1
|
Deng Y, Wang G, Hou D, Zhang L, Pei C, Yang G. MiR-146a-5p downregulated TRAF6/NF-κB p65 pathway to attenuate the injury of HT-22 cells induced by oxygen-glucose deprivation/reoxygenation. In Vitro Cell Dev Biol Anim 2025; 61:178-188. [PMID: 39644419 DOI: 10.1007/s11626-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/30/2024] [Indexed: 12/09/2024]
Abstract
MicroRNA-146a-5p (miR-146a-5p) actively participates in the process of cerebral ischemia-reperfusion (CI/R) injury. Dysregulation of the tumor necrosis factor receptor-associated factor 6 (TRAF6)/nuclear factor kappa-B (NF-κB) p65 axis is closely associated with inflammatory response. This study aimed to investigate the potential involvement of miR-146a-5p and TRAF6/NF-κB p65 in mediating CI/R progression in vitro. HT-22 cells were challenged with oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate CI/R in vitro. HT-22 cells were transfected with miR-146a-5p mimics or TRAF6 overexpression constructs. The impact of miR-146a-5p on apoptosis, inflammation, and TRAF6/NF-κB p65 activation were investigated. OGD/R inhibited HT-22 cell viability, induced apoptosis, reduced miR-146a-5p levels and activated the TRAF6/NF-κB p65 pathway. MiR-146a-5p mimics reduced pro-inflammatory factor release, limited apoptosis-related protein expression, and inactivated the TRAF6/NF-κB p65 pathway in OGD/R-challenged HT-22 cells. Mechanistically, miR-146a-5p was verified to bind to TRAF6 3'UTR. TRAF6 overexpression reversed the beneficial effects of miR-146a-5p mimics on apoptosis, inflammation, and TRAF6/NF-κB p65 activation. This work revealed that miR-146a-5p targeted TRAF6 and suppressed the TRAF6/NF-κB p65 pathway, thereby reducing OGD/R-induced inflammation and apoptosis in HT-22 cells. These findings suggest the potential of the miR-146a-5p/TRAF6/NF-κB p65 axis in the treatment of CI/R.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Ganlan Wang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Lei Zhang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Chaoying Pei
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
2
|
Liu W, Rao X, Sun W, Chen X, Yu L, Zhang J, Chen J, Zheng X. The neuroinflammatory role of microRNAs in Alzheimer's disease: pathological insights to therapeutic potential. Mol Cell Biochem 2024:10.1007/s11010-024-05164-0. [PMID: 39567427 DOI: 10.1007/s11010-024-05164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia, contributing to around 60-80% of cases. The main pathophysiology of AD is characterized by an abnormal accumulation of protein aggregates extracellularly (beta-amyloid plaques) and intracellularly (neurofibrillary tangles of hyperphosphorylated tau). However, an increasing number of studies have also suggested neuroinflammation may have a crucial role in precipitating the cascade reactions that result in the development of AD neuropathology. In particular, several studies indicate microRNAs (miRNAs) can act as regulatory factors for neuroinflammation in AD, with potential to affect the occurrence and/or progression of AD inflammation by targeting the expression of multiple genes. Therefore, miRNAs may have potential as therapeutic targets for AD, which requires more research. This article will review the existing studies on miRNAs that have been identified to regulate neuroinflammation, aiming to gain further insights into the specific regulatory processes of miRNAs, highlight the diagnostic and therapeutic potential of miRNAs as biomarkers in AD, as well as current challenges, and suggest the further work to bridge the gap in knowledge to utilize miRNAs as therapeutic targets for AD.
Collapse
Affiliation(s)
- Wenjia Liu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xin Rao
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Wen Sun
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaodong Chen
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Liyang Yu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiangtao Zhang
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| | - Jiong Chen
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xiaorong Zheng
- Blood Purification Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| |
Collapse
|
3
|
Chen C, Chang ZH, Yao B, Liu XY, Zhang XW, Liang J, Wang JJ, Bao SQ, Chen MM, Zhu P, Li XH. 3D printing of interferon γ-preconditioned NSC-derived exosomes/collagen/chitosan biological scaffolds for neurological recovery after TBI. Bioact Mater 2024; 39:375-391. [PMID: 38846528 PMCID: PMC11153920 DOI: 10.1016/j.bioactmat.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
The reconstruction of neural function and recovery of chronic damage following traumatic brain injury (TBI) remain significant clinical challenges. Exosomes derived from neural stem cells (NSCs) offer various benefits in TBI treatment. Numerous studies confirmed that appropriate preconditioning methods enhanced the targeted efficacy of exosome therapy. Interferon-gamma (IFN-γ) possesses immunomodulatory capabilities and is widely involved in neurological disorders. In this study, IFN-γ was employed for preconditioning NSCs to enhance the efficacy of exosome (IFN-Exo, IE) for TBI. miRNA sequencing revealed the potential of IFN-Exo in promoting neural differentiation and modulating inflammatory responses. Through low-temperature 3D printing, IFN-Exo was combined with collagen/chitosan (3D-CC-IE) to preserve the biological activity of the exosome. The delivery of exosomes via biomaterial scaffolds benefited the retention and therapeutic potential of exosomes, ensuring that they could exert long-term effects at the injury site. The 3D-CC-IE scaffold exhibited excellent biocompatibility and mechanical properties. Subsequently, 3D-CC-IE scaffold significantly improved impaired motor and cognitive functions after TBI in rat. Histological results showed that 3D-CC-IE scaffold markedly facilitated the reconstruction of damaged neural tissue and promoted endogenous neurogenesis. Further mechanistic validation suggested that IFN-Exo alleviated neuroinflammation by modulating the MAPK/mTOR signaling pathway. In summary, the results of this study indicated that 3D-CC-IE scaffold engaged in long-term pathophysiological processes, fostering neural function recovery after TBI, offering a promising regenerative therapy avenue.
Collapse
Affiliation(s)
- Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Bin Yao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Xiao-Yin Liu
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jun Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Sharma M, Tanwar AK, Purohit PK, Pal P, Kumar D, Vaidya S, Prajapati SK, Kumar A, Dhama N, Kumar S, Gupta SK. Regulatory roles of microRNAs in modulating mitochondrial dynamics, amyloid beta fibrillation, microglial activation, and cholinergic signaling: Implications for alzheimer's disease pathogenesis. Neurosci Biobehav Rev 2024; 161:105685. [PMID: 38670299 DOI: 10.1016/j.neubiorev.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer's Disease (AD) remains a formidable challenge due to its complex pathology, notably involving mitochondrial dysfunction and dysregulated microRNA (miRNA) signaling. This study delves into the underexplored realm of miRNAs' impact on mitochondrial dynamics and their interplay with amyloid-beta (Aβ) aggregation and tau pathology in AD. Addressing identified gaps, our research utilizes advanced molecular techniques and AD models, alongside patient miRNA profiles, to uncover miRNAs pivotal in mitochondrial regulation. We illuminate novel miRNAs influencing mitochondrial dynamics, Aβ, and tau, offering insights into their mechanistic roles in AD progression. Our findings not only enhance understanding of AD's molecular underpinnings but also spotlight miRNAs as promising therapeutic targets. By elucidating miRNAs' roles in mitochondrial dysfunction and their interactions with hallmark AD pathologies, our work proposes innovative strategies for AD therapy, aiming to mitigate disease progression through targeted miRNA modulation. This contribution marks a significant step toward novel AD treatments, emphasizing the potential of miRNAs in addressing this complex disease.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India.
| | - Ankur Kumar Tanwar
- Department of Pharmacy, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | | | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Devendra Kumar
- Department of Pharmaceutical Chemistry, NMIMS School of Pharmacy and Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur Campus, Dhule, Maharashtra, India
| | - Sandeep Vaidya
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | | - Aadesh Kumar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Nidhi Dhama
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sokindra Kumar
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
5
|
Aggarwal A, Singla N, Konar M, Kaur M, Sharma K, Jain K, Modi M, Sharma S. Role of MicroRNAs as post transcription regulators of matrix metalloproteinases and their association in tuberculous meningitis. Tuberculosis (Edinb) 2024; 146:102501. [PMID: 38490030 DOI: 10.1016/j.tube.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Matrix metalloproteinases (MMPs) have a role in driving neuroinflammation in infectious as well as non-infectious diseases; however, recent reports have potentiated the role of microRNAs in regulating MMPs at post-transcriptional levels, leading to dysregulation of crucial MMP functions like tissue remodelling, blood brain barrier integrity, etc. In present study, microRNAs regulating MMPs (MMP2 and MMP3) were selected from database search followed by literature support. Expression of these microRNAs i.e., hsa-miR-495-3p, hsa-miR-132-3p and hsa-miR-21-5p was assessed by RT-PCR and the protein levels of MMPs were assessed by ELISA in the cerebrospinal fluid (CSF) of tuberculous meningitis (TBM) patients, healthy controls (HC) and non-infectious neuroinflammatory disease (NID) patients. The expression of hsa-miR-495-3p and hsa-miR-132-3p showed downregulation in TBM while hsa-miR-21-5p was overexpressed as compared to healthy controls. Moreover, MMP levels were found to be deranged with a significant increase in MMP3 levels in the TBM and NID patients compared to HC group. These observations highlight dysregulated microRNAs (hsa-miR-495-3p, hsa-miR-21-5p and hsa-miR-132-3p) levels might impair the levels of MMPs (MMP2 and MMP3) leading to neuroinflammation in TBM and NID population. These findings can further be applied to target these microRNAs for developing newer treatment modalities for better complication management.
