1
|
Saberi S, Najafipour H, Rajizadeh MA, Etminan A, Jafari E, Iranpour M. NaHS protects brain, heart, and lungs as remote organs from renal ischemia/reperfusion-induced oxidative stress in male and female rats. BMC Nephrol 2024; 25:373. [PMID: 39438873 PMCID: PMC11515705 DOI: 10.1186/s12882-024-03824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Acute Kidney Injury (AKI) is frequently observed in hospitalized patients in intensive care units, often caused by renal ischemia-reperfusion injury (IRI). IRI disrupts the function of various 'remote organs' such as the lungs, pancreas, intestine, liver, heart, and brain through inflammation, oxidative stress, apoptosis, leukocyte infiltration, and increased urea and creatinine levels. Gender differences in renal IRI-induced injury are noted. H2S, an endogenous gaseous modulator, shows potential in vasodilation, bronchodilation, and hypotension and can regulate apoptosis, inflammation, angiogenesis, metabolism, and oxidative stress. This study aims to investigate the protective effects of NaHS on brain, heart, and lung injuries following renal IR and to assess the oxidative system status as a potential mechanism in male and female rats.Forty-eight Wistar rats were randomly divided into eight groups (n = 6): Control/Saline, Sham/Saline, IR/Saline, and IR/NaHS in both sexes. Forty-five minutes of bilateral renal ischemia followed by 24-hour reperfusion was induced in the IR groups. NaHS (100µM/Kg, IP) was administered 10 min before clamp release in treated groups. BUN, SCr, BUN/SCr, albuminuria, histopathology, and oxidative stress biomarkers of the brain, heart, and lung were assessed as remote organs. IR increased serum markers of renal function, albuminuria, malondialdehyde levels, and tissue injury scores while reducing nitrite levels and superoxide dismutase and glutathione peroxidase activities. NaHS treatment reversed the adverse effects of IR in remote organs in both sexes, although it showed limited improvement in renal function. Our findings demonstrate that NaHS has a beneficial effect on remote organ injury following renal IR by mitigating oxidative stress, with noted tissue-specific and gender-specific differences in response. These findings suggest NaHS as a potential therapeutic agent for mitigating multi-organ injury after renal IR, with effects varying by tissue and gender.
Collapse
Affiliation(s)
- Shadan Saberi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of basic and clinical physiology sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Etminan
- Physiology Research Center, Departments of Nephrology, Urology and Renal Transplantation, Kerman University of Medical Sciences, Kerman, Iran.
| | - Elham Jafari
- Department of Pathology, Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Department of Pathology, Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Ghallab DS, Ghareeb DA, Goda DA. Integrative metabolomics and chemometrics depict the metabolic alterations of differently processed red kidney beans (Phaseolus vulgaris L.) and in relation to in-vitro anti-diabetic efficacy. Food Res Int 2024; 192:114786. [PMID: 39147477 DOI: 10.1016/j.foodres.2024.114786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Red kidney beans (RKB) serve as a powerhouse packed with a plethora of largely unexplored extraordinary chemical entities with potential significance. However, their nutraceutical applications as a functional hypoglycemic food still lag behind and warrant further investigation. With a scope to optimize chemical and biological traits of RKB, green modification approaches (processing methods) seem inevitable. Accordingly, the current study offered the first integrative workflow to scrutinize dynamic changes in chemical profiles of differently processed RKB and their potential entanglements on diabetes mitigation using Ultra Performance Liquid Chromatography-mass spectrometry (UPLC-MS/MS) coupled with chemometrics. Different physical and biological processing treatments namely germination, fermentation, cooking and dehulling were preliminarily implemented on RKB. Complementarily, the concomitant metabolite alterations among differently processed RKB were monitored and interpreted. Next, an in-vitro α-amylase and α-glycosidase inhibitory testing of the differently processed samples was conducted and integrated with orthogonal projection to latent structures (OPLS) analysis to pinpoint the possible efficacy compounds. A total of 72 compounds spanning fatty acids and their glycerides, flavonoids, phenolic acids, amino acids, dipeptides, phytosterols and betaxanthins were profiled. Given this analysis and compared with raw unprocessed samples, it was found that flavonoids experienced notable accumulation during germination while both fermentation and dehulling approaches sharply intensified the content of amino acids and dipeptides. Comparably, Fatty acids, phytosterols and betaxanthins were unevenly distributed among the comparable samples. Admittedly, OPLS-DA revealed an evident discrimination among the processed samples assuring their quite compositional discrepancies. In a more targeted approach, kaempferol-O-sophoroside, quercetin, carlinoside and betavulgarin emerged as focal discriminators of sprouted samples while citrulline, linoleic acid, linolenoyl-glycerol and stigmasterol were the determining metabolites in cooked samples. Our efficacy experimental findings emphasized that the different RKB samples exerted profound inhibitory actions against both α-amylase and α-glycosidase enzymes with the most promising observations in the case of sprouted and cooked samples. Coincidently, OPLS analysis revealed selective enhancement of possible efficacy constituents primarily citrulline, formononetin, gamabufotalin, kaempferol-O-sophoroside, carlinoside, oleic acid and ergosterol in sprouted and cooked samples rationalizing their noteworthy α-amylase and α-glucosidase inhibitory activities. Taken together, this integrated work provides insightful perspectives beyond the positive impact of different processing protocols on bioactives accumulation and pharmacological traits of RKB expanding their utilization as functional hypoglycemic food to rectify diabetes.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Alexandria, Egypt; Research Projects Unit, Pharos University, Alexandria, Egypt
| | - Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Universities and Research Institutes Zone, Post 21934, Alexandria, Egypt
| |
Collapse
|
3
|
Yıldız F, Güngör M, Sezginer P, Aksak T. A histological examination of the effects of Ferula elaeochytris extract on kidney and liver tissues in myoglobinuric acute renal failure. Biotech Histochem 2024; 99:103-112. [PMID: 38482807 DOI: 10.1080/10520295.2024.2323973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Myoglobinuric acute renal failure (MARF) is a structural and functional disorder that occurs in the kidney following the release of muscle cell contents into the circulation. In this present study, possible protective and curative effects of Ferula elaeochytris extract against kidney and liver damage in experimentally induced MARF in a rat model were investigated. 3-4 Month-old, 200-250 g Sprague Dawley rats were divided into 8 equal groups with 7 rats per group. Group I was a no-intervention Control group. All groups except for the Group I were dehydrated for 16 hours. Following this dehydration, 50% v/v aqueous glycerol solution was injected into both hind leg muscles of the animals, at a dose of 8 ml/kg. The rats were given physiological saline (SF) once orally before the model was administered (Group II) and after the model was administered (Group V). Similarly, two different doses of Ferula elaeochytris root extract (40 mg/kg and 80 mg/kg) were dissolved in 2 ml of SF and administered orally before (Groups III and IV) and after (Group VI, VII) the model was created. Following the experimental period, kidney and liver tissues were removed from all groups, and fixed in 10% neutral formaldehyde solution for light microscopic examinations. Intracellular vacuolization, enlargement in the Bowman's space, widespread atrophy in the tubular structures, luminal enlargement, and desquamation were detected in the kidney tissue sections of all the experimental model groups. In the liver tissue sections, was detected hepatocyte degeneration, intracellular vacuolization, irregularity in cell membrane borders, and apoptotic bodies. These histopathological consequences of MARF were evaluated for all groups, and whereas a curative effect of Ferula elaeochytris could be seen, its protective effect was higher than its curative effect.
