1
|
Mahmoud AS, Sayed AEDH, Mahmoud UT, Mohammed AAA, Darwish MHA. Impact of zinc oxide nanoparticles on the behavior and stress indicators of African catfish (Clarias gariepinus) exposed to heat stress. BMC Vet Res 2024; 20:474. [PMID: 39420344 PMCID: PMC11484423 DOI: 10.1186/s12917-024-04302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
This study was designed to assess the role of nano-zinc oxide in mitigating the deleterious effects of heat stress in African catfish (Clarias gariepinus) by evaluating parameters such as aggressive behavior (biting frequency and chasing duration), hematological indicators, and stress-related biochemical markers. A total of 96 catfish were divided into four distinct groups (24 fish/group): The first group (CON) served as the control group, receiving a diet free of nano-zinc oxide. The second group (HS) was exposed to heat stress at 35 °C ± 1 °C. The third group (ZN) was fed a diet containing nano-zinc oxide at 30 mg/kg of the diet, and the fourth group (ZHN) was exposed to heat stress (35 °C ± 1 °C) and fed a diet containing nano-zinc oxide at 30 mg/kg of the diet. The results clarified that the aggressive behavior and cortisol levels were significantly higher (P < 0.05) in the HS group compared to the CON and ZHN groups. Additionally, the level of acetylcholinesterase (AChE) was significantly lower (P < 0.05) in the HS group compared to the CON and ZHN groups. Meanwhile, a significant (P < 0.05) decrease in red blood cells, hemoglobin, packed cell volume, white blood cells, alkaline phosphatase, and lymphocytes, was observed in fish belonging to the HS group, while the levels of alanine aminotransferase, aspartate aminotransferase, neutrophils, and monocytes showed a significant increase (P < 0.05). Supplementation with nano-zinc oxide significantly recovered most hematological and biochemical parameters. In conclusion, nano-zinc oxide contributed significantly to the regulation of the negative impacts of heat stress on fish by reducing aggressive behavior and cortisol levels. Additionally, it improved the levels of AChE and certain hematological and biochemical parameters.
Collapse
Affiliation(s)
- Amr Saber Mahmoud
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Alaa El Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt.
| | - Usama T Mahmoud
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A A Mohammed
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Animal Husbandry and Livestock Development, School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| | - Madeha H A Darwish
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Zahran E, Elbahnaswy S, Mansour AIA, Risha E, Mustafa A, Alqahtani AS, Sebaei MGE, Ahmed F. Dietary algal-sourced zinc nanoparticles promote growth performance, intestinal integrity, and immune response of Nile tilapia (Oreochromis niloticus). BMC Vet Res 2024; 20:276. [PMID: 38926724 PMCID: PMC11201375 DOI: 10.1186/s12917-024-04077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Trace elements play a crucial role in fish nutrition, with zinc (Zn) being one of the most important elements. BIO-sourced zinc nanoparticles were synthesized using the green microalga Pediastrum boryanum (BIO-ZnNPs, 29.35 nm). 30 or 60 mg/ kg dry feed of the BIO-ZnNPs (BIO-ZnNPs30 and BIO-ZnNPs60) were mixed with the Nile tilapia (Oreochromis niloticus) basal diet and fed to the fish for 8 weeks to evaluate their impact on fish growth, digestion, intestinal integrity, antioxidative status, and immunity. RESULTS A significant enhancement was observed in all investigated parameters, except for the serum protein profile. BIO-ZnNPs at 60 mg/kg feed elevated the activities of reduced glutathione (GSH) and catalase (CAT), enzymatic antioxidants, but did not induce oxidative stress as reflected by no change in MDA level. Fish intestinal immunity was improved in a dose-dependent manner, in terms of improved morphometry and a higher count of acid mucin-producing goblet cells. Interleukin-8 (IL-8) was upregulated in BIO-ZnNPs30 compared to BIO-ZnNPs60 and control fish groups, while no significant expressions were noted in tumor necrosis factor-alpha (TNFα), nuclear factor kappa B (NFkB), and Caspase3 genes. CONCLUSION Overall, BIO-ZnNPs inclusion at 60 mg/kg feed showed the most advantage in different scenarios, compared to BIO-ZnNPs at 30 mg/kg feed. The positive effects on growth and intestinal health suggest that BIO-ZnNPs supplementation of aquafeeds has many benefits for farmed fish.
Collapse
Affiliation(s)
- Eman Zahran
- Faculty of Veterinary Medicine, Department of Aquatic Animal Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Samia Elbahnaswy
- Faculty of Veterinary Medicine, Department of Aquatic Animal Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed I A Mansour
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516, Egypt
| | - Engy Risha
- Faculty of Veterinary Medicine, Department of Clinical Pathology, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Mustafa
- Department of Biological Sciences, Purdue University, Fort Wayne, Indiana, 46805, USA
| | - Arwa Sultan Alqahtani
- College of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia
| | - Mahmoud G El Sebaei
- College of Veterinary Medicine, Department of Biomedical Sciences, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma Ahmed
- Faculty of Science, Department of Zoology, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
3
|
Kumar N, Thorat ST, Gunaware MA, Kumar P, Reddy KS. Unraveling gene regulation mechanisms in fish: insights into multistress responses and mitigation through iron nanoparticles. Front Immunol 2024; 15:1410150. [PMID: 38947331 PMCID: PMC11211354 DOI: 10.3389/fimmu.2024.1410150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
The recent trend of global warming poses a significant threat to ecosystems worldwide. This global climate change has also impacted the pollution levels in aquatic ecosystems, subsequently affecting human health. To address these issues, an experiment was conducted to investigate the mitigating effects of iron nanoparticles (Fe-NPs) on arsenic and ammonia toxicity as well as high temperature stress (As+NH3+T). Fe-NPs were biologically synthesized using fish waste and incorporated into feed formulations at 10, 15, and 20 mg kg-1 diet. A total of 12 treatments were designed in triplicate following a completely randomized design involving 540 fish. Fe-NPs at 15 mg kg-1 diet notably reduced the cortisol levels in fish exposed to multiple stressors. The gene expressions of HSP 70, DNA damage-inducible protein (DDIP), and DNA damage were upregulated by stressors (As+NH3+T) and downregulated by Fe-NPs. Apoptotic genes (Cas 3a and 3b) and detoxifying genes (CYP 450), metallothionein (MT), and inducible nitric oxide synthase (iNOS) were downregulated by Fe-NPs at 15 mg kg-1 diet in fish subjected to As+NH3+T stress. Immune-related genes such as tumor necrosis factor (TNFα), immunoglobulin (Ig), and interleukin (IL) were upregulated by Fe-NPs, indicating enhanced immunity in fish under As+NH3+T stress. Conversely, Toll-like receptor (TLR) expression was notably downregulated by Fe-NPs at 15 mg kg-1 diet in fish under As+NH3+T stress. Immunological attributes such as nitro blue tetrazolium chloride, total protein, albumin, globulin, A:G ratio, and myeloperoxidase (MPO) were improved by dietary Fe-NPs at 15 mg kg-1 diet in fish, regardless of stressors. The antioxidant genes (CAT, SOD, and GPx) were also strengthened by Fe-NPs in fish. Genes associated with growth performance, such as growth hormone regulator (GHR1 and GHRβ), growth hormone (GH), and insulin-like growth factor (IGF 1X and IGF 2X), were upregulated, enhancing fish growth under stress, while SMT and MYST were downregulated by Fe-NPs in the diet. Various growth performance indicators were improved by dietary Fe-NPs at 15 mg kg-1 diet. Notably, Fe-NPs also enhanced arsenic detoxification and reduced the cumulative mortality after a bacterial infection. In conclusion, this study highlights that dietary Fe-NPs can effectively mitigate arsenic and ammonia toxicity as well as high temperature stress by modulating gene expression in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- School of Edaphic Stress Management (SESM), ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | | | | | | | | |
Collapse
|
4
|
Asad F, Batool N, Nadeem A, Bano S, Anwar N, Jamal R, Ali S. Fe-NPs and Zn-NPs: Advancing Aquaculture Performance Through Nanotechnology. Biol Trace Elem Res 2024; 202:2828-2842. [PMID: 37723405 DOI: 10.1007/s12011-023-03850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Aquaculture is a growing industry facing several challenges, including disease control, water quality management, and sustainable feed production. One potential solution to these challenges is the use of trace elements such as iron (Fe) and zinc (Zn), either in their conventional form or as nanoparticles (NPs). Aquatic animals need these micronutrients for normal growth, physiological processes, and overall health. In marine species, iron boosts development, immunity, and disease resistance. At the same time, zinc enhances metabolism, synthesizes essential enzymes, and produces hormones that play a part in defenses, growth, reproduction, and antioxidative activities. According to this review, species-specific requirements by different Fe and Zn compounds have all emphasized the impacts on animal growth and development, antioxidant capacity, reproductive efficiency, and immunological response. However, NPs of Fe and Zn have been found to have higher bioavailability and efficacy than conventional forms. This work examines the effects of applications of Fe and Fe nanoparticles (Fe-NPs) and Zn and Zn nanoparticles (Zn-NPs) in aquaculture. However, the source of Fe and Zn in aquaculture species and administration volume may significantly impact efficacy. Nanotechnology boosts the positive benefits of Fe and Zn by converting them to their nanoforms (Fe-NPs) and (Zn-NPs), which are better used by animals and have a broader intake range. As a result, Fe-NPs and Zn-NPs offer an effective method for using nutrients in aquaculture.
