1
|
Li Z, Chen Y, Li L, Xue M, Feng L. Different Infectivity of Swine Enteric Coronaviruses in Cells of Various Species. Pathogens 2024; 13:174. [PMID: 38392912 PMCID: PMC10891669 DOI: 10.3390/pathogens13020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Swine enteric coronaviruses (SECoVs), including porcine deltacoronavirus (PDCoV), transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), have caused high mortality in piglets and, therefore, pose serious threats to the pork industry. Coronaviruses exhibit a trend of interspecies transmission, and understanding the host range of SECoVs is crucial for improving our ability to predict and control future epidemics. Here, the replication of PDCoV, TGEV, and PEDV in cells from different host species was compared by measuring viral genomic RNA transcription and protein synthesis. We demonstrated that PDCoV had a higher efficiency in infecting human lung adenocarcinoma cells (A549), Madin-Darby bovine kidney cells (MDBK), Madin-Darby canine kidney cells (MDCK), and chicken embryonic fibroblast cells (DF-1) than PEDV and TGEV. Moreover, trypsin can enhance the infectivity of PDCoV to MDCK cells that are nonsusceptible to TGEV. Additionally, structural analyses of the receptor ectodomain indicate that PDCoV S1 engages Aminopeptidase N (APN) via domain II, which is highly conserved among animal species of different vertebrates. Our findings provide a basis for understanding the interspecies transmission potential of these three porcine coronaviruses.
Collapse
Affiliation(s)
| | | | | | - Mei Xue
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
2
|
Desmarets L, Danneels A, Burlaud-Gaillard J, Blanchard E, Dubuisson J, Belouzard S. The KxGxYR and DxE motifs in the C-tail of the Middle East respiratory syndrome coronavirus membrane protein are crucial for infectious virus assembly. Cell Mol Life Sci 2023; 80:353. [PMID: 37940699 PMCID: PMC10632273 DOI: 10.1007/s00018-023-05008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
The coronavirus' (CoV) membrane (M) protein is the driving force during assembly, but this process remains poorly characterized. Previously, we described two motifs in the C-tail of the Middle East respiratory syndrome CoV (MERS-CoV) M protein involved in its endoplasmic reticulum (ER) exit (211DxE213) and trans-Golgi network (TGN) retention (199KxGxYR204). Here, their function in virus assembly was investigated by two different virus-like particle (VLP) assays and by mutating both motifs in an infectious MERS-CoV cDNA clone. It was shown that the 199KxGxYR204 motif was essential for VLP and infectious virus assembly. Moreover, the mislocalization of the M protein induced by mutation of this motif prevented M-E interaction. Hampering the ER export of M by mutating its 211DxE213 motif still allowed the formation of nucleocapsid-empty VLPs, but prevented the formation of fully assembled VLPs and infectious particles. Taken together, these data show that the MERS-CoV assembly process highly depends on the correct intracellular trafficking of its M protein, and hence that not only specific protein-protein interacting motifs but also correct subcellular localization of the M protein in infected cells is essential for virus formation and should be taken into consideration when studying the assembly process.
Collapse
Affiliation(s)
- Lowiese Desmarets
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Adeline Danneels
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Julien Burlaud-Gaillard
- INSERM U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Sandrine Belouzard
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France.
| |
Collapse
|
3
|
Yuan X, Zhang X, Wang H, Mao X, Sun Y, Tan L, Song C, Qiu X, Ding C, Liao Y. The Ubiquitin-Proteasome System Facilitates Membrane Fusion and Uncoating during Coronavirus Entry. Viruses 2023; 15:2001. [PMID: 37896778 PMCID: PMC10610886 DOI: 10.3390/v15102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Although the involvement of the ubiquitin-proteasome system (UPS) in several coronavirus-productive infections has been reported, whether the UPS is required for infectious bronchitis virus (IBV) and porcine epidemic diarrhea virus (PEDV) infections is unclear. In this study, the role of UPS in the IBV and PEDV life cycles was investigated. When the UPS was suppressed by pharmacological inhibition at the early infection stage, IBV and PEDV infectivity were severely impaired. Further study showed that inhibition of UPS did not change the internalization of virus particles; however, by using R18 and DiOC-labeled virus particles, we found that inhibition of UPS prevented the IBV and PEDV membrane fusion with late endosomes or lysosomes. In addition, proteasome inhibitors blocked the degradation of the incoming viral protein N, suggesting the uncoating process and genomic RNA release were suppressed. Subsequently, the initial translation of genomic RNA was blocked. Thus, UPS may target the virus-cellular membrane fusion to facilitate the release of incoming viruses from late endosomes or lysosomes, subsequently blocking the following virus uncoating, initial translation, and replication events. Similar to the observation of proteasome inhibitors, ubiquitin-activating enzyme E1 inhibitor PYR-41 also impaired the entry of IBV, enhanced the accumulation of ubiquitinated proteins, and depleted mono-ubiquitin. In all, this study reveals an important role of UPS in coronavirus entry by preventing membrane fusion and identifies UPS as a potential target for developing antiviral therapies for coronavirus.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xiaoman Zhang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xiang Mao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| |
Collapse
|
4
|
Liu SY, Huang M, Fung TS, Chen RA, Liu DX. Characterization of the induction kinetics and antiviral functions of IRF1, ISG15 and ISG20 in cells infected with gammacoronavirus avian infectious bronchitis virus. Virology 2023; 582:114-127. [PMID: 37058744 PMCID: PMC10072953 DOI: 10.1016/j.virol.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
Coronavirus infection induces a variety of cellular antiviral responses either dependent on or independent of type I interferons (IFNs). Our previous studies using Affymetrix microarray and transcriptomic analysis revealed the differential induction of three IFN-stimulated genes (ISGs), IRF1, ISG15 and ISG20, by gammacoronavirus infectious bronchitis virus (IBV) infection of IFN-deficient Vero cells and IFN-competent, p53-defcient H1299 cells, respectively. In this report, the induction kinetics and anti-IBV functions of these ISGs as well as mechanisms underlying their differential induction are characterized. The results confirmed that these three ISGs were indeed differentially induced in H1299 and Vero cells infected with IBV, significantly more upregulation of IRF1, ISG15 and ISG20 was elicited in IBV-infected Vero cells than that in H1299 cells. Induction of these ISGs was also detected in cells infected with human coronavirus-OC43 (HCoV-OC43) and porcine epidemic diarrhea virus (PEDV), respectively. Manipulation of their expression by overexpression, knockdown and/or knockout demonstrated that IRF1 played an active role in suppressing IBV replication, mainly through the activation of the IFN pathway. However, a minor, if any, role in inhibiting IBV replication was played by ISG15 and ISG20. Furthermore, p53, but not IRF1, was implicated in regulating the IBV infection-induced upregulation of ISG15 and ISG20. This study provides new information on the mechanisms underlying the induction of these ISGs and their contributions to the host cell antiviral response during IBV infection.
Collapse
Affiliation(s)
- Si Ying Liu
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, 526238, Guangdong Province, People's Republic of China
| | - To Sing Fung
- Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China
| | - Ding Xiang Liu
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.
| |
Collapse
|
5
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
6
|
Dregni AJ, McKay MJ, Surya W, Queralt-Martin M, Medeiros-Silva J, Wang HK, Aguilella V, Torres J, Hong M. The Cytoplasmic Domain of the SARS-CoV-2 Envelope Protein Assembles into a β-Sheet Bundle in Lipid Bilayers. J Mol Biol 2023; 435:167966. [PMID: 36682677 PMCID: PMC9851921 DOI: 10.1016/j.jmb.2023.167966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein forms a pentameric ion channel in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of the infected cell. The cytoplasmic domain of E interacts with host proteins to cause virus pathogenicity and may also mediate virus assembly and budding. To understand the structural basis of these functions, here we investigate the conformation and dynamics of an E protein construct (residues 8-65) that encompasses the transmembrane domain and the majority of the cytoplasmic domain using solid-state NMR. 13C and 15N chemical shifts indicate that the cytoplasmic domain adopts a β-sheet-rich conformation that contains three β-strands separated by turns. The five subunits associate into an umbrella-shaped bundle that is attached to the transmembrane helices by a disordered loop. Water-edited NMR spectra indicate that the third β-strand at the C terminus of the protein is well hydrated, indicating that it is at the surface of the β-bundle. The structure of the cytoplasmic domain cannot be uniquely determined from the inter-residue correlations obtained here due to ambiguities in distinguishing intermolecular and intramolecular contacts for a compact pentameric assembly of this small domain. Instead, we present four structural topologies that are consistent with the measured inter-residue contacts. These data indicate that the cytoplasmic domain of the SARS-CoV-2 E protein has a strong propensity to adopt β-sheet conformations when the protein is present at high concentrations in lipid bilayers. The equilibrium between the β-strand conformation and the previously reported α-helical conformation may underlie the multiple functions of E in the host cell and in the virion.
Collapse
Affiliation(s)
- Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Matthew J McKay
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Maria Queralt-Martin
- Laboratory of Molecular Biophysics. Department of Physics. Universitat Jaume I. 12080 Castellón, Spain
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Harrison K Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Vicente Aguilella
- Laboratory of Molecular Biophysics. Department of Physics. Universitat Jaume I. 12080 Castellón, Spain
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
7
|
The Genetic Stability, Replication Kinetics and Cytopathogenicity of Recombinant Avian Coronaviruses with a T16A or an A26F Mutation within the E Protein Is Cell-Type Dependent. Viruses 2022; 14:v14081784. [PMID: 36016406 PMCID: PMC9415719 DOI: 10.3390/v14081784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
The envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, and the pentamer facilitates virion production. The presence of a T16A or A26F mutation within E exclusively generates the pentameric or monomeric form, respectively. We generated two recombinant IBVs (rIBVs) based on the apathogenic molecular clone Beau-R, containing either a T16A or A26F mutation, denoted as BeauR-T16A and BeauR-A26F. The replication and genetic stability of the rIBVs were assessed in several different cell types, including primary and continuous cells, ex vivo tracheal organ cultures (TOCs) and in ovo. Different replication profiles were observed between cell cultures of different origins. BeauR-A26F replicated to a lower level than Beau-R in Vero cells and in ovo but not in DF1, primary chicken kidney (CK) cells or TOCs. Genetic stability and cytopathic effects were found to differ depending on the cell system. The effect of the T16A and A26F mutations appear to be cell-type dependent, which, therefore, highlights the importance of cell type in the investigation of the IBV E protein.