Collapse
Affiliation(s)
- Apoorva Aggarwal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh (160012), India.
| | - Neeraj Singla
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh (160012), India.
| | - Monidipa Konar
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh (160012), India.
| | - Maninder Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh (160012), India.
| | - Kusum Sharma
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh (160012), India.
| | - Kajal Jain
- Department of Anaesthesia, Post Graduate Institute of Medical Education and Research, Chandigarh (160012), India.
| | - Manish Modi
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh (160012), India.
| | - Sadhna Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh (160012), India.
| |
Collapse
|
6
|
Bougea A, Georgakopoulou VE, Lempesis IG, Fotakopoulos G, Papalexis P, Sklapani P, Trakas N, Spandidos DA, Angelopoulou E. Role of microRNAs in cognitive decline related to COVID‑19 (Review). Exp Ther Med 2024; 27:139. [PMID: 38476899 PMCID: PMC10928821 DOI: 10.3892/etm.2024.12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
The likelihood and severity of cognitive decline related to coronavirus disease 2019 (COVID-19) have been shown to be reflected by the severity of the infection and concomitant alterations in specific biomarkers. The present review discusses the role of microRNAs (miRNAs/miRs) as biomarkers in COVID-19 and the potential molecular mechanisms of cognitive dysfunction related to COVID-19. A systematic search of published articles was carried out from January 31, 2000 to December 31, 2022 using the PubMed, ProQuest, Science Direct and Google Scholar databases, combining the following terms: 'COVID-19' OR 'SARS-CoV-2' OR 'post-COVID-19 effects' OR 'cognitive decline' OR 'neurodegeneration' OR 'microRNAs'. The quality of the evidence was evaluated as high, moderate, low, or very low based on the GRADE rating. A total of 36 studies were identified which demonstrated reduced blood levels of miR-146a, miR-155, Let-7b, miR 31 and miR-21 in patients with COVID-19 in comparison with a healthy group. The overexpression of the Let-7b may result in the downregulation of BCL-2 during COVID-9 by adjusting the immune responses between chronic inflammatory disease, type 2 diabetes, COVID-19 and cognitive impairment. The reduced expression of miR-31 is associated with cognitive dysfunction and increased microcoagulability in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). miR-155 mediates synaptic dysfunction and the dysregulation of neurotransmitters due to acute inflammation, leading to brain atrophy and a subcortical cognitive profile. The downregulation of miR-21 in patients with COVID-19 aggravates systemic inflammation, mediating an uncontrollable immune response and the failure of T-cell function, provoking cognitive impairment in patients with SARS-CoV-2. On the whole, the present review indicates that dysregulated levels of miR-146a, miR-155, Let-7b, miR-31, and miR-21 in the blood of individuals with COVID-19 are associated with cognitive decline, the chronic activation of immune mechanisms, the cytokine storm, and the vicious cycle of damage and systemic inflammation.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
7
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
8
|
Manu DR, Slevin M, Barcutean L, Forro T, Boghitoiu T, Balasa R. Astrocyte Involvement in Blood-Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions. Int J Mol Sci 2023; 24:17146. [PMID: 38138976 PMCID: PMC10743219 DOI: 10.3390/ijms242417146] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Neurological disorders have been linked to a defective blood-brain barrier (BBB), with dysfunctions triggered by stage-specific disease mechanisms, some of these being generated through interactions in the neurovascular unit (NVU). Advanced knowledge of molecular and signaling mechanisms in the NVU and the emergence of improved experimental models allow BBB permeability prediction and the development of new brain-targeted therapies. As NVU constituents, astrocytes are the most numerous glial cells, characterized by a heterogeneity that occurs as a result of developmental and context-based gene expression profiles and the differential expression of non-coding ribonucleic acids (RNAs). Due to their heterogeneity and dynamic responses to different signals, astrocytes may have a beneficial or detrimental role in the BBB's barrier function, with deep effects on the pathophysiology of (and on the progression of) central nervous system diseases. The implication of astrocytic-derived extracellular vesicles in pathological mechanisms, due to their ability to pass the BBB, must also be considered. The molecular mechanisms of astrocytes' interaction with endothelial cells at the BBB level are considered promising therapeutic targets in different neurological conditions. Nevertheless, a personalized and well-founded approach must be addressed, due to the temporal and spatial heterogeneity of reactive astrogliosis states during disease.
Collapse
Affiliation(s)
- Doina Ramona Manu
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
| | - Mark Slevin
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Laura Barcutean
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Timea Forro
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Tudor Boghitoiu
- Psychiatry II Clinic, County Clinical Hospital, 540072 Targu Mures, Romania;
| | - Rodica Balasa
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
9
|
Musso N, Bivona D, Bonomo C, Bonacci P, D'Ippolito ME, Boccagni C, Rubino F, De Tanti A, Lucca LF, Pingue V, Colombo V, Estraneo A, Stefani S, Andriolo M, Bagnato S. Investigating microRNAs as biomarkers in disorders of consciousness: a longitudinal multicenter study. Sci Rep 2023; 13:18415. [PMID: 37891240 PMCID: PMC10611795 DOI: 10.1038/s41598-023-45719-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in gene regulation and may affect secondary brain injury and recovery in patients with disorders of consciousness (DoC). This study investigated the role of five miRNAs (150-5p, 132-3p, 23b-3p, 451a, and 16-5p) in prolonged DoC. miRNA levels were assessed in serum samples from 30 patients with unresponsive wakefulness syndrome or minimally conscious state due to traumatic or hypoxic-ischemic brain injury (TBI, HIBI) at baseline (1-3 months) and 6 months post-injury. Patients' diagnoses were determined using the Coma Recovery Scale revised, and functional outcomes were evaluated 6 months after injury with the Glasgow Outcome Scale Extended (GOSE) and the Functional Independence Measure (FIM). Compared to healthy controls, patients with TBI had lower levels of miRNAs 150-5p, 132-3p, and 23b-3p at baseline, while patients with HIBI had lower levels of miRNA 150-5p at baseline and 6 months post-injury and a reduction of miRNA 451a at baseline. Higher levels of miRNAs 132-3p and 23b-3p were associated with better outcomes in TBI patients as indicated by GOSE and FIM scores. This study highlights distinct miRNA dysregulated patterns in patients with prolonged DoC, dependent on etiology and post-injury time, and suggests that miRNAs 132-3p and 23b-3p may serve as prognostic biomarkers.
Collapse
Affiliation(s)
- Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | | | - Cristina Boccagni
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Giuseppe Giglio Foundation, 90015, Cefalù, Italy
| | - Francesca Rubino
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Giuseppe Giglio Foundation, 90015, Cefalù, Italy
| | | | - Lucia Francesca Lucca
- RAN (Research in Advanced Neuro-Rehabilitation), S. Anna Institute, 80067, Crotone, Italy
| | - Valeria Pingue
- Neurorehabilitation and Spinal Units, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | | | - Anna Estraneo
- Don Gnocchi Foundation IRCCS, 50124, Florence, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Maria Andriolo
- Clinical Pathology Laboratory, Provincial Health Authority of Caltanissetta, 93100, Caltanissetta, Italy
| | - Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Giuseppe Giglio Foundation, 90015, Cefalù, Italy.
| |
Collapse
|
10
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Walgrave H, Penning A, Tosoni G, Snoeck S, Davie K, Davis E, Wolfs L, Sierksma A, Mars M, Bu T, Thrupp N, Zhou L, Moechars D, Mancuso R, Fiers M, Howden AJ, De Strooper B, Salta E. microRNA-132 regulates gene expression programs involved in microglial homeostasis. iScience 2023; 26:106829. [PMID: 37250784 PMCID: PMC10213004 DOI: 10.1016/j.isci.2023.106829] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
microRNA-132 (miR-132), a known neuronal regulator, is one of the most robustly downregulated microRNAs (miRNAs) in the brain of Alzheimer's disease (AD) patients. Increasing miR-132 in AD mouse brain ameliorates amyloid and Tau pathologies, and also restores adult hippocampal neurogenesis and memory deficits. However, the functional pleiotropy of miRNAs requires in-depth analysis of the effects of miR-132 supplementation before it can be moved forward for AD therapy. We employ here miR-132 loss- and gain-of-function approaches using single-cell transcriptomics, proteomics, and in silico AGO-CLIP datasets to identify molecular pathways targeted by miR-132 in mouse hippocampus. We find that miR-132 modulation significantly affects the transition of microglia from a disease-associated to a homeostatic cell state. We confirm the regulatory role of miR-132 in shifting microglial cell states using human microglial cultures derived from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Amber Penning
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Giorgia Tosoni
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Sarah Snoeck
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Bioinformatics Core Facility, 3000 Leuven, Belgium
| | - Emma Davis
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Mayte Mars
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Taofeng Bu
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Nicola Thrupp
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Lujia Zhou
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Diederik Moechars
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Andrew J.M. Howden
- UK Dementia Research Institute, University of Dundee, Dundee DD1 4HN, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
12
|
Ma X, Li Q, Chen G, Xie J, Wu M, Meng F, Liu J, Liu Y, Zhao D, Wang W, Wang D, Liu C, Dai J, Li C, Cui M. Role of Hippocampal miR-132-3p in Modifying the Function of Protein Phosphatase Mg2+/Mn2+-dependent 1 F in Depression. Neurochem Res 2023:10.1007/s11064-023-03926-8. [PMID: 37036545 DOI: 10.1007/s11064-023-03926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Depression is a common, severe, and debilitating psychiatric disorder of unclear etiology. Our previous study has shown that protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) in the hippocampal dentate gyrus (DG) displays significant regulatory effects in depression-related behaviors. miR-132-3p plays a potential role in the etiology of depression. This study explored the effect of miR-132-3p on the onset of depression and the possible underlying mechanism for modulating PPM1F expression during the pathology of depression. We found that miR-132-3p levels in the hippocampus of depressed mice subjected to chronic unpredictable stress (CUS) were dramatically reduced, which were correlated with depression-related behaviors. Knockdown of miR-132-3p in hippocampal DG resulted in depression-related phenotypes and increased susceptibility to stress. miR-132-3p overexpression in hippocampal DG alleviated CUS-induced depression-related performance. We then screened out the potential target genes of miR-132-3p, and we found that the expression profiles of sterol regulatory element-binding transcription factor 1 (Srebf1) and forkhead box protein O3a (FOXO3a) were positively correlated with PPM1F under the condition of miR-132-3p knockdown. Finally, as anticipated, we revealed that the activities of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were reduced, which underlies the target signaling pathway of PPM1F. In conclusion, our study suggests that miR-132-3p was designed to regulate depression-related behaviors by indirectly regulating PPM1F and targeting Srebf1 and FOXO3a, which have been linked to the pathogenesis and treatment of depression.
Collapse
Affiliation(s)
- Xiangxian Ma
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qiongyu Li
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Guanhong Chen
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Junjie Xie
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Min Wu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yong Liu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Physiology, Binzhou Medical University, Shandong, China
| | - Di Zhao
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Juanjuan Dai
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
13
|
Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan A, Shahba S, Malvandi AM, Mohammadipour A. Roles of the miR-155 in Neuroinflammation and Neurological Disorders: A Potent Biological and Therapeutic Target. Cell Mol Neurobiol 2023; 43:455-467. [PMID: 35107690 PMCID: PMC11415209 DOI: 10.1007/s10571-022-01200-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/23/2022] [Indexed: 12/19/2022]
Abstract
Neuroinflammation plays a crucial role in the development and progression of neurological disorders. MicroRNA-155 (miR-155), a miR is known to play in inflammatory responses, is associated with susceptibility to inflammatory neurological disorders and neurodegeneration, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis as well as epilepsy, stroke, and brain malignancies. MiR-155 damages the central nervous system (CNS) by enhancing the expression of pro-inflammatory cytokines, like IL-1β, IL-6, TNF-α, and IRF3. It also disturbs the blood-brain barrier by decreasing junctional complex molecules such as claudin-1, annexin-2, syntenin-1, and dedicator of cytokinesis 1 (DOCK-1), a hallmark of many neurological disorders. This review discusses the molecular pathways which involve miR-155 as a critical component in the progression of neurological disorders, representing miR-155 as a viable therapeutic target.
Collapse
Affiliation(s)
- Seyed Hamidreza Rastegar-Moghaddam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161, Milan, Italy.