Collapse
Affiliation(s)
- Farkhanda Asad
- Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Navaira Batool
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aiman Nadeem
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shehar Bano
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Noshaba Anwar
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rafia Jamal
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shahbaz Ali
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
5
|
Sharjeel M, Ali S, Summer M, Noor S, Nazakat L. Recent advancements of nanotechnology in fish aquaculture: an updated mechanistic insight from disease management, growth to toxicity. AQUACULTURE INTERNATIONAL 2024. [DOI: 10.1007/s10499-024-01473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/16/2024] [Indexed: 08/04/2024]
|
6
|
Lemos CHDP, de Oliveira CPB, de Oliveira IC, Lima AO, Couto RD, Vidal LVO, Copatti CE. Responses to graded levels of zinc amino acid complex in Nile tilapia (Oreochromis niloticus). Vet Res Commun 2024; 48:1025-1036. [PMID: 38052738 DOI: 10.1007/s11259-023-10278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
Zinc (Zn) is an essential micronutrient that plays a crucial role in fish development and physiology. This study aimed to evaluate the effects on growth and health in Nile tilapia (Oreochromis niloticus) supplemented with graded levels of zinc amino acid complex (Zn-AA) and subjected to transport stress. Nile tilapia (21.78 ± 0.17 g; (n = 12 fish per tank; stocking density of 1.045 kg- 3) were fed with 0, 25, 50, 75, or 100 mg Zn-AA kg- 1 (equivalent to 77.49, 102.69, 127.89, 153.09, or 178.29 mg Zn kg- 1) in extruded diets (280 g kg- 1 digestible protein; isoproteic and isocaloric) for 60 days. At the end of the experimental period, after growth performance measurements, the fish were transported by car for 3 h, and blood collection was performed. The linear regression showed that the best growth performance (final weight, final biomass, weight gain, specific growth rate, and feed intake) was found in fish fed with 100 mg Zn-AA kg diet- 1 (p < 0.05). The increased dietary Zn-AA increased linearly plasma triglyceride levels, hemoglobin, mean corpuscular hemoglobin, and leukocyte values and reduced plasma total protein, cholesterol (total and LDL), and aspartate aminotransferase levels (p < 0.05). According to quadratic regression, the highest plasma glucose and alanine aminotransferase values were found in the control group (p < 0.05). In conclusion, under the conditions of this study, 100 mg Zn-AA kg diet- 1 is recommended for Nile tilapia as it can improve their growth, metabolism, physiology, and immunity.
Collapse
Affiliation(s)
- Carlos Henrique da Paixão Lemos
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Ondina, Salvador, BA, 40170-110, Brazil
| | | | - Iara Cruz de Oliveira
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Ondina, Salvador, BA, 40170-110, Brazil
| | - Alberto Oliveira Lima
- União Metropolitana de Educação e Cultura, Lauro de Freitas, Av. Luis Tarquinio Pontes, 600, Centro, Lauro de Freitas, BA, 42700-000, Brazil
| | - Ricardo David Couto
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão Geremoabo S/N, Ondina, Salvador, BA, 40170-115, Brazil
| | - Luiz Vitor Oliveira Vidal
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Ondina, Salvador, BA, 40170-110, Brazil
| | - Carlos Eduardo Copatti
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Ondina, Salvador, BA, 40170-110, Brazil.
- Universidade Federal da Bahia, Av. Milton Santos, 500, Ondina, CEP, Salvador, BA, 40170-110, Brazil.
| |
Collapse
|
7
|
Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M, Vijayaram S, Rohani MF, Van Doan H, Sun YZ. Comparative Effect of Chemical and Green Zinc Nanoparticles on the Growth, Hematology, Serum Biochemical, Antioxidant Parameters, and Immunity in Serum and Mucus of Goldfish, Carassius auratus (Linnaeus, 1758). Biol Trace Elem Res 2024; 202:1264-1278. [PMID: 37434037 DOI: 10.1007/s12011-023-03753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Recently, nano feed supplement research has great attention to improving healthy aquatic production and improving the aquatic environment. With the aims of the present study, chemical and green synthesized nanoparticles are characterized by various instrumentation analyses, namely UV-Vis spectrophotometry (UV-Vis), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, and scanning electron microscope (SEM). After characterization analysis of these nanoparticles utilized in aquatic animals, the composition ratio is as follows: controls (without ZnO-NPs (0 mg/L)), T1 (0.9 mg/L ZnO-NPs), T2 (1.9 mg/L ZnO-NPs), T3 (0.9 mg/L GZnO-NPs), T4 (1.9 mg/L GZnO-NPs). SEM investigation report demonstrates that the structure of the surface of green synthesized zinc oxide nanoparticles (GZnO-NPs) was conical shape and the size ranging was from 60 to 70 nm. Concerning hematological parameters, the quantity of hemoglobin increased in different doses of green zinc nanoparticles, but the values of MCV and MCH decreased somewhat. However, this decrease was the highest in the T2 group. Total protein and albumin decreased in T2 and triglyceride, cholesterol, glucose, cortisol, creatinine, and urea increased, while in T3 and T4 groups, changes in biochemical parameters were evaluated as positive. Mucosal and serum immunological parameters in the T2 group showed a significant decrease compared to other groups. In zinc nanoparticles, with increasing dose, oxidative damage is aggravated, so in the T2 group, a decrease in antioxidant enzymes and an increase in MDA were seen compared to other groups. In this regard, the concentration of liver enzymes AST and ALT increased in the T2 group compared with control and other groups. This can confirm liver damage in this dose compared with control and other groups. This research work suggests that green synthesized form of zinc nanoparticles in higher doses have less toxic effects in comparison to the chemical form of zinc nanoparticles and can act as suitable nutrient supplements in aquatic animals.
Collapse
Affiliation(s)
- Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | | | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
8
|
Liao ZH, Chuang CY, Chen YY, Chu YT, Hu YF, Lee PT, Lin JJ, Nan FH. Application of nZnO supported with nanoclay for improving shrimp immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109270. [PMID: 38070587 DOI: 10.1016/j.fsi.2023.109270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/31/2023]
Abstract
This study discloses the nanoscale silicate platelet-supported nZnO (ZnONSP) applied as novel feed additives in aquaculture. The preparation of the nanohybrid (ZnO/NSP = 15/85, w/w) was characterized by UV-visible spectroscopy, powder X-ray diffraction and transmission electron microscope. The effects of ZnONSP on growth, zinc accumulation, stress response, immunity and resistance to Vibrio alginolyticus in white shrimp (Penaeus vannamei) were \demonstrated. To evaluate the safety of ZnONSP, shrimps (2.0 ± 0.3 g) were fed with ZnONSP containing diets (200, 400 and 800 mg/kg) for 56 days. Dietary ZnONSP did not affect the weight gain, specific growth rate, feed conversion ratio, survival rate, zinc accumulation, and the expression of heat shock protein 70 in tested shrimps. To examine the immunomodulatory effect of ZnONSP, shrimps (16.6 ± 2.4 g) were fed with the same experimental diets for 28 days. Dietary ZnONSP improved the immune responses of haemocyte in tested shrimps, including phagocytic rate, phagocytic index, respiratory burst, and phenoloxidase activity, and upregulated the expression of several genes, including lipopolysaccharide, β-1,3-glucan binding protein, peroxinectin, penaeidin 2/3/4, lysozyme, crustin, anti-lipopolysaccharide factor, superoxide dismutase, glutathione peroxidase, clotting protein and α-2-macroglobulin. In the challenge experiment, shrimps (17.2 ± 1.8 g) were fed with ZnONSP containing diets (400 and 800 mg/kg) for 7 days and then infected with Vibrio alginolyticus. Notably, white shrimps that received ZnONSP (800 mg/kg) showed significantly improved Vibrio resistance, with a survival rate of 71.4 % at the end of 7-day observation. In conclusion, this study discovers that ZnONSP is a new type of immunomodulatory supplement that are effective on enhancing innate cellular and humoral immunities, and disease resistance in white shrimp.