Collapse
|
8
|
Yuan L, Fung TS, He J, Chen RA, Liu DX. Modulation of Viral Replication, Apoptosis and Antiviral Response by Induction and Mutual Regulation of EGR and AP-1 Family Genes During Coronavirus Infection. Emerg Microbes Infect 2022; 11:1717-1729. [PMID: 35727266 PMCID: PMC9262369 DOI: 10.1080/22221751.2022.2093133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Coronaviruses have evolved a variety of strategies to exploit normal cellular processes and signalling pathways for their efficient reproduction in a generally hostile cellular environment. One immediate-early response gene (IEG) family, the AP-1 gene family, was previously shown to be activated by coronavirus infection. In this study, we report that another IEG family, the EGR family, is also activated in cells infected with four different coronaviruses in three genera, i.e. gammacoronavirus infectious bronchitis virus (IBV), alphacoronaviruses porcine epidemic diarrhoea virus (PEDV) and human coronavirus-229E (HCoV-229E), and betacoronavirus HCoV-OC43. Knockdown of EGR1 reduced the expression of cJUN and cFOS, and knockdown of cJUN and/or cFOS reduced the expression of EGR1, demonstrating that these two IEG families may be cross-activated and mutual regulated. Furthermore, ERK1/2 was identified as an upstream kinase, and JNK and p38 as inhibitors of EGR1 activation in coronavirus-infected cells. However, upregulation of EGR family genes, in particular EGR1, appears to play a differential role in regulating viral replication, apoptosis and antiviral response. EGR1 was shown to play a limited role in regulation of coronavirus replication, and an anti-apoptotic role in cells infected with IBV or PEDV, but not in cells infected with HCoV-229E. Upregulation of EGR1 may also play a differential role in the regulation of antiviral response against different coronaviruses. This study reveals a novel regulatory network shared by different coronaviruses in the immediate-early response of host cells to infection.
Collapse
Affiliation(s)
- Lixia Yuan
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - To Sing Fung
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Jiawen He
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| |
Collapse
|
9
|
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int J Mol Sci 2022; 23:ijms23073953. [PMID: 35409315 PMCID: PMC8999375 DOI: 10.3390/ijms23073953] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species, which made the epidemic situation of SeCoV more complex and changeable. Recent studies have begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection. These complex interactions may be directly involved in viral replication or the alteration of some signal pathways.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| |
Collapse
|
10
|
Bontzos G, Gkiala A, Karakosta C, Maliotis N, Detorakis ET. COVID-19 in Ophthalmology. Current Disease Status and Challenges during Clinical Practice. MAEDICA 2021; 16:668-680. [PMID: 35261670 PMCID: PMC8897783 DOI: 10.26574/maedica.2020.16.4.668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Purpose: The novel coronavirus disease 2019 (COVID-19) has raised a global public health concern. The purpose of this review is to summarize the evidence currently available on COVID-19 for its ocular implications and manifestations from both pathogenetic and clinical standpoints. Methods: For this narrative review, more than 100 relevant scientific articles were considered from various databases (PubMed, Google Scholar, and Science Direct) using keywords such as coronavirus outbreak, COVID-19, ophthalmology, ocular symptoms. Results:Daily healthcare both from patient and physician perspective, as well as on some guidelines regarding prevention and management have dramatically changed over the last few months. Although COVID-19 infection mainly affects the respiratory system as well as the gastrointestinal, cardiovascular, and urinary systems, it may cause a wide spectrum of ocular manifestations. Various challenges have to be faced to minimize exposure for both patients and physicians. Conclusion:The risk of COVID-19 infection should be considered and medical care should be prioritized for urgent cases. Appropriate management for patients with chronic cases that may result in adverse outcomes should not be neglected, while patients that can be monitored remotely should be identified.
Collapse
Affiliation(s)
- Georgios Bontzos
- Department of Ophthalmology, 'Korgialenio-Benakio' General Hospital, 11526 Athens, Greece
| | - Anastasia Gkiala
- Department of Ophthalmology, 'Korgialenio-Benakio' General Hospital, 11526 Athens, Greece
| | - Christina Karakosta
- Department of Ophthalmology, 'Korgialenio-Benakio' General Hospital, 11526 Athens, Greece
| | - Neofytos Maliotis
- Department of Ophthalmology, General Hospital of Nikaia "Agios Panteleimon", 18454 Athens, Greece
| | | |
Collapse
|
11
|
Prates-Syed WA, Chaves LCS, Crema KP, Vuitika L, Lira A, Côrtes N, Kersten V, Guimarães FEG, Sadraeian M, Barroso da Silva FL, Cabral-Marques O, Barbuto JAM, Russo M, Câmara NOS, Cabral-Miranda G. VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants. Vaccines (Basel) 2021; 9:1409. [PMID: 34960155 PMCID: PMC8708688 DOI: 10.3390/vaccines9121409] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/23/2022] Open
Abstract
Virus-like particles (VLPs) are a versatile, safe, and highly immunogenic vaccine platform. Recently, there are developmental vaccines targeting SARS-CoV-2, the causative agent of COVID-19. The COVID-19 pandemic affected humanity worldwide, bringing out incomputable human and financial losses. The race for better, more efficacious vaccines is happening almost simultaneously as the virus increasingly produces variants of concern (VOCs). The VOCs Alpha, Beta, Gamma, and Delta share common mutations mainly in the spike receptor-binding domain (RBD), demonstrating convergent evolution, associated with increased transmissibility and immune evasion. Thus, the identification and understanding of these mutations is crucial for the production of new, optimized vaccines. The use of a very flexible vaccine platform in COVID-19 vaccine development is an important feature that cannot be ignored. Incorporating the spike protein and its variations into VLP vaccines is a desirable strategy as the morphology and size of VLPs allows for better presentation of several different antigens. Furthermore, VLPs elicit robust humoral and cellular immune responses, which are safe, and have been studied not only against SARS-CoV-2 but against other coronaviruses as well. Here, we describe the recent advances and improvements in vaccine development using VLP technology.
Collapse
Affiliation(s)
- Wasim A. Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Lorena C. S. Chaves
- Department of Microbiology and Immunology, School of Medicine, Emory University, Claudia Nance Rollins Building, Atlanta, GA 30329, USA;
| | - Karin P. Crema
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Victor Kersten
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | | | - Mohammad Sadraeian
- São Carlos Institute of Physics, IFSC-USP, São Carlos 13566590, SP, Brazil; (F.E.G.G.); (M.S.)
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| | - Fernando L. Barroso da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040903, SP, Brazil;
- Department of Chemical and Biomolecular Engeneering, North Carolina State University, Raleigh, NC 27695, USA
| | - Otávio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children’s Medical Center, Tehran 1419733151, Iran
| | - José A. M. Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 0124690, SP, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Niels O. S. Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| |
Collapse
|
12
|
Biochemical composition, transmission and diagnosis of SARS-CoV-2. Biosci Rep 2021; 41:229295. [PMID: 34291285 PMCID: PMC8350435 DOI: 10.1042/bsr20211238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a life-threatening respiratory infection caused by severe acute respiratory syndrome virus (SARS-CoV-2), a novel human coronavirus. COVID-19 was declared a pandemic by World Health Organization in March 2020 for its continuous and rapid spread worldwide. Rapidly emerging COVID-19 epicenters and mutants of concerns have created mammoth chaos in healthcare sectors across the globe. With over 185 million infections and approximately 4 million deaths globally, COVID-19 continues its unchecked spread despite all mitigation measures. Until effective and affordable antiretroviral drugs are made available and the population at large is vaccinated, timely diagnosis of the infection and adoption of COVID-appropriate behavior remains major tool available to curtail the still escalating COVID-19 pandemic. This review provides an updated overview of various techniques of COVID-19 testing in human samples and also discusses, in brief, the biochemical composition and mode of transmission of the SARS-CoV-2. Technological advancement in various molecular, serological and immunological techniques including mainly the reverse-transcription polymerase chain reaction (RT-PCR), CRISPR, lateral flow assays (LFAs), and immunosensors are reviewed.
