1
|
van Andel M, van Schoor NM, Korten NC, Heijboer AC, Drent ML. Leptin, ghrelin and high-molecular-weight adiponectin in relation to anxiety in older adults. Psychoneuroendocrinology 2024; 170:107190. [PMID: 39305810 DOI: 10.1016/j.psyneuen.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Leptin and ghrelin have been linked to depressive symptoms in older adults. There is a large overlap between depression and anxiety in this group. It is unclear whether the same associations exist with anxiety. Adiponectin has an inverse association with anxiety in older adults. However, the association between the most biologically active isoform - high-molecular-weight (HMW) adiponectin - and anxiety has not been previously reported. METHODS We analyzed the association between leptin, ghrelin and HMW adiponectin and general symptoms of anxiety (HADS-A score ≥ 7) at baseline and after three years of follow-up in a population based cohort of older adults in the Netherlands (n = 898) using multivariable logistic regression analyses. RESULTS For leptin there was significant effect modification by sex. We found a positive association between leptin and general symptoms of anxiety in men at baseline and after three years of follow-up after adjusting for depressive symptoms, when comparing the third to the first leptin tertile (T3 vs T1 OR 3.40, 95 % CI 1.08 - 10.78). We found no significant associations for ghrelin. HMW adiponectin was associated with general symptoms of anxiety at follow up. We found a positive association both before and after adjustment for depressive symptoms (T3 vs T1 OR 3.26, 95 % CI 1.36 - 7.83). CONCLUSIONS Our results showed significant associations in men only between leptin and HMW adiponectin and general symptoms of anxiety after three years of follow up. Our findings contribute to further insight into the pathophysiology of anxiety in older adults. However, further research is necessary as we show associations.
Collapse
Affiliation(s)
- Merel van Andel
- Department of Internal Medicine, Endocrine Section, Amsterdam UMC, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands.
| | - Natasja M van Schoor
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands.
| | - Nicole C Korten
- Department of Medical Psychology, Northwest Clinics, Wilhelminalaan 12, Alkmaar 1815 JD, the Netherlands.
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 Hz, the Netherlands; Department of Clinical Chemistry, Endocrine Laboratory, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, Meibergdreeft 9, Amsterdam 1105 AZ, the Netherlands.
| | - Madeleine L Drent
- Department of Internal Medicine, Endocrine Section, Amsterdam UMC, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Department of Clinical Neuropsychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, van der Boechorstraat 7, Amsterdam 1081 BT, the Netherlands.
| |
Collapse
|
2
|
Suh JH, Lee Y, Jin SP, Kim EJ, Seo EY, Li N, Oh JH, Kim SJ, Lee SH, Lee DH, Cho S, Chung JH. Adiponectin Prevents Skin Inflammation in Rosacea by Suppressing S6 Phosphorylation in Keratinocytes. J Invest Dermatol 2024:S0022-202X(24)01982-1. [PMID: 39122145 DOI: 10.1016/j.jid.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Numerous recent evidence highlights epidemiological connections between rosacea and metabolic disorders. However, the precise path through which metabolic factors impact rosacea risk is still unclear. Therefore, this study aims to investigate the role of adiponectin, a crucial adipokine that regulates metabolic homeostasis, in the pathogenesis of rosacea. We elucidated a detrimental feedback loop between rosacea-like skin inflammation and decreased levels of skin adiponectin. To elaborate, rosacea lesional skin exhibits diminished adiponectin expression compared with nonlesional areas in the same patients. Induction of rosacea-like inflammation reduced adiponectin levels in the skin by generating inflammatory cytokines that suppress adiponectin production from subcutaneous adipocytes. Conversely, complete depletion of adiponectin exacerbated rosacea-like features in the mouse model. Mechanistically, adiponectin deficiency led to heightened S6 phosphorylation, a marker of the mTORC1 signaling pathway, in the epidermis. Adiponectin significantly inhibited S6 phosphorylation in cultured keratinocytes. Notably, replenishing adiponectin whole protein or topically applying an agonist for adiponectin receptor 1 successfully improved rosacea-like features in mice. This study contributes to understanding the role of adiponectin in skin inflammation associated with rosacea pathophysiology, suggesting that restoring adiponectin function in the skin could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Joong Heon Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Youngae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Eun Ju Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Eun Young Seo
- Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Na Li
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Si-Hyung Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Soyun Cho
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea; Institute of Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Zheng J, Zhang W, Xu R, Liu L. The role of adiponectin and its receptor signaling in ocular inflammation-associated diseases. Biochem Biophys Res Commun 2024; 717:150041. [PMID: 38710142 DOI: 10.1016/j.bbrc.2024.150041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Ocular inflammation-associated diseases are leading causes of global visual impairment, with limited treatment options. Adiponectin, a hormone primarily secreted by adipose tissue, binds to its receptors, which are widely distributed throughout the body, exerting powerful physiological regulatory effects. The protective role of adiponectin in various inflammatory diseases has gained increasing attention in recent years. Previous studies have confirmed the presence of adiponectin and its receptors in the eyes. Furthermore, adiponectin and its analogs have shown potential as novel drugs for the treatment of inflammatory eye diseases. This article summarizes the evidence for the interplay between adiponectin and inflammatory eye diseases and provides new perspectives on the diagnostic and therapeutic possibilities of adiponectin.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Badoiu SC, Enescu DM, Tatar R, Miricescu D, Stanescu-Spinu II, Greabu M, Coricovac AM, Badoiu SE, Jinga V. Adipokines-A Cohort Prospective Study in Children with Severe Burns. Int J Mol Sci 2024; 25:7630. [PMID: 39062875 PMCID: PMC11277113 DOI: 10.3390/ijms25147630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Burns generate every year an important burden of morbidity, being a major global public health problem through prolonged hospitalization, complications, and increased mortality. This study's purpose was to evaluate the serum levels of three adipokines and to establish significant correlations with other circulating molecules and with some clinical parameters. We evaluated 32 children with severe burns (over 25% total burned surface area-TBSA) at 48 h, day 10, and day 21 post burn, and 21 controls. The serum levels of adiponectin, resistin, leptin, tumor necrosis factor-α (TNF-α), plasminogen activator inhibitor-1 (PAI-1), and C-reactive protein (CRP) (among nine other biochemical parameters) were detected by Multiplex technique. Significant statistical differences were obtained for resistin and leptin compared to the control group, in different moments of measurements. Adiponectin serum levels presented statistically significant correlations with hot liquid mechanism of burn, the Revised Baux score, TBSA, resistin, PAI-1, CRP, TNF-α, and triglycerides (TGLs) serum levels. Resistin serum levels presented statistically significant correlations with adiponectin, CRP, PAI-1, leptin, and TNF-α. Additionally, we found statistically significant correlations between leptin serum levels and length of hospitalization, TNF-α, resistin, adiponectin, and PAI-1 serum levels. In severely burned children, adiponectin, resistin, and leptin specifically correlate with clinical parameters and with proteins involved in the systemic inflammatory response and the hypermetabolic response.
Collapse
Affiliation(s)
- Silviu Constantin Badoiu
- Department of Anatomy and Embriology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
- Department of Plastic and Reconstructive Surgery, Life Memorial Hospital, 365 Grivitei Street, 010719 Bucharest, Romania
| | - Dan Mircea Enescu
- Department of Plastic Reconstructive Surgery and Burns, Grigore Alexandrescu Clinical Emergency Hospital for Children, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (D.M.E.); (R.T.)
| | - Raluca Tatar
- Department of Plastic Reconstructive Surgery and Burns, Grigore Alexandrescu Clinical Emergency Hospital for Children, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (D.M.E.); (R.T.)
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
| | - Anca Magdalena Coricovac
- Discipline of Embriology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
| | - Silvia Elena Badoiu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov, 050085 Bucharest, Romania
| |
Collapse
|
5
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
6
|
Burger K, Jung F, Baumann A, Brandt A, Staltner R, Sánchez V, Bergheim I. TNFα is a key trigger of inflammation in diet-induced non-obese MASLD in mice. Redox Biol 2023; 66:102870. [PMID: 37683301 PMCID: PMC10493600 DOI: 10.1016/j.redox.2023.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor necrosis factor alpha (TNFα) is thought to be a critical factor in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we determined the effects of a treatment with the anti-TNFα antibody infliximab and a genetic deletion of TNFα, respectively, in the development of non-obese diet-induced early metabolic dysfunction-associated steatohepatitis (MASH) in mice. The treatment with infliximab improved markers of liver damage in mice with pre-existing early MASH. In TNFα-/- mice, the development of early signs of MASH and insulin resistance was significantly attenuated compared to wild-type animals. While mRNA expression of proinflammatory cytokines like interleukin 1β (Il1b) and interleukin 6 (Il6) were significantly lower in livers of MASH-diet-fed TNFα-/- mice compared to wild-type mice with early MASH, markers of intestinal barrier function were similarly impaired in both MASH-diet-fed groups compared to controls. Our data suggest that TNFα is a key regulator of hepatic inflammation and insulin resistance associated with the development of early non-obese MASH.
