1
|
Keihani R, Gomes AS, Balseiro P, Handeland SO, Gorissen M, Arukwe A. Evaluation of stress in farmed Atlantic salmon (Salmo salar) using different biological matrices. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111743. [PMID: 39288868 DOI: 10.1016/j.cbpa.2024.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Atlantic salmon were subjected to an acute crowding scenario, and their subsequent stress responses were observed under three distinct swimming speed/water flow (WF) conditions: 0.5, 1, and 1.5 body lengths per second (BL/s). Feces, dermal mucus, and plasma were collected for analysis at 1, 6, and 24 h (h) post-stress. Additionally, the head kidney and two regions of the brain (pituitary and POA) were collected for transcript expression analysis. Fish swimming at 0.5 BL/s exhibited higher pre-stress (baseline) cortisol levels. Across all groups and matrices, the highest cortisol/cortisol metabolites (CM) levels were observed at the 1 h post-stress sampling point. At 6 h (second sampling time point), a clear decline toward baseline levels were observe in all groups. Significant increases in mean plasma glucose levels were observed at 1 h post-stress for all groups. The mean plasma lactate levels varied based on WF treatments, with a significant increase observed at 1 h only for the 1.5 BL/s group. Additionally, significant decreases in mean plasma lactate were noted at 6 and 24 h post-stress for some groups. The mRNA abundances of the tested genes (star, cyp17a1, hsd11β2, srd5a1) increased following the stress events. These changes were not uniform across all groups and were tissue dependent. In summary, the results indicate that mucus and feces can be used as potentially less invasive matrices than blood for evaluating stress and, consequently, the welfare of Atlantic salmon in captivity.
Collapse
Affiliation(s)
- Rouzbeh Keihani
- Department of Biological Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Pablo Balseiro
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Augustine Arukwe
- Department of Biological Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
2
|
Mahmoud AS, Sayed AEDH, Mahmoud UT, Mohammed AAA, Darwish MHA. Impact of zinc oxide nanoparticles on the behavior and stress indicators of African catfish (Clarias gariepinus) exposed to heat stress. BMC Vet Res 2024; 20:474. [PMID: 39420344 PMCID: PMC11484423 DOI: 10.1186/s12917-024-04302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
This study was designed to assess the role of nano-zinc oxide in mitigating the deleterious effects of heat stress in African catfish (Clarias gariepinus) by evaluating parameters such as aggressive behavior (biting frequency and chasing duration), hematological indicators, and stress-related biochemical markers. A total of 96 catfish were divided into four distinct groups (24 fish/group): The first group (CON) served as the control group, receiving a diet free of nano-zinc oxide. The second group (HS) was exposed to heat stress at 35 °C ± 1 °C. The third group (ZN) was fed a diet containing nano-zinc oxide at 30 mg/kg of the diet, and the fourth group (ZHN) was exposed to heat stress (35 °C ± 1 °C) and fed a diet containing nano-zinc oxide at 30 mg/kg of the diet. The results clarified that the aggressive behavior and cortisol levels were significantly higher (P < 0.05) in the HS group compared to the CON and ZHN groups. Additionally, the level of acetylcholinesterase (AChE) was significantly lower (P < 0.05) in the HS group compared to the CON and ZHN groups. Meanwhile, a significant (P < 0.05) decrease in red blood cells, hemoglobin, packed cell volume, white blood cells, alkaline phosphatase, and lymphocytes, was observed in fish belonging to the HS group, while the levels of alanine aminotransferase, aspartate aminotransferase, neutrophils, and monocytes showed a significant increase (P < 0.05). Supplementation with nano-zinc oxide significantly recovered most hematological and biochemical parameters. In conclusion, nano-zinc oxide contributed significantly to the regulation of the negative impacts of heat stress on fish by reducing aggressive behavior and cortisol levels. Additionally, it improved the levels of AChE and certain hematological and biochemical parameters.
Collapse
Affiliation(s)
- Amr Saber Mahmoud
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Alaa El Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt.
