1
|
Tian S, Wang B, Ding Y, Zhang Y, Yu P, Chang YZ, Gao G. The role of iron transporters and regulators in Alzheimer's disease and Parkinson's disease: Pathophysiological insights and therapeutic prospects. Biomed Pharmacother 2024; 179:117419. [PMID: 39245001 DOI: 10.1016/j.biopha.2024.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Brain iron homeostasis plays a vital role in maintaining brain development and controlling neuronal function under physiological conditions. Many studies have shown that the imbalance of brain iron homeostasis is closely related to the pathogenesis of neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). Recent advances have revealed the importance of iron transporters and regulatory molecules in the pathogenesis and treatment of NDs. This review summarizes the research progress on brain iron overload and the aberrant expression of several key iron transporters and regulators in AD and PD, emphasizes the pathological roles of these molecules in the pathogenesis of AD and PD, and highlights the therapeutic prospects of targeting these iron transporters and regulators to restore brain iron homeostasis in the treatment of AD and PD. A comprehensive understanding of the pathophysiological roles of iron, iron transporters and regulators, and their regulations in NDs may provide new therapeutic avenues for more targeted neurotherapeutic strategies for treating these diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Bing Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yiqian Ding
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
2
|
Yao Z, Jia F, Wang S, Jiao Q, Du X, Chen X, Jiang H. The involvement of IRP2-induced ferroptosis through the p53-SLC7A11-ALOX12 pathway in Parkinson's disease. Free Radic Biol Med 2024; 222:386-396. [PMID: 38936518 DOI: 10.1016/j.freeradbiomed.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/17/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Disturbance in iron homeostasis has been described in Parkinson's disease (PD), in which iron regulatory protein 2 (IRP2) plays a crucial role. IRP2 deletion resulted in the misregulation of iron metabolism and subsequent neurodegeneration. However, growing evidence showed that the levels of IRP2 were increased in the substantia nigra (SN) in MPTP-induced PD mice. To further clarify the role of increased IRP2 in PD, we developed IRP2-overexpressed mice by microinjecting AAV-Ireb2 in the SN. These mice showed decreased motor ability, abnormal gait and anxiety. Iron deposits induced by increased TFR1 and dopaminergic neuronal loss were observed in the SN. When these mice were treated with MPTP, exacerbated dyskinesia and dopaminergic neuronal loss were observed. In addition, TP53 was post-transcriptionally upregulated by IRP2 binding to the iron regulated element (IRE) in its 3' untranslated region. This resulted in increased lipid peroxidation levels and induced ferroptosis through the SLC7A11-ALOX12 pathway, which was independent of GPX4. This study revealed that IRP2 homeostasis in the SN was critical for PD progression and clarified the molecular mechanism of ferroptosis caused by IRP2.
Collapse
Affiliation(s)
- Zhengyang Yao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Fengju Jia
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Shuhua Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266500, China.
| |
Collapse
|
3
|
Chen X, Zhang X, Wu Y, Wang Z, Yu T, Chen P, Tong P, Gao J, Chen H. The Iron Binding Ability Maps the Fate of Food-Derived Transferrins: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17771-17781. [PMID: 39087686 DOI: 10.1021/acs.jafc.4c04827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
As the demand for lactoferrin increases, the search for cost-effective alternative proteins becomes increasingly important. Attention naturally turns to other members of the transferrin family such as ovotransferrin. The iron-binding abilities of these proteins influence their characteristics, although the underlying mechanisms remain unclear. This overview systematically summarizes the effects of the iron-binding ability on the fate of food-derived transferrins (lactoferrin and ovotransferrin) and their potential applications. The findings indicate that iron-binding ability significantly influences the structure of food-derived transferrins, particularly their tertiary structure. Changes in structure influence their physicochemical properties, which, in turn, lead to different behaviors in response to environmental variations. Thus, these proteins exhibit distinct digestive characteristics by the time they reach the small intestine, ultimately performing varied physiological functions in vivo. Consequently, food-derived transferrins with different iron-binding states may find diverse applications. Understanding this capability is essential for developing food-derived transferrins and driving innovation in lactoferrin-related industries.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Tian Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Pingduo Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
Dai Y, Bi M, Jiao Q, Du X, Yan C, Jiang H. Astrocyte-derived apolipoprotein D is required for neuronal survival in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:143. [PMID: 39095480 PMCID: PMC11297325 DOI: 10.1038/s41531-024-00753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
Apolipoprotein D (ApoD), a lipocalin transporter of small hydrophobic molecules, plays an essential role in several neurodegenerative diseases. It was reported that increased immunostaining for ApoD of glial cells surrounding dopaminergic (DAergic) neurons was observed in the brains of Parkinson's disease (PD) patients. Although preliminary findings supported the role of ApoD in neuroprotection, its derivation and effects on the degeneration of nigral DAergic neurons are largely unknown. In the present study, we observed that ApoD levels released from astrocytes were increased in PD models both in vivo and in vitro. When co-cultured with astrocytes, due to the increased release of astrocytic ApoD, the survival rate of primary cultured ventral midbrain (VM) neurons was significantly increased with 1-methyl-4-phenylpyridillium ion (MPP+) treatment. Increased levels of TAp73 and its phosphorylation at Tyr99 in astrocytes were required for the increased ApoD levels and its release. Conditional knockdown of TAp73 in the nigral astrocytes in vivo could aggravate the neurodegeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD mice. Our findings reported that astrocyte-derived ApoD was essential for DAergic neuronal survival in PD models, might provide new therapeutic targets for PD.
Collapse
Affiliation(s)
- Yingying Dai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
5
|
Li Y, Shi C, Liu R, Yang J, Wang J. Alpha-synuclein affects certain iron transporters of BV2 microglia cell through its ferric reductase activity. J Neurophysiol 2024; 132:446-453. [PMID: 38919150 DOI: 10.1152/jn.00106.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Alpha-synuclein (α-syn) is a major component of Lewy bodies, which is a biomarker of Parkinson's disease (PD). It accumulates in substantia nigra pars compacta (SNpc) to form insoluble aggregates and cause neurotoxicity, which is often accompanied by iron deposition. We compared the iron reductase activity between monomeric α-syn (M-α-syn) and oligomeric α-syn (O-α-syn) and investigated the effect of α-syn on iron metabolism of BV2 microglia cells as well. α-syn had ferric reductase activity, and O-α-syn had stronger enzyme activity than M-α-syn. M-α-syn upregulated iron uptake protein, divalent metal transporter1 (DMT1) expression, and iron influx but did not regulate iron release protein ferroportin1 (FPN1) expression and iron efflux. O-α-syn elevated the expression of both DMT1 and FPN1 and thus increased the iron influx and efflux in BV2 microglial cells, but the expressions of iron regulatory protein1 (IRP1) and hypoxia-inducible factor 2α (HIF-2α) had no significant change. Moreover, both M-α-syn and O-α-syn could increase the mRNA expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in BV2 microglia cells. Both types of α-syn can activate microglia, which leads to increased expressions of proinflammatory factors. α-syn can affect DMT1 and FPN1 expressions in BV2 microglia cells, which might be through its ferric reductase activity.NEW & NOTEWORTHY The effects of monomeric α-syn (M-α-syn) and oligomeric α-syn (O-α-syn) on the iron metabolism of BV2 microglia cells were detected by exogenous α-syn treatment. This study provides a strong experimental basis for α-syn involvement in iron metabolism in microglia.
Collapse
Affiliation(s)
- Yinghui Li
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Chengkui Shi
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Rong Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Jiahua Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Zhang YY, Jiang XH, Zhu PP, Zhuo WY, Liu LB. Advancements in understanding substantia nigra hyperechogenicity via transcranial sonography in Parkinson's disease and its clinical implications. Front Neurol 2024; 15:1407860. [PMID: 39091976 PMCID: PMC11291319 DOI: 10.3389/fneur.2024.1407860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Amidst rising Parkinson's disease (PD) incidence in an aging global population, the need for non-invasive and reliable diagnostic methods is increasingly critical. This review evaluates the strategic role of transcranial sonography (TCS) in the early detection and monitoring of PD. TCS's ability to detect substantia nigra hyperechogenicity offers profound insights into its correlation with essential neuropathological alterations-namely, iron accumulation, neuromelanin depletion, and glial proliferation-fundamental to PD's pathophysiology. Our analysis highlights TCS's advantages, including its non-invasiveness, cost-effectiveness, and ease of use, positioning it as an invaluable tool for early diagnosis and continual disease progression monitoring. Moreover, TCS assists in identifying potential risk and protective factors, facilitating tailored therapeutic strategies to enhance clinical outcomes. This review advocates expanding TCS utilization and further research to maximize its diagnostic and prognostic potential in PD management, contributing to a more nuanced understanding of the disease.
