, we summarize studies examining the role of fatty acids and their metabolites in pregnancy. We also discuss the possible molecular mechanisms through which LC-PUFA influences placental growth and development. Studies have demonstrated that omega-3 fatty acid supplementation lowers the incidence of preterm births, but its effect on reducing pregnancy complications are inconclusive.
Collapse
Affiliation(s)
- Aditi A Godhamgaonkar
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune 411043, India
| | - Nisha S Wadhwani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune 411043, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune 411043, India.
| |
Collapse
|
14
|
Jadhav A, Khaire A, Joshi S. Exploring the role of oxidative stress, fatty acids and neurotrophins in gestational diabetes mellitus. Growth Factors 2020; 38:226-234. [PMID: 33703982 DOI: 10.1080/08977194.2021.1895143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gestational diabetes mellitus (GDM) constitutes an unfavorable intrauterine environment for embryonic and feto-placental development. Women with GDM are at higher risk for materno-fetal complications and placental abnormalities. The placenta acts as an interface between the maternal and fetal circulations and also plays an important role in protecting the fetus from adverse effects of maternal metabolic conditions. One of the earliest abnormalities observed in GDM pregnancies is increased oxidative stress in the placenta which affects fetal development. Imbalances in maternal nutrition particularly long-chain polyunsaturated fatty acid (LCPUFA) intake and/or metabolism lead to increased oxidative stress. Reports indicate that oxidative stress and LCPUFA such as docosahexaenoic acid affect the levels of neurotrophins. The present review aims to provide insights into a mechanistic link between oxidative stress, LCPUFA and neurotrophin in the placenta in women with GDM and its implications for neurodevelopmental outcomes in children.
Collapse
Affiliation(s)
- Anjali Jadhav
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Amrita Khaire
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
15
|
Mishra JS, Zhao H, Hattis S, Kumar S. Elevated Glucose and Insulin Levels Decrease DHA Transfer across Human Trophoblasts via SIRT1-Dependent Mechanism. Nutrients 2020; 12:nu12051271. [PMID: 32365792 PMCID: PMC7284516 DOI: 10.3390/nu12051271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) results in reduced docosahexaenoic acid (DHA) transfer to the fetus, likely due to placental dysfunction. Sirtuin-1 (SIRT1) is a nutrient sensor and regulator of lipid metabolism. This study investigated whether the high glucose and insulin condition of GDM regulates DHA transfer and expression of fatty acid transporters and if this effect is related to SIRT1 expression and function. Syncytialized primary human trophoblasts were treated with and without glucose (25 mmol/L) and insulin (10-7 mol/L) for 72 h to mimic the insulin-resistance conditions of GDM pregnancies. In control conditions, DHA transfer across trophoblasts increased in a time- and dose-dependent manner. Exposure to GDM conditions significantly decreased DHA transfer, but increased triglyceride accumulation and fatty acid transporter expression (CD36, FABP3, and FABP4). GDM conditions significantly suppressed SIRT1 mRNA and protein expression. The SIRT1 inhibitor decreased DHA transfer across control trophoblasts, and recombinant SIRT1 and SIRT1 activators restored the decreased DHA transport induced by GDM conditions. The results demonstrate a novel role of SIRT1 in the regulation of DHA transfer across trophoblasts. The suppressed SIRT1 expression and the resultant decrease in placental DHA transfer caused by high glucose and insulin levels suggest new insights of molecular mechanisms linking GDM to fetal DHA deficiency.
Collapse
Affiliation(s)
- Jay S. Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Hanjie Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Sari Hattis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
- Correspondence: ; Tel.: +1-608-265-1046
| |
Collapse
|
16
|
Sánchez-Campillo M, Ruiz-Palacios M, Ruiz-Alcaraz AJ, Prieto-Sánchez MT, Blanco-Carnero JE, Zornoza M, Ruiz-Pastor MJ, Demmelmair H, Sánchez-Solís M, Koletzko B, Larqué E. Child Head Circumference and Placental MFSD2a Expression Are Associated to the Level of MFSD2a in Maternal Blood During Pregnancy. Front Endocrinol (Lausanne) 2020; 11:38. [PMID: 32117064 PMCID: PMC7012934 DOI: 10.3389/fendo.2020.00038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a world-wide health challenge, which prevalence is expected to increase in parallel to the epidemic of obesity. Children born from GDM mothers have lower levels of docosahexaenoic acid (DHA) in cord blood, which might influence their neurodevelopment. Recently, the membrane transporter Major Family Super Domain 2a (MFSD2a) was associated with the selective transportation of DHA as lysophospholipids. The expression of the DHA membrane transporter MFSD2a is lower in GDM placentas, which could affect materno-fetal DHA transport. Humans with homozygous inactivating mutations in the MFSD2a gene present severe microcephaly and intellectual impairments. Herein, we intended to identify early blood biomarkers that may be of use during pregnancy to monitor the offspring development and the adequate nutritional interventions, such as nutritional supplementation, that may be selected to improve it. We evaluated MFSD2a expression in maternal blood at the third trimester of pregnancy, and its potential relationship with the expression of placental MFSD2a at delivery and child outcomes. Three groups of pregnant women were recruited: 25 controls, 23 GDM with dietary treatment, and 20 GDM with insulin treatment. Maternal and neonatal anthropometric and biochemical parameters were evaluated. MFSD2a was analyzed in placenta, blood and serum. MFSD2a protein expression in maternal blood was significantly lower in GDM groups and correlated with placental MFSD2a and Z-score neonatal head circumference during the first 6 months of life. The cord/maternal serum ratio of DHA, a solid indicator of materno-fetal DHA transport, was reduced in GDM groups and correlated with MFSD2a in maternal blood at the third trimester and in placenta at delivery. This indicates that altered MFSD2a levels in maternal blood during pregnancy might influence placental nutrient transport and fetal neurodevelopment. Furthermore, MFSD2a levels in maternal blood on the third trimester were inversely correlated to DHA in maternal serum lyso-PL. Thus, the level of MFSD2a in maternal blood could be used as a potential biomarker for the early detection of disturbances of MFSD2a expression during pregnancy and the subsequent consequences for the neurodevelopment of the child, as well as it may help to choose the optimal treatment approach for the affected subjects.
Collapse
Affiliation(s)
- María Sánchez-Campillo
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - María Ruiz-Palacios
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Antonio J. Ruiz-Alcaraz
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, Regional Campus of International Excellence Campus Mare Nostrum and Biomedical Research Institute of Murcia (IMIB), University of Murcia, Murcia, Spain
| | | | | | - Matilde Zornoza
- Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - María José Ruiz-Pastor
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Hans Demmelmair
- Ludwig-Maximilians-University Munich, Dr. von Hauner Children's Hospital, München, Germany
| | | | - Berthold Koletzko
- Ludwig-Maximilians-University Munich, Dr. von Hauner Children's Hospital, München, Germany
| | - Elvira Larqué
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
- *Correspondence: Elvira Larqué
| |
Collapse
|
17
|
Maternal Omega-3 Nutrition, Placental Transfer and Fetal Brain Development in Gestational Diabetes and Preeclampsia. Nutrients 2019; 11:nu11051107. [PMID: 31109059 PMCID: PMC6567027 DOI: 10.3390/nu11051107] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Omega-3 fatty acids, particularly docosahexaenoic fatty acid (DHA), are widely recognized to impact fetal and infant neurodevelopment. The impact of DHA on brain development, and its inefficient synthesis from the essential alpha-linolenic acid (ALA), has led to recommended DHA intakes of 250-375 mg eicosapentaenoic acid + DHA/day for pregnant and lactating women by the Dietary Guidelines for Americans. Despite these recommendations, the intake of omega-3s in women of child-bearing age in the US remains very low. The low maternal status of DHA prior to pregnancy could impair fetal neurodevelopment. This review focuses on maternal omega-3 status in conditions of gestational diabetes mellitus (GDM) and preeclampsia, and the subsequent impact on placental transfer and cord blood concentration of omega-3s. Both GDM and preeclampsia are associated with altered maternal omega-3 status, altered placental omega-3 metabolism, reduced cord blood omega-3 levels and have an impact on neurodevelopment in the infant and on brain health later in life. These findings indicate lower DHA exposure of the developing baby may be driven by lower placental transfer in both conditions. Thus, determining approaches which facilitate increased delivery of DHA during pregnancy and early development might positively impact brain development in infants born to mothers with these diseases.
Collapse
|
18
|
Gázquez A, Prieto-Sánchez MT, Blanco-Carnero JE, Ruíz-Palacios M, Nieto A, van Harskamp D, Oosterink JE, Schierbeek H, van Goudoever JB, Demmelmair H, Koletzko B, Larqué E. Altered materno-fetal transfer of 13C-polyunsaturated fatty acids in obese pregnant women. Clin Nutr 2019; 39:1101-1107. [PMID: 31029479 DOI: 10.1016/j.clnu.2019.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND & AIMS Maternal obesity at conception is considered a major predictor of offspring obesity. This could by driven at least in part by an altered placental fat transfer. However, the pathophysiological mechanisms involved are not fully understood. We investigated the in vivo materno-fetal transfer of fatty acids (FAs) in obese pregnant women using stable isotopes. METHODS Ten obese and ten normo-weight pregnant women (control) received orally a bolus of 13C-labeled FAs 12 h before elective caesarean section: oleic acid (13C-OA), linoleic acid (13C-LA) and docosahexaenoic acid (13C-DHA). Maternal blood samples were collected at -12 (basal), -8, -4, -2, 0 h relative to the time of cesarean section. At the time of birth, arterial and venous cord bloods as well as placental tissue were collected. FAs composition was determined by gas-liquid chromatography and isotopic enrichment by gas chromatography-combustion-isotope ratio mass spectrometry. RESULTS Maternal plasma insulin and placental weight tended to higher values in obese pregnant women although they did not present serum hyperlipidemia. Higher concentrations of 13C-LA and 13C-DHA were found in non-esterified FAs fraction in maternal plasma of obese mothers. The ratio of placental uptake for 13C-LA and 13C-DHA was lower in obese women compared to normal weight pointing toward a limited capacity of FA placental transfer, especially of essential FAs. Maternal insulin was associated to this lower placenta/maternal plasma ratio for both 13C-LA (R = -0.563, P = 0.012) and 13C-DHA (R = -0.478, P = 0.033). In addition, the ratio cord/maternal plasma of 13C-LA was significantly lower in obese women compared to controls. CONCLUSIONS In conclusion, obese mothers without hyperlipidemia showed a reduced materno-fetal transfer of polyunsaturated FAs which could affect fetal development. This affect dietary recommendation for obese pregnant women. TRIAL REGISTRY NUMBER ISRCTN69794527.
