1
|
Clain J, Couret D, Bringart M, Meilhac O, Lefebvre d’Hellencourt C, Diotel N. Effect of metabolic disorders on reactive gliosis and glial scarring at the early subacute phase of stroke in a mouse model of diabetes and obesity. IBRO Neurosci Rep 2025; 18:16-30. [PMID: 39816479 PMCID: PMC11733059 DOI: 10.1016/j.ibneur.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
It is well recognized that type II Diabetes (T2D) and overweight/obesity are established risk factors for stroke, worsening also their consequences. However, the underlying mechanisms by which these disorders aggravate outcomes are not yet clear limiting the therapeutic opportunities. To fill this gap, we characterized, for the first time, the effects of T2D and obesity on the brain repair mechanisms occurring 7 days after stroke, notably glial scarring. In the present study, by performing a 30-minute middle cerebral artery occlusion (MCAO) on db/db (obese diabetics mice) and db/+ (controls) mice, we demonstrated that obese and diabetic mice displayed larger lesions (i.e. increased infarct volume, ischemic core, apoptotic cell number) and worsened neurological outcomes compared to their control littermates. We then investigated the formation of the glial scar in control and db/db mice 7 days post-stroke. Our observations argue in favor of a stronger and more persistent activation of astrocytes and microglia in db/db mice. Furthermore, an increased deposition of extracellular matrix (ECM) was observed in db/db vs control mice (i.e. chondroitin sulfate proteoglycan and collagen type IV). Consequently, we demonstrated for the first time that the db/db status is associated with increased astrocytic and microglial activation 7 days after stroke and resulted in higher deposition of ECM within the damaged area. Interestingly, the injury-induced neurogenesis appeared stronger in db/db as shown by the labeling of migrating neuroblast. This increase appeared correlated to the larger size of lesion. It nevertheless raises the question of the functional integration of the new neurons in db/db mice given the observed dense ECM, known to be repulsive for neuronal migration. Carefully limiting glial scar formation after stroke represents a promising area of research for reducing neuronal loss and limiting disability in diabetic/obese patients.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
- CHU de La Réunion, Saint-Pierre 97410, France
| | - Matthieu Bringart
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
- CHU de La Réunion, Saint-Pierre 97410, France
| | - Christian Lefebvre d’Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| |
Collapse
|
2
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
3
|
Chen J, Sanchez-Iranzo H, Diotel N, Rastegar S. Comparative insight into the regenerative mechanisms of the adult brain in zebrafish and mouse: highlighting the importance of the immune system and inflammation in successful regeneration. FEBS J 2024; 291:4193-4205. [PMID: 39108082 DOI: 10.1111/febs.17231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024]
Abstract
Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.
Collapse
Affiliation(s)
- Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Hector Sanchez-Iranzo
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
4
|
Ayten M, Straub T, Kaplan L, Hauck SM, Grosche A, Koch SF. CD44 signaling in Müller cells impacts photoreceptor function and survival in healthy and diseased retinas. J Neuroinflammation 2024; 21:190. [PMID: 39095775 PMCID: PMC11297696 DOI: 10.1186/s12974-024-03175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Retinitis pigmentosa (RP), an inherited retinal disease, affects 1,5 million people worldwide. The initial mutation-driven photoreceptor degeneration leads to chronic inflammation, characterized by Müller cell activation and upregulation of CD44. CD44 is a cell surface transmembrane glycoprotein and the primary receptor for hyaluronic acid. It is involved in many pathological processes, but little is known about CD44's retinal functions. CD44 expression is also increased in Müller cells from our Pde6bSTOP/STOP RP mouse model. To gain a more detailed understanding of CD44's role in healthy and diseased retinas, we analyzed Cd44-/- and Cd44-/-Pde6bSTOP/STOP mice, respectively. The loss of CD44 led to enhanced photoreceptor degeneration, reduced retinal function, and increased inflammatory response. To understand the underlying mechanism, we performed proteomic analysis on isolated Müller cells from Cd44-/- and Cd44-/-Pde6bSTOP/STOP retinas and identified a significant downregulation of glutamate transporter 1 (SLC1A2). This downregulation was accompanied by higher glutamate levels, suggesting impaired glutamate homeostasis. These novel findings indicate that CD44 stimulates glutamate uptake via SLC1A2 in Müller cells, which in turn, supports photoreceptor survival and function.
Collapse
Affiliation(s)
- Monika Ayten
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Susanne F Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, 81377, Germany.
| |
Collapse
|
5
|
He W, Li ZQ, Gu HY, Pan QL, Lin FX. Targeted Therapy of Spinal Cord Injury: Inhibition of Apoptosis Is a Promising Therapeutic Strategy. Mol Neurobiol 2024; 61:4222-4239. [PMID: 38066400 DOI: 10.1007/s12035-023-03814-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 07/11/2024]
Abstract
Spinal cord injury (SCI) is a serious disabling central nervous system injury that can lead to motor, sensory, and autonomic dysfunction below the injury level. SCI can be divided into primary injury and secondary injury according to pathological process. Primary injury is mostly irreversible, while secondary injury is a dynamic regulatory process. Apoptosis is an important pathological event of secondary injury and has a significant effect on the recovery of nerve function after SCI. Nerve cell death can further aggravate the microenvironment of the injured site, leading to neurological dysfunction and thus affect the clinical outcome of patients. Therefore, apoptosis plays a crucial role in the pathological progression of secondary SCI, while inhibiting apoptosis may be a promising therapeutic strategy for SCI. This review will summarize and explore the factors that lead to cell death after SCI, the influence of cross talk between signaling pathways and pathways involved in apoptosis and discuss the influence of apoptosis on SCI, and the therapeutic significance of targeting apoptosis on SCI. This review helps us to understand the role of apoptosis in secondary SCI and provides a theoretical basis for the treatment of SCI based on apoptosis.
Collapse
Affiliation(s)
- Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Zhi-Qiang Li
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
6
|
Clain J, Couret D, Bringart M, Lecadieu A, Meilhac O, Lefebvre d'Hellencourt C, Diotel N. Metabolic disorders exacerbate the formation of glial scar after stroke. Eur J Neurosci 2024; 59:3009-3029. [PMID: 38576159 DOI: 10.1111/ejn.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Matthieu Bringart
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Arnaud Lecadieu
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Christian Lefebvre d'Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| |
Collapse
|
7
|
Bao J, Zhao Z, Qin S, Cheng M, Wang Y, Li M, Jia P, Li J, Yu H. Elucidating the association of obstructive sleep apnea with brain structure and cognitive performance. BMC Psychiatry 2024; 24:338. [PMID: 38711061 PMCID: PMC11071327 DOI: 10.1186/s12888-024-05789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a pervasive, chronic sleep-related respiratory condition that causes brain structural alterations and cognitive impairments. However, the causal association of OSA with brain morphology and cognitive performance has not been determined. METHODS We conducted a two-sample bidirectional Mendelian randomization (MR) analysis to investigate the causal relationship between OSA and a range of neurocognitive characteristics, including brain cortical structure, brain subcortical structure, brain structural change across the lifespan, and cognitive performance. Summary-level GWAS data for OSA from the FinnGen consortium was used to identify genetically predicted OSA. Data regarding neurocognitive characteristics were obtained from published meta-analysis studies. Linkage disequilibrium score regression analysis was employed to reveal genetic correlations between OSA and related traits. RESULTS Our MR study provided evidence that OSA was found to significantly increase the volume of the hippocampus (IVW β (95% CI) = 158.997 (76.768 to 241.227), P = 1.51e-04), with no heterogeneity and pleiotropy detected. Nominally causal effects of OSA on brain structures, such as the thickness of the temporal pole with or without global weighted, amygdala structure change, and cerebellum white matter change covering lifespan, were observed. Bidirectional causal links were also detected between brain cortical structure, brain subcortical, cognitive performance, and OSA risk. LDSC regression analysis showed no significant correlation between OSA and hippocampus volume. CONCLUSIONS Overall, we observed a positive association between genetically predicted OSA and hippocampus volume. These findings may provide new insights into the bidirectional links between OSA and neurocognitive features, including brain morphology and cognitive performance.
Collapse
Affiliation(s)
- Jiahao Bao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Zhiyang Zhao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Shanmei Qin
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengjia Cheng
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Yiming Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Meng Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Pingping Jia
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA.
| | - Hongbo Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China.
| |
Collapse
|
8
|
Fan Y, Ma J, Yang D, Li X, Liang K, She Z, Qi X, Shi X, Gu Q, Zheng J, Li D. Clinical findings of hyperechoic substantia nigra in patients with Parkinson's disease. Eur J Neurosci 2024; 59:2702-2714. [PMID: 38469656 DOI: 10.1111/ejn.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
This study aims to analyse hyperechoic substantia nigra (HSN) characteristics and the correlation of HSN with clinical features and blood biomarkers in patients with Parkinson's disease (PD). Transcranial sonography (TCS) evaluations of the substantia nigra (SN) were performed in 40 healthy controls and 71 patients with PD, including patients with SN hyperechogenicity (SN+) and those with normal SN echogenicity (SN-). Evaluation of motor and non-motor symptoms was assessed by a series of rating scales. The uricase method was used to determine serum uric acid (UA) levels, and enzyme-linked immunosorbent assay (ELISA) was used to measure plasma interleukin (IL)-1β levels. TCS showed 92.50% specificity and 61.97% sensitivity in differentiating PD patients from controls. The area of SN+ contralateral to the side of initial motor symptoms (SNcontra) was larger than that ipsilateral to the side of initial motor symptoms (SNipsi). The PDSN+ group had lower Argentine Hyposmia Rating Scale (AHRS) scores and UA levels than the PDSN- group. Binary logistic regression analysis revealed that AHRS scores and UA levels could be independent predictors for HSN. The larger SN echogenic area (SNL) sizes positively correlated with plasma IL-1β levels in PD patients with SN+. The present study provides further evidence of the potential of SN echogenicity as an imaging biomarker for PD diagnosis. PD patients with HSN have more severe non-motor symptoms of hyposmia. HSN in PD patients is related to the mechanism of abnormal iron metabolism and microglial activation.