Collapse
Affiliation(s)
- Yuan-yuan Zhang
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Xu-hong Jiang
- Department of Health Management, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Pei-pei Zhu
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Wen-yan Zhuo
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Li-bin Liu
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| |
Collapse
|
7
|
Liu Y, Hu S, Shi B, Yu B, Luo W, Peng S, Du X. The Role of Iron Metabolism in Sepsis-associated Encephalopathy: a Potential Target. Mol Neurobiol 2024; 61:4677-4690. [PMID: 38110647 DOI: 10.1007/s12035-023-03870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction secondary to infection, and the severity can range from mild delirium to deep coma. Disorders of iron metabolism have been proven to play an important role in a variety of neurodegenerative diseases by inducing cell damage through iron accumulation in glial cells and neurons. Recent studies have found that iron accumulation is also a potential mechanism of SAE. Systemic inflammation can induce changes in the expression of transporters and receptors on cells, especially high expression of divalent metal transporter1 (DMT1) and low expression of ferroportin (Fpn) 1, which leads to iron accumulation in cells. Excessive free Fe2+ can participate in the Fenton reaction to produce reactive oxygen species (ROS) to directly damage cells or induce ferroptosis. As a result, it may be of great help to improve SAE by treatment of targeting disorders of iron metabolism. Therefore, it is important to review the current research progress on the mechanism of SAE based on iron metabolism disorders. In addition, we also briefly describe the current status of SAE and iron metabolism disorders and emphasize the therapeutic prospect of targeting iron accumulation as a treatment for SAE, especially iron chelator. Moreover, drug delivery and side effects can be improved with the development of nanotechnology. This work suggests that treating SAE based on disorders of iron metabolism will be a thriving field.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengnan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
8
|
Chen H, Wang X, Chang Z, Zhang J, Xie D. Evidence for genetic causality between iron homeostasis and Parkinson's disease: A two-sample Mendelian randomization study. J Trace Elem Med Biol 2024; 84:127430. [PMID: 38484633 DOI: 10.1016/j.jtemb.2024.127430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a degenerative disease of the central nervous system, and its specific etiology is still unclear. At present, it is believed that the main pathological basis is the reduction of dopamine concentration in the brain striatum. Although many previous studies have believed that iron as an important nutrient element participates in the occurrence and development of PD, whether there is a causal correlation between total iron binding capacity(TIBC), transferring saturation(TSAT), ferritin and serum iron in iron homeostasis indicators and PD, there has been a lack of effective genetic evidence. METHODS We used Mendelian randomization (MR) as an analytical method to effectively evaluate the genetic association between exposure and outcome, based on the largest genome-wide association study (GWAS) data to date. By using randomly assigned genetic instrumental variables (SNPs, Single Nucleotide Polymorphisms) that are not affected by any causal relationship, we effectively evaluated the causal relationship between iron homeostasis indicators and PD while controlling for confounding factors. RESULTS By coordinated analysis of 86 SNPs associated with iron homeostasis markers and 12,858,066 SNPs associated with PD, a total of 56 SNPs were finally screened for genome-wide significance of iron homeostasis associated with PD. The results of inverse variance weighting(IVW) analysis suggested that iron( β = - 0.524; 95%cl=-0.046 to -0.002; P=0.032) was considered to have a genetic causal relationship with PD. Cochran's Q, Egger intercept and MR-PRESSO global tests did not detect the existence of heterogeneity and pleiotropy (P>0.05). Mr Steiger directionality test further confirmed our estimation of the potential causal direction of iron and PD (P=0.001). In addition, TIBC (β=-0.142; 95%Cl=-0.197-0.481; P=0.414), TSAT (β=-0.316; 95%Cl=-0.861-0.229; P=0.255), and ferritin (β=-0.387; 95%Cl=-1.179-0.405; P=0.338) did not have genetic causal relationships with PD, and the results were not heterogeneous and pleiotropic (P>0.05). In addition, TIBC (β=-0.142; 95%Cl=-0.197-0.481; P=0.414), TSAT (β=-0.316; 95%Cl=-0.861-0.229; P=0.255), and ferritin (β=-0.101; 95%Cl=--0.987 to -0.405; P=0.823) did not have genetic causal relationships with PD, and the results were not heterogeneous and pleiotropic (P>0.05). TIBC (P=0.008), TSAT (P=0.000) and ferritin (P=0.013) were all consistent with the estimation of MR Steiger directivity test. CONCLUSION Our study found that among the four iron homeostasis markers, there was a genetic causal association between serum iron and PD, and the serum iron level was negatively correlated with the risk of PD. In addition, TIBC, TSAT, ferritin had no genetic causal relationship with PD.
Collapse
Affiliation(s)
- Hong Chen
- Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xie Wang
- Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ze Chang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Juan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China.
| | - Daojun Xie
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| |
Collapse
|
9
|
Su Y, Jiao Y, Cai S, Xu Y, Wang Q, Chen X. The molecular mechanism of ferroptosis and its relationship with Parkinson's disease. Brain Res Bull 2024; 213:110991. [PMID: 38823725 DOI: 10.1016/j.brainresbull.2024.110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) have complex pathogenetic mechanisms. Genetic, age, and environmental factors are all related to PD. Due to the unclear pathogenesis of PD and the lack of effective cure methods, it is urgent to find new targets for treating PD patients. Ferroptosis is a form of cell death that is reliant on iron and exhibits distinct morphological and mechanistic characteristics compared to other types of cell death. It encompasses a range of biological processes, including iron/lipid metabolism and oxidative stress. In recent years, research has found that ferroptosis plays a crucial role in the pathophysiological processes of neurodegenerative diseases and stroke. Therefore, ferroptosis is also closely related to PD, This article reviews the core mechanisms of ferroptosis and elucidates the correlation between PD and ferroptosis. In addition, new compounds that have emerged in recent years to exert anti PD effects by inhibiting the ferroptosis signaling pathway were summarized. I hope to further elaborate the relationship between ferroptosis and PD through the review of this article, and provide new strategies for developing PD treatments targeting ferroptosis.
Collapse
Affiliation(s)
- Yan Su
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yue Jiao
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Sheng Cai
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yang Xu
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qi Wang
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Xianwen Chen
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| |
Collapse
|
10
|
Zeng W, Cai J, Zhang L, Peng Q. Iron Deposition in Parkinson's Disease: A Mini-Review. Cell Mol Neurobiol 2024; 44:26. [PMID: 38393383 PMCID: PMC10891198 DOI: 10.1007/s10571-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results. In this review, we provide an overview of iron deposition in PD, from both basic research and clinical perspectives. PD patients exhibit abnormalities in various iron metabolism-related proteins, leading to disruptions in iron distribution, transport, storage, and circulation, ultimately resulting in iron deposition. Excess iron can induce oxidative stress and iron-related cell death, and exacerbate mitochondrial dysfunction, contributing to the progression of PD pathology. Magnetic resonance imaging studies have indicated that the characteristics of iron deposition in the brains of PD patients vary. Iron deposition correlates with the clinical symptoms of PD, and patients with different disease courses and clinical presentations display distinct patterns of iron deposition. These iron deposition patterns may contribute to PD diagnosis. Iron deposition is a promising target for PD treatment. However, further research is required to elucidate the underlying mechanisms and their impacts on PD.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan, China
| | - Jin Cai
- Department of Cardiology, The Second Hospital of Zhangzhou, Zhangzhou, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiwei Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Sun W, Wei C. Causal Relationship Between Ferritin and Neuropsychiatric Disorders: A Two-Sample Mendelian Randomization Study. J Alzheimers Dis Rep 2024; 8:257-266. [PMID: 38405340 PMCID: PMC10894605 DOI: 10.3233/adr-230136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Background Previous observational research has indicated a correlation between ferritin levels and neuropsychiatric disorders, although the causal relationship remains uncertain. Objective The objective of this study was to investigate the potential causal link between plasma ferritin levels and neuropsychiatric disorders. Methods A two-sample Mendelian randomization (MR) study was conducted, wherein genetic instruments associated with ferritin were obtained from a previously published genome-wide association study (GWAS). Summary statistics pertaining to neuropsychiatric disorders were derived from five distinct GWAS datasets. The primary MR analysis employed the inverse variance weighted (IVW) method and was corroborated by additional methods including MR-Egger, weighted median, simple mode, and weighted mode. Sensitivity analyses were employed to identify potential pleiotropy and heterogeneity in the results. Results The fixed effects IVW method revealed a statistically significant causal relationship between plasma ferritin level and the occurrence of Alzheimer's disease (odds ratio [OR] = 1.06, 95% confidence interval [CI]: 1.00-1.12, p = 0.037), as well as Parkinson's disease (OR = 1.06, 95% CI: 1.00-1.13, p = 0.041). Various sensitivity analyses were conducted, which demonstrated no substantial heterogeneity or pleiotropy. Conversely, no compelling evidence was found to support a causal association between ferritin and amyotrophic lateral sclerosis, schizophrenia, or major depressive disorder. Conclusions This MR study provides evidence at the genetic level for a causal relationship between plasma ferritin and an increased risk of Alzheimer's disease and Parkinson's disease. The exact genetic mechanisms underlying this connection necessitate further investigation.
Collapse
Affiliation(s)
- Wenxian Sun
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
12
|
Li J, Ding Y, Zhang J, Zhang Y, Cui Y, Zhang Y, Chang S, Chang Y, Gao G. Iron overload suppresses hippocampal neurogenesis in adult mice: Implication for iron dysregulation-linked neurological diseases. CNS Neurosci Ther 2024; 30:e14394. [PMID: 37545321 PMCID: PMC10848078 DOI: 10.1111/cns.14394] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
AIMS Adult hippocampal neurogenesis is an important player in brain homeostasis and its impairment participates in neurological diseases. Iron overload has emerged as an irreversible factor of brain aging, and is also closely related to degenerative disorders, including cognitive dysfunction. However, whether brain iron overload alters hippocampal neurogenesis has not been reported. We investigated the effect of elevated iron content on adult hippocampal neurogenesis and explored the underlying mechanism. METHODS Mouse models with hippocampal iron overload were generated. Neurogenesis in hippocampus and expression levels of related molecules were assessed. RESULTS Iron accumulation in hippocampus remarkably impaired the differentiation of neural stem cells, resulting in a significant decrease in newborn neurons. The damage was possibly attributed to iron-induced downregulation of proprotein convertase furin and subsequently decreased maturation of brain-derived neurotrophic factor (BDNF), thus contributing to memory decline and anxiety-like behavior of mice. Supportively, knockdown of furin indeed suppressed hippocampal neurogenesis, while furin overexpression restored the impairment. CONCLUSION These findings demonstrated that iron overload damaged hippocampal neurogenesis likely via iron-furin-BDNF pathway. This study provides new insights into potential mechanisms on iron-induced neurotoxicity and the causes of neurogenesis injury and renders modulating iron homeostasis and furin expression as novel therapeutic strategies for treatment of neurological diseases.