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran.
| |
Collapse
|
14
|
Alvarez M, Trent E, Goncalves BDS, Pereira DG, Puri R, Frazier NA, Sodhi K, Pillai SS. Cognitive dysfunction associated with COVID-19: Prognostic role of circulating biomarkers and microRNAs. Front Aging Neurosci 2022; 14:1020092. [PMID: 36268187 PMCID: PMC9577202 DOI: 10.3389/fnagi.2022.1020092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is renowned as a multi-organ disease having subacute and long-term effects with a broad spectrum of clinical manifestations. The evolving scientific and clinical evidence demonstrates that the frequency of cognitive impairment after COVID-19 is high and it is crucial to explore more clinical research and implement proper diagnostic and treatment strategies. Several central nervous system complications have been reported as comorbidities of COVID-19. The changes in cognitive function associated with neurodegenerative diseases develop slowly over time and are only diagnosed at an already advanced stage of molecular pathology. Hence, understanding the common links between COVID-19 and neurodegenerative diseases will broaden our knowledge and help in strategizing prognostic and therapeutic approaches. The present review focuses on the diverse neurodegenerative changes associated with COVID-19 and will highlight the importance of major circulating biomarkers and microRNAs (miRNAs) associated with the disease progression and severity. The literature analysis showed that major proteins associated with central nervous system function, such as Glial fibrillary acidic protein, neurofilament light chain, p-tau 181, Ubiquitin C-terminal hydrolase L1, S100 calcium-binding protein B, Neuron-specific enolase and various inflammatory cytokines, were significantly altered in COVID-19 patients. Furthermore, among various miRNAs that are having pivotal roles in various neurodegenerative diseases, miR-146a, miR-155, Let-7b, miR-31, miR-16 and miR-21 have shown significant dysregulation in COVID-19 patients. Thus the review consolidates the important findings from the numerous studies to unravel the underlying mechanism of neurological sequelae in COVID-19 and the possible association of circulatory biomarkers, which may serve as prognostic predictors and therapeutic targets in future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sneha S. Pillai
- Department of Surgery, Biomedical Sciences and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
15
|
Zhang W, Ye F, Xiong J, He F, Yang L, Yin F, Peng J, Wang X. Silencing of miR-132-3p protects against neuronal injury following status epilepticus by inhibiting IL-1β-induced reactive astrocyte (A1) polarization. FASEB J 2022; 36:e22554. [PMID: 36111973 DOI: 10.1096/fj.202200110rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE) is one of the most common refractory epilepsies and is usually accompanied by a range of brain pathological changes, such as neuronal injury and astrocytosis. Naïve astrocytes are readily converted to cytotoxic reactive astrocytes (A1) in response to inflammatory stimulation, suppressing the polarization of A1 protects against neuronal death in early central nervous system injury. Our previous study found that pro-inflammatory cytokines and miR-132-3p (hereinafter referred to as "miR-132") expression were upregulated, but how miR-132 affected reactive astrocyte polarization and neuronal damage during epilepsy is not fully understood. Here, we aimed to explore the effect and mechanism of miR-132 on A1 polarization. Our results confirmed that A1 markers were significantly elevated in the hippocampus of MTLE rats and IL-1β-treated primary astrocytes. In vivo, knockdown of miR-132 by lateral ventricular injection reduced A1 astrocytes, neuronal loss, mossy fiber sprouting, and remitted the severity of status epilepticus and the recurrence of spontaneous recurrent seizures. In vitro, the neuronal cell viability and axon length were reduced by additional treatment with A1 astrocyte conditioned media (ACM), and downregulation of astrocyte miR-132 rescued the inhibition of cell activity by A1 ACM, while the length of axons was further inhibited. The regulation of miR-132 on A1 astrocytes may be related to its target gene expression. Our results show that interfering with astrocyte polarization may be a breakthrough in the treatment of refractory epilepsy, which may extend to the research of other astrocyte polarization-mediated brain injuries.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Xiaole Wang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| |
Collapse
|
16
|
Choi MR, Cho S, Kim DJ, Choi JS, Jin YB, Kim M, Chang HJ, Jeon SH, Yang YD, Lee SR. Effects of Ethanol on Expression of Coding and Noncoding RNAs in Murine Neuroblastoma Neuro2a Cells. Int J Mol Sci 2022; 23:ijms23137294. [PMID: 35806296 PMCID: PMC9267046 DOI: 10.3390/ijms23137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Excessive use of alcohol can induce neurobiological and neuropathological alterations in the brain, including the hippocampus and forebrain, through changes in neurotransmitter systems, hormonal systems, and neuroimmune processes. We aimed to investigate the effects of ethanol on the expression of coding and noncoding RNAs in a brain-derived cell line exposed to ethanol. After exposing Neuro2a cells, a neuroblastoma cell line, to ethanol for 24 and 72 h, we observed cell proliferation and analyzed up- and downregulated mRNAs and long noncoding RNAs (lncRNAs) using total RNA-Seq technology. We validated the differential expression of some mRNAs and lncRNAs by RT-qPCR and analyzed the expression of Cebpd and Rnu3a through knock-down of Cebpd. Cell proliferation was significantly reduced in cells exposed to 100 mM ethanol for 72 h, with 1773 transcripts up- or downregulated by greater than three-fold in ethanol-treated cells compared to controls. Of these, 514 were identified as lncRNAs. Differentially expressed mRNAs and lncRNAs were mainly observed in cells exposed to ethanol for 72 h, in which Atm and Cnr1 decreased, but Trib3, Cebpd, and Spdef increased. On the other hand, lncRNAs Kcnq1ot1, Tug1, and Xist were changed by ethanol, and Rnu3a in particular was greatly increased by chronic ethanol treatment through inhibition of Cebpd. Our results increase the understanding of cellular and molecular mechanisms related to coding and noncoding RNAs in an in vitro model of acute and chronic exposure to ethanol.
Collapse
Affiliation(s)
- Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Sinyoung Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jung-Seok Choi
- Department of Psychiatry, Samsung Medical Center, Seoul 06351, Korea;
| | - Yeung-Bae Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Miran Kim
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Korea; (M.K.); (H.J.C.)
| | - Hye Jin Chang
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Korea; (M.K.); (H.J.C.)
| | - Seong Ho Jeon
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
| | - Young Duk Yang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
- Correspondence: (Y.D.Y.); (S.-R.L.); Tel.: +82-31-881-7170 (Y.D.Y.); +82-31-219-4499 (S.-R.L.)
| | - Sang-Rae Lee
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Korea;
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
- Correspondence: (Y.D.Y.); (S.-R.L.); Tel.: +82-31-881-7170 (Y.D.Y.); +82-31-219-4499 (S.-R.L.)
| |
Collapse
|
17
|
Zhang W, Ye F, Chen S, Peng J, Pang N, Yin F. Splicing Interruption by Intron Variants in CSNK2B Causes Poirier–Bienvenu Neurodevelopmental Syndrome: A Focus on Genotype–Phenotype Correlations. Front Neurosci 2022; 16:892768. [PMID: 35774559 PMCID: PMC9237577 DOI: 10.3389/fnins.2022.892768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
CSNK2B has recently been identified as the causative gene for Poirier–Bienvenu neurodevelopmental syndrome (POBINDS). POBINDS is a rare neurodevelopmental disorder characterized by early-onset epilepsy, developmental delay, hypotonia, and dysmorphism. Limited by the scarcity of patients, the genotype–phenotype correlations in POBINDS are still unclear. In the present study, we describe the clinical and genetic characteristics of eight individuals with POBINDS, most of whom suffered developmental delay, generalized epilepsy, and hypotonia. Minigene experiments confirmed that two intron variants (c.367+5G>A and c.367+6T>C) resulted in the skipping of exon 5, leading to a premature termination of mRNA transcription. Combining our data with the available literature, the types of POBINDS-causing variants included missense, nonsense, frameshift, and splicing, but the variant types do not reflect the clinical severity. Reduced casein kinase 2 holoenzyme activity may represent a unifying pathogenesis. We also found that individuals with missense variants in the zinc finger domain had manageable seizures (p = 0.009) and milder intellectual disability (p = 0.003) than those with missense variants in other domains of CSNK2B. This is the first study of genotype–phenotype correlations in POBINDS, drawing attention to the pathogenicity of intron variants and expanding the understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shimeng Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Nan Pang,
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Fei Yin,
| |
Collapse
|
18
|
Wingo AP, Wang M, Liu J, Breen MS, Yang HS, Tang B, Schneider JA, Seyfried NT, Lah JJ, Levey AI, Bennett DA, Jin P, De Jager PL, Wingo TS. Brain microRNAs are associated with variation in cognitive trajectory in advanced age. Transl Psychiatry 2022; 12:47. [PMID: 35105862 PMCID: PMC8807720 DOI: 10.1038/s41398-022-01806-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
In advancing age, some individuals maintain a stable cognitive performance over time, while others experience a rapid decline. Such variation in cognitive trajectory is only partially explained by common neurodegenerative pathologies. Hence, we aimed to identify new molecular processes underlying variation in cognitive trajectory using brain microRNA profile followed by an integrative analysis with brain transcriptome and proteome. Individual cognitive trajectories were derived from longitudinally assessed cognitive-test scores of older-adult brain donors from four longitudinal cohorts. Postmortem brain microRNA profiles, transcriptomes, and proteomes were derived from the dorsolateral prefrontal cortex. The global microRNA association study of cognitive trajectory was performed in a discovery (n = 454) and replication cohort (n = 134), followed by a meta-analysis that identified 6 microRNAs. Among these, miR-132-3p and miR-29a-3p were most significantly associated with cognitive trajectory. They explain 18.2% and 2.0% of the variance of cognitive trajectory, respectively, and act independently of the eight measured neurodegenerative pathologies. Furthermore, integrative transcriptomic and proteomic analyses revealed that miR-132-3p was significantly associated with 24 of the 47 modules of co-expressed genes of the transcriptome, miR-29a-3p with 3 modules, and identified 84 and 214 downstream targets of miR-132-3p and miR-29a-3p, respectively, in cognitive trajectory. This is the first global microRNA study of cognitive trajectory to our knowledge. We identified miR-29a-3p and miR-132-3p as novel and robust contributors to cognitive trajectory independently of the eight known cerebral pathologies. Our findings lay a foundation for future studies investigating mechanisms and developing interventions to enhance cognitive stability in advanced age.
Collapse
Affiliation(s)
- Aliza P Wingo
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mengli Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaqi Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael S Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hyun-Sik Yang
- Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Changsha, Hunan, China
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Philip L De Jager
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA.
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
19
|
Expression Profile of miRs in Mesial Temporal Lobe Epilepsy: Systematic Review. Int J Mol Sci 2022; 23:ijms23020951. [PMID: 35055144 PMCID: PMC8781102 DOI: 10.3390/ijms23020951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy in children and adults. TLE is characterized by variable onset and seizures. Moreover, this form of epilepsy is often resistant to pharmacotherapy. The search for new mechanisms for the development of TLE may provide us with a key to the development of new diagnostic methods and a personalized approach to the treatment. In recent years, the role of non-coding ribonucleic acids (RNA) has been actively studied, among which microRNA (miR) is of the greatest interest. (1) Background: The purpose of the systematic review is to analyze the studies carried out on the role of miRs in the development of mesial TLE (mTLE) and update the existing knowledge about the biomarkers of this disease. (2) Methods: The search for publications was carried out in the databases PubMed, Springer, Web of Science, Clinicalkeys, Scopus, OxfordPress, Cochrane. The search was carried out using keywords and combinations. We analyzed publications for 2016–2021, including original studies in an animal model of TLE and with the participation of patients with TLE, thematic and systemic reviews, and Cochrane reviews. (3) Results: this thematic review showed that miR‒155, miR‒153, miR‒361‒5p, miR‒4668‒5p, miR‒8071, miR‒197‒5p, miR‒145, miR‒181, miR‒199a, miR‒1183, miR‒129‒2‒3p, miR‒143‒3p (upregulation), miR–134, miR‒0067835, and miR‒153 (downregulation) can be considered as biomarkers of mTLE. However, the roles of miR‒146a, miR‒142, miR‒106b, and miR‒223 are questionable and need further study. (4) Conclusion: In the future, it will be possible to consider previously studied miRs, which have high specificity and sensitivity in mTLE, as prognostic biomarkers (predictors) of the risk of developing this disease in patients with potentially epileptogenic structural damage to the mesial regions of the temporal lobe of the brain (congenital disorders of the neuronal migration and neurogenesis, brain injury, neuro-inflammation, tumor, impaired blood supply, neurodegeneration, etc.).