Collapse
Affiliation(s)
- Yongyan Fan
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jianjun Ma
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Dawei Yang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaohuan Li
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Keke Liang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Zonghan She
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xuelin Qi
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoxue Shi
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Qi Gu
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Jinhua Zheng
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Dongsheng Li
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Salman M, Stayton AS, Parveen K, Parveen A, Puchowicz MA, Parvez S, Bajwa A, Ishrat T. Intranasal Delivery of Mitochondria Attenuates Brain Injury by AMPK and SIRT1/PGC-1α Pathways in a Murine Model of Photothrombotic Stroke. Mol Neurobiol 2024; 61:2822-2838. [PMID: 37946007 DOI: 10.1007/s12035-023-03739-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Ischemic stroke is one of the major causes of morbidity and mortality worldwide. Mitochondria play a vital role in the pathological processes of cerebral ischemic injury, but its transplantation and underlying mechanisms remain unclear. In the present study, we examined the effects of mitochondrial therapy on the modulation of AMPK and SIRT1/PGC-1α signaling pathway, oxidative stress, and NLRP3 inflammasome activation after photothrombotic ischemic stroke (pt-MCAO). The adult male mice were subjected to the pt-MCAO in which the proximal-middle cerebral artery was exposed with a 532-nm laser beam for 4 min by retro-orbital injection of a photosensitive dye (Rose Bengal: 15 mg/kg) before the laser light exposure and isolated mitochondria (100 μg protein) were administered intranasally at 30 min, 24 h, and 48 h following post-stroke. After 72 h, mice were tested for neurobehavioral outcomes and euthanized for infarct volume, brain edema, and molecular analysis. First, we found that mitochondria therapy significantly decreased brain infarct volume and brain edema, improved neurological dysfunction, attenuated ischemic stroke-induced oxidative stress, and neuroinflammation. Second, mitochondria treatment inhibited NLRP3 inflammasome activation. Finally, mitochondria therapy accelerated p-AMPKα(Thr172) and PGC-1α expression and resorted SIRT1 protein expression levels in pt-MCAO mice. In conclusion, our results demonstrate that mitochondria therapy exerts neuroprotective effects by inhibiting oxidative damage and inflammation, mainly dependent on the heightening activation of the AMPK and SIRT1/PGC-1α signaling pathway. Thus, intranasal delivery of mitochondria might be considered a new therapeutic strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-228, Memphis, TN, 38163, USA.
| | - Amanda S Stayton
- Transplant Research Institute, College of Medicine, The University of Tennessee Health Science Center, 71 S Manassas St, Room 418H, Memphis, TN, 38103, USA
| | - Kehkashan Parveen
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Arshi Parveen
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Michelle A Puchowicz
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Amandeep Bajwa
- Transplant Research Institute, College of Medicine, The University of Tennessee Health Science Center, 71 S Manassas St, Room 418H, Memphis, TN, 38103, USA.
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.
- Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
10
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
11
|
Yang Y, Yan M, Liu X, Li S, Lin G. Improve the diagnosis of idiopathic normal pressure hydrocephalus by combining abnormal cortical thickness and ventricular morphometry. Front Aging Neurosci 2024; 16:1338755. [PMID: 38486858 PMCID: PMC10937576 DOI: 10.3389/fnagi.2024.1338755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Background The primary imaging markers for idiopathic Normal Pressure Hydrocephalus (iNPH) emphasize morphological measurements within the ventricular system, with no attention given to alterations in brain parenchyma. This study aimed to investigate the potential effectiveness of combining ventricular morphometry and cortical structural measurements as diagnostic biomarkers for iNPH. Methods A total of 57 iNPH patients and 55 age-matched healthy controls (HC) were recruited in this study. Firstly, manual measurements of ventricular morphology, including Evans Index (EI), z-Evans Index (z-EI), Cella Media Width (CMW), Callosal Angle (CA), and Callosal Height (CH), were conducted based on MRI scans. Cortical thickness measurements were obtained, and statistical analyses were performed using surface-based morphometric analysis. Secondly, three distinct models were developed using machine learning algorithms, each based on a different input feature: a ventricular morphology model (LVM), a cortical thickness model (CT), and a fusion model (All) incorporating both features. Model performances were assessed using 10-fold cross validation and tested on an independent dataset. Model interpretation utilized Shapley Additive Interpretation (SHAP), providing a visualization of the contribution of each variable in the predictive model. Finally, Spearman correlation coefficients were calculated to evaluate the relationship between imaging biomarkers and clinical symptoms. Results iNPH patients exhibited notable differences in cortical thickness compared to HC. This included reduced thickness in the frontal, temporal, and cingulate cortices, along with increased thickness in the supracentral gyrus. The diagnostic performance of the fusion model (All) for iNPH surpassed that of the single-feature models, achieving an average accuracy of 90.43%, sensitivity of 90.00%, specificity of 90.91%, and Matthews correlation coefficient (MCC) of 81.03%. This improvement in accuracy (6.09%), sensitivity (11.67%), and MCC (11.25%) compared to the LVM strategy was significant. Shap analysis revealed the crucial role of cortical thickness in the right isthmus cingulate cortex, emerging as the most influential factor in distinguishing iNPH from HC. Additionally, significant correlations were observed between the typical triad symptoms of iNPH patients and cortical structural alterations. Conclusion This study emphasizes the significant role of cortical structure changes in the diagnosis of iNPH, providing a novel insights for assisting clinicians in improving the identification and detection of iNPH.
Collapse
Affiliation(s)
| | | | | | - Shihong Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
12
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
13
|
Tsui CT, Mirkiani S, Roszko DA, Churchward MA, Mushahwar VK, Todd KG. In vitro biocompatibility evaluation of functional electrically stimulating microelectrodes on primary glia. Front Bioeng Biotechnol 2024; 12:1351087. [PMID: 38314352 PMCID: PMC10834782 DOI: 10.3389/fbioe.2024.1351087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Neural interfacing devices interact with the central nervous system to alleviate functional deficits arising from disease or injury. This often entails the use of invasive microelectrode implants that elicit inflammatory responses from glial cells and leads to loss of device function. Previous work focused on improving implant biocompatibility by modifying electrode composition; here, we investigated the direct effects of electrical stimulation on glial cells at the electrode interface. A high-throughput in vitro system that assesses primary glial cell response to biphasic stimulation waveforms at 0 mA, 0.15 mA, and 1.5 mA was developed and optimized. Primary mixed glial cell cultures were generated from heterozygous CX3CR-1+/EGFP mice, electrically stimulated for 4 h/day over 3 days using 75 μm platinum-iridium microelectrodes, and biomarker immunofluorescence was measured. Electrodes were then imaged on a scanning electron microscope to assess sustained electrode damage. Fluorescence and electron microscopy analyses suggest varying degrees of localized responses for each biomarker assayed (Hoescht, EGFP, GFAP, and IL-1β), a result that expands on comparable in vivo models. This system allows for the comparison of a breadth of electrical stimulation parameters, and opens another avenue through which neural interfacing device developers can improve biocompatibility and longevity of electrodes in tissue.
Collapse
Affiliation(s)
- Christopher T. Tsui
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Soroush Mirkiani
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - David A. Roszko
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Matthew A. Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
- Department of Biological and Environmental Sciences, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Vivian K. Mushahwar
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kathryn G. Todd
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Wang S, Cheng L. The role of apoptosis in spinal cord injury: a bibliometric analysis from 1994 to 2023. Front Cell Neurosci 2024; 17:1334092. [PMID: 38293650 PMCID: PMC10825042 DOI: 10.3389/fncel.2023.1334092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Background Apoptosis after spinal cord injury (SCI) plays a pivotal role in the secondary injury mechanisms, which cause the ultimate neurologic insults. A better understanding of the molecular and cellular basis of apoptosis in SCI allows for improved glial and neuronal survival via the administrations of anti-apoptotic biomarkers. The knowledge structure, development trends, and research hotspots of apoptosis and SCI have not yet been systematically investigated. Methods Articles and reviews on apoptosis and SCI, published from 1st January 1994 to 1st Oct 2023, were retrieved from the Web of Science™. Bibliometrix in R was used to evaluate annual publications, countries, affiliations, authors, sources, documents, key words, and hot topics. Results A total of 3,359 publications in accordance with the criterions were obtained, which exhibited an ascending trend in annual publications. The most productive countries were the USA and China. Journal of Neurotrauma was the most impactive journal; Wenzhou Medical University was the most prolific affiliation; Cuzzocrea S was the most productive and influential author. "Apoptosis," "spinal-cord-injury," "expression," "activation," and "functional recovery" were the most frequent key words. Additionally, "transplantation," "mesenchymal stemness-cells," "therapies," "activation," "regeneration," "repair," "autophagy," "exosomes," "nlrp3 inflammasome," "neuroinflammation," and "knockdown" were the latest emerging key words, which may inform the hottest themes. Conclusions Apoptosis after SCI may cause the ultimate neurological damages. Development of novel treatments for secondary SCI mainly depends on a better understanding of apoptosis-related mechanisms in molecular and cellular levels. Such therapeutic interventions involve the application of anti-apoptotic agents, free radical scavengers, as well as anti-inflammatory drugs, which can be targeted to inhibit core events in cellular and molecular injury cascades pathway.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Zhang R, Wang J, Deng Q, Xiao X, Zeng X, Lai B, Li G, Ma Y, Ruan J, Han I, Zeng YS, Ding Y. Mesenchymal Stem Cells Combined With Electroacupuncture Treatment Regulate the Subpopulation of Macrophages and Astrocytes to Facilitate Axonal Regeneration in Transected Spinal Cord. Neurospine 2023; 20:1358-1379. [PMID: 38171303 PMCID: PMC10762392 DOI: 10.14245/ns.2346824.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Herein, we investigated whether mesenchymal stem cells (MSCs) transplantation combined with electroacupuncture (EA) treatment could decrease the proportion of proinflammatory microglia/macrophages and neurotoxic A1 reactive astrocytes and inhibit glial scar formation to enhance axonal regeneration after spinal cord injury (SCI). METHODS Adult rats were divided into 5 groups after complete transection of the spinal cord at the T10 level: a control group, a nonacupoint EA (NA-EA) group, an EA group, an MSC group, and an MSCs+EA group. Immunofluorescence labeling, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blots were performed. RESULTS The results showed that MSCs+EA treatment reduced the proportion of proinflammatory M1 subtype microglia/macrophages, but increased the differentiation of anti-inflammatory M2 phenotype cells, thereby suppressing the mRNA and protein expression of proinflammatory cytokines (tumor necrosis factor-α and IL-1β) and increasing the expression of an anti-inflammatory cytokine (interleukin [IL]-10) on days 7 and 14 after SCI. The changes in expression correlated with the attenuated neurotoxic A1 reactive astrocytes and glial scar, which in turn facilitated the axonal regeneration of the injured spinal cord. In vitro, the proinflammatory cytokines increased the level of proliferation of astrocytes and increased the expression levels of C3, glial fibrillary acidic protein, and chondroitin sulfate proteoglycan. These effects were blocked by administering inhibitors of ErbB1 and signal transducer and activator of transcription 3 (STAT3) (AG1478 and AG490) and IL-10. CONCLUSION These findings showed that MSCs+EA treatment synergistically regulated the microglia/macrophage subpopulation to reduce inflammation, the formation of neurotoxic A1 astrocytes, and glial scars. This was achieved by downregulating the ErbB1-STAT3 signal pathway, thereby providing a favorable microenvironment conducive to axonal regeneration after SCI.