Collapse
Affiliation(s)
- Jie Li
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yiqian Ding
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Jianhua Zhang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yating Zhang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yiduo Cui
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yi Zhang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Shiyang Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
- College of Basic MedicineHebei Medical UniversityShijiazhuangChina
| | - Yan‐Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| |
Collapse
|
13
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Li QM, Xu T, Zha XQ, Feng XW, Zhang FY, Luo JP. Buddlejasaponin IVb ameliorates ferroptosis of dopaminergic neuron by suppressing IRP2-mediated iron overload in Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117196. [PMID: 37717841 DOI: 10.1016/j.jep.2023.117196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the second neurodegenerative disease that lacks effective treatments. Buddlejasaponin IVb (BJP-IVb) is the main bioactive component of herbs in genus Clinopodium which display antioxidative, anti-inflammatory and neuroprotective activities. However, the role of BJP-IVb in PD still remains unknown. AIM OF THE STUDY This study aimed to evaluate the effect of BJP-IVb on dopaminergic neurodegeneration in PD and clarified the underlying mechanisms from the aspect of iron overload-mediated ferroptosis. MATERIALS AND METHODS One-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD models were established in this study. Behavioral tests, cell cytotoxicity assay, tyrosine hydroxylase (TH) and Nissl staining were performed to evaluate the antiparkinsonian effect of BJP-IVb. Cellular ultrastructure, iron content and lipid peroxidation were detected to evaluate iron overload-mediated dopaminergic neuron ferroptosis. Iron regulatory protein 2 (IRP2) and iron transport-related proteins were detected by immunofluorescence and Western blot to evaluated iron transport. Finally, plasmid vector-mediated IRP2 overexpression were performed to further clarify the molecular mechanism. RESULTS BJP-IVb alleviated MPP+-induced neurotoxicity in vitro and improved MPTP-induced dopaminergic neuron loss and motor dysfunctions of PD mice, confirming an effect of BJP-IVb against dopaminergic neurodegeneration of PD. Further results revealed that BJP-IVb protected against PD by suppressing iron overload-mediated dopaminergic neuron ferroptosis, as evidenced by the attenuated lipid peroxidation, decreased iron content and changes in cellular ultrastructure. Finally, the decreased iron regulatory protein (IRP2) was confirmed to be responsible for BJP-IVb-mediated ferroptosis suppression by modulating iron transport-related proteins and alleviating iron overload. CONCLUSION BJP-IVb suppressed iron overload-mediated dopaminergic neuron ferroptosis and improved motor dysfunctions in PD, which was achieved by inhibiting IRP2-mediated iron overload. This study provided a potential drug candidate for the treatment of PD.
Collapse
Affiliation(s)
- Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Tong Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Xiao-Wen Feng
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Feng-Yun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| |
Collapse
|
15
|
Mohammed OA, Elballal MS, El-Husseiny AA, Khidr EG, El Tabaa MM, Elazazy O, Abd-Elmawla MA, Elesawy AE, Ibrahim HM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Nomier Y, Abdel-Reheim MA, El-Husseiny HM, Mahmoud AMA, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Parkinson's disease. Pathol Res Pract 2024; 253:155023. [PMID: 38081104 DOI: 10.1016/j.prp.2023.155023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Henwa M Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
16
|
Wang Y, Wen Q, Chen R, Gan Z, Huang X, Wang P, Cao X, Zhao N, Yang Z, Yan J. Iron-inhibited autophagy via transcription factor ZFP27 in Parkinson's disease. J Cell Mol Med 2023; 27:3614-3627. [PMID: 37668106 PMCID: PMC10660624 DOI: 10.1111/jcmm.17946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/13/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
Parkinson's disease (PD) is a challenge because of the ageing of the population and the disease's complicated pathogenesis. Accumulating evidence showed that iron and autophagy were involved in PD. Nevertheless, the molecular mechanism and role of iron and autophagy in PD are not yet elucidated. In the present study, it was shown that PD mice had significant motor dysfunction, increased iron content, less dopamine neurons and more α-synuclein accumulation in the substantia nigra. Meanwhile, PD mice treated with deferoxamine exhibited less iron content, relieved the dyskinesia and had a significant increase in dopamine neurons and a significant decrease in α-synuclein. Autophagy induced by LC3 was inhibited in PD models with iron treatment. Following verification showed that iron aggregation restrained insulin-like growth factor 2 (IGF2) and transcription factor zinc finger protein 27 (ZFP27) in PD models. In addition, LC3-induced autophagy flux was reduced with ZFP27 knockdown. Furthermore, ZFP27 affected autophagy by regulating LC3 promoter activity. These data suggest that iron deposition inhibits IGF2 and ZFP27 to reduce LC3-induced autophagy, and ultimately decrease dopamine neurons, accelerating PD progression. Our findings provide a novel insight that ZFP27-mediated iron-related autophagy and IGF2 may activate the downstream kinase gene to trigger autophagy in the PD model.
Collapse
Affiliation(s)
- Yinying Wang
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| | - Qian Wen
- Neurosurgery Department of the Second Hospital Affiliated, Kunming Medical University, Kunming, China
| | - Rongsha Chen
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| | - Zhichao Gan
- Neurosurgery Department of the Second Hospital Affiliated, Kunming Medical University, Kunming, China
| | - Xinwei Huang
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| | - Pengfei Wang
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| | - Xia Cao
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- Neurosurgery Department of the Second Hospital Affiliated, Kunming Medical University, Kunming, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinyuan Yan
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
18
|
Chen L, Ma Y, Ma X, Liu L, Jv X, Li A, Shen Q, Jia W, Qu L, Shi L, Xie J. TFEB regulates cellular labile iron and prevents ferroptosis in a TfR1-dependent manner. Free Radic Biol Med 2023; 208:445-457. [PMID: 37683766 DOI: 10.1016/j.freeradbiomed.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Autophagy is a major clearance pathway for misfolded α-synuclein which promotes ferroptosis through NCOA4-mediated ferritin degradation. The regulation of these two processes to achieve improved neuroprotection in Parkinson's disease (PD) must be elucidated. Transcription factor EB (TFEB) is a master regulator of both autophagy and lysosome biogenesis, and lysosomes are important cellular iron storage organelles; however, the role of TFEB in ferroptosis and iron metabolism remains unclear. In this study, TFEB overexpression promoted the clearance of misfolded α-synuclein and prevented ferroptosis and iron overload. TFEB overexpression up-regulated transferrin receptor 1 (TfR1) synthesis and increased the localization of TfR1 in the lysosome, facilitating lysosomal iron import and transient lysosomal iron storage. TFEB overexpression increased the levels of cellular iron-safe storage proteins (both ferritin light and heavy chains). These functions in iron metabolism maintain the cellular labile iron at a low level and electrical activity, even under iron overload conditions. Notably, lower levels of cellular labile iron and the upregulation of ferritin light and heavy chains were reversed after TfR1 knockdown in cells overexpressing TFEB, indicating that TFEB regulates cellular labile iron and suppresses ferroptosis in a TfR1 dependent manner. Taken together, this evidence of the regulation of iron metabolism enriches our understanding of the function of TFEB. In addition, TFEB overexpression protects against ferroptosis and iron overload and provides a new direction and perspective for autophagy regulation in PD.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China.
| | - Yue Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Lin Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Xianhui Jv
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Ang Li
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Wenting Jia
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Le Qu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Limin Shi
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
19
|
Yu X, Xiao Z, Xie J, Xu H. Ferritin Is Secreted from Primary Cultured Astrocyte in Response to Iron Treatment via TRPML1-Mediated Exocytosis. Cells 2023; 12:2519. [PMID: 37947597 PMCID: PMC10650167 DOI: 10.3390/cells12212519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Impaired iron homeostasis has been proven to be one of the critical contributors to the pathology of Parkinson's disease (PD). Ferritin is considered an intracellular protein responsible for storing cytosolic iron. Recent studies have found that ferritin can be secreted from cells independent of the classical endoplasmic reticulum-Golgi system. However, the precise mechanisms underlying the secretion of ferritin in the brain were not elucidated. In the present study, we demonstrated that the primary cultured astrocytes do have the ability to secrete ferritin, which is enhanced by iron treatment. Increased ferritin secretion was accompanied by increased protein expression of ferritin response to iron stimulation. Further study showed that iron-induced expression and secretion of ferritin could be inhibited by CQ or 3-MA pretreatment. In addition, the knockdown of transient receptor potential mucolipin 1 (TRPML1) antagonized iron-induced ferritin secretion, accompanied by further increased intracellular protein levels of ferritin. Further study demonstrated that ferritin colocalized with LAMP1 in iron-treated astrocytes. On the contrary, ras-associated protein 27a (Rab27a) knockdown further enhanced iron-induced ferritin secretion and decreased intracellular protein levels of ferritin. Furthermore, we also showed that the secretory autophagy protein tripartite motif containing 16 (TRIM16) and sec22b decreased in iron-treated astrocytes. These results suggested that astrocytes might secrete ferritin via TRPML1-mediated exocytosis. This provides new evidence for the mechanisms underlying the secretion of ferritin in primary cultured astrocytes under a high iron environment.