Collapse
|
20
|
Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer's disease: challenges and perspectives. Mol Neurodegener 2021; 16:76. [PMID: 34742333 PMCID: PMC8572071 DOI: 10.1186/s13024-021-00496-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/17/2021] [Indexed: 02/06/2023] Open
Abstract
Multi-pathway approaches for the treatment of complex polygenic disorders are emerging as alternatives to classical monotarget therapies and microRNAs are of particular interest in that regard. MicroRNA research has come a long way from their initial discovery to the cumulative appreciation of their regulatory potential in healthy and diseased brain. However, systematic interrogation of putative therapeutic or toxic effects of microRNAs in (models of) Alzheimer's disease is currently missing and fundamental research findings are yet to be translated into clinical applications. Here, we review the literature to summarize the knowledge on microRNA regulation in Alzheimer's pathophysiology and to critically discuss whether and to what extent these increasing insights can be exploited for the development of microRNA-based therapeutics in the clinic.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Lujia Zhou
- Division of Janssen Pharmaceutica NV, Discovery Neuroscience, Janssen Research and Development, Beerse, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- UK Dementia Research Institute at University College London, London, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Alcohol induced impairment/abnormalities in brain: Role of MicroRNAs. Neurotoxicology 2021; 87:11-23. [PMID: 34478768 DOI: 10.1016/j.neuro.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022]
Abstract
Alcohol is a highly toxic substance and has teratogenic properties that can lead to a wide range of developmental disorders. Excessive use of alcohol can change the structural and functional aspects of developed brain and other organs. Which can further lead to significant health, social and economic implications in many countries of the world. Convincing evidence support the involvement of microRNAs (miRNAs) as important post-transcriptional regulators of gene expression in neurodevelopment and maintenance. They also show differential expression following an injury. MiRNAs are the special class of small non coding RNAs that can modify the gene by targeting the mRNA and fine tune the development of cells to organs. Numerous pieces of evidences have shown the relationship between miRNA, alcohol and brain damage. These studies also show how miRNA controls different cellular mechanisms involved in the development of alcohol use disorder. With the increasing number of research studies, the roles of miRNAs following alcohol-induced injury could help researchers to recognize alternative therapeutic methods to treat/cure alcohol-induced brain damage. The present review summarizes the available data and brings together the important miRNAs, that play a crucial role in alcohol-induced brain damage, which will help in better understanding complex mechanisms. Identifying these miRNAs will not only expand the current knowledge but can lead to the identification of better targets for the development of novel therapeutic interventions.
Collapse
|
22
|
Kashif H, Shah D, Sukumari-Ramesh S. Dysregulation of microRNA and Intracerebral Hemorrhage: Roles in Neuroinflammation. Int J Mol Sci 2021; 22:8115. [PMID: 34360881 PMCID: PMC8347974 DOI: 10.3390/ijms22158115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health problem and devastating subtype of stroke with high morbidity and mortality. Notably, there is no effective treatment for ICH. Neuroinflammation, a pathological hallmark of ICH, contributes to both brain injury and repair and hence, it is regarded as a potential target for therapeutic intervention. Recent studies document that microRNAs, small non-coding RNA molecules, can regulate inflammatory brain response after ICH and are viable molecular targets to alter brain function. Therefore, there is an escalating interest in studying the role of microRNAs in the pathophysiology of ICH. Herein, we provide, for the first time, an overview of the microRNAs that play roles in ICH-induced neuroinflammation and identify the critical knowledge gap in the field, as it would help design future studies.
Collapse
Affiliation(s)
| | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (D.S.)
| |
Collapse
|
23
|
Tong J, Duan Z, Zeng R, Du L, Xu S, Wang L, Liu Y, Chen Q, Chen X, Li M. MiR-146a Negatively Regulates Aspergillus fumigatus-Induced TNF-α and IL-6 Secretion in THP-1 Macrophages. Mycopathologia 2021; 186:341-354. [PMID: 34089172 DOI: 10.1007/s11046-021-00538-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2021] [Indexed: 10/20/2022]
Abstract
Aspergillus fumigatu (A. fumigatus) is one of the most common important fungal pathogens that cause life-threatening infectious disease in immunocompromised individuals. However, the host immune response against this pathogenic mold is not fully understood. MicroRNAs (miRNAs) play essential roles in regulating innate immunity. Thus, we investigated the function of miR-146a in inflammatory responses in macrophages after A. fumigatus stimulation in this study. We found that TNF-α and IL-6 were increased in THP-1 macrophage-like cells treated with A. fumigatus at both the mRNA and protein levels. The interaction between THP-1 macrophage-like cells and A. fumigatus resulted in a long-lasting increase in miR-146a expression dependent on p38 MAPK and NF-κB signaling. In A. fumigatus-challenged THP-1 macrophage-like cells, overexpression of miR-146a by miR-146a mimics decreased TNF-α and IL-6 production, whereas downregulation of miR-146a by anti-miR-146a significantly enhanced the level of TNF-α and IL-6. Our study demonstrates that the crosstalk between miR-146a and the inflammation-regulating p38 MAPK and NF-κB pathways might be a fine-tuning mechanism in the modulation of the inflammatory response in macrophages infected with A. fumigatus. Our findings illuminate the crucial role of miR-146a in the pathogenesis of human diseases associated with A. fumigatus infection.
Collapse
Affiliation(s)
- Jianbo Tong
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China.,Department of Dermatology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330001, People's Republic of China
| | - Zhimin Duan
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Rong Zeng
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Leilei Du
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Song Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Liwei Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Yuzhen Liu
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Qing Chen
- Jiangsu Province Blood Center, Nanjing, 210042, Jiangsu, People's Republic of China. .,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, People's Republic of China.
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China.
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China. .,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, People's Republic of China.
| |
Collapse
|
24
|
EZH2 Mediates miR-146a-5p/HIF-1 α to Alleviate Inflammation and Glycolysis after Acute Spinal Cord Injury. Mediators Inflamm 2021; 2021:5591582. [PMID: 34104112 PMCID: PMC8159642 DOI: 10.1155/2021/5591582] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
Acute spinal cord injury (ASCI) is a severe traumatic disease of the central nervous system, the underlying mechanism of which is unclear. This study was intended to study the role of EZH2 and miR-146a-5p/HIF-1α in inflammation and glycolysis after ASCI, providing reference and basis for the clinical treatment and prognosis of ASCI injury. We used lipopolysaccharide (LPS) to induce inflammation of microglia, and we constructed the ASCI animal model. qRT-PCR detected the relative expression levels of EZH2, HIF-1α, miR-146a-5p, IL-6, TNF-α, IL-17, PKM2, GLUT1, and HK2 in cells and tissues. Western blot was performed to detect the expression levels of EZH2, HIF-1α, H3K27me3, IL-6, TNF-α, IL-17, PKM2, GLUT1, and HK2. ChIP verified the enrichment of H3K27me3 in the miR-146a-5p promoter region. Bioinformatics predicted the binding sites of HIF-1α and miR-146a-5p, and dual-luciferase reporter assay verified the binding of HIF-1α and miR-146a-5p. ELISA detects the levels of inflammatory factors IL-6, TNF-α, and IL-17 in the cerebrospinal fluid of rats. The GC-TOFMS was used to detect the changes of glycolytic metabolites in the cerebrospinal fluid of rats. EZH2 could mediate inflammation and glycolysis of microglia. EZH2 regulates inflammation and glycolysis through HIF-1α. EZH2 indirectly regulated the HIF-1α expression by mediating miR-146a-5p. EZH2 mediates miR-146a-5p/HIF-1α to alleviate inflammation and glycolysis in ASCI rats. In the present study, our results demonstrated that EZH2 could mediate miR-146a-5p/HIF-1α to alleviate the inflammation and glycolysis after ASCI. Therefore, EZH2/miR-146a-5p/HIF-1α might be a novel potential target for treating ASCI.
Collapse
|
25
|
Mizohata Y, Toda H, Koga M, Saito T, Fujita M, Kobayashi T, Hatakeyama S, Morimoto Y. Neural extracellular vesicle-derived miR-17 in blood as a potential biomarker of subthreshold depression. Hum Cell 2021; 34:1087-1092. [PMID: 34013455 DOI: 10.1007/s13577-021-00553-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 01/20/2023]
Abstract
Subthreshold depression (StD) is a depressive state that does not fulfil the criteria for major depressive disorder (MDD); however, StD has a risk for progression to MDD, and early intervention is therefore needed. Recently, a method for extracting neural extracellular vesicles (NEVs) excreted from neural cells of the brain from blood has been established, and microRNAs (miRNAs) encapsulated in NEVs are attracting interest because of their potential correlation to the pathogenesis of psychiatric disorders. However, miRNAs closely related to StD are still unknown. Therefore, to try to identify miRNAs closely related to the degree of StD, we examined the correlations between expression levels of some candidate miRNAs in NEVs and Patient Health Questionnaire-9 (PHQ-9) scores in subjects. Total RNAs in NEVs were extracted from serum of young adult males who had PHQ-9 scores of less than 10 (n = 9). Expression levels of eight miRNAs that were previously reported to be depression-associated miRNAs (let-7a-5p, miR-17-5p, miR-26b-5p, miR-34a-5p, miR-132-3p, miR-182-5p, miR-212-3p, and miR-1202) were measured using real-time PCR. Two of the eight miRNAs (miR-17-5p and miR-26b-5p) were stably detected. The relative expression levels of miR-17-5p showed a significant positive correlation with PHQ-9 scores (r = 0.85, p < 0.01), while those of miR-26b-5p showed no significance. Although a larger-scale analysis is needed due to the small number of subjects, these findings suggest that miR-17-5p in NEVs is a potential biomarker for StD.
