1
|
Han X, Liu Z, Jiang Z, Zhao S, Hornok S, Yang M, Liu G, Wang Y. Detection of spotted fever group rickettsiae and Coxiella burnetii in long-tailed ground squirrels ( Spermophilus undulatus) and their ectoparasites. Front Vet Sci 2025; 12:1553152. [PMID: 40115830 PMCID: PMC11923762 DOI: 10.3389/fvets.2025.1553152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025] Open
Abstract
Long-tailed ground squirrels (LTGRs, Spermophilus undulatus) are known as reservoirs of multiple arthropod-borne pathogens, such as Yersinia pestis and Bartonella rochalimae. However, data on the prevalence of spotted fever group rickettsiae (SFGR) and Coxiella burnetii in LTGRs and its ectoparasites are limited. In two alpine regions of Xinjiang Uygur Autonomous Region (XUAR, northwestern China), a total of 346 samples were collected from 142 LTGRs, including 142 livers and 204 pooled ectoparasites (Citellophilus tesquorum dzetysuensis: 120 pools of 484 fleas; Frontopsylla elatoides elatoides: 19 pools of 71 fleas; Neopsylla mana: 1 pool of 4 fleas; and Linognathoides urocitelli: 64 pools of 865 lice). From these samples, the DNA was extracted, followed by PCR amplification of different genetic markers. Particularly, genes encoding the outer membrane protein A and B (ompA, ompB), citrate synthase (gltA), and surface cell antigen 1 (sca1) were used to identify the SFGR. Additionly, the capsular outer membrane protein (Com1) gene and insertion sequence (IS1111) genes were used to detect Coxiella. Rickettsia sibirica subsp. sibirica, Rickettsia felis, and C. burnetii were detected in LTGRs, as well as in flea and louse pools. Rickettsia raoultii was found in LTGRs and flea pools. Furthermore, Rickettsia slovaca was also identified in the flea pools. This study provides molecular evidence for the occurrence of SFGR and C. burnetii in LTGRs and their ectoparasites. These findings suggest that R. sibirica, R. slovaca, R. raoultii, R. felis and C. burnetii are transmitted between LTGRs (as potential reservoirs) and their fleas and lice (as potential vectors).
Collapse
Affiliation(s)
- Xiaoshuang Han
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ziheng Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zhixian Jiang
- Department of Forest, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Shanshan Zhao
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Meihua Yang
- Department of Forest, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Gang Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yuanzhi Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
2
|
Eneku W, Erima B, Byaruhanga Maranda A, Cleary Gillian N, Atim G, Tugume T, Ukuli Aquino Q, Kibuuka H, Mworozi E, Douglas C, Koehler William J, von Fricken Emery M, Tweyongyere R, Wabwire-Mangen F, Byarugaba Karuhize D. Molecular detection and characterization of Rickettsia felis, R. asembonensis, and Yersinia pestis from peri-domestic fleas in Uganda. Infect Ecol Epidemiol 2025; 15:2473159. [PMID: 40041476 PMCID: PMC11878166 DOI: 10.1080/20008686.2025.2473159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Background: Fleas transmit a variety of zoonotic agents whose epidemiology and public health risk remains poorly understood in sub-Saharan Africa, including Uganda particularly outside plague-endemic areas. Common flea-borne zoonotic agents include Rickettsia felis and Yersinia pestis.. Objectives: The study aimed at detecting and characterising flea-borne pathogens in peridomestic environments in Uganda. Methods: We collected fleas from domestic animals, chickens, rodents, and homestead environments; pooled them by species, collection time, and host species. A total of 172 pools were analyzed for Y. pestis Pla gene. Further, 62 pools were tested for Rickettsia species gltA, ompA, and htrA genes by PCR and Sanger sequencing. Results: Five flea species were identified: C. canis, C. felis, Echidnophaga gallinacea, Pulex irritans, and X. cheopis. Genus, Ctenocephalides, accounted for 84.8% of fleas collected, mostly found on dogs and goats. The flea species were found across all districts, year-round, with higher numbers collected in dry seasons than rainy seasons. Rattus rattus constituted 74% of rodents captured from human dwellings and was the only rodent species with fleas, where X. cheopis was the predominant species. All 172 pools were negative for Y. pestis. Rickettsia spp. was detected in 29/62 (46.8%) pools by the target genes. Of 25 htrA amplicons sequenced, 4% were identified as R. felis from C. canis, 92% were R. asembonensis from multiple flea species, and 4% were identified as Candidatus Rickettsia senegalensis. Conclusion:The survey identified high pool detection rate of Rickettsia spp. in fleas,suggestingrisk of human exposure and infection. This was the first report of Rickettsia spp. in E. gallinacea and detection of Candidatus R. senegalensis in Uganda.
Collapse
Affiliation(s)
- Wilfred Eneku
- College of Veterinary Medicine, Makerere University, Kampala, Uganda
- Emerging Infectious Disease Department, Makerere University Walter Reed Project, Kampala, Uganda
| | - Bernard Erima
- Emerging Infectious Disease Department, Makerere University Walter Reed Project, Kampala, Uganda
| | | | - Nora Cleary Gillian
- Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Gladys Atim
- Emerging Infectious Disease Department, Makerere University Walter Reed Project, Kampala, Uganda
| | - Titus Tugume
- Emerging Infectious Disease Department, Makerere University Walter Reed Project, Kampala, Uganda
| | - Qouilazoni Ukuli Aquino
- Emerging Infectious Disease Department, Makerere University Walter Reed Project, Kampala, Uganda
| | - Hannah Kibuuka
- Emerging Infectious Disease Department, Makerere University Walter Reed Project, Kampala, Uganda
| | - Edison Mworozi
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | | | | | | | | | - Denis Byarugaba Karuhize
- College of Veterinary Medicine, Makerere University, Kampala, Uganda
- Emerging Infectious Disease Department, Makerere University Walter Reed Project, Kampala, Uganda
| |
Collapse
|
3
|
Rajakaruna RS, Capps-Ludwig D, Durden LA, Eremeeva ME. DETECTION OF RICKETTSIA AND BARTONELLA IN FLEAS AND TICKS COLLECTED FROM PETS AT VETERINARY CLINICS IN GEORGIA, UNITED STATES. J Parasitol 2025; 111:113-122. [PMID: 40090362 DOI: 10.1645/24-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025] Open
Abstract
Many human infections are transmitted through contact with household pets. The purpose of this cross-sectional study was to determine the occurrence of ticks and fleas on pets (dogs and cats) in local veterinary clinics in Statesboro, Georgia. We screened ectoparasites for Rickettsia and Bartonella and assessed owner knowledge and practices related to tick- and flea-borne diseases. Ectoparasites were collected and identified using standard taxonomic keys, and their genomic DNA was extracted. Three TaqMan assays were used to test ectoparasites for flea-borne Rickettsia DNA. Nested PCR targeting riboflavin synthase encoding gene (ribC) was used to detect Bartonella species DNA. Restriction fragment length polymorphism analysis and sequencing were used to identify the microorganisms detected. Upon providing written consent, owners completed a self-administered questionnaire to provide information concerning their knowledge and practices about vector-borne diseases. Data from 27 pets were collected from 2 veterinary clinics during September to December 2014. A total of 58 ectoparasites including fleas (n = 51) and ticks (n = 7) were collected from 19 cats and dogs. The cat flea, Ctenocephalides felis (n = 44), was the predominant flea species followed by Pulex sp. (n = 7). All ticks were Ixodes scapularis. Using PCR, RFLP, and sequencing, it was determined that the majority of cat fleas contained DNA of known human pathogens, including Rickettsia asembonensis (72.5%), Rickettsia felis (5.9%), Bartonella henselae (2%), and Bartonella quintana (7.8%). DNA of B. quintana was also detected in 2 Pulex sp. fleas and 2 ticks. Two animals had ectoparasites co-infected with Rickettsia and Bartonella. Most owners (95.7%) knew that fleas can transmit animal disease agents, but they were less aware that fleas can spread diseases to humans, and only 12.5% of owners knew about cat scratch disease. Our data indicate that there is a risk of flea- and tick-borne zoonotic infections in households owning cats and dogs. Educational materials, vector-control preventive measures, and appropriate personal attitudes and practices are needed to ensure public health safety and wholesome interactions with pets.
Collapse
Affiliation(s)
- Rupika S Rajakaruna
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia 30458
- Department of Zoology, University of Peradeniya, Peradeniya, 20400 Sri Lanka
| | - Danielle Capps-Ludwig
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia 30458
| | - Lance A Durden
- Department of Biology, Georgia Southern University, Statesboro, Georgia 30458
| | - Marina E Eremeeva
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia 30458
| |
Collapse
|
4
|
Anstead GM. A One Health Perspective on the Resurgence of Flea-Borne Typhus in Texas in the 21st Century: Part 1: The Bacteria, the Cat Flea, Urbanization, and Climate Change. Pathogens 2025; 14:154. [PMID: 40005529 PMCID: PMC11858070 DOI: 10.3390/pathogens14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Flea-borne typhus (FBT), due to Rickettsia typhi and R. felis, is an infection typically causing fever, headache, rash, hepatitis, and thrombocytopenia. About one quarter of patients suffer pulmonary, neurologic, hematologic, renal, hepatic, cardiac, ocular or other complications. In the 21st century, the incidence of FBT has increased in both Texas and California compared to the 1990s. In this paper, county-level epidemiological data for the number of cases of FBT occurring in Texas for two decades, 1990-1999 and 2010-2019, were compared with respect to county of residence, urbanization, and climatic region. Human population growth in Texas has promoted FBT by increased urbanization and the abundance of pet dogs and cats, stray/feral dogs and cats, and opossums. Increasing temperatures in Texas in the new millennium have increased the flea-borne transmission of FBT by promoting host infestation and flea feeding and defecation, accelerating the flea life cycle, and increasing rickettsial replication within the flea. Increased numbers of opossums and stray cats and dogs in the urban/suburban landscape have increased the risk of flea transfer to humans and their pets.
Collapse
Affiliation(s)
- Gregory M. Anstead
- Division of Infectious Diseases, Medical Service, South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX 78229, USA;
- Division of Infectious Diseases, Depatment of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Cooke M, Chembars MS, Pitts RJ. The conserved IR75 subfamily mediates carboxylic acid detection in insects of public health and agricultural importance. JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:ieaf012. [PMID: 39891408 PMCID: PMC11785732 DOI: 10.1093/jisesa/ieaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
Insects perceive and respond to carboxylic acids (CAs), amines, and aldehydes primarily via conserved ionotropic receptors (IRs). These receptors form the basis for a second olfactory system distinct from the well-characterized odorant receptors. Neurons expressing IRs are housed in dedicated sensilla and innervate glomeruli, separate from those innervated by odorant receptor neurons. The IR8a co-receptor is highly conserved across insect orders and, together with ionotropic receptor tuning receptors, primarily detects CAs. The conservation of genes and the anatomical separation of neural pathways underscore the importance of these compound classes and CAs, specifically in insect chemical ecology. We provide a summary of carboxylic acid detection in insects, focusing on dipteran and lepidopteran species of significance to public health and agriculture. An overview of insect behavior toward CAs is provided, as well as a comprehensive update on carboxylic acid receptor function in insects. Phylogenetic analysis of publicly available genome databases reveals several species that encode and express homologs of previously deorphanized carboxylic acid receptors, highlighting avenues for future research.
Collapse
Affiliation(s)
- Matthew Cooke
- Department of Biology, Baylor University, Laboratory of Arthropod Sensory Biology & Neuroethology, Waco, TX, USA
| | - Michael S Chembars
- Department of Biology, Baylor University, Laboratory of Arthropod Sensory Biology & Neuroethology, Waco, TX, USA
| | - Ronald Jason Pitts
- Department of Biology, Baylor University, Laboratory of Arthropod Sensory Biology & Neuroethology, Waco, TX, USA
| |
Collapse
|
6
|
Rahman S, Liu H, Shah M, Almutairi MM, Liaqat I, Tanaka T, Chen CC, Alouffi A, Ali A. Prediction of potential drug targets and key inhibitors (ZINC67974679, ZINC67982856, and ZINC05668040) against Rickettsia felis using integrated computational approaches. Front Vet Sci 2025; 11:1507496. [PMID: 39885844 PMCID: PMC11780677 DOI: 10.3389/fvets.2024.1507496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/02/2024] [Indexed: 02/01/2025] Open
Abstract
Rickettsia felis, responsible for flea-borne spotted fever, is a rising zoonotic pathogen posing an increasing global threat due to its expanding geographical distribution. The rise in antibiotic-resistant strains of this pathogen underscores the urgent need for new therapeutic interventions. This study employed a comprehensive subtractive proteomics analysis of the R. felis proteome, aiming to identify essential, non-host homologous, and pathogen-specific proteins, which were subsequently evaluated as potential new drug targets. These findings offer valuable insights into the development of therapeutic strategies against rickettsiosis. The analysis revealed 343 proteins that are non-homologous to the host, including 108 essential proteins, 25 unique metabolic pathways, and 11 distinct proteins. Out of these, 10 proteins were druggable in which two associated with virulence, and one related to resistance (succinate dehydrogenase). Through a rigorous screening process and extensive literature review, succinate dehydrogenase emerged as a promising drug target. Protein interaction partners for succinate dehydrogenase were identified using the STRING database. To further assess the functionality of succinate dehydrogenase, structure-based studies were conducted. Approximately 18,000 ZINC compounds were screened, leading to the finding of six potential inhibitors: ZINC67847806, ZINC67982856, ZINC67974679, ZINC67895371, ZINC05668040, and ZINC05670149. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling confirmed that most compounds met the preferred pharmacokinetic properties, except for ZINC67895371 and ZINC67847806, which exhibited positive ames test results, and ZINC05670149, ZINC67895371, and ZINC67847806, showed hepatotoxicity. All compounds were found to be non-sensitizing to the skin. Based on these findings, further experimental validation of ZINC67974679, ZINC67982856, and ZINC05668040 is recommended.