Collapse
Affiliation(s)
- Rongyi Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pain Management, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junhua Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qingwen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xingru Xiao
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Biqin Lai
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Yuanhuan Ma
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangzhou Institute of Clinical Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jingwen Ruan
- Department of Acupuncture, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Inbo Han
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
16
|
Kayabaş M, Şahin L, Makav M, Alwazeer D, Aras L, Yiğit S, LeBaron TW. Protective Effect of Hydrogen-Rich Saline on Spinal Cord Damage in Rats. Pharmaceuticals (Basel) 2023; 16:ph16040527. [PMID: 37111284 PMCID: PMC10143771 DOI: 10.3390/ph16040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The anti-inflammatory and anti-apoptotic effects of molecular hydrogen, delivered as hydrogen-rich saline (HRS), on spinal cord injury was investigated. Four-month-old male Sprague Dawley rats (n = 24) were classified into four groups: (1) control—laminectomy only at T7-T10; (2) spinal injury—dura left intact, Tator and Rivlin clip compression model applied to the spinal cord for 1 min, no treatment given; (3) HRS group—applied intraperitoneally (i.p.) for seven days; and (4) spinal injury—HRS administered i.p. for seven days after laminectomy at T7–T10 level, leaving the dura intact and applying the Tator and Rivlin clip compression model to the spinal cord for 1 min. Levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured in blood taken at day seven from all groups, and hematoxylin–eosin (H & E) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) were used to stain the tissue samples. IL-6 and TNF-α levels were significantly lower in the group treated with HRS following the spinal cord injury compared to the group whose spinal cord was damaged. A decrease in apoptosis was also observed. The anti-inflammatory and anti-apoptotic effect of IL-6 may be a clinically useful adjuvant therapy after spinal cord injury.
Collapse
Affiliation(s)
- Murat Kayabaş
- Department of Neurosurgery, Faculty of Medicine, Kafkas University, 36100 Kars, Türkiye
| | - Levent Şahin
- Department of Emergency Medicine, Faculty of Medicine, Kafkas University, 36100 Kars, Türkiye
| | - Mustafa Makav
- Department of Physiology, Faculty of Veterinary, Kafkas University, 36040 Kars, Türkiye
| | - Duried Alwazeer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Iğdır University, 76000 Iğdır, Türkiye
| | - Levent Aras
- Department of Neurosurgery, Faculty of Medicine, Kafkas University, 36100 Kars, Türkiye
| | - Serdar Yiğit
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, 36100 Kars, Türkiye
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
| |
Collapse
|
17
|
Doust YV, Bindoff A, Holloway OG, Wilson R, King AE, Ziebell JM. Temporal changes in the microglial proteome of male and female mice after a diffuse brain injury using label-free quantitative proteomics. Glia 2023; 71:880-903. [PMID: 36468604 PMCID: PMC10952308 DOI: 10.1002/glia.24313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) triggers neuroinflammatory cascades mediated by microglia, which promotes tissue repair in the short-term. These cascades may exacerbate TBI-induced tissue damage and symptoms in the months to years post-injury. However, the progression of the microglial function across time post-injury and whether this differs between biological sexes is not well understood. In this study, we examined the microglial proteome at 3-, 7-, or 28-days after a midline fluid percussion injury (mFPI) in male and female mice using label-free quantitative proteomics. Data are available via ProteomeXchange with identifier PXD033628. We identified a reduction in microglial proteins involved with clearance of neuronal debris via phagocytosis at 3- and 7-days post-injury. At 28 days post-injury, pro-inflammatory proteins were decreased and anti-inflammatory proteins were increased in microglia. These results indicate a reduction in microglial clearance of neuronal debris in the days post-injury with a shift to anti-inflammatory function by 28 days following TBI. The changes in the microglial proteome that occurred across time post-injury did not differ between biological sexes. However, we did identify an increase in microglial proteins related to pro-inflammation and phagocytosis as well as insulin and estrogen signaling in males compared with female mice that occurred with or without a brain injury. Although the microglial response was similar between males and females up to 28 days following TBI, biological sex differences in the microglial proteome, regardless of TBI, has implications for the efficacy of treatment strategies targeting the microglial response post-injury.
Collapse
Affiliation(s)
- Yasmine V. Doust
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Olivia G. Holloway
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Richard Wilson
- Central Science Laboratory (CSL)University of TasmaniaHobartTasmaniaAustralia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Jenna M. Ziebell
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
18
|
The Circadian Clock of Polarized Microglia and Its Interaction with Mouse Brain Oscillators. Cell Mol Neurobiol 2023; 43:1319-1333. [PMID: 35821305 DOI: 10.1007/s10571-022-01252-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
The activity of the immune system is controlled by circadian clocks present in different immune cells. The brain-resident subtype of immune cells, microglia, exhibits a wide range of functional phenotypes depending on the signaling molecules in their microenvironment. The exact role of microglia in the hypothalamic suprachiasmatic nuclei (SCN), the central circadian clock, has not been known. Therefore, the aim of this study was to determine (1) whether microenvironment-induced changes in microglial polarization affect circadian clocks in these cells and (2) whether the presence of microglia contributes to SCN clock function. Microglial and SCN clocks were monitored using PER2-driven bioluminescence rhythms at the tissue and single-cell levels. We found that polarization of resting microglia to a pro-inflammatory (M1) or anti-inflammatory (M2) state significantly altered the period and amplitude of their molecular circadian clock; importantly, the parameters changed plastically with the repolarization of microglia. This effect was reflected in specific modulations of the expression profiles of individual clock genes in the polarized microglia. Depletion of microglia significantly reduced the amplitude of the SCN clock, and co-cultivation of the SCN explants with M2-polarized microglia specifically improved the amplitude of the SCN clock. These results demonstrate that the presence of M2-polarized microglia has beneficial effects on SCN clock function. Our results provide new insight into the mutual interaction between immune and circadian systems in the brain.
Collapse
|
19
|
Diez-Cirarda M, Cabrera-Zubizarreta A, Murueta-Goyena A, Strafella AP, Del Pino R, Acera M, Lucas-Jiménez O, Ibarretxe-Bilbao N, Tijero B, Gómez-Esteban JC, Gabilondo I. Multimodal visual system analysis as a biomarker of visual hallucinations in Parkinson's disease. J Neurol 2023; 270:519-529. [PMID: 36348068 DOI: 10.1007/s00415-022-11427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Visual hallucinations (VH) are present in up to 75% of Parkinson's disease (PD) patients. However, their neural bases and participation of the visual system in VH are not well-understood in PD. Seventy-four participants, 12 PD with VH (PDVH), 35 PD without VH (PDnoVH) and 27 controls underwent a battery of primary visual function and visual cognition tests, retinal optical coherence tomography and structural and resting-state functional brain MRI. We quantified cortical thickness with Freesurfer and functional connectivity (FC) of Visual (VIS), Fronto-Parietal (FP), Ventral Attention (VAN) and Dorsal Attention (DAN) networks with CONN toolbox. Group comparisons were performed with MANCOVA. Area Under the Curve (AUC) was computed to assess the ability of visual variables to differentiate PDVH and PDnoVH. There were no significant PDVH vs PDnoVH differences in disease duration, motor manifestations, general cognition or dopamine agonist therapy (DA) use. Compared to PDnoVH and HC, and regardless of DA use, PDVH showed significantly reduced contrast sensitivity, visuoperceptive and visuospatial abilities, increased retina photoreceptor layer thickness, reduced cortical thickness mostly in right visual associative areas, decreased between-network VIS-VAN and VAN-DAN connectivity and increased within-network DAN connectivity. The combination of clinical and imaging variables that best discriminated PDVH and PDnoVH (highest AUC), where within-network DAN FC, photoreceptor layer thickness and cube analysis test from Visual Object and Space Perception Battery (accuracy of 81.8%). Compared to PDnoVH, PDVH have specific functional and structural abnormalities within the visual system, which can be quantified non-invasively and could potentially constitute biomarkers for VH in PD.
Collapse
Affiliation(s)
- Maria Diez-Cirarda
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain.
| | | | - Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Antonio P Strafella
- Krembil Brain Institute, UHN & Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Canada
| | - Rocio Del Pino
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain
| | - Marian Acera
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain
| | - Olaia Lucas-Jiménez
- Department of Psychology, Faculty of Health Sciences, Univesity of Deusto, Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Psychology, Faculty of Health Sciences, Univesity of Deusto, Bilbao, Spain
| | - Beatriz Tijero
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain
- Department of Neurology, Cruces University Hospital, Barakaldo, Spain
| | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neurology, Cruces University Hospital, Barakaldo, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain.
- Department of Neurology, Cruces University Hospital, Barakaldo, Spain.
- IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
20
|
Daglas M, Truong PH, Miles LQ, Juan SMA, Rao SS, Adlard PA. Deferiprone attenuates neuropathology and improves outcome following traumatic brain injury. Br J Pharmacol 2023; 180:214-234. [PMID: 36102035 DOI: 10.1111/bph.15950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity in young adults. The role of iron in potentiating neurodegeneration following TBI has gained recent interest as iron deposition has been detected in the injured brain in the weeks to months post-TBI, in both the preclinical and clinical setting. A failure in iron homeostasis can lead to oxidative stress, inflammation and excitotoxicity; and whether this is a cause or consequence of the long-term effects of TBI remains unknown. EXPERIMENTAL APPROACH We investigated the role of iron and the effect of therapeutic intervention using a brain-permeable iron chelator, deferiprone, in a controlled cortical impact mouse model of TBI. An extensive assessment of cognitive, motor and anxiety/depressive outcome measures were examined, and neuropathological and biochemical changes, over a 3-month period post-TBI. KEY RESULTS Lesion volume was significantly reduced at 3 months, which was preceded by a reduction in astrogliosis, microglia/macrophages and preservation of neurons in the injured brain at 2 weeks and/or 1 month post-TBI in mice receiving oral deferiprone. Deferiprone treatment showed significant improvements in neurological severity scores, locomotor/gait performance and cognitive function, and attenuated anxiety-like symptoms post-TBI. Deferiprone reduced iron levels, lipid peroxidation/oxidative stress and altered expression of neurotrophins in the injured brain over this period. CONCLUSION AND IMPLICATIONS Our findings support a detrimental role of iron in the injured brain and suggest that deferiprone (or similar iron chelators) may be promising therapeutic approaches to improve survival, functional outcomes and quality of life following TBI.