Collapse
|
13
|
Gurung AB, Al-Anazi KM, Ali MA, Lee J, Farah MA. Identification of novel drug candidates for the inhibition of catalytic cleavage activity of coronavirus 3CL-like protease enzyme. Curr Pharm Biotechnol 2021; 23:959-969. [PMID: 34097590 DOI: 10.2174/1389201022666210604150041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND There has been tremendous pressure on healthcare facilities globally due to the recent emergence of novel coronavirus infections known as COVID-19 and its rapid spread across the continents. The lack of effective therapeutics for the management of the pandemic calls for the discovery of new drugs and vaccines. OBJECTIVE In the present study, a chemical library was screened for molecules against three coronavirus 3CL-like protease enzymes (SARS-CoV-2 3CLpro, SARS-CoV 3CLpro and MERS-CoV 3CLpro), which are a key player in the viral replication cycle. METHODS Extensive computational methods, such as virtual screening and molecular docking, were employed in this study. RESULTS Two lead molecules- ZINC08825480 (4-bromo-N'-{(E)-[1-phenyl-3-(pyridin-3-yl)-1H-pyrazol-4-yl]methylidene}benzene-1-sulfonohydrazide) and ZINC72009942 (N-[[2-[[(3S)-3-methyl-1-piperidyl]methyl]phenyl]methyl]-6-oxo-1-(p-tolyl)-4,5-dihydro-1,2,4-triazine-3-carboxamide) were identified with better affinity with the three target enzymes as compared to the approved antiviral drugs. Both the lead molecules possess favourable drug-like properties, fit well into the active site pocket close to His-Cys dyad and show a good number of hydrogen bonds with the backbone as well as side chains of key amino acid residues. CONCLUSION Thus, the present study offers two novel chemical entities against coronavirus infections, which can be validated through various biological assays.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134. South Korea
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| |
Collapse
|
14
|
Barik S. Systematizing the genomic order and relatedness in the open reading frames (ORFs) of the coronaviruses. INFECTION GENETICS AND EVOLUTION 2021; 92:104858. [PMID: 33848683 PMCID: PMC8053407 DOI: 10.1016/j.meegid.2021.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022]
Abstract
The coronaviruses (CoVs), including SARS-CoV-2, the agent of the ongoing deadly CoVID-19 pandemic (Coronavirus disease-2019), represent a highly complex and diverse class of RNA viruses with large genomes, complex gene repertoire, and intricate transcriptional and translational mechanisms. The 3′-terminal one-third of the genome encodes four structural proteins, namely spike, envelope, membrane, and nucleocapsid, interspersed with genes for accessory proteins that are largely nonstructural and called ‘open reading frame’ (ORF) proteins with alphanumerical designations, but not in a consistent or sequential order. Here, I report a comparative study of these ORF proteins, mainly encoded in two gene clusters, i.e. between the Spike and the Envelope genes, and between the Membrane and the Nucleocapsid genes. For brevity and focus, a greater emphasis was placed on the first cluster, collectively designated as the ‘orf3 region’ for ease of referral. Overall, an apparently diverse set of ORFs, such as ORF3a, ORF3b, ORF3c, ORF3d, ORF4 and ORF5, but not necessarily numbered in that order on all CoV genomes, were analyzed along with other ORFs. Unexpectedly, the gene order or naming of the ORFs were never fully conserved even within the members of one Genus. These studies also unraveled hitherto unrecognized orf genes in alternative translational frames, encoding potentially novel polypeptides as well as some that are highly similar to known ORFs. Finally, several options of an inclusive and systematic numbering are proposed not only for the orf3 region but also for the other orf genes in the viral genome in an effort to regularize the apparently confusing names and orders. Regardless of the ultimate acceptability of one system over the others, this treatise is hoped to initiate an informed discourse in this area.
Collapse
|
15
|
Kaur M, Sharma A, Kumar S, Singh G, Barnwal RP. SARS-CoV-2: Insights into its structural intricacies and functional aspects for drug and vaccine development. Int J Biol Macromol 2021; 179:45-60. [PMID: 33662418 PMCID: PMC7919520 DOI: 10.1016/j.ijbiomac.2021.02.212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/04/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
Globally, SARS-CoV-2 has emerged as threat to life and economy. Researchers are trying to find a cure against this pathogen but without much success. Several attempts have been made to understand the atomic level details of SARS-CoV-2 in the past few months. However, one review with all structural details for drug and vaccine development has been missing. Hence, this review aims to summarize key functional roles played by various domains of SARS-CoV-2 genome during its entry into the host, replication, repression of host immune response and overall viral life cycle. Additionally, various proteins of SARS-CoV-2 for finding a potent inhibitor have also been highlighted. To mitigate this deadly virus, an understanding of atomic level information, pathogenicity mechanisms and functions of different proteins in causing the infection is imperative. Thus, these structural details would finally pave the way for development of a potential drug/vaccine against the disease caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India; UIPS, Panjab University, Chandigarh 160014, India
| | - Santosh Kumar
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- UIPS, Panjab University, Chandigarh 160014, India
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
16
|
Terry JS, Anderson LB, Scherman MS, McAlister CE, Perera R, Schountz T, Geiss BJ. Development of a SARS-CoV-2 nucleocapsid specific monoclonal antibody. Virology 2021; 558:28-37. [PMID: 33714753 PMCID: PMC7849420 DOI: 10.1016/j.virol.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
To help fight COVID-19, new molecular tools specifically targeting critical components of the causative agent of COVID-19, SARS-Coronavirus-2 (SARS-CoV-2), are desperately needed. The SARS-CoV-2 nucleocapsid protein is critical for viral replication, integral to viral particle assembly, and a major diagnostic marker for infection and immune protection. Currently the limited available antibody reagents targeting the nucleocapsid protein are not specific to SARS-CoV-2 nucleocapsid protein, and sequences for these antibodies are not publicly available. In this work we developed and characterized a series of new mouse monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein, with a specific clone, mBG86, targeting only SARS-CoV-2 nucleocapsid protein. The monoclonal antibodies were validated in ELISA, Western blot, and immunofluorescence analyses. The variable regions from six select clones were cloned and sequenced, and preliminary epitope mapping of the sequenced clones was performed. Overall, these new antibody reagents will be of significant value in the fight against COVID-19.
Collapse
Affiliation(s)
- James S Terry
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Loran Br Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael S Scherman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Carley E McAlister
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
17
|
Gammacoronavirus Avian Infectious Bronchitis Virus and Alphacoronavirus Porcine Epidemic Diarrhea Virus Exploit a Cell-Survival Strategy via Upregulation of cFOS to Promote Viral Replication. J Virol 2021; 95:JVI.02107-20. [PMID: 33239458 PMCID: PMC7851560 DOI: 10.1128/jvi.02107-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Coronaviruses have evolved a variety of strategies to optimize cellular microenvironment for efficient replication. In this study, we report the induction of AP-1 transcription factors by coronavirus infection based on genome-wide analyses of differentially expressed genes in cells infected with avian coronavirus infectious bronchitis virus (IBV). Most members of the AP-1 transcription factors were subsequently found to be upregulated during the course of IBV and porcine epidemic diarrhea virus (PEDV) infection of cultured cells as well as in IBV-infected chicken embryos. Further characterization of the induction kinetics and functional roles of cFOS in IBV replication demonstrated that upregulation of cFOS at early to intermediate phases of IBV replication cycles suppresses IBV-induced apoptosis and promotes viral replication. Blockage of nuclear translocation of cFOS by peptide inhibitor NLSP suppressed IBV replication and apoptosis, ruling out the involvement of the cytoplasmic functions of cFOS in the replication of IBV. Furthermore, knockdown of ERK1/2 and inhibition of JNK and p38 kinase activities reduced cFOS upregulation and IBV replication. This study reveals an important function of cFOS in the regulation of coronavirus-induced apoptosis, facilitating viral replication.IMPORTANCE The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by a newly emerged zoonotic coronavirus (SARS-CoV-2), highlights the importance of coronaviruses as human and animal pathogens and our knowledge gaps in understanding the cellular mechanisms, especially mechanisms shared among human and animal coronaviruses, exploited by coronaviruses for optimal replication and enhanced pathogenicity. This study reveals that upregulation of cFOS, along with other AP-1 transcription factors, as a cell-survival strategy is such a mechanism utilized by coronaviruses during their replication cycles. Through induction and regulation of apoptosis of the infected cells at early to intermediate phases of the replication cycles, subtle but appreciable differences in coronavirus replication efficiency were observed when the expression levels of cFOS were manipulated in the infected cells. As the AP-1 transcription factors are multi-functional, further studies of their regulatory roles in proinflammatory responses may provide new insights into the pathogenesis and virus-host interactions during coronavirus infection.