Collapse
Affiliation(s)
- A Gázquez
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany; Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - M T Prieto-Sánchez
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - J E Blanco-Carnero
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - M Ruíz-Palacios
- Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - A Nieto
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - D van Harskamp
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - J E Oosterink
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - H Schierbeek
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - J B van Goudoever
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands; Department of Paediatrics, Free University of Amsterdam, Amsterdam, the Netherlands
| | - H Demmelmair
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - B Koletzko
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - E Larqué
- Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain.
| |
Collapse
|
19
|
Elshani B, Kotori V, Daci A. Role of omega-3 polyunsaturated fatty acids in gestational diabetes, maternal and fetal insights: current use and future directions. J Matern Fetal Neonatal Med 2019; 34:124-136. [PMID: 30857450 DOI: 10.1080/14767058.2019.1593361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
ω-3-Polyunsaturated fatty acids (ω-3 PUFAs) are widely used during pregnancy and gestational diabetes mellitus (GDM). ω-3 PUFAs are beneficial in the regulation of maternal and fetal metabolic function, inflammation, immunity, macrosomia (MAC), oxidative stress, preeclampsia, intrauterine growth, preterm birth, offspring metabolic function, and neurodevelopment. Dietary counseling is vital for improving therapeutic outcomes in patients with GDM. In maternal circulation, ω-3 PUFAs are transported via transporters, synthesis enzymes, and intracellular proteins, which activate nuclear receptors and play central roles in the cellular metabolic processes of placental trophoblasts. In patients with GDM, this process is compromised due to abnormal functioning of the placenta, which disrupts the normal mother to fetus transport. This results in reduced fetal levels of ω-3 PUFAs, which contributes negatively to fetal growth, metabolic function, and development. Dietary counseling and nutritional assessment remain challenging in the prevention and alleviation of GDM. Therefore, personalized approaches, including measurement of the ω-3 index, pharmacogenetic implementation strategies, and appropriate supplementation with ω-3 PUFAs are used to achieve sufficient distribution in the maternal and fetal fluids during the entire pregnancy period. Developing new dosing guidelines and personalized approaches, determining the mechanisms of ω-3 PUFAs in the placenta, and examining the pharmacodynamic and pharmacokinetics interactions involving ω-3 PUFAs will lead to better management and increase the quality of life of patients with GDM and their offspring. Moreover, different strategies for supplementing with ω-3 PUFAs, improving their placental transport, and pharmacological exploration of the maternal-fetal interactions will help to further elucidate the role of ω-3 PUFAs in women with GDM. In this review, we summarize the current information on the potential therapeutic benefits and clinical applicability of ω-3 PUFAs in patients with GDM and their offspring, highlighting recent progress and future perspectives in this field. Studies investigating the mechanisms of ω-3 PUFA transport to targeted tissues have spurred an interest in personalized treatment strategies for patients with GDM and their offspring. To implement such therapies, we need to clarify the index/ratio of ω-3 PUFAs in maternal and fetal fluids, delineate the ω-3 PUFA transport pathways, and establish the guidelines for FA profiling prepregnancy and during pregnancy-associated weight gain. Such therapies also need to take into account the gender of the fetus, and whether the patient is obese.
Collapse
Affiliation(s)
- Brikene Elshani
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Vjosa Kotori
- Department of Endocrinology, Pediatric Clinic, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|
20
|
Maternal obesity leads to long-term altered levels of plasma ceramides in the offspring as revealed by a longitudinal lipidomic study in children. Int J Obes (Lond) 2018; 43:1231-1243. [PMID: 30568270 DOI: 10.1038/s41366-018-0291-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES Maternal obesity is associated with increased risk of obesity and other symptoms of the metabolic syndrome in the offspring. Nevertheless, the molecular mechanisms and cellular factors underlying this enhanced disease susceptibility remain to be determined. Here, we aimed at identifying changes in plasma lipids in offspring of obese mothers that might underpin, and serve as early biomarkers of, their enhanced metabolic disease risk. SUBJECTS/METHODS We performed a longitudinal lipidomic profiling in plasma samples from normal weight, overweight, and obese pregnant women and their children that participated in the Prenatal Omega-3 Fatty Acid Supplementation, Growth, and Development trial conducted in Mexico. At recruitment women were aged between 18 and 35 years and in week 18-22 of pregnancy. Blood samples were collected at term delivery by venipuncture from mothers and from the umbilical cord of their newborns and from the same infants at 4 years old under non-fasting conditions. Lipidomic profiling was done using ultra-performance liquid chromatography high-resolution mass spectrometry. RESULTS Analysis of the lipidomic data showed that overweight and obese mothers exhibited a significant reduction in the total abundance of ceramides (Cer) in plasma, mainly of Cer (d18:1/20:0), Cer (d18:1/22:0), Cer (d18:1/23:0), and Cer (d18:1/24:0), compared with mothers of normal body weight. This reduction was confirmed by the direct quantification of these and other ceramide species. Similar quantitative differences in the plasma concentration of Cer (d18:1/22:0), Cer (d18:1/23:0), and Cer (d18:1/24:0), were also found between 4-year-old children of overweight and obese mothers compared with children of mothers of normal body weight. Noteworthy, children exhibited equal daily amounts of energy and food intake independently of the BMI of their mothers. CONCLUSIONS Maternal obesity results in long-lasting changes in plasma ceramides in the offspring suggesting that these lipids might be used as early predictors of metabolic disease risk due to maternal obesity.
Collapse
|
21
|
Maslova E, Hansen S, Strøm M, Halldorsson TI, Grunnet LG, Vaag AA, Olsen SF. Fish Intake in Pregnancy and Offspring Metabolic Parameters at Age 9⁻16-Does Gestational Diabetes Modify the Risk? Nutrients 2018; 10:nu10101534. [PMID: 30336645 PMCID: PMC6213471 DOI: 10.3390/nu10101534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Oily fish, an important source of marine n-3 long-chain polyunsaturated fatty acids (LCPUFA), has shown to reduce cardiometabolic risk in adults. Whether maternal fish intake affects offspring metabolic health is less established, especially among high-risk pregnancies. We aimed to examine the association of fish intake in pregnancy with offspring metabolic health who were either exposed or unexposed to gestational diabetes mellitus (GDM). Our study included 1234 mother-offspring dyads (608 with a GDM index pregnancy and 626 control dyads) nested within the Danish National Birth Cohort, which is a prebirth cohort. Maternal seafood and marine n-3 LCPUFA consumption was quantified by a food frequency questionnaire (gestational week 25) and a sub-sample with interview data (weeks 12 and 30). The offspring were clinically examined at 9–16 years, including a Dual energy X-ray Absorptiometry (DXA) scan and a fasting blood sample. We calculated multivariable effect estimates and 95% confidence intervals (CI) for anthropometric, adiposity, and metabolic parameters. The median (IQR) intake of total seafood was 23(24) g/day. We found largely no association for total seafood and marine n-3 LCPUFA with offspring metabolic parameters in either group. Using interview data, GDM-exposed women reporting no fish in week 12 and 30 (versus intake >2 times/week) had offspring with a higher Body Mass Index (BMI) (ratio of geometric means (RGM): 1.28, 95% CI: 1.06, 1.55), waist circumference (RGM: 1.22, 95% CI: 1.05, 1.40), triglycerides (RGM: 1.77, 95% CI: 1.03, 3.03), and homeostatic model assessment of insulin resistance HOMA-IR (RGM: 2.16, 95% CI: 1.17, 3.97). We found no associations of n-3 LCPUFA and seafood intake with offspring metabolic outcomes. However, GDM-exposed women who consistently reported eating no fish had offspring with a poorer metabolic profile. Fish intake in pregnancy may mitigate some adverse effects of intrauterine hyperglycemia, however, these findings need replication in better powered studies.
Collapse
Affiliation(s)
- Ekaterina Maslova
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark.
- Department of Primary Care and Public Health, Imperial College, London W6 6RP, UK.
- Danish Diabetes Academy, DK-5000 Odense, Denmark.
| | - Susanne Hansen
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark.
- Research Centre for Prevention and Health, Rigshospitalet-Glostrup, DK-2600 Copenhagen, Denmark.
| | - Marin Strøm
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark.
- Faculty of Natural and Health Sciences, University of Faroe Islands, 100 Torshavn, Faroe Islands.
| | - Thorhallur I Halldorsson
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark.
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland.
- Unit for Nutrition Research, Landspitali University Hospital, IS-101 Reykjavik, Iceland.
| | - Louise G Grunnet
- Danish Diabetes Academy, DK-5000 Odense, Denmark.
- Department of Endocrinology-Diabetes and Metabolism, Rigshospitalet, DK-2100 Copenhagen, Denmark.
| | - Allan A Vaag
- Department of Endocrinology-Diabetes and Metabolism, Rigshospitalet, DK-2100 Copenhagen, Denmark.