Collapse
Affiliation(s)
- Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Phan H Truong
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Linh Q Miles
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Shalini S Rao
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
21
|
Kang K, Jeong SY, Park K, Hahm MH, Kim J, Lee H, Kim C, Yun E, Han J, Yoon U, Lee S. Distinct cerebral cortical perfusion patterns in idiopathic normal-pressure hydrocephalus. Hum Brain Mapp 2022; 44:269-279. [PMID: 36102811 PMCID: PMC9783416 DOI: 10.1002/hbm.25974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
The aims of the study are to evaluate idiopathic normal-pressure hydrocephalus (INPH)-related cerebral blood flow (CBF) abnormalities and to investigate their relation to cortical thickness in INPH patients. We investigated cortical CBF utilizing surface-based early-phase 18 F-florbetaben (E-FBB) PET analysis in two groups: INPH patients and healthy controls. All 39 INPH patients and 20 healthy controls were imaged with MRI, including three-dimensional volumetric images, for automated surface-based cortical thickness analysis across the entire brain. A subgroup with 37 participants (22 INPH patients and 15 healthy controls) that also underwent 18 F-fluorodeoxyglucose (FDG) PET imaging was further analyzed. Compared with age- and gender-matched healthy controls, INPH patients showed statistically significant hyperperfusion in the high convexity of the frontal and parietal cortical regions. Importantly, within the INPH group, increased perfusion correlated with cortical thickening in these regions. Additionally, significant hypoperfusion mainly in the ventrolateral frontal cortex, supramarginal gyrus, and temporal cortical regions was observed in the INPH group relative to the control group. However, this hypoperfusion was not associated with cortical thinning. A subgroup analysis of participants that also underwent FDG PET imaging showed that increased (or decreased) cerebral perfusion was associated with increased (or decreased) glucose metabolism in INPH. A distinctive regional relationship between cerebral cortical perfusion and cortical thickness was shown in INPH patients. Our findings suggest distinct pathophysiologic mechanisms of hyperperfusion and hypoperfusion in INPH patients.
Collapse
Affiliation(s)
- Kyunghun Kang
- Department of Neurology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Ki‐Su Park
- Department of Neurosurgery, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Myong Hun Hahm
- Department of Radiology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Jaeil Kim
- School of Computer Science and EngineeringKyungpook National UniversityDaeguSouth Korea
| | - Ho‐Won Lee
- Department of Neurology, School of MedicineKyungpook National UniversityDaeguSouth Korea,Brain Science and Engineering InstituteKyungpook National UniversityDaeguSouth Korea
| | - Chi‐Hun Kim
- Department of NeurologyHallym University Sacred Heart HospitalAnyangSouth Korea
| | - Eunkyeong Yun
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Jaehwan Han
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Uicheul Yoon
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Sang‐Woo Lee
- Department of Nuclear Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
22
|
Li F, Wang H, Chen H, Guo J, Dang X, Ru Y, Wang H. Mechanism of Ferroptosis and Its Role in Spinal Cord Injury. Front Neurol 2022; 13:926780. [PMID: 35756929 PMCID: PMC9218271 DOI: 10.3389/fneur.2022.926780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a non-necrotic form of regulated cell death (RCD) that is primarily characterized by iron-dependent membrane lipid peroxidation and is regulated by cysteine transport, glutathione synthesis, and glutathione peroxidase 4 function as well as other proteins including ferroptosis suppressor protein 1. It has been found that ferroptosis played an important role in many diseases, such as neurodegenerative diseases and ischemia-reperfusion injury. Spinal cord injury (SCI), especially traumatic SCI, is an urgent problem worldwide due to its high morbidity and mortality, as well as the destruction of functions of the human body. Various RCDs, including ferroptosis, are found in SCI. Different from necrosis, since RCD is a form of cell death regulated by various molecular mechanisms in cells, the study of the role played by RCD in SCI will contribute to a deeper understanding of the pathophysiological process, as well as the treatment and functional recovery. The present review mainly introduces the main mechanism of ferroptosis and its role in SCI, so as to provide a new idea for further exploration.
Collapse
Affiliation(s)
- Fei Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haifan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Chen
- Basic Medical Science Academy, The Air Force Medical University, Xi'an, China
| | - Jianing Guo
- Basic Medical Science Academy, The Air Force Medical University, Xi'an, China
| | - Xiaoqian Dang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Ru
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Basic Medical Science Academy, The Air Force Medical University, Xi'an, China
| | - Haoyu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Targeted BRD4 protein degradation by dBET1 ameliorates acute ischemic brain injury and improves functional outcomes associated with reduced neuroinflammation and oxidative stress and preservation of blood-brain barrier integrity. J Neuroinflammation 2022; 19:168. [PMID: 35761277 PMCID: PMC9237998 DOI: 10.1186/s12974-022-02533-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal domain (BET) protein family, plays a crucial role in regulating inflammation and oxidative stress that are tightly related to stroke development and progression. Consequently, BRD4 blockade has attracted increasing interest for associated neurological diseases, including stroke. dBET1 is a novel and effective BRD4 degrader through the proteolysis-targeting chimera (PROTAC) strategy. We hypothesized that dBET1 protects against brain damage and neurological deficits in a transient focal ischemic stroke mouse model by reducing inflammation and oxidative stress and preserving the blood–brain barrier (BBB) integrity. Post-ischemic dBET1 treatment starting 4 h after stroke onset significantly ameliorated severe neurological deficits and reduced infarct volume 48 h after stroke. dBET1 markedly reduced inflammation and oxidative stress after stroke, indicated by multiple pro-inflammatory cytokines and chemokines including IL-1β, IL-6, TNF-α, CCL2, CXCL1 and CXCL10, and oxidative damage markers 4-hydroxynonenal (4-HNE) and gp91phox and antioxidative proteins SOD2 and GPx1. Meanwhile, stroke-induced BBB disruption, increased MMP-9 levels, neutrophil infiltration, and increased ICAM-1 were significantly attenuated by dBET1 treatment. Post-ischemic dBET1 administration also attenuated ischemia-induced reactive gliosis in microglia and astrocytes. Overall, these findings demonstrate that BRD4 degradation by dBET1 improves acute stroke outcomes, which is associated with reduced neuroinflammation and oxidative stress and preservation of BBB integrity. This study identifies a novel role of BET proteins in the mechanisms resulting in ischemic brain damage, which can be leveraged to develop novel therapies.
Collapse
|
24
|
Rana T, Behl T, Shamsuzzaman M, Singh S, Sharma N, Sehgal A, Alshahrani AM, Aldahish A, Chidambaram K, Dailah HG, Bhatia S, Bungau S. Exploring the role of astrocytic dysfunction and AQP4 in depression. Cell Signal 2022; 96:110359. [PMID: 35597427 DOI: 10.1016/j.cellsig.2022.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022]
Abstract
Aquaporin-4 (AQP4) is the water regulating channel found in the terminal processes of astrocytes in the brain and is implicated in regulating the astrocyte functions, whereas in neuropathologies, AQP4 performs an important role in astrocytosis and release of proinflammatory cytokines. However, several findings have revealed the modulation of the AQP4 water channel in the etiopathogenesis of various neuropsychiatric diseases. In the current article, we have summarized the recent studies and highlighted the implication of astrocytic dysfunction and AQP4 in the etiopathogenesis of depressive disorder. Most of the studies have measured the AQP4 gene or protein expression in the brain regions, particularly the locus coeruleus, choroid plexus, prefrontal cortex, and hippocampus, and found that in these brain regions, AQP4 gene expression decreased on exposure to chronic mild stress. Few studies also measured the peripheral AQP4 mRNA expression in the blood and AQP4 autoantibodies in the blood serum and revealed no change in the depressed patients in comparison with normal individuals.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Md Shamsuzzaman
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Saudi Arabia
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
25
|
Casanova Y, Negro S, Slowing K, García-García L, Fernández-Carballido A, Rahmani M, Barcia E. Micro- and Nano-Systems Developed for Tolcapone in Parkinson’s Disease. Pharmaceutics 2022; 14:pharmaceutics14051080. [PMID: 35631665 PMCID: PMC9143005 DOI: 10.3390/pharmaceutics14051080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
To date there is no cure for Parkinson’s disease (PD), a devastating neurodegenerative disorder with levodopa being the cornerstone of its treatment. In early PD, levodopa provides a smooth clinical response, but after long-term therapy many patients develop motor complications. Tolcapone (TC) is an effective adjunct in the treatment of PD but has a short elimination half-life. In our work, two new controlled delivery systems of TC consisting of biodegradable PLGA 502 (poly (D,L-lactide-co-glycolide acid) microparticles (MPs) and nanoparticles (NPs) were developed and characterized. Formulations MP-TC4 and NP-TC3 were selected for animal testing. Formulation MP-TC4, prepared with 120 mg TC and 400 mg PLGA 502, exhibited a mean encapsulation efficiency (EE) of 85.13%, and zero-order in vitro release of TC for 30 days, with around 95% of the drug released at this time. Formulation NP-TC3, prepared with 10 mg of TC and 50 mg of PLGA 502, exhibited mean EE of 56.69%, particle size of 182 nm, and controlled the release of TC for 8 days. Daily i.p. (intraperitoneal) doses of rotenone (RT, 2 mg/kg) were given to Wistar rats to induce neurodegeneration. Once established, animals received TC in saline (3 mg/kg/day) or encapsulated within formulations MP-TC4 (amount of MPs equivalent to 3 mg/kg/day TC every 14 days) and NP-TC3 (amount of NPs equivalent to 3 mg/kg/day TC every 3 days). Brain analyses of Nissl-staining, GFAP (glial fibrillary acidic protein), and TH (tyrosine hydroxylase) immunohistochemistry as well as behavioral testing (catalepsy, akinesia, swim test) showed that the best formulation was NP-TC3, which was able to revert PD-like symptoms of neurodegeneration in the animal model assayed.
Collapse
Affiliation(s)
- Yaquelyn Casanova
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (Y.C.); (S.N.); (A.F.-C.); (M.R.)
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (Y.C.); (S.N.); (A.F.-C.); (M.R.)
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Karla Slowing
- Department of Pharmacology, Pharmacognosy and Botany, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain;
| | - Luis García-García
- Brain Mapping Lab, Pluridisciplinary Research Institute, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain;
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (Y.C.); (S.N.); (A.F.-C.); (M.R.)