Collapse
Affiliation(s)
- Yusuke Mizohata
- Department of Physiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
- Aeromedical Laboratory, Japan Air Self-Defense Force, Iruma, Saitama, Japan
| | - Hiroyuki Toda
- Department of Psychiatry, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Minori Koga
- Department of Psychiatry, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Taku Saito
- Department of Psychiatry, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masanori Fujita
- Division of Environmental Medicine, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Tetsuya Kobayashi
- Course in Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
| | - Shin Hatakeyama
- Course in Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
26
|
Kang P, Huang X, Wan Z, Liang T, Wang Y, Li X, Zhang J, Zhu H, Liu Y. Kinetics of changes in gene and microRNA expression related with muscle inflammation and protein degradation following LPS-challenge in weaned piglets. Innate Immun 2020; 27:23-30. [PMID: 33232194 PMCID: PMC7780359 DOI: 10.1177/1753425920971032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To test the dynamic changes of the expression of genes and microRNA in the gastrocnemius muscle after LPS challenge, 36 piglets were assigned to a control group (slaughtered 0 h after saline injection) and LPS groups (slaughtered at 1 h, 2 h, 4 h, 8 h, and 12 h after LPS treatment, respectively). After LPS treatment, the mRNA expression of IL-1β, IL-6, and TNF-α reached maximal levels at 1 h, 2 h, and 1 h, respectively (P < 0.05), and mRNA expression of TLR4, NODs, muscle-specific ring finger 1, and muscle atrophy F-box peaked at 12 h (P < 0.05). Moreover, the expression of miR-122, miR-135a, and miR-370 reduced at 1 h, 1 h, and 2 h, respectively (P < 0.05), and miR-34a, miR-224, miR-132, and miR-145 reached maximum expression levels at 1 h, 1 h, 2 h, and 4 h, respectively (P < 0.05). These results suggested that mRNA expression of pro-inflammatory cytokines was elevated in the early stage, mRNA expression of genes related to TLR4 and NODs signaling pathways and protein degradation increased in the later phase, and the expression of microRNA related to muscle inflammation and protein degradation changed in the early stage after LPS injection.
Collapse
Affiliation(s)
- Ping Kang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Xingfa Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Zhicheng Wan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Tianzeng Liang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| |
Collapse
|
27
|
Tan S, Dai L, Tan P, Liu W, Mu Y, Wang J, Huang X, Hou A. Hesperidin administration suppresses the proliferation of lung cancer cells by promoting apoptosis via targeting the miR‑132/ZEB2 signalling pathway. Int J Mol Med 2020; 46:2069-2077. [PMID: 33125117 PMCID: PMC7595658 DOI: 10.3892/ijmm.2020.4756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/10/2020] [Indexed: 01/10/2023] Open
Abstract
This aim of the present study was to identify the relationship between hesperidin and microRNA (miR)-132, and to study the role of hesperidin and miR-132 in the pathogenesis of non-small cell lung cancer (NSCLC). Computational analysis and luciferase assays were performed to identify the target of miR-132. Subsequently, reverse transcription-quantitative PCR and western blot assays were used to detect the effect of miR-132 and hesperidin on the expression of haematological and neurological expressed 1 (HN1) and zinc finger E-box binding homeobox 2 (ZEB2). Finally, MTT assays and flow cytometry analysis were used to investigate the effect of hesperidin on cell proliferation and apoptosis. ZEB2 was identified as a target gene of miR-132, and transfection with miR-132 mimic reduced the luciferase activity of the wild-type ZEB2 3′-untranslated region (3′-UTR) but not that of the mutant ZEB2 3′-UTR. By contrast, neither transfection with miR-132 mimic nor hesperidin treatment affected HN1 expression. Furthermore, hesperidin evidently inhibited cell proliferation and promoted apoptosis in a dose-dependent manner. Furthermore, the tumour volume in rats transplanted with NSCLC cells and treated with hesperidin was notably smaller compared with that in rats transplanted with NSCLC cells alone, while treatment with hesperidin significantly reduced the colony formation efficiency of NSCLC cells by increasing miR-132 expression and decreasing ZEB2 expression. To the best of our knowledge, the present study demonstrated for the first time that the administration of hesperidin decreased the expression of ZEB2 by upregulating the expression of miR-132, which in turn promoted apoptosis and inhibited the proliferation of NSCLC cells.
Collapse
Affiliation(s)
- Song Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Lingling Dai
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Pengcheng Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Wei Liu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Yuejun Mu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Jinguo Wang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Xiaoming Huang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Aihua Hou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
28
|
Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants (Basel) 2020; 9:antiox9090830. [PMID: 32899889 PMCID: PMC7555323 DOI: 10.3390/antiox9090830] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Drug abuse is a major global health and economic problem. However, there are no pharmacological treatments to effectively reduce the compulsive use of most drugs of abuse. Despite exerting different mechanisms of action, all drugs of abuse promote the activation of the brain reward system, with lasting neurobiological consequences that potentiate subsequent consumption. Recent evidence shows that the brain displays marked oxidative stress and neuroinflammation following chronic drug consumption. Brain oxidative stress and neuroinflammation disrupt glutamate homeostasis by impairing synaptic and extra-synaptic glutamate transport, reducing GLT-1, and system Xc− activities respectively, which increases glutamatergic neurotransmission. This effect consolidates the relapse-promoting effect of drug-related cues, thus sustaining drug craving and subsequent drug consumption. Recently, promising results as experimental treatments to reduce drug consumption and relapse have been shown by (i) antioxidant and anti-inflammatory synthetic molecules whose effects reach the brain; (ii) natural biomolecules secreted by mesenchymal stem cells that excel in antioxidant and anti-inflammatory properties, delivered via non-invasive intranasal administration to animal models of drug abuse and (iii) potent anti-inflammatory microRNAs and anti-miRNAs which target the microglia and reduce neuroinflammation and drug craving. In this review, we address the neurobiological consequences of brain oxidative stress and neuroinflammation that follow the chronic consumption of most drugs of abuse, and the current and potential therapeutic effects of antioxidants and anti-inflammatory agents and biomolecules to reduce these drug-induced alterations and to prevent relapse.
Collapse
|
29
|
Chen W, Guo S, Li X, Song N, Wang D, Yu R. The regulated profile of noncoding RNAs associated with inflammation by tanshinone IIA on atherosclerosis. J Leukoc Biol 2020; 108:243-252. [PMID: 32337768 DOI: 10.1002/jlb.3ma0320-327rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 01/23/2023] Open
Abstract
Atherosclerosis (AS) is the principal cause of heart attack, sudden cardiac death, stroke, and necrosis of the extremities, in which significant changes in gene expression associated with inflammation are found. However, the molecular mechanisms of AS are not clearly elucidated. In this study, ApoE-/- mice were fed with a high fat diet for 12 weeks to induce atherosclerosis and half of the mice were treated with tanshinone IIA (TAN). Then sequencing analysis was performed to investigate the expression patterns of ncRNAs in AS plaques obtained from mice treated with TAN and AS Model mice. A total of 22 long noncoding RNAs (lncRNAs), 74 microRNAs (miRNAs), 13 circular RNAs (circRNAs), and 1359 mRNAs in AS plaque were more significantly regulated from TAN mice, compared with model mice. Bioinformatics tools and databases were employed to investigate the potential ncRNA functions and their interaction. Our data showed that the most significantly pathways regulated by TAN were associated with inflammation, and involved in the signaling pathways of Ras, Rap1, MAPK, cAMP, T cell receptor, and so on. In addition, the competitive endogenous RNA (ceRNA) network had been constructed and the core nodes included circ-Tns3/let-7d-5p/Ctsl, circ-Wdr91/miR-378a-5p/Msr1, and circ-Cd84/ miR-30c/ Tlr2. The DERNAs were validated by quantitative RT-PCR and dual luminescence reporter assay in RAW264.7 cells in vitro. This study identified ceRNAs network regulated by TAN and elucidated the ncRNAs profile and signal pathways to attenuate AS comprehensively. This research would contribute to further research on the pathogenesis of AS, and facilitate the development of novel therapeutics targeting ncRNAs.
Collapse
Affiliation(s)
- Wenna Chen
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China.,Department of Medical Science of Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Shengnan Guo
- Department of Medical Science of Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Ximing Li
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Nan Song
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Dan Wang
- Department of Medical Science of Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Rui Yu
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Li D, Wang Y, Jin X, Hu D, Xia C, Xu H, Hu J. NK cell-derived exosomes carry miR-207 and alleviate depression-like symptoms in mice. J Neuroinflammation 2020; 17:126. [PMID: 32321532 PMCID: PMC7178582 DOI: 10.1186/s12974-020-01787-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background Depression is a common mental disease that mainly manifests as bad mood, decreased interest, pessimism, slow thinking, lack of initiative, poor diet and sleep. Patients with severe depression have suicidal tendencies. Exosomes are small vesicles released by the fusion of a multivesicular body and membranes, and they contain specific proteins, nucleic acids, and lipids related to the cells from which they originate. MicroRNAs (miRNAs) are 20–24 nt RNAs that can be packaged into exosomes and can play important regulatory roles. Astrocytes are the most abundant cell population in the central nervous system and have a close link to depression. Astrocyte activation could result in the release of inflammatory cytokines, including IL-1β, IL-6, and TNF-α, which could promote the symptoms of depression. In previous research, our team confirmed that NK cells regulate depression in mice. Here, we propose that miRNA in the exosomes from NK cells performs this antidepressant function. Methods Exosomes from NK cells were shown by in vivo and in vitro experiments to alleviate symptoms of chronic mild stress in mice and decrease pro-inflammatory cytokines release from astrocytes. The production of pro-inflammatory cytokines was assessed by ELISA. Microarray analysis was used to identify critical miRNAs. Luciferase reporter assays, qPCR, and other experiments were used to prove that exosomal miR-207 has an important role in alleviating the symptoms of stress in mice. Results MiRNA-containing exosomes from NK cells could alleviate symptoms of chronic mild stress in mice. In vivo experiments showed that these exosomes decreased the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) released by astrocytes. By microarray analysis of exosome miRNA profiles, miR-207 was found to be overexpressed in exosomes derived from unstressed mice. Experiments confirmed that miR-207 directly targets TLR4 interactor with leucine-rich repeats (Tril) and inhibits NF-κB signaling in astrocytes. MiR-207 could decrease the release of pro-inflammatory cytokines and inhibit expression of Tril in vitro. In vivo experiments revealed that exosomes with low miR-207 levels showed decreased antidepressant activity. Conclusion Collectively, our findings revealed that exosomal miR-207 alleviated symptoms of depression in stressed mice by targeting Tril to inhibit NF-κB signaling in astrocytes.