Collapse
Affiliation(s)
- Sudais Rahman
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Hsien Liu
- Division of General Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Mohibuallah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Tetsuya Tanaka
- Laboratory of Animal Microbiology, Faculty of Agriculture, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
Snellgrove AN, Goddard J. Murine typhus: a re-emerging rickettsial zoonotic disease. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2024; 50:1-13. [PMID: 39658534 DOI: 10.52707/1081-1710-50.1-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024]
Abstract
Murine typhus, caused by Rickettsia typhi, is re-emerging in many parts of the world. The disease is also called endemic typhus to differentiate from epidemic typhus (caused by Rickettsia prowazekii), and sometimes also named flea-borne typhus. Occasionally, literature sources will include Rickettsia felis as a causative agent of flea-borne typhus, but illnesses caused by R. felis are actually flea-borne spotted fever. Murine typhus occurs in warm, coastal areas worldwide. In the United States, most cases are reported from California, Texas, and Hawaii. Murine typhus is usually a self-limited febrile illness but about one-quarter of patients suffer organ complications. The disease is only infrequently fatal. Regarding disease ecology, the historical paradigm is that rats (Rattus rattus and R. norvegicus) are reservoirs of R. typhi worldwide, with rat fleas (Xenopsylla cheopis) as primary vectors. More recently, researchers have proposed an alternative suburban murine typhus transmission cycle involving opossums, cat fleas, cats, and dogs in Texas, California, and rural Mexico. Because cat fleas feed on a variety of mammals, there may be other avenues for R. typhi transmission, including stray or feral cats bringing cat fleas and other infected fleas into proximity with humans and possible aerosolization of infected flea feces. Additional fleas, ticks, lice, and mites may play a role in various areas throughout the world, but a striking lack of fundamental research on this topic makes drawing conclusions difficult. This review provides an overview of the history, epidemiology, diagnosis, and treatment of murine typhus, with special emphasis on its disease ecology.
Collapse
Affiliation(s)
- Alyssa N Snellgrove
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333 U.S.A.,
| | - Jerome Goddard
- Urban and Public Health Entomology Program, Department of Agricultural Science and Plant Protection, Mississippi State University, Mississippi State, MS 39762 U.S.A
| |
Collapse
|
8
|
Probert WS, Quintana AC, Kjemtrup AM, Hacker JK. Duplex Reverse-Transcription Real-Time Polymerase Chain Reaction Assay Targeting 23S rRNA Single Nucleotide Polymorphisms for the Detection of Flea-Borne Rickettsioses. Am J Trop Med Hyg 2024; 111:569-574. [PMID: 39013372 PMCID: PMC11376180 DOI: 10.4269/ajtmh.23-0884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/08/2024] [Indexed: 07/18/2024] Open
Abstract
Flea-borne spotted fever and flea-borne (murine) typhus are rickettsioses caused by Rickettsia felis and Rickettsia typhi, respectively, and typically present as undifferentiated febrile illnesses. The relative contribution of these agents to flea-borne rickettsioses in California is unclear. We have developed a duplex reverse transcription real-time polymerase chain reaction (RT-rtPCR) assay targeting R. felis- and R. typhi-specific 23S ribosomal RNA single nucleotide polymorphisms to better understand the respective roles of these agents in causing flea-borne rickettsioses in California. This assay was compared with an established duplex R. felis- and R. typhi-ompB rt-PCR assay and was shown to have 1,000-fold and 10-fold greater analytical sensitivity for the detection of R. felis and R. typhi, respectively. Retrospective testing of clinical specimens with both assays established R. typhi as the major etiologic agent of flea-borne rickettsioses in California.
Collapse
Affiliation(s)
- William S Probert
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California
| | - Alexa C Quintana
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California
| | - Anne M Kjemtrup
- Infectious Diseases Branch, Vector-borne Disease Section, California Department of Public Health, Sacramento, California
| | - Jill K Hacker
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California
| |
Collapse
|
9
|
Po TL, Huang CH, Lin CH, Hung HF. Diagnosis of a Rare Rickettsia felis Infection Complicated with Unusual Pericardial Effusion and Cardiac Tamponade Using an mNGS Test. Case Rep Infect Dis 2024; 2024:8877876. [PMID: 39165786 PMCID: PMC11335410 DOI: 10.1155/2024/8877876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
The occurrence of sporadic rickettsial infections has been consistently undervalued and overlooked, primarily owing to a limited emphasis on routine examinations for rickettsioses in clinical practice. At present, the immunofluorescence assay is the prevailing diagnostic method for suspected rickettsioses that enables the detection of specific antibodies against rickettsia in human serum. Herein, we present an exceptional instance of rickettsial infection that was characterized by a rare manifestation of extensive pericardial effusion leading to dyspnea and cardiac tamponade. A diagnosis of chronic fibrosing pericarditis was established based on pericardium tissue obtained through pericardiotomy, and a conclusive metagenomic next-generation sequencing test confirmed the presence of Rickettsia felis infection. The cat flea, scientifically known as Ctenocephalides felis, is the predominant carrier of R. felis. An escalating incidence of human R. felis infections has raised concerns, particularly in light of the burgeoning population of domesticated animals in many contemporary societies.
Collapse
Affiliation(s)
- Tien-Lung Po
- Division of CardiologyDepartment of Internal MedicineShin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Internal MedicineShin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chien-Hsien Huang
- Department of Internal MedicineShin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Division of Infectious DiseaseDepartment of Internal MedicineShin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- College of MedicineFu Jen Catholic University, Hsinchuang, Taipei, Taiwan
| | - Chia-Hsun Lin
- Division of Cardiac SurgeryDepartment of SurgeryShin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of SurgeryShin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Huei-Fong Hung
- Division of CardiologyDepartment of Internal MedicineShin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Internal MedicineShin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Kennedy AC, Winter WS, Gardner AL, Woodman N, Shifflett SA, Redus S, Newcomer JR, Eckerlin RP. Records of fleas (Siphonaptera) from Delaware. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:959-964. [PMID: 38754900 PMCID: PMC11239788 DOI: 10.1093/jme/tjae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
We present an annotated checklist of fleas (Siphonaptera) known to occur in the state of Delaware based on an examination of Siphonaptera collections at the University of Delaware and the Carnegie Museum of Natural History, as well as new specimens of fleas we collected from wildlife, other hosts, and tick flags. We review published records and compile them herein with our new records, which include 3 species previously unreported from Delaware. With these additions, there are now 18 flea species from 19 avian and mammalian hosts documented from Delaware.
Collapse
Affiliation(s)
- Ashley C Kennedy
- Mosquito Control Section, Division of Fish and Wildlife, Delaware Department of Natural Resources and Environmental Control, Newark, DE 19702, USA
| | - Wil S Winter
- Mosquito Control Section, Division of Fish and Wildlife, Delaware Department of Natural Resources and Environmental Control, Newark, DE 19702, USA
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA
| | - Alfred L Gardner
- Division of Mammals, MRC 108, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Neal Woodman
- Division of Mammals, MRC 108, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Population Conservation Genetics Group, USGS Eastern Ecological Science Center at the Patuxent Research Reserve, Laurel, MD 20708, USA
| | - Scarlet A Shifflett
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA
| | - Sierra Redus
- Mosquito Control Section, Division of Fish and Wildlife, Delaware Department of Natural Resources and Environmental Control, Newark, DE 19702, USA
| | - Jeffrey R Newcomer
- Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Annapolis, MD 21409, USA
| | - Ralph P Eckerlin
- Natural Sciences Division, Northern Virginia Community College, Annandale, VA 22003, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
11
|
Schott D, Ribeiro FL, Santos FN, Carvalho RWD. Fleas (Siphonaptera, Latreille, 1825) from Rio Grande do Sul State, Brazil: Species Diversity, Hosts, and One Health Approach. Vector Borne Zoonotic Dis 2024; 24:308-320. [PMID: 38232706 DOI: 10.1089/vbz.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Background: Fleas are ectoparasitic insects with holometabolous development. It has a hematophagous habit with mouthparts adapted to sting and suck its hosts. There are about 3000 species in the world, ∼61 in Brazil, and 19 in Rio Grande do Sul state. The objective of the research is to catalog the diversity of fleas recorded in the state, their respective hosts, and endosymbionts. Materials and Methods: To this end, a search was carried out in the scientific literature, from articles, books, to abstracts submitted to congresses. Results: The 19 species of fleas occurring in Rio Grande do Sul are divided into 7 families and 10 genera. These ectoparasites, in addition to being found in the environment, were associated with 10 different families of hosts in Rio Grande do Sul, and on the endosymbiont, agents found associated with fleas, there were 7 different species. The main agents researched in the state are Rickettsia spp. and Bartonella spp. The relationships between parasites, hosts, environment, and etiological agents present different scenarios, whether anthropized or conserved, but unknown. Sometimes, this overlap, a factor that aggravates the possibility of spillovers, either from cosmopolitan fleas in these conserved areas, or from their endosymbionts. Conclusion: Thus, it is important to characterize the environment so that the complexities of each location are known for the adoption of environmental and public health policies in each case. The challenges are extensive, but necessary in view of the One Health perspective.
Collapse
Affiliation(s)
- Diogo Schott
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (ENSP/Fiocruz), Rio de Janeiro, Brazil
| | - Fernanda Laís Ribeiro
- Programa de Pós-Graduação em Terapia Ocupacional, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Fernanda Nunes Santos
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (INI/Fiocruz), Rio de Janeiro, Brazil
| | - Raimundo Wilson de Carvalho
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (ENSP/Fiocruz), Rio de Janeiro, Brazil
- Professor de Medicina e Comitê de Ética em Pesquisa, Universidade Castelo Branco, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Zurita A, Trujillo I, Cutillas C. New records of pathogenic bacteria in different species of fleas collected from domestic and peridomestic animals in Spain. A potential zoonotic threat? Comp Immunol Microbiol Infect Dis 2024; 107:102153. [PMID: 38460359 DOI: 10.1016/j.cimid.2024.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Climate change is causing many vectors of infectious diseases to expand their geographic distribution as well as the pathogens they transmit are also conditioned by temperature for their multiplication. Within this context, it is worth highlighting the significant role that fleas can play as vectors of important pathogenic bacteria. For this purpose, our efforts focused on detecting and identifying a total of 9 bacterial genera (Rickettsia sp.; Bartonella sp.; Yersinia sp.; Wolbachia sp., Mycobacterium sp., Leishmania sp., Borrelia sp., Francisella sp. and Coxiella sp.) within fleas isolated from domestic and peridomestic animals in the southwestern region of Spain (Andalusia). Over a 19-months period, we obtained flea samples from dogs, cats and hedgehogs. A total of 812 fleas was collected for this study. Five different species were morphologically identified, including C. felis, C. canis, S. cuniculi, P. irritans, and A. erinacei. Wolbachia sp. was detected in all five species identified in our study which a total prevalence of 86%. Within Rickettsia genus, two different species, R. felis and R. asembonensis were mainly identified in C. felis and A. erinacei, respectively. On the other hand, our results revealed a total of 131 fleas testing positive for the presence of Bartonella sp., representing a prevalence rate of 16% for this genus identifying two species B. henselae and B. clarridgeiae. Lastly, both Y. pestis and L. infantum were detected in DNA of P. irritans and C. felis, respectively isolated from dogs. With these data we update the list of bacterial zoonotic agents found in fleas in Spain, emphasizing the need to continue conducting future experimental studies to assess and confirm the potential vectorial role of certain synanthropic fleas.