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mahdieh Rahmani
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (Y.C.); (S.N.); (A.F.-C.); (M.R.)
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (Y.C.); (S.N.); (A.F.-C.); (M.R.)
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941741
| |
Collapse
|
26
|
Esculetin and Fucoidan Attenuate Autophagy and Apoptosis Induced by Zinc Oxide Nanoparticles through Modulating Reactive Astrocyte and Proinflammatory Cytokines in the Rat Brain. TOXICS 2022; 10:toxics10040194. [PMID: 35448455 PMCID: PMC9025201 DOI: 10.3390/toxics10040194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022]
Abstract
We examined the protective effects of esculetin and fucoidan against the neurotoxicity of ZnO NPs in rats. Ninety rats were divided into nine groups and pre-treated with esculetin or fucoidan 1 h before ZnO NP administration on a daily basis for 2 weeks. Serum and brain homogenates were examined by enzyme-linked immunosorbent assay (ELISA), and neurons, microglia, and astrocytes in the hippocampal region were examined with immunohistochemical analysis. The serum levels of interleukin-1-beta (IL-1β), 3-nitrotyrosine (3-NT), superoxide dismutase (SOD), and 8-hydroxy-2′-deoxyguanosine (8-OHdG) were altered in the ZnO NP treatment groups. Brain IL-1β and TNF-α levels were elevated after ZnO NP administration, and these effects were inhibited by esculetin and fucoidan. SOD, 8-OHdG, and acetylcholinesterase (AChE) levels in the brain were decreased after ZnO NP administration. The brain levels of beclin-1 and caspase-3 were elevated after ZnO NP treatment, and these effects were significantly ameliorated by esculetin and fucoidan. The number of reactive astrocytes measured by counting glial fibrillary acidic protein (GFAP)-positive cells, but not microglia, increased following ZnO NP treatment, and esculetin and fucoidan ameliorated the changes. Esculetin and fucoidan may be beneficial for preventing ZnO NP-mediated autophagy and apoptosis by the modulation of reactive astrocyte and proinflammatory cytokines in the rat brain.
Collapse
|
27
|
Shi S, Chen T, Zhao M. The Crosstalk Between Neurons and Glia in Methamphetamine-Induced Neuroinflammation. Neurochem Res 2022; 47:872-884. [PMID: 34982394 DOI: 10.1007/s11064-021-03513-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/06/2023]
Abstract
Methamphetamine (METH), an illicit psycho-stimulant, is widely known as an addictive drug that may cause neurotoxic effects. Previous researches on METH abuse have mainly focused on neurotransmitters, such as dopamine and glutamate. However, there is growing evidence that neuroinflammation also plays an important role in the etiology and pathophysiology of brain dysfunction induced by METH abuse. This has cast a spotlight on the research of microglia and astrocyte, which are critical mediators of neuroimmune pathology in recent years. In the central nervous system (CNS) immunity, abnormalities of the microglia and astrocytes have been observed in METH abusers from both postmortem and preclinical studies. The bidirectional communication between neurons and glia is essential for the homeostasis and biological function of the CNS while activation of glia induces the release of cytokines and chemokines during pathological conditions, which will affect the neuron-glia interactions and lead to adverse behavioral consequences. However, the underlying mechanisms of interaction between neurons and glia in METH-induced neuroinflammation remain elusive. Notably, discovering and further understanding glial activity and functions, as well as the crosstalk between neurons and glia may help to explain the pathogenesis of METH abuse and behavioral changes in abusers. In this review, we will discuss the current understanding of the crosstalk between neurons and glia in METH-induced neuroinflammation. We also review the existing microglia-astrocyte interaction under METH exposure. We hope the present review will lead the way for more studies on the development of new therapeutic strategies for METH abuse in the near future.
Collapse
Affiliation(s)
- Sai Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
28
|
Romanelli P, Bieler L, Heimel P, Škokić S, Jakubecova D, Kreutzer C, Zaunmair P, Smolčić T, Benedetti B, Rohde E, Gimona M, Hercher D, Dobrivojević Radmilović M, Couillard-Despres S. Enhancing Functional Recovery Through Intralesional Application of Extracellular Vesicles in a Rat Model of Traumatic Spinal Cord Injury. Front Cell Neurosci 2022; 15:795008. [PMID: 35046776 PMCID: PMC8762366 DOI: 10.3389/fncel.2021.795008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
Local inflammation plays a pivotal role in the process of secondary damage after spinal cord injury. We recently reported that acute intravenous application of extracellular vesicles (EVs) secreted by human umbilical cord mesenchymal stromal cells dampens the induction of inflammatory processes following traumatic spinal cord injury. However, systemic application of EVs is associated with delayed delivery to the site of injury and the necessity for high doses to reach therapeutic levels locally. To resolve these two constraints, we injected EVs directly at the lesion site acutely after spinal cord injury. We report here that intralesional application of EVs resulted in a more robust improvement of motor recovery, assessed with the BBB score and sub-score, as compared to the intravenous delivery. Moreover, the intralesional application was more potent in reducing inflammation and scarring after spinal cord injury than intravenous administration. Hence, the development of EV-based therapy for spinal cord injury should aim at an early application of vesicles close to the lesion.
Collapse
Affiliation(s)
- Pasquale Romanelli
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Innovacell AG, Innsbruck, Austria
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dominika Jakubecova
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Christina Kreutzer
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Pia Zaunmair
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Tomislav Smolčić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Bruno Benedetti
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University, Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), Salzburg, Austria
- Research Program "Nanovesicular Therapies", Paracelsus Medical University, Salzburg, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marina Dobrivojević Radmilović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
29
|
Chen M, Lai X, Wang X, Ying J, Zhang L, Zhou B, Liu X, Zhang J, Wei G, Hua F. Long Non-coding RNAs and Circular RNAs: Insights Into Microglia and Astrocyte Mediated Neurological Diseases. Front Mol Neurosci 2021; 14:745066. [PMID: 34675776 PMCID: PMC8523841 DOI: 10.3389/fnmol.2021.745066] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Microglia and astrocytes maintain tissue homeostasis in the nervous system. Both microglia and astrocytes have pro-inflammatory phenotype and anti-inflammatory phenotype. Activated microglia and activated astrocytes can contribute to several neurological diseases. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two groups of non-coding RNAs (ncRNAs), can function as competing endogenous RNAs (ceRNAs) to impair the microRNA (miRNA) inhibition on targeted messenger RNAs (mRNAs). LncRNAs and circRNAs are involved in various neurological disorders. In this review, we summarized that lncRNAs and circRNAs participate in microglia dysfunction, astrocyte dysfunction, neuron damage, and inflammation. Thereby, lncRNAs and circRNAs can positively or negatively regulate neurological diseases, including spinal cord injury (SCI), traumatic brain injury (TBI), ischemia-reperfusion injury (IRI), stroke, neuropathic pain, epilepsy, Parkinson’s disease (PD), multiple sclerosis (MS), and Alzheimer’s disease (AD). Besides, we also found a lncRNA/circRNA-miRNA-mRNA regulatory network in microglia and astrocyte mediated neurological diseases. Through this review, we hope to cast light on the regulatory mechanisms of lncRNAs and circRNAs in microglia and astrocyte mediated neurological diseases and provide new insights for neurological disease treatment.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, China
| | - Xingning Lai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xifeng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
30
|
Blank N, Mayer M, Mass E. The development and physiological and pathophysiological functions of resident macrophages and glial cells. Adv Immunol 2021; 151:1-47. [PMID: 34656287 DOI: 10.1016/bs.ai.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the past, brain function and the onset and progression of neurological diseases have been studied in a neuron-centric manner. However, in recent years the focus of many neuroscientists has shifted to other cell types that promote neurodevelopment and contribute to the functionality of neuronal networks in health and disease. Particularly microglia and astrocytes have been implicated in actively contributing to and controlling neuronal development, neuroinflammation, and neurodegeneration. Here, we summarize the development of brain-resident macrophages and astrocytes and their core functions in the developing brain. We discuss their contribution and intercellular crosstalk during tissue homeostasis and pathophysiology. We argue that in-depth knowledge of non-neuronal cells in the brain could provide novel therapeutic targets to reverse or contain neurological diseases.
Collapse
Affiliation(s)
- Nelli Blank
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Marina Mayer
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
31
|
Park JH, Kim JD, Lee TK, Han X, Sim H, Kim B, Lee JC, Ahn JH, Lee CH, Kim DW, Won MH, Choi SY. Neuroprotective and Anti-Inflammatory Effects of Pinus densiflora Bark Extract in Gerbil Hippocampus Following Transient Forebrain Ischemia. Molecules 2021; 26:molecules26154592. [PMID: 34361744 PMCID: PMC8347023 DOI: 10.3390/molecules26154592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
Korean red pine (Pinus densiflora) belongs to the Genus Pinus, and its bark contains a great amount of naturally occurring phenolic compounds. Until now, few studies have been conducted to assess the neuroprotective effects of Pinus densiflora bark extract against brain ischemic injury. The aim of this study was to investigate the neuroprotective effects of pre-treatment with the extract in the hippocampus following 5-min transient forebrain ischemia in gerbils. Furthermore, this study examined the anti-inflammatory effect as a neuroprotective mechanism of the extract. Pinus densiflora bark was extracted by pure water (100 °C), and this extract was quantitatively analyzed and contained abundant polyphenols, flavonoids, and proanthocyanidins. The extract (25, 50, and 100 mg/kg) was orally administered once a day for seven days before the ischemia. In the gerbil hippocampus, death of the pyramidal neurons was found in the subfield cornu ammonis 1 (CA1) five days after the ischemia. This death was significantly attenuated by pre-treatment with 100 mg/kg, not 25 or 50 mg/kg, of the extract. The treatment with 100 mg/kg of the extract markedly inhibited the activation of microglia (microgliosis) and significantly decreased the expression of pro-inflammatory cytokines (interleukin 1β and tumor necrosis factor α). In addition, the treatment significantly increased anti-inflammatory cytokines (interleukin 4 and interleukin 13). Taken together, this study clearly indicates that pre-treatment with 100 mg/kg of Pinus densiflora bark extract in gerbils can exert neuroprotection against brain ischemic injury by the attenuation of neuroinflammatory responses.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (J.D.K.); (X.H.)
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Xionggao Han
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (J.D.K.); (X.H.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (H.S.); (B.K.); (J.-C.L.); (J.H.A.)
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (H.S.); (B.K.); (J.-C.L.); (J.H.A.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (H.S.); (B.K.); (J.-C.L.); (J.H.A.)