Collapse
Affiliation(s)
- Dongping Li
- The Engineering Research Center of Synthetic Polypeptide Discovery and Evaluation of Jiangsu Province, Zhilan Road 18, Nanjing, 211198, People's Republic of China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ying Wang
- The Engineering Research Center of Synthetic Polypeptide Discovery and Evaluation of Jiangsu Province, Zhilan Road 18, Nanjing, 211198, People's Republic of China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xinrong Jin
- The Engineering Research Center of Synthetic Polypeptide Discovery and Evaluation of Jiangsu Province, Zhilan Road 18, Nanjing, 211198, People's Republic of China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Die Hu
- The Engineering Research Center of Synthetic Polypeptide Discovery and Evaluation of Jiangsu Province, Zhilan Road 18, Nanjing, 211198, People's Republic of China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chunlei Xia
- The Engineering Research Center of Synthetic Polypeptide Discovery and Evaluation of Jiangsu Province, Zhilan Road 18, Nanjing, 211198, People's Republic of China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Discovery and Evaluation of Jiangsu Province, Zhilan Road 18, Nanjing, 211198, People's Republic of China. .,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - Jialiang Hu
- The Engineering Research Center of Synthetic Polypeptide Discovery and Evaluation of Jiangsu Province, Zhilan Road 18, Nanjing, 211198, People's Republic of China. .,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
31
|
Zhou X, Chen J, Tao H, Cai Y, Huang L, Zhou H, Chen Y, Cui L, Zhong W, Li K. Intranasal Delivery of miR-155-5p Antagomir Alleviates Acute Seizures Likely by Inhibiting Hippocampal Inflammation. Neuropsychiatr Dis Treat 2020; 16:1295-1307. [PMID: 32547033 PMCID: PMC7251485 DOI: 10.2147/ndt.s247677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/17/2020] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION To confront the resistance to existing antiepileptic drugs, studies have gradually begun to investigate alternative pathologies distinct from the traditional treatments that overwhelmingly target ion channels. Microglia activation is the first inflammatory response in the brain, in which miR-155-5p plays a key proinflammatory role and thus represents a promising target for inflammatory modulation in epilepsy pathologies. METHODS In this study, a pentetrazol-induced acute seizure model was established, and the seizure degree was evaluated within 60 min after pentetrazol administration. Animals were then sacrificed for hippocampal tissue collection for biological experiments. RESULTS Intranasal delivery of miR-155-5p antagomir (30 min before pentetrazol administration) increased the percentage of animals with no induced seizures by 20%, extended the latency to generalized convulsions, and decreased seizure severity. In addition, miR-155-5p antagomir treatment alleviated hippocampal damage and decreased the expression of typical inflammatory modulators (TNF-α, IL-1β and IL-6). Further research revealed that intranasal delivery of miR-155-5p antagomir significantly decreased the relative level of miR-155-5p and increased the expression of its targets LXRα and SOCS1 in IBA1-labeled microglial cells in the hippocampus. CONCLUSION These findings demonstrate that intranasal delivery of miR-155-5p antagomir alleviated acute seizures, likely by blocking hippocampal inflammation. However, other potential mechanisms of the effects of miR-155-5p antagomir and its long-term safety for epilepsy treatment remain to be investigated.
Collapse
Affiliation(s)
- Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Jun Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Hua Tao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Lidan Huang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Yanyan Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001 China; Stroke Center, Neurology & Neurosurgery Division, Clinical Medicine Research Institute & The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, People's Republic of China
| |
Collapse
|
32
|
Korotkov A, Broekaart DWM, Banchaewa L, Pustjens B, van Scheppingen J, Anink JJ, Baayen JC, Idema S, Gorter JA, van Vliet EA, Aronica E. microRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes. Glia 2019; 68:60-75. [PMID: 31408236 PMCID: PMC6899748 DOI: 10.1002/glia.23700] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is a chronic neurological disease in humans, which is refractory to pharmacological treatment in about 30% of the patients. Reactive glial cells are thought to play a major role during the development of epilepsy (epileptogenesis) via regulation of brain inflammation and remodeling of the extracellular matrix (ECM). These processes can be regulated by microRNAs (miRs), a class of small non‐coding RNAs, which can control entire gene networks at a post‐transcriptional level. The expression of miRs is known to change dynamically during epileptogenesis. miR‐132 is one of the most commonly upregulated miRs in animal TLE models with important roles shown in neurons. However, the possible role of miR‐132 in glia remains largely unknown. The aim of this study was to characterize the cell‐type specific expression of miR‐132 in the hippocampus of patients with TLE and during epileptogenesis in a rat TLE model. Furthermore, the potential role of miR‐132 was investigated by transfection of human primary cultured astrocytes that were stimulated with the cytokines IL‐1β or TGF‐β1. We showed an increased expression of miR‐132 in the human and rat epileptogenic hippocampus, particularly in glial cells. Transfection of miR‐132 in human primary astrocytes reduced the expression of pro‐epileptogenic COX‐2, IL‐1β, TGF‐β2, CCL2, and MMP3. This suggests that miR‐132, particularly in astrocytes, represents a potential therapeutic target that warrants further in vivo investigation.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Diede W M Broekaart
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Leyla Banchaewa
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ben Pustjens
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jackelien van Scheppingen
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jasper J Anink
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Johannes C Baayen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Sander Idema
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| |
Collapse
|
33
|
Lu Y, Xu X, Dong R, Sun L, Chen L, Zhang Z, Peng M. MicroRNA-181b-5p attenuates early postoperative cognitive dysfunction by suppressing hippocampal neuroinflammation in mice. Cytokine 2019; 120:41-53. [DOI: 10.1016/j.cyto.2019.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023]
|
34
|
Zhang G, Liu Y, Xu L, Sha C, Zhang H, Xu W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol 2019; 19:10. [PMID: 30691440 PMCID: PMC6350285 DOI: 10.1186/s12896-019-0502-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Background Spinal cord injury (SCI) remains a huge medical problem nowadays as there is no hospital providing the versatile strategies for repairing central nervous system and restoring function. Herein, we focused on PC-12 cells as an important research tool and studied the potential role of resveratrol (RSV) in inflammation induced by LPS. Results RSV improved inflammatory injury and functional recovery in rat model of SCI. RSV inhibited LPS-induced inflammatory injury in PC-12 cells via increasing viability, decreasing apoptosis, and suppressing IL-1β, IL-6, and TNF-α expression. miR-132 was down-regulated after LPS treatment but up-regulated after RSV administration. miR-132 silence curbed the protective effect of RSV. The results including increase of cell growth, suppression of inflammatory response, and blocking of NF-κB and p38MAPK pathways produced by RSV were all reversed by miR-132 silence. Conclusion RSV could up-regulate miR-132 and further ameliorate inflammatory response in PC-12 cells by inhibiting NF-κB and p38MAPK pathways.
Collapse
Affiliation(s)
- Guiqi Zhang
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Yi Liu
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Lichen Xu
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Chunhe Sha
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Haibin Zhang
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Weibing Xu
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China.
| |
Collapse
|
35
|
Song YJ, Cao JY, Jin Z, Hu WG, Wu RH, Tian LH, Yang B, Wang J, Xiao Y, Huang CB. Inhibition of microRNA-132 attenuates inflammatory response and detrusor fibrosis in rats with interstitial cystitis via the JAK-STAT signaling pathway. J Cell Biochem 2018; 120:9147-9158. [PMID: 30582204 DOI: 10.1002/jcb.28190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Interstitial cystitis (IC) is a heterogeneous syndrome with unknown etiology, and microRNAs (miRs) were found to be involved in IC. In our study, we aim to explore the role of miR-132 in the inflammatory response and detrusor fibrosis in IC through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway in rat models. A rat model of IC was established and treated with the miR-132 mimic, miR-132 inhibitor, and/or JAK-STAT signaling pathway inhibitor AG490. Enzyme-linked immunosorbent assay was applied to measure the expression of interleukin (IL)-6, IL-10, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1). The urodynamic test was performed to assess urodynamic parameters, and reverse transcription quantitative polymerase chain reaction and Western blot analysis for the expression of miR-132, STAT4, suppressors of cytokine signaling 3 (SOCS3), JAK2, vascular endothelial growth factor (VEGF), IFN-γ, and TNF-α. IC rats treated with miR-132 inhibitor and AG490 had decreased collagen fiber, inflammatory cell infiltration, and mast cells, lower expression of IL-6, IL-10, IFN-γ, TNF-α, ICAM-1, collagens I and III, and alleviated urodynamic parameters and decreased expression of STAT4, VEGF, JAK2, IFN-γ, TNF-α, and increased expression of SOCS3. Taken together, our data indicate that downregulation of miR-132 alleviates inflammatory response and detrusor fibrosis in IC via the inhibition of the JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Ya-Jun Song
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jun-Ying Cao
- Department of Ultrasound, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, P. R. China
| | - Zhuang Jin
- Department of Ultrasound, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, P. R. China
| | - Wen-Gang Hu
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Rong-Hua Wu
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Lu-Hai Tian
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ya Xiao
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Chi-Bing Huang
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| |
Collapse
|
36
|
Yang Q, Zhou J. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia 2018; 67:1017-1035. [DOI: 10.1002/glia.23571] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Qiao‐qiao Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
| | - Jia‐wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Shanghai 200031 China
| |
Collapse
|
37
|
Wang W, Zhan R, Zhou J, Wang J, Chen S. MiR-10 targets NgR to modulate the proliferation of microglial cells and the secretion of inflammatory cytokines. Exp Mol Pathol 2018; 105:357-363. [DOI: 10.1016/j.yexmp.2018.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/04/2018] [Accepted: 10/08/2018] [Indexed: 11/15/2022]
|
38
|
Lv M, Yang S, Cai L, Qin LQ, Li BY, Wan Z. Effects of Quercetin Intervention on Cognition Function in APP/PS1 Mice was Affected by Vitamin D Status. Mol Nutr Food Res 2018; 62:e1800621. [DOI: 10.1002/mnfr.201800621] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Menglian Lv
- Department of Nutrition and Food Hygiene; School of Public Health; Soochow University; 199 Ren'ai Road Suzhou 215123 China
| | - Shengyi Yang
- Department of Nutrition and Food Hygiene; School of Public Health; Soochow University; 199 Ren'ai Road Suzhou 215123 China
| | - Lingkai Cai
- Medical College of Soochow University; 199 Ren'ai Road Suzhou 215123 China
| | - Li-qiang Qin
- Department of Nutrition and Food Hygiene; School of Public Health; Soochow University; 199 Ren'ai Road Suzhou 215123 China
| | - Bing-yan Li
- Department of Nutrition and Food Hygiene; School of Public Health; Soochow University; 199 Ren'ai Road Suzhou 215123 China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene; School of Public Health; Soochow University; 199 Ren'ai Road Suzhou 215123 China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease; Soochow University; 199 Ren'ai Road Suzhou 215123 China
| |
Collapse
|
39
|
Korotkov A, Broekaart DWM, van Scheppingen J, Anink JJ, Baayen JC, Idema S, Gorter JA, Aronica E, van Vliet EA. Increased expression of matrix metalloproteinase 3 can be attenuated by inhibition of microRNA-155 in cultured human astrocytes. J Neuroinflammation 2018; 15:211. [PMID: 30031401 PMCID: PMC6054845 DOI: 10.1186/s12974-018-1245-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background Temporal lobe epilepsy (TLE) is a chronic neurological disease, in which about 30% of patients cannot be treated adequately with anti-epileptic drugs. Brain inflammation and remodeling of the extracellular matrix (ECM) seem to play a major role in TLE. Matrix metalloproteinases (MMPs) are proteolytic enzymes largely responsible for the remodeling of the ECM. The inhibition of MMPs has been suggested as a novel therapy for epilepsy; however, available MMP inhibitors lack specificity and cause serious side effects. We studied whether MMPs could be modulated via microRNAs (miRNAs). Several miRNAs mediate inflammatory responses in the brain, which are known to control MMP expression. The aim of this study was to investigate whether an increased expression of MMPs after interleukin-1β (IL-1β) stimulation can be attenuated by inhibition of the inflammation-associated miR-155. Methods We investigated the expression of MMP2, MMP3, MMP9, and MMP14 in cultured human fetal astrocytes after stimulation with the pro-inflammatory cytokine IL-1β. The cells were transfected with miR-155 antagomiR, and the effect on MMP3 expression was investigated using real-time quantitative PCR and Western blotting. Furthermore, we characterized MMP3 and miR-155 expression in brain tissue of TLE patients with hippocampal sclerosis (TLE-HS) and during epileptogenesis in a rat TLE model. Results Inhibition of miR-155 by the antagomiR attenuated MMP3 overexpression after IL-1β stimulation in astrocytes. Increased expression of MMP3 and miR-155 was also evident in the hippocampus of TLE-HS patients and throughout epileptogenesis in the rat TLE model. Conclusions Our experiments showed that MMP3 is dynamically regulated by seizures as shown by increased expression in TLE tissue and during different phases of epileptogenesis in the rat TLE model. MMP3 can be induced by the pro-inflammatory cytokine IL-1β and is regulated by miR-155, suggesting a possible strategy to prevent epilepsy via reduction of inflammation. Electronic supplementary material The online version of this article (10.1186/s12974-018-1245-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Diede W M Broekaart
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Hadar A, Milanesi E, Walczak M, Puzianowska-Kuźnicka M, Kuźnicki J, Squassina A, Niola P, Chillotti C, Attems J, Gozes I, Gurwitz D. SIRT1, miR-132 and miR-212 link human longevity to Alzheimer's Disease. Sci Rep 2018; 8:8465. [PMID: 29855513 PMCID: PMC5981646 DOI: 10.1038/s41598-018-26547-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia in the elderly. Centenarians - reaching the age of >100 years while maintaining good cognitive skills - seemingly have unique biological features allowing healthy aging and protection from dementia. Here, we studied the expression of SIRT1 along with miR-132 and miR-212, two microRNAs known to regulate SIRT1, in lymphoblastoid cell lines (LCLs) from 45 healthy donors aged 21 to 105 years and 24 AD patients, and in postmortem olfactory bulb and hippocampus tissues from 14 AD patients and 20 age-matched non-demented individuals. We observed 4.0-fold (P = 0.001) lower expression of SIRT1, and correspondingly higher expression of miR-132 (1.7-fold; P = 0.014) and miR-212 (2.1-fold; P = 0.036), in LCLs from AD patients compared with age-matched healthy controls. Additionally, SIRT1 expression was 2.2-fold (P = 0.001) higher in centenarian LCLs compared with LCLs from individuals aged 56-82 years; while centenarian LCLs miR-132 and miR-212 indicated 7.6-fold and 4.1-fold lower expression, respectively. Correlations of SIRT1, miR-132 and miR-212 expression with cognitive scores were observed for AD patient-derived LCLs and postmortem AD olfactory bulb and hippocampus tissues, suggesting that higher SIRT1 expression, possibly mediated by lower miR-132 and miR-212, may protect aged individuals from dementia and is reflected in their peripheral tissues.