Collapse
|
18
|
Wang ZJ, Zhang HJ, Lu J, Xu KW, Peng C, Guo J, Gao XX, Wan X, Wang WH, Shan C, Zhang SC, Wu J, Yang AN, Zhu Y, Xiao A, Zhang L, Fu L, Si HR, Cai Q, Yang XL, You L, Zhou YP, Liu J, Pang DQ, Jin WP, Zhang XY, Meng SL, Sun YX, Desselberger U, Wang JZ, Li XG, Duan K, Li CG, Xu M, Shi ZL, Yuan ZM, Yang XM, Shen S. Low toxicity and high immunogenicity of an inactivated vaccine candidate against COVID-19 in different animal models. Emerg Microbes Infect 2021; 9:2606-2618. [PMID: 33241728 PMCID: PMC7733911 DOI: 10.1080/22221751.2020.1852059] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ongoing COVID-19 pandemic is causing huge impact on health, life, and global economy, which is characterized by rapid spreading of SARS-CoV-2, high number of confirmed cases and a fatality/case rate worldwide reported by WHO. The most effective intervention measure will be to develop safe and effective vaccines to protect the population from the disease and limit the spread of the virus. An inactivated, whole virus vaccine candidate of SARS-CoV-2 has been developed by Wuhan Institute of Biological Products and Wuhan Institute of Virology. The low toxicity, immunogenicity, and immune persistence were investigated in preclinical studies using seven different species of animals. The results showed that the vaccine candidate was well tolerated and stimulated high levels of specific IgG and neutralizing antibodies. Low or no toxicity in three species of animals was also demonstrated in preclinical study of the vaccine candidate. Biochemical analysis of structural proteins and purity analysis were performed. The inactivated, whole virion vaccine was characterized with safe double-inactivation, no use of DNases and high purity. Dosages, boosting times, adjuvants, and immunization schedules were shown to be important for stimulating a strong humoral immune response in animals tested. Preliminary observation in ongoing phase I and II clinical trials of the vaccine candidate in Wuzhi County, Henan Province, showed that the vaccine is well tolerant. The results were characterized by very low proportion and low degree of side effects, high levels of neutralizing antibodies, and seroconversion. These results consistent with the results obtained from preclinical data on the safety.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Hua-Jun Zhang
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Wuhan, People's Republic of China
| | - Jia Lu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Kang-Wei Xu
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Cheng Peng
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Wuhan, People's Republic of China
| | - Jing Guo
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Xiao-Xiao Gao
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Wuhan, People's Republic of China
| | - Xin Wan
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Wen-Hui Wang
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Chao Shan
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Wuhan, People's Republic of China
| | - Su-Cai Zhang
- JOINN Laboratories (Beijing), Beijing, People's Republic of China
| | - Jie Wu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - An-Na Yang
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Yan Zhu
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Wuhan, People's Republic of China
| | - Ao Xiao
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Lei Zhang
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Wuhan, People's Republic of China
| | - Lie Fu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Hao-Rui Si
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Wuhan, People's Republic of China
| | - Qian Cai
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Xing-Lou Yang
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Wuhan, People's Republic of China
| | - Lei You
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Yan-Ping Zhou
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Jing Liu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - De-Qing Pang
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Wei-Ping Jin
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Xiao-Yu Zhang
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Yun-Xia Sun
- JOINN Laboratories (Beijing), Beijing, People's Republic of China
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Jun-Zhi Wang
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xin-Guo Li
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Kai Duan
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| | - Chang-Gui Li
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Zheng-Li Shi
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Wuhan, People's Republic of China
| | - Zhi-Ming Yuan
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Wuhan, People's Republic of China
| | - Xiao-Ming Yang
- National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China.,China National Biotec Group Company Ltd, Beijing, People's Republic of China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China.,National Engineering Technology Research Center of Combined Vaccines, Wuhan, People's Republic of China
| |
Collapse
|
19
|
Palacios Cruz M, Santos E, Velázquez Cervantes MA, León Juárez M. COVID-19, a worldwide public health emergency. Rev Clin Esp 2021; 221:55-61. [PMID: 33998479 PMCID: PMC7173827 DOI: 10.1016/j.rceng.2020.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
A new coronavirus outbreak emerged on the 31st of December 2019 in Wuhan, China, causing commotion among the medical community and the rest of the world. This new species of coronavirus has been termed 2019-nCoV and has caused a considerable number of cases of infection and deaths in China and, to a growing degree, beyond China, becoming a worldwide public health emergency. 2019-nCoV has high homology to other pathogenic coronaviruses, such as those originating from bat-related zoonosis (SARS-CoV), which caused approximately 646 deaths in China at the start of the decade. The mortality rate for 2019-nCoV is not as high (approximately 2-3%), but its rapid propagation has resulted in the activation of protocols to stop its spread. This pathogen has the potential to become a pandemic. It is therefore vital to follow the personal care recommendations issued by the World Health Organization.
Collapse
Affiliation(s)
- M Palacios Cruz
- Facultad de Medicina, Universidad Veracruzana, Veracruz, Mexico
| | - E Santos
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - M A Velázquez Cervantes
- Departamento de Inmunobioquímica, Laboratorio de Virología Perinatal, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - M León Juárez
- Departamento de Inmunobioquímica, Laboratorio de Virología Perinatal, Instituto Nacional de Perinatología, Ciudad de México, Mexico.
| |
Collapse
|
20
|
Palacios Cruz M, Santos E, Velázquez Cervantes MA, León Juárez M. COVID-19, a worldwide public health emergency. Rev Clin Esp 2021; 221:55-61. [PMID: 32204922 PMCID: PMC7102523 DOI: 10.1016/j.rce.2020.03.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
A new coronavirus outbreak emerged on the 31st of December 2019 in Wuhan, China, causing commotion among the medical community and the rest of the world. This new species of coronavirus has been termed 2019-nCoV and has caused a considerable number of cases of infection and deaths in China and, to a growing degree, beyond China, becoming a worldwide public health emergency. 2019-nCoV has high homology to other pathogenic coronaviruses, such as those originating from bat-related zoonosis (SARS-CoV), which caused approximately 646 deaths in China at the start of the decade. The mortality rate for 2019-nCoV is not as high (approximately 2-3%), but its rapid propagation has resulted in the activation of protocols to stop its spread. This pathogen has the potential to become a pandemic. It is therefore vital to follow the personal care recommendations issued by the World Health Organisation.
Collapse
Affiliation(s)
- M Palacios Cruz
- Facultad de Medicina, Universidad Veracruzana, Veracruz, México
| | - E Santos
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Alemania
| | - M A Velázquez Cervantes
- Departamento de Inmunobioquímica, Laboratorio de Virología Perinatal, Instituto Nacional de Perinatología, Ciudad de México, México
| | - M León Juárez
- Departamento de Inmunobioquímica, Laboratorio de Virología Perinatal, Instituto Nacional de Perinatología, Ciudad de México, México.
| |
Collapse
|
21
|
Zhang XY, Guo J, Wan X, Zhou JG, Jin WP, Lu J, Wang WH, Yang AN, Liu DX, Shi ZL, Yuan ZM, Li XG, Meng SL, Duan K, Wang ZJ, Yang XM, Shen S. Biochemical and antigenic characterization of the structural proteins and their post-translational modifications in purified SARS-CoV-2 virions of an inactivated vaccine candidate. Emerg Microbes Infect 2020; 9:2653-2662. [PMID: 33232205 PMCID: PMC7738289 DOI: 10.1080/22221751.2020.1855945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the face of COVID-19 pandemic caused by the newly emerged SARS-CoV-2, an inactivated, Vero cell-based, whole virion vaccine candidate has been developed and entered into phase III clinical trials within six months. Biochemical and immunogenic characterization of structural proteins and their post-translational modifications in virions, the end-products of the vaccine candidate, would be essential for the quality control and process development of vaccine products and for studying the immunogenicity and pathogenesis of SARS-CoV-2. By using a panel of rabbit antisera against virions and five structural proteins together with a convalescent serum, the spike (S) glycoprotein was shown to be N-linked glycosylated, PNGase F-sensitive, endoglycosidase H-resistant and cleaved by Furin-like proteases into S1 and S2 subunits. The full-length S and S1/S2 subunits could form homodimers/trimers. The membrane (M) protein was partially N-linked glycosylated; the accessory protein 3a existed in three different forms, indicative of cleavage and dimerization. Furthermore, analysis of the antigenicity of these proteins and their post-translationally modified forms demonstrated that S protein induced the strongest antibody response in both convalescent and immunized animal sera. Interestingly, immunization with the inactivated vaccine did not elicit antibody response against the S2 subunit, whereas strong antibody response against both S1 and S2 subunits was detected in the convalescent serum. Moreover, vaccination stimulated stronger antibody response against S multimers than did the natural infection. This study revealed that the native S glycoprotein stimulated neutralizing antibodies, while bacterially-expressed S fragments did not. The study on S modifications would facilitate design of S-based anti-SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - Jing Guo
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - Xin Wan
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - Jin-Ge Zhou
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - Wei-Ping Jin
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - Jia Lu
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - Wen-Hui Wang
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - An-Na Yang
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou, People's Republic of China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zhi-Ming Yuan
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xin-Guo Li
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - Kai Duan
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - Ze-Jun Wang
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| | - Xiao-Ming Yang
- China National Biotech Group Company Ltd, Beijing, People's Republic of China
| | - Shuo Shen
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, People's Republic of China
| |
Collapse
|
22
|
Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm (Beijing) 2020; 1:270-301. [PMID: 33173860 PMCID: PMC7646666 DOI: 10.1002/mco2.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
Coronaviruses (CoVs), a subfamily of coronavirinae, are a panel of single-stranded RNA virus. Human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-HKU1, HCoV-NL63) usually cause mild upper respiratory diseases and are believed to be harmless. However, other HCoVs, associated with severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19, have been identified as important pathogens due to their potent infectivity and lethality worldwide. Moreover, currently, no effective antiviral drugs treatments are available so far. In this review, we summarize the biological characters of HCoVs, their association with human diseases, and current therapeutic options for the three severe HCoVs. We also highlight the discussion about novel treatment strategies for HCoVs infections.
Collapse
Affiliation(s)
- Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Taewan Kim
- Wexner Medical Center The Ohio State University Columbus Ohio 43210 USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| |
Collapse
|
23
|
Meena M, Swapnil P. A review of contagious Coronavirus (SARS-Cov-2) their clinical features, diagnosis, preventions and treatment. JOURNAL OF HUMAN VIROLOGY & RETROVIROLOGY 2020; 8:99-105. [DOI: 10.15406/jhvrv.2020.08.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Objectives: This review is focused on recent studies of the global threat caused by novel coronavirus. The aim of this study is to understand the origin of the virus, its classification, morphology, genetic structure and mode of infection mechanism with the view towards using this information to develop a cure or for prevention. Methodology: In Wuhan, China, novel coronavirus pneumonia (SARS-CoV-2) originated and caused a global threat from late December 2019 which afterwards was termed as COVID-19 illness. The genome sequence of this novel coronavirus was found to be very similar with severe acute respiratory syndrome (SARS) and Middle-East respiratory syndrome (MERS) and assigned to betacoronavirus. This novel coronavirus affects the respiratory system of human beings as pneumonia. Results: Due to this novel coronavirus, WHO declared this a global threat and termed it COVID-19. This coronavirus causes severe health issues in people after direct contact. This disease is more severe for people who are suffering from some previous health issues. To cope with this disease some clinical characterisations are being processed to synthesize significant vaccines and antiviral drugs with the combination of different effective drugs. Therefore, it has been suggested that until a medicine is discovered people have to be careful to prevent this infection from spreading. Conclusions: Overall, this study is about the pandemic situation of COVID-19. To prepare any vaccine or medicine we have to study the morphology, genetic structure and its infection mechanism. COVID-19 is more dangerous than previous respiratory viruses. Until a medical or scientific team can synthesize a vaccine, we should follow the guidelines given by WHO to limit spread of the coronavirus from person to person.