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (H.S.); (B.K.); (J.-C.L.); (J.H.A.)
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (H.S.); (B.K.); (J.-C.L.); (J.H.A.)
- Correspondence: (M.-H.W.); (S.Y.C.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2112 (S.Y.C.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-241-1463 (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (M.-H.W.); (S.Y.C.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2112 (S.Y.C.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-241-1463 (S.Y.C.)
| |
Collapse
|
32
|
Chu T, Shields LB, Zeng W, Zhang YP, Wang Y, Barnes GN, Shields CB, Cai J. Dynamic glial response and crosstalk in demyelination-remyelination and neurodegeneration processes. Neural Regen Res 2021; 16:1359-1368. [PMID: 33318418 PMCID: PMC8284258 DOI: 10.4103/1673-5374.300975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis is an autoimmune disease in which the immune system attacks the myelin sheath in the central nervous system. It is characterized by blood-brain barrier dysfunction throughout the course of multiple sclerosis, followed by the entry of immune cells and activation of local microglia and astrocytes. Glial cells (microglia, astrocytes, and oligodendrocyte lineage cells) are known as the important mediators of neuroinflammation, all of which play major roles in the pathogenesis of multiple sclerosis. Network communications between glial cells affect the activities of oligodendrocyte lineage cells and influence the demyelination-remyelination process. A finely balanced glial response may create a favorable lesion environment for efficient remyelination and neuroregeneration. This review focuses on glial response and neurodegeneration based on the findings from multiple sclerosis and major rodent demyelination models. In particular, glial interaction and molecular crosstalk are discussed to provide insights into the potential cell- and molecule-specific therapeutic targets to improve remyelination and neuroregeneration.
Collapse
Affiliation(s)
- Tianci Chu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lisa B.E. Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Wenxin Zeng
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Yuanyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Gregory N. Barnes
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Christopher B. Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
33
|
Ji Z, Liu C, Zhao W, Soto C, Zhou X. Multi-scale modeling for systematically understanding the key roles of microglia in AD development. Comput Biol Med 2021; 133:104374. [PMID: 33864975 DOI: 10.1016/j.compbiomed.2021.104374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of age-related dementia, affecting over 5 million people in the United States. Unfortunately, current therapies are largely palliative and several potential drug candidates have failed in late-stage clinical trials. Studies suggest that microglia-mediated neuroinflammation might be responsible for the failures of various therapies. Microglia contribute to Aβ clearance in the early stage of neurodegeneration and may contribute to AD development at the late stage by releasing pro-inflammatory cytokines. However, the activation profile and phenotypic changes of microglia during the development of AD are poorly understood. To systematically understand the key role of microglia in AD progression and predict the optimal therapeutic strategy in silico, we developed a 3D multi-scale model of AD (MSMAD) by integrating multi-level experimental data, to manipulate the neurodegeneration in a simulated system. Based on our analysis, we revealed that how TREM2-related signal transduction leads to an imbalance in the activation of different microglia phenotypes, thereby promoting AD development. Our MSMAD model also provides an optimal therapeutic strategy for improving the outcome of AD treatment.
Collapse
Affiliation(s)
- Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, Jiangsu, 210095, China; School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA.
| | - Changan Liu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA
| | - Weiling Zhao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease & Brain Disorder, Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Gipson CD, Rawls S, Scofield MD, Siemsen BM, Bondy EO, Maher EE. Interactions of neuroimmune signaling and glutamate plasticity in addiction. J Neuroinflammation 2021; 18:56. [PMID: 33612110 PMCID: PMC7897396 DOI: 10.1186/s12974-021-02072-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/05/2021] [Indexed: 02/28/2023] Open
Abstract
Chronic use of drugs of abuse affects neuroimmune signaling; however, there are still many open questions regarding the interactions between neuroimmune mechanisms and substance use disorders (SUDs). Further, chronic use of drugs of abuse can induce glutamatergic changes in the brain, but the relationship between the glutamate system and neuroimmune signaling in addiction is not well understood. Therefore, the purpose of this review is to bring into focus the role of neuroimmune signaling and its interactions with the glutamate system following chronic drug use, and how this may guide pharmacotherapeutic treatment strategies for SUDs. In this review, we first describe neuroimmune mechanisms that may be linked to aberrant glutamate signaling in addiction. We focus specifically on the nuclear factor-kappa B (NF-κB) pathway, a potentially important neuroimmune mechanism that may be a key player in driving drug-seeking behavior. We highlight the importance of astroglial-microglial crosstalk, and how this interacts with known glutamatergic dysregulations in addiction. Then, we describe the importance of studying non-neuronal cells with unprecedented precision because understanding structure-function relationships in these cells is critical in understanding their role in addiction neurobiology. Here we propose a working model of neuroimmune-glutamate interactions that underlie drug use motivation, which we argue may aid strategies for small molecule drug development to treat substance use disorders. Together, the synthesis of this review shows that interactions between glutamate and neuroimmune signaling may play an important and understudied role in addiction processes and may be critical in developing more efficacious pharmacotherapies to treat SUDs.
Collapse
Affiliation(s)
- Cassandra D Gipson
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA.
| | - Scott Rawls
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, USA
| | - Benjamin M Siemsen
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
| | - Emma O Bondy
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| | - Erin E Maher
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| |
Collapse
|
35
|
Ko PW, Lee HW, Lee M, Youn YC, Kim S, Kim JH, Kang K, Suk K. Increased plasma levels of chitinase 3-like 1 (CHI3L1) protein in patients with idiopathic normal-pressure hydrocephalus. J Neurol Sci 2021; 423:117353. [PMID: 33652290 DOI: 10.1016/j.jns.2021.117353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Idiopathic normal-pressure hydrocephalus (iNPH) is an uncommon neurological disorder with no known pathological hallmarks. INPH may share common degenerative pathways with other neurological diseases, such as Alzheimer's disease (AD). However, the reversible properties of iNPH may share differing pathophysiological mechanisms with other diseases. This study aimed at assessing the diagnostic value of plasma chitinase 3-like 1 (CHI3L1) protein levels as a disease-specific biomarker for iNPH. We selected both iNPH and AD patients as well as normal and disease control subjects from an enrolled dementia registry. A total of 121 AD, 80 iNPH, 13 idiopathic Parkinson's disease, and 23 mild cognitive impairment patients with 83 healthy controls were included in the final analysis. The Aβ42, total tau, and phosphorylated tau levels within the cerebrospinal fluid, as well as plasma levels of CHI3L1, were measured using commercially available enzyme-linked immunosorbent assay kits. CHI3L1 levels for iNPH patients were higher than those of the other groups. Analysis of covariance adjusting for age showed significantly increased plasma CHI3L1 levels in iNPH patients than in the controls (p < 0.001). CHI3L1 plasma levels may be useful in differentiating iNPH patients from healthy individuals.
Collapse
Affiliation(s)
- Pan-Woo Ko
- Department of Neurology, Daegu Health College Hospital, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Myunghoon Lee
- Research Center, D&P Biotech Inc, Seoul, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyunghun Kang
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
36
|
Van Dyck A, Bollaerts I, Beckers A, Vanhunsel S, Glorian N, van Houcke J, van Ham TJ, De Groef L, Andries L, Moons L. Müller glia-myeloid cell crosstalk accelerates optic nerve regeneration in the adult zebrafish. Glia 2021; 69:1444-1463. [PMID: 33502042 DOI: 10.1002/glia.23972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders, characterized by progressive neuronal loss, eventually lead to functional impairment in the adult mammalian central nervous system (CNS). Importantly, these deteriorations are irreversible, due to the very limited regenerative potential of these CNS neurons. Stimulating and redirecting neuroinflammation was recently put forward as an important approach to induce axonal regeneration, but it remains elusive how inflammatory processes and CNS repair are intertwined. To gain more insight into these interactions, we investigated how immunomodulation affects the regenerative outcome after optic nerve crush (ONC) in the spontaneously regenerating zebrafish. First, inducing intraocular inflammation using zymosan resulted in an acute inflammatory response, characterized by an increased infiltration and proliferation of innate blood-borne immune cells, reactivation of Müller glia, and altered retinal cytokine expression. Strikingly, inflammatory stimulation also accelerated axonal regrowth after optic nerve injury. Second, we demonstrated that acute depletion of both microglia and macrophages in the retina, using pharmacological treatments with both the CSF1R inhibitor PLX3397 and clodronate liposomes, compromised optic nerve regeneration. Moreover, we observed that csf1ra/b double mutant fish, lacking microglia in both retina and brain, displayed accelerated RGC axonal regrowth after ONC, which was accompanied with unusual Müller glia proliferative gliosis. Altogether, our results highlight the importance of altered glial cell interactions in the axonal regeneration process after ONC in adult zebrafish. Unraveling the relative contribution of the different cell types, as well as the signaling pathways involved, may pinpoint new targets to stimulate repair in the vertebrate CNS.
Collapse
Affiliation(s)
- Annelies Van Dyck
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ilse Bollaerts
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nynke Glorian
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jessie van Houcke
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Lien Andries
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Kang K, Han J, Lee SW, Jeong SY, Lim YH, Lee JM, Yoon U. Abnormal cortical thickening and thinning in idiopathic normal-pressure hydrocephalus. Sci Rep 2020; 10:21213. [PMID: 33273614 PMCID: PMC7712876 DOI: 10.1038/s41598-020-78067-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
We investigated differences in cortical thickness between idiopathic normal-pressure hydrocephalus (INPH) patients and healthy controls. We also explored whether a relationship exists between cortical thinning and gait disturbance in INPH patients. Forty-nine INPH patients and 26 healthy controls were imaged with MRI, including 3-dimensional volumetric images, for automated surface-based cortical thickness analysis across the entire brain. Compared with age- and gender-matched healthy controls, unexpectedly, INPH patients showed statistically significant cortical thickening mainly in areas located in the high convexity of the frontal, parietal, and occipital regions. Additionally, cortical thinning mainly in temporal and orbitofrontal regions was observed in the INPH group relative to the control group. The Gait Status Scale (GSS) scores were negatively correlated with cortical thickness in the medial orbital part of the superior frontal gyrus, gyrus rectus, superior temporal gyrus, temporal pole, and insula. A distinctive pattern of cortical thickness changes was found in INPH patients. We cautiously suggest that cortical thickening in INPH can result from reactive gliosis. Further, our results support the hypothesis that cortical thinning in INPH can result from neuronal degeneration. In addition, cortical thinning can play an important role in gait disturbances in INPH patients.