| | - Usama T Mahmoud
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A A Mohammed
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Animal Husbandry and Livestock Development, School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| | - Madeha H A Darwish
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Ibrahim M, Khan M, Mishu I, Jahan I, Mustafa A. Role of Phyllanthus niruri on the modulation of stress and immune responses in Nile tilapia, Oreochromis niloticus. PLoS One 2024; 19:e0309793. [PMID: 39418243 PMCID: PMC11486368 DOI: 10.1371/journal.pone.0309793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
The use of nutraceuticals in aquaculture is getting attention to minimize oxidative stress and increase immunity of aquatic animals. In our experiment, we tested the potency of Phyllanthus niruri, as a stress-reducing and immune-stimulating agent in Nile tilapia, Oreochromis niloticus. We reared fish in a recirculating system for 90 days at low (5 g/L) and high (30 g/L) densities. We fed half of the low and high-density fish with commercial feed (control feed) and the other half, with 5% Phyllanthus niruri incorporated into commercial feed (supplemented feed). We assessed plasma cortisol, blood glucose, packed cell volume, plasma proteins, phagocytic capacity, respiratory burst activity, and lysozyme activity. None of these parameters showed any significant difference among the experimental groups. Based on our findings, we conclude that Phyllanthus niruri does not have any potential role in modulating stress and immune response in fish as a nutraceutical.
Collapse
Affiliation(s)
- Md Ibrahim
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Mursalin Khan
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Israt Mishu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Ishrat Jahan
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Ahmed Mustafa
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| |
Collapse
|
4
|
Raymo G, Januario F, Ali A, Ahmed RO, Al-Tobasei R, Salem M. Fecal microbiome analysis uncovers hidden stress effects of low stocking density on rainbow trout. Anim Microbiome 2024; 6:57. [PMID: 39415222 PMCID: PMC11484228 DOI: 10.1186/s42523-024-00344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Recirculating aquaculture systems can cause chronic stress in fish when stocking density is too high. However, this study tested whether low stocking density can cause fish stress. Adult rainbow trout, with an average weight of 1.517 kg (± 0.39), were subjected to low (12 kg/m3 ± 0.94) and moderate (43 kg/m3 ± 2.03) stocking densities for 24 days in a recirculating system maintained at 15 °C. At the end of the experiment, fecal microbiome analysis was carried out using a 16S rRNA amplicon sequencing. Additionally, an untargeted plasma metabolomics analysis was conducted. RESULTS The moderate stocking density group harboured greater numbers of commensals, such as C. somerae, R. lituseburensis, and L. plantarum. In contrast, detrimental species such as S. putrifacens and P. putida were abundant in the low-stocking density fish. Functional microbiome profiling revealed vitamin B12 salvage and synthesis in moderate stocking densities, which may support intestinal tight junction function. Additionally, vitamin B1 biosynthesis pathways were more abundant in the moderate stocking density group, which may function towards oxidative energy metabolism and protect against oxidative stress. A complementary plasma metabolomics study, although done at slightly different stocking densities and duration, confirmed the presence of blood metabolic stress markers. Elevated levels of L-lactic acid and L-Norvaline, L-Valine, and L-glutamine, indicate low stocking density fish were under stress. Furthermore, a P4HA2 stress gene biomarker confirmed the occurrence of stress in low-density fish. This study suggests that low stocking density can induce stress in fish. Moreover, moderate stocking density leads to a distinct and beneficial fecal microbiome profile. CONCLUSION Our study highlights the potential benefits of optimizing the stocking density of fish in recirculating aquaculture systems. This can improve fish health and welfare, promoting a more resilient fecal microbiome.
Collapse
Affiliation(s)
- Guglielmo Raymo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742- 231, USA
| | - Fabiane Januario
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742- 231, USA
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742- 231, USA
| | - Ridwan O Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742- 231, USA
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742- 231, USA.
| |
Collapse
|
5
|
Herrera-Castillo L, Vallejo-Palma G, Saiz N, Sánchez-Jiménez A, Isorna E, Ruiz-Jarabo I, de Pedro N. Metabolic Rate of Goldfish ( Carassius auratus) in the Face of Common Aquaculture Challenges. BIOLOGY 2024; 13:804. [PMID: 39452113 PMCID: PMC11504095 DOI: 10.3390/biology13100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
This study examined the metabolic rate (MO2, oxygen consumption) of goldfish (Carassius auratus) under normal management conditions in aquaculture. Using an intermittent respirometry system, we assessed daily variations and the effects of feeding, handling, temperature increase, and anesthetics. MO2 exhibited a daily rhythm, with higher values during day. Feeding to satiety produced a 35% increase in MO2 compared to fasted animals, with a maximum peak after 3 h and returning to baseline after 7 h. Handling stress (5 min) produced a 140% MO2 peak (from 180 to 252 mg O2 kg-1 h-1), returning to the routine MO2 after 2.5 h. An increase in water temperature (+0.1 °C min-1) up to 30 °C caused MO2 to peak at 200% after 2.5 h from the start of the temperature increase. The use of common anesthetics in aquaculture (MS-222, 2-phenoxyethanol and clove oil in deep anesthesia concentration) affects MO2 during the first few minutes after anesthetic recovery, but also during the following 4 h. It can be concluded that the metabolic rate is a good indicator of the goldfish's response to aquaculture practices involving energy expenditure and stress. Thus, intermittent respirometry is a valuable non-invasive tool for understanding and improving fish welfare in aquaculture.