Collapse
Affiliation(s)
- Zhen-Hao Liao
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Chieh-Yuan Chuang
- Mariculture Research Center, Fisheries Research Institute, Council of Agriculture, No. 4, Haipu, Qigu District, Tainan City, 72453, Taiwan
| | - Yin-Yu Chen
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Yu-Ting Chu
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Jiang-Jen Lin
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei City, 10617, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan.
| |
Collapse
|
9
|
Gu D, Mao X, Abouel Azm FR, Zhu W, Huang T, Wang X, Ni X, Zhou M, Shen J, Tan Q. Optimal dietary zinc inclusion improved growth performance, serum antioxidant capacity, immune status, and liver lipid and glucose metabolism of largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109233. [PMID: 37984614 DOI: 10.1016/j.fsi.2023.109233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
This study was conducted to ascertain the effect of dietary Zn on growth and health status of juvenile largemouth bass (Micropterus salmoides). Six experimental diets with Zn level of 50.17, 56.74, 73.34, 86.03, 123.94, and 209.20 mg/kg, respectively were compounded using complex amino acid-chelated zinc, and were fed to juvenile fish (5.50 ± 0.10 g) for 70 d. The specific growth rate (SGR) varied with dietary Zn level in a quadratic model and peaked at the 73.34 mg/kg group, while the feeding rate exhibited an opposite trend (P < 0.05). The condition factor, hepatosomatic index and mesenteric fat index all exhibited a tendency similar with SGR (P < 0.05). Dietary Zn level affected serum total proteins, urea, triglycerides, and glucose (P < 0.05). Serum Zn and copper levels linearly increased with dietary Zn level, while serum iron and manganese showed the opposite trend. Serum superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) increased with dietary Zn level and reached a plateau at 86.03 mg/kg. Serum complement component 3 (C3), IgM, and lysozyme also were enhanced by 73.34 mg/kg Zn. Body protein content increased with zinc level up to 73.34 mg/kg, and then remained steadily. As dietary Zn level increased, hepatic lipid level increased and then reached a plateau at 86.03 mg/kg group, while glycogen increased linearly. Moreover, gene expression related to lipid and glycogen metabolism from liver transcriptome further explained the liver lipid and glycogen variations. To conclude, a dietary Zn requirement of 76.99 mg/kg was suggested for juvenile largemouth bass to improve growth, antioxidant capacity, and immune status.
Collapse
Affiliation(s)
- Dianchao Gu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs of China, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hunan Depan Biotechnology Co., Ltd., Changning, China
| | - Xiangjie Mao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs of China, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fatma Ragab Abouel Azm
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs of China, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Animal Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Wenhuan Zhu
- Wuhan Fisheries Technology Extension and Instruction Center, Wuhan, 430012, China
| | - Tianle Huang
- Wuhan Fisheries Technology Extension and Instruction Center, Wuhan, 430012, China
| | - Xiaoyu Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs of China, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyu Ni
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs of China, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Zhou
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs of China, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianzhong Shen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs of China, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingsong Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs of China, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Baag S, Ahammed N, De S, Mandal S. Combined impact of elevated temperature and zinc oxide nanoparticles on physiological stress and recovery responses of Scylla serrata. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109764. [PMID: 37827393 DOI: 10.1016/j.cbpc.2023.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Global climate change is the major cause behind unexpected fluctuations in temperature. In recent years, application of nanotechnology also has become widespread and nanomaterials are constantly being released into aquatic environments, posing a potential risk to various organisms and ecosystems. The lack of detailed understanding of how multiple stressors work, and how they differ from single stressors, impede to assess their combined effect on aquatic organisms and ecosystems. The prime aim of the current investigation is to decipher the toxicity of ZnO-NP after simultaneous exposure to a global environmental stressor, elevated temperature for 14 days, followed by a 7 days recovery period, on the eco-physiological responses of mud crab Scylla serrata collected from Sundarbans. Physiological energetics such as ingestion, assimilation, absorption, respiration, and excretion rates were measured to determine the Scope for growth (SfG). Additionally, we assessed various biomarkers from different levels of biological organisation (antioxidant, detoxification defence mechanisms, and lipid peroxidation levels) of the species. Combined stress attenuated the SfG in crabs which deteriorated further in the recovery phase. Oxidative stress also exacerbated under coalesced stress condition. Recovery was not observed in crabs with increased lipid peroxidation level under combined stress conditions. Elevated temperature disturbed the energy budget of crabs as mirrored by diminished energy left for compensatory actions under added metal stress, ultimately sensitizing the animals to ZnO NP pollutants. The current results advocate future ocean temperature to aggravate the impact of metal NP pollution and induce oxidative damage in S. serrata.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Nashiruddin Ahammed
- Department of Physics, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sukanta De
- Department of Physics, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
11
|
Yaqub A, Nasir M, Kamran M, Majeed I, Arif A. Immunomodulation, Fish Health and Resistance to Staphylococcus aureus of Nile Tilapia (Oreochromis niloticus) Fed Diet Supplemented with Zinc Oxide Nanoparticles and Zinc Acetate. Biol Trace Elem Res 2023; 201:4912-4925. [PMID: 36701087 DOI: 10.1007/s12011-023-03571-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Recently some metal-based nanoparticles have gained serious attention from aquaculture and the fish feed industry as feed supplements. Oral supplementation of zinc oxide nanoparticles (ZnO-NPs) in fish feed, replacing Zn acetate (conventionally used zinc), is suggested as a cost-effective and efficient approach. Our study assessed the response of Nile tilapia, Oreochromis niloticus, fingerlings after its diet supplemented with chemically synthesized ZnO-NPs and zinc acetate under controlled conditions. ZnO-NPs were chemically synthesized and characterized. Tilapia fingerlings with an average body weight of 09.12 ± 1.23 g were randomly distributed into five groups. An 8-week trial was set with control and four experimental groups. Basal diet (D1) was used as control, whereas D2, D3 and D4 comprising 20, 40, and 60 mgkg-1 ZnO-NPs supplementation were experimental diets. Additionally, D5 was composed of a basal diet supplemented with 40 mgkg-1 of conventionally used zinc acetate. Significant improvement (P < 0.05) was found in nanoparticles and Zn acetate supplemented groups as compared to control, while the 40 mgkg-1 Zn-NPs supplemented diet (D3) showed best performance in terms of health parameters, oxidative status and disease resistance. Antioxidant profiling was based on catalase, superoxide dismutase, glutathione's transferase, and malondialdehyde; hematology included Hb, WBCs, RBCs, HCT MCV, MCH and MCHC; immunological parameters comprised IgM, lysozyme activity, phagocytic activity, respiratory burst activity, cholesterol, aspartate aminotransferase, alanine aminotransferase, glucose content, and total serum proteins. We report that the D3 (40 mgkg-1 ZnO-NPs supplementation) significantly (P < 0.05) improved health-related parameters as compared to the other groups. Moreover, D3 also showed significantly decreased mortality percentage when challenged by Staphylococcus aureus, while the Zn acetate supplemented diet group showed better results as compared to control. Overall results suggest the basal diet supplemented with 40 mgkg-1 ZnO-NP for enhanced health parameters, oxidative status, immune response, and disease resistance. Hence, 40mgkg-1 ZnO-NP can be recommended to formulate the practical diet of fish to boost health improvement, immunomodulation, and resistance to bacterial disease.