Collapse
Affiliation(s)
- Kyunghun Kang
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.,Department of Neurology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jaehwan Han
- Department of Biomedical Engineering, Daegu Catholic University, Gyeongsan-si, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yong-Hyun Lim
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Center of Self-Organizing Software-Platform, Kyungpook National University, Daegu, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
| | - Uicheul Yoon
- Department of Biomedical Engineering, Daegu Catholic University, Gyeongsan-si, South Korea.
| |
Collapse
|
38
|
Kwak JH, Kim S, Yu NK, Seo H, Choi JE, Kim JI, Choi DI, Kim MW, Kwak C, Lee K, Kaang BK. Loss of the neuronal genome organizer and transcription factor CTCF induces neuronal death and reactive gliosis in the anterior cingulate cortex. GENES BRAIN AND BEHAVIOR 2020; 20:e12701. [PMID: 32909350 DOI: 10.1111/gbb.12701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
CCCTC-binding factor (CTCF) is a genome organizer that regulates gene expression through transcription and chromatin structure regulation. CTCF also plays an important role during the developmental and adult stages. Cell-specific CTCF deletion studies have shown that a reduction in CTCF expression leads to the development of distinct clinical features and cognitive disorders. Therefore, we knocked out Ctcf (CTCF cKO) in the excitatory neurons of the forebrain in a Camk2a-Cre mouse strain to examine the role of CTCF in cell death and gliosis in the cortex. CTCF cKO mice were viable, but they demonstrated an age-dependent increase in reactive gliosis of astrocytes and microglia in the anterior cingulate cortex (ACC) from 16 weeks of age prior to neuronal loss observed at over 20 weeks of age. Consistent with these data, qRT-PCR analysis of the CTCF cKO ACC revealed changes in the expression of inflammation-related genes (Hspa1a, Prokr2 and Itga8) linked to gliosis and neuronal death. Our results suggest that prolonged Ctcf gene deficiency in excitatory neurons results in neuronal cell death and gliosis, possibly through functional changes in inflammation-related genes.
Collapse
Affiliation(s)
- Ji-Hye Kwak
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Somi Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Nam-Kyung Yu
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Hyunhyo Seo
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ja Eun Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Il Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Dong Il Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Myung Won Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Chuljung Kwak
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Kyungmin Lee
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
39
|
Matejuk A, Ransohoff RM. Crosstalk Between Astrocytes and Microglia: An Overview. Front Immunol 2020; 11:1416. [PMID: 32765501 PMCID: PMC7378357 DOI: 10.3389/fimmu.2020.01416] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Based on discoveries enabled by new technologies and analysis using novel computational tools, neuroscience can be re-conceived in terms of information exchange in dense networks of intercellular connections rather than in the context of individual populations, such as glia or neurons. Cross-talk between neurons and microglia or astrocytes has been addressed, however, the manner in which non-neuronal cells communicate and interact remains less well-understood. We review this intriguing crosstalk among CNS cells, focusing on astrocytes and microglia and how it contributes to brain development and neurodegenerative diseases. The goal of studying these intercellular communications is to promote our ability to combat incurable neurological disorders.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Richard M Ransohoff
- Third Rock Ventures, Boston, MA, United States.,Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
41
|
Kandasamy M, Anusuyadevi M, Aigner KM, Unger MS, Kniewallner KM, de Sousa DMB, Altendorfer B, Mrowetz H, Bogdahn U, Aigner L. TGF-β Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia? Aging Dis 2020; 11:828-850. [PMID: 32765949 PMCID: PMC7390515 DOI: 10.14336/ad.2020.0222] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular dementia (VaD) is the second leading form of memory loss after Alzheimer's disease (AD). Currently, there is no cure available. The etiology, pathophysiology and clinical manifestations of VaD are extremely heterogeneous, but the impaired cerebral blood flow (CBF) represents a common denominator of VaD. The latter might be the result of atherosclerosis, amyloid angiopathy, microbleeding and micro-strokes, together causing blood-brain barrier (BBB) dysfunction and vessel leakage, collectively originating from the consequence of hypertension, one of the main risk factors for VaD. At the histopathological level, VaD displays abnormal vascular remodeling, endothelial cell death, string vessel formation, pericyte responses, fibrosis, astrogliosis, sclerosis, microglia activation, neuroinflammation, demyelination, white matter lesions, deprivation of synapses and neuronal loss. The transforming growth factor (TGF) β has been identified as one of the key molecular factors involved in the aforementioned various pathological aspects. Thus, targeting TGF-β signaling in the brain might be a promising therapeutic strategy to mitigate vascular pathology and improve cognitive functions in patients with VaD. This review revisits the recent understanding of the role of TGF-β in VaD and associated pathological hallmarks. It further explores the potential to modulate certain aspects of VaD pathology by targeting TGF-β signaling.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India.
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Group, Department of Biochemistry, School of Life Sciences, Bharathidhasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Kiera M Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michael S Unger
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Kathrin M Kniewallner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Diana M Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Ulrich Bogdahn
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Velvio GmbH, Regensburg, Germany.
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
42
|
Lee EJ, Han JC, Park DY, Kee C. A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog Retin Eye Res 2020; 77:100840. [PMID: 31982595 DOI: 10.1016/j.preteyeres.2020.100840] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Neuroretinal rim thinning (NRR) is a characteristic glaucomatous optic disc change. However, the precise mechanism of the rim thinning has not been completely elucidated. This review focuses on the structural role of the glioarchitecture in the formation of the glaucomatous NRR thinning. The NRR is a glia-framed structure, with honeycomb geometry and mechanically reinforced astrocyte processes along the transverse plane. When neural damage selectively involves the neuron and spares the glia, the gross structure of the tissue is preserved. The disorganization and loss of the glioarchitecture are the two hallmarks of optic nerve head (ONH) remodeling in glaucoma that leads to the thinning of NRR tissue upon axonal loss. This is in contrast to most non-glaucomatous optic neuropathies with optic disc pallor where hypertrophy of the glioarchitecture is associated with the seemingly absent optic disc cupping. Arteritic anterior ischemic optic neuropathy is an exception where pan-necrosis of ONH tissue leads to NRR thinning. Milder ischemia indicates selective neuronal loss that spares glia in non-arteritic anterior ischemic optic neuropathy. The biological reason is the heterogeneous glial response determined by the site, type, and severity of the injury. The neuroglial interpretation explains how the cellular changes underlie the clinical findings. Updated understandings on glial responses illustrate the mechanical, microenvironmental, and microglial modulation of activated astrocytes in glaucoma. Findings relevant to the possible mechanism of the astrocyte death in advanced glaucoma are also emerging. Ultimately, a better understanding of glaucomatous glial response may lead to glia-targeting neuroprotection in the future.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
43
|
The use of bioactive matrices in regenerative therapies for traumatic brain injury. Acta Biomater 2020; 102:1-12. [PMID: 31751809 DOI: 10.1016/j.actbio.2019.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Functional deficits due to neuronal loss are a common theme across multiple neuropathologies, including traumatic brain injury (TBI). Apart from mitigating cell death, another approach to treating brain injuries involves re-establishing the neural circuitry at the lesion site by utilizing exogeneous and/or endogenous stem cells to achieve functional recovery. While there has been limited success, the emergence of new bioactive matrices that promote neural repair introduces new perspectives on the development of regenerative therapies for TBI. This review briefly discusses current development on cell-based therapies and the use of bioactive matrices, hydrogels in particular, when incorporated in regenerative therapies. Desirable characteristics of bioactive matrices that have been shown to augment neural repair in TBI models were identified and further discussed. Understanding the relative outcomes of newly developed biomaterials implanted in vivo can better guide the development of biomaterials as a therapeutic strategy, for biomaterial-based cellular therapies are still in their nascent stages. Nonetheless, the value of bioactive matrices as a treatment for acute brain injuries should be appreciated and further developed. STATEMENT OF SIGNIFICANCE: Cell-based therapies have received attention as an alternative therapeutic strategy to improve clinical outcome post-traumatic brain injury but have achieved limited success. Whilst the incorporation of newly developed biomaterials in regenerative therapies has shown promise in augmenting neural repair, studies have revealed new hurdles which must be overcome to improve their therapeutic efficacy. This review discusses the recent development of cell-based therapies with a specific focus on the use of bioactive matrices in the form of hydrogels, to complement cell transplantation within the injured brain. Moreover, this review consolidates in vivo animal studies that demonstrate relative functional outcome upon the implantation of different biomaterials to highlight their desirable traits to guide their development for regenerative therapies in traumatic brain injury.
Collapse
|
44
|
Riquier AJ, Sollars SI. Astrocytic response to neural injury is larger during development than in adulthood and is not predicated upon the presence of microglia. Brain Behav Immun Health 2020; 1:100010. [PMID: 38377419 PMCID: PMC8474582 DOI: 10.1016/j.bbih.2019.100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
While contributions of microglia and astrocytes are regularly studied in various injury models, how these contributions differ across development remains less clear. We previously demonstrated developmental differences in microglial profiles across development in an injury model of the gustatory system. Nerves of the rat gustatory system have limited capacity to regenerate if injured during neonatal ages but show robust recovery if the injury occurs in adulthood. Using this developmentally disparate model of regenerative capacity, we quantified microglia and astrocytes in the rostral nucleus of the solitary tract (rNTS) following transection of the gustatory chorda tympani nerve (CTX) of neonatal and adult rats. We found that neonatal CTX induced an attenuated microglia response but a larger astrocyte response compared to adult CTX. To elucidate the interplay between the microglia and astrocyte responses in the CTX model, we used our novel intraperitoneal injection protocol for the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia in the neonatal and adult rat brain prior to and after CTX. PLX5622 depleted microglia by 80-90% within 3 days of treatment, which increased to > 90% by 7 days. After 14 days of PLX5622 treatment, microglia were depleted by > 96% in both neonates and adults while preserving baseline astrocyte quantity. Microglia depletion eliminated the adult astrocyte response to CTX, while the neonatal astrocyte response after injury remained robust. Our results show injecting PLX5622 is a viable means to deplete microglia in neonatal and adult rats and suggest developmentally distinct mechanisms for astrogliosis following neural injury.