Collapse
Affiliation(s)
- Fatma Yıldız
- Department of Medical Laboratory Techniques, Health Services Vocational School, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Meltem Güngör
- Department of Medical Biochemistry, Faculty of Medicine, Sanko University, Gaziantep, Turkey
| | - Perihan Sezginer
- Department of Medical Laboratory Techniques, Health Services Vocational School, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Tiince Aksak
- Department of Medical Laboratory Techniques, Health Services Vocational School, Toros University, Mersin, Turkey
| |
Collapse
|
4
|
Yue J, Bao X, Meng LF. PROTECTIVE ROLE OF MELATONIN FOR ACUTE KIDNEY INJURY: A SYSTEMATIC REVIEW AND META-ANALYSIS. Shock 2024; 61:167-174. [PMID: 38010077 DOI: 10.1097/shk.0000000000002278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Introduction : Acute kidney injury (AKI) is an important clinical issue that arouses global concerns, which puzzles clinicians and lacks effective drug treatment for AKI until the present. Melatonin has been well recognized to modulate the sleep-wake cycle and had the renal protective effect. However, there are still few clinical trials investigating the relationship between melatonin and AKI. The conclusions drawn in existing clinical studies are still inconsistent. The study systematically reviewed and assessed the efficacy of melatonin in preventing AKI. Methods : A systematic literature search was conducted in the PubMed, Embase, and Cochranelibrary on May 19, 2023. Eligible records were screened according to the inclusion and exclusion criteria. The risk ratio and the corresponding 95% confidence intervals were selected to evaluate the effects of melatonin on AKI. We pooled extracted data using a fixed- or random effects model based on a heterogeneity test. Results : Six randomized controlled trials regarding the use of melatonin in preventing kidney injury met our inclusion criteria. The pooled results showed that melatonin increased the estimated glomerular filtration rate, and effectively inhibited the occurrence of AKI. Melatonin tended to reduce the serum creatinine and urea nitrogen levels, but there was no statistical significance. Conclusions : Melatonin can increase the estimated glomerular filtration rate and effectively inhibit the occurrence of AKI. More well-designed randomized controlled trials are needed to verify the protective effect of melatonin in the future.
Collapse
Affiliation(s)
- Jing Yue
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Xin Bao
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ling-Fei Meng
- Department of Nephrology, Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
5
|
Kose A, Ozhan O, Parlakpinar H, Vardi N, Yildiz A, Turkoz Y, Erdemli Z, Bilgic Y, Sarihan ME. Effects of agomelatine on rat liver regeneration following partial hepatectomy. Biotech Histochem 2023; 98:157-165. [PMID: 36373333 DOI: 10.1080/10520295.2022.2139862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Primary or metastatic hepatic malignancies are common. Partial hepatectomy (PH) is the primary treatment for both benign and malignant hepatic neoplasms; it also is used for living donor liver transplantation. The regenerative potential of the liver after PH is 70-80% in humans. We investigated the protective and therapeutic effects of agomelatine (AGM) on rat liver regeneration following PH. We used 32 rats distributed equally into four groups: group 1, sham control; group 2, PH group; group 3, administered 20 mg/kg AGM orally once/day for 7 days following PH; group 4, administered 20 mg/kg AGM orally once/day 3 days before and 7 days following PH for 10 days. Liver samples were analyzed for antioxidants and free radicals. Tissue samples were processed and stained with hematoxylin and eosin to assess histopathological status and stained immunohistochemically for Ki-67. We found that PH reduced antioxidant enzymes and increased tissue reactive oxygen species, whereas AGM treatment had the opposite effect on these parameters. Our biochemical and histopathological findings were consistent. PH caused sinusoid congestion and dilation. Intensity of Ki-67 immunostaining of hepatocytes was increased in group 2, whereas these were reduced in group 4. Intensity of Ki-67 immunostaining of hepatocytes was increased in group 2, whereas it was reduced in the group 4 compared to group 1. We found that AGM was hepatoprotective following PH due to its antioxidant and free radical scavenger properties.
Collapse
Affiliation(s)
- A Kose
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - O Ozhan
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - H Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - N Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - A Yildiz
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Y Turkoz
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Z Erdemli
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Y Bilgic
- Department of Gastroenterology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - M E Sarihan
- Department of Emergency Medicine, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
6
|
Amin SN, Sakr HI, El Gazzar WB, Shaltout SA, Ghaith HS, Elberry DA. Combined saline and vildagliptin induced M2 macrophage polarization in hepatic injury induced by acute kidney injury. PeerJ 2023; 11:e14724. [PMID: 36815993 PMCID: PMC9933746 DOI: 10.7717/peerj.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023] Open
Abstract
Acute kidney injury (AKI) is a prevalent medical condition accompanied by mutual affection of other organs, including the liver resulting in complicated multiorgan malfunction. Macrophages play a vital role during tissue injury and healing; they are categorized into "classically activated macrophages" (M1) and "alternatively activated macrophages" (M2). The present study investigated and compared the conventional fluid therapy vs Dipeptidyl peptidase 4 inhibitor (DPP-4i) vildagliptin on the liver injury induced by AKI and evaluated the possible molecular mechanisms. Thirty rats comprised five groups (n = 6 rats/group): control, AKI, AKI+saline (received 1.5 mL of normal saline subcutaneous injection), AKI+vildagliptin (treated with oral vildagliptin 10 mg/kg), AKI+saline+vildagliptin. AKI was induced by intramuscular (i.m) injection of 50% glycerol (5 ml/kg). At the end of the work, we collected serum and liver samples for measurements of serum creatinine, blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrotic factor-α (TNF-α), and interleukin-10 (IL-10). Liver samples were processed for assessment of inducible nitric oxide synthase (iNOS) as a marker for M1, arginase 1 (Arg-1) as an M2 marker, c-fos, c-Jun, mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and high-mobility-group-box1 (HMGB1) protein. The difference was insignificant regarding the relative expression of AP-1, c-Jun, c-fos, MAPK, and HMGB between the AKI+saline group and the AKI+Vildagliptin group. The difference between the same two groups concerning the hepatic content of the M1 marker (iNOS) and the M2 marker Arg-1 was insignificant. However, combined therapy produced more pronounced changes in these markers, as the difference in their relative expression between the AKI+saline+Vildagliptin group and both the AKI+saline group and the AKI+Vildagliptin group was significant. Accordingly, we suggest that the combined saline and vildagliptin hepatoprotective effect involves the downregulation of the MAPK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Shaimaa N. Amin
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt,Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Walaa B. El Gazzar
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sherif A. Shaltout
- Department of Pharmacology, Public health, and Clinical Skills, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Dalia A. Elberry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Sharma N, Sircar A, Anders HJ, Gaikwad AB. Crosstalk between kidney and liver in non-alcoholic fatty liver disease: mechanisms and therapeutic approaches. Arch Physiol Biochem 2022; 128:1024-1038. [PMID: 32223569 DOI: 10.1080/13813455.2020.1745851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver and kidney are vital organs that maintain homeostasis and injury to either of them triggers pathogenic pathways affecting the other. For example, non-alcoholic fatty liver disease (NAFLD) promotes the progression of chronic kidney disease (CKD), vice versa acute kidney injury (AKI) endorses the induction and progression of liver dysfunction. Progress in clinical and basic research suggest a role of excessive fructose intake, insulin resistance, inflammatory cytokines production, activation of the renin-angiotensin system, redox imbalance, and their impact on epigenetic regulation of gene expression in this context. Recent developments in experimental and clinical research have identified several biochemical and molecular pathways for AKI-liver interaction, including altered liver enzymes profile, metabolic acidosis, oxidative stress, activation of inflammatory and regulated cell death pathways. This review focuses on the current preclinical and clinical findings on kidney-liver crosstalk in NAFLD-CKD and AKI-liver dysfunction settings and highlights potential molecular mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anannya Sircar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
8
|
Tanyeli A, Guzel Erdogan D, Comakli S, Polat E, Guler MC, Eraslan E, Doganay S. Therapeutic effects of apocynin on ovarian ischemia-reperfusion induced lung injury. Biotech Histochem 2022; 97:536-545. [PMID: 35152781 DOI: 10.1080/10520295.2022.2036368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Ovarian ischemia-reperfusion (I-R) injury may damage remote organs, including the lungs. We investigated whether apocynin, a NADPH oxidase inhibitor, might protect against ovarian I-R induced apoptosis in the lungs of rats. Bilateral ovarian I-R was induced for 3 h, then apocynin was applied at two concentrations. Lung tissue was evaluated using spectrophotometric and immunohistochemical methods. We found that I-R increased total oxidant status (TOS), oxidative stress index (OSI) and myeloperoxidase (MPO) levels, and immunostaining of nuclear factor kappa-B (NF-κB), light chain 3B (LC3B), interleukin 1-beta (IL-1β), caspase-3 and tumor necrosis factor-alpha (TNF-α), but decreased superoxide dismutase (SOD) values. Apocynin application to I-R injured rats enhanced recovery of lung tissue oxidants and improved both histology and frequency of apoptosis.