Collapse
Affiliation(s)
- Atif Yaqub
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Lahore, 54000, Punjab, Pakistan.
| | - Muhammad Nasir
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Kamran
- Aquaculture Laboratory, Department of Zoology, University of Sialkot, Sialkot, 51040, Punjab, Pakistan
| | - Iqra Majeed
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Lahore, 54000, Punjab, Pakistan
| | - Aneeza Arif
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Lahore, 54000, Punjab, Pakistan
| |
Collapse
|
12
|
Kou H, Liu X, Hu J, Lin G, Zhang Y, Lin L. Impact of dietary zinc on the growth performance, histopathological analysis, antioxidant capability, and inflammatory response of largemouth bass Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109025. [PMID: 37625733 DOI: 10.1016/j.fsi.2023.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Zinc plays a crucial role in the antioxidant capacity, and inflammatory response of aquatic species, but its impact on largemouth bass Micropterus salmoides is rarely reported. Therefore, this paper aimed to investigate the effects of different levels of zinc on the growth performance, histopathology, antioxidant capacity, and inflammatory cytokines of largemouth bass Micropterus salmoides. Fish with an initial weight of 7.84 ± 0.06 g were cultured for 10 weeks. Five experimental diets were prepared with supplemented proteinate Zn (Bioplex Zn, Alltech) (0, 30, 60, 90, and 120 mg/kg), which were named the Zn-42, Zn-73, Zn-103, Zn-133, and Zn-164 groups. No evident difference was found between the dietary zinc level and the survival rate, the crude lipid content of the whole fish, or the visceral somatic index. Weight gain, condition factor, whole-body crude protein content, interleukin-10, and transforming growth factor beta gene expression were gradually enhanced with up to 102.68 mg/kg zinc and decreased at higher levels. The hepatosomatic index, feed conversion ratio, malondialdehyde level in the liver, aspartate aminotransferase, and alanine transaminase activity in the serum, gradually decreased up to 102.68 mg/kg zinc, and gradually increased beyond this. Activation of the nuclear factor erythroid-derived 2-like 2/Kelch-like ECH-associated protein 1 signaling pathway gradually up-regulated the mRNA levels and activities of glutathione peroxidase, total antioxidant capacity, catalase, and superoxide dismutase in the liver, this antioxidant ability was lower when the zinc was greater than 102.68 mg/kg. The gene expressions of nuclear factor-k-gene binding and pro-inflammation cytokines (interleukin-1β, interleukin-15, tumor necrosis factor alpha, and interleukin-8) were up-regulated up to 102.68 mg/kg zinc and then gradually repressed. In conclusion, using broken line analysis to estimate weight gain and Zn proteinate as the zinc source, the recommended dietary zinc for largemouth bass is 66.57 mg/kg zinc.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Xueting Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Gang Lin
- Alltech Biological Products (China) Co, Ltd, Beijing, 100060, China
| | - Yufan Zhang
- Alltech Biological Products (China) Co, Ltd, Beijing, 100060, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
13
|
Kumar N, Thorat ST, Singh AK, Kochewad SA, Reddy KS. Manganese nanoparticles control the gene regulations against multiple stresses in Pangasianodon hypophthalmus. Sci Rep 2023; 13:15900. [PMID: 37741912 PMCID: PMC10517940 DOI: 10.1038/s41598-023-43084-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
Ammonia and arsenic pollution, along with the impact of climate change, represent critical factors influencing both the quantity and quality of aquaculture production. Recent developments have underscored the significance of these issues, as they not only disrupt aquatic ecosystems but also have far reaching consequences for human health. To addressed above challenges, an experiment was conducted to delineate the potential of manganese nanoparticles (Mn-NPs) to mitigate arsenic and ammonia pollution as well as high temperature stress in Pangasianodon hypophthalmus. The fish were exposed to different combination of arsenic and ammonia pollution as well as high temperature stress, while simultaneously incorporating diets enriched with Mn-NPs. The inclusion of Mn-NPs at 3 mg kg-1 in the diet led to a noteworthy downregulation of cortisol and HSP 70 gene expression, indicating their potential in mitigating stress responses. Furthermore, immune related gene expressions were markedly altered in response to the stressors but demonstrated improvement with the Mn-NPs diet. Interestingly, the expression of inducible nitric oxide synthase (iNOS), caspase (CAS), metallothionine (MT) and cytochrome P450 (CYP450) genes expression were prominently upregulated, signifying a stress response. Whereas, Mn-NPs at 3 mg kg-1 diet was significantly downregulated theses gene expression and reduces the stress. In addition to stress-related genes, we evaluated the growth-related gene expressions such as growth hormone (GH), growth hormone regulator 1 (GHR1 and GHRβ), Insulin like growth factor (IGF1 and IGF2) were significantly upregulated whereas, myostatin and somatostatin were downregulated upon the supplementation of dietary Mn-NPs with or without stressors in fish. The gene expression of DNA damage inducible protein and DNA damage in response to head DNA % and tail DNA % was protected by Mn-NPs diets. Furthermore, Mn-NPs demonstrated a capacity to enhance the detoxification of arsenic in different fish tissues, resulting in reduced bioaccumulation of arsenic in muscle and other tissues. This finding highlights Mn-NPs as a potential solution for addressing bioaccumulation associated risks. Our study aimed to comprehensively examined the role of dietary Mn-NPs in mitigating the multiple stressors using gene regulation mechanisms, with enhancing the productive performance of P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
| | | | - Ajay Kumar Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| | | | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| |
Collapse
|
14
|
Sherif AH, Elkasef M, Mahfouz ME, Kasem EA. Impacts of dietary zinc oxide nanoparticles on the growth and immunity of Nile tilapia could be ameliorated using Nigella sativa oil. J Trace Elem Med Biol 2023; 79:127265. [PMID: 37478799 DOI: 10.1016/j.jtemb.2023.127265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Zinc nanoparticles are documented to be harmful to fish because their accumulation in fish bring about many irreversible changes in their health. Nigella sativa and its oil have been endorsed in aquaculture to improve fish health. METHODS Two hundred seventy experimental fish (113 ± 5 g body weight) were divided into 6 groups G1-6; control fish fed a diet without any treatment (G1), 0.3% of NSO (G2), 0.5% of NSO (G3), ZnO NPs (40 mg/kg diet) (G4), 0.3% of NSO and ZnO NPs (40 mg/kg diet) (G5), 0.5% of NSO and ZnO NPs (40 mg/kg diet) (G6), the trial lasted for six weeks. RESULTS Growth performance was enhanced in fish received diets containing NSO, final weight (FW), weight gain (WG), daily weight gain (DWG), and relative growth rate (RGR) were significantly increased with lower food conversion ratios (FCR) compared to the control. The hepatic glutathione peroxidase (GPx), catalase (CAT), and metallothionein (MT) were increased in response to ZnO NPs stress and only 0.5% NSO supplementation could ameliorate such increment. The immune-related genes [interleukin1-beta (IL-1β), tumor necrosis factor-beta (TNF-β), transforming growth factor-beta 2 (TGF-β2) and C-type lysozyme] as well as growth-related gene [insulin-like growth factor 1 (IGF1)] in liver showed an upregulation in fish fed with NSO diets. Administration of ZnO NPs lowered the resistance of Oreochromis niloticus against bacterial infection with Aeromonas hydrophila and NSO could enhance the immunity in the highest tested concentration (0.5%) (G6). CONCLUSIONS The obtained results implied that NSO could enhance the oxidative and immune status of O. niloticus which could compensate ZnO NPs stress as well as experimental infection of a virulent strain of A. hydrophila. Our results revealed that NSO might increase fish growth and immunity only at a high dose (0.5%).