Collapse
Affiliation(s)
- Xiaoqi Yu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zhixin Xiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| |
Collapse
|
20
|
Abstract
Iron accumulation in the CNS occurs in many neurological disorders. It can contribute to neuropathology as iron is a redox-active metal that can generate free radicals. The reasons for the iron buildup in these conditions are varied and depend on which aspects of iron influx, efflux, or sequestration that help maintain iron homeostasis are dysregulated. Iron was shown recently to induce cell death and damage via lipid peroxidation under conditions in which there is deficient glutathione-dependent antioxidant defense. This form of cell death is called ferroptosis. Iron chelation has had limited success in the treatment of neurological disease. There is therefore much interest in ferroptosis as it potentially offers new drugs that could be more effective in reducing iron-mediated lipid peroxidation within the lipid-rich environment of the CNS. In this review, we focus on the molecular mechanisms that induce ferroptosis. We also address how iron enters and leaves the CNS, as well as the evidence for ferroptosis in several neurological disorders. Finally, we highlight biomarkers of ferroptosis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Fari Ryan
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Priya Jhelum
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
21
|
Gao G, You L, Zhang J, Chang YZ, Yu P. Brain Iron Metabolism, Redox Balance and Neurological Diseases. Antioxidants (Basel) 2023; 12:1289. [PMID: 37372019 DOI: 10.3390/antiox12061289] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The incidence of neurological diseases, such as Parkinson's disease, Alzheimer's disease and stroke, is increasing. An increasing number of studies have correlated these diseases with brain iron overload and the resulting oxidative damage. Brain iron deficiency has also been closely linked to neurodevelopment. These neurological disorders seriously affect the physical and mental health of patients and bring heavy economic burdens to families and society. Therefore, it is important to maintain brain iron homeostasis and to understand the mechanism of brain iron disorders affecting reactive oxygen species (ROS) balance, resulting in neural damage, cell death and, ultimately, leading to the development of disease. Evidence has shown that many therapies targeting brain iron and ROS imbalances have good preventive and therapeutic effects on neurological diseases. This review highlights the molecular mechanisms, pathogenesis and treatment strategies of brain iron metabolism disorders in neurological diseases.
Collapse
Affiliation(s)
- Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Linhao You
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Jianhua Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| |
Collapse
|
22
|
Tsubaki H, Yanagisawa D, Kageyama Y, Hafiz Abu Baker Z, Mukaisho KI, Tooyama I. Immunohistochemical Analysis of Mitochondrial Ferritin in the Midbrain of Patients with Parkinson's Disease. Acta Histochem Cytochem 2023; 56:21-27. [PMID: 37124956 PMCID: PMC10139838 DOI: 10.1267/ahc.22-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 05/02/2023] Open
Abstract
Mitochondrial ferritin (FtMt) is an endogenous iron-storage protein localized in the mitochondria. FtMt is mainly observed in restricted tissues, such as those in the testis, islets of Langerhans, and brain. Further, it may protect cells from oxidative stress in neurodegenerative diseases, including Alzheimer's disease and progressive supranuclear palsy. However, the role of FtMt in Parkinson's disease (PD) remains unclear. Therefore, the current study investigated the localization and expression level of FtMt in the midbrain of patients with PD and healthy controls using immunohistochemical techniques. FtMt immunoreactivity was mainly detected in dopaminergic neurons in the substantia nigra pars compacta (SNc) in both healthy controls and patients with PD. In addition, FtMt-positive particles were observed outside the dopaminergic neurons in patients with PD. Based on a quantitative comparison, patients with PD had a significantly upregulated FtMt immunoreactivity in dopaminergic neurons than healthy controls. Our result might be helpful in future studies on the role of FtMt in PD.
Collapse
Affiliation(s)
- Haruka Tsubaki
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yusuke Kageyama
- Department of Pathology, Shiga University of Medical Science, Otsu, Japan
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, Japan
| | | | - Ken-ichi Mukaisho
- Department of Pathology, Shiga University of Medical Science, Otsu, Japan
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
23
|
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Res Rev 2023; 87:101931. [PMID: 37031723 DOI: 10.1016/j.arr.2023.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China.
| |
Collapse
|
24
|
Zheng H, Guo X, Kang S, Li Z, Tian T, Li J, Wang F, Yu P, Chang S, Chang YZ. Cdh5-mediated Fpn1 deletion exerts neuroprotective effects during the acute phase and inhibitory effects during the recovery phase of ischemic stroke. Cell Death Dis 2023; 14:161. [PMID: 36841833 PMCID: PMC9968354 DOI: 10.1038/s41419-023-05688-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Ischemic stroke is associated with high mortality and morbidity rates worldwide. However, the molecular mechanisms underlying the neuronal damage incurred by stroke victims remain unclear. It has previously been reported that ischemic stroke can induce an increase in the levels of brain iron, which is an important factor of in the associated brain damage. Ferroportin 1 (FPN1), the only known cellular iron export protein, is found in brain microvascular endothelial cells (BMVECs) at the blood-brain barrier, and is considered the gateway for entry of plasma iron into the central nervous system. Despite the connection of brain iron to neuronal damage, the role of BMVECs FPN1 in ischemic stroke remains unexplored. Herein, we conditionally deleted Fpn1 in mouse endothelial cells (ECs), using VE-cadherin-Cre transgenic mice, and explored the impact on brain iron homeostasis after stroke. Our data demonstrated that Fpn1 knockout in ECs decreased the brain iron levels in mice, attenuated the oxidative stress and inflammatory responses after stroke, and inhibited both ferroptosis and apoptosis, ultimately alleviating neurological impairment and decreasing cerebral infarct volume during the acute phase of ischemic stroke. By contrast, we found that Fpn1 knockout in ECs delayed the recovery of neurological function in mice following ischemic stroke. We also found that ECs Fpn1 knockout decreased the brain iron levels after stroke, exacerbated glial cell proliferation, and inhibited neuronal development, indicating that the diminished brain iron levels hindered the repair of neural injury in mice. In conclusion, our findings reveal a dual consequence of FPN1 deficiency in ECs in the development of ischemic stroke. More specifically, iron deficiency initially exerts a neuroprotective effect during the acute phase of ischemic stroke but inhibits recovery during the later stages. Our findings are important to the development of iron- or FPN1-targeting therapeutics for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Huiwen Zheng
- grid.256884.50000 0004 0605 1239Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 Hebei Province China
| | - Xin Guo
- grid.452458.aNeuromedical Technology Innovation Center of Hebei Province, Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei Province China ,grid.413259.80000 0004 0632 3337Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000 Hebei Province China
| | - Shaomeng Kang
- grid.256884.50000 0004 0605 1239Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 Hebei Province China
| | - Zhongda Li
- grid.256884.50000 0004 0605 1239Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 Hebei Province China
| | - Tian Tian
- grid.256884.50000 0004 0605 1239Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 Hebei Province China
| | - Jianhua Li
- grid.256884.50000 0004 0605 1239Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 Hebei Province China
| | - Fudi Wang
- grid.13402.340000 0004 1759 700XThe Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang Province China ,grid.412017.10000 0001 0266 8918The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan Province China
| | - Peng Yu
- grid.256884.50000 0004 0605 1239Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 Hebei Province China
| | - Shiyang Chang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Yan-zhong Chang
- grid.256884.50000 0004 0605 1239Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 Hebei Province China
| |
Collapse
|
25
|
Shen LH, Luo QQ, Hu CB, Jiang H, Yang Y, Wang GH, Ji QH, Jia ZZ. DL-3-n-butylphthalide alleviates motor disturbance by suppressing ferroptosis in a rat model of Parkinson’s disease. Neural Regen Res 2023; 18:194-199. [PMID: 35799542 PMCID: PMC9241398 DOI: 10.4103/1673-5374.343892] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Naidu SAG, Wallace TC, Davies KJA, Naidu AS. Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19. J Diet Suppl 2023; 20:218-253. [PMID: 33977807 DOI: 10.1080/19390211.2021.1922567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Overall mental health depends in part on the blood-brain barrier, which regulates nutrient transfer in-and-out of the brain and its central nervous system. Lactoferrin, an innate metal-transport protein, synthesized in the substantia nigra, particularly in dopaminergic neurons and activated microglia is vital for brain physiology. Lactoferrin rapidly crosses the blood-brain barrier via receptor-mediated transcytosis and accumulates in the brain capillary endothelial cells. Lactoferrin receptors are additionally present on glioma cells, brain micro-vessels, and neurons. As a regulator of neuro-redox, microglial lactoferrin is critical for protection/repair of neurons and healthy brain function. Iron imbalance and oxidative stress are common among patients with neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, dementia, depression, and multiple sclerosis. As an endogenous iron-chelator, lactoferrin prevents iron accumulation and dopamine depletion in Parkinson's disease patients. Oral lactoferrin supplementation could modulate the p-Akt/PTEN pathway, reduce Aβ deposition, and ameliorate cognitive decline in Alzheimer's disease. Novel lactoferrin-based nano-therapeutics have emerged as effective drug-delivery systems for clinical management of neurodegenerative disorders. Recent emergence of the Coronavirus disease-2019 (COVID-19) pandemic, initially considered a respiratory illness, demonstrated a broader virulence spectrum with the ability to cross the blood-brain barrier and inflict a plethora of neuropathological manifestations in the brain - the Neuro-COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are widely reported in Parkinson's disease, Alzheimer's disease, dementia, and multiple sclerosis patients with aggravated clinical outcomes. Lactoferrin, credited with several neuroprotective benefits in the brain could serve as a potential adjuvant in the clinical management of Neuro-COVID-19.
Collapse
Affiliation(s)
- Sreus A G Naidu
- N-terminus Research Laboratory, Yorba Linda, California, USA
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
- Think Healthy Group, Washington, District of Columbia, USA
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, California, USA
- Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California, USA
- Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
27
|
Özduran G, Becer E, Vatansever HS. The Role and Mechanisms of Action of Catechins in Neurodegenerative Diseases. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:67-74. [PMID: 34817304 DOI: 10.1080/07315724.2021.1981487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prevalence, incidence and mortality rates of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are gradually increasing. New approaches are being developed to manage the progression and treatment of neurodegenerative diseases. Catechins, polyphenolic compounds, are key compounds that demonstrate therapeutic effects with their properties such as antioxidant, anti-inflammatory, anti-apoptotic properties in the prevention and treatment of neurodegenerative diseases. The therapeutic effects of catechins have been exhaustively studied in human and animal models. Catechins can have anti-inflammatory effects by suppressing inflammatory pathways and cytokines, as well as antioxidant effects such as chelating metal ions and scavenging radicals. They might reduce phosphorylation of tau proteins, aggregation of amyloid-beta and apoptotic proteins release. They can also decrease alpha-synuclein accumulation and increase dopamine levels. With all these effects, they can have an effect on neurodegenerative diseases. This review points to the potential mechanisms of catechins in neurodegenerative diseases, based on their findings in the literature review.Key teaching pointsCatechins can reduce amyloid-β plaque aggregation and tau phosphorylation.Catechins can decrease alfa-synuclein levels.Catechins can protect neuronal cells with their anti-apoptotic effect.More comprehensive studies are needed to clarify this issue.