Collapse
Affiliation(s)
- Ayhan Tanyeli
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Derya Guzel Erdogan
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Selim Comakli
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Elif Polat
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Mustafa Can Guler
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ersen Eraslan
- Department of Physiology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Songul Doganay
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
9
|
Ghallab DS, Shawky E, Metwally AM, Celik I, Ibrahim RS, Mohyeldin MM. Integrated in silico - in vitro strategy for the discovery of potential xanthine oxidase inhibitors from Egyptian propolis and their synergistic effect with allopurinol and febuxostat. RSC Adv 2022; 12:2843-2872. [PMID: 35425287 PMCID: PMC8979054 DOI: 10.1039/d1ra08011c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 01/19/2023] Open
Abstract
Xanthine oxidase (XO) has been well-recognized as a validated target for the treatment of hyperuricemia and gout. Currently, there are two drugs in clinical use that shut down XO overactivity, allopurinol and febuxostat; however, detrimental side effects restrict their applications. Propolis is a unique natural adhesive biomass of structurally variable and biologically active metabolites that exert remarkable health benefits. Moreover, combination drug therapy has become a promising pharmacotherapeutic strategy directed for reformulating existing drugs into new combination entities with potentiating therapeutic impacts. In this study, computer-aided molecular docking and MD simulations accompanied by biochemical testing were used for mining novel pharmacologically active chemical entities from Egyptian propolis to combat hyperuricemia. Further, with a view to decrease the potential toxicity of synthetic drugs and enhance efficacy, propolis hits were subjected to combination analysis with each of allopurinol and febuxostat. More specifically, Glide docking was utilized for a structure-based virtual screening of in-house datasets comprising various Egyptian propolis metabolites. Rosmarinic acid, luteolin, techtochrysin and isoferulic acid were the most promising virtual hits. In vitro XO inhibitory assays demonstrated the ability of these hits to significantly inhibit XO in a dose-dependent manner. Molecular docking and MD simulations revealed a cooperative binding mode between the discovered hits and standard XO inhibitors within the active site. Subsequently, the most promising hits were tested in a fixed-ratio combination setting with allopurinol and febuxostat separately to assess their combined effects on XO catalytic inhibition. The binary combination of each techtochrysin and rosmarinic acid with febuxostat displayed maximal synergy at lower effect levels. In contrast, individually, techtochrysin and rosmarinic acid with allopurinol cooperated synergistically at high dose levels. Taken together, the suggested strategy seems imperative to ensure a steady supply of new therapeutic options sourced from Egyptian propolis to regress the development of hyperuricemia.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Ali M Metwally
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University Kayseri 38039 Turkey
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| |
Collapse
|
10
|
Dun RL, Lan TY, Tsai J, Mao JM, Shao YQ, Hu XH, Zhu WJ, Qi GC, Peng Y. Protective Effect of Melatonin for Renal Ischemia-Reperfusion Injury: A Systematic Review and Meta-Analysis. Front Physiol 2022; 12:791036. [PMID: 35095558 PMCID: PMC8793910 DOI: 10.3389/fphys.2021.791036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Renal ischemia-reperfusion (I/R) injury is one of the major causes related to acute kidney damage. Melatonin has been shown as a powerful antioxidant, with many animal experiments have been designed to evaluate the therapeutic effect of it to renal I/R injury. Objectives: This systematic review aimed to assess the therapeutic effect of melatonin for renal I/R injury in animal models. Methods and Results: The PubMed, Web of Science, Embase, and Science Direct were searched for animal experiments applying melatonin to treat renal I/R injury to February 2021. Thirty-one studies were included. The pooled analysis showed a greater reduction of blood urea nitrogen (BUN) (21 studies, weighted mean difference (WMD) = −30.00 [−42.09 to −17.91], p < 0.00001), and serum creatinine (SCr) (20 studies, WMD = −0.91 [−1.17 to −0.66], p < 0.00001) treated with melatonin. Subgroup analysis suggested that multiple administration could reduce the BUN compared with control. Malondialdehyde and myeloperoxidase were significantly reduced, meanwhile, melatonin significantly improved the activity of glutathione, as well as superoxide dismutase. The possible mechanism for melatonin to treat renal I/R injury is inhibiting endoplasmic reticulum stress, apoptosis, inflammation, autophagy, and fibrillation in AKI to chronic kidney disease. Conclusions: From the available data of small animal studies, this systematic review demonstrated that melatonin could improve renal function and antioxidative effects to cure renal I/R injury through, then multiple administration of melatonin might be more appropriate. Nonetheless, extensive basic experiments are need to study the mechanism of melatonin, then well-designed randomized controlled trials to explore the protective effect of melatonin.
Collapse
Affiliation(s)
- Rong-liang Dun
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-ying Lan
- Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jennifer Tsai
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-min Mao
- Urology Surgery, Shanghai Seventh People's Hospital, Shanghai, China
| | - Yi-qun Shao
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-hua Hu
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-jing Zhu
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-chong Qi
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Peng
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yu Peng
| |
Collapse
|
11
|
Hajam YA, Rai S, Pandi-Perumal SR, Brown GM, Reiter RJ, Cardinali DP. Coadministration of Melatonin and Insulin Improves Diabetes-Induced Impairment of Rat Kidney Function. Neuroendocrinology 2022; 112:807-822. [PMID: 34673653 DOI: 10.1159/000520280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The present study was designed to evaluate the therapeutic efficacy of melatonin and insulin coadministration in diabetes-induced renal injury in rats. RESEARCH DESIGN AND METHODS Diabetes was achieved by giving streptozotocin (15 mg/kg) for 6 consecutive days. The diabetic condition was confirmed by assessing the blood glucose level; animals having blood glucose levels above 250 mg were considered as diabetic. Following the confirmation, animals were randomly divided into different experimental groups, viz group I served as the control (CON), group II diabetic (D), group III D+melatonin (MEL), group IV D+insulin (INS), group V D+MEL+INS, group VI D+glibenclamide (GB), group VII CON+MEL, group VIII CON+INS, and group IX CON+GB. Following the completion of the experimental period, animals were sacrificed, blood was collected via a retro-orbital puncture, and kidneys were harvested. Diabetic rats exhibited a significant increment in blood glucose and biochemical indexes of renal injury (tubular disruption, swollen glomeruli with loss of glomerular spaces, and distortion of the endothelial lining) including augmented levels of serum creatinine, urea, uric acid, Na+, and K+, and inhibition/suppression of the activity of glutathione (GSH) peroxidase, GSH reductase, glucose-6-phosphate dehydrogenase, and GSH-S-transferase in the renal cortex. RESULTS By examining thiobarbiturate reactive substances, reduced GSH, superoxide dismutase activity, and catalase activity in the renal cortex of control and diabetic rats, it was documented that treatment with melatonin or insulin alone or in combination showed a significant ad integrum recovery of GSH-dependent antioxidative enzymatic activities. Melatonin and insulin coadministration caused greater reductions in circulating tumor necrosis factor-α, tumor growth factor-β1, interleukin (IL)-1β, and IL-6 levels in diabetic rats, whereas IL-10 levels increased, as compared to each treatment alone. Diabetic rats showed a significant increase in the expression of both MT1 and MT2 melatonin receptor genes. Melatonin or insulin treatment alone or in combination resulted in significant restoration of the relative expression of both melatonin receptors in the renal cortex. CONCLUSION The coadministration of exogenous melatonin and insulin abolished many of the deleterious effects of type 1 diabetes on rat renal function.