Collapse
Affiliation(s)
- Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Yu H, Gao X, Ge Q, Tai W, Hao X, Shao Q, Fang Z, Chen M, Song Y, Gao W, Liu G, Du X, Li X. Tumor necrosis factor-α reduces adiponectin production by decreasing transcriptional activity of peroxisome proliferator-activated receptor-γ in calf adipocytes. J Dairy Sci 2023; 106:5182-5195. [PMID: 37268580 DOI: 10.3168/jds.2022-22919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/24/2023] [Indexed: 06/04/2023]
Abstract
Adiponectin (encoded by ADIPOQ) is an adipokine that orchestrates energy homeostasis by modulating glucose and fatty acid metabolism in peripheral tissues. During the periparturient period, dairy cows often develop adipose tissue inflammation and decreased plasma adiponectin levels. Proinflammatory cytokine tumor necrosis factor-α (TNF-α) plays a pivotal role in regulating the endocrine functions of adipocytes, but whether it affects adiponectin production in calf adipocytes remains obscure. Thus, the present study aimed to determine whether TNF-α could affect adiponectin production in calf adipocytes and to identify the underlying mechanism. Adipocytes isolated from Holstein calves were differentiated and used for (1) BODIPY493/503 staining; (2) treatment with 0.1 ng/mL TNF-α for different times (0, 8, 16, 24, or 48 h); (3) transfection with peroxisome proliferator-activated receptor-γ (PPARG) small interfering RNA for 48 h followed by treatment with or without 0.1 ng/mL TNF-α for 24 h; and (4) overexpression of PPARG for 48 h followed by treatment with or without 0.1 ng/mL TNF-α for 24 h. After differentiation, obvious lipid droplets and secretion of adiponectin were observed in adipocytes. Treatment with TNF-α did not alter mRNA abundance of ADIPOQ but reduced the total and high molecular weight (HMW) adiponectin content in the supernatant of adipocytes. Quantification of mRNA abundance of endoplasmic reticulum (ER)/Golgi resident chaperones involved in adiponectin assembly revealed that ER protein 44 (ERP44), ER oxidoreductase 1α (ERO1A), and disulfide bond-forming oxidoreductase A-like protein (GSTK1) were downregulated in TNF-α-treated adipocytes, while 78-kDa glucose-regulated protein and Golgi-localizing γ-adaptin ear homology domain ARF binding protein-1 were unaltered. Moreover, TNF-α diminished nuclear translocation of PPARγ and downregulated mRNA abundance of PPARG and its downstream target gene fatty acid synthase, suggesting that TNF-α suppressed the transcriptional activity of PPARγ. In the absence of TNF-α, overexpression of PPARG enhanced the total and HMW adiponectin content in supernatant and upregulated the mRNA abundance of ADIPOQ, ERP44, ERO1A, and GSTK1 in adipocytes. However, knockdown of PPARG reduced the total and HMW adiponectin content in supernatant and downregulated the mRNA abundance of ADIPOQ, ERP44, ERO1A, and GSTK1 in adipocytes. In the presence of TNF-α, overexpression of PPARG decreased, while knockdown of PPARG further exacerbated TNF-α-induced reductions in total and HMW adiponectin secretion and gene expression of ERP44, ERO1A, and GSTK1. Overall, TNF-α reduces adiponectin assembly in the calf adipocyte, which may be partly mediated by attenuation of PPARγ transcriptional activity. Thus, locally elevated levels of TNF-α in adipose tissue may be one reason for the decrease in circulating adiponectin in periparturient dairy cows.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xinxing Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Qilai Ge
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Wenjun Tai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xue Hao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Qi Shao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Meng Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
8
|
Able AA, Richard AJ, Stephens JM. TNFα Effects on Adipocytes Are Influenced by the Presence of Lysine Methyltransferases, G9a (EHMT2) and GLP (EHMT1). BIOLOGY 2023; 12:674. [PMID: 37237488 PMCID: PMC10215715 DOI: 10.3390/biology12050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Impaired adipocyte function contributes to systemic metabolic dysregulation, and altered fat mass or function increases the risk of Type 2 diabetes. EHMTs 1 and 2 (euchromatic histone lysine methyltransferases 1 and 2), also known as the G9a-like protein (GLP) and G9a, respectively, catalyze the mono- and di-methylation of histone 3 lysine 9 (H3K9) and also methylate nonhistone substrates; in addition, they can act as transcriptional coactivators independent of their methyltransferase activity. These enzymes are known to contribute to adipocyte development and function, and in vivo data indicate a role for G9a and GLP in metabolic disease states; however, the mechanisms involved in the cell-autonomous functions of G9a and GLP in adipocytes are largely unknown. Tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine typically induced in adipose tissue in conditions of insulin resistance and Type 2 diabetes. Using an siRNA approach, we have determined that the loss of G9a and GLP enhances TNFα-induced lipolysis and inflammatory gene expression in adipocytes. Furthermore, we show that G9a and GLP are present in a protein complex with nuclear factor kappa B (NF-κB) in TNFα-treated adipocytes. These novel observations provide mechanistic insights into the association between adipocyte G9a and GLP expression and systemic metabolic health.
Collapse
Affiliation(s)
- Ashley A. Able
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
9
|
Ramser A, Dridi S. Hormonal regulation of visfatin and adiponectin system in quail muscle cells. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111425. [PMID: 37044369 DOI: 10.1016/j.cbpa.2023.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Visfatin and adiponectin are two adipokines known to regulate energy homeostasis and stress response within different peripheral tissues. Their role and regulation in highly metabolically active tissue such as the muscle is of particular interest. As modern poultry exhibit insulin resistance, obesity, and hyperglycemia along with a lack of insight into the regulation of these avian adipokines, we undertook the present work to determine the regulation of visfatin and adiponectin system by cytokines and obesity-related hormones in a relevant in vitro model of avian muscle, quail muscle (QM7) cells. Cells were treated with pro-inflammatory cytokine IL-6 (5 and 10 ng/mL) and TNFα (5 and 10 ng/mL), as well as leptin (10 and 100 ng/mL) and both orexin-A and orexin-B (ORX-A/B) (5 and 10 ng/mL). Results showed significant increases in visfatin mRNA abundance under both cytokines (IL-6 and TNFα), and down regulation with ORX-B treatment. Adiponectin expression was also upregulated by pro-inflammatory cytokines (IL-6 and TNFα), but down regulated by leptin, ORX-A, and ORXB. High doses of IL-6 and TNFα up regulated the expression of adiponectin receptors AdipoR1 and AdipoR2, respectively. Leptin and orexin treatments also down regulated both AdipoR1 and AdipoR2 expression. Taken together, this is the first report showing a direct response of visfatin and the adiponectin system to pro-inflammatory and obesity-related hormones in avian muscle cells.
Collapse
Affiliation(s)
- Alison Ramser
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA.
| |
Collapse
|
10
|
Kiełbowski K, Bakinowska E, Ostrowski P, Pala B, Gromowska E, Gurazda K, Dec P, Modrzejewski A, Pawlik A. The Role of Adipokines in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:ijms24076390. [PMID: 37047363 PMCID: PMC10094354 DOI: 10.3390/ijms24076390] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Psoriasis is a chronic and immune-mediated skin condition characterized by pro-inflammatory cytokines and keratinocyte hyperproliferation. Dendritic cells, T lymphocytes, and keratinocytes represent the main cell subtypes involved in the pathogenesis of psoriasis, while the interleukin-23 (IL-23)/IL-17 pathway enhances the disease progression. Human adipose tissue is an endocrine organ, which secretes multiple proteins, known as adipokines, such as adiponectin, leptin, visfatin, or resistin. Current evidence highlights the immunomodulatory roles of adipokines, which may contribute to the progression or suppression of psoriasis. A better understanding of the complexity of psoriasis pathophysiology linked with adipokines could result in developing novel diagnostic or therapeutic strategies. This review aims to present the pathogenesis of psoriasis and the roles of adipokines in this process.
Collapse
|
11
|
Guo XH, Wu MY, Zhao G, Wu FH, Xu YD, Yin MZ, Xiang L. The locoregional adiponectin and its synergistic antitumor effect with HIF-1α blockade in TSCC. Oral Dis 2023; 29:515-527. [PMID: 34174132 DOI: 10.1111/odi.13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Adiponectin (APN) is a kind of endogenous anti-tumor adipocytokine, which exerts its function by binding to its receptors (AdipoR1 and AdipoR2). However, hyperadiponectinemia is found in some pathophysiological processes without significant protective effect, which indicates the existence of APN resistance. Here, we aimed to investigate the locoregional expression of APN in tongue squamous cell carcinoma (TSCC) tissues, and to explore the potential regulatory mechanism of APN resistance under hypoxia. Consequently, we found that the protein expression of APN and AdipoR1, but not AdipoR2, was upregulated in the early stage of TSCC and after hypoxic treatment ex vivo and in vitro. Knockdown of HIF-1α decreased the level of APN and AdipoR1, and simultaneously, HIF-1α was identified as transcriptor of the APN. Intriguingly, a regenerative feedback of HIF-1α was unexpectedly detected after application of recombinant globular APN (gAPN), which most likely contributed to the APN resistance. Furthermore, HIF-1α blockade combined with gAPN has a prominent synergistic antitumor effect, which suggested an effective amelioration in APN resistance. In all, our study revealed the possible mechanism of APN resistance under hypoxia and provides a promising strategy of bi-target treatment with APN and HIF-1α for TSCC therapy.
Collapse
Affiliation(s)
- Xiao-Hong Guo
- Department of Medical Biology, School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ming-Yu Wu
- Department of Basic Biology, College of Life Sciences, Hubei University, Wuhan, China
| | - Gang Zhao
- Department of Medical Biology, School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Feng-Hua Wu
- Department of Medical Biology, School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yun-Dan Xu
- Department of Medical Biology, School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ming-Zhu Yin
- Department of Medical Biology, School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Xiang
- Department of Medical Biology, School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
12
|
Cho HJ, Song S, Kim Z, Youn HJ, Cho J, Min JW, Kim YS, Choi SW, Lee JE. Associations of body mass index and weight change with circulating levels of high-sensitivity C-reactive protein, proinflammatory cytokines, and adiponectin among breast cancer survivors. Asia Pac J Clin Oncol 2023; 19:113-125. [PMID: 35590398 DOI: 10.1111/ajco.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/20/2023]
Abstract
AIM This study examined the associations of body mass index (BMI) and weight change with inflammatory markers among breast cancer survivors in Korea. METHODS A total of 495 women were included who had been diagnosed with primary breast cancer and survived for at least 6 months since the surgery. Information on the body weight and height of the participants was collected both at the study enrollment and diagnosis. The plasma levels of inflammatory markers were measured, including high-sensitivity C-reactive protein, interleukin (IL)-6, IL-8, tumor necrosis factor-α, and adiponectin. A summary z-score was calculated by summing up the z-scores of each biomarker. The least-square means and 95% confidence intervals (CIs) were calculated using a generalized linear model and odds ratios (ORs) and 95% CIs for the elevated levels of inflammatory markers with a multivariate logistic regression model. RESULTS Participants with a BMI ≥27.5 kg/m2 at the study enrollment and at diagnosis were significantly associated with elevated summary z-scores compared to those with a BMI < 23 kg/m2 ; the ORs (95% CIs) were 5.42 (2.15-13.71) for current BMI and 3.66 (1.68-7.98) for BMI at diagnosis, respectively. Additionally, a weight loss > 5% since diagnosis was associated with a lower prevalence of high summary z-scores; the OR (95% CI) was .20 (.08-.52) compared to a stable weight. CONCLUSIONS A high BMI at diagnosis and current BMI with a greater degree were associated with unfavorable levels of inflammatory markers among breast cancer survivors. Additionally, weight loss since diagnosis was inversely associated with these markers.