- Cardiovascular and Metabolic Disease (CVMD) Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, 431 50 Gothenburg, Sweden.
| | - Sjurdur F Olsen
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Maslova E, Rifas-Shiman SL, Olsen SF, Gillman MW, Oken E. Prenatal n-3 long-chain fatty acid status and offspring metabolic health in early and mid-childhood: results from Project Viva. Nutr Diabetes 2018; 8:29. [PMID: 29795533 PMCID: PMC5968023 DOI: 10.1038/s41387-018-0040-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/16/2018] [Accepted: 03/13/2018] [Indexed: 11/09/2022] Open
Abstract
Higher maternal and biomarker levels of n-3 long-chain polyunsaturated fatty acids (LCPUFAs) have been associated with improved perinatal outcomes and may also influence offspring metabolic health. Past studies were not powered to examine metabolic outcomes and few have specifically targeted metabolically vulnerable populations. We examined the associations of prenatal n-3 LCPUFA status with markers of metabolic health in early and mid-childhood in the full population as well as stratified by maternal glucose tolerance. Our data consisted of 1418 mother-child dyads from Project Viva, a longitudinal, prospective pre-birth cohort enrolled in eastern Massachusetts. We assessed maternal dietary intake of fish and n-3 LCPUFA in mid-pregnancy using a validated food frequency questionnaire. N-3 LCPUFA levels were quantified in maternal second trimester and umbilical cord plasma using liquid-gas chromatography. We assessed offspring anthropometry, adiposity, and blood pressure at early (median age: 3.2 years) and mid-childhood (median age: 7.7 years); and assayed blood samples collected at these visits for metabolic biomarkers. We report here multivariable effect estimates and 95% CI. Early childhood BMI z-score was on average 0.46 (1.03) units and waist circumference 51.3 (3.7) cm. At mid-childhood these measures were 0.39 (1.00) units and 60.0 (8.3) cm, respectively. Higher cord plasma DHA levels were associated with lower BMI z-score ((Q)uartile 4 vs. Q1: -0.21, 95% CI: -0.38, -0.03), waist circumference (Q4 vs. Q1: -0.63, 95% CI: -1.27, 0.00 cm), and leptin levels (Q4 vs. Q1: -0.36, 95% CI: -0.77, 0.05 ng/mL) in early childhood. These associations were strongest and reached significance in offspring of women with isolated hyperglycemia vs. better or worse glycemic status. Higher maternal DHA + EPA (Q4 vs. Q1: -1.59, 95% CI: -2.80, -0.38 μg/mL) and fish (≥3 vs. 0 portions/week: -2.18, 95% CI: -3.90, -0.47 μg/mL) intake was related to lower adiponectin in early childhood. None of these associations persisted with mid-childhood outcomes. We did not find associations with any of the other outcomes. This study supports early and possibly transient effects of prenatal n-3 LCPUFA status on anthropometric measures and adipokine levels. It also raises the possibility that offspring of women with isolated hyperglycemia derive the most benefits from higher n-3 LCPUFA status.
Collapse
Affiliation(s)
- Ekaterina Maslova
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark. .,Department of Primary Care and Public Health, Imperial College London, London, UK. .,Danish Diabetes Academy, Odense, Denmark.
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sjurdur F Olsen
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthew W Gillman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
23
|
Louwagie EJ, Larsen TD, Wachal ALM, Baack ML. Placental lipid processing in response to a maternal high-fat diet and diabetes in rats. Pediatr Res 2018; 83:712-722. [PMID: 29166372 PMCID: PMC5902636 DOI: 10.1038/pr.2017.288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022]
Abstract
BackgroundDiabetes and obesity during pregnancy have an impact on the health of both mothers and developing babies. Prevention focuses on glycemic control, but increasing evidence implicates a role for lipids. Using a rat model, we showed that a maternal high-fat (HF) diet increased perinatal morbidity and mortality, but lipid processing across the maternal-placental-fetal triad remained unstudied. We hypothesized that HF diet would disrupt placental lipid processing to exaggerate fuel-mediated consequences of diabetic pregnancy.MethodsWe compared circulating lipid profiles, hormones, and inflammatory markers in dams and rat offspring from normal, diabetes-exposed, HF-diet-exposed, and combination-exposed pregnancies. Placentae were examined for lipid accumulation and expression of fuel transporters.ResultsMaternal HF diet exaggerated hyperlipidemia of pregnancy, with diabetes marked dyslipidemia developed in dams but not in offspring. Placentae demonstrated lipid accumulation and lower expression of fatty acid (FA) transporters. Diet-exposed offspring had a lower fraction of circulating essential FAs. Pregnancy loss was significantly higher in diet-exposed but not in diabetes-exposed pregnancies, which could not be explained by differences in hormone production. Although not confirmed, inflammation may play a role.ConclusionMaternal hyperlipidemia contributes to placental lipid droplet accumulation, perinatal mortality, and aberrant FA profiles that may influence the health of the developing offspring.
Collapse
Affiliation(s)
- Eli J. Louwagie
- Sanford Program for Undergraduate Research (SPUR), Children’s Health Research Center, Sanford Research, Sioux Falls, SD. Augustana University, 2001 S Summit Ave., Sioux Falls, SD. MD-PhD Student, Sanford School of Medicine of the University of South Dakota, Vermillion, SD
| | - Tricia D. Larsen
- Senior Research Technician, Children’s Health Research Center, Sanford Research, Sioux Falls, SD
| | - Angela L. M. Wachal
- Science Educator Research Fellow, Children’s Health Research Center, Sanford Research, Sioux Falls, SD. Science Teacher, Harrisburg High School, Harrisburg, SD
| | - Michelle L. Baack
- Physician Scientist, Children’s Health Research Center, Sanford Research, 2301 E. 60 Street, Sioux Falls, SD, 57104. Associate Professor, Sanford School of Medicine of the University of South Dakota, Department of Pediatrics, Division of Neonatology, 1400 W. 22 Street, Sioux Falls, SD 57117. Neonatologist, Sanford Children’s Health Specialty Clinic, 1600 W. 22 Street, PO Box 5039, Sioux Falls, SD 57117
| |
Collapse
|
24
|
Drewery ML, Gaitán AV, Spedale SB, Monlezun CJ, Miketínas DC, Lammi-Keefe CJ. Maternal n-6 and n-3 fatty acid status during pregnancy is related to infant heart rate and heart rate variability: An exploratory study. Prostaglandins Leukot Essent Fatty Acids 2017; 126:117-125. [PMID: 29031389 DOI: 10.1016/j.plefa.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022]
Abstract
Early life heart rate (HR) and heart rate variability (HRV) reflect autonomic system maturation. Intervention with n-3 long chain polyunsaturated fatty acids (LCPUFAs) during pregnancy favorably affects fetal HR and HRV, complementing previous observations for n-3 LCPUFA intervention during infancy. The relationship between maternal fatty acid status during pregnancy and infant HR/HRV has not previously been assessed. The aim of this study was to explore associations between maternal n-6 and n-3 fatty acid status during pregnancy and infant HR and HRV at 2 weeks, 4 months, and 6 months of age using linear regression models. Maternal n-3 fatty acids were inversely related to infant HR and positively related to HRV. Conversely, maternal n-6 fatty acids were positively related to infant HR and inversely related to HRV. These data build on existing literature evidencing a role for n-3 fatty acids in accelerating autonomic development and link n-6 fatty acids to HR/HRV.
Collapse
Affiliation(s)
- M L Drewery
- Louisiana State University, Baton Rouge, LA, United States.
| | - A V Gaitán
- Louisiana State University, Baton Rouge, LA, United States
| | | | - C J Monlezun
- Louisiana State University, Baton Rouge, LA, United States
| | - D C Miketínas
- Louisiana State University, Baton Rouge, LA, United States; Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - C J Lammi-Keefe
- Louisiana State University, Baton Rouge, LA, United States; Pennington Biomedical Research Center, Baton Rouge, LA, United States; Louisiana State Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
25
|
Léveillé P, Rouxel C, Plourde M. Diabetic pregnancy, maternal and fetal docosahexaenoic acid: a review of existing evidence. J Matern Fetal Neonatal Med 2017; 31:1358-1363. [PMID: 28423959 DOI: 10.1080/14767058.2017.1314460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Docosahexaenoic acid (DHA) is vital for fetal development especially during the third trimester of gestation when the speed of fetal brain growth is at its peak. Diabetes modifies the maternal fatty acid profile, which may in turn change the quantity and/or quality of lipids transferred to the fetus. Neonates born to diabetic mothers might be more vulnerable to DHA deficiency leading to lower cognitive scores together with lower overall intellectual quotients when compared to control. We reviewed the influence of type 1 or type 2 pre-gestational (PGD) and gestational diabetes mellitus (GDM) on maternal and fetal DHA levels. METHOD We searched MEDLINE articles about PGD and/or GDM and DHA published before October 2016. RESULTS Maternal blood DHA level seems higher in those with diabetes than those without diabetes. However, DHA in cord plasma of neonates born to PGD and/or GDM mothers seem lower compared to neonates born to nondiabetic mothers. CONCLUSIONS Altogether, these results suggest that the transfer of DHA from the mother to the fetus may be deficient or dysregulated in diabetic pregnancies. What remains to be understood is how placental lipid transport is regulated and whether there is a link with clinical neurodevelopmental phenotypes in the newborns.
Collapse
Affiliation(s)
- Pauline Léveillé
- a Faculté de médecine et des sciences de la santé, Université de Sherbrooke , Sherbrooke , Canada.,b Research Center on Aging, Health and Social Services Centre - University Institute of Geriatrics of Sherbrooke.,c Institute of Nutrition and Functional Foods, Laval University , Québec , Canada
| | - Clémence Rouxel
- b Research Center on Aging, Health and Social Services Centre - University Institute of Geriatrics of Sherbrooke
| | - Mélanie Plourde
- a Faculté de médecine et des sciences de la santé, Université de Sherbrooke , Sherbrooke , Canada.,b Research Center on Aging, Health and Social Services Centre - University Institute of Geriatrics of Sherbrooke.,c Institute of Nutrition and Functional Foods, Laval University , Québec , Canada
| |
Collapse
|
26
|
Taschereau-Charron A, Da Silva MS, Bilodeau JF, Morisset AS, Julien P, Rudkowska I. Alterations of fatty acid profiles in gestational diabetes and influence of the diet. Maturitas 2017; 99:98-104. [PMID: 28364876 DOI: 10.1016/j.maturitas.2017.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 12/30/2022]
Abstract
Gestational diabetes mellitus (GDM) is a pregnancy-induced complication with increased prevalence, especially in overweight women. Fatty acid (FA) composition in tissues can reflect dietary fat intake, especially essential FA intake. Moreover, it has been shown that FA profiles in blood lipid fractions are altered in diabetic patients. Consequently, women with GDM may also have a distinctive FA profile. The objective of this review is compare FA profiles in different blood lipid fractions and the influence of dietary fat intake in women with GDM or normoglycemic pregnancies. Results show that women with GDM have more saturated and less polyunsaturated FA (PUFA) in their red blood cell (RBC) membranes than normoglycemic pregnant women. Moreover, some studies reported that women with GDM have a greater energy intake from total fat and saturated FA, along with a lower energy intake from PUFA, when compared to normoglycemic pregnancies. Clinical trials showed that omega-3 PUFA levels in RBC membranes of GDM women can be restored by a dietary intervention. Further research is required to determine whether FA profiles are altered prior to the diagnosis of GDM and can be prevented by diet.