Collapse
Affiliation(s)
- Younis Ahmad Hajam
- Department of Zoology, Guru Ghasidas Vishwavidayalaya (A Central University), Bilaspur, India
- Division Zoology, Department of Biosciences, Career Point University, Hamirpur, India
| | - Seema Rai
- Department of Zoology, Guru Ghasidas Vishwavidayalaya (A Central University), Bilaspur, India
| | - Seithikurippu R Pandi-Perumal
- Somnogen Canada Inc., Toronto, Ontario, Canada
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
12
|
Gordeeva AE, Kurganova EA, Novoselov VI. The Hepatoprotective Effect of Peroxiredoxin 6 in Ischemia–Reperfusion Kidney Injury. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Mustafa Uyanoğlu. Prevention of Tissue Injury with Olea europaea L. Leaf Extract after Partial Liver Ischemia/Reperfusion. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021050150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Bonavia A, Stiles N. Renohepatic crosstalk: a review of the effects of acute kidney injury on the liver. Nephrol Dial Transplant 2021; 37:1218-1228. [PMID: 33527986 DOI: 10.1093/ndt/gfaa297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Several theories regarding acute kidney injury (AKI)-related mortality have been entertained, although mounting evidence supports the paradigm that impaired kidney function directly and adversely affects the function of several remote organs. The kidneys and liver are fundamental to human metabolism and detoxification, and it is therefore hardly surprising that critical illness complicated by hepatorenal dysfunction portends a poor prognosis. Several diseases can simultaneously impact the proper functioning of the liver and kidneys, although this review will address the impact of AKI on liver function. While evidence for this relationship in humans remains sparse, we present supportive studies and then discuss the most likely mechanisms by which AKI can cause liver dysfunction. These include 'traditional' complications of AKI (uremia, volume overload and acute metabolic acidosis, among others) as well as systemic inflammation, hepatic leukocyte infiltration, cytokine-mediated liver injury and hepatic oxidative stress. We conclude by addressing the therapeutic implications of these findings to clinical medicine.
Collapse
Affiliation(s)
- Anthony Bonavia
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.,Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nicholas Stiles
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
15
|
Parlakpinar H, Polat S, Acet HA. Pharmacological agents under investigation in the treatment of coronavirus disease 2019 and the importance of melatonin. Fundam Clin Pharmacol 2021; 35:62-75. [PMID: 32657483 PMCID: PMC7405383 DOI: 10.1111/fcp.12589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a life-threatening infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 pandemic causing morbidities and even deaths worldwide revealed that there is urgent need to find pharmacological agents or vaccines. Although there are a lot of agents under investigation, there is no approved agent for the prevention or treatment of the COVID-19 yet. Treatment of patients remains mainly supportive as well as compassionate use of the agents under investigation. It is well established that excessive inflammatory and immune response and oxidative injury play a critical role in the pathogenesis of COVID-19. In this review, we aimed to update knowledge about pathogenesis, clinical features, and pharmacological treatment of COVID-19 and review the potential beneficial effects of ancient antioxidant, anti-inflammatory, and immunomodulatory molecule melatonin for prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Hakan Parlakpinar
- Department of Medical PharmacologyFaculty of MedicineInonu UniversityMalatyaTurkey
| | - Seyhan Polat
- Department of Medical PharmacologyFaculty of MedicineInonu UniversityMalatyaTurkey
| | - Haci Ahmet Acet
- Department of Medical PharmacologyFaculty of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|
16
|
Sharma N, Gaikwad AB. Ameliorative effect of AT2R and ACE2 activation on ischemic renal injury associated cardiac and hepatic dysfunction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103501. [PMID: 32979558 DOI: 10.1016/j.etap.2020.103501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
This study explored the role of the depressor arm of renin-angiotensin system (RAS) on ischemic renal injury (IRI)-associated cardio-hepatic sequalae under non-diabetic (ND) and diabetes mellitus (DM) conditions. Firstly, rats were injected with Streptozotocin (55 mg/kg i.p.) to develop DM. ND and DM rats underwent Bilateral IRI followed by 24 h of reperfusion. Further, ND and DM rats were subjected to AT2R agonist-Compound 21 (C21) (0.3 mg/kg/day, i.p.) or ACE2 activator- Diminazene Aceturate (Dize), (5 mg/kg/day, p.o.) per se or its combination therapy. As results, IRI caused cardio-hepatic injuries via altered oxidant/anti-oxidant levels, elevated inflammatory events, and altered protein expressions of ACE, ACE2, Ang II, Ang-(1-7) and urinary AGT. However, concomitant therapy of AT2R agonist and ACE2 activator exerts a protective effect in IRI-associated cardio-hepatic dysfunction as evidenced by inhibited oxidative stress, downregulated inflammation, and enhanced cardio-hepatic depressor arm of RAS under ND and DM conditions.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
17
|
Aydin A, Sunay MM, Karakan T, Özcan S, Hasçiçek AM, Yardimci İ, Surer H, Korkmaz M, Hücümenoğlu S, Huri E. The examination of the nephroprotective effect of montelukast sodium and N-acetylcysteine ın renal ıschemia with dimercaptosuccinic acid imaging in a placebo-controlled rat model. Acta Cir Bras 2020; 35:e202000905. [PMID: 33084735 PMCID: PMC7584297 DOI: 10.1590/s0102-865020200090000005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose To determine the nephroprotective effect of NAC and Montelukast Sodium administration against the development of renal damage associated with long warm renal ischemia. Methods Twenty-seven rats were randomly divided into 3 study groups, which received NAC, montelukast and placebo, and 3 rats were included in the sham-treated control group. Medications were given 3 days before the procedure. DMSA renal scintigraphy was performed before and after surgery. The right renal pedicle was occluded for 45 min to induce ischemia and then subjected to reperfusion for 6 h (I/R groups). Results On pathological examination, the mean pathological scores of the montelukast and NAC groups were significantly lower than those of the placebo group. (p <0.05). In biochemical examination, significant differences were found in all parameter levels between the placebo group and the montelukast and NAC groups. (p <0.05) When postoperative DMSA renal scintigraphy measurements and renal function levels were compared, significant differences were found between the montelukast and NAC groups and the placebo and sham groups. Conclusion The administration of NAC and montelukast sodium was seen to have a nephroprotective effect against the development of renal damage associated with warm renal ischemia.
Collapse
|
18
|
M El Agaty S, Ibrahim Ahmed A. Pathophysiological and immunohistochemical analysis of pancreas after renal ischemia/reperfusion injury: protective role of melatonin. Arch Physiol Biochem 2020; 126:264-275. [PMID: 30270672 DOI: 10.1080/13813455.2018.1517182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objectives: To assess the remote pancreatic injury following renal ischemia/reperfusion (I/R) and to evaluate the effect of pre-treatment with melatonin on pancreatic structure and functions.Methods: 21 rats were divided equally into sham group, renal I/R group, and melatonin pre-treated renal I/R (Mel-I/R) group.Results: Renal I/R significantly increased serum amylase, fasting glucose and decreased serum insulin in I/R versus sham group. Pancreatic levels of malondialdehyde and tumour necrosis factor alpha were significantly increased associated with diminished glutathione. Immunohistochemical and morphometric analysis revealed significant reduction in insulin immune reactivity, β-cell number, β-cells percentage/total islet cell, percentage area of reactive β-cells, and the average area of islets in I/R versus sham group. These changes were alleviated by pre-treatment with melatonin.Conclusion: Renal I/R produces significant impairment of exocrine and endocrine pancreatic functions together with histological, immunohistochemical and morphometric alterations. Pre-treatment with melatonin significantly mitigates such remote pancreatic injury.
Collapse
Affiliation(s)
- Sahar M El Agaty
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
19
|
Husain‐Syed F, Rosner MH, Ronco C. Distant organ dysfunction in acute kidney injury. Acta Physiol (Oxf) 2020; 228:e13357. [PMID: 31379123 DOI: 10.1111/apha.13357] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
Acute kidney injury (AKI) is a common complication in critically ill patients and it is associated with increased morbidity and mortality. Epidemiological and clinical data show that AKI is linked to a wide range of distant organ injuries, with the lungs, heart, liver, and intestines representing the most clinically relevant affected organs. This distant organ injury during AKI predisposes patients to progression to multiple organ dysfunction syndrome and ultimately, death. The strongest direct evidence of distant organ injury occurring in AKI has been obtained from animal models. The identified mechanisms include systemic inflammatory changes, oxidative stress, increases in leucocyte trafficking and the activation of proapoptotic pathways. Understanding the pathways driving AKI-induced distal organ injury are critical for the development and refinement of therapies for the prevention and attenuation of AKI-related morbidity and mortality. The purpose of this review is to summarize both clinical and preclinical studies of AKI and its role in distant organ injury.