Collapse
|
24
|
Terry JS, Anderson LBR, Scherman MS, McAlister CE, Perera R, Schountz T, Geiss BJ. Development of SARS-CoV-2 Nucleocapsid Specific Monoclonal Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.03.280370. [PMID: 32908982 PMCID: PMC7480041 DOI: 10.1101/2020.09.03.280370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The global COVID-19 pandemic has caused massive disruptions in every society around the world. To help fight COVID-19, new molecular tools specifically targeting critical components of the causative agent of COVID-19, SARS-Coronavirus-2 (SARS-CoV-2), are desperately needed. The SARS-CoV-2 nucleocapsid protein is a major component of the viral replication processes, integral to viral particle assembly, and is a major diagnostic marker for infection and immune protection. Currently available antibody reagents targeting the nucleocapsid protein were primarily developed against the related SARS-CoV virus and are not specific to SARS-CoV-2 nucleocapsid protein. Therefore, in this work we developed and characterized a series of new mouse monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein. The anti-nucleocapsid monoclonal antibodies were tested in ELISA, western blot, and immunofluorescence analyses. The variable regions from the heavy and light chains from five select clones were cloned and sequenced, and preliminary epitope mapping of the sequenced clones was performed. Overall, the new antibody reagents described here will be of significant value in the fight against COVID-19.
Collapse
Affiliation(s)
- James S. Terry
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Loran BR Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Michael S. Scherman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Carley E. McAlister
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Brian J. Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
25
|
Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD, Blomberg WR, Meigs DD, Hasan M, Patel M, Kline P, Chang RCC, Chang L, Gendelman HE, Kevadiya BD. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J Neuroimmune Pharmacol 2020; 15:359-386. [PMID: 32696264 PMCID: PMC7373339 DOI: 10.1007/s11481-020-09944-5] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2, is a positive-sense single-stranded RNA virus with epithelial cell and respiratory system proclivity. Like its predecessor, SARS-CoV, COVID-19 can lead to life-threatening disease. Due to wide geographic impact affecting an extremely high proportion of the world population it was defined by the World Health Organization as a global public health pandemic. The infection is known to readily spread from person-to-person. This occurs through liquid droplets by cough, sneeze, hand-to-mouth-to-eye contact and through contaminated hard surfaces. Close human proximity accelerates SARS-CoV-2 spread. COVID-19 is a systemic disease that can move beyond the lungs by blood-based dissemination to affect multiple organs. These organs include the kidney, liver, muscles, nervous system, and spleen. The primary cause of SARS-CoV-2 mortality is acute respiratory distress syndrome initiated by epithelial infection and alveolar macrophage activation in the lungs. The early cell-based portal for viral entry is through the angiotensin-converting enzyme 2 receptor. Viral origins are zoonotic with genomic linkages to the bat coronaviruses but without an identifiable intermediate animal reservoir. There are currently few therapeutic options, and while many are being tested, although none are effective in curtailing the death rates. There is no available vaccine yet. Intense global efforts have targeted research into a better understanding of the epidemiology, molecular biology, pharmacology, and pathobiology of SARS-CoV-2. These fields of study will provide the insights directed to curtailing this disease outbreak with intense international impact. Graphical Abstract.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ahmed M Senan
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
| | - Debashis Dutta
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Barnali Nath
- Viral Immunology Lab, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Wilson R Blomberg
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Peter Kline
- SARS-CoV-2 Patient Survivor, Chicago, IL, 60204, USA
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Linda Chang
- University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
26
|
Liang XY, Zhu QC, Liang JQ, Liu SY, Liu DX, Fung TS. Development of HiBiT-Tagged Recombinant Infectious Bronchitis Coronavirus for Efficient in vitro and in vivo Viral Quantification. Front Microbiol 2020; 11:2100. [PMID: 32983065 PMCID: PMC7485224 DOI: 10.3389/fmicb.2020.02100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
Coronaviruses (CoVs) are enveloped (+) ssRNA viruses of veterinary and medical importance. Because recombinant CoVs with reporter proteins fused with viral proteins are usually non-viable or unstable, a small and quantifiable epitope tag would be beneficial to CoV research. In this study, we integrated the NanoLuc Binary Technology to the reverse genetics of infectious bronchitis virus (IBV), a prototypic gammacoronavirus. The 11-amino-acid HiBiT tag was inserted to the spike (S) or membrane (M) protein, and the recombinant IBVs (rS-HiBiT and rM-HiBiT) were characterized. Compared with the rIBV-p65 control, rS-HiBiT exhibited comparable growth kinetics, whereas rM-HiBiT replicated slightly slower. The levels of HiBiT-tagged S and M proteins in the infected cells or the culture supernatant could be both rapidly (~15 min) and efficiently (30 μL sample volume) determined using the HiBiT luminescence assay. Notably, replication of the HiBiT-tagged IBV could be monitored continuously in an infected chicken embryo, and rS-HiBiT was genetically stable for at least 20 passages. By integrating the HiBiT tagging system with CoV reverse genetics, this new reporter system may facilitate future study of CoV replication and pathogenesis.
Collapse
Affiliation(s)
- Xiao Ying Liang
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Qing Chun Zhu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Jia Qi Liang
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Si Ying Liu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Kaniyala Melanthota S, Banik S, Chakraborty I, Pallen S, Gopal D, Chakrabarti S, Mazumder N. Elucidating the microscopic and computational techniques to study the structure and pathology of SARS-CoVs. Microsc Res Tech 2020; 83:1623-1638. [PMID: 32770582 PMCID: PMC7436590 DOI: 10.1002/jemt.23551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022]
Abstract
Severe Acute Respiratory Syndrome Coronaviruses (SARS‐CoVs), causative of major outbreaks in the past two decades, has claimed many lives all over the world. The virus effectively spreads through saliva aerosols or nasal discharge from an infected person. Currently, no specific vaccines or treatments exist for coronavirus; however, several attempts are being made to develop possible treatments. Hence, it is important to study the viral structure and life cycle to understand its functionality, activity, and infectious nature. Further, such studies can aid in the development of vaccinations against this virus. Microscopy plays an important role in examining the structure and topology of the virus as well as pathogenesis in infected host cells. This review deals with different microscopy techniques including electron microscopy, atomic force microscopy, fluorescence microscopy as well as computational methods to elucidate various prospects of this life‐threatening virus. Structural analysis of SARS‐CoVs aids in understanding its nature, activity, and pathophysiology Revealing the surface morphology of SARS‐CoVs using scanning electron microscope and atomic force microscopy Computational methods help to understand the structure of SARS‐CoVs and their interactions with various inhibitors
Collapse
Affiliation(s)
- Sindhoora Kaniyala Melanthota
- Department of Biophysics, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnataka576104India
| | - Soumyabrata Banik
- Department of Biophysics, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnataka576104India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnataka576104India
| | - Sparsha Pallen
- Department of Bioinformatics, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnataka576104India
| | - Dharshini Gopal
- Department of Bioinformatics, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnataka576104India
| | - Shweta Chakrabarti
- Department of Bioinformatics, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnataka576104India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnataka576104India
| |
Collapse
|
28
|
Mojica-Crespo R, Morales-Crespo MM. [Pandemic COVID-19, the new health emergency of international concern: A review]. Semergen 2020; 46 Suppl 1:65-77. [PMID: 32425491 PMCID: PMC7229959 DOI: 10.1016/j.semerg.2020.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023]
Abstract
In late December 2019, some cases of atypical pneumonia, at that time of unknown origin, were reported in Wuhan, China. Days later, the etiologic agent was identified as a new coronavirus. This new coronavirus was called SARS-CoV-2 and the disease it produces was named COVID-19. The origin of this new virus is presumed zoonotic, with bats being its probable vector. Due to the rapid number of infections and deaths that occurred first in China and later around the world, the infection of this virus quickly went from being an isolated outbreak in a Chinese region to becoming a health emergency of international concern and later, a pandemic. The purpose of this review is to study the most relevant and current information on the pathogen, as well as epidemiology, pathology, clinical features, transmission, prevention, and treatment of the disease.
Collapse
Affiliation(s)
- R Mojica-Crespo
- Unidad de Terapia Intensiva, Hospitales Puerta de Hierro (a Mayo Clinic Care Network member), Zapopan, México.
| | | |
Collapse
|
29
|
Bar-On YM, Flamholz A, Phillips R, Milo R. SARS-CoV-2 (COVID-19) by the numbers. eLife 2020; 9:e57309. [PMID: 32228860 PMCID: PMC7224694 DOI: 10.7554/elife.57309] [Citation(s) in RCA: 644] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic is a harsh reminder of the fact that, whether in a single human host or a wave of infection across continents, viral dynamics is often a story about the numbers. In this article we provide a one-stop, curated graphical source for the key numbers (based mostly on the peer-reviewed literature) about the SARS-CoV-2 virus that is responsible for the pandemic. The discussion is framed around two broad themes: i) the biology of the virus itself; ii) the characteristics of the infection of a single human host.