Collapse
Affiliation(s)
- Ahmed H Sherif
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Centre ARC, Kafrelsheikh, Egypt.
| | - Mariam Elkasef
- Zoology Department, Faculty of Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Magdy E Mahfouz
- Zoology Department, Faculty of Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Enas A Kasem
- Zoology Department, Faculty of Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
15
|
Kumar N, Thorat ST, Reddy KS. Multi biomarker approach to assess manganese and manganese nanoparticles toxicity in Pangasianodon hypophthalmus. Sci Rep 2023; 13:8505. [PMID: 37231182 DOI: 10.1038/s41598-023-35787-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
Manganese (Mn) is an essential element for humans and animals including, fish. It is a still poorly studied in aquatic organisms, where it can be noticeably useful for dietary components and also found pollutant in aquatic environment at high concentrations. On the above information, an experiment was delineated to determine the lethal concentration of manganese (Mn) and manganese nanoparticles (Mn-NPs) alone and with high temperature (34 °C) and its effect on various biochemical markers in Pangasianodon hypophthalmus. The median lethal concentration (96-LC50) of Mn alone (111.75 mg L-1) and along with high temperature (110.76 mg L-1), Mn-NPs alone (93.81 mg L-1) and with high temperature (34 °C) (92.39 mg L-1) was determined in P. hypophthalmus. The length and weight of the fish were 6.32 ± 0.23 cm and 7.57 ± 1.35 g. The present investigation used five hundred forty-six fish, including range finding (216 fish) and definitive test (330 fish). The acute definitive doses were applied to assess the effect of oxidative stress, glycolytic biomarkers, protein biomarkers, fish immunity, neurotransmitter, energy level, stress hormone and histopathology. Oxidative stress (catalase, superoxide dismutase, glutathione-s-transferase and glutathione peroxidase), stress biomarkers (lipid peroxidation, cortisol, heat shock protein, and blood glucose), lactate and malate dehydrogenase, alanine and aspartate aminotransferase, a neurotransmitter, glucose-6-phosphate dehydrogenase (G6PDH), ATPase, immune system biomarkers (NBT, total protein, albumin, globulin and A:G ratio) were altered with exposure to Mn and Mn-NPs. The histopathology of the liver and gill were also changed due to exposure to Mn and Mn-NPs. The bioaccumulation of Mn in the liver, gill, kidney, brain and muscle tissues, and experimental water at different intervals of 24, 48, 72 and 96 h were determined. Based on the present results, it is strongly suggested that Mn and Mn-NPs exposure alone and with high temperature (34 °C) enhanced toxicity and altered biochemical and morphological attributes. This study also suggested that essential elements in both forms (inorganic and nano) at higher concentrations of Mn and Mn-NPs lead to pronounced deleterious alteration in cellular and metabolic activities and histopathology of P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
16
|
Kumar N, Singh DK, Chandan NK, Thorat ST, Patole PB, Gite A, Reddy KS. Nano‑zinc enhances gene regulation of non‑specific immunity and antioxidative status to mitigate multiple stresses in fish. Sci Rep 2023; 13:5015. [PMID: 36977939 PMCID: PMC10050481 DOI: 10.1038/s41598-023-32296-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
The toxicity of ammonia surged with arsenic pollution and high temperature (34 °C). As climate change enhances the pollution in water bodies, however, the aquatic animals are drastically affected and extinct from nature. The present investigation aims to mitigate arsenic and ammonia toxicity and high-temperature stress (As + NH3 + T) using zinc nanoparticles (Zn-NPs) in Pangasianodon hypophthalmus. Zn-NPs were synthesized using fisheries waste to developing Zn-NPs diets. The four isonitrogenous and isocaloric diets were formulated and prepared. The diets containing Zn-NPs at 0 (control), 2, 4 and 6 mg kg-1 diets were included. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-s-transferase (GST) were noticeably improved using Zn-NPs diets in fish reared under with or without stressors. Interestingly, lipid peroxidation was significantly reduced, whereas vitamin C and acetylcholine esterase were enhanced with supplementation of Zn-NPs diets. Immune-related attributes such as total protein, globulin, albumin, myeloperoxidase (MPO), A:G ratio, and NBT were also improved with Zn-NPs at 4 mg kg-1 diet. The immune-related genes such as immunoglobulin (Ig), tumor necrosis factor (TNFα), and interleukin (IL1b) were strengthening in the fish using Zn-NPs diets. Indeed, the gene regulations of growth hormone (GH), growth hormone regulator (GHR1), myostatin (MYST) and somatostatin (SMT) were significantly improved with Zn-NPs diets. Blood glucose, cortisol and HSP 70 gene expressions were significantly upregulated by stressors, whereas the dietary Zn-NPs downregulated the gene expression. Blood profiling (RBC, WBC and Hb) was reduced considerably with stressors (As + NH3 + T), whereas Zn-NPs enhanced the RBC, WBC, and Hb count in fish reread in control or stress conditions. DNA damage-inducible protein gene and DNA damage were significantly reduced using Zn-NPs at 4 mg kg-1 diet. Moreover, the Zn-NPs also enhanced the arsenic detoxification in different fish tissues. The present investigation revealed that Zn-NPs diets mitigate ammonia and arsenic toxicity, and high-temperature stress in P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Kolkata Center, Kolkata, 700091, India
| | | | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
17
|
Sherif AH, Abdelsalam M, Ali NG, Mahrous KF. Zinc Oxide Nanoparticles Boost the Immune Responses in Oreochromis niloticus and Improve Disease Resistance to Aeromonas hydrophila Infection. Biol Trace Elem Res 2023; 201:927-936. [PMID: 35237942 DOI: 10.1007/s12011-022-03183-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023]
Abstract
Zinc is an essential element affecting immune responses in aquatic organisms. In the present research, the immunomodulating effect of zinc oxide nanoparticles (ZnO NPs) was studied in Nile tilapia (Oreochromis niloticus). The minimum inhibitory concentration of zinc oxide nanoparticles (ZnO NPs) for Aeromonas hydrophila was estimated at 60 µg/mL. To evaluate the efficacy of ZnO NPs for improving disease resistance against A. hydrophila, three hundred fish were divided into 5 groups. Fish in the group T1 maintained on the control feed, T2 and T3 feed on ZnO at 60 and 30 µg/g, while T4 and T5 received ZnO NPs at 60 and 30 µg/g, respectively for 8 weeks. Immune responses were evaluated by determining the phagocytic activity, serum antibacterial activity, lysozymes, respiratory burst activity, and also gene expression of immunoglobin M-2, tumor necrosis factor-α, interleukin (IL)-1β, heat shock proteins, IL-10, insulin growth factor 1, transforming growth factor-β2, superoxide dismutase enzyme, and catalase enzyme genes. Results indicated that groups that received ZnO NPs have exaggerated immune response and upregulation in the most of expressed immune-related genes. After the feeding trial, all groups were experimentally infected with A. hydrophila, and the mortality rate was monitored. Among all the treated groups, a higher survival rate and disease resistance were observed for fish that received ZnO NPs at 30 and 60 µg/g. The inclusion of ZnO NPs in O. niloticus feed improves both fish immune response and disease resistance against A. hydrophila.
Collapse
Affiliation(s)
- Ahmed H Sherif
- Fish Diseases Department, Animal Health Research Institute AHRI, Agriculture Research Centre ARC, Kafrelsheikh, Egypt.
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Nadia G Ali
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | | |
Collapse
|
18
|
Liang Z, Chen T, Yang F, Li S, Zhang S, Guo H. Toxicity of chronic waterborne zinc exposure in the hepatopancreas of white shrimp Litopenaeus vannamei. CHEMOSPHERE 2022; 309:136553. [PMID: 36155019 DOI: 10.1016/j.chemosphere.2022.136553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Zinc (Zn) is necessary for the survival of aquatic organisms; nevertheless, the accumulation of Zn in excessive amounts may have toxic consequences. Few studies focusing on the biochemical, morphological, and transcriptional effects of aqueous Zn in Litopenaeus vannamei have been reported, and the underlying toxic mechanism remains largely unknown. The present study was performed to investigate the growth performance, morphological alterations, physiological changes, and transcriptional responses after Zn exposure at 0 (control), 0.01, 0.1, and 1 mg/L concentrations for 30 days in white shrimp L. vannamei hepatopancreas. The results found that survival rate (SR) and growth performance were significantly reduced in 1 mg/L Zn group. Significant structural damage and significant Zn accumulation in hepatopancreas were observed. The activities of trypsin and amylase (AMS), and the total antioxidant capacity (T-AOC) were attenuated, while the production of reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly increased after Zn exposure. Many differentially expressed genes (DEGs) were obtained after Zn exposure, and the majority of these DEGs were downregulated. Ten DEGs involved in oxidative stress, immunological response, apoptosis, and other processes were selected for qRT-PCR validation and the expression profiles of these DEGs kept well consistent with the transcriptome data, which confirmed the accuracy and reliability of the transcriptome results. Subsequently, we screened 12 genes to examine the changes of expression in different concentrations in more detail. All the results implying that Zn exposure caused severe histopathological changes and increased Zn accumulation in hepatopancreas, altered immune, antioxidant and detoxifying response by regulating the gene expressions of related genes, and eventually might trigger apoptosis. These findings provide valuable information and a new perspective on the molecular toxicity of crustaceans in response to environmental heavy metal exposure.