Collapse
Affiliation(s)
- Faeq Husain‐Syed
- Division of Nephrology, Pulmonology, and Critical Care Medicine, Department of Internal Medicine II University Hospital Giessen and Marburg Giessen Germany
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV) San Bortolo Hospital Vicenza Italy
| | - Mitchell H. Rosner
- Department of Medicine University of Virginia Health System Charlottesville Virginia
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV) San Bortolo Hospital Vicenza Italy
- Department of Medicine Università degli Studi di Padova Padova PD Italy
| |
Collapse
|
20
|
Aktaş ŞH, Pençe HH, Özçelik F, Sayir N, Sapmaz T, Kutlu O, Karabela ŞN, Elcioglu HK. VASPIN, ADIPONECTIN AND LEPTIN LEVELS IN TYPE 1 DIABETIC RATS INDUCED BY STREPTOZOTOCIN. ACTA ENDOCRINOLOGICA-BUCHAREST 2020; 16:136-141. [PMID: 33029228 DOI: 10.4183/aeb.2020.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Adiponectin, vaspin and leptin are only a few of these numerous adipocytokines. Little is known about the behavior of adipocytokines and how adipose tissue metabolism is affected in this Type 1 DM model. In this study we investigated the serum levels of adiponectin, leptin, vaspin in streptozotocin(STZ) induced diabetic rats. Material and methods Twelve Spraque Dawley albino rats were included in the study. The animals were divided into two groups. The first group was diabetic (D) (n: 6) and 60mg / kg STZ was administered intraperitoneally (i.p.) to these rats. The second group was the non-diabetic control (ND) group (n: 6). All the animals were euthanized by cervical dislocation. Quantification of vaspin, Adiponectin, leptin in serum was performed using the ELISA kit. Results Adiponectin, vaspin levels of diabetic group were found to be statistically lower than of control group (p<0.05). Leptin levels were significantly higher in the diabetic group (P<0.05). Conclusion There is a need for new researches that can explain the relationship between Vaspin, Leptin and Adiponectin and Type 1 diabetes. New studies in this area will open new horizons for the identification of new biomarkers in the diagnosis and treatment of Type 1 diabetes.
Collapse
Affiliation(s)
- Ş H Aktaş
- Health Sciences University, Umraniye Training and Research Hospital, Internal Medicine, Istanbul, Turkey
| | - H H Pençe
- Health Sciences University, Faculty of Medicine, Dept. of Medical Biochemistry, Istanbul, Turkey
| | - F Özçelik
- Health Sciences University, Faculty of Medicine, Dept. of Medical Biochemistry, Istanbul, Turkey
| | - N Sayir
- Health Sciences University, Haydarpaşa Numune Training and Research Hospital, Dept. of Pathology, Istanbul, Turkey
| | - T Sapmaz
- Health Sciences University, Faculty of Medicine, Dept. of Histology and Embryology, Istanbul, Turkey
| | - O Kutlu
- Health Sciences University, Okmeydanı Training and Research Hospital, Internal Medicine, Istanbul, Turkey
| | - Ş N Karabela
- Health Sciences University, Bakırköy Sadi Konuk Training and Research Hospital, Infectious Diseases, Istanbul, Turkey
| | - H K Elcioglu
- Marmara University, Faculty of Pharmacy, Pharmacology Dept., Istanbul, Turkey
| |
Collapse
|
21
|
Wang Y, Li C, Du L, Liu Y. A reactive oxygen species-responsive dendrimer with low cytotoxicity for efficient and targeted gene delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Oyedemi SO, Nwaogu G, Chukwuma CI, Adeyemi OT, Matsabisa MG, Swain SS, Aiyegoro OA. Quercetin modulates hyperglycemia by improving the pancreatic antioxidant status and enzymes activities linked with glucose metabolism in type 2 diabetes model of rats: In silico studies of molecular interaction of quercetin with hexokinase and catalase. J Food Biochem 2019; 44:e13127. [PMID: 31876980 DOI: 10.1111/jfbc.13127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/19/2019] [Accepted: 11/17/2019] [Indexed: 11/28/2022]
Abstract
Quercetin was assessed for its antihyperglycemic effect in fructose-streptozotocin (STZ) induced diabetic rats. The oral administration of quercetin at the dosage of 25 and 50 mg/kg for 28 days remarkably reduced the level of blood glucose, glycosylated hemoglobin (Hb), and hepatic glycogen but enhanced plasma Hb concentration. The altered activities of glucose-6-phosphatase and hexokinase in diabetic rats were significantly improved upon quercetin treatment. Furthermore, the antioxidant activity of pancreatic superoxide dismutase, catalase (CAT), and reduced glutathione was effectively increased while the value for thiobarbituric acid reactive species was decreased. A significant reduction of glycemia was observed in the glucose tolerance test, 120 min after the glucose pulse. Also, the damage caused by fructose-STZ in the liver and pancreas of diabetic animals were restored to near normal. Molecular docking of quercetin showed a high affinity for hexokinase and CAT with a binding energy of -7.82 and -9.83 kcal/mol, respectively, more elevated than the standard drugs. PRACTICAL APPLICATIONS: Functional foods and nutraceuticals have increasingly interested the consumers in terms of health benefits and have started focussing on the prevention or cure of disease by the foods and their health-enhancing phytochemicals. Quercetin is one of the most potent naturally occurring antioxidants within the flavonoid subclasses, mostly distributed as a secondary metabolite in fruits, vegetables, and black tea. Based on the results exhibited in the present study, we proposed that the consumption of foods rich in quercetin could be a cheap and affordable nutraceutical that can be developed for the treatment of T2DM and its complications. Further studies on the safety aspects of quercetin in long-term usage are strongly recommended before implementing for the treatment of human diseases.
Collapse
Affiliation(s)
- Sunday O Oyedemi
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria.,Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Godswill Nwaogu
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Chika I Chukwuma
- Department of Health Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Olaoluwa T Adeyemi
- Department of Biochemistry, Benjamin S. (Snr.) Carson School of Medicine, Babcock University, Ilishan-Remo, Nigeria
| | - Motlalepula G Matsabisa
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | | | - Olayinka A Aiyegoro
- GI Microbiology and Biotechnology Unit, Agricultural Research Council, Animal Production Institute, Pretoria, South Africa
| |
Collapse
|
23
|
Faddladdeen KA, Ojaimi AA. Protective Effect of Pomegranate ( Punica granatum) Extract against Diabetic Changes in Adult Male Rat Liver: Histological Study. J Microsc Ultrastruct 2019; 7:165-170. [PMID: 31803570 PMCID: PMC6880321 DOI: 10.4103/jmau.jmau_6_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/02/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Diabetes mellitus could be result from disorders in insulin secretion or receptors, characterized by hyperglycemia. Natural antioxidants including pomegranate have hypoglycemic effect. AIM OF THE WORK The present research was designed to evaluate the possible protective role of pomegranate peel extract (PPE) against diabetic-induced hepatic complication. MATERIALS AND METHODS Forty-eight male Wistar rats, weighed 200-250 g and aged 3 months, were sorted into four groups: Group 1: Used as control, Group 2: Normal rats received PPE (200 mg/kg bw/day) given orally for 11 consecutive weeks. Group 3: Streptozotocin (STZ)-diabetic rats, injected with 55 mg/kg bw of STZ, and Group 4: Normal rats received PPE for 11 weeks and then rats were injected with STZ (55 mg/kg/bw). Effectiveness of the PPE was assessed by measuring serum glucose and histopathology of liver tissue. Liver enzymes were also assayed. PPE was found to control diabetic hyperglycemia and decrease in body weight. Histological examination showed that pretreatment with PPE provided preservation against diabetes-induced hepatic histological changes (necrotic and apoptosis). RESULT Alanine aminotransferase, alanine phosphatase, and aspartate aminotransferase levels were significantly elevated in Group 3 diabetics and decreased in Group 4 which confirmed histological finding. CONCLUSION This study confirmed the hypothesized possible protective effect of PPE against diabetic-induced histological and functional alteration of rat liver and advised its use by diabetic patients.