Collapse
Affiliation(s)
- Hyun Jeong Cho
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Sihan Song
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Zisun Kim
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jihyoung Cho
- Department of Surgery, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jun Won Min
- Department of Surgery, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yoo Seok Kim
- Department of Surgery, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Sang-Woon Choi
- Chaum Life Center, CHA University, Seoul, Republic of Korea.,Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Słuczanowska-Głabowska S, Staniszewska M, Marchlewicz M, Duchnik E, Łuczkowska K, Safranow K, Machaliński B, Pawlik A. Adiponectin, Leptin and Resistin in Patients with Psoriasis. J Clin Med 2023; 12:jcm12020663. [PMID: 36675592 PMCID: PMC9860551 DOI: 10.3390/jcm12020663] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Psoriasis is a common chronic, inflammatory skin disease characterised by keratinocyte hyperproliferation, parakeratosis, and T-cell infiltration. Adipose tissue has an endocrine function, producing an abundance of cytokines and adipokines. It has also been described that the major adipokines, leptin, resistin, and adiponectin, may be involved in the pathogenesis of psoriasis. The aim of the study was to examine the plasma levels of adiponectin, leptin, and resistin in patients with psoriasis and their correlations with disease activity parameters: Psoriasis Activity Severity Index (PASI), Dermatology Life Quality Index (DLQI), and Body Surface Area (BSA) index, as well as selected clinical parameters. The study included 53 patients with the plaque type and 31 healthy controls. The plasma concentrations of adiponectin were significantly lower in patients with psoriasis (p < 0.001) than in the control group. The plasma concentrations of leptin were higher in patients with psoriasis, however, due to high intra-patient variability of leptin plasma concentrations these differences did not reach statistical significance (p = 0.2). The plasma concentrations of resistin were significantly increased in patients with psoriasis compared to healthy controls (p = 0.02). There were no statistically significant correlations between adiponectin and leptin plasma concentrations and values of PASI, DLQI, and BSA. The resistin plasma concentrations correlated significantly with DLQI values. Additionally, we examined the correlations between adiponectin, leptin, and resistin plasma concentrations, and selected clinical parameters. Plasma concentrations of adiponectin correlated significantly with CRP values and ALT values. Leptin plasma concentrations correlated significantly with creatinine values. The results of our study confirm the role of adiponectin, leptin, and resistin in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
| | - Marzena Staniszewska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Mariola Marchlewicz
- Department of Dermatology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
14
|
Correale J, Marrodan M. Multiple sclerosis and obesity: The role of adipokines. Front Immunol 2022; 13:1038393. [PMID: 36457996 PMCID: PMC9705772 DOI: 10.3389/fimmu.2022.1038393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2023] Open
Abstract
Multiple Sclerosis (MS), a chronic inflammatory disease of the central nervous system that leads to demyelination and neurodegeneration has been associated with various environmental and lifestyle factors. Population-based studies have provided evidence showing the prevalence of MS is increasing worldwide. Because a similar trend has been observed for obesity and metabolic syndrome, interest has grown in possible underlying biological mechanisms shared by both conditions. Adipokines, a family of soluble factors produced by adipose tissue that participate in a wide range of biological functions, contribute to a low state of chronic inflammation observed in obesity, and influence immune function, metabolism, and nutritional state. In this review, we aim to describe epidemiological and biological factors common to MS and obesity, as well as provide an update on current knowledge of how different pro- and anti-inflammatory adipokines participate as immune response mediators in MS, as well as in the animal model for MS, namely, experimental autoimmune encephalomyelitis (EAE). Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination, and neurodegeneration. Although its pathogenesis is not yet fully understood, there is considerable evidence to suggest MS arises from complex interactions between individual genetic susceptibility and external environmental factors. In recent decades, population-based studies have provided evidence indicating the prevalence of MS is increasing worldwide, in parallel with the rise in obesity and metabolic syndrome. This synchronous increment in the incidence of both MS and obesity has led to a search for potential biological mechanisms linking both conditions. Notably, a large number of studies have established significant correlation between obesity and higher prevalence, or worse prognosis, of several immune-mediated conditions. Fat tissue has been found to produce a variety of soluble factors named adipokines. These mediators, secreted by both adipocytes as well as diverse immune cells, participate in a wide range of biological functions, further strengthening the concept of a link between immune function, metabolism, and nutritional state. Because obesity causes overproduction of pro-inflammatory adipokines (namely leptin, resistin and visfatin) and reduction of anti-inflammatory adipokines (adiponectin and apelin), adipose tissue dysregulation would appear to contribute to a state of chronic, low-grade inflammation favoring the development of disease. In this review, we present a summary of current knowledge related to the pathological effects of different adipokines, prevalent in obese MS patients.
Collapse
Affiliation(s)
- Jorge Correale
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
15
|
Qian Y, Mao M, Nian F. The Effect of TNF- α on CHD and the Relationship between TNF- α Antagonist and CHD in Rheumatoid Arthritis: A Systematic Review. Cardiol Res Pract 2022; 2022:6192053. [PMID: 36060429 PMCID: PMC9433296 DOI: 10.1155/2022/6192053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) plays an important role in coronary heart disease (CHD), a chronic inflammatory process. Meanwhile, this pro-inflammatory factor is also involved in the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA). Patients with RA correspond to a higher risk of CHD. TNF-α antagonist, one of the main treatments for RA, may reduce the risk of CHD in patients with RA. This review summarizes the pathogenesis of TNF-α in CHD and discusses the relationship between TNF-α antagonist and CHD in patients with RA.
Collapse
Affiliation(s)
- Yezhou Qian
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Menghui Mao
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Feige Nian
- Department of Rheumatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
16
|
Silveira EA, Rosa LPDS, de Resende DP, Rodrigues APDS, da Costa AC, Rezende ATDO, Noll M, de Oliveira C, Junqueira-Kipnis AP. Positive Effects of Extra-Virgin Olive Oil Supplementation and DietBra on Inflammation and Glycemic Profiles in Adults With Type 2 Diabetes and Class II/III Obesity: A Randomized Clinical Trial. Front Endocrinol (Lausanne) 2022; 13:841971. [PMID: 35586621 PMCID: PMC9108866 DOI: 10.3389/fendo.2022.841971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Evidence on the effects of dietary interventions on inflammatory markers in individuals with obesity and type 2 diabetes mellitus (T2DM) is scarce. Our study evaluated the effects of extra-virgin olive oil alone and in combination with a traditional Brazilian diet on inflammatory markers and glycemic profiles in adults with both T2DM and class II/III obesity. Methods Adults aged 18-64 years with T2DM and class II/III obesity were randomized into two intervention groups: 1) extra-virgin olive oil only and 2) extra-virgin olive oil + a traditional Brazilian diet (OliveOil+DietBra). Data on sociodemographic characteristics, lifestyle, anthropometry, biochemical markers and inflammatory markers were collected. The primary outcomes were glycemic parameters and inflammatory markers. The body mass index (BMI) and weight were the secondary outcomes. Results Forty individuals with T2DM and class II/III obesity were enrolled, and 34 (85%) completed the intervention course. The intake of olive oil was 37.88 ± 12.50 mL/day in the olive oil group and 37.71 ± 12.23 mL/day in the OliveOil+DietBra group, with no significant difference between groups (p = 0.484). Compared to the olive oil only group, the OliveOil+DietBra group had significantly lower levels of fasting insulin (p = 0.047) at the end of the intervention, whereas the other glycemic parameters were not altered. In the OliveOil+DietBra group, serum levels of inflammatory cytokines, IL-1α (p = 0.006) and adiponectin (p = 0.049) were lower and those of TNFα were higher (p = 0.037). There was a significant reduction in BMI and weight compared to the baseline values in the OliveOil+DietBra group (p = 0.015). Conclusions The intervention with OliveOil+DietBra effectively decreased the levels of fasting insulin, IL-1α and adiponectin, suggesting its beneficial role in improving the inflammatory profiles and fasting insulin levels in adults with class II/III obesity and T2DM. Clinical Trial Registration ClinicalTrials.gov, identifier: NCT02463435.
Collapse
Affiliation(s)
- Erika Aparecida Silveira
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiás, Brazil
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Lorena Pereira de Souza Rosa
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiás, Brazil
- Federal Institute of Goiás, Campus Goiânia, Goiás, Brazil
| | - Danilo Pires de Resende
- Department of Biosciences, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | | | - Adeliane Castro da Costa
- Department of Biosciences, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | | | - Matias Noll
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiás, Brazil
- Instituto Federal Goiano, Campus Ceres, Goiás, Brazil
| | - Cesar de Oliveira
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Ana Paula Junqueira-Kipnis
- Department of Biosciences, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| |
Collapse
|
17
|
Formolo DA, Cheng T, Yu J, Kranz GS, Yau SY. Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plast 2022; 8:79-96. [DOI: 10.3233/bpl-220138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer’s disease. Here, we aim at linking the adiponectin’s neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Douglas A. Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Tong Cheng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| |
Collapse
|
18
|
Lou W, Zhang MD, Chen Q, Bai TY, Hu YX, Gao F, Li J, Lv XL, Zhang Q, Chang FH. Molecular mechanism of benzo [a] pyrene regulating lipid metabolism via aryl hydrocarbon receptor. Lipids Health Dis 2022; 21:13. [PMID: 35057794 PMCID: PMC8772151 DOI: 10.1186/s12944-022-01627-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Benzo [a] pyrene (BaP), a potent carcinogen, has been proved that it has toxicological effects via activation the aryl hydrocarbon receptor (AhR) pathway. AhR can participate in regulating lipogenesis and lipolysis. This topic will verify whether BaP regulates lipid metabolism via AhR. METHODS (1) C57BL/6 mice were gavaged with BaP for 12 weeks to detect serum lipids, glucose tolerance, and insulin resistance. Morphological changes in white adipose tissue (WAT) were detected by Hematoxylin and Eosin staining. The mRNA expression levels of adipogenesis-related factors included recombinant human CCAAT/enhancer binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), and fatty acid binding protein 4 (FABP4) and inflammatory factors included nuclear factor kappa-B (NF-κB), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor alpha (TNF-α) were detected using PCR. (2) Neutral lipid content changes in differentiated 3 T3-L1 adipocytes treated with BaP with and w/o AhR inhibitor were detected by Oil red staining. The protein expression levels of adipogenesis- and decomposition-related factors included PPARγ coactivator-1 alpha (PGC-1α), and peroxisome proliferation-activated receptor alpha (PPARα) were detected using western blotting. The mRNA expression levels of inflammatory factors were detected using PCR. RESULTS (1) BaP inhibited body weight gain, decreased lipid content, increased lipid levels, and decreased glucose tolerance and insulin tolerance in mice; (2) BaP reduced the expressions of C/EBPα, PPARγ, FABP4, PGC-1α, and PPARα and increased the expressions of NF-κB, MCP-1, and TNF-α by activating AhR. CONCLUSION BaP inhibit fat synthesis and oxidation while inducing inflammation by activating AhR, leading to WAT dysfunction and causing metabolic complications.
Collapse
Affiliation(s)
- Wei Lou
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Department of Pharmacy, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010010, China
| | - Meng-di Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Qi Chen
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Tu-Ya Bai
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Yu-Xia Hu
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Feng Gao
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Jun Li
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Xiao-Li Lv
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Qian Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Fu-Hou Chang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China.
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China.
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China.
| |
Collapse
|
19
|
Huang K, Liang Y, Ma Y, Wu J, Luo H, Yi B. The Variation and Correlation of Serum Adiponectin, Nesfatin-1, IL-6, and TNF-α Levels in Prediabetes. Front Endocrinol (Lausanne) 2022; 13:774272. [PMID: 35311231 PMCID: PMC8928772 DOI: 10.3389/fendo.2022.774272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The variation and correlation among adiponectin, nesfatin-1, tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6), which may be involved in the development of the decline of health into prediabetes and diabetes, have not been elucidated. This study aims to investigate the roles of these cytokines in this process. METHODS Seventy-two type 2 diabetes mellitus (T2DM) patients, 75 prediabetics, and 72 healthy individuals were enrolled in our case control study. Serum adiponectin, nesfatin-1, TNF-α, and IL-6 were tested with appropriate kits, and primary data were analyzed with correct methods. RESULTS Serum levels of each cytokine in patients with prediabetes were between T2DM and the healthy, and significant differences were found among them. TNF-α and nesfatin-1 levels in T2DM were obviously different compared to prediabetes or the healthy; IL-6 and adiponectin levels in the healthy group were significantly changed in contrast to prediabetes or T2DM. Correlation analysis found that in prediabetics, adiponectin was positively correlated with TNF-α (R = 0.2939, P = 0.0105) and IL-6 (R = 0.3918, P = 0.0005), and their relationship was greatly strengthened in prediabetes accompanied by insulin resistance (TNF-α: R = 0.7732, P < 0.0001, IL-6: R = 0.6663, P = 0.0005). We also demonstrated that declined adiponectin (OR = 6.238, P = 0.019) and nesfatin-1 (OR = 2.812, P = 0.01) and elevated TNF-α (OR = 5.541, P = 0.001) were risk factors for prediabetes toward diabetes. CONCLUSIONS This research proved significant variations of adiponectin, nesfatin-1, IL-6, and TNF-α levels in the healthy, prediabetics, and T2DM, suggesting a slow and gradual change during the progression from a healthy condition toward diabetes via prediabetes.