Collapse
Affiliation(s)
- Antonio Zurita
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, Seville 41012, Spain.
| | - Ignacio Trujillo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, Seville 41012, Spain.
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, Seville 41012, Spain.
| |
Collapse
|
13
|
Intirach J, Lv X, Sutthanont N, Cai B, Champakaew D, Chen T, Han Q, Lv Z. Molecular and next-generation sequencing analysis of tick-borne pathogens of Rhipicephalus ticks (Acari: Ixodidae) in cattle and dogs. Acta Trop 2024; 252:107138. [PMID: 38307363 DOI: 10.1016/j.actatropica.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Ticks are small and adaptable arachnid ectoparasites and global carriers of various pathogens that threaten both human and animal health. They are present in many parts of China. A total of 858 ticks were collected from various regions and hosts, then subjected to species identification based on morphological and molecular characteristics, as described in the authors' previous study. Eighty-three individual tick samples were selected for screening pathogens based on metagenomic next-generation sequencing (mNGS) and polymerase chain reaction (PCR) assays. The genomic DNA of tick species was extracted, and amplification of the bacterial 16S rRNA gene was carried out from DNA of individual ticks using V3-V4 hypervariable regions, before subjecting to metagenomic analysis. Each tick underwent specific PCR tests for identifying the bacterial species present, including Anaplasma, Ehrlichia, Coxiella, and Rickettsia, and also protozoans such as Babesia, Theileria, and Hepatozoon. Illumina NovaSeq sequencing results revealed that the dominant phylum and family in Rhipicephalus spp. were Bacteroidota and Muribaculaceae, respectively. Alpha diversity patterns varied depending on tick sex (R. linnaei only), species and location, but not on host. Furthermore, bacterial pathogens, including A. marginale (58 %, 29/50), A. platys (6 %, 3/50), E. minasensis (2 %, 1/50), Ehrlichia sp. (10 %, 5/50), T. sinensis (24 %, 12/50), T. orientalis (54 %, 27/50) and Coxiella-like bacteria (CLB) (80 %, 40/50) were detected in R. microplus, while E. canis (33.33 %, 10/30), H. canis (20 %, 6/30) and CLB (100 %, 30/30) were detected in R. linnaei. Also, Anaplasma sp. (33.33 %, 1/3), A. marginale (33.33 %, 1/3), R. felis (33.33 %, 1/3) and CLB (100 %, 3/3) were detected in R. haemaphysaloides. Dual and triple co-infections involving pathogens or CLB were detected in 84.00 % of R. microplus, 66.66 % of R. haemaphysaloides, and 33.00 % of R. linnaei. The report on microbial communities and pathogens, which found from Rhipicephalus spp. in Hainan Island, is an important step towards a better understanding of tick-borne disease transmission. This is the first report in the area on the presence of Anaplasma sp., A. marginale, R. felis and Coxiella, in R. haemaphysaloides.
Collapse
Affiliation(s)
- Jitrawadee Intirach
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China; Hainan Tropical Diseases Research Center (Hainan Sub-Center, Chinese Center for Tropical Diseases Research), Haikou, Hainan 571199, China
| | - Xin Lv
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| | - Nataya Sutthanont
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Benchi Cai
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China
| | - Danita Champakaew
- Parasitology and Entomology Research Cluster (PERC), Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tao Chen
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China; Hainan Provincial Bureau of Disease Prevention and Control, Haikou 570100, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Zhiyue Lv
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
14
|
Segura JA, Dibernardo A, Manguiat K, Waitt B, Rueda ZV, Keynan Y, Wood H, Gutiérrez LA. Molecular surveillance of microbial agents from cattle-attached and questing ticks from livestock agroecosystems of Antioquia, Colombia. Comp Immunol Microbiol Infect Dis 2024; 105:102113. [PMID: 38176202 DOI: 10.1016/j.cimid.2023.102113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Ticks are obligate ectoparasites and vectors of pathogens affecting health, agriculture, and animal welfare. This study collected ticks from the cattle and questing ticks of 24 Magdalena Medio Antioquia region cattle farms. Genomic DNA was extracted from the specimens (individual or pools) of the 2088 adult ticks collected from cattle and 4667 immature questing ticks collected from pastures. The molecular detection of Babesia, Anaplasma, Coxiella and Rickettsia genera was performed by polymerase chain reaction amplification and subsequent DNA sequencing. In a total of 6755 Rhipicephalus microplus DNA samples, Anaplasma marginale was the most detected with a frequency of 2% (Confidence Interval- CI 1.68-2.36), followed by Babesia bigemina with 0.28% (CI 0.16-0.44), Coxiella spp. with 0.15% (CI 0.07-0.27), and Rickettsia spp. with 0.13% (CI 0.06-0.25). Molecular analysis of the DNA sequences obtained from the tick samples revealed the presence of Coxiella-like endosymbiont and R. felis. These results demonstrated the diversity of microorganisms present in R. microplus ticks predominantly associated with cattle and questing ticks from livestock agroecosystems, suggesting their role as reservoirs and potential biological vectors of these microorganisms on the studied sites. Also, it emphasizes the need to combine acarological surveillance with clinical diagnoses and control strategies on regional and national levels.
Collapse
Affiliation(s)
- Juan A Segura
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1a No 70-01, Bloque 11C - Oficina 417, Medellín, Colombia
| | - Antonia Dibernardo
- One Health, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Kathy Manguiat
- One Health, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Brooks Waitt
- One Health, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Zulma V Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada; Grupo de investigación en Salud Pública, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Heidi Wood
- One Health, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Lina A Gutiérrez
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1a No 70-01, Bloque 11C - Oficina 417, Medellín, Colombia.
| |
Collapse
|
15
|
Nguyen TV, Nguyen HQ, Stenos J, Nguyen TV, Ng-Nguyen D. Molecular detection of Rickettsia sp. genotype RF2125 from household dogs in the central highlands of Vietnam. Res Vet Sci 2023; 163:104989. [PMID: 37639804 DOI: 10.1016/j.rvsc.2023.104989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/12/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Rickettsia felis, a zoonotic vector-borne bacteria, is reported globally in humans, animals, and its invertebrate hosts. This study was designed to detect antibodies against R. felis and the DNA of R. felis in blood of domestic dogs in the Central Highlands of Vietnam using immunofluorescence antibody test (IFAT), and ompB- and gltA-PCRs, respectively. Using IFAT, 23 out of 338 plasma samples collected from household dogs were seropositive for R. felis, accounting for 6.80% (CI 95%: 4.45-10.1%). Of 171 buffy coat samples from household dogs, 50 were positive for spotted fever group rickettsioses using ompB-PCR assay, accounting for 29.2% (CI 95%: 22.6-36.7%). The gltA-PCR assay detected R. felis in 30% (15/50) of ompB-positive samples. DNA sequencing of ompB-PCR and gltA-PCR products confirmed the presence of R. felis and Rickettsia sp. genotype RF2125 / R. asembonensis. Our findings suggest a potential risk of R. felis infection in the communities in the Central Highlands of Vietnam, and the reservoir role of dogs to Rickettsia sp. genotype RF2125.
Collapse
Affiliation(s)
- Trong Van Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot City, Dak Lak Province, Viet Nam
| | - Hieu Quoc Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot City, Dak Lak Province, Viet Nam
| | - John Stenos
- Australian Rickettsial Reference Laboratory, Geelong, Victoria, Australia
| | - Thai Van Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot City, Dak Lak Province, Viet Nam
| | - Dinh Ng-Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot City, Dak Lak Province, Viet Nam.
| |
Collapse
|
16
|
Deng YP, Fu YT, Yao C, Shao R, Zhang XL, Duan DY, Liu GH. Emerging bacterial infectious diseases/pathogens vectored by human lice. Travel Med Infect Dis 2023; 55:102630. [PMID: 37567429 DOI: 10.1016/j.tmaid.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human lice have always been a major public health concern due to their vector capacity for louse-borne infectious diseases, like trench fever, louse-borne relapsing fever, and epidemic fever, which are caused by Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii, respectively. Those diseases are currently re-emerging in the regions of poor hygiene, social poverty, or wars with life-threatening consequences. These louse-borne diseases have also caused outbreaks among populations in jails and refugee camps. In addition, antibodies and DNAs to those pathogens have been steadily detected in homeless populations. Importantly, more bacterial pathogens have been detected in human lice, and some have been transmitted by human lice in laboratories. Here, we provide a comprehensive review and update on louse-borne infectious diseases/bacterial pathogens.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China; Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Nallan K, Ayyavu V, Ayyanar E, Thirupathi B, Gupta B, Devaraju P, Kumar A, Rajaiah P. Molecular Evidence of Rickettsia conorii subsp. raoultii and Rickettsia felis in Haemaphysalis intermedia Ticks in Sirumalai, Eastern Ghats, Tamil Nadu, South India. Microorganisms 2023; 11:1713. [PMID: 37512886 PMCID: PMC10384621 DOI: 10.3390/microorganisms11071713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Rickettsia is an important pathogenic entity among tick-borne diseases (TBD), which are considered serious emerging public health problems globally. In India, though the widespread distribution of ticks and TBD has been documented, its real burden remains underreported. In a preliminary attempt, rickettsial surveillance was carried out in ticks collected from Sirumalai, Eastern Ghats in Tamil Nadu, India by using pathogen genome-based phylogenetic inferences generated through multi-locus sequence typing (MLST), targeting the genes 16s rRNA, OmpA, OmpB, and gltA by nested PCR. The laboratory evidence confirms the circulation of Rickettsia in Haemaphysalis intermedia species collected from this area. Analysis of the four gene sequences detected demonstrates their closest identity to the spotted fever group (SFG) available in the GenBank database. Further, multiple sequence alignment with other sequences derived from the GenBank database showed close relatedness to Rickettsia conorii subsp. raoultii (16s rDNA-99.32%, OmpA-93.38%, OmpB-97.39%, and gltA-98.57%) and Rickettsia felis (16s rDNA 99.54%, OmpA-100%, OmpB-100% and gltA-99.41%). With this genomic evidence, the circulation of rickettsial pathogens in the pools of H. intermedia ticks infesting livestock in the Sirumalai foothill area has been demonstrated and to complement the microscopic identification of the tick species, DNA barcodes were generated for H. intermedia using the mitochondrial cytochrome c oxidase subunit I gene (COI). Nevertheless, R. raoultii and R. felis were found to be the aetiological agents of tick-borne lymphadenopathy and flea-borne spotted fever in human cases, respectively, further study on the determination of their diversity, distribution, clinical relevance, and potential risk to the local community in these areas is highly warranted.
Collapse
Affiliation(s)
- Krishnamoorthy Nallan
- ICMR-Vector Control Research Centre, Field Unit, 4. Sarojini Street, Madurai 625002, India
| | - Veerapathiran Ayyavu
- ICMR-Vector Control Research Centre, Field Unit, 4. Sarojini Street, Madurai 625002, India
| | - Elango Ayyanar
- ICMR-Vector Control Research Centre, Puducherry 605006, India
| | - Balaji Thirupathi
- ICMR-Vector Control Research Centre, Field Unit, 4. Sarojini Street, Madurai 625002, India
| | - Bhavna Gupta
- ICMR-Vector Control Research Centre, Field Unit, 4. Sarojini Street, Madurai 625002, India
| | | | - Ashwani Kumar
- ICMR-Vector Control Research Centre, Puducherry 605006, India
| | - Paramasivan Rajaiah
- ICMR-Vector Control Research Centre, Field Unit, 4. Sarojini Street, Madurai 625002, India
| |
Collapse
|
18
|
Rizwan M, Ali S, Javid A, von Fricken ME, Rashid MI. Molecular epidemiology of Bartonella species from sympatric mammals collected in urban and rural areas of Punjab, Pakistan. Acta Trop 2023; 243:106940. [PMID: 37160189 DOI: 10.1016/j.actatropica.2023.106940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/11/2023]
Abstract
Bartonella can infect a variety of mammals including humans and has been detected in the Americas, Europe, Africa, and Asia. Roughly two-thirds of identified Bartonella species are found and maintained in rodent reservoirs, with some of these species linked to human infections. Rodents (N=236) were caught from the Sahiwal division of Punjab, Pakistan and tested for Bartonella using PCR targeting gltA and rpoB genes, followed by sequencing of rpoB-positive samples. Genetic relatedness to other published Bartonella spp. rpoB gene sequences were examined using BLAST and phylogenetic analysis. Overall, 7.62% (18/236) of rodents were positive for both gltA and rpoB fragments. Rattus rattus and R. norvegicus had 7.94% (12/151) and 7.05% (6/85) positivity rates for Bartonella DNA, respectively. Phylogenetic analysis revealed a close relatedness between Bartonella spp. from Pakistan to Bartonella spp. from China, Nepal, and Malaysia. This study is the first reported detection of Bartonella spp. in R. rattus and R. norvegicus from the Sahiwal area of Punjab, Pakistan.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Wildlife Epidemiology and Molecular Microbiology Laboratory (One Health Research Group), Discipline of Zoology, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Ravi Campus, Pattoki, Pakistan; Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Ravi Campus, Pattoki, Pakistan
| | - Shahzad Ali
- Wildlife Epidemiology and Molecular Microbiology Laboratory (One Health Research Group), Discipline of Zoology, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Ravi Campus, Pattoki, Pakistan; Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Ravi Campus, Pattoki, Pakistan.