Collapse
Affiliation(s)
- Lisbeth Herrera-Castillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Germán Vallejo-Palma
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Nuria Saiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Abel Sánchez-Jiménez
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Ignacio Ruiz-Jarabo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
- Department of Aquaculture, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), 11519 Puerto Real, Cadiz, Spain
| | - Nuria de Pedro
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| |
Collapse
|
6
|
Carneiro VCL, Delicio HC, Barreto RE. Effects of stress-associated odor on ventilation rate and feeding performance in Nile tilapia. J APPL ANIM WELF SCI 2024; 27:796-806. [PMID: 36412980 DOI: 10.1080/10888705.2022.2149268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we described immediate/acute reactions to stress-related chemical cues (SC - Stress Cue) in fish. Specifically, we evaluated the effects of SC on ventilation rate (VR) and feeding behavior in Nile tilapia (Oreochromis niloticus), a highly relevant species for world aquaculture, therefore, to understand the diversity of stressful contexts and stress responses in this species have important practical applications (stress reduction). Stress cue was obtained from conspecifics exposed to a handling stressor. Stress was confirmed by measuring plasma cortisol levels. The responses to SC were contrasted to chemical control cues: a cue originated from non-stressed conspecifics and pure water (vehicle control). We observed that Nile tilapia exposed to SC had an increase in VR, but without effects on feeding behavior (feeding latency and ingestion). Thus, the SC is a stressor that induces readily stress response (VR increase), suggesting sympathetic activation, but did not change feeding performance. In practical terms, it is positive because although social propagation of stress via SC elicits a stress response, it did not harm appetite.
Collapse
Affiliation(s)
| | - Helton Carlos Delicio
- Department of Structural and Functional Biology (Physiology), Institute of Biosciences of Botucatu, UNESP, Botucatu, Brazil
| | - Rodrigo Egydio Barreto
- Department of Structural and Functional Biology (Physiology), Institute of Biosciences of Botucatu, UNESP, Botucatu, Brazil
- Aquaculture Center of São Paulo State University - CAUNESP, Jaboticabal, Brazil
| |
Collapse
|
7
|
Mustafa A, Belavilas M, Hossain R, Mishu I. Immunological effects of vitamin c and zinc on tilapia (Orechromis niloticus) exposed to cold water stress. PLoS One 2024; 19:e0311078. [PMID: 39325792 PMCID: PMC11426438 DOI: 10.1371/journal.pone.0311078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
This study investigates the immunological and growth effects of Vitamin C and Zinc supplementation on Nile tilapia (Oreochromis niloticus) subjected to cold water stress. Nile tilapia fingerlings were housed in eight 20-gallon tanks at Purdue University, acclimated to 26 ± 2°C water conditions before the experiment. The tilapia was divided into groups with varying water temperatures and feed supplements: control fish in warm water, and experimental groups in cold water with increased levels of Vitamin C and Zinc. Stress was induced by lowering the water temperature to 15 ± 2°C in four tanks, while the remaining tanks were kept at the optimal growth temperature. Results demonstrated that Vitamin C and Zinc supplementation significantly enhanced immune response and muscle regeneration in cold-stressed tilapia, allowing them to achieve growth rates comparable to those of control fish in optimal warm water conditions. These findings highlight the potential benefits of combined Vitamin C and Zinc supplementation in improving the immune response and growth performance of tilapia under suboptimal temperature conditions.