Collapse
Affiliation(s)
- Gülşen Özduran
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Near East University, Nicosia, Mersin 10 Turkey
| | - Eda Becer
- DESAM Institute, Near East University, Nicosia, Mersin 10 Turkey.,Faculty of Pharmacy, Department of Biochemistry, Near East University, Nicosia, Mersin 10 Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, Mersin 10 Turkey.,Faculty of Medicine, Department of Histology & Embryology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
28
|
Zhang M, Cheng Y, Zhai Y, Yuan Y, Hu H, Meng X, Fan X, Sun H, Li S. Attenuated iron stress and oxidative stress may participate in anti-seizure and neuroprotective roles of xenon in pentylenetetrazole-induced epileptogenesis. Front Cell Neurosci 2022; 16:1007458. [DOI: 10.3389/fncel.2022.1007458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The previous studies have demonstrated the excellent neuroprotective effects of xenon. In this study, we verified the anti-seizure and neuroprotective roles of xenon in epileptogenesis and evaluated the involvement of oxidative stress and iron accumulation in the protective roles of xenon. Epileptogenesis was induced by pentylenetetrazole (PTZ) treatment in Sprague-Dawley rats. During epileptogenesis, we found increased levels of iron and oxidative stress accompanied by elevated levels of divalent metal transporter protein 1 and iron regulatory protein 1, which are closely associated with iron accumulation. Meanwhile, the levels of autophagy and mitophagy increased, alongside significant neuronal damage and cognitive deficits. Xenon treatment reversed these effects: oxidative stress and iron stress were reduced, neuronal injury and seizure severity were attenuated, and learning and memory deficits were improved. Thus, our results confirmed the neuroprotective and anti-seizure effects of xenon treatment in PTZ-induced epileptogenesis. The reduction in oxidative and iron stress may be the main mechanisms underlying xenon treatment. Thus, this study provides a potential intervention strategy for epileptogenesis.
Collapse
|
29
|
Chitosan-Polyphenol Conjugates for Human Health. Life (Basel) 2022; 12:life12111768. [DOI: 10.3390/life12111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Human health deteriorates due to the generation and accumulation of free radicals that induce oxidative stress, damaging proteins, lipids, and nucleic acids; this has become the leading cause of many deadly diseases such as cardiovascular, cancer, neurodegenerative, diabetes, and inflammation. Naturally occurring polyphenols have tremendous therapeutic potential, but their short biological half-life and rapid metabolism limit their use. Recent advancements in polymer science have provided numerous varieties of natural and synthetic polymers. Chitosan is widely used due to its biomimetic properties which include biodegradability, biocompatibility, inherent antimicrobial activity, and antioxidant properties. However, due to low solubility in water and the non-availability of the H-atom donor, the practical use of chitosan as an antioxidant is limited. Therefore, chitosan has been conjugated with polyphenols to overcome the limitations of both chitosan and polyphenol, along with increasing the potential synergistic effects of their combination for therapeutic applications. Though many methods have been evolved to conjugate chitosan with polyphenol through activated ester-modification, enzyme-mediated, and free radical induced are the most widely used strategies. The therapeutic efficiency of chitosan-polyphenol conjugates has been investigated for various disease treatments caused by ROS that have shown favorable outcomes and tremendous results. Hence, the present review focuses on the recent advancement of different strategies of chitosan-polyphenol conjugate formation with their advantages and limitations. Furthermore, the therapeutic applicability of the combinatorial efficiency of chitosan-based conjugates formed using Gallic Acid, Curcumin, Catechin, and Quercetin in human health has been described in detail.
Collapse
|
30
|
Spiers JG, Cortina Chen HJ, Barry TL, Bourgognon JM, Steinert JR. Redox stress and metal dys-homeostasis appear as hallmarks of early prion disease pathogenesis in mice. Free Radic Biol Med 2022; 192:182-190. [PMID: 36170956 DOI: 10.1016/j.freeradbiomed.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases are associated with a multitude of dysfunctional cellular pathways. One major contributory factor is a redox stress challenge during the development of several protein misfolding conditions including Alzheimer's (AD), Parkinson's disease (PD), and less common conditions such as Creutzfeldt Jakob disease (CJD). CJD is caused by misfolding of the neuronal prion protein and is characterised by a neurotoxic unfolded protein response involving chronic endoplasmic reticulum stress, reduced protein translation and spongiosis leading subsequently to synaptic and neuronal loss. Here we have characterised prion disease in mice to assess redox stress components including nitrergic and oxidative markers associated with neuroinflammatory activation. Aberrant regulation of the homeostasis of several redox metals contributes to the overall cellular redox stress and we have identified altered levels of iron, copper, zinc, and manganese in the hippocampus of prion diseased mice. Our data show that early in disease, there is evidence for oxidative stress in conjunction with reduced antioxidant superoxide dismutase mRNA and protein expression. Moreover, expression of divalent metal transporter proteins was reduced for Atp7b, Atox1, Slc11a2, Slc39a14 at 6-7 weeks but increased for Slc39a14 and Mt1 at 10 weeks of disease. Our data present evidence for a strong pro-oxidant environment and altered redox metal homeostasis in early disease pathology which both may be contributory factors to aggravating this protein misfolding disease.
Collapse
Affiliation(s)
- Jereme G Spiers
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Hsiao-Jou Cortina Chen
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Tiffany L Barry
- School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Julie-Myrtille Bourgognon
- School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham, NG7 2NR, UK.
| |
Collapse
|
31
|
Karmous I, Tlahig S, Loumerem M, Lachiheb B, Bouhamda T, Mabrouk M, Debouba M, Chaoui A. Assessment of the risks of copper- and zinc oxide-based nanoparticles used in Vigna radiata L. culture on food quality, human nutrition and health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4045-4061. [PMID: 34850307 DOI: 10.1007/s10653-021-01162-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The present article aims to assess the phytotoxic effects of copper and zinc oxide nanoparticles (Cu NPs, ZnO NPs) on mung bean (Vigna radiata L.) and their possible risk on food quality and safety. We also study the molecular mechanisms underlying the toxicity of nanosized Cu and ZnO. Seeds of mung bean were germinated under increasing concentrations of Cu NPs and ZnO NPs (10, 100, 1000, 2000 mg/L). We analyzed levels of free amino acids, total soluble sugars, minerals, polyphenols and antioxidant capacity. Our results showed that depending on the concentrations used of Cu NPs and ZnO NPs, the physiology of seed germination and embryo growth were modified. Both free metal ions and nanoparticles themselves may impact plant cellular and physiological processes. At 10 mg/L, an improvement of the nutritive properties, in terms of content in free amino acids, total soluble sugars, essential minerals, antioxidant polyphenols and flavonoids, was shown. However, higher concentrations (100-2000 mg/L) caused an alteration in the nutritional balance, which was revealed by the decrease in contents and quality of phenolic compounds, macronutrients (Na, Mg, Ca) and micronutrients (Cu, Fe, Mn, Zn, K). The overall effects of Cu and ZnO nanoparticles seem to interfere with the bioavailability of mineral and organic nutrients and alter the beneficial properties of the antioxidant phytochemicals, mineral compounds, phenolic acids and flavonoids. This may result in a potential hazard to human food and health, at some critical doses of nanofertilizers. This study may contribute in the guidelines to the safe use of nanofertilizers or nanosafety, for more health benefit and less potential risks.
Collapse
Affiliation(s)
- Inès Karmous
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia.
- Biology and Environmental Department, Insitute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, Tunisia.
| | - Samir Tlahig
- Biology and Environmental Department, Insitute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, Tunisia
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Mohamed Loumerem
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Belgacem Lachiheb
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Talel Bouhamda
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Mahmoud Mabrouk
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Mohamed Debouba
- Biology and Environmental Department, Insitute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, Tunisia
| | - Abdelilah Chaoui
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia
| |
Collapse
|
32
|
Miao M, Han Y, Wang Y, Yang Y, Zhu R, Sun M, Zhang J. The research landscape of ferroptosis in the brain: A bibliometric analysis. Front Pharmacol 2022; 13:1014550. [PMID: 36330097 PMCID: PMC9622939 DOI: 10.3389/fphar.2022.1014550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 09/29/2023] Open
Abstract
Background: Ferroptosis is a newly proposed concept of programmed cell death and has been widely studied in many diseases during the past decade. However, a bibliometric study that concentrates on publication outputs and research trends of ferroptosis related to the brain is lacking. Methods: We retrieved publication data in the field of ferroptosis in the brain from the Web of Science Core Collection on 31 December 2021. A bibliometric analysis was performed using VOSviewer and CiteSpace software. Results: Six hundred fifty-six documents focusing on ferroptosis in the brain were published from 2012 to 2021. The number of publications in this field has shown a steady increase in recent years. Most publications were from China (338) and the United States (166), while the most productive organizations were at the University of Melbourne (34) and University of Pittsburgh (23). Ashley I. Bush was the most productive author, while Scott J Dixon was the most co-cited author. The journal Free Radical Biology and Medicine published the most articles in this field, while Cell was the most cited journal. Among 656 publications, top 10 cited documents were cited at least 300 times. Among the top 20 references with the strongest citation bursts, half of the papers had a burst until 2021. The keywords analysis suggests that the top 20 keywords appeared at least 40 times. Additionally, "amyloid precursor protein" was the keyword with strongest bursts. Conclusion: Research on ferroptosis in the brain will continue to be highly regarded. This study analyzed the research landscape of ferroptosis in the brain and offers a new reference for researchers in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, People’s Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
NAUREEN ZAKIRA, MEDORI MARIACHIARA, DHULI KRISTJANA, DONATO KEVIN, CONNELLY STEPHENTHADDEUS, BELLINATO FRANCESCO, GISONDI PAOLO, BERTELLI MATTEO. Polyphenols and Lactobacillus reuteri in oral health. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E246-E254. [PMID: 36479495 PMCID: PMC9710395 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Oral health is one of the necessary preludes to the overall quality of life. Several medical procedures and therapies are available to treat oral diseases in general and periodontal diseases in particular, yet caries, periodontitis, oral cancer, and oral infections remain a global concern. Natural molecules, with their anti-oxidant, anti-inflammatory, and anti-microbic properties, are one of the main sources of oral health and dental health care, and should be supplemented to exploit their beneficial effects. A possible way to improve the intake of these molecules is adhering to a diet that is rich in fruits, vegetables, and probiotics, which has many beneficial properties and can improve overall health and wellbeing. The Mediterranean diet, in particular, provides several beneficial natural molecules, mainly because of the precious nutrients contained in its typical ingredients, mainly plant-based (olives, wine, citrus fruits, and many more). Its beneficial effects on several diseases and in increasing the overall wellbeing of the population are currently being studied by physicians. Among its nutrients, polyphenols (including, among other molecules, lignans, tannins, and flavonoids) seem to be of outmost importance: several studies showed their anticariogenic properties, as well as their effects in decreasing the incidence of non-communicable diseases. Therefore, plant-derived molecules - such as polyphenols - and probiotics - such as Lactobacillus reuteri - have shown a significant potential in treating and curing oral diseases, either alone or in combination, owing to their antioxidant and antimicrobial properties, respectively.