Collapse
Affiliation(s)
- Khadija A. Faddladdeen
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, KSA
| | - Ahlam Abdulaziz Ojaimi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, KSA
| |
Collapse
|
24
|
Mohammadi M, Najafi H, Mohamadi Yarijani Z, Vaezi G, Hojati V. Piperine pretreatment attenuates renal ischemia-reperfusion induced liver injury. Heliyon 2019; 5:e02180. [PMID: 31463384 PMCID: PMC6706586 DOI: 10.1016/j.heliyon.2019.e02180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/09/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Remote organ injury is one of the complications which are developed following ischemia-reperfusion induced acute kidney injury (AKI), dramatically increasing its mortality rate. The aim of the present study was to investigate the effect of piperine pretreatment on liver dysfunction following ischemia-reperfusion induced AKI. Materials and methods Acute kidney injury was induced by 30 min-bilateral renal ischemia followed by 24 h of reperfusion. To investigate liver damages, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) enzymes were measured in plasma. In order to study oxidative stress, malondialdehyde (MDA) and ferric reducing antioxidant power (FRAP) levels were measured. Furthermore, the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA along with infiltration of leukocytes in the liver tissue was measured for inflammation assessment. Histopathological damages were studied through measuring the extent of cellular fibrosis, sinusoidal dilatation, and vascular congestion in liver tissue. Results Following acute kidney injury, AST, ALT, and ALP levels in plasma, MDA level and ICAM-1 expression in the liver tissue, infiltration of leukocytes into the interstitium, and hepatic histopathologic damages increased significantly, while FRAP decreased. Pretreatment with piperine at 10 and 20 mg/kg body weight was able to improve these damages, such that some of them reached its value in the sham group, though piperine in the 20 mg/kg was more effective. Conclusions The results of this study suggest that ischemia-reperfusion induced AKI result in hepatic damages, and pretreatment with piperine can prevent development of these damages through its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Maryam Mohammadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeynab Mohamadi Yarijani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamhasan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
25
|
Remote organ failure in acute kidney injury. J Formos Med Assoc 2019; 118:859-866. [DOI: 10.1016/j.jfma.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
|
26
|
Motawi TK, Ahmed SA, A Hamed M, El-Maraghy SA, M Aziz W. Melatonin and/or rowatinex attenuate streptozotocin-induced diabetic renal injury in rats. J Biomed Res 2019; 33:113-121. [PMID: 29089475 PMCID: PMC6477174 DOI: 10.7555/jbr.31.20160028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The study aimed to explore the prophylactic effect of melatonin, rowatinex; a naturally occurring renal drug, and its combination on diabetic nephropathy in type 2 diabetic rats. Diabetes was induced by intraperitoneal injection of a single dose of streptozotocin (50 mg/g body weight). Three days before diabetes induction, rats were daily treated with melatonin, rowatinex and their combination continuously for 8 weeks. Evaluation was done through measuring blood urea nitrogen (BUN), serum uric acid, serum creatinine, urine creatinine, creatinine clearance, nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), total antioxidant capacity (TAC), kidney injury molecule-1 (KIM-1), heat shock protein-70 (HSP-70), caspase-3, transforming growth factor β1 (TGFβ1), DNA degradation by the comet assay and total protein contents. Histopathologic study was also done for the kidney and the pancreas. Drastic changes in all measured parameters of the diabetic rats were observed. Treatment with melatonin and rowatinex showed amelioration to variable degrees. In conclusion, melatonin showed the most potent effect on protecting rats from deleterious action of diabetic nephropathy followed by its combination with rowatinex.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samia A Ahmed
- Therapeutic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Manal A Hamed
- Therapeutic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Shohda A El-Maraghy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Wessam M Aziz
- Therapeutic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
27
|
Eluehike N, Onoagbe I. Changes in organ and body weight, serum amylase and antidiabetic effects of tannins from Spondias mombin on streptozotocin-induced diabetic rats. JOURNAL OF INSULIN RESISTANCE 2018. [DOI: 10.4102/jir.v3i1.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
28
|
Hu B, Tong F, Xu L, Shen Z, Yan L, Xu G, Shen R. Role of Calcium Sensing Receptor in Streptozotocin-Induced Diabetic Rats Exposed to Renal Ischemia Reperfusion Injury. Kidney Blood Press Res 2018; 43:276-286. [PMID: 29490306 DOI: 10.1159/000487685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal ischemia/reperfusion (I/R) injury (RI/RI) is a common complication of diabetes, and it may be involved in altering intracellular calcium concentrations at its onset, which can result in inflammation, abnormal lipid metabolism, the production of reactive oxygen species (ROS), and nitroso-redox imbalance. The calcium-sensing receptor (CaSR) is a G-protein coupled receptor, however, the functional involvement of CaSR in diabetic RI/ RI remains unclear. The present study was intended to investigate the role of CaSR on RI/RI in diabetes mellitus (DM). METHODS The bilateral renal arteries and veins of streptozotocin (STZ)-induced diabetic rats were subjected to 45-min ischemia followed by 2-h reperfusion with or without R-568 (agonist of CaSR) and NPS-2143 (antagonist of CaSR) at the beginning of I/R procedure. DM without renal I/R rats served as control group. The expressions of CaSR, calmodulin (CaM), and p47phox in the renal tissue were analyzed by qRT-PCR and Western blot. The renal pathomorphology, renal function, oxidative stress, inflammatory response, and calcium disorder were evaluated by detection of a series of indices by hematoxylin-eosin (HE) staining, transmission electron microscope (TEM), commercial kits, enzyme-linked immunosorbent assay (ELISA), and spectrophotofluorometry, respectively. RESULTS Results showed that the expressions of CaSR, CaM, and p47phox in I/R group were significantly up-regulated as compared with those in DM group, which were accompanied by renal tissue injury, increased calcium, oxidative stress, inflammation, and nitroso-redox imbalance. CONCLUSION These results suggest that activation of CaSR is involved in the induction of damage of renal tubular epithelial cell during diabetic RI/RI, resulting in lipid peroxidation, inflammatory response, nitroso-redox imbalance, and apoptosis.
Collapse
|
29
|
Najafi H, Mohamadi Yarijani Z, Changizi-Ashtiyani S, Mansouri K, Modarresi M, Madani SH, Bastani B. Protective effect of Malva sylvestris L. extract in ischemia-reperfusion induced acute kidney and remote liver injury. PLoS One 2017; 12:e0188270. [PMID: 29155898 PMCID: PMC5695808 DOI: 10.1371/journal.pone.0188270] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023] Open
Abstract
Mallow (Malva sylvestris L.) has had medicinal and therapeutic uses in addition to its oral consumption. The present study was conducted to examine the protective effect of Malva sylvestris L. extract on ischemia-reperfusion-induced kidney injury and remote organ injuries in the liver. Before ischemia-reperfusion, rats in the different groups received intraperitoneal normal saline or mallow extract at the doses of 200, 400 or 600 mg/kg of body weight. After 30-minutes of bilateral renal ischemia followed by 24-hours of reperfusion, tissue damage in the kidney and liver samples were determined through studying H&E-stained slides under a light microscope. The degree of leukocyte infiltration and tissue mRNA expressions of TNF- and ICAM-1 were then measured to examine the degree of renal inflammation. The renal tissue MDA and FRAP levels were measured for determining the amount of oxidative stress. Plasma concentrations of creatinine, urea, ALT and ALP were also measured. Ischemia-reperfusion led to a significant increase in plasma concentrations of creatinine, urea, ALT and ALP, and renal tissue MDA, and a significant decrease in renal tissue FRAP. The expression of pro-inflammatory factors in the kidney tissue, the level of leukocyte infiltration and the amount of tissue damage in the kidney and liver also increased. Pretreatment by mallow extract led to a significant improvement in all the variables measured. The 200- and 400-mg doses yielded better results in most parameters compared to the 600-mg dose. The findings showed that mallow extract protects the kidney against ischemia-reperfusion and reduces remote organ injury in the liver.