Collapse
Affiliation(s)
- Yinon M Bar-On
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Avi Flamholz
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Rob Phillips
- Department of Physics, Department of Applied Physics, and the Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
30
|
Li S, Yuan L, Dai G, Chen RA, Liu DX, Fung TS. Regulation of the ER Stress Response by the Ion Channel Activity of the Infectious Bronchitis Coronavirus Envelope Protein Modulates Virion Release, Apoptosis, Viral Fitness, and Pathogenesis. Front Microbiol 2020; 10:3022. [PMID: 32038520 PMCID: PMC6992538 DOI: 10.3389/fmicb.2019.03022] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 01/31/2023] Open
Abstract
Coronavirus (CoV) envelope (E) protein is a small structural protein critical for virion morphogenesis and release. The recently characterized E protein ion channel activity (EIC) has also been implicated in modulating viral pathogenesis. In this study, we used infectious bronchitis coronavirus (IBV) as a model to study EIC. Two recombinant IBVs (rIBVs) harboring EIC-inactivating mutations – rT16A and rA26F – were serially passaged, and several compensatory mutations were identified in the transmembrane domain (TMD). Two rIBVs harboring these putative EIC-reverting mutations – rT16A/A26V and rA26F/F14N – were recovered. Compared with the parental rIBV-p65 control, all four EIC mutants exhibited comparable levels of intracellular RNA synthesis, structural protein production, and virion assembly. Our results showed that the IBV EIC contributed to the induction of ER stress response, as up-regulation of ER stress-related genes was markedly reduced in cells infected with the EIC-defective mutants. EIC-defective mutants also formed smaller plaques, released significantly less infectious virions into the culture supernatant, and had lower levels of viral fitness in cell culture. Significantly, all these defective phenotypes were restored in cells infected with the putative EIC revertants. EIC mutations were also implicated in regulating IBV-induced apoptosis, induction of pro-inflammatory cytokines, and viral pathogenicity in vivo. Taken together, this study highlights the importance of CoV EIC in modulating virion release and various aspects of CoV – host interaction.
Collapse
Affiliation(s)
- Shumin Li
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lixia Yuan
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Guo Dai
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Rui Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Zhaoqing DaHuaNong Biology Medicine Co., Ltd., Zhaoqing, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
31
|
Abstract
Human coronavirus (HCoV) infection causes respiratory diseases with mild to severe outcomes. In the last 15 years, we have witnessed the emergence of two zoonotic, highly pathogenic HCoVs: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Replication of HCoV is regulated by a diversity of host factors and induces drastic alterations in cellular structure and physiology. Activation of critical signaling pathways during HCoV infection modulates the induction of antiviral immune response and contributes to the pathogenesis of HCoV. Recent studies have begun to reveal some fundamental aspects of the intricate HCoV-host interaction in mechanistic detail. In this review, we summarize the current knowledge of host factors co-opted and signaling pathways activated during HCoV infection, with an emphasis on HCoV-infection-induced stress response, autophagy, apoptosis, and innate immunity. The cross talk among these pathways, as well as the modulatory strategies utilized by HCoV, is also discussed.
Collapse
Affiliation(s)
- To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China;
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China;
| |
Collapse
|
32
|
Abstract
BACKGROUND Coronaviruses (CoVs) primarily cause enzootic infections in birds and mammals but, in the last few decades, have shown to be capable of infecting humans as well. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and, more recently, Middle-East respiratory syndrome (MERS) has demonstrated the lethality of CoVs when they cross the species barrier and infect humans. A renewed interest in coronaviral research has led to the discovery of several novel human CoVs and since then much progress has been made in understanding the CoV life cycle. The CoV envelope (E) protein is a small, integral membrane protein involved in several aspects of the virus' life cycle, such as assembly, budding, envelope formation, and pathogenesis. Recent studies have expanded on its structural motifs and topology, its functions as an ion-channelling viroporin, and its interactions with both other CoV proteins and host cell proteins. MAIN BODY This review aims to establish the current knowledge on CoV E by highlighting the recent progress that has been made and comparing it to previous knowledge. It also compares E to other viral proteins of a similar nature to speculate the relevance of these new findings. Good progress has been made but much still remains unknown and this review has identified some gaps in the current knowledge and made suggestions for consideration in future research. CONCLUSIONS The most progress has been made on SARS-CoV E, highlighting specific structural requirements for its functions in the CoV life cycle as well as mechanisms behind its pathogenesis. Data shows that E is involved in critical aspects of the viral life cycle and that CoVs lacking E make promising vaccine candidates. The high mortality rate of certain CoVs, along with their ease of transmission, underpins the need for more research into CoV molecular biology which can aid in the production of effective anti-coronaviral agents for both human CoVs and enzootic CoVs.
Collapse
Affiliation(s)
- Dewald Schoeman
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
33
|
Fung TS, Liu DX. The ER stress sensor IRE1 and MAP kinase ERK modulate autophagy induction in cells infected with coronavirus infectious bronchitis virus. Virology 2019; 533:34-44. [PMID: 31082732 PMCID: PMC7112053 DOI: 10.1016/j.virol.2019.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Coronavirus infection induces the generation of autophagosomes, and certain host proteins regulating cellular autophagy are hijacked by some coronaviruses to facilitate the formation of double membrane vesicles. However, mechanisms underlying coronavirus-induced autophagy remain largely unknown. In this study, we demonstrate that autophagosome formation and apparent autophagic flux are induced in cells infected with infectious bronchitis virus (IBV) - a gammacoronavirus. Notably, IBV-induced autophagy was dependent on autophagy related 5 (ATG5) but not beclin1 (BECN1), although both are essential proteins in the canonical autophagy pathway. Moreover, the ER stress sensor inositol requiring enzyme 1 (IRE1), but not its substrate X-box protein 1 (XBP1), was also essential for the induction of autophagy during IBV infection. Finally, the anti-apoptotic extracellular signal-regulated kinase 1/2 (ERK1/2) also contributed to IBV-induced autophagy. Our findings add new knowledge to the regulatory mechanisms governing coronavirus-induced autophagy, highlighting an extensive cross-talk among cellular signaling pathways during coronavirus infection.
Collapse
Affiliation(s)
- To Sing Fung
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
34
|
Liang JQ, Fang S, Yuan Q, Huang M, Chen RA, Fung TS, Liu DX. N-Linked glycosylation of the membrane protein ectodomain regulates infectious bronchitis virus-induced ER stress response, apoptosis and pathogenesis. Virology 2019; 531:48-56. [PMID: 30852271 PMCID: PMC7112112 DOI: 10.1016/j.virol.2019.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/30/2022]
Abstract
Coronavirus membrane (M) protein is the most abundant structural protein playing a critical role in virion assembly. Previous studies show that the N-terminal ectodomain of M protein is modified by glycosylation, but its precise functions are yet to be thoroughly investigated. In this study, we confirm that N-linked glycosylation occurs at two predicted sites in the M protein ectodomain of infectious bronchitis coronavirus (IBV). Dual mutations at the two sites (N3D/N6D) did not affect particle assembly, virus-like particle formation and viral replication in culture cells. However, activation of the ER stress response was significantly reduced in cells infected with rN3D/N6D, correlated with a lower level of apoptosis and reduced production of pro-inflammatory cytokines. Taken together, this study demonstrates that although not essential for replication, glycosylation in the IBV M protein ectodomain plays important roles in activating ER stress, apoptosis and proinflammatory response, and may contribute to the pathogenesis of IBV.
Collapse
Affiliation(s)
- Jia Qi Liang
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China
| | - Shouguo Fang
- Agricultural School, Yangtze University, 266 Jingmilu, Jingzhou City, Hubei Province 434025, People's Republic of China
| | - Quan Yuan
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, Guangdong, People's Republic of China
| | - Rui Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zhaoqing DaHuaNong Biology Medicine Co., Ltd., Zhaoqing 526238, Guangdong, People's Republic of China
| | - To Sing Fung
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China.
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China.
| |
Collapse
|
35
|
Fung TS, Liu DX. Post-translational modifications of coronavirus proteins: roles and function. Future Virol 2018; 13:405-430. [PMID: 32201497 PMCID: PMC7080180 DOI: 10.2217/fvl-2018-0008] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Post-translational modifications (PTMs) refer to the covalent modifications of polypeptides after they are synthesized, adding temporal and spatial regulation to modulate protein functions. Being obligate intracellular parasites, viruses rely on the protein synthesis machinery of host cells to support replication, and not surprisingly, many viral proteins are subjected to PTMs. Coronavirus (CoV) is a group of enveloped RNA viruses causing diseases in both human and animals. Many CoV proteins are modified by PTMs, including glycosylation and palmitoylation of the spike and envelope protein, N- or O-linked glycosylation of the membrane protein, phosphorylation and ADP-ribosylation of the nucleocapsid protein, and other PTMs on nonstructural and accessory proteins. In this review, we summarize the current knowledge on PTMs of CoV proteins, with an emphasis on their impact on viral replication and pathogenesis. The ability of some CoV proteins to interfere with PTMs of host proteins will also be discussed.
Collapse
Affiliation(s)
- To Sing Fung
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.,South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
36
|
Stodola JK, Dubois G, Le Coupanec A, Desforges M, Talbot PJ. The OC43 human coronavirus envelope protein is critical for infectious virus production and propagation in neuronal cells and is a determinant of neurovirulence and CNS pathology. Virology 2018; 515:134-149. [PMID: 29287230 PMCID: PMC7118982 DOI: 10.1016/j.virol.2017.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
The OC43 strain of human coronavirus (HCoV-OC43) is an ubiquitous respiratory tract pathogen possessing neurotropic capacities. Coronavirus structural envelope (E) protein possesses specific motifs involved in protein-protein interaction or in homo-oligomeric ion channel formation, which are known to play various roles including in virion morphology/assembly and in cell response to infection and/or virulence. Making use of recombinant viruses either devoid of the E protein or harboring mutations either in putative transmembrane domain or PDZ-binding motif, we demonstrated that a fully functional HCoV-OC43 E protein is first needed for optimal production of recombinant infectious viruses. Furthermore, HCoV-OC43 infection of human epithelial and neuronal cell lines, of mixed murine primary cultures from the central nervous system and of mouse central nervous system showed that the E protein is critical for efficient and optimal virus replication and propagation, and thereby for neurovirulence.
Collapse
Affiliation(s)
- Jenny K Stodola
- Laboratory of Neuroimmunovirology, INRS-Institut Armand- Frappier, Laval, Québec, Canada
| | - Guillaume Dubois
- Laboratory of Neuroimmunovirology, INRS-Institut Armand- Frappier, Laval, Québec, Canada
| | - Alain Le Coupanec
- Laboratory of Neuroimmunovirology, INRS-Institut Armand- Frappier, Laval, Québec, Canada
| | - Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand- Frappier, Laval, Québec, Canada.