Collapse
Affiliation(s)
| | | | - KRISTJANA DHULI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Kristjana Dhuli, MAGI’S LAB, Rovereto (TN), 38068, Italy; E-mail:
| | | | | | - FRANCESCO BELLINATO
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - PAOLO GISONDI
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
34
|
Liu MZ, Kong N, Zhang GY, Xu Q, Xu Y, Ke P, Liu C. The critical role of ferritinophagy in human disease. Front Pharmacol 2022; 13:933732. [PMID: 36160450 PMCID: PMC9493325 DOI: 10.3389/fphar.2022.933732] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Ferritinophagy is a type of autophagy mediated by nuclear receptor activator 4 (NCOA4), which plays a role in inducing ferroptosis by regulating iron homeostasis and producing reactive oxygen species in cells. Under physiological conditions, ferritinophagy maintains the stability of intracellular iron by regulating the release of free iron. Studies have demonstrated that ferritinophagy is necessary to induce ferroptosis; however, under pathological conditions, excessive ferritinophagy results in the release of free iron in large quantities, which leads to lipid peroxidation and iron-dependent cell death, known as ferroptosis. Ferritinophagy has become an area of interest in recent years. We here in review the mechanism of ferritinophagy and its association with ferroptosis and various diseases to provide a reference for future clinical and scientific studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Ke
- *Correspondence: Ping Ke, ; Chong Liu,
| | - Chong Liu
- *Correspondence: Ping Ke, ; Chong Liu,
| |
Collapse
|
35
|
Dang X, Huan X, Du X, Chen X, Bi M, Yan C, Jiao Q, Jiang H. Correlation of Ferroptosis and Other Types of Cell Death in Neurodegenerative Diseases. Neurosci Bull 2022; 38:938-952. [PMID: 35482278 PMCID: PMC9352832 DOI: 10.1007/s12264-022-00861-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Ferroptosis is defined as an iron-dependent, non-apoptotic cell death pathway, with specific morphological phenotypes and biochemical changes. There is a growing realization that ferroptosis has significant implications for several neurodegenerative diseases. Even though ferroptosis is different from other forms of programmed death such as apoptosis and autophagic death, they involve a number of common protein molecules. This review focuses on current research on ferroptosis and summarizes the cross-talk among ferroptosis, apoptosis, and autophagy that are implicated in neurodegenerative diseases. We hope that this information provides new ideas for understanding the mechanisms and searching for potential therapeutic approaches and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoting Dang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xuejie Huan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
36
|
Wang Y, Tang B, Zhu J, Yu J, Hui J, Xia S, Ji J. Emerging Mechanisms and Targeted Therapy of Ferroptosis in Neurological Diseases and Neuro-oncology. Int J Biol Sci 2022; 18:4260-4274. [PMID: 35844784 PMCID: PMC9274504 DOI: 10.7150/ijbs.72251] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/27/2022] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a novel type of cell death characterized by iron-dependent lipid peroxidation that involves a variety of biological processes, such as iron metabolism, lipid metabolism, and oxidative stress. A growing body of research suggests that ferroptosis is associated with cancer and neurodegenerative diseases, such as glioblastoma, Alzheimer's disease, Parkinson's disease, and stroke. Building on these findings, we can selectively induce ferroptosis for the treatment of certain cancers, or we can treat neurodegenerative diseases by inhibiting ferroptosis. This review summarizes the relevant advances in ferroptosis, the regulatory mechanisms of ferroptosis, the participation of ferroptosis in brain tumors and neurodegenerative diseases, and the corresponding drug therapies to provide new potential targets for its treatment.
Collapse
Affiliation(s)
- Yajie Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Junguo Hui
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Shuiwei Xia
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| |
Collapse
|
37
|
Deficiency of the RNA-binding protein Cth2 extends yeast replicative lifespan by alleviating its repressive effects on mitochondrial function. Cell Rep 2022; 40:111113. [PMID: 35858543 PMCID: PMC9382658 DOI: 10.1016/j.celrep.2022.111113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Iron dyshomeostasis contributes to aging, but little information is available about the molecular mechanisms. Here, we provide evidence that in Saccharomyces cerevisiae, aging is associated with altered expression of genes involved in iron homeostasis. We further demonstrate that defects in the conserved mRNA-binding protein Cth2, which controls stability and translation of mRNAs encoding iron-containing proteins, increase lifespan by alleviating its repressive effects on mitochondrial function. Mutation of the conserved cysteine residue in Cth2 that inhibits its RNA-binding activity is sufficient to confer longevity, whereas Cth2 gain of function shortens replicative lifespan. Consistent with its function in RNA degradation, Cth2 deficiency relieves Cth2-mediated post-transcriptional repression of nuclear-encoded components of the electron transport chain. Our findings uncover a major role of the RNA-binding protein Cth2 in the regulation of lifespan and suggest that modulation of iron starvation signaling can serve as a target for potential aging interventions. Dysregulation of iron homeostasis contributes to aging, but little information is available about the molecular mechanisms. Here, Patnaik et al. show that the mRNA-binding protein Cth2, which is involved in regulation of iron-dependent genes, is induced during aging and links impaired iron homeostasis with an age-related decline of mitochondrial function.
Collapse
|
38
|
Schirmbeck GH, Sizonenko S, Sanches EF. Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. Nutrients 2022; 14:2923. [PMID: 35889882 PMCID: PMC9322498 DOI: 10.3390/nu14142923] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Early adverse fetal environments can significantly disturb central nervous system (CNS) development and subsequently alter brain maturation. Nutritional status is a major variable to be considered during development and increasing evidence links neonate and preterm infant impaired brain growth with neurological and psychiatric diseases in adulthood. Breastfeeding is one of the main components required for healthy newborn development due to the many "constitutive" elements breastmilk contains. Maternal intake of specific nutrients during lactation may alter milk composition, thus affecting newborn nutrition and, potentially, brain development. Lactoferrin (Lf) is a major protein present in colostrum and the main protein in human milk, which plays an important role in the benefits of breastfeeding during postnatal development. It has been demonstrated that Lf has antimicrobial, as well as anti-inflammatory properties, and is potentially able to reduce the incidence of sepsis and necrotizing enterocolitis (NEC), which are particularly frequent in premature births. The anti-inflammatory effects of Lf can reduce birth-related pathologies by decreasing the release of pro-inflammatory factors and inhibiting premature cervix maturation (also related to commensal microbiome abnormalities) that could contribute to disrupting brain development. Pre-clinical evidence shows that Lf protects the developing brain from neuronal injury, enhances brain connectivity and neurotrophin production, and decreases inflammation in models of perinatal inflammatory challenge, intrauterine growth restriction (IUGR) and neonatal hypoxia-ischemia (HI). In this context, Lf can provide nutritional support for brain development and cognition and prevent the origin of neuropsychiatric diseases later in life. In this narrative review, we consider the role of certain nutrients during neurodevelopment linking to the latest research on lactoferrin with respect to neonatology. We also discuss new evidence indicating that early neuroprotective pathways modulated by Lf could prevent neurodegeneration through anti-inflammatory and immunomodulatory processes.