| | - Arshad Javid
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Ravi Campus, Pattoki, Pakistan
| | - Michael E von Fricken
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
19
|
Minahan NT, Wu WJ, Tsai KH. Rickettsia felis is an emerging human pathogen associated with cat fleas: A review of findings in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:10-19. [PMID: 36585292 DOI: 10.1016/j.jmii.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Rickettsia felis is an emerging rickettsial agent principally associated with cat fleas (Ctenocephalides felis), formerly discovered in 1990. Since then, clinical cases of R. felis infection have been identified globally by specific DNA sequences in patients with undifferentiated febrile illness, including in Taiwan, but such evidence is limited. R. felis rickettsiosis is self-limiting and easily treated with doxycycline, but its diagnosis remains a challenge. Environmental risk factors for R. felis rickettsiosis have yet to be clearly demonstrated, and its transmission biology is incompletely understood. Cat fleas are naturally infected with R. felis at varying rates, and vector competence in the transmission of R. felis has been demonstrated in animal models, including dogs, which may serve as reservoir hosts. In northern Taiwan, despite ∼20% of cat fleas infesting companion animals consistently found to be infected with R. felis, only a few cases of potential R. felis infection have been identified through a retrospective serological investigation, though without molecular confirmation. Ecological studies have identified divergent R. felis-like organisms in different arthropod hosts, but these strains appear to serve as nonpathogenic endosymbionts. Although its association with disease is limited, we believe cat flea-borne R. felis warrants increased recognition in an aging population due to immunosenescence and the proximity of companion animals to the elderly. Adopting a One Health approach involving collaboration and communication between clinicians, veterinarians, public health practitioners, and environmental scientists will improve our knowledge about this neglected pathogen and promote the prevention and control of vector-borne diseases.
Collapse
Affiliation(s)
- Nicholas T Minahan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wen-Jer Wu
- Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Martínez Díaz HC, Gil-Mora J, Betancourt-Ruiz P, Silva-Ramos CR, Matiz-González JM, Villalba-Perez MA, Ospina-Pinto MC, Ramirez-Hernández A, Olaya-M LA, Bolaños E, Cuervo C, Benavides E, Hidalgo M. Molecular detection of tick-borne rickettsial pathogens in ticks collected from domestic animals from Cauca, Colombia. Acta Trop 2023; 238:106773. [PMID: 36417982 DOI: 10.1016/j.actatropica.2022.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 11/21/2022]
Abstract
Some hard ticks' species can act as vectors of a wide variety of pathogens of human and animal importance such as Anaplasma, Ehrlichia and Rickettsia spp. In Colombia, a total of forty-six tick species have been described, and some of them have been implicated as vectors of some infectious agents. The department of Cauca is one of the thirty-two departments of Colombia. Most of its population lives in rural areas and depends on agriculture as the main economic activity, favoring exposure to ticks and tick-borne pathogens. Thus, the present study aimed to determine the tick species and tick-borne pathogens circulating in this region. From August to November 2017, ticks were collected from dogs, horses and cattle from eight rural areas of four municipalities in the department of Cauca. All collected ticks were classified according to taxonomic keys and organized in pools. DNA was extracted from all tick pools for molecular confirmation of tick species and detection of Anaplasma, Ehrlichia and Rickettsia spp. A total of 2809 ticks were collected which were grouped in 602 pools. Ticks were morphologically identified as Amblyomma cajennense sensu lato, Dermacentor nitens, Rhipicephalus microplus and Rhipicephalus sanguineus sensu lato. The molecular identity of A. cajennense s.l. was confirmed as Amblyomma patinoi. A total of 95% of the pools scored positive for members of the Anaplasmataceae family, of which, 7.8% and 7.3% were positive to Anaplasma and Ehrlichia spp., respectively, being identified as Anaplasma marginale, Ehrlichia minasensis and Ehrlichia canis; and 16.1% were positive for Rickettsia spp. with high identity for Rickettsia asembonensis, Rickettsia felis and Candidatus Rickettsia senegalensis. This is the first report describing the natural infection of ticks with rickettsial pathogens and the occurrence of A. patinoi ticks in Cauca department, Colombia.
Collapse
Affiliation(s)
- Heidy-Carolina Martínez Díaz
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62 D.C., Bogotá, Colombia
| | - Juliana Gil-Mora
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62 D.C., Bogotá, Colombia
| | - Paola Betancourt-Ruiz
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62 D.C., Bogotá, Colombia
| | - Carlos Ramiro Silva-Ramos
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62 D.C., Bogotá, Colombia
| | - J Manuel Matiz-González
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62 D.C., Bogotá, Colombia
| | - María-Alejandra Villalba-Perez
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62 D.C., Bogotá, Colombia
| | - María Catalina Ospina-Pinto
- Grupo Epidemiología y Salud Pública, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, Colombia
| | - Alejandro Ramirez-Hernández
- Grupo Parasitología Veterinaria, Universidad Nacional de Colombia, Bogotá, Colombia; Universidad de La Salle, Bogotá, Colombia
| | | | | | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62 D.C., Bogotá, Colombia
| | - Efraín Benavides
- Grupo Epidemiología y Salud Pública, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, Colombia
| | - Marylin Hidalgo
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62 D.C., Bogotá, Colombia.
| |
Collapse
|
21
|
Sing A, Berger A. Cats – Revered and Reviled – and Associated Zoonoses. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:837-914. [DOI: 10.1007/978-3-031-27164-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Tsokana CN, Kapna I, Valiakos G. Current Data on Rickettsia felis Occurrence in Vectors, Human and Animal Hosts in Europe: A Scoping Review. Microorganisms 2022; 10:2491. [PMID: 36557744 PMCID: PMC9781214 DOI: 10.3390/microorganisms10122491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Rickettsia felis is an emerging pathogen with increasing reports of human cases and detection in arthropod and animal host species worldwide. In this scoping review we record the newest data reported for R. felis in Europe: the vector and host species found to be infected, and the geographical distribution and prevalence of R. felis infection in vectors and hosts. A total of 15 European countries reported the occurrence of R. felis in hosts and vectors during 2017−2022. The vectors found to be infected by R. felis were flea, tick and mite species; Ctenocephalides felis and Ixodes ricinus were the dominant ones. The hosts found to be infected and/or exposed to R. felis were humans, cats and small mammals. Physicians should be aware of the epidemiology and include illness caused by R. felis in the differential diagnosis of febrile disease. Veterinarians should keep training pet owners on the need for effective year-round arthropod control on their pets, especially for fleas.
Collapse
Affiliation(s)
| | | | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
23
|
Laukaitis HJ, Cooper TT, Suwanbongkot C, Verhoeve VI, Kurtti TJ, Munderloh UG, Macaluso KR. Transposon mutagenesis of Rickettsia felis sca1 confers a distinct phenotype during flea infection. PLoS Pathog 2022; 18:e1011045. [PMID: 36542675 DOI: 10.1371/journal.ppat.1011045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/05/2023] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Since its recognition in 1994 as the causative agent of human flea-borne spotted fever, Rickettsia felis, has been detected worldwide in over 40 different arthropod species. The cat flea, Ctenocephalides felis, is a well-described biological vector of R. felis. Unique to insect-borne rickettsiae, R. felis can employ multiple routes of infection including inoculation via salivary secretions and potentially infectious flea feces into the skin of vertebrate hosts. Yet, little is known of the molecular interactions governing flea infection and subsequent transmission of R. felis. While the obligate intracellular nature of rickettsiae has hampered the function of large-scale mutagenesis strategies, studies have shown the efficiency of mariner-based transposon systems in Rickettsiales. Thus, this study aimed to assess R. felis genetic mutants in a flea transmission model to elucidate genes involved in vector infection. A Himar1 transposase was used to generate R. felis transformants, in which subsequent genome sequencing revealed a transposon insertion near the 3' end of sca1. Alterations in sca1 expression resulted in unique infection phenotypes. While the R. felis sca1::tn mutant portrayed enhanced growth kinetics compared to R. felis wild-type during in vitro culture, rickettsial loads were significantly reduced during flea infection. As a consequence of decreased rickettsial loads within infected donor fleas, R. felis sca1::tn exhibited limited transmission potential. Thus, the use of a biologically relevant model provides evidence of a defective phenotype associated with R. felis sca1::tn during flea infection.
Collapse
Affiliation(s)
- Hanna J Laukaitis
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Triston T Cooper
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Chanakan Suwanbongkot
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy J Kurtti
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ulrike G Munderloh
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| |
Collapse
|
24
|
Diakou A, Sofroniou D, Paoletti B, Tamvakis A, Kolencik S, Dimzas D, Morelli S, Grillini M, Traversa D. Ticks, Fleas, and Harboured Pathogens from Dogs and Cats in Cyprus. Pathogens 2022; 11:pathogens11121403. [PMID: 36558737 PMCID: PMC9786688 DOI: 10.3390/pathogens11121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Ticks and fleas are blood-sucking ectoparasites that cause irritation and anaemia to their hosts and act as vectors of pathogens (vector-borne pathogens, VBPs) of relevance for animal and human health. In the present study, tick and flea species in dogs and cats from Cyprus were recorded and VBPs were detected in the collected specimens. Ectoparasites were collected from 220 animals (161 dogs and 59 cats), and a questionnaire including demographic, clinical, and other information was filled out for each animal. The ectoparasites were morphologically identified and the detection of VBPs was performed by PCR-coupled sequencing. Rhipicephalus sanguineus sensu lato was found on 108 dogs and 13 cats, and Ixodes gibbosus on 2 dogs. Ctenocephalides felis was the predominant flea species (on 62 dogs and 45 cats), while one dog and one cat were infested by Ctenocephalides canis and Echidnophaga gallinacea, respectively. The VBPs in ticks were Anaplasma platys, Rickettsia massiliae, Rickettsia conorii, Rickettsia felis, Hepatozoon felis and Hepatozoon canis, while Rickettsia felis, Rickettsia sp., Bartonella koehlerae, Bartonella clarridgeiae, and Bartonella henselae were recorded in fleas. Statistical analysis (chi-square test and multiple univariate generalized linear model) showed that animals up to 6 months of age were less likely to be infested with ticks than older animals, but more likely to be infested with fleas. Ticks were more prevalent in sheltered than in owned animals, while the odds ratio of flea presence was higher in owned animals than those living in shelters. The present study is the first investigation on the occurrence of ticks and fleas in dogs and cats from Cyprus, showing the presence of different VBPs in these important ectoparasites. The results point out the importance of systematic ectoparasite control in dogs and cats.
Collapse
Affiliation(s)
- Anastasia Diakou
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| | | | - Barbara Paoletti
- Faculty of Veterinary Medicine, Teaching Veterinary Hospital, University of Teramo, 64100 Teramo, Italy
| | - Androniki Tamvakis
- Laboratory of Ecology and System Dynamics, Department of Marine Sciences, University of the Aegean, 81100 Mytilene, Greece
| | | | - Dimitris Dimzas
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Simone Morelli
- Faculty of Veterinary Medicine, Teaching Veterinary Hospital, University of Teramo, 64100 Teramo, Italy
| | - Marika Grillini
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - Donato Traversa
- Faculty of Veterinary Medicine, Teaching Veterinary Hospital, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
25
|
Oliver GV, Eckerlin RP. Fleas (Siphonaptera) From the Puma, Puma concolor (Carnivora: Felidae), A Rangewide Review and New Records from Utah and Texas, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2045-2052. [PMID: 36073527 DOI: 10.1093/jme/tjac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Fleas have rarely been reported from the puma, Puma concolor (Linnaeus, 1771), despite its vast geographic range, its breadth of habitat use, and its diverse diet, all of which bring it into contact with many other species of mammals and potentially their fleas. We review the reported occurrence of 8 species of fleas from pumas, 7 of these species being from wild hosts and 1 species from a host in captivity, and we correct the mistaken report of 1 other flea species from the puma. We present 10 new records of 4 species of fleas from the puma in Utah and Texas. 2 of these flea species, Cediopsylla inaequalis inaequalis (Baker, 1895) and Odontopsyllus dentatus (Baker, 1904), represent new host records, and 1 species, Chaetopsylla setosa Rothschild, 1906, is a new state record for Utah as well as being 1 of the 2 southernmost known localities for this species. At least 7 of the 9 flea species now known from free-ranging pumas are species that are acquired by pumas from their prey. Pumas may be primary hosts of 2 flea species, but even these fleas may be from prey. Some of the flea species that parasitize pumas transmit sylvatic plague, and, since pumas are highly vagile and are known to become infected with plague, they may spread the disease through their dispersal of infected fleas. Pumas and their fleas also may be involved in the ecology of several other bacterial zoonoses, which are discussed.