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand- Frappier, Laval, Québec, Canada.
| |
Collapse
|
37
|
Wong HH, Fung TS, Fang S, Huang M, Le MT, Liu DX. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3. Virology 2017; 515:165-175. [PMID: 29294448 PMCID: PMC7112132 DOI: 10.1016/j.virol.2017.12.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is an inefficient inducer of interferon (IFN) response. It expresses various proteins that effectively circumvent IFN production at different levels via distinct mechanisms. Through the construction of recombinant IBV expressing proteins 8a, 8b and 8ab encoded by SARS-CoV ORF8, we demonstrate that expression of 8b and 8ab enables the corresponding recombinant viruses to partially overcome the inhibitory actions of IFN activation to achieve higher replication efficiencies in cells. We also found that proteins 8b and 8ab could physically interact with IRF3. Overexpression of 8b and 8ab resulted in the reduction of poly (I:C)-induced IRF3 dimerization and inhibition of the IFN-β signaling pathway. This counteracting effect was partially mediated by protein 8b/8ab-induced degradation of IRF3 in a ubiquitin-proteasome-dependent manner. Taken together, we propose that SARS-CoV may exploit the unique functions of proteins 8b and 8ab as novel mechanisms to overcome the effect of IFN response during virus infection. Recombinant IBV expressing SARS-CoV protein 8b or 8ab replicates better than wild type in cells pre-treated with poly(I:C). 8b interacts with the IAD domain of IRF3. Overexpression of 8b or 8ab reduces poly(I:C)-induced IRF3 dimerization and interferon induction. 8b and 8ab induce degradation of IRF3 in a ubiquitin-proteasome-dependent manner. 8b and 8ab suppress interferon response induced by constitutively active IRF3.
Collapse
Affiliation(s)
- Hui Hui Wong
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - To Sing Fung
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China
| | - Shouguo Fang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Agricultural School, Yangtze University, 266 Jingmilu, Jingzhou City, Hubei Province 434025, China
| | - Mei Huang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - My Tra Le
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
38
|
Fung TS, Liu DX. Activation of the c-Jun NH 2-terminal kinase pathway by coronavirus infectious bronchitis virus promotes apoptosis independently of c-Jun. Cell Death Dis 2017; 8:3215. [PMID: 29238080 PMCID: PMC5870581 DOI: 10.1038/s41419-017-0053-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are conserved protein kinases that regulate a variety of important cellular signaling pathways. Among them, c-Jun N-terminal kinases (JNK) are known to be activated by various environmental stresses including virus infections. Previously, activation of the JNK pathway has been detected in cells infected with several coronaviruses. However, detailed characterization of the pathway as well as its implication in host-virus interactions has not been fully investigated. Here we report that the JNK pathway was activated in cells infected with the avian coronavirus infectious bronchitis virus (IBV). Of the two known upstream MAPK kinases (MKK), MKK7, but not MKK4, was shown to be responsible for IBV-induced JNK activation. Moreover, knockdown and overexpression experiments demonstrated that JNK served as a pro-apoptotic protein during IBV infection. Interestingly, pro-apoptotic activity of JNK was not mediated via c-Jun, but involved modulation of the anti-apoptotic protein B-cell lymphoma 2 (Bcl2). Taken together, JNK constitutes an important aspect of coronavirus-host interaction, along with other MAPKs.
Collapse
Affiliation(s)
- To Sing Fung
- 0000 0000 9546 5767grid.20561.30South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, 510642 Guangdong, People’s Republic of China
| | - Ding Xiang Liu
- 0000 0000 9546 5767grid.20561.30South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, 510642 Guangdong, People’s Republic of China ,0000 0001 2224 0361grid.59025.3bSchool of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 63755 Singapore
| |
Collapse
|
39
|
Abozeid HH, Paldurai A, Khattar SK, Afifi MA, El-Kady MF, El-Deeb AH, Samal SK. Complete genome sequences of two avian infectious bronchitis viruses isolated in Egypt: Evidence for genetic drift and genetic recombination in the circulating viruses. INFECTION GENETICS AND EVOLUTION 2017; 53:7-14. [PMID: 28495648 DOI: 10.1016/j.meegid.2017.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/13/2022]
Abstract
Avian infectious bronchitis virus (IBV) is highly prevalent in chicken populations and is responsible for severe economic losses to poultry industry worldwide. In this study, we report the complete genome sequences of two IBV field strains, CU/1/2014 and CU/4/2014, isolated from vaccinated chickens in Egypt in 2014. The genome lengths of the strains CU/1/2014 and CU/4/2014 were 27,615 and 27,637 nucleotides, respectively. Both strains have a common genome organization in the order of 5'-UTR-1a-1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-UTR-poly(A) tail-3'. Interestingly, strain CU/1/2014 showed a novel 15-nt deletion in the 4b-4c gene junction region. Phylogenetic analysis of the full S1 genes showed that the strains CU/1/2014 and CU/4/2014 belonged to IBV genotypes GI-1 lineage and GI-23 lineage, respectively. The genome of strain CU/1/2014 is closely related to vaccine strain H120 but showed genome-wide point mutations that lead to 27, 14, 11, 1, 1, 2, 2, and 2 amino acid differences between the two strains in 1a, 1b, S, 3a, M, 4b, 4c, and N proteins, respectively, suggesting that strain CU/1/2014 is probably a revertant of the vaccine strain H120 and evolved by accumulation of point mutations. Recombination analysis of strain CU/4/2014 showed evidence for recombination from at least three different IBV strains, namely, the Italian strain 90254/2005 (QX-like strain), 4/91, and H120. These results indicate the continuing evolution of IBV field strains by genetic drift and by genetic recombination leading to outbreaks in the vaccinated chicken populations in Egypt.
Collapse
Affiliation(s)
- Hassanein H Abozeid
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA; Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Sunil K Khattar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Manal A Afifi
- Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Magdy F El-Kady
- Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman H El-Deeb
- Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
40
|
To J, Surya W, Fung TS, Li Y, Verdià-Bàguena C, Queralt-Martin M, Aguilella VM, Liu DX, Torres J. Channel-Inactivating Mutations and Their Revertant Mutants in the Envelope Protein of Infectious Bronchitis Virus. J Virol 2017; 91:e02158-16. [PMID: 27974570 PMCID: PMC5309962 DOI: 10.1128/jvi.02158-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
It has been shown previously in the severe acute respiratory syndrome coronavirus (SARS-CoV) that two point mutations, N15A and V25F, in the transmembrane domain (TMD) of the envelope (E) protein abolished channel activity and led to in vivo attenuation. Pathogenicity was recovered in mutants that also regained E protein channel activity. In particular, V25F was rapidly compensated by changes at multiple V25F-facing TMD residues located on a neighboring monomer, consistent with a recovery of oligomerization. Here, we show using infected cells that the same mutations, T16A and A26F, in the gamma-CoV infectious bronchitis virus (IBV) lead to, in principle, similar results. However, IBV E A26F did not abolish oligomer formation and was compensated by mutations at N- and C-terminal extramembrane domains (EMDs). The C-terminal EMD mutations clustered along an insertion sequence specific to gamma-CoVs. Nuclear magnetic resonance data are consistent with the presence of only one TMD in IBV E, suggesting that recovery of channel activity and fitness in these IBV E revertant mutants is through an allosteric interaction between EMDs and TMD. The present results are important for the development of IBV live attenuated vaccines when channel-inactivating mutations are introduced in the E protein.IMPORTANCE The ion channel activity of SARS-CoV E protein is a determinant of virulence, and abolishment of channel activity leads to viral attenuation. E deletion may be a strategy for generating live attenuated vaccines but can trigger undesirable compensatory mechanisms through modifications of other viral proteins to regain virulence. Therefore, a more suitable approach may be to introduce small but critical attenuating mutations. For this, the stability of attenuating mutations should be examined to understand the mechanisms of reversion. Here, we show that channel-inactivating mutations of the avian infectious bronchitis virus E protein introduced in a recombinant virus system are deficient in viral release and fitness and that revertant mutations also restored channel activity. Unexpectedly, most of the revertant mutations appeared at extramembrane domains, particularly along an insertion specific for gammacoronaviruses. Our structural data propose a single transmembrane domain in IBV E, suggesting an allosteric interaction between extramembrane and transmembrane domains.
Collapse
Affiliation(s)
- Janet To
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - To Sing Fung
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carmina Verdià-Bàguena
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castelló, Spain
| | - Maria Queralt-Martin
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castelló, Spain
| | - Vicente M Aguilella
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castelló, Spain
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
41
|
Abstract
Coronavirus particles serve three fundamentally important functions in infection. The virion provides the means to deliver the viral genome across the plasma membrane of a host cell. The virion is also a means of escape for newly synthesized genomes. Lastly, the virion is a durable vessel that protects the genome on its journey between cells. This review summarizes the available X-ray crystallography, NMR, and cryoelectron microscopy structural data for coronavirus structural proteins, and looks at the role of each of the major structural proteins in virus entry and assembly. The potential wider conservation of the nucleoprotein fold identified in the Arteriviridae and Coronaviridae families and a speculative model for the evolution of corona-like virus architecture are discussed.
Collapse
Affiliation(s)
- B W Neuman
- School of Biological Sciences, University of Reading, Reading, United Kingdom; College of STEM, Texas A&M University, Texarkana, Texarkana, TX, United States.
| | - M J Buchmeier
- University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
42
|
Stobart CC, Moore ML. Development of next-generation respiratory virus vaccines through targeted modifications to viral immunomodulatory genes. Expert Rev Vaccines 2015; 14:1563-72. [PMID: 26434947 DOI: 10.1586/14760584.2015.1095096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vaccines represent one of the greatest contributions of the scientific community to global health. Yet, many pathogens remain either unchallenged or inadequately hindered by commercially available vaccines. Respiratory viruses pose distinct and difficult challenges due to their ability to rapidly spread, adapt, and modify the host immune response. Considerable research has been directed to understand the role of respiratory virus immunomodulatory proteins and how they influence the host immune response. We review here efforts to develop next-generation vaccines through targeting these key immunomodulatory genes in influenza virus, coronaviruses, respiratory syncytial virus, measles virus, and mumps virus.