Collapse
Affiliation(s)
- A Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - E Milanesi
- Department of Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - M Walczak
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Warsaw, Poland
| | - M Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - J Kuźnicki
- The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - A Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - P Niola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - C Chillotti
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - J Attems
- Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - I Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Adams Super Center for Brain Studies, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - D Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Adams Super Center for Brain Studies, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
41
|
Xia L, Li D, Lin C, Ou S, Li X, Pan S. Comparative study of joint bioinformatics analysis of underlying potential of 'neurimmiR', miR-212-3P/miR-132-3P, being involved in epilepsy and its emerging role in human cancer. Oncotarget 2018; 8:40668-40682. [PMID: 28380454 PMCID: PMC5522300 DOI: 10.18632/oncotarget.16541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 12/27/2022] Open
Abstract
Considering the critical roles of miR-132/212 participated in central nervous system, many researches started to explored the contributions of miR-132/212 to epilepsy and achieve something worthwhile. Further illuminates all the genes targeted by miR-132/212 may be a valuable means for us to completely understand the working mechanism playing in epilepsy, by which it can influence diverse biological process. This study attempts to establish macrocontrol regulation system and knowledge that miR-212-3p/132-3p effected the epilepsy, for this literature search, miRbase, Vienna RNAfold webserver, Human miRNA tissue atlas, DIANA-TarBase, miRtarbase, STRING, TargetScanhuman, Cytoscape plugin ClueGO + Cluepedia+STRING, DAVID Bioinformatics Resources, Starbase, GeneCards suite and GEO database are comprehensive employed, miR-132-3p/212-3p and its target gene were found have highly expressed in brain and lots of molecular function and metabolic pathways associated with epilepsy may be intervened by it. Meanwhile, the emerging role of miR-132-3p/212-3p being involved in human cancer also been analyzed by several webtools for TCGA data integrative analysis, most remarkably and well worth exploring in our research conclusion that showed miR-132-3p/212-3p may be the core molecular underlying tumor-induced epileptogenesis.
Collapse
Affiliation(s)
- Lu Xia
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Provinces, China
| | - Daojiang Li
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Changwei Lin
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China.,Center for Experimental Medicine, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Shuchun Ou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Provinces, China
| | - Xiaorong Li
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China.,Center for Experimental Medicine, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Provinces, China
| |
Collapse
|
42
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [PMID: 28842356 PMCID: PMC11884751 DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Stroke is the number one cause of neurological dysfunction in adults and has a heavy socioeconomic burden worldwide. The etiological origins of ischemic stroke and resulting pathological processes are mediated by a multifaceted cascade of molecular mechanisms that are in part modulated by posttranscriptional activity. Accumulating evidence has revealed a role for microRNAs (miRNAs) as essential mediators of posttranscriptional gene silencing in both the physiology of brain development and pathology of ischemic stroke. In this review, we compile miRNAs that have been reported to regulate various stroke risk factors and pre-disease mechanisms, including hypertension, atherosclerosis, and diabetes, followed by an in-depth analysis of miRNAs in ischemic stroke pathogenesis, such as excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis and neurogenesis. Since promoting or suppressing expression of miRNAs by specific pharmaceutical and non-pharmaceutical therapies may be beneficial to post-stroke recovery, we also highlight the potential therapeutic value of miRNAs in clinical settings.
Collapse
Affiliation(s)
- Guangwen Li
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | | | - Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China; Beijing Institute for Brain Disorders and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 10053, China.
| |
Collapse
|
43
|
Tiwari D, Peariso K, Gross C. MicroRNA-induced silencing in epilepsy: Opportunities and challenges for clinical application. Dev Dyn 2018; 247:94-110. [PMID: 28850760 PMCID: PMC5740004 DOI: 10.1002/dvdy.24582] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/20/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs are master regulators of gene expression. Single microRNAs influence multiple proteins within diverse molecular pathways and networks. Therefore, changes in levels or activity of microRNAs can have profound effects on cellular function. This makes dysregulated microRNA-induced silencing an attractive potential disease mechanism in complex disorders like epilepsy, where numerous cellular pathways and processes are affected simultaneously. Indeed, several years of research in rodent models have provided strong evidence that acute or recurrent seizures change microRNA expression and function. Moreover, altered microRNA expression has been observed in brain and blood from patients with various epilepsy disorders, such as tuberous sclerosis. MicroRNAs can be easily manipulated using sense or antisense oligonucleotides, opening up opportunities for therapeutic intervention. Here, we summarize studies using these techniques to identify microRNAs that modulate seizure susceptibility, describe protein targets mediating some of these effects, and discuss cellular pathways, for example neuroinflammation, that are controlled by epilepsy-associated microRNAs. We critically assess current gaps in knowledge regarding target- and cell-specificity of microRNAs that have to be addressed before clinical application as therapeutic targets or biomarkers. The recent progress in understanding microRNA function in epilepsy has generated strong momentum to encourage in-depth mechanistic studies to develop microRNA-targeted therapies. Developmental Dynamics 247:94-110, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Durgesh Tiwari
- Cincinnati Children’s Hospital Medical Center, Division of Neurology, Cincinnati, Ohio
| | - Katrina Peariso
- Cincinnati Children’s Hospital Medical Center, Division of Neurology, Cincinnati, Ohio
- University of Cincinnati, Department of Pediatrics, Cincinnati, Ohio
| | - Christina Gross
- Cincinnati Children’s Hospital Medical Center, Division of Neurology, Cincinnati, Ohio
- University of Cincinnati, Department of Pediatrics, Cincinnati, Ohio
| |
Collapse
|
44
|
Wang X, Yin F, Li L, Kong H, You B, Zhang W, Chen S, Peng J. Intracerebroventricular injection of miR-146a relieves seizures in an immature rat model of lithium-pilocarpine induced status epilepticus. Epilepsy Res 2017; 139:14-19. [PMID: 29144992 DOI: 10.1016/j.eplepsyres.2017.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Status epilepticus (SE) is a common, life-threatening neurological emergency that confers a high degree of morbidity and mortality. Increasing evidence indicates that neuroinflammation plays a critical role in the pathogenesis of SE. MicroRNA-146a (miR-146a) has been reported to be an important posttranscriptional inflammation-associated microRNA. The aim of this study was to investigate the effect of miR-146a in SE and the mechanism by which it operates. METHODS To study the effect of miR-146a in SE, we chose intracerebroventricular injection for rat at 21-28days old, and made a lithium-pilocarpine-induced SE rat model. We assessed latency time and Lado grade by behavior observation. We performed qPCR, ELISA and western blot tests on rat hippocampus to measure the expression levels of miR-146a, IL-1β, TNF-α, TLR4 and NF-κB. RESULTS In the miR-146a antagomir injection group, the latency to generalized convulsions was shorter, the duration and degree of seizures were more severe, the expression level of miR-146a was clearly decreased, and IL-1β, TNF-α, TLR4 and NF-κB were all significantly up-regulated. The opposite was true for rats treated with miR-146a agomir. CONCLUSION Our findings elucidate the role of inflammation in the pathogenesis of SE in immature rats, and show that regulating the expression level of miR-146a may provide a novel insights into the pathogenesis of SE.
Collapse
Affiliation(s)
- Xiaole Wang
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, China; Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, China
| | - Linhong Li
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Huimin Kong
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Baiyang You
- Department of Cardiovascular, Xiangya Hospital of Central South University, China
| | - Weixi Zhang
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Shuyuan Chen
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital of Central South University, China.
| |
Collapse
|
45
|
Salta E, De Strooper B. microRNA-132: a key noncoding RNA operating in the cellular phase of Alzheimer's disease. FASEB J 2017; 31:424-433. [PMID: 28148775 DOI: 10.1096/fj.201601308] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
With the consideration of the broad involvement of microRNAs (miRNAs) in the regulation of molecular networks in the brain, it is not surprising that miRNA dysregulation causes neurodegeneration in animal models. miRNA profiling in the human brain has revealed miR-132 as one of the most severely down-regulated miRNAs at the intermediate and late Braak stages of Alzheimer's disease (AD), as well as in other neurodegenerative disorders. Suppression of miR-132 aggravates multiple layers of pathology at the molecular and functional level. We describe the potential therapeutic implications of these findings and suggest miRNA targeting or replacement as a realistic multi-hit, therapeutic strategy for AD. Salta, E., De Strooper, B. microRNA-132: a key noncoding RNA operating in the cellular phase of Alzheimer's disease.