Collapse
Affiliation(s)
- Andréa Taschereau-Charron
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Marine S Da Silva
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Jean-François Bilodeau
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Anne-Sophie Morisset
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Pierre Julien
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.
| |
Collapse
|
27
|
Ruiz-Palacios M, Ruiz-Alcaraz AJ, Sanchez-Campillo M, Larqué E. Role of Insulin in Placental Transport of Nutrients in Gestational Diabetes Mellitus. ANNALS OF NUTRITION AND METABOLISM 2017; 70:16-25. [PMID: 28110332 DOI: 10.1159/000455904] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with increased fetal adiposity, which may increase the risk of obesity in adulthood. The placenta has insulin receptors and maternal insulin can activate its signaling pathways, affecting the transport of nutrients to the fetus. However, the effects of diet or insulin treatment on the placental pathophysiology of GDM are unknown. SUMMARY There are very few studies on possible defects in the insulin signaling pathway in the GDM placenta. Such defects could influence the placental transport of nutrients to the fetus. In this review we discuss the state of insulin signaling pathways in placentas of women with GDM, as well as the role of exogenous insulin in placental nutrient transport to the fetus, and fetal adiposity. Key Messages: Maternal insulin in the third trimester is correlated with fetal abdominal circumference at that time, suggesting the important role of insulin in this process. Since treatment with insulin at the end of pregnancy may activate placental nutrient transport to the fetus and promote placental fatty acid transfer, it would be interesting to improve maternal hyperlipidemia control in GDM subjects treated with this hormone. More research in this area with high number of subjects is necessary.
Collapse
Affiliation(s)
- María Ruiz-Palacios
- Department of Physiology, Molecular Biology B and Immunology, Murcia Biohealth Research Institute-University of Murcia (IMIB-UMU), Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain
| | | | | | | |
Collapse
|
28
|
Burlina S, Dalfrà MG, Barison A, Marin R, Ragazzi E, Sartore G, Lapolla A. Plasma phospholipid fatty acid composition and desaturase activity in women with gestational diabetes mellitus before and after delivery. Acta Diabetol 2017; 54:45-51. [PMID: 27638302 DOI: 10.1007/s00592-016-0901-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/10/2016] [Indexed: 12/01/2022]
Abstract
AIMS Analyze plasma phospholipid fatty acids (PPFA) composition and desaturase activity in women with gestational diabetes (GDM) and in women with a normal glucose tolerance (NGT) before and after delivery, and to evaluate the possible relationship between desaturase activity and inflammatory parameters. METHODS PPFA composition was analyzed by gas chromatography in 21 women with GDM and from 21 with NGT, during the third trimester of pregnancy and 6 months after delivery. We used fatty acid product-to-precursor ratios to estimate desaturase activity, and we also measured in all women interleukins six and ten, tumor necrosis factor alpha and C-reactive protein. RESULTS No significant differences were observed between NGT and GDM women in terms of PPFA composition, both in pregnancy and after pregnancy. Estimated desaturase Δ9-18 activity was significantly higher, and estimated desaturase Δ5 activity was significantly lower during pregnancy in all women. We observed no correlations between inflammatory markers and desaturases activity, during or after pregnancy, in both groups. CONCLUSIONS Our data suggest that GDM does not influence PPFA composition and desaturase activity during pregnancy. In addition, late pregnancy characterized by hyperinsulinemia appears to upregulate desaturase Δ9-18 activity in NGT and GDM women.
Collapse
Affiliation(s)
- S Burlina
- Department of Medicine - DIMED, University of Padova, Via Giustiniani 2, 35100, Padua, Italy
| | - M G Dalfrà
- Department of Medicine - DIMED, University of Padova, Via Giustiniani 2, 35100, Padua, Italy
| | - A Barison
- Department of Medicine - DIMED, University of Padova, Via Giustiniani 2, 35100, Padua, Italy
| | - R Marin
- Department of Medicine - DIMED, University of Padova, Via Giustiniani 2, 35100, Padua, Italy
| | - E Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - G Sartore
- Department of Medicine - DIMED, University of Padova, Via Giustiniani 2, 35100, Padua, Italy.
| | - A Lapolla
- Department of Medicine - DIMED, University of Padova, Via Giustiniani 2, 35100, Padua, Italy
| |
Collapse
|
29
|
Léveillé P, Ardilouze JL, Pasquier JC, Deacon C, Whittingstall K, Plourde M. Fatty acid profile in cord blood of neonates born to optimally controlled gestational diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2016; 115:48-52. [PMID: 27914513 DOI: 10.1016/j.plefa.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the fatty acid profile of cord blood phospholipids (PL), cholesteryl esters (CE), triglycerides (TG) and non-esterified fatty acids (NEFA) in neonates born to mothers with gestational diabetes mellitus (GDM) compared to non-diabetic mothers. METHODS The offspring of 30 pregnant women (15 non-diabetic controls, 15 with diet- or insulin-controlled GDM) were recruited before delivery. Cord blood was collected. After lipid extraction, PL, CE, TG and NEFA were separated by thin layer chromatography and analysed by gas chromatography. RESULTS In GDM vs. control mothers, maternal glycated haemoglobin (A1C, mean±SD) was not different between groups: 5.3±0.5% vs. 5.3±0.3% (p=0.757), respectively. Cord plasma fatty acids were not different in TG, CE and NEFA between GDM and non-diabetic mothers. However, in PL, levels of palmitate, palmitoleate, oleate, vaccinate and di-homo-gamma-linolenate were significantly lower, with a trend for lower arachidonate (p=0.078), in neonates born to GDM mothers compared to controls. CONCLUSION In contrast to other studies on cord blood docosahexaenoic acid (DHA) levels in GDM mothers, we did not found lower levels of DHA in cord PL, CE, TG or NEFA in neonates born to GDM compared to non-diabetic mothers.
Collapse
Affiliation(s)
- Pauline Léveillé
- Research Center on Aging, Health and Social Services Centre - University Institute of Geriatrics of Sherbrooke, 1036 Belvédère Sud Sherbrooke, Québec, Canada J1H 4C4; Department of Physiology, Université de Sherbrooke, 3001, 12e avenue Nord Sherbrooke, Québec, Canada J1H 5N4
| | - Jean-Luc Ardilouze
- Department of Physiology, Université de Sherbrooke, 3001, 12e avenue Nord Sherbrooke, Québec, Canada J1H 5N4; Department of Medicine, Université de Sherbrooke, 3001, 12e avenue Nord Sherbrooke, Québec, Canada J1H 5N4; Centre de recherche du CHUS, 3001, 12e avenue Nord Sherbrooke, Québec, Canada J1H 5N4
| | - Jean-Charles Pasquier
- Department of Medicine, Université de Sherbrooke, 3001, 12e avenue Nord Sherbrooke, Québec, Canada J1H 5N4; Centre de recherche du CHUS, 3001, 12e avenue Nord Sherbrooke, Québec, Canada J1H 5N4
| | - Charles Deacon
- Department of Medicine, Université de Sherbrooke, 3001, 12e avenue Nord Sherbrooke, Québec, Canada J1H 5N4
| | - Kevin Whittingstall
- Department of Medicine, Université de Sherbrooke, 3001, 12e avenue Nord Sherbrooke, Québec, Canada J1H 5N4
| | - Mélanie Plourde
- Research Center on Aging, Health and Social Services Centre - University Institute of Geriatrics of Sherbrooke, 1036 Belvédère Sud Sherbrooke, Québec, Canada J1H 4C4; Department of Medicine, Université de Sherbrooke, 3001, 12e avenue Nord Sherbrooke, Québec, Canada J1H 5N4.
| |
Collapse
|
30
|
O'Tierney-Ginn PF, Gillingham M, Fowler J, Brass E, Marshall NE, Thornburg KL. Maternal Weight Gain Regulates Omega-3 Fatty Acids in Male, Not Female, Neonates. Reprod Sci 2016; 24:560-567. [PMID: 27470150 DOI: 10.1177/1933719116660843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The fetus largely depends on maternal supply and placental transport for its source of long-chain polyunsaturated fatty acids (LCPUFAs), which are essential for proper neurological and cardiovascular development. Pregnancy complications such as diabetes reduces neonatal LCPUFA supply, but little is known of how fatty acid delivery is affected by maternal body type or weight gain in uncomplicated pregnancies. In a cross-sectional study of maternal-neonatal pairs at term, we sought to determine the effect of gestational weight gain on neonatal LCPUFA supply. Forty maternal-neonatal pairs of uncomplicated (no gestational hypertension or diabetes) term pregnancies were recruited upon admission to Oregon Health & Science University Labor & Delivery for scheduled cesarean section. Maternal and umbilical cord plasma fatty acid profiles were measured using gas chromatography-mass spectrophotometry. First trimester weight gain was negatively correlated with maternal n-3 LCPUFA ( r = -0.80, P = .0002), and this was not affected by fetal sex. High maternal weight gain in the first trimester was negatively associated with cord n-3 polyunsaturated fatty acid levels ( r = -0.70, P = .03) and placental thickness ( r = -0.69, P = .03) in male, but not female, offspring. High maternal weight gain in the first trimester is associated with a thinner placenta and low levels of n-3 LCPUFA in male offspring. Further study is required to confirm that male offspring are at a higher risk of poor outcomes associated with high maternal weight gain early in pregnancy.