Collapse
Affiliation(s)
- Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Saeed Changizi-Ashtiyani
- Department of Physiology, School of Paramedical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Modarresi
- Pharmacognosy and Biotechnology Department, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hamid Madani
- Department of Pathology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahar Bastani
- Division of Nephrology, School of Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
30
|
Baptista Sincos APW, Mazzeo A, Sincos IR, Coelho Neto F, Wolosker N, Aun R, Leite KRM, Penido de Paula V, Kaufmann OG. Duplex scan and histologic assessment of acute renal injury in a kidney-kidney crosstalk swine experimental model. J Vasc Surg 2017; 68:588-595. [PMID: 28958477 DOI: 10.1016/j.jvs.2017.06.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/16/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The objective of this study was to identify the effect of two left renal vasculature occlusion strategies on the duplex ultrasound-assessed rheology and histology of the contralateral kidney. METHODS Pigs were randomly assigned to one of two groups: left renal artery-only clamping (A group, n = 8) or left renal artery and vein clamping (AV group, n = 9). Bilateral renal parenchymal biopsy specimens were taken every 10 minutes for 90 minutes. Duplex ultrasound resistive index (RI) and pulsatility index (PI) were measured. Mixed models with normal distribution and first-order autoregressive correlation structure and generalized estimating equation models were used. Results are presented as adjusted means with standard errors, estimated proportions with standard errors, and line plots with 95% confidence intervals. RESULTS RI and PI increased in the nonischemic kidney. In A group animals, RI values increased significantly (P < .01) after 30 minutes of ischemia and PI increased significantly (P < .04) from 30 to 60 minutes of ischemia. The number of histologic abnormalities was higher in A group than in AV group biopsy specimens. The percentage of lesions increased significantly after 10 minutes in A group nonischemic kidneys (P < .02) and between 50 and 80 minutes in AV group nonischemic kidneys (P < .01). CONCLUSIONS Nonischemic kidneys were acutely affected by contralateral ischemia. Their function was more adversely affected by unilateral renal artery occlusion with preserved renal vein patency (A group).
Collapse
Affiliation(s)
| | - Angela Mazzeo
- Albert Einstein Israeli Institute of Teaching and Research and Albert Einstein Israeli College of Health Sciences, São Paulo, Brazil
| | - Igor Rafael Sincos
- Division of Vascular Surgery, Department of Surgery, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Felipe Coelho Neto
- Division of Vascular Surgery, Department of Surgery, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Nelson Wolosker
- Division of Vascular Surgery, Department of Surgery, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Aun
- Division of Vascular Surgery, Department of Surgery, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Katia R M Leite
- Division of Pathology, Department of Anatomy, Clinics Hospital, University of São Paulo, São Paulo, Brazil
| | - Vitoria Penido de Paula
- Albert Einstein Israeli Institute of Teaching and Research and Albert Einstein Israeli College of Health Sciences, São Paulo, Brazil
| | - Oskar G Kaufmann
- Division of Vascular Surgery, Department of Surgery, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
31
|
Hu B, Xu G, Zheng Y, Tong F, Qian P, Pan X, Zhou X, Shen R. Chelerythrine Attenuates Renal Ischemia/Reperfusion-induced Myocardial Injury by Activating CSE/H 2S via PKC/NF-κB Pathway in Diabetic Rats. Kidney Blood Press Res 2017. [DOI: 10.1159/000477948] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Castro CAD, da Silva KA, Buffo MM, Pinto KNZ, Duarte FDO, Nonaka KO, Aníbal FDF, Duarte ACGDO. Experimental type 2 diabetes induction reduces serum vaspin, but not serum omentin, in Wistar rats. Int J Exp Pathol 2017; 98:26-33. [PMID: 28444853 DOI: 10.1111/iep.12220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022] Open
Abstract
Vaspin and omentin are adipose tissue adipokines that have often been related to obesity and its comorbidities. The aim of this study was to investigate the behaviour of serum omentin and vaspin in models of type 2 diabetes. To do this, Wistar rats (~200 g) were randomly divided into two groups: a non-diabetic group (n = 6) and a diabetic group fed on a high-fat diet (n = 6) and a low dose of streptozotocin (Sigma® ). All procedures were approved by the Brazilian Ethics Committee. Body weight (BW) and food intake were recorded daily. Tail blood glucose levels were assessed at the end of the diabetes induction period. The insulin tolerance test (ITT) was performed after the diabetes induction period (7 weeks). The serum and tissues (liver, pancreas, and retroperitoneal (RET), epididymal (EPI) and visceral (VIS) white adipose tissues) were immediately removed and weighed. Analyses of levels of insulin, omentin, vaspin, adiponectin and inflammatory cytokines IL-6, IL-8 (CXCL8), TNF-α and C-reactive protein (CRP) in serum were performed using the enzyme-linked immunosorbent assay (ELISA). Our results showed that IL-8 and CRP serum levels in the diabetic group were significantly higher than in the non-diabetic group. Vaspin and adiponectin values were lower for the diabetic group than for the non-diabetic group. Omentin, IL-6 and TNF-α values did not differ between the groups. Our results showed that both the metabolism of the adipose tissue and the secretion of adipokines may be affected in diabetic rats. Omentin showed no difference between the groups, although the vaspin values decreased in the diabetic group.
Collapse
Affiliation(s)
| | - Karina Ana da Silva
- Department of Physiological Sciences, Federal University of São Carlos, São Paulo, Brazil
| | - Marina Molina Buffo
- Department of Physical Education, Federal University of São Carlos, São Paulo, Brazil
| | | | | | - Keico Okino Nonaka
- Department of Physiological Sciences, Federal University of São Carlos, São Paulo, Brazil
| | | | | |
Collapse
|
33
|
Yaegashi T, Kato T, Usui S, Kanamori N, Furusho H, Takashima SI, Murai H, Kaneko S, Takamura M. Short-term rapid atrial pacing alters the gene expression profile of rat liver: Cardiohepatic interaction in atrial fibrillation. Heart Rhythm 2016; 13:2368-2376. [DOI: 10.1016/j.hrthm.2016.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 11/25/2022]
|
34
|
Chang CL, Sung PH, Sun CK, Chen CH, Chiang HJ, Huang TH, Chen YL, Zhen YY, Chai HT, Chung SY, Tong MS, Chang HW, Chen HH, Yip HK. Protective effect of melatonin-supported adipose-derived mesenchymal stem cells against small bowel ischemia-reperfusion injury in rat. J Pineal Res 2015; 59:206-20. [PMID: 26013733 DOI: 10.1111/jpi.12251] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/21/2015] [Indexed: 01/19/2023]
Abstract
We tested the hypothesis that combined melatonin and autologous adipose-derived mesenchymal stem cells (ADMSC) was superior to either alone against small bowel ischemia-reperfusion (SBIR) injury induced by superior mesenteric artery clamping for 30 min followed by reperfusion for 72 hr. Male adult Sprague Dawley rats (n = 50) were equally categorized into sham-operated controls SC, SBIR, SBIR-ADMSC (1.0 × 10(6) intravenous and 1.0 × 10(6) intrajejunal injection), SBIR-melatonin (intraperitoneal 20 mg/kg at 30 min after SI ischemia and 50 mg/kg at 6 and 18 hr after SI reperfusion), and SBIR-ADMSC-melatonin groups. The results demonstrated that the circulating levels of TNF-α, MPO, LyG6+ cells, CD68+ cells, WBC count, and gut permeability were highest in SBIR and lowest in SC, significantly higher in SBIR-ADMSC group and further increased in SBIR-melatonin group than in the combined therapy group (all P < 0.001). The ischemic mucosal damage score, the protein expressions of inflammation (TNF-α, NF-κB, MMP-9, MPO, and iNOS), oxidative stress (NOX-1, NOX-2, and oxidized protein), apoptosis (APAF-1, mitochondrial Bax, cleaved caspase-3 and PARP), mitochondrial damage (cytosolic cytochrome C) and DNA damage (γ-H2AX) markers, as well as cellular expressions of proliferation (PCNA), apoptosis (caspase-3, TUNEL assay), and DNA damage (γ-H2AX) showed an identical pattern, whereas mitochondrial cytochrome C exhibited an opposite pattern compared to that of inflammation among all groups (all P < 0.001). Besides, antioxidant expressions at protein (NQO-1, GR, and GPx) and cellular (HO-1) levels progressively increased from SC to the combined treatment group (all P < 0.001). In conclusion, combined melatonin-ADMSC treatment offered additive beneficial effect against SBIR injury.