Collapse
Affiliation(s)
- Evgenia Salta
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease, VIB-Leuven, Leuven, Belgium; .,Center for Human Genetics, Universitaire Ziekenhuizen and Leuven Research Institute for Neuroscience and Disease, KU-Leuven, Leuven, Belgium; and
| | - Bart De Strooper
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease, VIB-Leuven, Leuven, Belgium; .,Center for Human Genetics, Universitaire Ziekenhuizen and Leuven Research Institute for Neuroscience and Disease, KU-Leuven, Leuven, Belgium; and.,Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
46
|
Rosciszewski G, Cadena V, Murta V, Lukin J, Villarreal A, Roger T, Ramos AJ. Toll-Like Receptor 4 (TLR4) and Triggering Receptor Expressed on Myeloid Cells-2 (TREM-2) Activation Balance Astrocyte Polarization into a Proinflammatory Phenotype. Mol Neurobiol 2017; 55:3875-3888. [PMID: 28547529 DOI: 10.1007/s12035-017-0618-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/12/2017] [Indexed: 01/07/2023]
Abstract
Astrocytes react to brain injury with a generic response known as reactive gliosis, which involves activation of multiple intracellular pathways including several that may be beneficial for neuronal survival. However, by unknown mechanisms, reactive astrocytes can polarize into a proinflammatory phenotype that induces neurodegeneration. In order to study reactive gliosis and astroglial polarization into a proinflammatory phenotype, we used cortical devascularization-induced brain ischemia in Wistar rats and primary astroglial cell cultures exposed to oxygen-glucose deprivation (OGD). We analyzed the profile of TLR4 expression and the consequences of its activation by gain- and loss-of-function studies, and the effects produced by the activation of triggering receptor expressed on myeloid cells-2 (TREM-2), a negative regulator of TLR4 signaling. Both OGD exposure on primary astroglial cell cultures and cortical devascularization brain ischemia in rats induced TLR4 expression in astrocytes. In vivo, astroglial TLR4 expression was specifically observed in the ischemic penumbra surrounding necrotic core. Functional studies showed that OGD increased the astroglial response to the TLR4 agonist lipopolysaccharide (LPS), and conversely, TLR4 knockout primary astrocytes had impaired nuclear factor kappa-B (NF-κB) activation when exposed to LPS. In gain-of-function studies, plasmid-mediated TLR4 over-expression exacerbated astroglial response to LPS as shown by sustained NF-κB activation and increased expression of proinflammatory cytokines IL-1β and TNFα. TREM-2 expression, although present in naïve primary astrocytes, was induced by OGD, LPS, or high-mobility group box 1 protein (HMGB-1) exposure. TREM-2 activation by antibody cross-linking or the overexpression of TREM-2 intracellular adaptor, DAP12, partially suppressed LPS-induced NF-κB activation in purified astrocytic cultures. In vivo, TREM-2 expression was observed in macrophages and astrocytes located in the ischemic penumbra. While TREM-2+ macrophages were abundant at 3 days post-lesion (DPL) in the ischemic core, TREM-2+ astrocytes persisted in the penumbra until 14DPL. This study demonstrates that TLR4 expression increases astroglial sensitivity to ligands facilitating astrocyte conversion towards a proinflammatory phenotype, and that astroglial TREM-2 modulates this response reducing the downstream NF-κB activation. Therefore, the availability of TLR4 and TREM-2 ligands in the ischemic environment may control proinflammatory astroglial conversion to the neurodegenerative phenotype.
Collapse
Affiliation(s)
- Gerardo Rosciszewski
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina.,Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" Facultad de Medicina, Universidad de Buenos Aires, Calle Paraguay 2155 3er piso (1121),, Ciudad de Buenos Aires, Argentina
| | - Vanesa Cadena
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina.,Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" Facultad de Medicina, Universidad de Buenos Aires, Calle Paraguay 2155 3er piso (1121),, Ciudad de Buenos Aires, Argentina
| | - Veronica Murta
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina.,Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" Facultad de Medicina, Universidad de Buenos Aires, Calle Paraguay 2155 3er piso (1121),, Ciudad de Buenos Aires, Argentina
| | - Jeronimo Lukin
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina.,Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" Facultad de Medicina, Universidad de Buenos Aires, Calle Paraguay 2155 3er piso (1121),, Ciudad de Buenos Aires, Argentina
| | - Alejandro Villarreal
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina.,Department of Molecular Embryology, Institute for Anatomy and Cell Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Alberto Javier Ramos
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina. .,Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" Facultad de Medicina, Universidad de Buenos Aires, Calle Paraguay 2155 3er piso (1121),, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
47
|
Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res 2017; 27:882-897. [PMID: 28429770 PMCID: PMC5518987 DOI: 10.1038/cr.2017.62] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/25/2017] [Accepted: 03/26/2017] [Indexed: 12/11/2022] Open
Abstract
Vascular integrity helps maintain brain microenvironment homeostasis, which is critical for the normal development and function of the central nervous system. It is known that neural cells can regulate brain vascular integrity. However, due to the high complexity of neurovascular interactions involved, understanding of the neural regulation of brain vascular integrity is still rudimentary. Using intact zebrafish larvae and cultured rodent brain cells, we find that neurons transfer miR-132, a highly conserved and neuron-enriched microRNA, via secreting exosomes to endothelial cells (ECs) to maintain brain vascular integrity. Following translocation to ECs through exosome internalization, miR-132 regulates the expression of vascular endothelial cadherin (VE-cadherin), an important adherens junction protein, by directly targeting eukaryotic elongation factor2kinase (eef2k). Disruption of neuronal miR-132 expression or exosome secretion, or overexpression of vascular eef2k impairs VE-cadherin expression and brain vascular integrity. Our study indicates that miR-132 acts as an intercellular signal mediating neural regulation of the brain vascular integrity and suggests that the neuronal exosome is a novel avenue for neurovascular communication.
Collapse
|
48
|
Hesperidin Alleviates Lipopolysaccharide-Induced Neuroinflammation in Mice by Promoting the miRNA-132 Pathway. Inflammation 2017; 39:1681-9. [PMID: 27378528 DOI: 10.1007/s10753-016-0402-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previous studies have demonstrated that hesperidin, a flavanone glycoside from citrus fruits, produces antidepressant-like effects in both mice and rats. However, whether these effects are mediated by pro-inflammatory cytokines remains unknown. In the present study, we attempted to investigate the effects of hesperidin on the depressive-like behavior; the serum corticosterone concentrations; and the interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α) levels in lipopolysaccharide (LPS)-induced depression-like mice. In particular, we evaluated the miRNA-132 expression after LPS and hesperidin treatment. We found that LPS injection not only decreased the sucrose preference and increased the serum corticosterone levels but also elevated IL-1β, IL-6, and TNF-α in the prefrontal cortex. More importantly, LPS down-regulated the expression of miRNA-132. Pre-treatment with hesperidin (25, 50, 100 mg/kg) for 7 days prevented these abnormalities induced by LPS injection. In contrast, this effect of hesperidin was abolished by a miRNA-132 antagomir. Taken together, these results suggest that the antidepressant-like mechanisms of hesperidin are at least partially related to decreased pro-inflammatory cytokine levels via the miRNA-132 pathway in the brain.
Collapse
|
49
|
Lv YN, Ou-Yang AJ, Fu LS. MicroRNA-27a Negatively Modulates the Inflammatory Response in Lipopolysaccharide-Stimulated Microglia by Targeting TLR4 and IRAK4. Cell Mol Neurobiol 2017; 37:195-210. [PMID: 26971344 PMCID: PMC11482108 DOI: 10.1007/s10571-016-0361-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
Abstract
microRNA, a family of small non-coding RNA, plays significant roles in regulating gene expression, mainly via binding to the 3'-untranslated region of target genes. Although the role of miRNA in regulating neuroinflammation via the innate immune pathway has been studied, its role in the production of inflammatory mediators during microglial activation is poorly understood. In this study, we investigated the effect of miR-27a on lipopolysaccharide (LPS)-induced microglial inflammation. miR-27a expression was found to be rapidly decreased in microglia by real-time polymerase chain reaction (real-time PCR) after LPS stimulation. Over-expression of miR-27a significantly decreased the production of inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), whereas knockdown of miR-27a increased the expression of these inflammatory factors. We also demonstrated by loss- and gain-of-function studies that miR-27a directly suppressed the expression of toll-like receptor 4 (TLR4) and interleukin-1 receptor-associated kinase 4 (IRAK4)-a pivotal adaptor kinase in the TLR4/MyD88 signaling pathway-by directly binding their 3'-UTRs: knocking down TLR4 or IRAK4 in microglia significantly decreased TLR4 or IRAK4 expression and inhibited the downstream production of inflammatory mediators. Moreover, the inflammatory cytokines IL-6 and IL-1β were regulated by IRAK4, whereas TNF-α and NO were more dependent on TLR4 activation. Thus, miR-27a might regulate the LPS-induced production of inflammatory cytokines in microglia independently of TLR4 and IRAK4. Taken together, our results suggest that miR-27a is associated with microglial activation and the inflammatory response.
Collapse
Affiliation(s)
- Yan-Ni Lv
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, Yongwai Street 17, Nanchang, 330006, People's Republic of China.
| | - Ai-Jun Ou-Yang
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, Yongwai Street 17, Nanchang, 330006, People's Republic of China
| | - Long-Sheng Fu
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, Yongwai Street 17, Nanchang, 330006, People's Republic of China
| |
Collapse
|
50
|
Intranasal Delivery of miR-146a Mimics Delayed Seizure Onset in the Lithium-Pilocarpine Mouse Model. Mediators Inflamm 2017; 2017:6512620. [PMID: 28242958 PMCID: PMC5294386 DOI: 10.1155/2017/6512620] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/07/2016] [Accepted: 12/25/2016] [Indexed: 11/17/2022] Open
Abstract
Unveiling the key mechanism of temporal lobe epilepsy (TLE) for the development of novel treatments is of increasing interest, and anti-inflammatory miR-146a is now considered a promising molecular target for TLE. In the current study, a C57BL/6 TLE mouse model was established using the lithium-pilocarpine protocol. The seizure degree was evaluated according to the Racine scale, and level 5 was considered the threshold for generalized convulsions. Animals were sacrificed to analyze the hippocampus at three time points (2 h and 4 and 8 weeks after pilocarpine administration to evaluate the acute, latent, and chronic phases, resp.). After intranasal delivery of miR-146a mimics (30 min before pilocarpine injection), the percent of animals with no induced seizures increased by 6.7%, the latency to generalized convulsions was extended, and seizure severity was reduced. Additionally, hippocampal damage was alleviated. While the relative miR-146a levels significantly increased, the expression of its target mRNAs (IRAK-1 and TRAF-6) and typical inflammatory modulators (NF-κB, TNF-α, IL-1β, and IL-6) decreased, supporting an anti-inflammatory role of miR-146a via the TLR pathway. This study is the first to demonstrate that intranasal delivery of miR-146a mimics can improve seizure onset and hippocampal damage in the acute phase of lithium-pilocarpine-induced seizures, which provides inflammation-based clues for the development of novel TLE treatments.
Collapse
|