Collapse
Affiliation(s)
- Ahmed Mustafa
- Department of Biological Sciences, Purdue University Fort Wayne, IN, United States of America
| | - Maryam Belavilas
- Department of Biological Sciences, Purdue University Fort Wayne, IN, United States of America
| | - Rumman Hossain
- Department of Biological Sciences, Purdue University Fort Wayne, IN, United States of America
| | - Israt Mishu
- Department of Biological Sciences, Purdue University Fort Wayne, IN, United States of America
| |
Collapse
|
8
|
Khansari AR, Wallbom N, Sundh H, Sandblom E, Tort L, Jönsson E. Sea water acclimation of rainbow trout (Oncorhynchus mykiss) modulates the mucosal transcript immune response induced by Vibrio anguillarum and Aeromonas salmonicida vaccine, and prevents further transcription of stress-immune genes in response to acute stress. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109733. [PMID: 38944251 DOI: 10.1016/j.fsi.2024.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Mucosal tissues appear to be more important in fish than in mammals due to living in a microbial-rich aquatic milieu, yet the complex interaction between the immune and the neuroendocrine system in these tissues remains elusive. The aim of this work was to investigate the mucosal immune response in immunized rainbow trout vaccinated with Alpha ject vaccine (bivalent), kept in fresh water (FW) or transferred to seawater (SW), and to evaluate their response to acute stress (chasing). Acute stress resulted in higher levels of plasma cortisol (Sham + Stress and Vaccine + Stress). A similar response was observed in skin mucus, but it was lower in Vaccine + Stress compared with stressed fish. With a few exceptions, minimal alterations were detected in the transcriptomic profile of stress-immune gene in the skin of vaccinated and stressed fish in both FW and SW. In the gills, the stress elicited activation of key stress-immune components (gr1, mr, β-ar, hsp70, c3, lysozyme, α-enolase, nadph oxidase, il1β, il6, tnfα, il10 and tgfβ1) in FW, but fewer immune changes were induced by the vaccine (nadph oxidase, il6, tnfα, il10 and igt) in both SW and FW. In the intestine, an array of immune genes was activated by the vaccine particularly those related with B cells (igm, igt) and T cells (cd8α) in FW with no stimulation observed in SW. Therefore, our survey on the transcriptomic mucosal response demonstrates that the immune protection conferred by the vaccine to the intestine is modulated in SW. Overall, our results showed: i) plasma and skin mucus cortisol showed no additional stress effect induced by prolonged SW acclimation, ii) the stress and immune response were different among mucosal tissues which indicates a tissue-specific response to specific antigens/stressor. Further, the results suggest that the systemic immune organs may be more implicated in infectious events in SW (as few changes were observed in the mucosal barriers of immunized fish in SW) than in FW.
Collapse
Affiliation(s)
- Ali Reza Khansari
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden.
| | - Nicklas Wallbom
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| |
Collapse
|
9
|
Baia RRDJ, Alves CMG, de Oliveira MSB, Salomão CB, de Carvalho AA, Videira MN, Yoshioka ETO, Tavares-Dias M. Albendazole is effective in controlling monogeneans in Colossoma macropomum (Serrasalmidae): therapeutic baths and their physiological and histopathological effects. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e004924. [PMID: 39194144 PMCID: PMC11452061 DOI: 10.1590/s1984-29612024044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/06/2024] [Indexed: 08/29/2024]
Abstract
In aquaculture worldwide, most of the chemotherapeutic agents used for disease control and treatment are unregulated chemical products derived from agriculture. In this study, we investigated the efficacy of therapeutic baths with albendazole against the monogeneans Anacanthorus spathulatus, Notozothecium janauachensis and Mymarothecium boegeri, which infest the gills of Colossoma macropomum, and the hematological and histopathological effects of this anthelmintic agent on these fish. Albendazole at a concentration of 500 mg/L was used in three baths of 24 hours each, with intervals of 24 hours between these baths. Three replications of this treatment were used, and the control group consisted of water from the cultivation tank. Afterwards, hematological, histopathological and parasitological analyses were conducted. We found that the therapeutic baths with albendazole at 500 mg/L presented high efficacy (94.9%) against monogeneans de C. macropomum and caused few physiological or histopathological alterations. Therefore, baths with albendazole at 500 mg/L, as used in this strategy, can be recommended for controlling and treating infections by monogeneans in C. macropomum.