Collapse
Affiliation(s)
- Zhi Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Tianci Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Furong Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Shuhong Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China.
| |
Collapse
|
19
|
Kumar N, Kumar S, Singh AK, Gite A, Patole PB, Thorat ST. Exploring mitigating role of zinc nanoparticles on arsenic, ammonia and temperature stress using molecular signature in fish. J Trace Elem Med Biol 2022; 74:127076. [PMID: 36126543 DOI: 10.1016/j.jtemb.2022.127076] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The pollution and climate change in aquatic ecosystems are major problems threatening the aquatic organisms for existence in the recent timeline, which promotes the extinction of the fish species. However, the present study dealt with zinc nanoparticles (Zn-NPs) in mitigating arsenic, ammonia and high temperature stresses in Pangasianodon hypophthalmus. MATERIALS AND METHODS To studying different gene expressions, an experiment was conducted to mitigate the multiple stressors using dietary Zn-NPs at 0, 2, 4, and 6 mg kg-1 diets. In the present investigation, the gene expressions studies were performed for growth hormone regulator 1 (GHR1), growth hormone regulator β (GHRβ), growth hormone (GR) in liver and gill tissue as well as myostatin (MYST) and somatostatin (SMT) in the muscle tissue. The anti-oxidative genes CAT, SOD and GPx in liver and gill tissues were also analysed. Expression studies for stress responsive heat shock protein gene (HSP70), DNA damage inducible protein, inducible nitric oxide synthase (iNOS), immune related genes such as interleukin (IL), tumour necrosis factor (TNFα), toll like receptor (TLR) and immunoglobulin were performed. At the end of the experiment the fish were infected with Aeromonas hydrophila to evaluate the immunomodulatory role of Zn-NPs. RESULTS In the present investigation, the growth hormone regulator 1 (GHR1), growth hormone regulator β (GHRβ), growth hormone (GR) in liver and gill as well as myostatin (MYST) and somatostatin (SMT) in muscle were noticeably altered, whereas, Zn-NPs at 4 mg kg-1 diet improved gene expressions. The anti-oxidant gene viz. CAT, SOD and GPx in liver and gill tissues were upregulated by stressors such as As, NH3, NH3+T. As+T and As+NH3+T. Therefore, anti-oxidant genes were noticeably improved with dietary Zn-NPs diet. The stress protein gene (HSP70), DNA damage inducible protein, inducible nitric oxide synthase (iNOS) was significantly upregulated, whereas, Zn-NPs diet was applied to the corrected gene regulation. Similarly, immune related genes such as interleukin (IL), tumour necrosis factor (TNFα), toll like receptor (TLR) and immunoglobulin were highly affected by stressors. Dietary Zn-NPs at 4 mg kg-1 diet was improved all the immune related gene expression and mitigate arsenic, ammonia and high temperature stress in fish. CONCLUSION The present investigation revealed that Zn-NPs at 4.0 mg kg-1 diet has enormous potential to modulates arsenic, ammonia and high temperature stress, and protect against pathogenic infections in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India.
| | - Satish Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Ajay Kumar Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | | |
Collapse
|
20
|
Krishnani KK, Boddu VM, Chadha NK, Chakraborty P, Kumar J, Krishna G, Pathak H. Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: potential and valorization for application in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81130-81165. [PMID: 36203045 PMCID: PMC9540199 DOI: 10.1007/s11356-022-23301-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 05/06/2023]
Abstract
Global agriculture is facing tremendous challenges due to climate change. The most predominant amongst these challenges are abiotic and biotic stresses caused by increased incidences of temperature extremes, drought, unseasonal flooding, and pathogens. These threats, mostly due to anthropogenic activities, resulted in severe challenges to crop and livestock production leading to substantial economic losses. It is essential to develop environmentally viable and cost-effective green processes to alleviate these stresses in the crops, livestock, and fisheries. The application of nanomaterials in farming practice to minimize nutrient losses, pest management, and enhance stress resistance capacity is of supreme importance. This paper explores innovative methods for synthesizing metallic and non-metallic nanoparticles using plants, animals, and fisheries wastes and their valorization to mitigate abiotic and biotic stresses and input use efficiency in climate-smart and stress-resilient agriculture including crop plants, livestock, and fisheries.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India.
| | - Veera Mallu Boddu
- Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana, India
| | - Gopal Krishna
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110012, India
| |
Collapse
|
21
|
Diab AM, Shokr BT, Shukry M, Farrag FA, Mohamed RA. Effects of Dietary Supplementation with Green-Synthesized Zinc Oxide Nanoparticles for Candidiasis Control in Oreochromis niloticus. Biol Trace Elem Res 2022; 200:4126-4141. [PMID: 35040035 DOI: 10.1007/s12011-021-02985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 11/02/2022]
Abstract
Zinc is an essential element for metabolism of Nile tilapia (Oreochromis niloticus). Nanomaterials have important benefits in aquaculture. The present study evaluated the effects of green-synthesized zinc oxide nanoparticles (ZnO-NPs) using Ulva fasciata extract as an anti-fungal agent against Candida albicans (C. albicans) in vitro and in vivo in O. niloticus. A total of 252 apparent healthy O. niloticus (20 ± 0.457 g/fish) were randomly allocated into six groups: The 1st group fed on basal diet contaminated with C. albicans 15 × l06 CFU/g diet, the 2nd group fed basal diet only, the 3rd and 5th groups fed the basal diet supplemented with 40 or 60 mg/kg ZnO-NPs, respectively, and the 4th and 6th groups fed the basal diet contaminated with C. albicans 15 × l06 CFU/g and concomitantly supplemented with 40 or 60 mg/kg ZnO-NPs, respectively. The experiment lasted for 8 weeks. The phyco-synthesized ZnO-NPs were characterized by XRD, UV-V, FTIR, TEM, and zeta potential. The anti-fungal activities of ZnO-NPs and the morphological changes to C. albicans cell due to ZnO-NPs were detected. The results revealed that dietary supplementation with the green-synthesized ZnO-NPs significantly improved the growth performance, survival, serum lysozyme activity, phagocytic activity, phagocytic index, respiratory burst activity, expression of immune-related genes (IL-1β, TGF, TNF-α), digestive enzyme activity, and histopathological finding in C. albicans-infected group, with a relative superiority to 40 mg/kg feed ZnO-NPs. It could be concluded that supplementing diets with 40 mg/kg of phyco-synthesized ZnO-NPs could be considered a better choice for controlling candidiasis in Nile tilapia.
Collapse
Affiliation(s)
- Amany M Diab
- Aquatic Microbiology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt.
| | - Basma T Shokr
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Foad A Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| |
Collapse
|
22
|
Shukry M, Albogami S, Gewaily M, Amer AA, Soliman AA, Alsaiad SM, El-Shehawi AM, Dawood MAO. Growth Performance, Antioxidative Capacity, and Intestinal Histomorphology of Grey Mullet (Liza ramada)-Fed Dietary Zinc Nanoparticles. Biol Trace Elem Res 2022; 200:2406-2415. [PMID: 34308499 DOI: 10.1007/s12011-021-02844-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Zinc is one of the essential microelements involved in vital physiological and biological functions in the fish body. The study evaluated the growth performance, antioxidative capacity, and intestinal histomorphology of Grey Mullet (Liza ramada)-fed dietary zinc nanoparticles (ZnO-NPs) at 0, 10, 20, and 40 mg/kg for the first time. The final weight and specific growth rate (SGR) of Grey Mullet-fed dietary ZnO-NPs at 20 and 40 mg/kg were meaningfully enhanced (p < 0.05). Further, the weight gain (WG) was significantly higher in fish treated with ZnO-NPs than the control, and fish fed 20-40 mg/kg had the highest WG (p < 0.05). The feed conversion ratio (FCR) was meaningfully reduced in fish fed 20-40 mg ZnO-NPs/kg (p < 0.05). The histomorphology of the intestines revealed a significant improvement in villus height, villus width, and goblet cells by ZnO-NPs. The lysozyme activity, phagocytic activity, and phagocytic index showed higher levels in Grey Mullet-fed dietary ZnO-NPs at 20 mg/kg than fish fed 0, 10, and 40 mg/kg (p < 0.05). Superoxide dismutase (SOD) and catalase (CAT) were markedly improved in Grey Mullet treated with ZnO-NPs compared with the control, and the group of fish treated with 20 mg/kg had the highest SOD and CAT (p < 0.05). Glutathione peroxidase (GPx) was significantly higher in fish fed 20-40 mg/kg ZnO-NPs than fish fed 0-10 mg/kg and fish fed 40 mg ZnO-NPs/kg showing the highest GPx value (p < 0.05). The concentration of malondialdehyde was markedly lowered in Grey Mullet fed ZnO-NPs at varying levels (p < 0.05). Based on the overall results, the regression analysis suggests that ZnO-NPs can be included at 24.61-35.5 mg/kg for the best performances of Grey Mullet.