Collapse
Affiliation(s)
- Perrie F O'Tierney-Ginn
- 1 Department of Reproductive Biology, Center for Reproductive Health, Case Western Reserve University, Cleveland, OH, USA
| | - Melanie Gillingham
- 2 Department of Molecular & Medical Genetics, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jessica Fowler
- 3 Department of Obstetrics & Gynecology, UCLA, Los Angeles, CA, USA
| | - Elizabeth Brass
- 4 Department of Obstetrics & Gynecology, Kaiser Permanente, Hillsboro, OR, USA
| | - Nicole E Marshall
- 5 Department of Obstetrics & Gynecology, OHSU, Portland, OR, USA.,6 Center for Developmental Health, OHSU, Portland, OR, USA
| | - Kent L Thornburg
- 6 Center for Developmental Health, OHSU, Portland, OR, USA.,7 Department of Medicine (Cardiovascular Medicine), OHSU, Portland, OR, USA
| |
Collapse
|
31
|
Zhao JP, Levy E, Shatenstein B, Fraser WD, Julien P, Montoudis A, Spahis S, Xiao L, Nuyt AM, Luo ZC. Longitudinal circulating concentrations of long-chain polyunsaturated fatty acids in the third trimester of pregnancy in gestational diabetes. Diabet Med 2016; 33:939-46. [PMID: 26433139 DOI: 10.1111/dme.12978] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
Abstract
AIM Gestational diabetes mellitus is a common complication of pregnancy. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for fetal neurodevelopment. Docosahexaenoic acid (DHA) is the predominant n-3 LCPUFA in the brain and retina. Circulating absolute concentrations of total n-3 and n-6 LCPUFAs rise during normal pregnancy. It remains unclear whether gestational diabetes may affect the normal rise in circulating concentrations of LCPUFAs in the third trimester of pregnancy - a period of rapid fetal neurodevelopment. This study aimed to address this question. METHODS In a prospective singleton pregnancy cohort, fatty acids in fasting plasma total lipids were measured at 24-28 and 32-35 weeks of gestation in women with (n = 24) and without gestational diabetes mellitus (n = 116). Fatty acid desaturase activity indices were estimated by relevant product-to-precursor fatty acid ratios. Dietary nutrient intakes were estimated by a food frequency questionnaire. RESULTS Plasma absolute concentrations of total n-6 LCPUFAs rose significantly between 24-28 and 32-35 weeks of gestation in women with or without gestational diabetes, whereas total n-3 LCPUFAs and DHA concentrations rose significantly only in women without gestational diabetes (all P < 0.01). Delta-5 desaturase indices (20:4n-6/20:3n-6) were similar, but delta-6 desaturase indices (18:3n-6/18:2n-6) were significantly lower in women with gestational diabetes at 32-35 weeks of gestation. Dietary intakes of all fatty acids were comparable. CONCLUSION The normal rise in circulating absolute concentrations of DHA and total n-3 LCPUFAs in the third trimester of pregnancy may be compromised in gestational diabetes, probably due to impaired synthesis or mobilization rather than dietary intake difference.
Collapse
Affiliation(s)
- J P Zhao
- Department of Obstetrics and Gynecology, Sainte Justine Hospital Research Centre, University of Montreal, Canada
| | - E Levy
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | - B Shatenstein
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | - W D Fraser
- Department of Obstetrics and Gynecology, Sainte Justine Hospital Research Centre, University of Montreal, Canada
- Department of Obstetrics and Gynecology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - P Julien
- Molecular and Oncologic Endocrinology and Human Genomics Research Center, University Hospital Research Center, Laval University, Quebec City, Canada
| | - A Montoudis
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | - S Spahis
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | - L Xiao
- Department of Obstetrics and Gynecology, Sainte Justine Hospital Research Centre, University of Montreal, Canada
| | - A M Nuyt
- Department of Pediatrics, Sainte Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Z C Luo
- Department of Obstetrics and Gynecology, Sainte Justine Hospital Research Centre, University of Montreal, Canada
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Judge MP, Casavant SG, Dias JAM, McGrath JM. Reduced DHA transfer in diabetic pregnancies: mechanistic basis and long-term neurodevelopmental implications. Nutr Rev 2016; 74:411-20. [PMID: 27142302 DOI: 10.1093/nutrit/nuw006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infants born to diabetic mothers have a higher frequency of impaired neurodevelopment. The omega-3 or n-3 fatty acid docosahexaenoic acid (DHA) is an important structural component of neural tissue and is critical for fetal brain development. Maternal DHA supplementation during pregnancy is linked to better infant neurodevelopment; however, maternal-fetal transfer of DHA is reduced in women with diabetes. Evidence of mechanisms explaining altered maternal-fetal DHA transfer in this population is limited. This review explores existing evidence underpinning reduced maternal-fetal DHA transfer in maternal fuel metabolism in this population. Further research is necessary to evaluate the role of peroxisome proliferator-activated receptors in modulating placental fatty acid binding and maternal-fetal DHA transfer. Considerations for clinical practice include a diet high in DHA and/or provision of supplemental DHA to obstetric diabetic patients within minimum guidelines.
Collapse
Affiliation(s)
- Michelle P Judge
- M.P Judge, S.G. Casavant, J.A.M. Dias, and J.M. McGrath are with the University of Connecticut, School of Nursing, Storrs, Connecticut, USA. J.M. McGrath and S.G. Casavant are with the Connecticut Children's Medical Center, Hartford, Connecticut, USA.J.A.M. Dias is with the Nursing Department, Federal University of Ceará, Fortaleza Ceará, Brazil.
| | - Sharon G Casavant
- M.P Judge, S.G. Casavant, J.A.M. Dias, and J.M. McGrath are with the University of Connecticut, School of Nursing, Storrs, Connecticut, USA. J.M. McGrath and S.G. Casavant are with the Connecticut Children's Medical Center, Hartford, Connecticut, USA.J.A.M. Dias is with the Nursing Department, Federal University of Ceará, Fortaleza Ceará, Brazil
| | - Juliana A M Dias
- M.P Judge, S.G. Casavant, J.A.M. Dias, and J.M. McGrath are with the University of Connecticut, School of Nursing, Storrs, Connecticut, USA. J.M. McGrath and S.G. Casavant are with the Connecticut Children's Medical Center, Hartford, Connecticut, USA.J.A.M. Dias is with the Nursing Department, Federal University of Ceará, Fortaleza Ceará, Brazil
| | - Jacqueline M McGrath
- M.P Judge, S.G. Casavant, J.A.M. Dias, and J.M. McGrath are with the University of Connecticut, School of Nursing, Storrs, Connecticut, USA. J.M. McGrath and S.G. Casavant are with the Connecticut Children's Medical Center, Hartford, Connecticut, USA.J.A.M. Dias is with the Nursing Department, Federal University of Ceará, Fortaleza Ceará, Brazil
| |
Collapse
|
33
|
Calabuig-Navarro V, Puchowicz M, Glazebrook P, Haghiac M, Minium J, Catalano P, Hauguel deMouzon S, O’Tierney-Ginn P. Effect of ω-3 supplementation on placental lipid metabolism in overweight and obese women. Am J Clin Nutr 2016; 103:1064-72. [PMID: 26961929 PMCID: PMC4807706 DOI: 10.3945/ajcn.115.124651] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The placentas of obese women accumulate lipids that may alter fetal lipid exposure. The long-chain omega-3 fatty acids (n–3 FAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) alter FA metabolism in hepatocytes, although their effect on the placenta is poorly understood. OBJECTIVE We aimed to investigate whether n–3 supplementation during pregnancy affects lipid metabolism in the placentas of overweight and obese women at term. DESIGN A secondary analysis of a double-blind randomized controlled trial was conducted in healthy overweight and obese pregnant women who were randomly assigned to DHA plus EPA (2 g/d) or placebo twice a day from early pregnancy to term. Placental FA uptake, esterification, and oxidation pathways were studied by measuring the expression of key genes in the placental tissue of women supplemented with placebo and n–3 and in vitro in isolated trophoblast cells in response to DHA and EPA treatment. RESULTS Total lipid content was significantly lower in the placentas of overweight and obese women supplemented with n–3 FAs than in those supplemented with placebo (14.14 ± 1.03 compared with 19.63 ± 1.45 mg lipid/g tissue; P < 0.05). The messenger RNA expression of placental FA synthase (FAS) and diacylglycerol O-acyltransferase 1 (DGAT1) was negatively correlated with maternal plasma enrichment in DHA and EPA (P < 0.05). The expression of placental peroxisome proliferator–activated receptor γ (r = −0.39, P = 0.04) and its target genes DGAT1 (r = −0.37, P = 0.02) and PLIN2 (r = −0.38, P = 0.04) significantly decreased, with an increasing maternal n–3:n–6 ratio (representing the n–3 status) near the end of pregnancy. The expression of genes that regulate FA oxidation or uptake was not changed. Birth weight and length were significantly higher in the offspring of n–3-supplemented women than in those in the placebo group (P < 0.05), but no differences in the ponderal index were observed. Supplementation of n–3 significantly decreased FA esterification in isolated trophoblasts without affecting FA oxidation. CONCLUSION Supplementing overweight and obese women with n–3 FAs during pregnancy inhibited the ability of the placenta to esterify and store lipids. This trial was registered at clinicaltrials.gov as NCT00957476.
Collapse
Affiliation(s)
| | | | | | - Maricela Haghiac
- Department of Reproductive Biology, MetroHealth Medical Center, and
| | - Judi Minium
- Department of Reproductive Biology, MetroHealth Medical Center, and
| | - Patrick Catalano
- Department of Reproductive Biology, MetroHealth Medical Center, and
| | | | - Perrie O’Tierney-Ginn
- Department of Reproductive Biology, MetroHealth Medical Center, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Prieto-Sánchez MT, Ruiz-Palacios M, Blanco-Carnero JE, Pagan A, Hellmuth C, Uhl O, Peissner W, Ruiz-Alcaraz AJ, Parrilla JJ, Koletzko B, Larqué E. Placental MFSD2a transporter is related to decreased DHA in cord blood of women with treated gestational diabetes. Clin Nutr 2016; 36:513-521. [PMID: 26869380 DOI: 10.1016/j.clnu.2016.01.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 12/28/2015] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND & AIMS Maternal-fetal transfer of docosahexaenoic acid (DHA) is impaired by gestational diabetes mellitus (GDM), but the underlying mechanisms are still unknown. MFSD2a was recently recognized as a lyso-phospholipid (lyso-PL) transporter that facilitates DHA accretion in brain. The role of this transporter in placenta is uncertain. We evaluated effects of GDM and its treatment (diet or insulin) on phospholipid species, fatty acid profile in women, cord blood and placental fatty acid carriers. METHODS Prospective observational study of pregnant women recruited in the third trimester (25 controls, 23 GDM-diet, 20 GDM-insulin). Fetal ultrasound was performed at gestational week 38. At delivery, maternal and neonatal anthropometry was performed, and fatty acids in total lipids and phospholipid species were analyzed in placenta, maternal and venous cord blood. Western-blot analyses were performed for placental fatty acid carriers. RESULTS Fetal abdominal circumference z-score at 38 weeks tended to higher values in GDM (P = 0.071), pointing toward higher fetal fat accretion in these babies. DHA percentage in cord serum total lipids (P = 0.029) and lyso-PL (P = 0.169) were reduced in GDM. Placental MFSD2a was reduced in both GDM groups and was positively correlated to DHA values in cord serum total lipids (r = 0.388, P = 0.003). Among established placental lipid carriers, only FATP4 was correlated to DHA concentration in placental lyso-PL. In all compartments, DHA percentage was inversely correlated to fetal abdominal circumference. CONCLUSIONS In offspring of women with GDM treated either with diet or insulin, higher fetal fat accretion and lower placental MFSD2a contribute to reduce DHA availability. Lyso-PL appear to contribute to materno-fetal DHA transport.