Collapse
Affiliation(s)
- Andrew J. Riquier
- University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Suzanne I. Sollars
- University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| |
Collapse
|
45
|
Liu L, Vollmer MK, Kelly MG, Fernandez VM, Fernandez TG, Kim H, Doré S. Reactive Gliosis Contributes to Nrf2-Dependent Neuroprotection by Pretreatment with Dimethyl Fumarate or Korean Red Ginseng Against Hypoxic-Ischemia: Focus on Hippocampal Injury. Mol Neurobiol 2020; 57:105-117. [PMID: 31494826 PMCID: PMC6980429 DOI: 10.1007/s12035-019-01760-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/01/2023]
Abstract
Recently, dimethyl fumarate (DMF) and Korean red ginseng (ginseng), based on their purported antioxidative and anti-inflammatory properties, have exhibited protective potential in various neurological conditions. Their effects on cerebral ischemia and underlying mechanisms remain inconclusive; however, increasing evidence indicates the involvement of the transcriptional factor Nrf2. This study evaluated the preventive effects of DMF and ginseng on hippocampal neuronal damage following hypoxia-ischemia (HI) and assessed the contributions of reactive gliosis and the Nrf2 pathway. Adult wild type (WT) and Nrf2-/- mice were pretreated with DMF or ginseng for 7 days prior to HI. At 24 h after HI, DMF or ginseng significantly reduced infarct volume (52.5 ± 12.3% and 47.8 ± 10.7%), brain edema (61.5 ± 17.4% and 39.3 ± 12.8%), and hippocampal CA1 neuronal degeneration, and induced expressions of Nrf2 target proteins in WT, but not Nrf2-/-, mice. Such hippocampal neuroprotective benefits were also observed at 6 h and 7 days after HI. The dynamic attenuation of reactive gliosis in microglia and astrocytes correlated well with this sustained neuroprotection in an Nrf2-dependent manner. In both early and late stages of HI, astrocytic dysfunctions in extracellular glutamate clearance and water transport, as indicated by glutamine synthetase and aquaporin 4, were also attenuated after HI in WT, but not Nrf2-/-, mice treated with DMF or ginseng. Together, DMF and ginseng confer robust and prolonged Nrf2-dependent neuroprotection against ischemic hippocampal damage. The salutary Nrf2-dependent attenuation of reactive gliosis may contribute to this neuroprotection, offering new insight into the cellular basis of an Nrf2-targeting strategy for stroke prevention or treatment.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Mary K Vollmer
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Marie G Kelly
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Victoria M Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Tyler G Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA.
- Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
46
|
Gilmour A, Poole-Warren L, Green RA. An Improved in vitro Model of Cortical Tissue. Front Neurosci 2019; 13:1349. [PMID: 31920510 PMCID: PMC6928009 DOI: 10.3389/fnins.2019.01349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Intracortical electrodes for brain-machine interfaces rely on intimate contact with tissues for recording signals and stimulating neurons. However, the long-term viability of intracortical electrodes in vivo is poor, with a major contributing factor being the development of a glial scar. In vivo approaches for evaluating responses to intracortical devices are resource intensive and complex, making statistically significant, high throughput data difficult to obtain. In vitro models provide an alternative to in vivo studies; however, existing approaches have limitations which restrict the translation of the cellular reactions to the implant scenario. Notably, there is no current robust model that includes astrocytes, microglia, oligodendrocytes and neurons, the four principle cell types, critical to the health, function and wound responses of the central nervous system (CNS). In previous research a co-culture of primary mouse mature mixed glial cells and immature neural precursor cells were shown to mimic several key properties of the CNS response to implanted electrode materials. However, the method was not robust and took up to 63 days, significantly affecting reproducibility and widespread use for assessing brain-material interactions. In the current research a new co-culture approach has been developed and evaluated using immunocytochemistry and quantitative polymerase chain reaction (qPCR). The resulting method reduced the time in culture significantly and the culture model was shown to have a genetic signature similar to that of healthy adult mouse brain. This new robust CNS culture model has the potential to significantly improve the capacity to translate in vitro data to the in vivo responses.
Collapse
Affiliation(s)
- Aaron Gilmour
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Menzies Health Institute Queensland, Griffiths University, Gold Coast, QLD, Australia
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Rylie A Green
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
Divolis G, Stavropoulos A, Manioudaki M, Apostolidou A, Doulou A, Gavriil A, Dafnis I, Chroni A, Mummery C, Xilouri M, Sideras P. Activation of both transforming growth factor-β and bone morphogenetic protein signalling pathways upon traumatic brain injury restrains pro-inflammatory and boosts tissue reparatory responses of reactive astrocytes and microglia. Brain Commun 2019; 1:fcz028. [PMID: 32954268 PMCID: PMC7425383 DOI: 10.1093/braincomms/fcz028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Various ligands and receptors of the transforming growth factor-β superfamily have been found upregulated following traumatic brain injury; however, the role of this signalling system in brain injury pathophysiology is not fully characterized. To address this, we utilized an acute stab wound brain injury model to demonstrate that hallmarks of transforming growth factor-β superfamily system activation, such as levels of phosphorylated Smads, ligands and target genes for both transforming growth factor-β and bone morphogenetic protein pathways, were upregulated within injured tissues. Using a bone morphogenetic protein-responsive reporter mouse model, we showed that activation of the bone morphogenetic protein signalling pathway involves primarily astrocytes that demarcate the wound area. Insights regarding the potential role of transforming growth factor-β superfamily activation in glia cells within the injured tissues were obtained indirectly by treating purified reactive astrocytes and microglia with bone morphogenetic protein-4 or transforming growth factor-β1 and characterizing changes in their transcriptional profiles. Astrocytes responded to both ligands with considerably overlapping profiles, whereas, microglia responded selectively to transforming growth factor-β1. Novel pathways, crucial for repair of tissue-injury and blood-brain barrier, such as activation of cholesterol biosynthesis and transport, production of axonal guidance and extracellular matrix components were upregulated by transforming growth factor-β1 and/or bone morphogenetic protein-4 in astrocytes. Moreover, both ligands in astrocytes and transforming growth factor-β1 in microglia shifted the phenotype of reactive glia cells towards the anti-inflammatory and tissue reparatory 'A2'-like and 'M0/M2'-like phenotypes, respectively. Increased expression of selected key components of the in vitro modulated pathways and markers of 'A2'-like astrocytes was confirmed within the wound area, suggesting that these processes could also be modulated in situ by the integrated action of transforming growth factor-β and/or bone morphogenetic protein-mediated signalling. Collectively, our study provides a comprehensive comparative analysis of transforming growth factor-β superfamily signalling in reactive astrocytes and microglia and points towards a crucial role of both transforming growth factor-β and bone morphogenetic protein pathways in modulating the inflammatory and brain injury reparatory functions of activated glia cells.
Collapse
Affiliation(s)
- Georgios Divolis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios Stavropoulos
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Manioudaki
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Anastasia Apostolidou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasia Doulou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ariana Gavriil
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research-Demokritos, 15341 Athens, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research-Demokritos, 15341 Athens, Greece
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Maria Xilouri
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Paschalis Sideras
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
48
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Andries L, De Groef L, Moons L. Neuroinflammation and Optic Nerve Regeneration: Where Do We Stand in Elucidating Underlying Cellular and Molecular Players? Curr Eye Res 2019; 45:397-409. [PMID: 31567007 DOI: 10.1080/02713683.2019.1669664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurodegenerative diseases and central nervous system (CNS) trauma are highly irreversible, in part because adult mammals lack a robust regenerative capacity. A multifactorial problem underlies the limited axonal regeneration potential. Strikingly, neuroinflammation seems able to induce axonal regrowth in the adult mammalian CNS. It is increasingly clear that both blood-borne and resident inflammatory cells as well as reactivated glial cells affect axonal regeneration. The scope of this review is to give a comprehensive overview of the knowledge that links inflammation (with a focus on the innate immune system) to axonal regeneration and to critically reflect on the controversy that still prevails about the cells, molecules and pathways that are dominating the scene. Also, a brief overview is given of what is already known about the crosstalk between and the heterogeneity of cell types that might play a role in axonal regeneration. Recent research indicates that inflammation-induced axonal regrowth is not solely driven by a single-cell population but probably relies on the crosstalk between multiple cell types and the strong regulation of these cell populations in time and space. Moreover, there is growing evidence that the different cell populations are highly heterogeneous and as such can react differently upon injury. This could explain the controversial results that have been obtained over the past years. The primary focus of this manuscript is the retinofugal system of adult mammals, however, when relevant, insights or examples of the spontaneous regenerating zebrafish model and spinal cord research are added.
Collapse
Affiliation(s)
- Lien Andries
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lies De Groef
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Li L, Liu B. ROCK inhibitor Y‑27632 protects rats against cerebral ischemia/reperfusion‑induced behavioral deficits and hippocampal damage. Mol Med Rep 2019; 20:3395-3405. [PMID: 31432130 DOI: 10.3892/mmr.2019.10584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/24/2019] [Indexed: 11/05/2022] Open
Abstract
Cerebral ischemic injury is a major cause of death and long‑term disability worldwide that leads to neurological and behavioral deficits, and for which successful treatments are still lacking. Ras homolog family member A (RhoA) and Rho‑associated coiled‑coil containing protein kinase (ROCK) are associated with the growth of neurons and the movement of neuronal growth cones. RhoA/ROCK inhibitors have been demonstrated to promote the recovery of motor function following nerve injury, but the underlying mechanism requires further investigation. The present study aimed to investigate the effects of the ROCK inhibitor Y‑27632 on middle cerebral artery occlusion (MCAO)‑induced cerebral ischemic injury. Rats were randomly assigned to the Control, Y‑27632, MCAO + Vehicle or MCAO + Y‑27632 group. Firstly, infarct volume, cognitive ability and cerebral injury were assessed. Secondly, indicators of cerebral inflammation, oxidative stress and apoptosis were evaluated. Finally, the expression of recombinant glial fibrillary acidic protein (GFAP) and allograft inflammatory factor 1 (AIF1) in the brain were measured to assess the activation of astrocytes and microglia, respectively. The results showed that Y‑27632 effectively increased the survival rate and behavioral performance of rats, and attenuated the cerebral injury, oxidative stress and cerebral inflammation levels following MCAO. The disturbance in hippocampal neurons caused by MCAO was also alleviated following treatment with Y‑27632. Neuronal apoptosis was also decreased following Y‑27632 treatment, as demonstrated by the TUNEL assay and the expression levels of Caspases‑3, 8 and 9 and Bax/Bcl‑2 ratio. The levels of GFAP and AIF1 were increased by MCAO and further promoted by Y‑27632, indicating the activation of astrocytes and microglia. In conclusion, the present study offered evidence of a protective effect of Y‑27632 administration on cerebral ischemia/reperfusion induced behavioral and hippocampal damage by activating astrocytes and microglia.
Collapse
Affiliation(s)
- Lihe Li
- Department of Clinical Laboratory, Baodi District People's Hospital, Tianjin 301800, P.R. China
| | - Baoyang Liu
- Department of Clinical Laboratory, Baodi District People's Hospital, Tianjin 301800, P.R. China
| |
Collapse
|