Collapse
Affiliation(s)
- Christopher C Stobart
- a 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,b 2 Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Martin L Moore
- a 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,b 2 Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
43
|
A Coronavirus E Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway. J Virol 2015; 89:9313-23. [PMID: 26136577 DOI: 10.1128/jvi.01237-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/22/2015] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi complex membranes, and has cation channel activity in vitro. However, the precise functions of the CoV E protein during infection are still enigmatic. Structural data for the severe acute respiratory syndrome (SARS)-CoV E protein suggest that it assembles into a homopentamer. Specific residues in the HD regulate the ion-conducting pore formed by SARS-CoV E in artificial bilayers and the pathogenicity of the virus during infection. The E protein from the avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system which require residues in the HD. Here, we use the known structural data from SARS-CoV E to infer the residues important for ion channel activity and the oligomerization of IBV E. We present biochemical data for the formation of two distinct oligomeric pools of IBV E in transfected and infected cells and the residues required for their formation. A high-order oligomer of IBV E is required for the production of virus-like particles (VLPs), implicating this form of the protein in virion assembly. Additionally, disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity. IMPORTANCE CoVs are important human pathogens with significant zoonotic potential, as demonstrated by the emergence of SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. Progress has been made toward identifying potential vaccine candidates in mouse models of CoV infection, including the use of attenuated viruses that lack the CoV E protein or express E-protein mutants. However, no approved vaccines or antiviral therapeutics exist. We previously reported that the hydrophobic domain of the IBV E protein, a putative viroporin, causes disruption of the mammalian secretory pathway when exogenously expressed in cells. Understanding the mechanism of this disruption could lead to the identification of novel antiviral therapeutics. Here, we present biochemical evidence for two distinct oligomeric forms of IBV E, one essential for assembly and the other with a role in disruption of the secretory pathway. Discovery of two forms of CoV E protein will provide additional targets for antiviral therapeutics.
Collapse
|
44
|
The Emerging Roles of Viroporins in ER Stress Response and Autophagy Induction during Virus Infection. Viruses 2015; 7:2834-57. [PMID: 26053926 PMCID: PMC4488716 DOI: 10.3390/v7062749] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 01/14/2023] Open
Abstract
Viroporins are small hydrophobic viral proteins that oligomerize to form aqueous pores on cellular membranes. Studies in recent years have demonstrated that viroporins serve important functions during virus replication and contribute to viral pathogenicity. A number of viroporins have also been shown to localize to the endoplasmic reticulum (ER) and/or its associated membranous organelles. In fact, replication of most RNA viruses is closely linked to the ER, and has been found to cause ER stress in the infected cells. On the other hand, autophagy is an evolutionarily conserved "self-eating" mechanism that is also observed in cells infected with RNA viruses. Both ER stress and autophagy are also known to modulate a wide variety of signaling pathways including pro-inflammatory and innate immune response, thereby constituting a major aspect of host-virus interactions. In this review, the potential involvement of viroporins in virus-induced ER stress and autophagy will be discussed.
Collapse
|
45
|
Torres J, Surya W, Li Y, Liu DX. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals? Viruses 2015; 7:2858-83. [PMID: 26053927 PMCID: PMC4488717 DOI: 10.3390/v7062750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022] Open
Abstract
Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
46
|
Venkatagopalan P, Daskalova SM, Lopez LA, Dolezal KA, Hogue BG. Coronavirus envelope (E) protein remains at the site of assembly. Virology 2015; 478:75-85. [PMID: 25726972 PMCID: PMC4550588 DOI: 10.1016/j.virol.2015.02.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/19/2014] [Accepted: 02/04/2015] [Indexed: 01/01/2023]
Abstract
Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. MHV-CoV E does not transport to the cell surface. MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. First FRAP and correlative light electron microscopy of a CoV E protein. Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes.
Collapse
Affiliation(s)
- Pavithra Venkatagopalan
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, United States; Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401, United States
| | - Sasha M Daskalova
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, United States; Department of Biochemistry and Chemistry, Arizona State University, Tempe, AZ 85287-5401, United States
| | - Lisa A Lopez
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, United States; Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287-5401, United States
| | - Kelly A Dolezal
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, United States; Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401, United States
| | - Brenda G Hogue
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, United States.
| |
Collapse
|
47
|
DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, Usera F, Enjuanes L. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res 2014; 194:124-37. [PMID: 25093995 PMCID: PMC4261026 DOI: 10.1016/j.virusres.2014.07.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and -7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal models and in humans. The modification or deletion of different motifs within E protein, including the transmembrane domain that harbors an ion channel activity, small sequences within the middle region of the carboxy-terminus of E protein, and its most carboxy-terminal end, which contains a PDZ domain-binding motif (PBM), is sufficient to attenuate the virus. Interestingly, a comprehensive collection of SARS-CoVs in which these motifs have been modified elicited full and long-term protection even in old mice, making those deletion mutants promising vaccine candidates. These data indicate that despite its small size, E protein drastically influences the replication of CoVs and their pathogenicity. Although E protein is not essential for CoV genome replication or subgenomic mRNA synthesis, it affects virus morphogenesis, budding, assembly, intracellular trafficking, and virulence. In fact, E protein is responsible in a significant proportion of the inflammasome activation and the associated inflammation elicited by SARS-CoV in the lung parenchyma. This exacerbated inflammation causes edema accumulation leading to acute respiratory distress syndrome (ARDS) and, frequently, to the death of infected animal models or human patients.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose L Nieto-Torres
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose M Jimenez-Guardeño
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose A Regla-Nava
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Fernando Usera
- Department of Biosafety, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
48
|
The endoplasmic reticulum stress sensor IRE1α protects cells from apoptosis induced by the coronavirus infectious bronchitis virus. J Virol 2014; 88:12752-64. [PMID: 25142592 DOI: 10.1128/jvi.02138-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The unfolded-protein response (UPR) is a signal transduction cascade triggered by perturbation of the homeostasis of the endoplasmic reticulum (ER). UPR resolves ER stress by activating a cascade of cellular responses, including the induction of molecular chaperones, translational attenuation, ER-associated degradation, and other mechanisms. Under prolonged and irremediable ER stress, however, the UPR can also trigger apoptosis. Here, we report that in cells infected with the avian coronavirus infectious bronchitis virus (IBV), ER stress was induced and the IRE1α-XBP1 pathway of UPR was activated. Knockdown and overexpression experiments demonstrated that IRE1α protects infected cells from IBV-induced apoptosis, which required both its kinase and RNase activities. Our data also suggest that splicing of XBP1 mRNA by IRE1α appears to convert XBP1 from a proapoptotic XBP1u protein to a prosurvival XBP1s protein. Moreover, IRE1α antagonized IBV-induced apoptosis by modulating the phosphorylation status of the proapoptotic c-Jun N-terminal kinase (JNK) and the prosurvival RAC-alpha serine/threonine-protein kinase (Akt). Taken together, the data indicate that the ER stress sensor IRE1α is activated in IBV-infected cells and serves as a survival factor during coronavirus infection. IMPORTANCE Animal coronaviruses are important veterinary viruses, which could cross the species barrier, becoming severe human pathogens. Molecular characterization of the interactions between coronaviruses and host cells is pivotal to understanding the pathogenicity and species specificity of coronavirus infection. It has been well established that the endoplasmic reticulum (ER) is closely associated with coronavirus replication. Here, we report that inositol-requiring protein 1 alpha (IRE1α), a key sensor of ER stress, is activated in cells infected with the avian coronavirus infectious bronchitis virus (IBV). Moreover, IRE1α is shown to protect the infected cells from apoptosis by modulating the unfolded-protein response (UPR) and two kinases related to cell survival. This study demonstrates that UPR activation constitutes a major aspect of coronavirus-host interactions. Manipulations of the coronavirus-induced UPR may provide novel therapeutic targets for the control of coronavirus infection and pathogenesis.
Collapse
|
49
|
Liu DX, Fung TS, Chong KKL, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res 2014; 109:97-109. [PMID: 24995382 PMCID: PMC7113789 DOI: 10.1016/j.antiviral.2014.06.013] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 01/21/2023]
Abstract
The huge RNA genome of SARS coronavirus comprises a number of open reading frames that code for a total of eight accessory proteins. Although none of these are essential for virus replication, some appear to have a role in virus pathogenesis. Notably, some SARS-CoV accessory proteins have been shown to modulate the interferon signaling pathways and the production of pro-inflammatory cytokines. The structural information on these proteins is also limited, with only two (p7a and p9b) having their structures determined by X-ray crystallography. This review makes an attempt to summarize the published knowledge on SARS-CoV accessory proteins, with an emphasis on their involvement in virus-host interaction. The accessory proteins of other coronaviruses are also briefly discussed. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses" (see Introduction by Hilgenfeld and Peiris (2013)).
Collapse
Affiliation(s)
- Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - To Sing Fung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kelvin Kian-Long Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aditi Shukla
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF), University of Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF), University of Lübeck, Germany
| |
Collapse
|
50
|
Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol 2014; 5:296. [PMID: 24987391 PMCID: PMC4060729 DOI: 10.3389/fmicb.2014.00296] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/29/2014] [Indexed: 12/27/2022] Open
Abstract
The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER). Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR), a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However, under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus–host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP) kinase activation, autophagy, apoptosis, and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize the current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.
Collapse
Affiliation(s)
- To S Fung
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Ding X Liu
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|