Collapse
Affiliation(s)
- María T Prieto-Sánchez
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Spain
| | - María Ruiz-Palacios
- Department of Physiology, Faculty of Biology, Campus Mare Nostrum, University of Murcia, Spain
| | - José E Blanco-Carnero
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Spain
| | - Ana Pagan
- Department of Physiology, Faculty of Biology, Campus Mare Nostrum, University of Murcia, Spain
| | - Christian Hellmuth
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, München, Germany
| | - Olaf Uhl
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, München, Germany
| | - Wolfgang Peissner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, München, Germany
| | - Antonio J Ruiz-Alcaraz
- Department of Biochemistry, Molecular Biology B and Immunology, University of Murcia, Spain
| | - Juan J Parrilla
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Spain
| | - Berthold Koletzko
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, München, Germany
| | - Elvira Larqué
- Department of Physiology, Faculty of Biology, Campus Mare Nostrum, University of Murcia, Spain.
| |
Collapse
|
35
|
Min Y, Djahanbakhch O, Hutchinson J, Eram S, Bhullar AS, Namugere I, Ghebremeskel K. Efficacy of docosahexaenoic acid-enriched formula to enhance maternal and fetal blood docosahexaenoic acid levels: Randomized double-blinded placebo-controlled trial of pregnant women with gestational diabetes mellitus. Clin Nutr 2015; 35:608-14. [PMID: 26091965 DOI: 10.1016/j.clnu.2015.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 05/15/2015] [Accepted: 05/31/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND & AIMS Gestational diabetes mellitus (GDM) compromises the level of docosahexaenoic acid (DHA) in phospholipids of maternal and fetal red blood cells and fetal plasma. This is of some concern because of the importance of DHA for fetal neuro-visual development. We have investigated whether this abnormality could be rectified by supplementation with DHA-enriched formula. METHODS Women with GDM (n = 138) recruited from Newham University Hospital, London received two capsules of DHA-enriched formula (active-group) or high oleic acid sunflower seed oil (placebo-group) from diagnosis until delivery. Maternal (baseline and delivery) and fetal (cord blood) red blood cell and plasma phospholipid fatty acid composition, and neonatal anthropometry were assessed. RESULTS One hundred and fourteen women (58 active, 56 placebo) completed the trial. The active-group compared with the placebo-group had significantly enhanced level of DHA in plasma phosphatidylcholine (4.5% vs 3.8%, P = 0.011), red blood cell phosphatidylcholine (2.7% vs 2.2%, P = 0.022) and phosphatidylethoanolamine (9.5% vs 7.6%, P = 0.002). There was no difference in cord plasma and red blood cell phospholipid DHA between the two groups. The neonates of the two groups of women had comparable anthropometric measurements at birth. CONCLUSION Daily supplementation of 600 mg DHA enhances maternal but not fetal DHA status in pregnancy complicated by GDM. The inefficacy of the supplement to improve fetal status suggests that the transfer of DHA across the placenta maybe impaired in women with the condition. Regardless of the mechanisms responsible for the impairment of the transfer, the finding has implications for the management of neonates of women with GDM because they are born with a reduced level of DHA and the condition is thought to be associated with a risk of neuro-developmental deficits. We suggest that babies of women with GDM, particularly those not suckling, similar to the babies born prematurely require formula milk fortified with a higher level of DHA.
Collapse
Affiliation(s)
- Yoeju Min
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, UK.
| | - Ovrang Djahanbakhch
- Newham University Hospital National Health Service Trust, London, UK; Academic Department of Women's Health, Queen Mary's School of Medicine, University of London, London, UK
| | - Joanne Hutchinson
- Newham University Hospital National Health Service Trust, London, UK; Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, UK
| | - Sofia Eram
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, UK
| | - Amritpal S Bhullar
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, UK
| | - Irene Namugere
- Newham University Hospital National Health Service Trust, London, UK
| | - Kebreab Ghebremeskel
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, UK
| |
Collapse
|
36
|
Araújo JR, Keating E, Martel F. Impact of gestational diabetes mellitus in the maternal-to-fetal transport of nutrients. Curr Diab Rep 2015; 15:569. [PMID: 25620402 DOI: 10.1007/s11892-014-0569-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder prevalent among pregnant women. This disease increases the risk of adverse perinatal outcomes and diseases in the offspring later in life. The human placenta, the main interface between the maternal and fetal blood circulations, is responsible for the maternal-to-fetal transfer of nutrients essential for fetal growth and development. In this context, the aim of this article is to review the latest advances in the placental transport of macro and micronutrients and how they are affected by GDM and its associated conditions, such as elevated levels of glucose, insulin, leptin, inflammation, and oxidative stress. Data analyzed in this article suggest that GDM and its associated conditions, particularly high levels of glucose, leptin, and oxidative stress, disturb placental nutrient transport and, consequently, fetal nutrient supply. As a consequence, this disturbance may contribute to the fetal and postnatal adverse health outcomes associated with GDM.
Collapse
Affiliation(s)
- João Ricardo Araújo
- Department of Biochemistry, Faculty of Medicine of Porto, University of Porto, 4200-319, Porto, Portugal,
| | | | | |
Collapse
|
37
|
Min Y, Djahanbakhch O, Hutchinson J, Bhullar AS, Raveendran M, Hallot A, Eram S, Namugere I, Nateghian S, Ghebremeskel K. Effect of docosahexaenoic acid-enriched fish oil supplementation in pregnant women with Type 2 diabetes on membrane fatty acids and fetal body composition--double-blinded randomized placebo-controlled trial. Diabet Med 2014; 31:1331-40. [PMID: 24925713 DOI: 10.1111/dme.12524] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/16/2014] [Accepted: 06/09/2014] [Indexed: 01/05/2023]
Abstract
AIMS To test if docosahexaenoic acid-enriched fish oil supplementation rectifies red cell membrane lipid anomaly in pregnant women with Type 2 diabetes and their neonates, and alters fetal body composition. METHODS Women with Type 2 diabetes (n = 88; 41 fish oil, 47 placebo) and healthy women (n = 85; 45 fish oil, 40 placebo) were supplemented from the first trimester until delivery. Blood fatty acid composition, fetal biometric and neonatal anthropometric measurements were assessed. RESULTS A total of 117 women completed the trial. The women with Type 2 diabetes who took fish oil compared with those who received placebo had higher percentage of docosahexaenoic acid in red cell phosphatidylethanolamine in the third trimester (12.0% vs. 8.9%, P = 0.000) and at delivery (10.7% vs. 7.4%, P = 0.001). Similarly, the neonates of the women with Type 2 diabetes supplemented with the fish oil had increased docosahexaenoic acid in the red cell phosphatidylethanolamine (9.2% vs. 7.7%, P = 0.027) and plasma phosphatidylcholine (6.1% vs. 4.7%, P = 0.020). Docosahexaenoic acid-rich fish oil had no effect on the body composition of the fetus and neonates of the women with Type 2 diabetes. CONCLUSIONS A daily dose of 600 mg of docosahexaenoic acid was effective in ameliorating red cell membrane docosahexaenoic acid anomaly in pregnant women with Type 2 diabetes and neonates, and in preventing the decline of maternal docosahexaenoic acid during pregnancy. We suggest that the provision of docosahexaenoic acid supplement should be integrated in the antenatal care of pregnant women with Type 2 diabetes.
Collapse
Affiliation(s)
- Y Min
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Larqué E, Pagán A, Prieto MT, Blanco JE, Gil-Sánchez A, Zornoza-Moreno M, Ruiz-Palacios M, Gázquez A, Demmelmair H, Parrilla JJ, Koletzko B. Placental fatty acid transfer: a key factor in fetal growth. ANNALS OF NUTRITION AND METABOLISM 2014; 64:247-53. [PMID: 25300267 DOI: 10.1159/000365028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The functionality of the placenta may affect neonatal adiposity and fetal levels of key nutrients such as long-chain polyunsaturated fatty acids. Fetal macrosomia and its complications may occur even in adequately controlled gestational diabetic (GDM) mothers, suggesting that maternal glycemia is not the only determinant of fetal glycemic status and wellbeing. We studied in vivo the placental transfer of fatty acids (FA) labeled with stable isotopes administered to 11 control and 9 GDM pregnant women (6 treated with insulin). Subjects received orally ¹³C-palmitic, ¹³C-oleic, and ¹³C-linoleic acids and ¹³C-docosahexaenoic acid (¹³C-DHA) 12 h before an elective caesarean section. FA were quantified by gas chromatography and ¹³C enrichments by gas chromatography-isotope ratio mass spectrometry. The ¹³C-FA concentration was higher in total lipids of maternal plasma in GDM patients versus controls, except for ¹³C-DHA. Moreover, ¹³C-DHA showed a lower placenta/maternal plasma ratio in GDM patients versus controls and a significantly lower cord/maternal plasma ratio. Other FA ratios studied were not different between GDM and controls. A disturbed ¹³C-DHA placental uptake occurred in GDM patients treated with diet or insulin, while the latter also had lower ¹³C-DHA levels in the venous cord. The tracer study pointed towards an impaired placental DHA uptake as a critical step, while the transfer of other ¹³C-FA was less affected. Patients with GDM treated with insulin could also have a greater fetal fat storage, which may have contributed to the reduced ¹³C-DHA in the venous cord observed. The DHA transfer to the fetus was reduced in GDM pregnancies compared to controls. This might have an influence on fetal neurodevelopment and long-term consequences for the child.