Collapse
Affiliation(s)
- Raimundo Rosemiro de Jesus Baia
- Programa de Pós-graduação em Biodiversidade Tropical – PPGBIO, Universidade Federal do Amapá – UNIFAP, Macapá, AP, Brasil
- Laboratório de Morfofisiologia e Sanidade Animal, Universidade do Estado do Amapá – UEAP, Macapá, AP, Brasil
| | - Carliane Maria Guimarães Alves
- Programa de Pós-graduação em Biodiversidade Tropical – PPGBIO, Universidade Federal do Amapá – UNIFAP, Macapá, AP, Brasil
| | | | | | | | - Marcela Nunes Videira
- Laboratório de Morfofisiologia e Sanidade Animal, Universidade do Estado do Amapá – UEAP, Macapá, AP, Brasil
| | - Eliane Tie Oba Yoshioka
- Programa de Pós-graduação em Biodiversidade Tropical – PPGBIO, Universidade Federal do Amapá – UNIFAP, Macapá, AP, Brasil
- Embrapa Amapá, Macapá, AP, Brasil
| | - Marcos Tavares-Dias
- Programa de Pós-graduação em Biodiversidade Tropical – PPGBIO, Universidade Federal do Amapá – UNIFAP, Macapá, AP, Brasil
- Embrapa Amapá, Macapá, AP, Brasil
| |
Collapse
|
10
|
Borah K, Phukan B, Talukdar A, Deka P, Pokhrel H, Kalita M, Kumar AP, Ali A, Bhuyan PC, Patowary AN, Kumar Sarma D, Ahmed M, Kalita R, Xavier M. Physio-metabolic alterations in Labeo rohita (Hamilton, 1822) and native predator Chitala chitala (Hamilton, 1822) in presence of an invasive species Piractus brachypomus (G. Cuvier, 1818). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50686-50699. [PMID: 39102143 DOI: 10.1007/s11356-024-34576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
A 60 days study was conducted to evaluate the physiological response of indigenous species Labeo rohita (LR) and indigenous predator Chitala chitala (CC) in presence of an invasive species Piaractus brachypomus (PB). Two treatment groups as LR + PB (T1) and LR + PB + CC (T2) with individual control groups as T0LR, T0PB and T0CC were designed in triplicates. Fingerlings of LR, PB and CC were randomly distributed into 15 circular tanks with a stocking ratio of 1:1 and 1:1:0.3 in T1 and T2 group, respectively and 10 nos. each of LR, PB and CC in respective control groups. At first 15 min of the experiment, cortisol level was found significantly (P < 0.05) higher in all three experimental fishes in T1 and T2 groups. With the experimental duration, the level of stress hormone (cortisol), oxidative stress enzymes (superoxide dismutase, catalase, and glutathione peroxidase), tissue metabolic enzymes (lactate dehydrogenase and malate dehydrogenase), serum metabolic enzymes (transaminase enzymes) and blood glucose level were significantly (P < 0.05) increased in T1 and T2 groups for LR and CC whereas, no variation (P > 0.05) were observed for PB in both T1 and T2 groups. The total antioxidant capacity (TAC), liver glycogen, total protein, albumin and globulin were found to be significantly (P < 0.05) decreased in LR in the presence of PB and CC. The present study provides a preliminary insight into the biological interaction between native and invasive species and their physiological responses in the presence of native predator with higher trophic index. Thus, the results of the study suggest the superior traits of invasive P. brachypomus try to dominate the other two native species by negatively influencing the native fauna even with a higher trophic index (C. chitala).
Collapse
Affiliation(s)
- Kankana Borah
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Bipul Phukan
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India.
| | - Avinash Talukdar
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Pankaj Deka
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Assam, India
| | - Hemanta Pokhrel
- Department of Aquatic Animal Health and Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Manoj Kalita
- Department of Biostatistics, Dr. B. Borooah Cancer Institute, Indian Council of Medical Research), Guwahati, Assam, India
| | - Annam Pavan Kumar
- Fish Genetics and Biotechnology Division, Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Ayub Ali
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Pradip Chandra Bhuyan
- Department of Fisheries Extension, Economics and Statistics, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Arnab Narayan Patowary
- Department of Fisheries Extension, Economics and Statistics, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Dipak Kumar Sarma
- Department of Aquaculture, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Mustafa Ahmed
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Rinku Kalita
- Department of Fisheries Resource Management, College of Fisheries, Assam Agricultural University, Raha, Assam, India
| | - Martin Xavier
- Department of Quality Assurance and Management, ICAR-Central Institute of Fisheries Technology, Cochin-682029, Kerala, India
| |
Collapse
|
11
|