Collapse
Affiliation(s)
- Kangkang Huang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunlai Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yating Ma
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahui Wu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huidan Luo
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Bin Yi,
| |
Collapse
|
20
|
Adiponectin and Asthma: Knowns, Unknowns and Controversies. Int J Mol Sci 2021; 22:ijms22168971. [PMID: 34445677 PMCID: PMC8396527 DOI: 10.3390/ijms22168971] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is an adipokine associated with the healthy obese phenotype. Adiponectin increases insulin sensitivity and has cardio and vascular protection actions. Studies related to adiponectin, a modulator of the innate and acquired immunity response, have suggested a role of this molecule in asthma. Studies based on various asthma animal models and on the key cells involved in the allergic response have provided important insights about this relation. Some of them indicated protection and others reversed the balance towards negative effects. Many of them described the cellular pathways activated by adiponectin, which are potentially beneficial for asthma prevention or for reduction in the risk of exacerbations. However, conclusive proofs about their efficiency still need to be provided. In this article, we will, briefly, present the general actions of adiponectin and the epidemiological studies supporting the relation with asthma. The main focus of the current review is on the mechanisms of adiponectin and the impact on the pathobiology of asthma. From this perspective, we will provide arguments for and against the positive influence of this molecule in asthma, also indicating the controversies and sketching out the potential directions of research to complete the picture.
Collapse
|
21
|
Hao Y, Zhu YJ, Zou S, Zhou P, Hu YW, Zhao QX, Gu LN, Zhang HZ, Wang Z, Li J. Metabolic Syndrome and Psoriasis: Mechanisms and Future Directions. Front Immunol 2021; 12:711060. [PMID: 34367173 PMCID: PMC8343100 DOI: 10.3389/fimmu.2021.711060] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/07/2021] [Indexed: 02/05/2023] Open
Abstract
Psoriasis is an immune-mediated systemic disease with associated comorbidities, including metabolic syndrome (MetS) which contributes substantially to premature mortality in patients with psoriasis. However, the pathological mechanisms underlying this comorbidity are unclear. Studies have shown that the pathological parameters of psoriasis mediate the development of MetS. We reviewed the potential mechanisms which mediate the association between psoriasis and MetS, including endoplasmic reticulum stress, pro-inflammatory cytokine releases, excess production of reactive oxygen species, alterations in adipocytokine levels and gut microbiota dysbiosis. Here, we highlight important research questions regarding this association and offer insights into MetS research and treatment.
Collapse
Affiliation(s)
- Yan Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ya-Juan Zhu
- Department of Biotherapy and Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Song Zou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ya-Wen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qi-Xiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lin-Na Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hao-Zhou Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
22
|
Adiponectin Deregulation in Systemic Autoimmune Rheumatic Diseases. Int J Mol Sci 2021; 22:ijms22084095. [PMID: 33920997 PMCID: PMC8071452 DOI: 10.3390/ijms22084095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Deregulation of adiponectin is found in systemic autoimmune rheumatic diseases (SARDs). Its expression is downregulated by various inflammatory mediators, but paradoxically, elevated serum levels are present in SARDs with high inflammatory components, such as rheumatoid arthritis and systemic lupus erythematosus. Circulating adiponectin is positively associated with radiographic progression in rheumatoid arthritis as well as with cardiovascular risks and lupus nephritis in systemic lupus erythematosus. However, in SARDs with less prominent inflammation, such as systemic sclerosis, adiponectin levels are low and correlate negatively with disease activity. Regulators of adiponectin gene expression (PPAR-γ, Id3, ATF3, and SIRT1) and inflammatory cytokines (interleukin 6 and tumor necrosis factor α) are differentially expressed in SARDs and could therefore influence total adiponectin levels. In addition, anti-inflammatory therapy could also have an impact, as tocilizumab treatment is associated with increased serum adiponectin. However, anti-tumor necrosis factor α treatment does not seem to affect its levels. Our review provides an overview of studies on adiponectin levels in the bloodstream and other biological samples from SARD patients and presents some possible explanations why adiponectin is deregulated in the context of therapy and gene regulation.
Collapse
|
23
|
Passos GR, Ghezzi AC, Antunes E, de Oliveira MG, Mónica FZ. The Role of Periprostatic Adipose Tissue on Prostate Function in Vascular-Related Disorders. Front Pharmacol 2021; 12:626155. [PMID: 33643052 PMCID: PMC7908035 DOI: 10.3389/fphar.2021.626155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
The lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH) are highly prevalent worldwide. Clinical and experimental data suggest that the incidence of LUTS-BPH is higher in patients with vascular-related disorders such as in pelvic ischemia, obesity and diabetes as well as in the ageing population. Obesity is an important risk factor that predisposes to glucose intolerance, insulin resistance, dyslipidemia, type 2 diabetes mellitus and cardiovascular disorders. Prospective studies showed that obese men are more likely to develop LUTS-BPH than non-obese men. Yet, men with greater waist circumferences were also at a greater risk of increased prostate volume and prostate-specific antigen than men with lower waist circumference. BPH is characterized by an enlarged prostate and increased smooth muscle tone, thus causing urinary symptoms. Data from experimental studies showed a significant increase in prostate and epididymal adipose tissue weight of obese mice when compared with lean mice. Adipose tissues that are in direct contact with specific organs have gained attention due to their potential paracrine role. The prostate gland is surrounded by periprostatic adipose tissue (PPAT), which is believed to play a paracrine role by releasing growth factors, pro-inflammatory, pro-oxidant, contractile and anti-contractile substances that interfere in prostate reactivity and growth. Therefore, this review is divided into two main parts, one focusing on the role of adipokines in the context of obesity that can lead to LUTS/BPH and the second part focusing on the mediators released from PPAT and the possible pathways that may interfere in the prostate microenvironment.
Collapse
|
24
|
Li Y, Liu Y, Yang M, Wang Q, Zheng Y, Xu J, Zheng P, Song H. A Study on the Therapeutic Efficacy of San Zi Yang Qin Decoction for Non-Alcoholic Fatty Liver Disease and the Underlying Mechanism Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8819245. [PMID: 33505505 PMCID: PMC7810527 DOI: 10.1155/2021/8819245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022]
Abstract
OBJECTIVE This study aims to explore the therapeutic efficacy of San Zi Yang Qin Decoction (SZ) and its potential mechanism in the treatment of non-alcoholic fatty liver disease (NAFLD) based on network pharmacology and in vivo experiments. METHODS Effective chemicals and targets of SZ were searched in online databases, according to the drug-likeness of compounds and the binomial distribution of targets. A disease-target-chemical network was established using NAFLD-associated genes screened through GeneCards database, Gene Ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, animal experiments were conducted to verify the efficacy and mechanism of SZ predicted by network pharmacology. The NAFLD mouse model was established with C57BL/6J mice fed with a high-fat diet for 22 weeks. The mice in the control group were fed with a chow diet. From the 23rd week, the NAFLD mice were treated with intragastric SZ or normal saline for 8 weeks. After the glucose tolerance was measured, the mice were sacrificed, followed by the collection of serum and liver tissues. Pathological changes in liver tissues were examined by H&E staining. Additionally, alanine aminotransferase (ALT), aspartate aminotransferase (AST), serum fast blood glucose, and insulin levels were detected. Expression levels of TNF-α of serum and liver tissues were determined by ELISA and qRT-PCR, respectively. Western blot was used to detect the activation of AKT in liver tissues. RESULTS A total of 27 effective compounds and 20 targets of SZ were screened. GO analysis uncovered a significant correlation between the targets of SZ and those of NAFLD. KEGG analysis presented the signaling pathways enriched in SZ and NAFLD, including NAFLD, TNF-α, and apoptosis pathways. The area under the curve of major GO and KEGG pathways indicated the potential role of SZ in improving NAFLD. In vivo experiments demonstrated that SZ significantly alleviated hepatosteatosis and inflammatory cell infiltration in liver tissues, reduced serum transaminases, and improved insulin resistance and glucose tolerance of NAFLD mice. The protein level of phospho-AKT was upregulated by SZ. Additionally, SZ treatment obviously impaired the TNF-α level in the serum and liver tissue of NAFLD mice. CONCLUSIONS According to the network pharmacology analysis and in vivo experiments, SZ could have therapeutic efficacy for NALFD. The mechanism mainly involves pathways relative to insulin resistance, TNF-α, and apoptosis. Our results provide a scientific basis for SZ in the clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Yiping Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping Road, Shanghai 200032, China
| | - Yang Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping Road, Shanghai 200032, China
| | - Ming Yang
- Office of National Drug Clinical Trial, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qianlei Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping Road, Shanghai 200032, China
| | - Yu Zheng
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Jiaoya Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping Road, Shanghai 200032, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping Road, Shanghai 200032, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping Road, Shanghai 200032, China
| |
Collapse
|
25
|
Shao Q, Wu Y, Ji J, Xu T, Yu Q, Ma C, Liao X, Cheng F, Wang X. Interaction Mechanisms Between Major Depressive Disorder and Non-alcoholic Fatty Liver Disease. Front Psychiatry 2021; 12:711835. [PMID: 34966296 PMCID: PMC8710489 DOI: 10.3389/fpsyt.2021.711835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD), which is highly associated with non-alcoholic fatty liver disease (NAFLD), has complex pathogenic mechanisms. However, a limited number of studies have evaluated the mutual pathomechanisms involved in MDD and NAFLD development. Chronic stress-mediated elevations in glucocorticoid (GC) levels play an important role in the development of MDD-related NAFLD. Elevated GC levels can induce the release of inflammatory factors and changes in gut permeability. Elevated levels of inflammatory factors activate the hypothalamic-pituitary-adrenal (HPA) axis, which further increases the release of GC. At the same time, changes in gut permeability promote the release of inflammatory factors, which results in a vicious circle among the three, causing disease outbreaks. Even though the specific role of the thyroid hormone (TH) in this pathogenesis has not been fully established, it is highly correlated with MDD and NAFLD. Therefore, changing lifestyles and reducing psychological stress levels are necessary measures for preventing MDD-related NAFLD. Among them, GC inhibitors and receptor antagonists may be key in the alleviation of early and mid-term disease progression. However, combination medications may be important in late-stage diseases, but they are associated with various side effects. Traditional Chinese medicines have been shown to be potential therapeutic alternatives for such complex diseases.