Collapse
Affiliation(s)
- George V Oliver
- Utah Division of Wildlife Resources, 1594 West North Temple, Salt Lake City, UT, 84116-3154, USA
| | - Ralph P Eckerlin
- Mathematics, Science, and Technology Division, Northern Virginia Community College, Annandale, VA, 22003, USA
| |
Collapse
|
26
|
Araújo IM, Cordeiro MD, Soares RFP, Guterres A, Sanavria A, Baêta BDA, da Fonseca AH. Survey of bacterial and protozoan agents in ticks and fleas found on wild animals in the state of Rio de Janeiro, Brazil. Ticks Tick Borne Dis 2022; 13:102037. [PMID: 36270115 DOI: 10.1016/j.ttbdis.2022.102037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 10/31/2022]
Abstract
This study evaluates the presence of bacterial and protozoan agents in ticks and fleas found on wild animals in the state of Rio de Janeiro, Brazil. These ectoparasites were collected on mammal species Hydrochoerus hydrochaeris, Tapirus terrestris, Dicotyles tajacu, Didelphis aurita, Cuniculus paca, Cerdocyon thous, and Coendou prehensilis, and on the terrestrial bird Dromaius novaehollandiae. Ticks and fleas were identified morphologically using specific taxonomic keys. A total of 396 ticks and 54 fleas were tested via polymerase chain reaction (PCR) for the presence of Rickettsia spp., Borrelia spp., microorganisms of the order Piroplasmida and Anaplasmataceae family. This total is distributed among nine tick species of the genus Amblyomma and one flea species. Rickettsia bellii was detected in Amblyomma dubitatum and Amblyomma pacae; Rickettsia sp. strain AL was found in Amblyomma longirostre; Rickettsia parkeri strain Atlantic rainforest was found in Amblyomma ovale; and "Candidatus Rickettsia senegalensis" and Rickettsia felis were detected in Ctenocephalides felis felis. Wolbachia sp. was detected in C. f. felis, and Borrelia sp. was detected in Amblyomma calcaratum (here named Borrelia sp. strain Acalc110). All tested samples were negative for Ehrlichia spp. and microorganisms of the Piroplasmida order. This study detected a new bacterial strain, Borrelia sp. strain Acalc 110 (which is genetically close to B. miyamotoi and B. venezuelensis) and the Rickettsia sp. strain 19P, which is 100% similar to "Ca. R. senegalensis", a bacterium recently discovered and now being reported for the first time in Brazil.
Collapse
Affiliation(s)
- Izabela Mesquita Araújo
- Post-Graduate Program in Veterinary Sciences, Federal Rural University of Rio de Janeiro, UFRRJ, Br 465, km 7, Highway BR 465, Km 7,5. Seropédica, Rio de Janeiro CEP: 23897-000, Brazil
| | - Matheus Dias Cordeiro
- Post-Graduate Program in Practice in Sustainable Development, Federal Rural University of Rio de Janeiro, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Rubens Fabiano Prado Soares
- Post-Graduate Program in Veterinary Sciences, Federal Rural University of Rio de Janeiro, UFRRJ, Br 465, km 7, Highway BR 465, Km 7,5. Seropédica, Rio de Janeiro CEP: 23897-000, Brazil
| | - Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Avenida Brasil, Rio de Janeiro 4365, Brazil
| | - Argemiro Sanavria
- Post-Graduate Program in Veterinary Sciences, Federal Rural University of Rio de Janeiro, UFRRJ, Br 465, km 7, Highway BR 465, Km 7,5. Seropédica, Rio de Janeiro CEP: 23897-000, Brazil
| | - Bruna de Azevedo Baêta
- Post-Graduate Program in Veterinary Sciences, Federal Rural University of Rio de Janeiro, UFRRJ, Br 465, km 7, Highway BR 465, Km 7,5. Seropédica, Rio de Janeiro CEP: 23897-000, Brazil
| | - Adivaldo Henrique da Fonseca
- Post-Graduate Program in Veterinary Sciences, Federal Rural University of Rio de Janeiro, UFRRJ, Br 465, km 7, Highway BR 465, Km 7,5. Seropédica, Rio de Janeiro CEP: 23897-000, Brazil.
| |
Collapse
|
27
|
Güvendi M, Can H, Köseoğlu AE, Erkunt Alak S, Kandemir Ç, Taşkın T, Sürgeç E, Demir S, Değirmenci Döşkaya A, Karakavuk M, Gül A, Döşkaya M, Gürüz AY, Ün C. Investigation of the genetic diversity and flea-borne pathogens in Ctenocephalides felis samples collected from goats in İzmir and Şanlıurfa provinces of Turkey. Comp Immunol Microbiol Infect Dis 2022; 90-91:101896. [DOI: 10.1016/j.cimid.2022.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
28
|
Manvell C, Berman H, Callahan B, Breitschwerdt E, Swain W, Ferris K, Maggi R, Lashnits E. Identification of microbial taxa present in Ctenocephalides felis (cat flea) reveals widespread co-infection and associations with vector phylogeny. Parasit Vectors 2022; 15:398. [PMID: 36316689 PMCID: PMC9623975 DOI: 10.1186/s13071-022-05487-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Ctenocephalides felis, the cat flea, is the most common ectoparasite of cats and dogs worldwide. As a cause of flea allergy dermatitis and a vector for two genera of zoonotic pathogens (Bartonella and Rickettsia spp.), the effect of the C. felis microbiome on pathogen transmission and vector survival is of substantial medical importance to both human and veterinary medicine. The aim of this study was to assay the pathogenic and commensal eubacterial microbial communities of individual C. felis from multiple geographic locations and analyze these findings by location, qPCR pathogen prevalence, and flea genetic diversity. METHODS 16S Next Generation Sequencing (NGS) was utilized to sequence the microbiome of fleas collected from free-roaming cats, and the cox1 gene was used for flea phylogenetic analysis. NGS data were analyzed for 168 individual fleas from seven locations within the US and UK. Given inconsistency in the genera historically reported to constitute the C. felis microbiome, we utilized the decontam prevalence method followed by literature review to separate contaminants from true microbiome members. RESULTS NGS identified a single dominant and cosmopolitan amplicon sequence variant (ASV) from Rickettsia and Wolbachia while identifying one dominant Bartonella clarridgeiae and one dominant Bartonella henselae/Bartonella koehlerae ASV. Multiple less common ASVs from these genera were detected within restricted geographical ranges. Co-detection of two or more genera (Bartonella, Rickettsia, and/or Wolbachia) or multiple ASVs from a single genus in a single flea was common. Achromobacter, Peptoniphilus, and Rhodococcus were identified as additional candidate members of the C. felis microbiome on the basis of decontam analysis and literature review. Ctenocephalides felis phylogenetic diversity as assessed by the cox1 gene fell within currently characterized clades while identifying seven novel haplotypes. NGS sensitivity and specificity for Bartonella and Rickettsia spp. DNA detection were compared to targeted qPCR. CONCLUSIONS Our findings confirm the widespread coinfection of fleas with multiple bacterial genera and strains, proposing three additional microbiome members. The presence of minor Bartonella, Rickettsia, and Wolbachia ASVs was found to vary by location and flea haplotype. These findings have important implications for flea-borne pathogen transmission and control.
Collapse
Affiliation(s)
- Charlotte Manvell
- Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Hanna Berman
- Department of Population Health and Pathobiology, College of Veterinary Medicine and Bioinformatics Research Center, North Carolina State University, Raleigh, NC USA
| | - Benjamin Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine and Bioinformatics Research Center, North Carolina State University, Raleigh, NC USA
| | - Edward Breitschwerdt
- Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - William Swain
- Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
- School of Veterinary Medicine, One Health Institute, University of California, Davis, CA USA
| | - Kelli Ferris
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Ricardo Maggi
- Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Erin Lashnits
- Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
29
|
Teng Z, Zhao N, Ren R, Zhang X, Du Z, Wang P, Qin T. Human Rickettsia felis infections in Mainland China. Front Cell Infect Microbiol 2022; 12:997315. [PMID: 36211956 PMCID: PMC9537614 DOI: 10.3389/fcimb.2022.997315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
We identified four flea-borne spotted fever cases caused by Rickettsia felis in a retrospective survey of 182 patients with fever of unknown origin (FUO) in China between 2021 and 2022. The clinical signs and symptoms of the patients were similar to those of other rickettsioses, including fever, rash, and liver and kidney dysfunction. All four patients in the present study developed pneumonia or lung lesions after R. felis infection. The cases of R. felis infection, a neglected infectious disease, were sporadic in multiple provinces of the country. The high prevalence (2.14%, 4/187) of R. felis among patients with FUO highlights the risk posed by this pathogen to public health in China.
Collapse
Affiliation(s)
- Zhongqiu Teng
- The State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Zhao
- The State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruotong Ren
- Foshan Branch, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd., Hangzhou, China
| | - Xue Zhang
- The State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenshan Du
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd., Hangzhou, China
| | - Pengfei Wang
- Department of Respiratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Tian Qin
- The State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Tian Qin,
| |
Collapse
|
30
|
Incidence of tick-borne spotted fever group Rickettsia species in rodents in two regions in Kazakhstan. Sci Rep 2022; 12:14872. [PMID: 36050456 PMCID: PMC9437098 DOI: 10.1038/s41598-022-19145-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Records on the distribution of Rickettsia spp. in their natural hosts in Central Asia are incomplete. Rodents and small mammals are potential natural reservoirs for Rickettsiae in their natural lifecycle. Studies about the maintenance of Rickettsia in wild animals are available for Western nations, but—to our knowledge—no studies and data are available in the Republic of Kazakhstan so far. The first case description of Rickettsioses in Kazakhstan was made in the 1950ies in the Almaty region and now Kyzylorda, East Kazakhstan, Pavlodar and North Kazakhstan are endemic areas. The existence of murine and endemic typhus was proven in arthropod vectors in the regions Kyzylorda and Almaty. Here we show for the first time investigations on tick-borne Rickettsia species detected by a pan-rickettsial citrate synthase gene (gltA) real-time PCR in ear lobes of small mammals (n = 624) in Kazakhstan. From all analysed small mammals 2.72% were positive for Rickettsia raoultii, R. slovaca or R. conorii. Sequencing of the rickettsial gene OmpAIV and the 23S–5S interspacer region revealed a similar heritage of identified Rickettsia species that was observed in ticks in previous studies from the region. In summary, this study proves that rodents in Kazakhstan serve as a natural reservoir of Rickettsia spp.
Collapse
|
31
|
McClung KL, Noden BH. Prevalence of selected pathogens in ectoparasites from free-roaming domestic cats in the southern Great Plains of the United States. Vet Parasitol Reg Stud Reports 2022; 34:100764. [PMID: 36041799 DOI: 10.1016/j.vprsr.2022.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/25/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Rickettsia sp. and Bartonella sp. were detected in ectoparasites of free-roaming domestic cats (Felis catus) from a trap-neuter-release program in central Oklahoma during January and February 2020. We used polymerase chain reaction and sequencing to identify fleas containing DNA of five different pathogens: Rickettsia felis (84%), 'Candidatus R. andeanae' (8%), Bartonella henselae (32%), Bartonella clarridgeiae (36%), and Bartonella sp. (8%). Co-infections with R. felis with three Bartonella species were identified. One tick was positive for R. felis, one flea was positive for 'Candidatus R. andeanae' and one ear mite was positive for a Bartonella species. These results highlight the need for more focus on free-roaming domestic cats and their ectoparasites in the Great Plains region.