Ding J, Gansel LC, Finstad B, Stene A, Bakke S, Aas GKFH, Cao Y. Investigating the biological relevance of measuring gastrointestinal cortisol metabolite levels to assess stress responses in Atlantic salmon (Salmo salar L.) after an acute stress. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109729. [PMID: 38942252 DOI: 10.1016/j.fsi.2024.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Monitoring stress levels of farmed Atlantic salmon (Salmo salar) is important to ensure fish welfare and optimize farm operations. Feces could be a promising matrix for assessing stress responses in fish, based on their properties of low-invasive sampling and allowing repeated sampling over time. Meanwhile, elevated levels of cortisol metabolites (CMs) in feces indicate the increases in plasma cortisol levels (PLA) after exposure to acute stress. However, the dynamics of fecal CMs following acute stress in Atlantic salmon remain unclear. In this study, a confinement stress involving chasing and crowding was conducted to investigate the responses of gastrointestinal CMs to an acute stressor in Atlantic salmon. The post-smolts, with an average weight of 155.21 g, were sampled before and at 30 min, 1.5, 6, 12, 18, 24, 36, and 48 h after the onset of stress. Blood and gastrointestinal contents from the stomach, proximal intestine, and distal intestine of each fish were collected and subsequently analyzed, using competitive enzyme-linked immunosorbent assay (ELISA). The results demonstrated that the pre-stress level of PLA was low (4.28 ± 6.13 ng/ml) and reached a peak within 30 min following stress. The levels of CMs in gastrointestinal contents from stomach (SCMs), proximal intestine (PCMs), and distal intestine (DCMs) in pre-stress group were 0.82 ± 0.50, 18.31 ± 6.14 and 16.04 ± 6.69 ng/g, respectively. Gastrointestinal CMs increased significantly within 30 min and the peak levels of SCMs (3.51 ± 3.75 ng/g), PCMs (68.19 ± 23.71 ng/g) and DCMs (65.67 ± 23.37 ng/g) were found at 1.5 h post-stress. The significant increases in PCMs and DCMs post-stress validate the biological relevance of measuring intestinal CMs for assessing acute stress responses in Atlantic salmon. No significant difference was noted between PCMs and DCMs across all samples, suggesting that intestinal contents can serve as a suitable matrix compared with feces when measuring the responses of CMs to acute stress. The time lag between the peak of PLA levels and their reflection in the intestinal contents exceeded 1 h, indicating that using intestinal contents as a matrix to assess stress levels in fish can extend and delay the sampling window. This study highlights valuable guidance for determining the optimal times to utilize intestinal contents for measuring stress responses, providing further insights into the dynamics of fecal CM following acute stress.
Collapse
Affiliation(s)
- Jingwen Ding
- Department of Biological Sciences Aalesund, Faculty of Natural Sciences, Norwegian University of Science and Technology, Larsgardsvegen 2, 6009, Aalesund, Norway.
| | - Lars Christian Gansel
- Department of Biological Sciences Aalesund, Faculty of Natural Sciences, Norwegian University of Science and Technology, Larsgardsvegen 2, 6009, Aalesund, Norway
| | - Bengt Finstad
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Anne Stene
- Department of Biological Sciences Aalesund, Faculty of Natural Sciences, Norwegian University of Science and Technology, Larsgardsvegen 2, 6009, Aalesund, Norway
| | - Snorre Bakke
- Department of Biological Sciences Aalesund, Faculty of Natural Sciences, Norwegian University of Science and Technology, Larsgardsvegen 2, 6009, Aalesund, Norway
| | - Grete Kristine Følsvik Hansen Aas
- Department of Biological Sciences Aalesund, Faculty of Natural Sciences, Norwegian University of Science and Technology, Larsgardsvegen 2, 6009, Aalesund, Norway
| | - Yanran Cao
- Department of Biological Sciences Aalesund, Faculty of Natural Sciences, Norwegian University of Science and Technology, Larsgardsvegen 2, 6009, Aalesund, Norway
| |
Collapse
|
12
|
Howell BE, Navarroli G, DePasquale SW, Cooke SJ, Hasler CT. Sex and season influence behaviour and physiology of lake trout following angling. CONSERVATION PHYSIOLOGY 2024; 12:coae041. [PMID: 38974501 PMCID: PMC11224997 DOI: 10.1093/conphys/coae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Catch-and-release angling exposes fish to challenges that may result in sub-lethal effects or mortality. Lake trout (Salvelinus namaycush) undergo high rates of release because of size-based harvest regulations or voluntary angler behaviour. Here, we examine short-term impairment in lake trout angled during the summer (n = 74) and fall spawning period (n = 33) to inform best practices for angling. Immediately following capture or 0.5 h post-capture, fish underwent reflex and barotrauma assessments, and a small blood sample was collected. Fish were also fitted with an externally mounted biologger equipped with depth, temperature and tri-axial acceleration sensors, that was tethered to allow retrieval of the logger after 14 min. In the summer, reflex impairment and barotrauma at 0 and 0.5 h were significantly correlated. Loss of orientation and bloating were the most observed indicators. Larger fish and those captured at increased depth had higher barotrauma scores, while prolonged fight times decreased the barotrauma score regardless of sampling time. Plasma cortisol, lactate and glucose increased 0.5 h after capture, and extracellular and intracellular pH decreased, all signs that angling was inducing a metabolic response. However, no relationships were found between blood indices and mortality (18.9%). The time required to reach maximum depth after release was longer for fish with increased air exposure but shorter for those with longer fight times. During the fall, fish displayed no mortality or reflex impairment. Anal prolapse was the most observed indicator of barotrauma but only observed in females. Blood indices were most altered 0.5 h after capture, with increased cortisol values for fish that were female, particularly large or captured at deeper depth. Locomotor activity was highest for males and increased with depth. Together, our findings suggest that the effects of catch-and-release angling may be dependent on several factors, including sex, season and angling depth.