Collapse
Affiliation(s)
- Qi Shao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yiping Wu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiaoyu Yu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuejing Liao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Zhou X, Li JQ, Wei LJ, He MZ, Jia J, Zhang JY, Wang SS, Feng L. Silencing of DsbA-L gene impairs the PPARγ agonist function of improving insulin resistance in a high-glucose cell model. J Zhejiang Univ Sci B 2020; 21:990-998. [PMID: 33843164 DOI: 10.1631/jzus.b2000432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disulfide-bond A oxidoreductase-like protein (DsbA-L) is a molecular chaperone involved in the multimerization of adiponectin. Recent studies have found that DsbA-L is related to metabolic diseases including gestational diabetes mellitus (GDM), and can be regulated by peroxisome proliferator-activated receptor γ (PPARγ) agonists; the specific mechanism, however, is uncertain. Furthermore, the relationship between DsbA-L and the novel adipokine chemerin is also unclear. This article aims to investigate the role of DsbA-L in the improvement of insulin resistance by PPARγ agonists in trophoblast cells cultured by the high-glucose simulation of GDM placenta. Immunohistochemistry and western blot were used to detect differences between GDM patients and normal pregnant women in DsbA-L expression in the adipose tissue. The western blot technique was performed to verify the relationship between PPARγ agonists and DsbA-L, and to explore changes in key molecules of the insulin signaling pathway, as well as the effect of chemerin on DsbA-L. Results showed that DsbA-L was significantly downregulated in the adipose tissue of GDM patients. Both PPARγ agonists and chemerin could upregulate the level of DsbA-L. Silencing DsbA-L affected the function of rosiglitazone to promote the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)/AKT pathway. Therefore, it is plausible to speculate that DsbA-L is essential in the environment of PPARγ agonists for raising insulin sensitivity. Overall, we further clarified the mechanism by which PPARγ agonists improve insulin resistance.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia-Qi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Jie Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng-Zhou He
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Jia
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing-Yi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shao-Shuai Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
27
|
Zhu D, Xu L, Wei X, Xia B, Gong Y, Li Q, Chen X. PPARγ enhanced Adiponectin polymerization and trafficking by promoting RUVBL2 expression during adipogenic differentiation. Gene 2020; 764:145100. [PMID: 32877748 DOI: 10.1016/j.gene.2020.145100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
Abstract
Adipocyte differentiation is an essential part of adipose tissue development, and is closely related to obesity and obesity-related diseases. In this study, we found that the expression of PPARγ, RUVBL2 and Adiponectin were concurrently obviously increased in the 5th-7th day of 3T3-L1 cell differentiation. PPARγ overexpression or the PPARγ activator facilitated Adiponectin trafficking and secretion and upregulated RUVBL2 expression as well as AS160 phosphorylation during adipogenic differentiation of 3T3-L1 cells. Consistently RUVBL2 overexpression also enhanced the polymerization and secretion of Adiponectin, in contrast, RUVBL2 knockdown reduced Adiponectin secretion. Further, PPARγ significantly enhanced RUVBL2 promoter activity and transcription. The progressive deletions and mutations of RUVBL2 promoter for PPARγ binding sites suggested that the PPARγ binding motif situated at -804/-781 bp is an essential component required for RUVBL2 promoter activity. Chromatin immunoprecipitation (ChIP) assays determined that PPARγ can directly interact with the RUVBL2 promoter DNA. Taken together, these data suggest that PPARγ promotes the expression, polymerization and secretion of Adiponectin by activating RUVBL2 transcriptionally, which accelerates 3T3-L1 cell differentiation.
Collapse
Affiliation(s)
- Daiyun Zhu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Le Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuan Wei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Benzeng Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuqing Gong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qinjin Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaodong Chen
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
28
|
Does adiponectin play a role in the pathogenesis of chronic spontaneous urticaria? Cent Eur J Immunol 2020; 45:56-59. [PMID: 32425680 PMCID: PMC7226560 DOI: 10.5114/ceji.2020.94678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/26/2018] [Indexed: 01/03/2023] Open
Abstract
Introduction Chronic spontaneous urticaria constitutes an interdisciplinary problem and its pathogenesis is still a subject of debate. Overweight and hyperlipidemia are supposed to be related to chronic spontaneous urticaria. Fatty tissue can be the source of adipokines. Aim of the study To assess the potential role of adiponectin in chronic spontaneous urticaria pathogenesis. Material and methods The study included 52 chronic spontaneous urticaria patients and 43 healthy controls. The patients were divided into two subgroups: patients with wheals only, and patients with urticaria and an accompanying angioedema. The adiponectin concentration was measured in all studied subjects. Results No statistically significant difference in adiponectin level was determined between the studied groups and subgroups. Conclusions We are among the first to present the results of study to determine a possible role of adipokines in chronic spontaneous urticaria pathogenesis. We did not observe any difference in adiponectin level. In our opinion, it is necessary to conduct further analyses in this field.
Collapse
|
29
|
Guedes MR, Fittipaldi-Fernandez RJ, Diestel CF, Klein MRST. Impact of Intragastric Balloon Treatment on Adipokines, Cytokines, and Metabolic Profile in Obese Individuals. Obes Surg 2020; 29:2600-2608. [PMID: 31037597 DOI: 10.1007/s11695-019-03891-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Obesity is accompanied by adipose tissue remodeling characterized by increased production of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, leptin and resistin and reduced secretion of adiponectin, which favors inflammation, metabolic disorders, and cardiovascular diseases. Although intragastric balloon (IGB) can be considered safe and effective for weight loss, its effect on serum levels of these biomarkers has been evaluated only in a few studies, while no previous study evaluated its effect on circulating levels of resistin, TNF-α, and IL-6. The aim of this study was to evaluate the changes in serum levels of metabolic and inflammatory biomarkers in obese patients submitted to IGB treatment. METHODS A prospective observational study involving 42 patients with obesity using IGB for 6 months. The patients were evaluated, on the day of insertion and withdrawal or adjustment of IGB, for the following: anthropometric measures and serum levels of adiponectin, leptin, resistin, TNF-α, IL-6, high-sensitivity C-reactive protein (hs-CRP), glucose, insulin, uric acid, triglycerides, and total cholesterol and fractions. RESULTS The body mass index decreased from 35.15 ± 0.41 to 29.50 ± 0.54 kg/m2. There was a reduction (p < 0.05) in leptin, hs-CRP, glucose, insulin, HOMA-IR, and triglycerides, while the adiponectin/leptin ratio increased (p < 0.05). Moreover, weight loss presented (1) a positive association with the decrease in leptin, hs-CRP, glucose, insulin, HOMA-IR, uric acid, and total cholesterol and (2) a negative association with the reduction in adiponectin/leptin ratio. CONCLUSIONS The present study suggests that 6 months of IGB treatment in obese individuals reduce serum leptin and hs-CRP and improves insulin resistance and lipid profile which may decrease cardiovascular risk.
Collapse
Affiliation(s)
- Marcella Rodrigues Guedes
- Division of Gastroenterology EndogastroRio Clinic, 43/1101, Siqueira Campos Street, Rio de Janeiro, RJ, 22031-901, Brazil.,Post Graduation Program in Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cristina Fajardo Diestel
- Department of Applied Nutrition, Nutrition Institute, Rio de Janeiro State University, 12th floor/524, São Francisco Xavier Street, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Márcia Regina Simas Torres Klein
- Department of Applied Nutrition, Nutrition Institute, Rio de Janeiro State University, 12th floor/524, São Francisco Xavier Street, Rio de Janeiro, RJ, 20550-900, Brazil
| |
Collapse
|
30
|
Morris EV, Suchacki KJ, Hocking J, Cartwright R, Sowman A, Gamez B, Lea R, Drake MT, Cawthorn WP, Edwards CM. Myeloma Cells Down-Regulate Adiponectin in Bone Marrow Adipocytes Via TNF-Alpha. J Bone Miner Res 2020; 35:942-955. [PMID: 31886918 PMCID: PMC9328417 DOI: 10.1002/jbmr.3951] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023]
Abstract
Multiple myeloma is caused by abnormal plasma cells that accumulate in the bone marrow and interact with resident cells of the bone microenvironment to drive disease progression and development of an osteolytic bone disease. Bone marrow adipocytes (BMAds) are emerging as having important endocrine functions that can support myeloma cell growth and survival. However, how BMAds respond to infiltrating tumor cells remains poorly understood. Using the C57BL/KaLwRij murine model of myeloma, bone marrow adiposity was found to be increased in early stage myeloma with BMAds localizing along the tumor-bone interface at later stages of disease. Myeloma cells were found to uptake BMAd-derived lipids in vitro and in vivo, although lipid uptake was not associated with the ability of BMAds to promote myeloma cell growth and survival. However, BMAd-derived factors were found to increase myeloma cell migration, viability, and the evasion of apoptosis. BMAds are a major source of adiponectin, which is known to be myeloma-suppressive. Myeloma cells were found to downregulate adiponectin specifically in a model of BMAds but not in white adipocytes. The ability of myeloma cells to downregulate adiponectin was dependent at least in part on TNF-α. Collectively our data support the link between increased bone marrow adiposity and myeloma progression. By demonstrating how TNF-α downregulates BMAd-derived adiponectin, we reveal a new mechanism by which myeloma cells alter the bone microenvironment to support disease progression. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Emma V Morris
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,NIHR Oxford BRC, Oxford, UK.,Oxford Centre for Translational Myeloma Research, Oxford, UK
| | - Karla J Suchacki
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph Hocking
- NIHR Oxford BRC, Oxford, UK.,Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Oxford, UK
| | - Rachel Cartwright
- NIHR Oxford BRC, Oxford, UK.,Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Oxford, UK
| | - Aneka Sowman
- NIHR Oxford BRC, Oxford, UK.,Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Oxford, UK
| | - Beatriz Gamez
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,NIHR Oxford BRC, Oxford, UK.,Oxford Centre for Translational Myeloma Research, Oxford, UK
| | - Ryan Lea
- NIHR Oxford BRC, Oxford, UK.,Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Oxford, UK
| | - Matthew T Drake
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - William P Cawthorn
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,NIHR Oxford BRC, Oxford, UK.,Oxford Centre for Translational Myeloma Research, Oxford, UK.,Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Oxford, UK
| |
Collapse
|
31
|
Palit SP, Patel R, Jadeja SD, Rathwa N, Mahajan A, Ramachandran AV, Dhar MK, Sharma S, Begum R. A genetic analysis identifies a haplotype at adiponectin locus: Association with obesity and type 2 diabetes. Sci Rep 2020; 10:2904. [PMID: 32076038 PMCID: PMC7031532 DOI: 10.1038/s41598-020-59845-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
Adiponectin is a prime determinant of the status of insulin resistance. Association studies between adiponectin (ADIPOQ) gene single nucleotide polymorphisms (SNPs) and metabolic diseases have been reported earlier. However, results are ambiguous due to apparent contradictions. Hence, we investigated (1) the association between ADIPOQ SNPs: -11377C/G, +10211T/G, +45T/G and +276G/T for the risk towards type 2 diabetes (T2D) and, (2) genotype-phenotype association of these SNPs with various biochemical parameters in two cohorts. Genomic DNA of diabetic patients and controls from Gujarat and, Jammu and Kashmir (J&K) were genotyped using PCR-RFLP, TaqMan assay and MassArray. Transcript levels of ADIPOQ were assessed in visceral adipose tissue samples, and plasma adiponectin levels were estimated by qPCR and ELISA respectively. Results suggest: (i) reduced HMW adiponectin/total adiponectin ratio in Gujarat patients and its association with +10211T/G and +276G/T, and reduced ADIPOQ transcript levels in T2D, (ii) association of the above SNPs with increased FBG, BMI, TG, TC in Gujarat patients and (iii) increased GGTG haplotype in obese patients of Gujarat population and, (iv) association of -11377C/G with T2D in J&K population. Reduced HMW adiponectin, in the backdrop of obesity and ADIPOQ genetic variants might alter metabolic profile posing risk towards T2D.