Collapse
Affiliation(s)
- Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, 33516, Egypt
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mahmoud Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, 33516, Egypt
| | - Asem A Amer
- Central Laboratory for Aquaculture Research, Sakha Aquaculture Research Unit, Abbassa, Sharkia, Kafrelsheikh, Egypt
| | - Ali A Soliman
- Fish Nutrition Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Saad M Alsaiad
- Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11651, Egypt
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
| |
Collapse
|
23
|
Mugwanya M, Dawood MA, Kimera F, Sewilam H. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Kou H, Hu J, Vijayaraman SB, Wang AL, Zheng Y, Chen J, He G, Miao Y, Lin L. Evaluation of dietary zinc on antioxidant-related gene expression, antioxidant capability and immunity of soft-shelled turtles Pelodiscussinensis. FISH & SHELLFISH IMMUNOLOGY 2021; 118:303-312. [PMID: 34481088 DOI: 10.1016/j.fsi.2021.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Zinc (Zn) plays a role in the antioxidant capacity and immunity of aquatic animals. A twelve-week feeding experiment was performed to estimate the impact of dietary zinc on antioxidant enzyme-related gene expression, antioxidant enzyme activity and non-specific immune functions of soft-shelled turtles, Pelodiscus sinensis. Six fishmeal-based experimental diets with 32.45% protein were formulated, which contained 35.43, 46.23, 55.38, 66.74, 75.06 and 85.24 mg/kg Zn, respectively. Catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels improved with an elevation in dietary Zn from 35.43 to 55.38 mg/kg and then reduced when dietary Zn was further elevated. The expression levels of Nrf2 and antioxidant-related genes CuZnSOD, MnSOD, CAT, GPX1, GPX2, GPX3 and GPX4 escalated with elevating Zn concentration up to 55.38 mg/kg in diets and then reduced as dietary Zn elevated. The expression levels of Kelch-like ECH-associating protein 1 (keap1) showed a reverse trend with that of Nrf2. The contents of malondialdehyde (MDA) in the 55.38 and 66.74 mg/kg Zn diet-fed groups were the lowest. Alkaline phosphatase activity (AKP), superoxide anion (O2-), lysozyme activity and total antioxidant capacity (T-AOC) improved with an escalation in dietary Zn concentration up to 66.74 mg/kg. Optimal dietary Zn improved antioxidant capability, immunity, and antioxidant enzyme-related gene expression. The dietary Zn demand for soft-shelled turtles were 60.93 and 61.63 mg/kg, based on second regression analysis of SOD and T-AOC activity, respectively.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Sarath Babu Vijayaraman
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - An-Li Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yanyun Zheng
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jiajia Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Guoping He
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yutao Miao
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
25
|
Li C, Ran F, Li Z, Huang S, Duanzhi D, Liu Y, Wu M, Li Q, Wang Y, Liu C, Wang Z, Wang G, Jian S, Jin W. Calcineurin Immune Signaling in Response to Zinc Challenge in the Naked Carp Gymnocypris eckloni. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:792-798. [PMID: 33759007 DOI: 10.1007/s00128-021-03178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Zinc pollution impairs neural processes and protein function and also effects calcium-related transcriptional regulation and enzyme activity. In this study, we investigated pathways that potentially respond to calcium signaling under Zn2+ stress. Specifically we measured relative expressions of GeCNAα, GeCNB, GeMT, GeTNF-α, GeIL-1β, and GeHsp90 in gills, livers, and kidneys of the indicator species Gymnocypris eckloni and found wide variation in their expression between tissues during the course of Zn2+ exposure. Notably, GeCNAα, GeCNB, GeTNF-α, GeIL-1β, and GeMT were rapidly and strongly up-regulated in gills; GeIL-1β and GeHsp90 transcription was quickly induced in kidneys; and GeCNB, GeTNF-α, GeIL-1β, and GeHsp90 were most rapidly up-regulated in livers. GeCNAα and GeMT showed a contrasting late transcriptional up-regulation. These results suggest independent branches for chelation and immune responses during self-protection against Zn2+ toxicity, and the immune response appears to be faster than metal chelation.
Collapse
Affiliation(s)
- Changzhong Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Fengxia Ran
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Zixuan Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Shen Huang
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Droma Duanzhi
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Yanhui Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Minghui Wu
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Qimei Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Yuxiang Wang
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Chaoxi Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Zhenji Wang
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810016, China
| | - Guojie Wang
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810016, China
| | - Shenlong Jian
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810016, China
| | - Wenjie Jin
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China.
| |
Collapse
|
26
|
Kumar N, Gupta SK, Chandan NK, Bhushan S, Singh DK, Kumar P, Kumar P, Wakchaure GC, Singh NP. Mitigation potential of selenium nanoparticles and riboflavin against arsenic and elevated temperature stress in Pangasianodon hypophthalmus. Sci Rep 2020; 10:17883. [PMID: 33087779 PMCID: PMC7578828 DOI: 10.1038/s41598-020-74911-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Climate change impact has disturbed the rainfall pattern worsening the problems of water availability in the aquatic ecosystem of India and other parts of the world. Arsenic pollution, mainly through excessive use of groundwater and other anthropogenic activities, is aggravating in many parts of the world, particularly in South Asia. We evaluated the efficacy of selenium nanoparticles (Se-NPs) and riboflavin (RF) to ameliorate the adverse impacts of elevated temperature and arsenic pollution on growth, anti-oxidative status and immuno-modulation in Pangasianodon hypophthalmus. Se-NPs were synthesized using fish gill employing green synthesis method. Four diets i.e., Se-NPs (0 mg kg-1) + RF (0 mg kg-1); Se-NPs (0.5 mg kg-1) + RF (5 mg kg-1); Se-NPs (0.5 mg kg-1) + RF (10 mg kg-1); and Se-NPs (0.5 mg kg-1) + RF (15 mg kg-1) were given in triplicate in a completely randomized block design. The fish were treated in arsenic (1/10th of LC50, 2.68 mg L-1) and high temperature (34 °C). Supplementation of the Se-NPs and RF in the diets significantly (p < 0.01) enhanced growth performance (weight gain, feed efficiency ratio, protein efficiency ratio, and specific growth rate), anti-oxidative status and immunity of the fish. Nitroblue tetrazolium (NBT), total immunoglobulin, myeloperoxidase and globulin enhanced (p < 0.01) with supplementation (Se-NPs + RF) whereas, albumin and albumin globulin (A:G) ratio (p < 0.01) reduced. Stress biomarkers such as lipid peroxidation in the liver, gill and kidney, blood glucose, heat shock protein 70 in gill and liver as well as serum cortisol reduced (p < 0.01) with supplementation of Se-NPs and RF, whereas, acetylcholine esterase and vitamin C level in both brain and muscle significantly enhanced (p < 0.01) in compared to control and stressors group (As + T) fed with control diet. The fish were treated with pathogenic bacteria after 90 days of experimental trial to observe cumulative mortality and relative survival for a week. The arsenic concentration in experimental water and bioaccumulation in fish tissues was also determined, which indicated that supplementation of Se-NPs and RF significantly reduced (p < 0.01) bioaccumulation. The study concluded that a combination of Se-NPs and RF has the potential to mitigate the stresses of high temperature and As pollution in P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India.