Collapse
Affiliation(s)
- Bradley E Howell
- Fish Biology and Conservation Laboratory, Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Giulio Navarroli
- Fish Biology and Conservation Laboratory, Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Simon W DePasquale
- Fish Biology and Conservation Laboratory, Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Caleb T Hasler
- Fish Biology and Conservation Laboratory, Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| |
Collapse
|
13
|
Yu X, Hou W, Xiao L. Gamma-Aminobutyric Acid (GABA) Avoids Deterioration of Transport Water Quality, Regulates Plasma Biochemical Indices, Energy Metabolism, and Antioxidant Capacity of Tawny Puffer ( Takifugui flavidus) under Transport Stress. BIOLOGY 2024; 13:474. [PMID: 39056669 PMCID: PMC11273879 DOI: 10.3390/biology13070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Live fish transportation is crucial for managing aquaculture but can pose health risks to fish due to stressors encountered during transportation. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that plays a crucial role in the central nervous system and is considered to exhibit anti-stress effects. This study aims to investigate the effects of GABA on the transport water quality, plasma biochemical indices, energy metabolism, and antioxidant capacity of tawny puffer (Takifugu flavidus) under transport stress. Tawny puffer were pretreated by immersing in aquariums containing GABA (final concentrations at 0, 5, 50, and 150 mg/L) seawater for 3 days; then, simulated transport was conducted using oxygen-filled polyethylene bags containing the same concentration of GABA seawater as the pretreatment period. Water samples, plasma, and liver were collected after 0, 6, and 12 h of transport. The results revealed that with the prolongation of transportation time, the control group's water quality deteriorated, stress-related plasma biochemical indices increased, glycolytic substrate contents decreased, glycolytic enzyme activities and product contents increased, and aerobic metabolic enzyme activities exhibited initial increases followed by declines, ATPase activities decreased, antioxidant enzyme activities decreased, and the lipid peroxidation marker contents increased. It is noteworthy that GABA treatment could avoid water quality deterioration during transportation, inhibit an elevation in stress-related biochemical indicators, regulate energy metabolism, and reduce oxidative damage in tawny puffer, especially at 50 and 150 mg/L concentrations. In summary, GABA treatment can effectively alleviate the transport stress of tawny puffer.
Collapse
Affiliation(s)
- Xiaowen Yu
- Shanghai Fisheries Research Institute, Shanghai 200433, China;
| | - Wenjie Hou
- Shanghai Fisheries Research Institute, Shanghai 200433, China;
| | - Lixia Xiao
- Qidong Fishery Technology Promotion Station, Qidong 226299, China;
| |
Collapse
|
14
|
Costa VA, Holmes EC. Diversity, evolution, and emergence of fish viruses. J Virol 2024; 98:e0011824. [PMID: 38785422 PMCID: PMC11237817 DOI: 10.1128/jvi.00118-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The production of aquatic animals has more than doubled over the last 50 years and is anticipated to continually increase. While fish are recognized as a valuable and sustainable source of nutrition, particularly in the context of human population growth and climate change, the rapid expansion of aquaculture coincides with the emergence of highly pathogenic viruses that often spread globally through aquacultural practices. Here, we provide an overview of the fish virome and its relevance for disease emergence, with a focus on the insights gained through metagenomic sequencing, noting potential areas for future study. In particular, we describe the diversity and evolution of fish viruses, for which the majority have no known disease associations, and demonstrate how viruses emerge in fish populations, most notably at an expanding domestic-wild interface. We also show how wild fish are a powerful and tractable model system to study virus ecology and evolution more broadly and can be used to identify the major factors that shape vertebrate viromes. Central to this is a process of virus-host co-divergence that proceeds over many millions of years, combined with ongoing cross-species virus transmission.