Collapse
Affiliation(s)
- Gabriel Henrique Schirmbeck
- Biochemistry Post-Graduate Program, Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil;
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
39
|
Jiang H, Li Z, Yang W, Sun Y, Yan F, Sun Q, Wei H, Bian L. Region-specific disturbed iron redistribution in Cushing's disease measured by magnetic resonance imaging-based quantitative susceptibility mapping. Clin Endocrinol (Oxf) 2022; 97:81-90. [PMID: 35170794 DOI: 10.1111/cen.14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cushing's disease (CD) is most common endogenous Cushing's syndrome. This study aimed to assess iron alternations in deep grey matter in CD. DESIGN A cross-sectional study was performed. PATIENTS In this study, 48 active CD patients, 39 remitted CD patients and 52 healthy control (HC) subjects underwent magnetic resonance imaging. MEASUREMENTS Quantitative susceptibility mapping (QSM). RESULTS Decreased susceptibility values were found in the bilateral putamen, caudate, red nucleus, subthalamic nucleus and pulvinar nuclei of the thalamus (TL-PLV) in active and remitted patients with CD compared with HCs. Interestingly, in remitted patients with CD, altered susceptibility values were significantly correlated with altered brain volumes in TL-PLV, while TL-PLV may play an essential role as a general regulatory hub for adaptive and flexible cognition. CONCLUSION Chronic exposure to hypercortisolism may be related to iron distribution and significantly correlated with altered brain volumes and clinical features in patients with CD.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Rui Jin Lu Wan Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Yang
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Rui Jin Lu Wan Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
David S, Jhelum P, Ryan F, Jeong SY, Kroner A. Dysregulation of Iron Homeostasis in the Central Nervous System and the Role of Ferroptosis in Neurodegenerative Disorders. Antioxid Redox Signal 2022; 37:150-170. [PMID: 34569265 DOI: 10.1089/ars.2021.0218] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Iron accumulation occurs in the central nervous system (CNS) in a variety of neurological conditions as diverse as spinal cord injury, stroke, multiple sclerosis, Parkinson's disease, and others. Iron is a redox-active metal that gives rise to damaging free radicals if its intracellular levels are not controlled or if it is not properly sequestered within cells. The accumulation of iron occurs due to dysregulation of mechanisms that control cellular iron homeostasis. Recent Advances: The molecular mechanisms that regulate cellular iron homeostasis have been revealed in much detail in the past three decades, and new advances continue to be made. Understanding which aspects of iron homeostasis are dysregulated in different conditions will provide insights into the causes of iron accumulation and iron-mediated tissue damage. Recent advances in iron-dependent lipid peroxidation leading to cell death, called ferroptosis, has provided useful insights that are highly relevant for the lipid-rich environment of the CNS. Critical Issues: This review examines the mechanisms that control normal cellular iron homeostasis, the dysregulation of these mechanisms in neurological disorders, and more recent work on how iron can induce tissue damage via ferroptosis. Future Directions: Quick and reliable tests are needed to determine if and when ferroptosis contributes to the pathogenesis of neurological disorders. In addition, there is need to develop better druggable agents to scavenge lipid radicals and reduce CNS damage for neurological conditions for which there are currently few effective treatments. Antioxid. Redox Signal. 37, 150-170.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Priya Jhelum
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Suh Young Jeong
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
41
|
Gao XY, Yang T, Gu Y, Sun XH. Mitochondrial Dysfunction in Parkinson’s Disease: From Mechanistic Insights to Therapy. Front Aging Neurosci 2022; 14:885500. [PMID: 35795234 PMCID: PMC9250984 DOI: 10.3389/fnagi.2022.885500] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative movement disorders worldwide. There are currently no cures or preventative treatments for PD. Emerging evidence indicates that mitochondrial dysfunction is closely associated with pathogenesis of sporadic and familial PD. Because dopaminergic neurons have high energy demand, cells affected by PD exhibit mitochondrial dysfunction that promotes the disease-defining the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The mitochondrion has a particularly important role as the cellular “powerhouse” of dopaminergic neurons. Therefore, mitochondria have become a promising therapeutic target for PD treatments. This review aims to describe mitochondrial dysfunction in the pathology of PD, outline the genes associated with familial PD and the factors related to sporadic PD, summarize current knowledge on mitochondrial quality control in PD, and give an overview of therapeutic strategies for targeting mitochondria in neuroprotective interventions in PD.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tuo Yang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Gu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Hong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|
42
|
Sterling JK, Baumann B, Foshe S, Voigt A, Guttha S, Alnemri A, McCright SJ, Li M, Zauhar RJ, Montezuma SR, Kapphahn RJ, Chavali VRM, Hill DA, Ferrington DA, Stambolian D, Mullins RF, Merrick D, Dunaief JL. Inflammatory adipose activates a nutritional immunity pathway leading to retinal dysfunction. Cell Rep 2022; 39:110942. [PMID: 35705048 PMCID: PMC9248858 DOI: 10.1016/j.celrep.2022.110942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/24/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Age-related macular degeneration (AMD), the leading cause of irreversible blindness among Americans over 50, is characterized by dysfunction and death of retinal pigment epithelial (RPE) cells. The RPE accumulates iron in AMD, and iron overload triggers RPE cell death in vitro and in vivo. However, the mechanism of RPE iron accumulation in AMD is unknown. We show that high-fat-diet-induced obesity, a risk factor for AMD, drives systemic and local inflammatory circuits upregulating interleukin-1β (IL-1β). IL-1β upregulates RPE iron importers and downregulates iron exporters, causing iron accumulation, oxidative stress, and dysfunction. We term this maladaptive, chronic activation of a nutritional immunity pathway the cellular iron sequestration response (CISR). RNA sequencing (RNA-seq) analysis of choroid and retina from human donors revealed that hallmarks of this pathway are present in AMD microglia and macrophages. Together, these data suggest that inflamed adipose tissue, through the CISR, can lead to RPE pathology in AMD.
Collapse
Affiliation(s)
- Jacob K Sterling
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bailey Baumann
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sierra Foshe
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew Voigt
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Samyuktha Guttha
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sam J McCright
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Randy J Zauhar
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19104, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rebecca J Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkata R M Chavali
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David A Hill
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dwight Stambolian
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert F Mullins
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - David Merrick
- Department of Medicine, Division of Endocrinology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua L Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Stachowska L, Koziarska D, Karakiewicz B, Kotwas A, Knyszyńska A, Folwarski M, Dec K, Stachowska E, Hawryłkowicz V, Kulaszyńska M, Sołek-Pastuszka J, Skonieczna-Żydecka K. Hepcidin (rs10421768), Transferrin (rs3811647, rs1049296) and Transferrin Receptor 2 (rs7385804) Gene Polymorphism Might Be Associated with the Origin of Multiple Sclerosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116875. [PMID: 35682458 PMCID: PMC9180173 DOI: 10.3390/ijerph19116875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system in which there is a multifocal damage to the nerve tissue. Additionally, the literature emphasizes the excessive accumulation of iron in the central nervous system of patients, which is negatively correlated with their psychophysical fitness. Iron metabolism genes polymorphisms may modulate iron deposition in the body and thus affect the clinical course of MS. We aimed to assess the frequency of HAMP, TFR2, and TF polymorphisms in MS patients and their impact on the clinical course of the disease. The studied polymorphisms were identified by the Real-Time PCR using TaqMan technology. Neurological assessment by means of EDSS scale was conducted. This cross-sectional study included 176 patients, with the mean age of onset of symptoms at 30.6 years. The frequency of alleles of the studied polymorphisms was as follows: (a) HAMP rs10421768: A 75.9% (n = 267), G 24.1% (n = 65), (b) TF rs1049296: C 89.2% (n = 314), T 10.8% (n = 38), (c) TF rs3811647: A 39.8% (n = 140), G 60.2% (n = 212), (d) TFR2 rs7385804: A 59.1% (n = 59.1%), C 40.9% (n = 144). In the codominant inheritance model of TF rs1049269, it was shown that people with the CT genotype scored statistically significantly lower points in the EDSS scale at the time of diagnosis than those with the CC genotype (CC Me = 1.5, CT Me = 1.0 p = 0.0236). In the recessive model of TF inheritance rs3811647, it was noticed that the primary relapses were significantly more frequent in patients with at least one G allele compared with those with the AA genotype (AG + GG = 81.2%, AA = 18.8%, p = 0.0354). In the overdominant model rs7385804 TFR2, it was shown that among patients with the AA genotype, multiple sclerosis occurs significantly more often in relatives in a straight line compared with people with the AC and CC genotypes (AA = 100.0%, AC + CC = 0.0%, p = 0.0437). We concluded that the studied polymorphisms might affect the clinical course of MS.
Collapse
Affiliation(s)
- Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (L.S.); (K.D.); (E.S.); (V.H.)
| | - Dorota Koziarska
- Department of Neurology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 72-252 Szczecin, Poland;
| | - Beata Karakiewicz
- Subdepartment of Social Medicine and Public Health Department of Social Medicine, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland; (B.K.); (A.K.)
| | - Artur Kotwas
- Subdepartment of Social Medicine and Public Health Department of Social Medicine, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland; (B.K.); (A.K.)
| | - Anna Knyszyńska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland;
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-211 Gdańsk, Poland;
| | - Karolina Dec
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (L.S.); (K.D.); (E.S.); (V.H.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (L.S.); (K.D.); (E.S.); (V.H.)
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (L.S.); (K.D.); (E.S.); (V.H.)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland;
| | - Joanna Sołek-Pastuszka
- Department of Anaesthesiology and Intensive Therapy, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 72-252 Szczecin, Poland;
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
44
|
Liu M, Liu C, Xiao X, Han S, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Role of upregulation of the K ATP channel subunit SUR1 in dopaminergic neuron degeneration in Parkinson's disease. Aging Cell 2022; 21:e13618. [PMID: 35441806 PMCID: PMC9124303 DOI: 10.1111/acel.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence suggests that ATP‐sensitive potassium (KATP) channels play an important role in the selective degeneration of dopaminergic neurons in the substantia nigra (SN). Furthermore, the expression of the KATP channel subunit sulfonylurea receptor 1 (SUR1) is upregulated in the remaining nigral dopaminergic neurons in Parkinson's disease (PD). However, the mechanism underlying this selective upregulation of the SUR1 subunit and its subsequent roles in PD progression are largely unknown. In 3‐, 6‐, and 9‐month‐old A53T α‐synuclein transgenic (α‐SynA53T+/+) mice, only the SUR1 subunit and not SUR2B or Kir6.2 was upregulated, accompanied by neuronal damage. Moreover, the occurrence of burst firing in dopaminergic neurons was increased with the upregulation of the SUR1 subunit, whereas no changes in the firing rate were observed except in 9‐month‐old α‐SynA53T+/+ mice. After interference with SUR1 expression by injection of lentivirus into the SN, the progression of dopaminergic neuron degeneration was delayed. Further studies showed that elevated expression of the transcription factors FOXA1 and FOXA2 could cause the upregulation of the SUR1 subunit in α‐SynA53T+/+ mice. Our findings revealed the regulatory mechanism of the SUR1 subunit and the role of KATP channels in the progression of dopaminergic neuron degeneration, providing a new target for PD drug therapy.