Collapse
Affiliation(s)
- Kristin L McClung
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078, USA
| | - Bruce H Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078, USA.
| |
Collapse
|
32
|
Abstract
Ticks are hematophagous ectoparasites capable of transmitting multiple human pathogens. Environmental changes have supported the expansion of ticks into new geographical areas that have become the epicenters of tick-borne diseases (TBDs). The spotted fever group (SFG) of Rickettsia frequently infects ticks and causes tick-transmitted rickettsioses in areas of endemicity where ixodid ticks support host transmission during blood feeding. Ticks also serve as a reservoir for SFG Rickettsia. Among the members of SFG Rickettsia, R. rickettsii causes Rocky Mountain spotted fever (RMSF), the most lethal TBD in the United States. Cases of RMSF have been reported for over a century in association with several species of ticks in the United States. However, the isolation of R. rickettsii from ticks has decreased, and recent serological and epidemiological studies suggest that novel species of SFG Rickettsia are responsible for the increased number of cases of RMSF-like rickettsioses in the United States. Recent analyses of rickettsial genomes and advances in genetic and molecular studies of Rickettsia provided insights into the biology of Rickettsia with the identification of conserved and unique putative virulence genes involved in the rickettsial life cycle. Thus, understanding Rickettsia-host-tick interactions mediating successful disease transmission and pathogenesis for SFG rickettsiae remains an active area of research. This review summarizes recent advances in understanding how SFG Rickettsia species coopt and manipulate ticks and mammalian hosts to cause rickettsioses, with a particular emphasis on newly described or emerging SFG Rickettsia species.
Collapse
|
33
|
Wang L, Rupani A, Grado LA, Lopez Salazara LM, Trinidad LA, Cook JL, Bechelli J. Molecular Detection of Rickettsia felis in Fleas of Companion Animals in East Texas. Am J Trop Med Hyg 2022; 107:416-419. [PMID: 35895411 PMCID: PMC9393449 DOI: 10.4269/ajtmh.21-0783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/07/2022] [Indexed: 08/03/2023] Open
Abstract
Flea-borne spotted fever is an emerging insect-borne rickettsial infection caused by Rickettsia felis and has been identified worldwide. This study sought to explore the prevalence of rickettsiae associated with fleas on companion dogs and cats from Walker and Montgomery Counties in East Texas. Fleas were collected from animals entering local veterinary clinics for routine checkups. Collected fleas were identified as Ctenocephalides felis or Pulex irritans and analyzed by polymerase chain reaction for the presence of rickettsiae and subsequent sequencing. An estimation of the bcMLE (bias-corrected maximum likelihood estimation) of pooled samples was calculated. Four hundred eighty-eight fleas (comprising C. felis and P. irritans) were collected from 16 cats and 77 dogs. Our results demonstrate R. felis in 21 pools of fleas from dogs (bcMLE 15.28%) and a bcMLE of 7.25% from flea samples collected from cats. Sequence analysis revealed R. felis as the only Rickettsia that could be amplified in our samples using the rickettsial citrate synthase gene and subsequent sequencing. In this study, the presence of R. felis in fleas from companion cats and dogs suggests a potential risk of flea-borne spotted fever in humans who encounter flea-infested animals.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| | - Ammie Rupani
- College of Osteopathic Medicine, Sam Houston State University, Conroe, Texas
| | - Luis A. Grado
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| | - Luis M. Lopez Salazara
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| | - LaReyna A. Trinidad
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| | - Jerry L. Cook
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| | - Jeremy Bechelli
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, Texas
| |
Collapse
|
34
|
Wang J, Gou QY, Luo GY, Hou X, Liang G, Shi M. Total RNA sequencing of Phlebotomus chinensis, a neglected vector in China, simultaneously revealed viral, bacterial, and eukaryotic microbes that are potentially pathogenic to humans. Emerg Microbes Infect 2022; 11:2080-2092. [PMID: 35916448 PMCID: PMC9448391 DOI: 10.1080/22221751.2022.2109516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phlebotomus chinensis sandfly is a neglected insect vector in China that is well-known for carrying Leishmania. Recent studies have expanded its pathogen repertoire with two novel arthropod-borne phleboviruses capable of infecting humans and animals. Despite these discoveries, our knowledge of the general pathogen diversity and overall microbiome composition of this vector species is still very limited. Here we carried out a meta-transcriptomics analysis that revealed the actively replicating/transcribing RNA viruses, DNA viruses, bacteria, and eukaryotic microbes, namely, the “total microbiome”, of several sandfly populations in China. Strikingly, “microbiome” made up 1.8% of total non-ribosomal RNA and comprised more than 87 species, among which 70 were novel, including divergent members of the genera Flavivirus and of the family Trypanosomatidae. Importantly, among these microbes we were able to reveal four distinguished types of human and/or mammalian pathogens, including two phleboviruses (hedi and wuxiang viruses), one novel Spotted fever group rickettsia, as well as a member of Leishmania donovani complex, among which hedi virus and Leishmania each had > 50% pool prevalence rate and relatively high abundance levels. Our study also showed the ubiquitous presence of an endosymbiont, namely Wolbachia, although no anti-viral or anti-pathogen effects were detected based on our data. In summary, our results uncovered the much un-explored diversity of microbes harboured by sandflies in China and demonstrated that high pathogen diversity and abundance are currently present in multiple populations, implying disease potential for exposed local human population or domestic animals.
Collapse
Affiliation(s)
- Jing Wang
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qin-Yu Gou
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Geng-Yan Luo
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xin Hou
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mang Shi
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
35
|
Bajwa WI, Tsynman L, Egizi AM, Tokarz R, Maestas LP, Fonseca DM. The Gulf Coast Tick, Amblyomma maculatum (Ixodida: Ixodidae), and Spotted Fever Group Rickettsia in the Highly Urbanized Northeastern United States. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1434-1442. [PMID: 35639921 DOI: 10.1093/jme/tjac053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 06/15/2023]
Abstract
We report the multi-year collection of the Gulf Coast tick, Amblyomma maculatum Koch (Acaridae: Ixodida: Ixodidae) in Staten Island, New York City (NYC) as well as their detection in Brooklyn, NYC, and in Atlantic and Cumberland counties in southern New Jersey, USA. The first and most common detections were of adults, however in Freshkills Park on Staten Island larvae were also collected in a following year. The presence of larvae indicates that adults are successfully finding hosts in Staten Island. While it is still unknown how A. americanum reached Staten Island, immatures of this species often parasitize migratory birds, which are now often seen in Freshkills Park. We describe the landscape features of the area in Staten Island where populations were highest and larvae were detected, which could have facilitated the establishment of A. maculatum. Notably, we also report the presence of human pathogens Rickettsia parkeri in 5/10 (50%) of adults tested and R. felis in 1/24 (4.17%) of larvae tested. In addition to established populations in Staten Island we found evidence of A. maculatum in NJ and other NYC boroughs, suggesting current or future establishment is possible. The failure thus far to detect established populations in these areas may be due to inherent difficulties in detecting low density, spatially heterogeneous incipient populations, which could require targeted surveillance efforts for this species. We discuss the consequences to public health of the establishment of A. maculatum and detection of two additional rickettsial pathogens in the densely populated northeastern United States.
Collapse
Affiliation(s)
- Waheed I Bajwa
- New York City Department of Health and Mental Hygiene, 125 Worth Street, New York, NY 10013, USA
| | - Leonid Tsynman
- New York City Department of Health and Mental Hygiene, 125 Worth Street, New York, NY 10013, USA
| | - Andrea M Egizi
- Tick-Borne Disease Program, Monmouth County Mosquito Control Division, 1901 Wayside Road, Tinton Falls, NJ 07724, USA
- Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA
| | - Rafal Tokarz
- Center for Infection and Immunity, Columbia University, 722 West 168th Street, New York, NY 10032, USA
| | - Lauren P Maestas
- Delaware Division of Fish and Wildlife, Mosquito Control Section, 2430 Old County Road, Newark, DE 19702, USA
| | - Dina M Fonseca
- Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA
| |
Collapse
|
36
|
Mediannikov O, Bechah Y, Amanzougaghene N, Lepidi H, Bassene H, Sambou M, Lienhard C, Benkacimi L, Dieme C, Sokhna C, Fenollar F, Raoult D. Booklice Liposcelis bostrychophila naturally infected by Rickettsia felis cause fever and experimental pneumonia in mammals. J Infect Dis 2022; 226:1075-1083. [PMID: 35776143 DOI: 10.1093/infdis/jiac282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Rickettsia felis is emergent in tropical areas. Despite its high morbidity, its natural history has not yet been fully determined. We investigated the role of the common household booklouse, Liposcelis bostrychophila, recently found to harbour R. felis. METHODS Blood samples from 372 febrile patients from Senegalese villages, as well as nasal and skin samples from 264 asymptomatic individuals, were tested for cat flea-associated and booklice-associated strains of R. felis. Dust samples from beds were collected to isolate booklice and R. felis. Mice were infected with aerosol of R. felis strain from naturally infected booklice. RESULTS Forty febrile patients (11%) were infected by R. felis, including 26 (7%) by the booklice-associated strain. Nine nasal samples (3.4%) and 28 skin samples (10.6%) contained R. felis, including seven and 24, respectively, with the booklice-associated strain. The presence of live L. bostrychophila was observed in 32 dust samples (16.8%); R. felis was identified in 62 dust samples (32.5%). Several mice samples were positive for R. felis; interstitial lymphohistiocytic infiltrates were identified in lungs. CONCLUSIONS L. bostrychophila may be a reservoir of R. felis. The booklice-associated strain is pathogenic in mammals causing pneumonia. Human infection may be acquired via inhalation of infected booklice particles.
Collapse
Affiliation(s)
- Oleg Mediannikov
- Aix Marseille Univ, IRD, AP-HM, MEPHII, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Yassina Bechah
- Aix Marseille Univ, IRD, AP-HM, MEPHII, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Nadia Amanzougaghene
- Aix Marseille Univ, IRD, AP-HM, MEPHII, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Hubert Lepidi
- Aix Marseille Univ, IRD, AP-HM, MEPHII, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | | | - Masse Sambou
- VITROME, Campus International UCAD-IRD, Dakar, Senegal
| | | | - Linda Benkacimi
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | | | - Cheikh Sokhna
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Florence Fenollar
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHII, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
37
|
Fongsaran C, Jirakanwisal K, Tongluan N, Latour A, Healy S, Christofferson RC, Macaluso KR. The role of cofeeding arthropods in the transmission of Rickettsia felis. PLoS Negl Trop Dis 2022; 16:e0010576. [PMID: 35759517 PMCID: PMC9269922 DOI: 10.1371/journal.pntd.0010576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/08/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Rickettsia felis is an emerging etiological agent of rickettsioses worldwide. The cosmopolitan cat flea (Ctenocephalides felis) is the primary vector of R. felis, but R. felis has also been reported in other species of hematophagous arthropods including ticks and mosquitoes. Canines can serve as a bacteremic host to infect fleas under laboratory conditions, yet isolation of R. felis from the blood of a vertebrate host in nature has not been realized. Cofeeding transmission is an efficient mechanism for transmitting rickettsiae between infected and uninfected fleas; however, the mechanism of transmission among different orders and classes of arthropods is not known. The potential for R. felis transmission between infected fleas and tick (Dermacentor variabilis) and mosquito (Anopheles quadrimaculatus) hosts was examined via cofeeding bioassays. Donor cat fleas infected with R. felis transmitted the agent to naïve D. variabilis nymphs via cofeeding on a rat host. Subsequent transstadial transmission of R. felis from the engorged nymphs to the adult ticks was observed with reduced prevalence in adult ticks. Using an artificial host system, An. quadrimaculatus exposed to a R. felis-infected blood meal acquired rickettsiae and maintained infection over 12 days post-exposure (dpe). Similar to ticks, mosquitoes were able to acquire R. felis while cofeeding with infected cat fleas on rats infection persisting in the mosquito for up to 3 dpe. The results indicate R. felis-infected cat fleas can transmit rickettsiae to both ticks and mosquitoes via cofeeding on a vertebrate host, thus providing a potential avenue for the diversity of R. felis-infected arthropods in nature. Primarily associated with the common cat flea, Rickettsia felis is an intracellular bacterial pathogen that can be transmitted from the flea to vertebrate hosts. This flea-borne infection has now been identified worldwide as a human pathogen. In addition to fleas, other blood feeding arthropods including ticks and mosquitoes are being recognized as possible vectors of R. felis. Although the mammalian infectious source for arthropods is still unknown, cofeeding transmission of Rickettsia is known to occur between vectors of the same species. However, potential for flea transmission of R. felis to other orders and classes of arthropods is unknown. Here, we examined the potential for fleas to transmit R. felis to American dog ticks and mosquitoes during feeding events on rat hosts. Our data suggested that ticks and mosquitoes can be infected when simultaneously feeding on a host with R. felis-infected cat fleas.