Collapse
Affiliation(s)
- Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Roma Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Shahnawaz D Jadeja
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Nirali Rathwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Ankit Mahajan
- Human Genetics Research Group, School of Biotechnology, S.M.V.D.U, Katra, 182320, Jammu and Kashmir, India
- School of Biotechnology, University of Jammu, Jammu, 180001, Jammu and Kashmir, India
| | - A V Ramachandran
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Manoj K Dhar
- School of Biotechnology, University of Jammu, Jammu, 180001, Jammu and Kashmir, India
| | - Swarkar Sharma
- Human Genetics Research Group, School of Biotechnology, S.M.V.D.U, Katra, 182320, Jammu and Kashmir, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India.
| |
Collapse
|
32
|
ADIPQ gene polymorphism rs266729 (-11377 C>G) and metabolic syndrome risk in a Mexican population of western Mexico. NUTR HOSP 2020; 38:67-72. [PMID: 33319570 DOI: 10.20960/nh.03204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: obesity often leads to deregulation and disrupting of the function of adipokines, which leads to various altered conditions, including metabolic syndrome (MetS). Adiponectin is one of the main adipokines secreted by adipocytes. The ADIPQ gene polymorphism rs266729 (-11377 C>G) is significantly associated with metabolic alterations related to obesity in different populations. Mexico has a high prevalence of obesity and risk factors associated with MetS. We investigated the association of the ADIPQ gene polymorphism rs266729 (-11377 C>G) with MetS in a Mexican population of western Mexico. Methods: a total of 101 MetS patients and 70 unrelated healthy subjects were genotyped for ADIPQ polymorphism rs266729 using the restriction fragment length polymorphism method. Results: we found a higher frequency of the minor allele G in MetS patients, as compared to that observed in the control group (OR = 2.17; 95 % CI, 1.26-3.70; p = 0.003). Also, the GG genotype was significantly associated with MetS risk under codominant (OR = 4.0; 95 % CI, 1.32-11.71; p = 0.014), dominant (OR = 2.16; 95 % CI, 1.12-4.03; p = 0.018), and recessive (OR = 3.33; 95 % CI, 1.14-9.45; p = 0.033) genetic models. Conclusion: our findings suggest that the minor allele G in the ADIPQ gene polymorphism rs266729 constitutes a risk factor for the development of MetS in a Mexican population of western Mexico.
Collapse
|
33
|
Polito R, Nigro E, Pecoraro A, Monaco ML, Perna F, Sanduzzi A, Genovese A, Spadaro G, Daniele A. Adiponectin Receptors and Pro-inflammatory Cytokines Are Modulated in Common Variable Immunodeficiency Patients: Correlation With Ig Replacement Therapy. Front Immunol 2019; 10:2812. [PMID: 31827477 PMCID: PMC6890605 DOI: 10.3389/fimmu.2019.02812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/15/2019] [Indexed: 11/13/2022] Open
Abstract
Adiponectin exerts beneficial pleiotropic effects through three receptors, AdipoR1, AdipoR2, and T-cadherin; it also exerts immunomodulatory effects. We previously demonstrated that adiponectin levels are altered in common variable immunodeficiency disease (CVID). The purpose of the present study was to investigate further the specific involvement of adiponectin in CVID by characterizing (i) the expression profile of adiponectin receptors on peripheral blood mononuclear cells; (ii) the levels of another relevant adipokine, namely leptin; (iii) the levels of five other cytokines (IL-2, IL-6, IL-10, TNFα, and IFNγ) in 24 patients on maintenance therapy, in 18 treatment-naïve patients (before and 24 h after the first Ig infusion) and in 28 healthy controls. We found that (i) adiponectin was down-expressed in patients on maintenance therapy and in treatment-naïve patients, and that it increased in treatment-naïve patients 24 h after the first Ig infusion; (ii) leptin expression did not differ between maintenance patients and controls either before or after the first Ig infusion; (iii) AdipoR1 expression was significantly higher on B lymphocytes, monocytes and NK cells of CVID patients than in controls; (iv) the expression of AdipoR1 and AdipoR2 on B lymphocytes, monocytes and NK cells was higher after the first Ig infusion than in treatment-naïve patients; (v) T-cadherin expression did not differ between treatment- naïve CVID patients and controls, and was not affected by Ig infusion; and (vi) IL-6, IL-8, IL-10, and TNFα levels were differently expressed in CVID patients on therapy maintenance and were not affected by the first Ig replacement therapy. This is the first study to demonstrate that the expression of AdipoRs in peripheral blood mononuclear cells from CVID patients differs from that of controls, and changes after the first Ig infusion. The specificity of adiponectin involvement in CVID is supported by the absence of changes in leptin levels and in the levels of the cytokines investigated. Taken together, these results suggest that the adiponectin system plays an important and specific role in CVID. A better understanding of adiponectin as a link in the cross-talk between the immune system and adipose tissue may provide additional benefits for the management of CVID patients.
Collapse
Affiliation(s)
- Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli," Caserta, Italy.,CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| | - Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy.,Dipartimento di Scienze Mediche Traslazionali, Allergologia e Immunologia Clinica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonio Pecoraro
- Dipartimento di Scienze Mediche Traslazionali, Allergologia e Immunologia Clinica, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | - Franco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Alessandro Sanduzzi
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Arturo Genovese
- Dipartimento di Scienze Mediche Traslazionali, Allergologia e Immunologia Clinica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Giuseppe Spadaro
- Dipartimento di Scienze Mediche Traslazionali, Allergologia e Immunologia Clinica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli," Caserta, Italy.,CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| |
Collapse
|
34
|
Garcia-Diaz DF, Jimenez P, Reyes-Farias M, Soto-Covasich J, Costa AGV. A Review of the Potential of Chilean Native Berries in the Treatment of Obesity and its Related Features. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:277-286. [PMID: 31278560 DOI: 10.1007/s11130-019-00746-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Obesity is a major worldwide health threat. It is characterized by an abnormal adipose tissue overgrowth together with increased monocytes infiltration, causing inflammation and oxidative stress, events associated with several illnesses. Investigations have focused on the benefits of native fruit consumption, claiming these to be natural sources of bioactive compounds with antioxidant and anti-inflammatory characteristics. It has been widely stated that berries are a source of the most antioxidant compounds, and, thus, seem highly promising to endure research efforts on these vegetal matrices. The present article describes botanical, chemical and biomedical features of the Chilean native berries, Aristotelia chilensis, Ugni molinae, and Berberis microphylla. This work aims to potentiate incoming research focused on the search for novel treatments for first-order diseases with these particular plant sources.
Collapse
Affiliation(s)
- Diego F Garcia-Diaz
- Department of Nutrition, School of Medicine, University of Chile, Independencia, 1027, Santiago, Chile.
| | - P Jimenez
- Department of Nutrition, School of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | - M Reyes-Farias
- Department of Nutrition, School of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | - J Soto-Covasich
- Biotechnology Doctoral Program, Pontificia Universidad Catolica de Valparaiso - Universidad Tecnica Federico Santa Maria, Valparaiso, Chile
| | - A G V Costa
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, Federal University of Espirito Santo, Alegre, Brazil
| |
Collapse
|
35
|
Preston KJ, Rom I, Vrakas C, Landesberg G, Etwebi Z, Muraoka S, Autieri M, Eguchi S, Scalia R. Postprandial activation of leukocyte-endothelium interaction by fatty acids in the visceral adipose tissue microcirculation. FASEB J 2019; 33:11993-12007. [PMID: 31393790 DOI: 10.1096/fj.201802637rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
High-fat diet (HFD)-induced obesity is associated with accumulation of inflammatory cells predominantly in visceral adipose depots [visceral adipose tissue (VAT)] rather than in subcutaneous ones [subcutaneous adipose tissue (SAT)]. The cellular and molecular mechanisms responsible for this phenotypic difference remain poorly understood. Controversy also exists on the overall impact that adipose tissue inflammation has on metabolic health in diet-induced obesity. The endothelium of the microcirculation regulates both the transport of lipids and the trafficking of leukocytes into organ tissue. We hypothesized that the VAT and SAT microcirculations respond differently to postprandial processing of dietary fat. We also tested whether inhibition of endothelial postprandial responses to high-fat meals (HFMs) preserves metabolic health in chronic obesity. We demonstrate that administration of a single HFM or ad libitum access to a HFD for 24 h quickly induces a transient P-selectin-dependent inflammatory phenotype in the VAT but not the SAT microcirculation of lean wild-type mice. Studies in P-selectin-deficient mice confirmed a mechanistic role for P-selectin in the initiation of leukocyte trafficking, myeloperoxidase accumulation, and acute reduction in adiponectin mRNA expression by HFMs. Despite reduced VAT inflammation in response to HFMs, P-selectin-deficient mice still developed glucose intolerance and insulin resistance when chronically fed an HFD. Our data uncover a novel nutrient-sensing role of the vascular endothelium that instigates postprandial VAT inflammation. They also demonstrate that inhibition of this transient postprandial inflammatory response fails to correct metabolic dysfunction in diet-induced obesity.-Preston, K. J., Rom, I., Vrakas, C., Landesberg, G., Etwebe, Z., Muraoka, S., Autieri, M., Eguchi, S., Scalia, R. Postprandial activation of leukocyte-endothelium interaction by fatty acids in the visceral adipose tissue microcirculation.
Collapse
Affiliation(s)
| | - Inna Rom
- Cardiovascular Research Center and
| | | | | | | | | | - Michael Autieri
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Satoru Eguchi
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Rosario Scalia
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Saleri R, Cavalli V, Ferrari L, Ogno G, Canelli E, Martelli P, Borghetti P. Modulation of the somatotropic axis, adiponectin and cytokine secretion during highly pathogenic porcine reproductive and respiratory syndrome virus type 1 (HP-PRRSV-1) infection. Res Vet Sci 2019; 124:263-269. [PMID: 31003008 DOI: 10.1016/j.rvsc.2019.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/07/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is known to be clinically responsible for reproductive failure in sows and post-weaning respiratory disease in growing piglets. During the last years, highly pathogenic PRRSV isolates have been discovered. In Italy, a PRRSV-1 subtype 1 strain (namely PR40/2014) characterized by high pathogenicity was isolated and experimental infection was characterized in terms of virological/clinical features and immune modulation (Canelli et al., 2017; Ferrari et al., 2018). The present study was performed in 4-week-old pigs experimentally infected with the highly pathogenic PRRSV1_PR40/2014 (HP-PR40) or with the conventional PRRSV1_PR11/2014 (PR11). The aim was to evaluate the interrelation between plasmatic hormones and cytokines in infected pigs compared to uninfected controls in order to address potential effects on the course of an experimental infection. The time-related changes of growth hormone (GH), insulin-like growth factor-1 (IGF-1), adiponectin, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels appear to be modulated by the infection depending on the PRRSV isolate (HP-PR40 vs. PR11). In particular, in HP-PR40 infected animals, the association between high GH levels and viremia may testify the need to block the anabolic action of GH in order to shift available energy towards the immune response. This need appeared to be delayed in PR11 animals, given the lower pathogenicity of the isolate. Adiponectin, IL-6 and TNF-α course supports the hypothesis of GH resistance mechanisms to guarantee homeostasis in HP-PR40 animals and underlines the key role of energy availability in events leading to an effective response to the virus.