Collapse
Affiliation(s)
- Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan
| | - Chih-Hung Chen
- Division of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Ju Chiang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Han-Tan Chai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Shen Tong
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
35
|
Dixon J, Lane K, Macphee I, Philips B. Xenobiotic metabolism: the effect of acute kidney injury on non-renal drug clearance and hepatic drug metabolism. Int J Mol Sci 2014; 15:2538-53. [PMID: 24531139 PMCID: PMC3958866 DOI: 10.3390/ijms15022538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/12/2013] [Accepted: 12/27/2013] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication of critical illness, and evidence is emerging that suggests AKI disrupts the function of other organs. It is a recognized phenomenon that patients with chronic kidney disease (CKD) have reduced hepatic metabolism of drugs, via the cytochrome P450 (CYP) enzyme group, and drug dosing guidelines in AKI are often extrapolated from data obtained from patients with CKD. This approach, however, is flawed because several confounding factors exist in AKI. The data from animal studies investigating the effects of AKI on CYP activity are conflicting, although the results of the majority do suggest that AKI impairs hepatic CYP activity. More recently, human study data have also demonstrated decreased CYP activity associated with AKI, in particular the CYP3A subtypes. Furthermore, preliminary data suggest that patients expressing the functional allele variant CYP3A5*1 may be protected from the deleterious effects of AKI when compared with patients homozygous for the variant CYP3A5*3, which codes for a non-functional protein. In conclusion, there is a need to individualize drug prescribing, particularly for the more sick and vulnerable patients, but this needs to be explored in greater depth.
Collapse
Affiliation(s)
- John Dixon
- General Intensive Care Unit, St. George's Hospital, London SW17 0QT, UK.
| | - Katie Lane
- General Intensive Care Unit, St. George's Hospital, London SW17 0QT, UK.
| | - Iain Macphee
- Division of Clinical Sciences, St. George's, University of London, London SW17 0RE, UK.
| | - Barbara Philips
- General Intensive Care Unit, St. George's Hospital, London SW17 0QT, UK.
| |
Collapse
|
36
|
Lane K, Dixon JJ, MacPhee IAM, Philips BJ. Renohepatic crosstalk: does acute kidney injury cause liver dysfunction? Nephrol Dial Transplant 2013; 28:1634-47. [DOI: 10.1093/ndt/gft091] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
37
|
Yur F, Dede S, Karaca T, Çiftçi Yegin S, Değer Y, Özdemir H. The Effect of Glutathione Treatment on the Biochemical and Immunohistochemical Profile in Streptozotocin-Induced Diabetic Rats. J Membr Biol 2013; 246:427-33. [DOI: 10.1007/s00232-013-9541-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 03/22/2013] [Indexed: 12/24/2022]
|
38
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|
39
|
Park SW, Chen SW, Kim M, Brown KM, Kolls JK, D’Agati VD, Lee HT. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy. J Transl Med 2011; 91:63-84. [PMID: 20697374 PMCID: PMC2991383 DOI: 10.1038/labinvest.2010.151] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Patients with acute kidney injury (AKI) frequently suffer from extra-renal complications including hepatic dysfunction and systemic inflammation. We aimed to determine the mechanisms of AKI-induced hepatic dysfunction and systemic inflammation. Mice subjected to AKI (renal ischemia reperfusion (IR) or nephrectomy) rapidly developed acute hepatic dysfunction and suffered significantly worse hepatic IR injury. After AKI, rapid peri-portal hepatocyte necrosis, vacuolization, neutrophil infiltration and pro-inflammatory mRNA upregulation were observed suggesting an intestinal source of hepatic injury. Small intestine histology after AKI showed profound villous lacteal capillary endothelial apoptosis, disruption of vascular permeability and epithelial necrosis. After ischemic or non-ischemic AKI, plasma TNF-α, IL-17A and IL-6 increased significantly. Small intestine appears to be the source of IL-17A, as IL-17A levels were higher in the portal circulation and small intestine compared with the levels measured from the systemic circulation and liver. Wild-type mice treated with neutralizing antibodies against TNF-α, IL-17A or IL-6 or mice deficient in TNF-α, IL-17A, IL-17A receptor or IL-6 were protected against hepatic and small intestine injury because of ischemic or non-ischemic AKI. For the first time, we implicate the increased release of IL-17A from small intestine together with induction of TNF-α and IL-6 as a cause of small intestine and liver injury after ischemic or non-ischemic AKI. Modulation of the inflammatory response and cytokine release in the small intestine after AKI may have important therapeutic implications in reducing complications arising from AKI.
Collapse
Affiliation(s)
- Sang Won Park
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Sean W.C. Chen
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Kevin M. Brown
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Jay K. Kolls
- Department of Genetics, LSU Health Sciences Center, New Orleans, LA 70112
| | - Vivette D. D’Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - H. Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
,Address for Correspondence: H. Thomas Lee, M.D., Ph.D., Associate Professor, Department of Anesthesiology, Anesthesiology Research Laboratories, Columbia University, P&S Box 46 (PH-5), 630 West 168th Street, New York, NY 10032-3784, Tel: (212) 305-1807 (Lab), Fax: (212) 305-8980,
| |
Collapse
|
40
|
An animal model of ischemic priapism and the effects of melatonin on antioxidant enzymes and oxidative injury parameters in rat penis. Int Urol Nephrol 2010; 42:889-95. [DOI: 10.1007/s11255-010-9706-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/09/2010] [Indexed: 11/25/2022]
|
41
|
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) continues to contribute significantly to morbidity and mortality in the ICU setting, especially when associated with distant organ dysfunction. There is increasing evidence that AKI directly contributes to organ dysfunction in lung, brain, liver, heart and other organs. This review will examine our current understanding of the deleterious organ crosstalk in the critically ill, which can provide a framework for developing novel therapeutics. RECENT FINDINGS The majority of studies correlating AKI with distant organ dysfunction have demonstrated the pathophysiological importance of proinflammatory and proapoptotic pathways as well as oxidative stress and reactive oxygen species (ROS) production. Leukocyte activation and infiltration, changes in levels of soluble factors such as cytokines and chemokines, and regulation of cell death in extra-renal organs are potentially important mechanisms by which AKI modulates multiorgan dysfunction. SUMMARY There is increasing knowledge of AKI and deleterious interorgan crosstalk that arises, at least in part, due to the imbalance of immune, inflammatory, and soluble mediator metabolism that attends severe insults to the kidney. Further studies can build on these new mechanistic observations to develop strategies to improve outcomes in the critically ill patient.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
42
|
Ozbek E, Ilbey YO, Ozbek M, Simsek A, Cekmen M, Somay A. Melatonin attenuates unilateral ureteral obstruction-induced renal injury by reducing oxidative stress, iNOS, MAPK, and NF-kB expression. J Endourol 2009; 23:1165-73. [PMID: 19530942 DOI: 10.1089/end.2009.0035] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate whether melatonin (MLT) treatment has any protective effect on unilateral ureteral obstruction (UUO)-induced kidney injury in rats. MATERIALS AND METHODS Six animals were included in each of the following five groups: group 1, sham operation but no treatment; group 2, unilateral ureteral ligation but no treatment; group 3, sham operation + MLT; group 4, unilateral ureteral ligation + MLT; group 5, unilateral ureteral ligation +5% ethanol (the vehicle of MLT). The injected dose of MLT was 1 mg/kg/day (intraperitoneal). MLT and vehicle were injected daily, beginning 5 days before the unilateral ureteral ligation or sham operation and until 10 days after it. At 10 days after UUO, all rats were sacrificed with high-dose ketamine. Malondialdehyde, glutathione, nitric oxide (NO), and 8-hydroxydeoxyguanosine levels and inducible NO synthase (iNOS), p38-mitogen-activated protein kinase (p38-MAPK), and nuclear factor kappa B (NF-kB) expression were studied. Histopathological examination of the obstructed kidney was also performed. RESULTS UUO was accompanied by a significant increase in malondialdehyde, NO, and 8-hydroxydeoxyguanosine along with a significant decrease in glutathione levels in the kidney tissue, as well as a significant elevation in iNOS, p38-MAPK, and NF-kB expression. MLT treatment resulted in reduction of the parameters of oxidative stress and the iNOS, p38-MAPK, and NF-kB expression. MLT treatment also reduced the development of leukocyte infiltration and interstitial fibrosis in UUO rats. CONCLUSIONS MLT may prevent UUO-induced kidney damage in rats by reducing oxidative stress. The mechanism for this is likely mediated via reduction in the expression of iNOS, p38-MAPK, and NF-kB, since MLT reduces the activation of these pathways.
Collapse
Affiliation(s)
- Emin Ozbek
- Department of Urology, Bezm-i Alem Valide Sultan Vakif Gureba Research and Education Hospital, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|