Collapse
Affiliation(s)
- Chanida Fongsaran
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Krit Jirakanwisal
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Natthida Tongluan
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Allison Latour
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sean Healy
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Rebecca C. Christofferson
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kevin R. Macaluso
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
38
|
Culture Isolate of Rickettsia felis from a Tick. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074321. [PMID: 35410003 PMCID: PMC8998211 DOI: 10.3390/ijerph19074321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Although the cat flea, Ctenocephalides felis, has been identified as the primary vector of Rickettsia felis, additional flea, tick, mite, and louse species have also been associated with this bacterium by molecular means; however, the role of these arthropods in the transmission of R. felis has not been clarified. Here, we succeeded in culture isolation of R. felis from a host-seeking castor bean tick, Ixodes ricinus, the most common tick in Slovakia. The bacterial isolation was performed on XTC-2 cells at 28 °C using the shell-vial technique. An evaluation of the growth properties was performed for both the XTC-2 and Vero cell lines. We observed R. felis in the infected host cells microscopically by Gimenez staining and immunofluorescence assay. The R. felis isolate was purified by gradient ultracentrifugation and visualized by electron microscopy. Fragments of the genes gltA, ompA, ompB, htrA, rpoB, sca4, rffE, and rrs were amplified and compared with the corresponding sequences of the type strain URRWXCal2 and other R. felis culture -isolated strains. We did not detect any nucleotide polymorphisms; however, plasmid pRFδ, characteristic of the standard strain, was absent in our isolate. Herein, we describe the first successful isolation and characterization of a tick-derived R. felis strain “Danube”, obtained from an I. ricinus nymph.
Collapse
|
39
|
Chaisiri K, Tanganuchitcharnchai A, Kritiyakan A, Thinphovong C, Tanita M, Morand S, Blacksell SD. Risk factors analysis for neglected human rickettsioses in rural communities in Nan province, Thailand: A community-based observational study along a landscape gradient. PLoS Negl Trop Dis 2022; 16:e0010256. [PMID: 35320277 PMCID: PMC8979453 DOI: 10.1371/journal.pntd.0010256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/04/2022] [Accepted: 02/12/2022] [Indexed: 12/05/2022] Open
Abstract
In this study, we estimated exposure for Scrub typhus (STG), Typhus (TG) and Spotted fever groups (SFG) rickettsia using serology at a fine scale (a whole sub-district administration level) of local communities in Nan Province, Thailand. Geographical characteristics of the sub-district were divided into two landscape types: lowland agricultural area in an urbanized setting (lowland-urbanized area) and upland agricultural area located close to a protected area of National Park (upland-forested area). This provided an ideal contrast between the two landscapes with low and high levels of human-altered habitats to study in differences in disease ecology. In total, 824 serum samples of participants residing in the eight villages were tested by screening IgG ELISA, and subsequently confirmed by the gold standard IgG Immunofluorescent Assay (IFA). STG and TG IgG positivity were highest with seroprevalence of 9.8% and 9.0%, respectively; whereas SFG positivity was lower at 6.9%. Inhabitants from the villages located in upland-forested area demonstrated significantly higher STG exposure, compared to those villages in the lowland-urbanized area (chi-square = 51.97, p < 0.0001). In contrast, TG exposure was significantly higher in those villagers living in lowland-urbanized area (chi-square = 28.26, p < 0.0001). In addition to the effect of landscape types, generalized linear model (GLM) analysis identified socio-demographic parameters, i.e., gender, occupation, age, educational level, domestic animal ownership (dog, cattle and poultry) as influential factors to explain the level of rickettsial exposure (antibody titers) in the communities. Our findings raise the public health awareness of rickettsiosis as a cause of undiagnosed febrile illness in the communities. Evidence of human exposures to rickettsial pathogens were reported from a cross-sectional study at a whole sub-district scale of local communities in Nan Province, Thailand. Seroprevalence and level of rickettsial exposures demonstrated differences between the habitat types, ecological aspects and socio-demographic factors. In addition, abundance of domestic animals in the community appeared to be one of significant factors influencing levels of human exposure to rickettsial pathogens. Our findings will benefit the local public health by raising awareness of rickettsial infections as one of potential health concerns in the community. Inclusion of rickettsioses in routine laboratory diagnosis would help to differentiate unknown febrile illness and guide appropriate treatment. Further studies are required, particularly in the fields of disease ecology as well as medical and veterinary entomology, in order to better understand epidemiology and potential zoonotic transmission of these neglected rickettsioses in endemic areas.
Collapse
Affiliation(s)
- Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail: (KC); (SDB)
| | - Ampai Tanganuchitcharnchai
- Mahidol-Oxford Tropical Research Medicine Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anamika Kritiyakan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | - Malee Tanita
- Saen Thong Health Promoting Hospital, Tha Wang Pha, Nan, Thailand
| | - Serge Morand
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
- Faculty of Veterinary Technology, CNRS ISEM–CIRAD ASTRE, Kasetsart University, Bangkok, Thailand
| | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine & Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- * E-mail: (KC); (SDB)
| |
Collapse
|
40
|
Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci Rep 2022; 12:3807. [PMID: 35264613 PMCID: PMC8907221 DOI: 10.1038/s41598-022-07725-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Rickettsia species are endosymbionts hosted by arthropods and are known to cause mild to fatal diseases in humans. Here, we analyse the evolution and diversity of 34 Rickettsia species using a pangenomic meta-analysis (80 genomes/41 plasmids). Phylogenomic trees showed that Rickettsia spp. diverged into two Spotted Fever groups, a Typhus group, a Canadensis group and a Bellii group, and may have inherited their plasmids from an ancestral plasmid that persisted in some strains or may have been lost by others. The results suggested that the ancestors of Rickettsia spp. might have infected Acari and/or Insecta and probably diverged by persisting inside and/or switching hosts. Pangenomic analysis revealed that the Rickettsia genus evolved through a strong interplay between genome degradation/reduction and/or expansion leading to possible distinct adaptive trajectories. The genus mainly shared evolutionary relationships with α-proteobacteria, and also with γ/β/δ-proteobacteria, cytophagia, actinobacteria, cyanobacteria, chlamydiia and viruses, suggesting lateral exchanges of several critical genes. These evolutionary processes have probably been orchestrated by an abundance of mobile genetic elements, especially in the Spotted Fever and Bellii groups. In this study, we provided a global evolutionary genomic view of the intracellular Rickettsia that may help our understanding of their diversity, adaptation and fitness.
Collapse
|
41
|
Matos AL, Curto P, Simões I. Moonlighting in Rickettsiales: Expanding Virulence Landscape. Trop Med Infect Dis 2022; 7:32. [PMID: 35202227 PMCID: PMC8877226 DOI: 10.3390/tropicalmed7020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
The order Rickettsiales includes species that cause a range of human diseases such as human granulocytic anaplasmosis (Anaplasma phagocytophilum), human monocytic ehrlichiosis (Ehrlichia chaffeensis), scrub typhus (Orientia tsutsugamushi), epidemic typhus (Rickettsia prowazekii), murine typhus (R. typhi), Mediterranean spotted fever (R. conorii), or Rocky Mountain spotted fever (R. rickettsii). These diseases are gaining a new momentum given their resurgence patterns and geographical expansion due to the overall rise in temperature and other human-induced pressure, thereby remaining a major public health concern. As obligate intracellular bacteria, Rickettsiales are characterized by their small genome sizes due to reductive evolution. Many pathogens employ moonlighting/multitasking proteins as virulence factors to interfere with multiple cellular processes, in different compartments, at different times during infection, augmenting their virulence. The utilization of this multitasking phenomenon by Rickettsiales as a strategy to maximize the use of their reduced protein repertoire is an emerging theme. Here, we provide an overview of the role of various moonlighting proteins in the pathogenicity of these species. Despite the challenges that lie ahead to determine the multiple potential faces of every single protein in Rickettsiales, the available examples anticipate this multifunctionality as an essential and intrinsic feature of these obligates and should be integrated into available moonlighting repositories.
Collapse
Affiliation(s)
- Ana Luísa Matos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Pedro Curto
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Isaura Simões
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
42
|
Banović P, Díaz-Sánchez AA, Simin V, Foucault-Simonin A, Galon C, Wu-Chuang A, Mijatović D, Obregón D, Moutailler S, Cabezas-Cruz A. Clinical Aspects and Detection of Emerging Rickettsial Pathogens: A "One Health" Approach Study in Serbia, 2020. Front Microbiol 2022; 12:797399. [PMID: 35154030 PMCID: PMC8825779 DOI: 10.3389/fmicb.2021.797399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 01/28/2023] Open
Abstract
Ticks carry numerous pathogens that, if transmitted, can cause disease in susceptible humans and animals. The present study describes our approach on how to investigate clinical presentations following tick bites in humans. To this aim, the occurrence of major tick-borne pathogens (TBPs) in human blood samples (n = 85) and the ticks collected (n = 93) from the same individuals were tested using an unbiased high-throughput pathogen detection microfluidic system. The clinical symptoms were characterized in enrolled patients. In patients with suspected TBP infection, serological assays were conducted to test for the presence of antibodies against specific TBPs. A field study based on One Health tenets was further designed to identify components of a potential chain of infection resulting in Rickettsia felis infection in one of the patients. Ticks species infesting humans were identified as Ixodes ricinus, Rhipicephalus sanguineus sensu lato (s.l.), Dermacentor reticulatus, and Haemaphysalis punctata. Five patients developed local skin lesions at the site of the tick bite including erythema migrans, local non-specific reactions, and cutaneous hypersensitivity reaction. Although Borrelia burgdorferi s.l., Babesia microti, Anaplasma phagocytophilum, and Candidatus Cryptoplasma sp. DNAs were detected in tick samples, different Rickettsia species were the most common TBPs identified in the ticks. The presence of TBPs such as Rickettsia helvetica, Rickettsia monacensis, Borrelia lusitaniae, Borrelia burgdorferi, Borrelia afzelii, A. phagocytophilum, and B. microti in ticks was further confirmed by DNA sequencing. Two of the patients with local skin lesions had IgG reactive against spotted fever group rickettsiae, while IgM specific to B. afzelii, Borrelia garinii, and Borrelia spielmanii were detected in the patient with erythema migrans. Although R. felis infection was detected in one human blood sample, none of the components of the potential chain of infection considered in this study tested positive to this pathogen either using direct pathogen detection in domestic dogs or xenodiagnosis in ticks collected from domestic cats. The combination of high-throughput screening of TBPs and One Health approaches might help characterize chains of infection leading to human infection by TBPs, as well as prevalence of emerging rickettsial pathogens in the Balkan region.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, Novi Sad, Serbia.,Department of Microbiology With Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | - Verica Simin
- Department for Microbiological & Other Diagnostics, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Clemence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
43
|
Morelli S, Diakou A, Di Cesare A, Colombo M, Traversa D. Canine and Feline Parasitology: Analogies, Differences, and Relevance for Human Health. Clin Microbiol Rev 2021; 34:e0026620. [PMID: 34378954 PMCID: PMC8404700 DOI: 10.1128/cmr.00266-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cats and dogs are treated as family members by most pet owners. Therefore, a high quality of veterinary care and preventive medicine is imperative for animal health and welfare and for the protection of humans from zoonotic pathogens. There is a general perception of cats being treated as "small dogs," especially in the field of clinical parasitology. As a result, several important differences between the two animal species are not taken into proper consideration and are often overlooked. Dogs and cats are profoundly different under evolutionary, biological, ethological, behavioral, and immunological standpoints. These differences impact clinical features, diagnosis, and control of canine and feline parasites and transmission risk for humans. This review outlines the most common parasitoses and vector-borne diseases of dogs and cats, with a focus on major convergences and divergences, and discusses parasites that have (i) evolved based on different preys for dogs and cats, (ii) adapted due to different immunological or behavioral animal profiles, and (iii) developed more similarities than differences in canine and feline infections and associated diseases. Differences, similarities, and peculiarities of canine and feline parasitology are herein reviewed in three macrosections: (i) carnivorism, vegetarianism, anatomy, genetics, and parasites, (ii) evolutionary adaptation of nematodes, including veterinary reconsideration and zoonotic importance, and (iii) behavior and immune system driving ectoparasites and transmitted diseases. Emphasis is given to provide further steps toward a more accurate evaluation of canine and feline parasitology in a changing world in terms of public health relevance and One Health approach.
Collapse
Affiliation(s)
- Simone Morelli
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Anastasia Diakou
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angela Di Cesare
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | - Donato Traversa
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
44
|
Prevalence and Molecular Characterization of Rickettsia spp. from Wild Small Mammals in Public Parks and Urban Areas of Bangkok Metropolitan, Thailand. Trop Med Infect Dis 2021; 6:tropicalmed6040199. [PMID: 34842856 PMCID: PMC8628900 DOI: 10.3390/tropicalmed6040199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Rural areas usually show a higher prevalence of rickettsial infection than urban areas. However, information on the rickettsial infection status in urban settings (e.g., built-up areas and city parks) is still limited, particularly in the Bangkok metropolitan area. In this study, we performed a molecular rickettsial survey of spleen samples of small mammals caught in public parks and built-up areas of Bangkok. Out of 198 samples, the Rattus rattus complex was found to be most prevalent. The amplification of rickettsial gltA fragment gene (338 bp) by nested PCR assay revealed positive results in four samples, yielding a low prevalence of infection of 2.02%. DNA sequencing results confirmed that three samples were matched with Rickettsia typhi, and one was identified as R. felis. It is noteworthy that this is the first report of the occurrence of R. felis DNA in rodents in Southeast Asia.