Collapse
Affiliation(s)
- R Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy.
| | - V Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - L Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - G Ogno
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - E Canelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - P Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - P Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| |
Collapse
|
37
|
Gamberi T, Magherini F, Mannelli M, Chrisam M, Cescon M, Castagnaro S, Modesti A, Braghetta P, Fiaschi T. Role of adiponectin in the metabolism of skeletal muscles in collagen VI-related myopathies. J Mol Med (Berl) 2019; 97:793-801. [PMID: 30927046 DOI: 10.1007/s00109-019-01766-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
The role of adiponectin has been particularly deepened in diabetic muscles while the study of adiponectin in hereditary myopathies has been marginally investigated. Here, we report the study about adiponectin effects in Col6a1-/- (collagen VI-null) mice. Col6a1-/- mice show myophatic phenotype closer to that of patients with Bethlem myopathy, thus representing an excellent animal model for the study of this hereditary disease. Our findings demonstrate that Col6a1-/- mice have decreased plasma adiponectin content and diseased myoblasts have an impaired autocrine secretion of the hormone. Moreover, Col6a1-/- myoblasts show decreased glucose uptake and mitochondria with depolarized membrane potential and impaired functionality, as supported by decreased oxygen consumption. Exogenous addition of globular adiponectin modifies the features of Col6a1-/- myoblasts, becoming closer to that of the healthy myoblasts. Indeed, globular adiponectin enhances glucose uptake in Col6a1-/- myoblasts, modifies mitochondrial membrane potential, and restores oxygen consumption, turning closer to those of wild-type myoblasts. Finally, increase of plasma adiponectin level in Col6a1-/- mice is induced by fasting, a condition that has been previously shown to lead to the amelioration of the dystrophic phenotype. Collectively, our results demonstrate that exogenous replenishment of adiponectin reverses metabolic abnormalities observed in Col6a1-/- myoblasts. KEY MESSAGES: Col6a1-/- mice have decreased level of plasma adiponectin. Myoblasts from Col6a1-/- muscles have impaired local adiponectin secretion. Col6a1-/- myoblasts reveal altered metabolic features. Addition of exogenous adiponectin ameliorates Col6a1-/- metabolic features.
Collapse
Affiliation(s)
- Tania Gamberi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, viale Morgagni 50, 50134, Florence, Italy
| | - Francesca Magherini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, viale Morgagni 50, 50134, Florence, Italy
| | - Michele Mannelli
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, viale Morgagni 50, 50134, Florence, Italy
| | - Martina Chrisam
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Padua, Italy
| | - Matilde Cescon
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Padua, Italy
| | - Silvia Castagnaro
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Padua, Italy
| | - Alessandra Modesti
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, viale Morgagni 50, 50134, Florence, Italy
| | - Paola Braghetta
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Padua, Italy
| | - Tania Fiaschi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, viale Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
38
|
Tanianskii DA, Jarzebska N, Birkenfeld AL, O'Sullivan JF, Rodionov RN. Beta-Aminoisobutyric Acid as a Novel Regulator of Carbohydrate and Lipid Metabolism. Nutrients 2019; 11:E524. [PMID: 30823446 PMCID: PMC6470580 DOI: 10.3390/nu11030524] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023] Open
Abstract
The prevalence and incidence of metabolic syndrome is reaching pandemic proportions worldwide, thus warranting an intensive search for novel preventive and treatment strategies. Recent studies have identified a number of soluble factors secreted by adipocytes and myocytes (adipo-/myokines), which link sedentary life style, abdominal obesity, and impairments in carbohydrate and lipid metabolism. In this review, we discuss the metabolic roles of the recently discovered myokine β-aminoisobutyric acid (BAIBA), which is produced by skeletal muscle during physical activity. In addition to physical activity, the circulating levels of BAIBA are controlled by the mitochondrial enzyme alanine: glyoxylate aminotransferase 2 (AGXT2), which is primarily expressed in the liver and kidneys. Recent studies have shown that BAIBA can protect from diet-induced obesity in animal models. It induces transition of white adipose tissue to a "beige" phenotype, which induces fatty acids oxidation and increases insulin sensitivity. While the exact mechanisms of BAIBA-induced metabolic effects are still not well understood, we discuss some of the proposed pathways. The reviewed data provide new insights into the connection between physical activity and energy metabolism and suggest that BAIBA might be a potential novel drug for treatment of the metabolic syndrome and its cardiovascular complications.
Collapse
Affiliation(s)
- Dmitrii A Tanianskii
- Department of Biochemistry, Institute of Experimental Medicine, Acad. Pavlov St., 12, 197376 St. Petersburg, Russia.
- Department of Fundamental Medicine and Medical Technology, St.Petersburg State University, 8 liter A, 21st Line V.O., 199034 St. Petersburg, Russia.
| | - Natalia Jarzebska
- University Center for Vascular Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Andreas L Birkenfeld
- Medical Clinic III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - John F O'Sullivan
- Medical Clinic III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
- Charles Perkins Centre and Heart Research Institute, The University of Sydney, 7 Eliza St, Newtown NSW, Sydney 2042, Australia.
| | - Roman N Rodionov
- University Center for Vascular Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
39
|
Żółkiewicz J, Stochmal A, Rudnicka L. The role of adipokines in systemic sclerosis: a missing link? Arch Dermatol Res 2019; 311:251-263. [PMID: 30806766 PMCID: PMC6469644 DOI: 10.1007/s00403-019-01893-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/27/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis is a multiorgan autoimmune disease characterized by vasculopathy and tissue fibrosis of unknown etiology. Recently, adipokines (cell signaling proteins secreted by adipose tissue) have attracted much attention as a cytokine family contributing to the various pathological processes of systemic sclerosis. Adipokines, such as leptin, adiponectin, resistin, adipsin, visfatin or chemerin are a heterogenic group of molecules. Adiponectin exhibits anti-fibrotic features and affects inflammatory reactions. Leptin promotes fibrosis and inflammation. Resistin was linked to vascular involvement in systemic sclerosis. Visfatin was associated with regression of skin lesions in late-stage systemic sclerosis. Chemerin appears as a marker of increased risk of impaired renal function and development of skin sclerosis in the early stage of systemic sclerosis. Vaspin was indicated to have a protective role in digital ulcers development. Novel adipokines-adipsin, apelin, omentin and CTRP-3-are emerging as molecules potentially involved in SSc pathogenesis. Serum adipokine levels may be used as predictive and diagnostic factors in systemic sclerosis. However, further investigations are required to establish firm correlations between distinct adipokines and systemic sclerosis.
Collapse
Affiliation(s)
- Jakub Żółkiewicz
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland
| | - Anna Stochmal
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland.
| |
Collapse
|
40
|
Able AA, Richard AJ, Stephens JM. Loss of DBC1 (CCAR2) affects TNFα-induced lipolysis and Glut4 gene expression in murine adipocytes. J Mol Endocrinol 2018; 61:195-205. [PMID: 30139876 PMCID: PMC6193813 DOI: 10.1530/jme-18-0154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/30/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023]
Abstract
STAT5A (signal transducer and activator of transcription 5A) is a transcription factor that plays a role in adipocyte development and function. In this study, we report DBC1 (deleted in breast cancer 1; also known as CCAR2) as a novel STAT5A-interacting protein. DBC1 has been primarily studied in tumor cells, but there is evidence that loss of this protein may promote metabolic health in mice. Currently, the functions of DBC1 in mature adipocytes are largely unknown. Using immunoprecipitation and immunoblotting techniques, we confirmed that there is an association between endogenous STAT5A and DBC1 proteins under physiological conditions in the adipocyte nucleus that is not dependent upon STAT5A tyrosine phosphorylation. We used siRNA to knockdown DBC1 in 3T3-L1 adipocytes to determine the impact on STAT5A activity, adipocyte gene expression, and TNFα (tumor necrosis factor α)-regulated lipolysis. The loss of DBC1 did not affect the expression of several STAT5A target genes including Socs3, Cish, Bcl6, Socs2, and Igf1 However, we did observe decreased levels of TNFα-induced glycerol and free fatty acids released from adipocytes with reduced DBC1 expression. In addition, DBC1-knockdown adipocytes had increased Glut4 expression. In summary, DBC1 can associate with STAT5A in adipocyte nucleus, but it does not appear to impact regulation of STAT5A target genes. Loss of adipocyte DBC1 modestly increases Glut4 gene expression and reduces TNFα-induced lipolysis. These observations are consistent with in vivo observations that show loss of DBC1 promotes metabolic health in mice.
Collapse
Affiliation(s)
- Ashley A. Able
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
- To whom correspondence should be addressed, Jacqueline Stephens, Louisiana State University, Pennington Biomedical Research Center, Baton Rouge, LA 70808, Phone (225)-763-2648, FAX (225)-763-0273,
| |
Collapse
|
41
|
Rajan S, Panzade G, Srivastava A, Shankar K, Pandey R, Kumar D, Gupta S, Gupta A, Varshney S, Beg M, Mishra RK, Shankar R, Gaikwad A. miR-876-3p regulates glucose homeostasis and insulin sensitivity by targeting adiponectin. J Endocrinol 2018; 239:1–17. [PMID: 30307150 DOI: 10.1530/joe-17-0387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
miRNA has been known to regulate diverse cellular and molecular functions. In the earlier study, we have reported that adipocytes differentiated from human mesenchymal stem cells (hMSC) on 72-h chronic insulin (CI) treatment exhibit insulin resistance (IR). Present study has further explored above model to investigate the role of early expressed miRNAs within human adipocytes to modulate differential adipokine expression as observed during IR. Our results highlight that miR-876-3p regulate glucose homeostasis and its dysregulation leads to IR. We found that miR-876-3p level is a critical determinant of adiponectin expression by virtue of its target within adiponectin 3′UTR. Regulatory effect of miR-876-3p impacts crosstalk between adiponectin and insulin signaling. Rosiglitazone treatment in CI-induced IR adipocytes drastically reduced miR-876-3p expression and increased adiponectin level. In line with this, lentiviral-mediated inhibition of miR-876-3p expression ameliorated CI and high-fat diet (HFD)-induced IR in adipocytes differentiated from hMSC and C57BL/6 mice, respectively. Our findings thus suggest that modulating miR-876-3p expression could provide novel opportunities for therapeutic intervention of obesity-associated metabolic syndrome.
Collapse
Affiliation(s)
- Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, CSIR-CDRI, Lucknow, India
| | - Ganesh Panzade
- Studio of Computational Biology and Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, CSIR-IHBT, Palampur, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, CSIR-CDRI, Lucknow, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajesh Pandey
- CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, CSIR-CDRI, Lucknow, India
| | - Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, CSIR-CDRI, Lucknow, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, CSIR-CDRI, Lucknow, India
| | - Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Ravi Shankar
- Studio of Computational Biology and Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, CSIR-IHBT, Palampur, India
| | - Anil Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, CSIR-CDRI, Lucknow, India
| |
Collapse
|
42
|
Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr 2018; 58:27-43. [PMID: 30043184 DOI: 10.1007/s00394-018-1790-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The first part of this review focuses on the role of cells and molecules of adipose tissue involved in metabolic syndrome-induced inflammation and in the maintenance of this pathology. In the second part of the review, the potential role of probiotics-modulating metabolic syndrome-related inflammatory components is summarized and discussed. METHODS The search for the current scientific literature was carried out using ScienceDirect, PubMed, and Google Scholar search engines. The keywords used were: metabolic syndrome, obesity, insulin resistant, adipose tissue, adipose tissue inflammation, chronic low-grade inflammation, immune cells, adipokines, cytokines, probiotics, and gut microbiota. RESULTS AND CONCLUSIONS Chronic low-grade inflammation that characterized metabolic syndrome can contribute to the development of the metabolic dysfunctions involved in the pathogenesis of its comorbidities. Adipose tissue is a complex organ that performs metabolic and immune functions. During metabolic syndrome, an imbalance in the inflammatory components of adipose tissue (immune cells, cytokines, and adipocytokines), which shift from an anti-inflammatory to a pro-inflammatory profile, can provoke metabolic syndrome linked complications. Further knowledge concerning the immune function of adipose tissue may contribute to finding better alternatives for the treatment or prevention of such disorders. The control of inflammation could result in the management of many of the pathologies related to metabolic syndrome. Due to the strong evidence that gut microbiota composition plays a role modulating the body weight, adipose tissue, and the prevalence of a low-grade inflammatory status, probiotics emerge as valuable tools for the prevention of metabolic syndrome and health recovery.