Collapse
Affiliation(s)
- Elvira Larqué
- Department of Physiology, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhao JP, Levy E, Fraser WD, Julien P, Delvin E, Montoudis A, Spahis S, Garofalo C, Nuyt AM, Luo ZC. Circulating docosahexaenoic acid levels are associated with fetal insulin sensitivity. PLoS One 2014; 9:e85054. [PMID: 24454790 PMCID: PMC3890289 DOI: 10.1371/journal.pone.0085054] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/21/2013] [Indexed: 01/22/2023] Open
Abstract
Background Arachidonic acid (AA; C20∶4 n-6) and docosahexaenoic acid (DHA; C22∶6 n-3) are important long-chain polyunsaturated fatty acids (LC-PUFA) in maintaining pancreatic beta-cell structure and function. Newborns of gestational diabetic mothers are more susceptible to the development of type 2 diabetes in adulthood. It is not known whether low circulating AA or DHA is involved in perinatally “programming” this susceptibility. This study aimed to assess whether circulating concentrations of AA, DHA and other fatty acids are associated with fetal insulin sensitivity or beta-cell function, and whether low circulating concentrations of AA or DHA are involved in compromised fetal insulin sensitivity in gestational diabetic pregnancies. Methods and Principal Findings In a prospective singleton pregnancy cohort, maternal (32-35 weeks gestation) and cord plasma fatty acids were assessed in relation to surrogate indicators of fetal insulin sensitivity (cord plasma glucose-to-insulin ratio, proinsulin concentration) and beta-cell function (proinsulin-to-insulin ratio) in 108 mother-newborn pairs. Cord plasma DHA levels (in percentage of total fatty acids) were lower comparing newborns of gestational diabetic (n = 24) vs. non-diabetic pregnancies (2.9% vs. 3.5%, P = 0.01). Adjusting for gestational age at blood sampling, lower cord plasma DHA levels were associated with lower fetal insulin sensitivity (lower glucose-to-insulin ratio, r = 0.20, P = 0.036; higher proinsulin concentration, r = −0.37, P <0.0001). The associations remained after adjustment for maternal and newborn characteristics. Cord plasma saturated fatty acids C18∶0 and C20∶0 were negatively correlated with fetal insulin sensitivity, but their levels were not different between gestational diabetic and non-diabetic pregnancies. Cord plasma AA levels were not correlated with fetal insulin sensitivity. Conclusion Low circulating DHA levels are associated with compromised fetal insulin sensitivity, and may be involved in perinatally “programming” the susceptibility to type 2 diabetes in the offspring of gestational diabetic mothers.
Collapse
Affiliation(s)
- Jin-Ping Zhao
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, Canada
| | - Emile Levy
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | - William D. Fraser
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, Canada
| | - Pierre Julien
- Endocrinology and Nephrology, Laval University Hospital Research Centre, and Department of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Edgard Delvin
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Alain Montoudis
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | - Carole Garofalo
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | - Anne Monique Nuyt
- Department of Pediatrics, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Zhong-Cheng Luo
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, Canada
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
40
|
Pagán A, Prieto-Sánchez MT, Blanco-Carnero JE, Gil-Sánchez A, Parrilla JJ, Demmelmair H, Koletzko B, Larqué E. Materno-fetal transfer of docosahexaenoic acid is impaired by gestational diabetes mellitus. Am J Physiol Endocrinol Metab 2013; 305:E826-33. [PMID: 23921142 DOI: 10.1152/ajpendo.00291.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Better knowledge on the disturbed mechanisms implicated in materno-fetal long-chain polyunsaturated fatty acid (LC-PUFA) transfer in pregnancies with gestational diabetes mellitus (GDM) may have potentially high implications for later on in effective LC-PUFA supplementation. We studied in vivo placental transfer of fatty acids (FA) using stable isotope tracers administrated to 11 control and 9 GDM pregnant women (6 treated with insulin). Subjects received orally [(13)C]palmitic, [(13)C]oleic and [(13)C]linoleic acids, and [(13)C]docosahexaenoic acid ((13)C-DHA) 12 h before elective caesarean section. Maternal blood samples were collected at -12, -3, -2, and -1 h, delivery, and +1 h. Placental tissue and venous cord blood were also collected. FA were quantified by gas chromatography (GC) and (13)C enrichments by GC-isotope ratio mass spectrometry. [(13)C]FA concentration was higher in total lipids of maternal plasma in GDM vs. controls, except for [(13)C]DHA. Moreover, [(13)C]DHA showed lower placenta/maternal plasma ratio in GDM vs. controls and significantly lower cord/maternal plasma ratio. For the other studied FA, ratios were not different between GDM and controls. Disturbed [(13)C]DHA placental uptake occurs in both GDM treated with diet or insulin, whereas the last ones also have lower [(13)C]DHA in venous cord. The tracer study pointed toward impaired placental DHA uptake as critical step, whereas the transfer of the rest of [(13)C]FA was less affected. GDM under insulin treatment could also have higher fetal fat storage, contributing to reduce [(13)C]DHA in venous cord. DHA transfer to the fetus was reduced in GDM pregnancies compared with controls, which might affect the programming of neurodevelopment in their neonates.
Collapse
Affiliation(s)
- Ana Pagán
- Physiology Department, Faculty of Biology, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Placental nutrient uptake and transfer may have a unique role, as changes in trophoblast nutrient-sensing signaling pathways regulate cell metabolism and may affect the fetal growth and health programming in the offspring. RECENT FINDINGS The functionality of the placenta could affect the neonatal adiposity and the fetal levels of key nutrients such as long-chain polyunsaturated fatty acids. Insulin, oxygen and amino acid concentrations may regulate the mammalian target of rapamycin (mTOR) nutrient sensor in the human placenta affecting trophoblast metabolism and nutrient delivery. SUMMARY The mechanisms involved in both placental uptake and transfer of macronutrients are reviewed. Fatty acid, cholesterol and amino acid transport across the placenta involves a complex system to ensure nutrient delivery to the growing fetus. The placental glucose transfer is important for fetal macrosomia, but lipid disturbances in both maternal and placental compartments may contribute to neonatal fat accretion. Maternal insulin has little effect on the avidity of glucose transport by the placenta, but may interfere in placental metabolism via mTOR nutrient sensor. mTOR is a positive regulator of the amino acid carriers and constitutes a critical link between maternal nutrient availability and fetal growth, thereby influencing the long-term health of the fetus.
Collapse
Affiliation(s)
- Elvira Larqué
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain.
| | | | | |
Collapse
|
42
|
Brass E, Hanson E, O'Tierney-Ginn PF. Placental oleic acid uptake is lower in male offspring of obese women. Placenta 2013; 34:503-9. [PMID: 23602336 DOI: 10.1016/j.placenta.2013.03.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/26/2013] [Accepted: 03/23/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The fetus is dependent on the placenta for its supply of long chain polyunsaturated fatty acids (LCPUFA), which are essential in fetal growth and development. Previous work suggests that high maternal body mass index (BMI) inhibits fetal LCPUFA delivery and males have greater fatty acid requirements than females during development. We hypothesized that male placental fatty acid uptake would be more sensitive to maternal BMI compared to females. METHODS Term placental samples were collected from healthy women receiving Cesarean section (n = 38). Placental fatty acid transporter and binding protein gene expression and uptake of oleic acid (OA), arachidonic acid, (AA) and docosahexanoic acid (DHA) were measured. Two-way ANOVA was used to assess the effects of fetal sex and maternal overweight/obesity (BMI >26 kg/m2). RESULTS Placental fatty acid uptake of OA was 43% lower in male offspring and 73% higher in female offspring of obese compared to normal BMI women (P < 0.05). The interaction between fetal sex and maternal BMI had a significant effect on both OA (P = 0.002) and AA uptake (P = 0.01). DHA uptake was not affected by fetal sex or maternal obesity. Placental fatty acid transporter CD36 and binding protein FABP5 gene expression levels were lower in male offspring of obese mothers but were not affected by BMI among females. CONCLUSION Maternal obesity and fetal sex significantly affect the placental uptake of oleate and arachidonate. Placental fatty acid uptake in both male and female fetuses is sensitive to maternal BMI, but males may have inadequate acquisition of the unsaturated fatty acid OA, when exposed to maternal obesity.
Collapse
Affiliation(s)
- E Brass
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA.
| | | | | |
Collapse
|
43
|
Gaccioli F, Lager S, Powell TL, Jansson T. Placental transport in response to altered maternal nutrition. J Dev Orig Health Dis 2013; 4:101-15. [PMID: 25054676 PMCID: PMC4237017 DOI: 10.1017/s2040174412000529] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mechanisms linking maternal nutrition to fetal growth and programming of adult disease remain to be fully established. We review data on changes in placental transport in response to altered maternal nutrition, including compromized utero-placental blood flow. In human intrauterine growth restriction and in most animal models involving maternal undernutrition or restricted placental blood flow, the activity of placental transporters, in particular for amino acids, is decreased in late pregnancy. The effect of maternal overnutrition on placental transport remains largely unexplored. However, some, but not all, studies in women with diabetes giving birth to large babies indicate an upregulation of placental transporters for amino acids, glucose and fatty acids. These data support the concept that the placenta responds to maternal nutritional cues by altering placental function to match fetal growth to the ability of the maternal supply line to allocate resources to the fetus. On the other hand, some findings in humans and mice suggest that placental transporters are regulated in response to fetal demand signals. These observations are consistent with the idea that fetal signals regulate placental function to compensate for changes in nutrient availability. We propose that the placenta integrates maternal and fetal nutritional cues with information from intrinsic nutrient sensors. Together, these signals regulate placental growth and nutrient transport to balance fetal demand with the ability of the mother to support pregnancy. Thus, the placenta plays a critical role in modulating maternal-fetal resource allocation, thereby affecting fetal growth and the long-term health of the offspring.
Collapse
Affiliation(s)
- F Gaccioli
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| | - S Lager
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| | - T L Powell
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| | - T Jansson
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
44
|
Maternal consumption of a DHA-containing functional food benefits infant sleep patterning: an early neurodevelopmental measure. Early Hum Dev 2012; 88:531-7. [PMID: 22269042 DOI: 10.1016/j.earlhumdev.2011.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/13/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Docosahexaenoic acid (DHA; 22:6n-3) is highly important during pregnancy for optimal development and functioning of fetal neural tissue. Infant ability to organize sleep and wake states following parturition is highly associated with later developmental outcomes. The impact of maternal DHA intake on sleep organization has not been previously investigated. AIMS To examine the effect of a DHA-containing functional food consumed during pregnancy on early neurobehavioral development as assessed by infant sleep patterning in the first 48 postnatal hours. STUDY DESIGN A longitudinal, randomized, double-blinded, placebo-controlled design was used. SUBJECTS Women (18-35 y) with no pregnancy complications consumed a cereal-based functional food (92 kcal) containing 300 mg DHA an average of 5 d/week or placebo bars (n=27 DHA, n=21 Placebo). The intervention began at 24 weeks gestation and continued until delivery (38-40 weeks). OUTCOME MEASURES Infant sleep/wake states were measured on postnatal days 1 (D1) and 2 (D2) using a pressure sensitive mattress recording respiration and body movements. RESULTS Using ANCOVA and controlling for ethnic variation, there were significant group differences in arousals in quiet sleep on D1 (P=0.006) and D2 (P=0.011) with fewer arousals in the DHA intervention group compared to the placebo group. Similarly, arousals in active sleep on D1 were significantly lower in the DHA-intervention group (P=0.012) compared to the placebo group. CONCLUSIONS We conclude that increased prenatal supply of dietary DHA has a beneficial impact on infant sleep organization.