| | - Sanjay Kumar Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India
| | - Nitish Kumar Chandan
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Shashi Bhushan
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Paritosh Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India
| | - Prem Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, 600028, India
| | - Goraksha C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India
| | - Narendra Pratap Singh
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra, 413115, India
| |
Collapse
|
27
|
Wong SWY, Zhou GJ, Kwok KWH, Djurišić AB, Han J, Lee JS, Leung KMY. In vivo toxicities of nine engineered nano metal oxides to the marine diatom Skeletonema costatum and rotifer Brachionus koreanus. MARINE POLLUTION BULLETIN 2020; 153:110973. [PMID: 32275530 DOI: 10.1016/j.marpolbul.2020.110973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
This study compared in vivo acute toxicities of nine engineered nano metal oxides to the marine diatom Skeletonema costatum and rotifer Brachionus koreanus. The sequence of their toxicities to S. costatum, based on growth inhibition, was: nano zinc oxide (nZnO) > nTiO2 (rutile) > nMgO > Annealed nMgO > nTiO2 (anatase) > γ-nAl2O3 > nIn2O3 > α-nAl2O3 > nSnO2. Similarly, nZnO was also the most toxic to B. koreanus, but the other nano metal oxides were non-lethal. nMgO and nZnO were confirmed to trigger reactive oxygen species (ROS) mediated toxicity to the two marine organisms, while nTiO2 (both anatase and rutile forms) likely induced oxidative stress as shown by their acellular ROS production. nZnO may also cause damage in the endocrine system of B. koreanus, as indicated by the increased transcription of retinoid X receptor. Annealed nMgO reduces its toxicity via removal of O2- and impurities from its surface.
Collapse
Affiliation(s)
- Stella W Y Wong
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kevin W H Kwok
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | | | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution (City University of Hong Kong), Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
28
|
Kumar N, Chandan NK, Wakchaure GC, Singh NP. Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish. Comp Biochem Physiol C Toxicol Pharmacol 2020; 229:108678. [PMID: 31783177 DOI: 10.1016/j.cbpc.2019.108678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
In the present study, an experiment was carried out to delineate the lethal concentration of (LC50) zinc nanoparticles (Zn-NPs) alone and with concurrent to high temperature (34 °C) in Pangasianodon hypophthalmus. The lethal concentration of Zn-NPs alone and with high temperature was estimated as 21.89 and 19.74 mg/L respectivey in P. hypophthalmus. The lethal concentration was decided with the help of definite concentration via 16, 18, 20, 22, 24, 26, 28 and 30 mg/L. The Zn-NPs were significantly alter the biochemical and histopathology of different fish tissues. The stress biomarkers such as oxidative stress (catalase superoxide dismutase and glutathione-s-transferase, lipid peroxidation) was studied in the liver, gill and kidney tissue, which was noticeable (p < 0.01) enhanced with higher concentration in both condition (Zn-NPs alone and Zn-NPs-T) in dose dependent manners. The carbohydrate (lactate dehydrogenase and malate dehydrogenase) and protein metabolic enzymes (alanine amino transferase and aspartate amino transferase) were also remarkable enhanced (p < 0.01) with higher concentration of Zn-NPs and Zn-NPs-T. The neurotransmitter (acetylcholine esterase) activities were significant inhibited (p < 0.01) with exposure to Zn-NPs and Zn-NPs-T and digestive enzymes such as protease and amylase were non-significant (p > 0.01) with the exposure of Zn-NPs and Zn-NPs-T, further, lipase were significantly reduced (p < 0.01) with exposure to Zn-NPs and temperature exposure group. The histopathological alteration were also observed in the liver and gill tissue. The present investigation suggested that, essential trace elements at higher concentration in acute exposure led to pronounced deleterious alteration on histopathology and cellular and metabolic activities in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India.
| | - Nitish Kumar Chandan
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - G C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | | |
Collapse
|
29
|
Jampilek J, Kos J, Kralova K. Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E296. [PMID: 30791492 PMCID: PMC6409737 DOI: 10.3390/nano9020296] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Dietary supplements and foods for special medical purposes are special medical products classified according to the legal basis. They are regulated, for example, by the European Food Safety Authority and the U.S. Food and Drug Administration, as well as by various national regulations issued most frequently by the Ministry of Health and/or the Ministry of Agriculture of particular countries around the world. They constitute a concentrated source of vitamins, minerals, polyunsaturated fatty acids and antioxidants or other compounds with a nutritional or physiological effect contained in the food/feed, alone or in combination, intended for direct consumption in small measured amounts. As nanotechnology provides "a new dimension" accompanied with new or modified properties conferred to many current materials, it is widely used for the production of a new generation of drug formulations, and it is also used in the food industry and even in various types of nutritional supplements. These nanoformulations of supplements are being prepared especially with the purpose to improve bioavailability, protect active ingredients against degradation, or reduce side effects. This contribution comprehensively summarizes the current state of the research focused on nanoformulated human and veterinary dietary supplements, nutraceuticals, and functional foods for special medical purposes, their particular applications in various food products and drinks as well as the most important related guidelines, regulations and directives.
Collapse
Affiliation(s)
- Josef Jampilek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia.
| | - Jiri Kos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, Slovakia.
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
30
|
Kumar N, Krishnani KK, Gupta SK, Sharma R, Baitha R, Singh DK, Singh NP. Immuno-protective role of biologically synthesized dietary selenium nanoparticles against multiple stressors in Pangasinodon hypophthalmus. FISH & SHELLFISH IMMUNOLOGY 2018; 78:289-298. [PMID: 29702234 DOI: 10.1016/j.fsi.2018.04.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 05/22/2023]
Abstract
An environment friendly and sustainable approach is being emerged in the area of nanotechnology for accelerated growth and development of culturable aquatic animals hence green chemistry is gaining momentum in recent years. The present study has been carried out to delineate the effects of selenium nanoparticles (Se-NPs) on growth performance, antioxidative status and immunity of fish reared under lead (Pb) and high temperature (34 °C). Three hundred and fifteen fish were equally distributed in seven treatments in triplicates. Three isocaloric and isonitrogenous experimental diets viz. control (Se-NPs-0 mg/kg), Se-NPs at 1 mg/kg and Se-NPs at 2 mg/kg were formulated. The fish were reared under lead (Pb, 1/21st of LC50 (4 ppm)) and high temperature (34 °C) stress and fed with or without dietary Se-NPs. The effects of dietary Se-NPs were studied in terms of growth performance (Weight gain %, feed conversion ratio, protein efficiency ratio and specific growth rate), antioxidative status (catalase, superoxide dismutase, glutathione-S-transferase and glutathione peroxidase), neurotransmitter enzymes (AChE), stress biomarkers (heat shock protein 70, serum cortisol, blood glucose, vitamin C), immunological status (total protein, A/G ratio and respiratory burst activity) in Pangasinodon hypophthalmus post challenge with Aeromonas veronii biovar sobria. Results of the investigation demonstrated significant improvement of growth performance, antioxidative status, neurotransmitter enzyme activity, stress markers and more importantly enhanced immunity of the fish with dietary incorporation of Se-NPs at 1 mg/kg. In addition, post bacterial infection, the relative % survival increased and cumulative mortality % decreased in the group fed with Se-NPs at 1 mg/kg diet. Pb and high temperature treated and fed with control diet group showed devastating impact on the growth performance, antioxidative status, stress markers and immunity of the fish. Similarly, application of Se-NPs at 2 mg/kg showed poor growth performance and elevated level of oxidative stress and other stress biomarkers including other biochemical attributes. Inclusive results indicated that, Se-NPs at 1 mg/kg has capability to enhance overall performance and alleviate multiple stresses in P. hypophthalmus. Hence, Se-NPs at optimum level have ability to develop green chemistry in feed industry for better growth performance of the fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
| | - K K Krishnani
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| | - Sanjay Kumar Gupta
- ICAR-Indian Institute of Agriculture Biotechnology, Namkum, Ranchi, 834010, India
| | - Rupam Sharma
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Raju Baitha
- ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, India
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Salt Lake City, Kolkata Center, 700091, India
| | | |
Collapse
|