Collapse
|
43
|
|
44
|
Krumm CS, Giesy SL, Orndorff CL, Boisclair YR. Variation in x-box binding protein 1 (XBP1) expression and its dependent endoplasmic reticulum chaperones does not regulate adiponectin secretion in dairy cows. J Dairy Sci 2018; 101:5559-5570. [PMID: 29550138 DOI: 10.3168/jds.2017-14048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/26/2018] [Indexed: 12/12/2022]
Abstract
Adiponectin is an insulin-sensitizing hormone produced predominantly by adipose tissue; it circulates as oligomers of 3, 6, 18, or more units. Plasma adiponectin might be involved in the development of insulin resistance in transition dairy cows because it falls to a nadir around parturition. The possibility that this regulation occurs through a post-transcriptional mechanism was suggested in a previous study that showed unchanged adiponectin mRNA abundance combined with reduced expression of endoplasmic reticulum (ER) chaperones implicated in assembly of adiponectin oligomers. Expression of ER chaperones is controlled by x-box binding protein 1 (XBP1) and activating transcription factor 6 (ATF6), suggesting a model whereby transcriptional regulation of ER chaperones during the transition period contributes to the regulation of adiponectin production. In support of this model, XBP1 expression in adipose tissue, measured either as the active spliced XBP1 mRNA or as the total of all XBP1 mRNA isoforms, was 45% lower on d 8 of lactation than 4 wk before parturition; ATF6 mRNA abundance remained unchanged over the same period. To assess the functional importance of XBP1, preadipocytes isolated from pregnant cows were differentiated into adipocytes that secrete adiponectin. Infection of differentiating cells with an adenovirus expressing the active spliced version of bovine XBP1 did not alter adiponectin mRNA but increased the expression of ER chaperones 1.5- to 5-fold. Despite the latter, XBP1 overexpression did not affect the total amount of adiponectin secreted in medium. In additional experiments, adiponectin production was dependent on exogenous lipid in the medium and was reduced during incubation with tumor necrosis factor-α (TNFα). Accordingly, we asked whether the repressive effects of these factors on adiponectin production were related to a reduction in the expression of adiponectin or determinants of ER function (XBP1, ATF6, and ER chaperones). Exogenous lipid had no effect on the expression of any of these genes, whereas TNFα repressed adiponectin mRNA abundance by 61% but had little effect on determinants of ER function. Overall, this work shows that XBP1 is a positive regulator of ER chaperone expression in adipose tissue but provides no support for XBP1 and its dependent ER chaperones in the regulation of adiponectin production in bovine adipocytes. Mechanisms accounting for reduced plasma adiponectin in transition cows remain poorly understood.
Collapse
Affiliation(s)
- C S Krumm
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - S L Giesy
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - C L Orndorff
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Y R Boisclair
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
45
|
Abstract
Adiponectin circulates in blood in multiple isoforms. High molecular weight (HMW) adiponectin is thought to be most biologically active and promotes glucose uptake, insulin sensitivity, and fatty acid oxidation. In obesity, adiponectin isoform formation is disrupted, leading to an inverse association between metabolic disease and HMW and total adiponectin. Adiponectin isoforms also function as acute-phase reactants influencing inflammation in acute and chronic disease. Interestingly, adiponectin and mortality have a U-shaped association. Unfortunately, data concerning adiponectin and its pathophysiologic function conflict. This is predominantly due to difficulties in adequate measurement of adiponectin isoforms and lack of a gold standard. In this review we provide a general overview of the formation and function of adiponectin and its isoforms under physiologic conditions. We highlight the ways adiponectin isoform formation is disrupted in obesity and its ensuing pathologic conditions. Furthermore, we will elaborate on the role of adiponectin isoforms as inflammatory proteins with respect to cardiac and kidney disease and discuss the association of adiponectin with mortality. Finally, we will provide a historical perspective on the measurement of adiponectin isoforms, current limitations, and future challenges.
Collapse
Affiliation(s)
| | - Annemieke C Heijboer
- VU University Medical Center, Amsterdam, The Netherlands; Academic Medical Center, Amsterdam, The Netherlands
| | - Madeleine L Drent
- VU University Medical Center, Amsterdam, The Netherlands; VU University, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Resveratrol Cardioprotection Against Myocardial Ischemia/Reperfusion Injury Involves Upregulation of Adiponectin Levels and Multimerization in Type 2 Diabetic Mice. J Cardiovasc Pharmacol 2017; 68:304-312. [PMID: 27332935 DOI: 10.1097/fjc.0000000000000417] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Downregulation of adiponectin (APN) multimerization is significantly correlated with the aggravation of myocardial ischemia/reperfusion (MI/R) injury in type 2 diabetes mellitus (T2DM). Resveratrol (RSV) upregulates APN multimerization in adipocytes, but whether RSV improves endogenous APN multimerization and thus attenuates MI/R injury in T2DM mice has never been investigated. T2DM mice were treated with 10 mg/kg RSV daily for 3 weeks, followed by 30 minutes of myocardial ischemia and 3 hours or 24 hours of reperfusion. RSV administration alleviated MI/R injury in diabetic mice, as evidenced by reduced infarct size, cardiomyocyte apoptosis, and caspase-3 activity, and improved cardiac function. Moreover, RSV reversed the downregulated APN levels and multimerization both in plasma and adipose tissue, accompanied by increased disulfide bond A oxidoreductase-like protein (DsbA-L) expression in T2DM mice. Conversely, serving as a key downstream molecule of APN in ameliorating MI/R injury, inhibition of AMP-activated protein kinase (AMPK) significantly attenuated the cardioprotective effects of RSV. In conclusion, long-term administration of RSV upregulates adiponectin levels and multimerization in T2DM mice, consequently attenuating MI/R injury partially through APN-AMPK signaling.
Collapse
|
47
|
Divella R, Daniele A, Mazzocca A, Abbate I, Casamassima P, Caliandro C, Ruggeri E, Naglieri E, Sabbà C, De Luca R. ADIPOQ rs266729 G/C gene polymorphism and plasmatic adipocytokines connect metabolic syndrome to colorectal cancer. J Cancer 2017; 8:1000-1008. [PMID: 28529612 PMCID: PMC5436252 DOI: 10.7150/jca.17515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/27/2016] [Indexed: 12/30/2022] Open
Abstract
Background: ADIPOQ gene, which encode for Adiponectin (APN), is sited on chromosome 3q27 and linked to a susceptibility locus for metabolic syndrome (MetS). The ADIPOQ rs266729 G/C gene polymorphism is significantly associated with low APN levels and linked to susceptibility to develop cancer. In addition, decreased APN serum levels are linked with tumor development and progression and inversely associated with markers of inflammation. Here, we investigate the influence of APN rs266729 G/C polymorphism on adipocytokine circulating levels and their association with MetS in colorectal cancer patients (CRC). Methods: Blood samples from 105 CRC patients (50 women and 55 men) with and without MetS were genotyped for APN rs266729 G/C polymorphism by TETRA ARMS PCR. ELISA assay was used to measure plasma levels of APN and inflammatory TNF-α cytokine. Biochemical and anthropometric parameters of MetS were also analyzed. Results: We found that CRC patients (N=75) with genotype rs266729G/C or carriers of G allele were associated with a significantly increased risk of MetS development (OR =2.9) compared to those with CC genotype (N=30). Also, CG/GG genotypes were associated with significantly lower plasma APN levels and higher TNF-α levels in comparison to CC genotype (P=0.034) and APN levels were decreased in relation to BMI increases (P=0.001). Conclusions: Our findings show that APN rs266729 G/C polymorphism is associated with lower APN levels in CRC patients, indicating that decreased circulating levels of APN may be a determinant risk factor for CRC in MetS patients.
Collapse
Affiliation(s)
- Rosa Divella
- Clinical Pathology Laboratory, Department of Experimantal Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Antonella Daniele
- Clinical Pathology Laboratory, Department of Experimantal Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Ines Abbate
- Clinical Pathology Laboratory, Department of Experimantal Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Porzia Casamassima
- Clinical Pathology Laboratory, Department of Experimantal Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Cosimo Caliandro
- Department of Surgery Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Eustachio Ruggeri
- Department of Surgery Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Emanuele Naglieri
- Unit of Medical Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Raffaele De Luca
- Department of Surgery Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| |
Collapse
|
48
|
Role of adenosine receptors in the adipocyte-macrophage interaction during obesity. ACTA ACUST UNITED AC 2017; 64:317-327. [PMID: 28604342 DOI: 10.1016/j.endinu.2017.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 02/04/2023]
Abstract
Lipoinflamation is the inflammation generated in the adipose tissue. It can contribute to the development of insulin resistance. The lipoinflammation-associated mechanisms are related to the function of adipocytes and macrophages present in the adipose tissue. In this regard, the level of nucleoside adenosine is increased in individuals with obesity. Causes or consequences of this increase are unknown. Although, adenosine activating its receptors (A1, A2A, A2B and A3) is able to differentially modulate the function of adipocytes and macrophages, in order to avoid the reduction of insulin sensitivity and generate an anti-inflammatory state in subject with obesity. In this review we propose that adenosine could be a key element in the development of new strategies for limit lipoinflammation and regulate metabolic homeostasis through modulation of adipocyte-macrophage dialogue.
Collapse
|
49
|
Shi J, Yu M, Sheng M. Angiogenesis and Inflammation in Peritoneal Dialysis: The Role of Adipocytes. Kidney Blood Press Res 2017; 42:209-219. [PMID: 28478435 DOI: 10.1159/000476017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Chronic inflammation and angiogenesis are the most common complications in patients undergoing maintenance peritoneal dialysis (PD), resulting in progressive peritoneum remolding and, eventually, utrafiltration failure. Contributing to the deeper tissue under the peritoneal membrane, adipocytes play a neglected role in this process. Some adipokines act as inflammatory and angiogenic promoters, while others have the opposite effects. Adipokines, together with inflammatory factors and other cytokines, modulate inflammation and neovascularization in a coordinated fashion. This review will also emphasize cellular regulators and their crosstalk in long-term PD. Understanding the molecular mechanism, targeting changes in adipocytes and regulating adipokine secretion will help extend therapeutic methods for preventing inflammation and angiogenesis in PD.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Purpose of review: It is becoming increasingly clear that some obese individuals do not develop dyslipidemia and instead remain healthy, while some normal weight individuals become dyslipidemic and unhealthy. RECENT FINDINGS The present review examines the similarities and differences between healthy and unhealthy individuals with and without obesity and discusses putative underlying mechanisms of dyslipidemia. The presence of dyslipidemia and compromised metabolic health in both lean and obese individuals suggests that the obese phenotype per se does not represent a main independent risk factor for the development of dyslipidemia and that dyslipidemia, rather than obesity, may be the driver of metabolic diseases. Notably, adipose tissue dysfunction and ectopic lipid deposition, in particular in the liver, seems a common trait of unhealthy individuals.
Collapse
Affiliation(s)
- David H Ipsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark.
| |
Collapse
|