Collapse
|
45
|
Sandovici I, Hoelle K, Angiolini E, Constância M. Placental adaptations to the maternal-fetal environment: implications for fetal growth and developmental programming. Reprod Biomed Online 2012; 25:68-89. [PMID: 22560117 DOI: 10.1016/j.rbmo.2012.03.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 12/16/2022]
Abstract
The placenta is a transient organ found in eutherian mammals that evolved primarily to provide nutrients for the developing fetus. The placenta exchanges a wide array of nutrients, endocrine signals, cytokines and growth factors with the mother and the fetus, thereby regulating intrauterine development. Recent studies show that the placenta is not just a passive organ mediating maternal-fetal exchange. It can adapt its capacity to supply nutrients in response to intrinsic and extrinsic variations in the maternal-fetal environment. These dynamic adaptations are thought to occur to maximize fetal growth and viability at birth in the prevailing conditions in utero. However, some of these adaptations may also affect the development of individual fetal tissues, with patho-physiological consequences long after birth. Here, this review summarizes current knowledge on the causes, possible mechanisms and consequences of placental adaptive responses, with a focus on the regulation of transporter-mediated processes for nutrients. This review also highlights the emerging roles that imprinted genes and epigenetic mechanisms of gene regulation may play in placental adaptations to the maternal-fetal environment.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories, Department of Obstetrics and Gynaecology, University of Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The amount and activity of placental enzymes, receptors, and transport proteins will determine the extent of lipid transfer to the fetus that strongly contributes to fetal fat accretion. RECENT FINDINGS Several studies have shown an association between the percentage of maternal plasma docosahexaenoic acid during gestation and the development of cognitive functions in the neonate. The functionality of the placenta could affect neonatal adiposity and fetal levels of long-chain polyunsaturated fatty acids in the offspring. SUMMARY Both in-vitro and human in-vivo studies using labeled fatty acids (FAs) reported a preferential placental-fetal transfer of long-chain polyunsaturated fatty acids, although the mechanisms are still uncertain. The placenta uptakes the maternal circulating nonesterified fatty acids (NEFAs) and FAs released by maternal lipoprotein lipase and endothelial lipase. These NEFAs enter the cell through passive diffusion or by membrane carrier proteins. NEFAs bind to cytosolic fatty-acid-binding proteins to interact with subcellular organelles, including the endoplasmic reticulum, mitochondria, lipid droplets and peroxisomes. Knowledge about FA metabolism and adaptations in response to obesity or diabetes in human placenta is more limited, and contradictory results are available in their influence on placental lipases and carriers.
Collapse
Affiliation(s)
- Alfonso Gil-Sánchez
- Service of Gynecology and Obstetrics, Virgen de la Arrixaca Hospital, Murcia, Spain
| | | | | |
Collapse
|
47
|
Larqué E, Demmelmair H, Gil-Sánchez A, Prieto-Sánchez MT, Blanco JE, Pagán A, Faber FL, Zamora S, Parrilla JJ, Koletzko B. Placental transfer of fatty acids and fetal implications. Am J Clin Nutr 2011; 94:1908S-1913S. [PMID: 21562082 DOI: 10.3945/ajcn.110.001230] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Considerable amounts of long-chain polyunsaturated fatty acids (LC-PUFAs), particularly arachidonic acid and docosahexaenoic acid (DHA, 22:6n-3), are deposited in fetal tissues during pregnancy; and this process is facilitated by placental delivery. Nevertheless, the mechanisms involved in LC-PUFA placental transfer remain unclear. Stable isotope techniques have been used to study human placental fatty acid transfer in vivo. These studies have shown a significantly higher ratio of (13)C-DHA in cord to maternal plasma compared with other fatty acids, which reflects a higher placental DHA transfer. In addition, a selective DHA accumulation in placental tissue, relative to other fatty acids, has been reported. The materno-fetal transfer of fatty acids is a slow process that requires ≥12 h. A high incorporation of dietary (13)C-DHA into maternal plasma phospholipids appears to be important for placental uptake and transfer. DHA in cord blood lipids correlates with placental messenger RNA expression of fatty acid transport protein (FATP)-4, compatible with a role of FATP-4 in DHA transfer. Impaired materno-fetal LC-PUFA transport has been proposed in pregnancies complicated by abnormal placental function (eg, due to gestational diabetes mellitus or intrauterine growth restriction), which should be addressed in future studies. Given that placental DHA transfer is important for child outcomes, elucidation of its potential modulation by transport mechanisms, maternal diet, and disease appears to be important.
Collapse
Affiliation(s)
- Elvira Larqué
- Department of Physiology, School of Biology, University of Murcia, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gil-Sánchez A, Demmelmair H, Parrilla JJ, Koletzko B, Larqué E. Mechanisms involved in the selective transfer of long chain polyunsaturated Fatty acids to the fetus. Front Genet 2011; 2:57. [PMID: 22303352 PMCID: PMC3268610 DOI: 10.3389/fgene.2011.00057] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/16/2011] [Indexed: 01/09/2023] Open
Abstract
The concentration of long chain polyunsaturated fatty acid (LCPUFA) in the fetal brain increases dramatically from the third trimester until 18 months of life. Several studies have shown an association between the percentage of maternal plasma docosahexaenoic acid (DHA) during gestation and development of cognitive functions in the neonate. Since only very low levels of LCPUFA are synthesized in the fetus and placenta, their primary source for the fetus is the maternal circulation. Both in vitro and human in vivo studies using labeled fatty acids have shown preferential transfer of LCPUFA from the placenta to the fetus compared with other fatty acids, although the mechanisms involved are still uncertain. The placenta takes up circulating maternal non-esterified fatty acids (NEFA) and fatty acids released mainly by maternal lipoprotein lipase and endothelial lipase. These NEFA may enter the cell by passive diffusion or by means of membrane carrier proteins. Once in the cytosol, NEFA bind to cytosolic fatty acid-binding proteins for transfer to the fetal circulation or can be oxidized within the trophoblasts, and even re-esterified and stored in lipid droplets. Although trophoblast cells are not specialized for lipid storage, LCPUFA may up-regulate peroxisome proliferator activated receptor-γ (PPARγ) and hence the gene expression of fatty acid transport carriers, fatty acid acyl-CoA-synthetases and adipophilin or other enzymes involved in lipolysis, modifying the rate of placental transfer, and metabolism. The placental transfer of LCPUFA during pregnancy seems to be a key factor in the neurological development of the fetus. Increased knowledge of the factors that modify placental transfer of fatty acids would contribute to our understanding of this complex process.
Collapse
Affiliation(s)
- Alfonso Gil-Sánchez
- Service of Gynecology and Obstetrics, Virgen de la Arrixaca Hospital Murcia, Spain
| | | | | | | | | |
Collapse
|
49
|
Maternal serum docosahexaenoic acid and schizophrenia spectrum disorders in adult offspring. Schizophr Res 2011; 128:30-6. [PMID: 21324652 PMCID: PMC3085558 DOI: 10.1016/j.schres.2011.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 11/21/2022]
Abstract
It is believed that during mid-to-late gestation, docosahexaenoic acid (DHA), an n-3 fatty acid, plays an important role in fetal and infant brain development, including neurocognitive and neuromotor functions. Deficits in several such functions have been associated with schizophrenia. Though sufficient levels of DHA appear to be important in neurodevelopment, elevated maternal DHA levels have also been associated with abnormal reproductive outcomes in both animal models and humans. Our objective was to assess whether a disturbance in maternal DHA levels, measured prospectively during pregnancy, was associated with risk of schizophrenia and other schizophrenia spectrum disorders (SSD) in adult offspring. In order to test the hypothesis that abnormal levels of DHA are associated with SSD, a case-control study nested within a large, population-based birth cohort, born from 1959 through 1967 and followed up for SSD from 1981 through 1997, was utilized. Maternal levels of both DHA and arachidonic acid (AA), an n-6 fatty acid, were analyzed in archived maternal sera from 57 cases of SSD and 95 matched controls. There was a greater than twofold increased risk of SSD among subjects exposed to maternal serum DHA in the highest tertile (OR=2.38, 95% CI=1.19, 4.76, p=0.01); no such relationship was found between AA and SSD. These findings suggest that elevated maternal DHA is associated with increased risk for the development of SSD in offspring.
Collapse
|
50
|
Consumption of a DHA-containing functional food during pregnancy is associated with lower infant ponderal index and cord plasma insulin concentration. Br J Nutr 2011; 106:208-12. [DOI: 10.1017/s0007114511000961] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DHA (22 : 6n-3) in pregnancy has previously been shown to benefit infant brain and retinal development. Fatty acid consumption during pregnancy may also have an impact on infant adipose tissue development. The objective of the present study was to assess the prenatal impact of a DHA-containing functional food (DHA-FF) on infant intra-uterine growth. This was a longitudinal, randomised, double-blinded, placebo-controlled trial. Pregnant women were assigned to consume a DHA-FF or placebo bar from 24 weeks' gestation until delivery. Blood samples were collected from mothers at baseline and delivery and from the umbilical cord at delivery. Plasma and erythrocyte fatty acids were analysed by GLC and plasma insulin concentrations were analysed using a commercially available ELISA kit. Infant birth weight and length were obtained at delivery and ponderal index (weight (g)/length (cm)3 × 100) was calculated. A total of forty-seven mothers completed the study. Infants of mothers consuming the DHA-FF during the last half of pregnancy had lower ponderal indices (β = 0·198, P < 0·05) and umbilical cord blood insulin concentrations (β = 0·743, P < 0·05) than infants of mothers consuming the placebo. Thus, DHA consumption during pregnancy may be advantageous with respect to infant body composition at birth and insulin sensitivity.
Collapse
|