Collapse
Affiliation(s)
- Min Liu
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Cui Liu
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Xue Xiao
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Shuai‐Shuai Han
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Ming‐Xia Bi
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Qian Jiao
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Xi Chen
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Chun‐Ling Yan
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Xi‐Xun Du
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Hong Jiang
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| |
Collapse
|
45
|
Ginsenoside Rg1 Plays a Neuroprotective Role in Regulating the Iron-Regulated Proteins and Against Lipid Peroxidation in Oligodendrocytes. Neurochem Res 2022; 47:1721-1735. [PMID: 35229270 DOI: 10.1007/s11064-022-03564-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 01/18/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Progressive loss of dopaminergic neurons in the substantia nigra (SN) is one of the major pathological changes. However, the reasons for the dopaminergic neuron loss are still ambiguous and further studies are needed to evaluate the in-depth mechanisms of neuron death. Oxidative stress is a significant factor causing neuronal damage. Dopaminergic neurons in the SN are susceptible to oxidative stress, which is closely associated with iron dyshomeostasis in the brain. Ginsenoside Rg1 from ginseng plays a crucial role in neuroprotective effects through anti-inflammation and attenuating the aggregation of abnormal α-synuclein. In our study, we established a chronic PD mouse model by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine combined with probenecid and explored the effect of Rg1 on the oxidative stress and brain iron homeostasis. Rg1 was verified to improve the level of tyrosine hydroxylase and anti-oxidant stress. In addition, Rg1 maintained the iron-regulated protein homeostasis by increasing the expression of ferritin heavy chain and decreasing ferritin light chain in oligodendrocytes, especially the mature oligodendrocytes (OLs). Furthermore, Rg1 had a positive effect on the myelin sheath protection and increased the number of mature oligodendrocytes, proved by the increased staining of myelin basic protein and CC-1. In conclusion, Rg1 could play a neuroprotective role through remitting the iron-regulated protein dyshomeostasis by ferritin and against lipid peroxidation stress in oligodendrocytes.
Collapse
|
46
|
Sterling JK, Kam TI, Guttha S, Park H, Baumann B, Mehrabani-Tabari AA, Schultz H, Anderson B, Alnemri A, Chou SC, Troncoso JC, Dawson VL, Dawson TM, Dunaief JL. Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological α-synuclein. Cell Rep 2022; 38:110358. [PMID: 35172141 PMCID: PMC8898592 DOI: 10.1016/j.celrep.2022.110358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
α-synuclein (α-syn) aggregation and accumulation drive neurodegeneration in Parkinson's disease (PD). The substantia nigra of patients with PD contains excess iron, yet the underlying mechanism accounting for this iron accumulation is unclear. Here, we show that misfolded α-syn activates microglia, which release interleukin 6 (IL-6). IL-6, via its trans-signaling pathway, induces changes in the neuronal iron transcriptome that promote ferrous iron uptake and decrease cellular iron export via a pathway we term the cellular iron sequestration response, or CISR. The brains of patients with PD exhibit molecular signatures of the IL-6-mediated CISR. Genetic deletion of IL-6, or treatment with the iron chelator deferiprone, reduces pathological α-syn toxicity in a mouse model of sporadic PD. These data suggest that IL-6-induced CISR leads to toxic neuronal iron accumulation, contributing to synuclein-induced neurodegeneration.
Collapse
Affiliation(s)
- Jacob K Sterling
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry and Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Samyuktha Guttha
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bailey Baumann
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amir A Mehrabani-Tabari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hannah Schultz
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brandon Anderson
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shih-Ching Chou
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry and Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry and Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA.
| | - Joshua L Dunaief
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Tzeng IS. Role of mitochondria DNA A10398G polymorphism on development of Parkinson's disease: A PRISMA-compliant meta-analysis. J Clin Lab Anal 2022; 36:e24274. [PMID: 35146807 PMCID: PMC8906025 DOI: 10.1002/jcla.24274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by memory loss and multiple cognitive disorders caused primarily by neurodegeneration. However, the preventative effects of the mitochondrial A10398G DNA polymorphism remain controversial. This meta-analysis comprehensively assessed evidence on the influence of the mitochondrial DNA A10398G variant on PD development. METHODS The PubMed, EMBASE, EBSCO, Springer Link, and Web of Science databases were searched from inception to May 31, 2020. We used a pooled model with random effects to explore the effect of A10398G on the development of PD. Stata MP version 14.0 was used to calculate the odds ratios and 95% confidence intervals (CIs) from the eligible studies to assess the impact of mitochondrial DNA A10398G on PD development. RESULTS The overall survey of the populations showed no significant association between mitochondrial DNA A10398G polymorphism (G allele compared to A allele) and PD (odds ratio = 0.85, 95% CI = 0.70-1.04, p = 0.111); however, a significant association between the mutation and PD was observed in the Caucasian population (odds ratio = 0.71, 95% CI = 0.58-0.87, p = 0.001). A neutral effect was observed in the Asian population (odds ratio = 1.10, 95% CI = 0.94-1.28, p = 0.242). CONCLUSIONS The results of this meta-analysis showed the potential protective effect of the mitochondrial DNA A10398G polymorphism on the risk of developing PD in the Caucasian population. Studies with better designs and larger samples with intensive work are required to validate these results.
Collapse
Affiliation(s)
- I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
48
|
Arif HM, Qian Z, Wang R. Signaling Integration of Hydrogen Sulfide and Iron on Cellular Functions. Antioxid Redox Signal 2022; 36:275-293. [PMID: 34498949 DOI: 10.1089/ars.2021.0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is an endogenous signaling molecule, regulating numerous physiological functions from vasorelaxation to neuromodulation. Iron is a well-known bioactive metal ion, being the central component of hemoglobin for oxygen transportation and participating in biomolecule degradation, redox balance, and enzymatic actions. The interplay between H2S and iron metabolisms and functions impacts significantly on the fate and wellness of different types of cells. Recent Advances: Iron level in vivo affects the production of H2S via nonenzymatic reactions. On the contrary, H2S quenches excessive iron inside the cells and regulates the redox status of iron. Critical Issues: Abnormal metabolisms of both iron and H2S are associated with various conditions and diseases such as iron overload, anemia, oxidative stress, and cardiovascular and neurodegenerative diseases. The molecular mechanisms for the interactions between H2S and iron are unsettled yet. Here we review signaling links of the production, metabolism, and their respective and integrative functions of H2S and iron in normalcy and diseases. Future Directions: Physiological and pathophysiological importance of H2S and iron as well as their therapeutic applications should be evaluated jointly, not separately. Future investigation should expand from iron-rich cells and tissues to the others, in which H2S and iron interaction has not received due attention. Antioxid. Redox Signal. 36, 275-293.
Collapse
Affiliation(s)
| | - Zhongming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, China
| | - Rui Wang
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
49
|
Cheng R, Dhorajia VV, Kim J, Kim Y. Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology 2022; 88:88-101. [PMID: 34748789 PMCID: PMC8748425 DOI: 10.1016/j.neuro.2021.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Iron is a key element for mitochondrial function and homeostasis, which is also crucial for maintaining the neuronal system, but too much iron promotes oxidative stress. A large body of evidence has indicated that abnormal iron accumulation in the brain is associated with various neurodegenerative diseases such as Huntington's disease, Alzheimer's disease, Parkinson's disease, and Friedreich's ataxia. However, it is still unclear how irregular iron status contributes to the development of neuronal disorders. Hence, the current review provides an update on the causal effects of iron overload in the development and progression of neurodegenerative diseases and discusses important roles of mitochondrial iron homeostasis in these disease conditions. Furthermore, this review discusses potential therapeutic targets for the treatments of iron overload-linked neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruiying Cheng
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA
| | | | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA.
| | - Yuho Kim
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, USA.
| |
Collapse
|
50
|
Li KR, Avecillas-Chasin J, Nguyen TD, Gillen KM, Dimov A, Chang E, Skudin C, Kopell BH, Wang Y, Shtilbans A. Quantitative evaluation of brain iron accumulation in different stages of Parkinson's disease. J Neuroimaging 2021; 32:363-371. [PMID: 34904328 DOI: 10.1111/jon.12957] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Excessive brain iron deposition is involved in Parkinson's disease (PD) pathogenesis. However, the correlation of iron accumulation in various brain nuclei is not well-established in different stages of the disease. This cross-sectional study aims to evaluate quantitative susceptibility mapping (QSM) as an imaging technique to measure brain iron accumulation in PD patients in different stages compared to healthy controls. METHODS Ninety-six PD patients grouped by their Hoehn and Yahr (H&Y) stages and 31 healthy controls were included in this analysis. The magnetic susceptibility values of the substantia nigra (SN), red nucleus (RN), caudate, putamen, and globus pallidus were obtained and compared. RESULTS Iron level was increased in the SN of PD patients in all stages versus controls (p < .001), with no significant difference within stages. Iron in the RN was significantly increased in stage II versus controls (p = .013) and combined stages III and IV versus controls (p < .001). The iron levels in caudate, putamen, and globus pallidus were not different between any groups. CONCLUSIONS Our data suggest iron accumulation occurs early in the disease course and only in the SN and RN of these patients. This is a large cross-sectional study of brain iron deposition in PD patients according to H&Y staging. Prospective studies are warranted to further validate QSM as a method to follow brain iron, which could serve as a disease biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Kailyn R Li
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA.,MD Program, Weill Cornell Medicine, New York, New York, USA
| | | | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Kelly M Gillen
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Alexey Dimov
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Eileen Chang
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Carly Skudin
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Brian H Kopell
- Department of Neurosurgery, Mount Sinai Hospital, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Alexander Shtilbans
- Department of Neurology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA.,Department of Neurology, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|