Collapse
|
45
|
Do T, Inpankaew T, Duong DH, Bui KL. First Molecular Evidence of Pathogens in Fleas Collected from Dogs in Northern Vietnam. Pathogens 2021; 10:pathogens10091185. [PMID: 34578217 PMCID: PMC8472576 DOI: 10.3390/pathogens10091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Fleas are considered as hosts for a wide range of pathogens that cause emerging and re-emerging zoonotic diseases worldwide. Data on fleas and flea-borne pathogens (FBPs) in the international literature are limited in Vietnam. This study aimed to investigate the species of fleas and the presence of pathogens of interest in fleas in northern Vietnam using PCR and sequence analysis. Out of 200 dogs enrolled in this study, 20% were infested by the flea species Ctenocephalides felis felis. In total, 62 fleas (35 females and 27 males) collected from domestic dogs were molecularly screened for the detection of pathogens. Out of the screened fleas, 39 were positive for Rickettsia felis (62.9%), 9 for Candidatus Mycoplasma hemobos (14.52%), and 6 for Mycoplasma wenyonii (9.68%). This study shows the first molecular detection of the above-mentioned pathogens in fleas collected from the studied areas and the potential risk of infection with examined FBPs in northern Vietnam.
Collapse
Affiliation(s)
- Thom Do
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.D.); (T.I.)
| | - Tawin Inpankaew
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.D.); (T.I.)
| | - Duc Hieu Duong
- Department of Parasitology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 12406, Vietnam;
| | - Khanh Linh Bui
- Department of Parasitology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 12406, Vietnam;
- Correspondence:
| |
Collapse
|
46
|
Ruiz M, Acosta DB, Baricalla A, Sánchez JP. Molecular detection of Rickettsia in ectoparasites (Siphonaptera and Phthiraptera) of domestic and feral pigs from Argentina. Parasitol Res 2021; 120:3611-3618. [PMID: 34435254 DOI: 10.1007/s00436-021-07291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Rickettsioses are distributed among a variety of hematophagous arthropods, and represent an emergent threat. The presence of rickettsial bacteria in ectoparasites collected from pigs from Argentina is still unknown. This study investigated the presence and identity of Rickettsia spp. in fleas, Pulex irritans, and sucking lice, Haematopinus suis, of domestic and feral pigs, Sus scrofa, from Central-Northern Argentina, through the genes gltA and ompB. Rickettsial bacteria were detected in 50% of fleas and 24% of lice. The BLASTn analysis of the ompB gene fragments in P. irritans samples showed identities 99% and 100% with R. felis. Positive samples of H. suis were 99% similar with species from the spotted fever group, future amplifications of a more polymorphic fragment of the ompB gene will allow to corroborate the identity of the Rickettsia species present in these lice samples. The Rickettsia spp. reported in the present study are having eventually been associated with cases of human diseases, and the circulation of these agents in arthropods has already been reported in several countries. Therefore, the identification of circulating pathogenic agents, such as reported in this study, is crucial for development of preventive measures for the control of ectoparasite-borne rickettsiosis diseases. Further studies, using serology techniques, will be allow to explore the ability of pigs as a possible Rickettsia reservoir and its role as part of transmission cycle of Rickettsia spp. in the studied scenarios.
Collapse
Affiliation(s)
- M Ruiz
- Centro de Bioinvestigaciones - CeBio, Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires-CIT NOBA (CONICET-UNNOBA-UNSAdA), Ruta Provincial 32 Km 3.5, 2700, Pergamino, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - D B Acosta
- Centro de Bioinvestigaciones - CeBio, Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires-CIT NOBA (CONICET-UNNOBA-UNSAdA), Ruta Provincial 32 Km 3.5, 2700, Pergamino, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - A Baricalla
- Centro de Bioinvestigaciones - CeBio, Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires-CIT NOBA (CONICET-UNNOBA-UNSAdA), Ruta Provincial 32 Km 3.5, 2700, Pergamino, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - J P Sánchez
- Centro de Bioinvestigaciones - CeBio, Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires-CIT NOBA (CONICET-UNNOBA-UNSAdA), Ruta Provincial 32 Km 3.5, 2700, Pergamino, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
47
|
Díaz-Sánchez AA, Chilton NB, Roblejo-Arias L, Fonseca-Rodríguez O, Marrero-Perera R, Diyes CP, Yunik MEM, Lobo-Rivero E, Corona-González B. Molecular detection and identification of spotted fever group rickettsiae in ticks collected from horses in Cuba. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:207-212. [PMID: 32936461 DOI: 10.1111/mve.12480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Spotted fever group (SFG) rickettsiae are obligatory intracellular bacteria that cause disease in humans and other animals. Ixodid ticks are the principal vectors of SFG rickettsiae. The present study aimed to determine the prevalence and species identity of SFG rickettsiae in ticks and horses from urban and rural areas of western Cuba using PCR assays. Tick samples, collected from 79 horses, consisted of 14 Amblyomma mixtum adults, 111 Dermacentor nitens adults and 19 pools of D. nitens nymphs (2-5 individuals/pool). The PCR results revealed the presence of Rickettsia spp. in 64% of the A. mixtum adults, 16% of the D. nitens adults, and 11% of the pooled samples of D. nitens nymphs. In contrast, Rickettsia spp. was not detected in any of the 200 horse blood samples included in this study. DNA sequence data of the rickettsial 17 kDa antigen gene showed that Rickettsia amblyommatis was present in A. mixtum; and Rickettsia felis in D. nitens. This is the first report of R. felis in D. nitens in Cuba. The present study extends our knowledge of the potential vector spectrum and distribution of SFG rickettsiae pathogens in western Cuba.
Collapse
Affiliation(s)
- A A Díaz-Sánchez
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado postal 10, San José de las Lajas, Mayabeque, 32700, Cuba
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - N B Chilton
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - L Roblejo-Arias
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado postal 10, San José de las Lajas, Mayabeque, 32700, Cuba
| | - O Fonseca-Rodríguez
- Department of Epidemiology and Global Health, Umeå University, Umeå, 901 87, Sweden
| | - R Marrero-Perera
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado postal 10, San José de las Lajas, Mayabeque, 32700, Cuba
| | - C P Diyes
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - M E M Yunik
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - E Lobo-Rivero
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado postal 10, San José de las Lajas, Mayabeque, 32700, Cuba
| | - B Corona-González
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado postal 10, San José de las Lajas, Mayabeque, 32700, Cuba
| |
Collapse
|
48
|
Durden LA, Bermúdez S, Vargas GA, Sanjur BE, Gillen L, Brown LD, Greiman SE, Eremeeva ME. Fleas (Siphonaptera) Parasitizing Peridomestic and Indigenous Mammals in Panamá and Screening of Selected Fleas for Vector-Borne Bacterial Pathogens. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1316-1321. [PMID: 33215205 DOI: 10.1093/jme/tjaa253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 06/11/2023]
Abstract
In total, 341 fleas belonging to 16 species were collected from 78 host mammals belonging to 10 species in Panamá from 2010 to 2016. The cat flea, Ctenocephalides felis (Bouché) predominated on domestic dogs and was also recorded from domestic cats, the raccoon, Procyon lotor (Linnaeus) and the common opossum, Didelphis marsupialis Linnaeus. The largest number of flea species (7) was recorded from D. marsupialis and the most common flea on that host was the ctenophthalmid, Adoratopsylla intermedia copha Jordan. One Oriental rat flea, Xenopsylla cheopis (Rothschild), was collected from D. marsupialis. Native rodents were parasitized by indigenous ceratophyllid, rhopalopsyllid, and stephanocircid fleas. The Mexican deermouse, Peromyscus mexicanus (Saussure), was parasitized by six species of ceratophyllids belonging to the mostly Central American genera, Baculomeris, Jellisonia, Kohlsia and Plusaetis. The long-tailed singing mouse, Scotinomys xerampelinus (Bangs), was parasitized by Plocopsylla scotinomi Tipton and Méndez, the only species of stephanocircid flea known from Central America. Twenty-six pools of extracted flea DNA representing 5 flea species (C. felis, Pulex echidnophagoides (Wagner), Pulex simulans Baker, A. intermedia copha, and P. scotinomi) and 79 individual fleas were all real-time polymerase chain reaction negative for Rickettsia felis, Rickettsia typhi, and Bartonella henselae.
Collapse
Affiliation(s)
- Lance A Durden
- Department of Biology, Georgia Southern University, Statesboro, GA
| | | | - Géminis A Vargas
- Departmento de Biología, Facultad de Ciencias Naturales y Exactes, Universidad de Chiriqui, University City, El Cabrero, David, Chiriqui, Panamá
| | - Boris E Sanjur
- Departmento de Biología, Facultad de Ciencias Naturales y Exactes, Universidad de Chiriqui, University City, El Cabrero, David, Chiriqui, Panamá
| | - Laura Gillen
- Department of Biology, Georgia Southern University, Statesboro, GA
| | - Lisa D Brown
- Department of Biology, Georgia Southern University, Statesboro, GA
| | | | - Marina E Eremeeva
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA
| |
Collapse
|
49
|
Araújo FSD, Barcelos RM, Mendes TADO, Mafra C. Molecular Evidence of Rickettsia felis in Phereoeca sp. ACTA ACUST UNITED AC 2021; 30:e015620. [PMID: 33909832 DOI: 10.1590/s1984-29612021017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
Rickettsia felis is an obligate intracellular bacterium capable of infecting ticks, fleas, lice, and other arthropods. This bacterium is classified as a member of the Transitional Group (TRG) Rickettsia. It is known the evidence of R. felis mutualistic and obligatory relationship with some eukaryote organisms. However, there aren't scientific accounts of R. felis and moths of the order Lepidoptera association. The current work reports the first identification of the bacteria R. felis in Phereoeca sp. For that, a polymerase chain reaction (PCR) assay using gltA, ompA, and ompB genes was used. The nucleotide sequences showed 100% of identity with other Rickettsia felis sequences. The genus-level identification of the moth larvae was performed by morphological taxonomic keys and PCR analysis of the cytochrome oxidase I (COI) gene. The nucleotide sequenced showed 94.94% similarity with the species Phereoeca praecox. However, with the low number of sequences deposited in the databases, the species was classified as Phereoeca sp. The results suggest that R. felis may develop in an organism without blood-feeding behavior (Lepidoptera), as it has been demonstrated for booklice (Psocoptera). Further investigation is necessary in order to confirm pathogenic or mutualistic association with moths.
Collapse
Affiliation(s)
- Fernanda Sales de Araújo
- Departamento de Bioquímica e Biologia Molecular, Universidade de Viçosa - UFV, Viçosa. MG, Brasil
| | - Rafael Mazioli Barcelos
- Departamento de Bioquímica e Biologia Molecular, Universidade de Viçosa - UFV, Viçosa. MG, Brasil
| | | | - Cláudio Mafra
- Departamento de Bioquímica e Biologia Molecular, Universidade de Viçosa - UFV, Viçosa. MG, Brasil
| |
Collapse
|
50
|
McGinn J, Lamason RL. The enigmatic biology of rickettsiae: recent advances, open questions and outlook. Pathog Dis 2021; 79:ftab019. [PMID: 33784388 PMCID: PMC8035066 DOI: 10.1093/femspd/ftab019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Rickettsiae are obligate intracellular bacteria that can cause life-threatening illnesses and are among the oldest known vector-borne pathogens. Members of this genus are extraordinarily diverse and exhibit a broad host range. To establish intracellular infection, Rickettsia species undergo complex, multistep life cycles that are encoded by heavily streamlined genomes. As a result of reductive genome evolution, rickettsiae are exquisitely tailored to their host cell environment but cannot survive extracellularly. This host-cell dependence makes for a compelling system to uncover novel host-pathogen biology, but it has also hindered experimental progress. Consequently, the molecular details of rickettsial biology and pathogenesis remain poorly understood. With recent advances in molecular biology and genetics, the field is poised to start unraveling the molecular mechanisms of these host-pathogen interactions. Here, we review recent discoveries that have shed light on key aspects of rickettsial biology. These studies have revealed that rickettsiae subvert host cells using mechanisms that are distinct from other better-studied pathogens, underscoring the great potential of the Rickettsia genus for revealing novel biology. We also highlight several open questions as promising areas for future study and discuss the path toward solving the fundamental mysteries of this neglected and emerging human pathogen.
Collapse
Affiliation(s)
- Jon McGinn
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Rebecca L Lamason
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|