Collapse
Affiliation(s)
- Vincenzo A. Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Moreira AP, Oliveira FC, Ferreira AL, de Almeida PR, Costa DC, Cardoso CAL, Chaves FCM, Chagas EC, de Campos CM. Efficacy of essential oil from ginger (Zingiber officinale) for anesthesia and transport sedation of pacu (Piaractus mesopotamicus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:865-880. [PMID: 38630162 DOI: 10.1007/s10695-024-01346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/13/2024] [Indexed: 06/29/2024]
Abstract
This study evaluated the anesthetic and sedative effects of the essential oil of Zingiber officinale (EOZO) on juvenile pacu (Piaractus mesopotamicus). Experiment 1 evaluated concentrations of 0, 50, 100, 200 and 400 mg L-1 EOZO for times of induction and recovery from anesthesia. Furthermore, hematological responses and residual components of EOZO in plasma were determined immediately after anesthesia. Experiment 2 evaluated the effect of 0, 10, 20 and 30 mg L-1 EOZO on water quality, blood variables and residual components of EOZO in plasma and tissues (muscle and liver) immediately after 2 h of transport. Survival was 100%. The three main compounds of EOZO [zingiberene (32.27%), β-sesquiphellandrene (18.42%) and β-bisabolene (13.93%)] were observed in animal plasma and tissues (muscle and liver) after anesthesia and transport, demonstrating a direct linear effect among the evaluated concentrations. The concentration of 200 mg L-1 EOZO promoted surgical anesthesia of pacu and prevented an increase in monocyte and neutrophil levels, yet did not alter other hematological parameters. The use of 30 mg L-1 EOZO has a sedative effect on juvenile pacu, thereby reducing oxygen consumption during transport. Furthermore, the use of 30 mg L-1 EOZO in transport water prevented an increase in hemoglobin and hematocrit, with minimal influences on other blood variables.
Collapse
Affiliation(s)
- Anuzhia Paiva Moreira
- Programa de Pós Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul (UEMS), Rodovia Graziela Maciel de Barros, Km 12, Zona Rural, Aquidauana, MS, 79200-000, Brazil
| | - Fúlvia Cristina Oliveira
- Programa de Pós Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul (UFMS), Avenida Senador Muller, 2443, Campo Grande, MS, 79070-900, Brazil
| | - Andre Lima Ferreira
- Programa de Pós Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul (UEMS), Rodovia Graziela Maciel de Barros, Km 12, Zona Rural, Aquidauana, MS, 79200-000, Brazil.
| | - Patrini Rodrigues de Almeida
- Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul (UEMS), Rodovia Graziela Maciel de Barros, Km 12, Zona Rural, Aquidauana, MS, 79200-000, Brazil
| | - Deliane Cristina Costa
- Programa de Pós Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul (UEMS), Rodovia Graziela Maciel de Barros, Km 12, Zona Rural, Aquidauana, MS, 79200-000, Brazil
- Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul (UEMS), Rodovia Graziela Maciel de Barros, Km 12, Zona Rural, Aquidauana, MS, 79200-000, Brazil
| | - Claudia Andrea Lima Cardoso
- Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul (UEMS), Rodovia Dourados Itahum Km 12, Caixa Postal 351, Dourados, MS, 79804-970, Brazil
| | | | - Edsandra Campos Chagas
- Embrapa Amazônia Ocidental, Rodovia AM 010 Km 29 Estrada Manaus, Manaus, AM, 69010-970, Brazil
- Programa de Pós Graduação em Ciência Animal e Recursos Pesqueiros, Universidade Federal do Amazonas (UFAM), Avenida General Rodrigo Octavio Jordão Ramos, 1200 - Coroado I, Manaus, AM, 69067-005, Brazil
| | - Cristiane Meldau de Campos
- Programa de Pós Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul (UEMS), Rodovia Graziela Maciel de Barros, Km 12, Zona Rural, Aquidauana, MS, 79200-000, Brazil
- Programa de Pós Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul (UFMS), Avenida Senador Muller, 2443, Campo Grande, MS, 79070-900, Brazil
- Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul (UEMS), Rodovia Graziela Maciel de Barros, Km 12, Zona Rural, Aquidauana, MS, 79200-000, Brazil
| |
Collapse
|
16
|
Ortiz M, Esteban MÁ. Biology and functions of fish thrombocytes: A review. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109509. [PMID: 38493985 DOI: 10.1016/j.fsi.2024.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
This comprehensive review examines the role of fish thrombocytes, cells considered functionally analogous to platelets in terms of coagulation, but which differ in their origin and morphology. Despite the evolutionary distance between teleosts and mammals, genomic studies reveal conserved patterns in blood coagulation, although there are exceptions such as the absence of factors belonging to the contact system. Beyond coagulation, fish thrombocytes have important immunological functions. These cells express both proinflammatory genes and genes involved in antigen presentation, suggesting a role in both innate and adaptive immune responses. Moreover, having demonstrated their phagocytic abilities, crucial in the fight against pathogenic microorganisms, underscores their multifaceted involvement in immunity. Finally, the need for further research on the functions of these cells is highlighted, in order to better understand their involvement in maintaining the health of aquaculture fish. The use of standardized and automated methods for the analysis of these activities is advocated, emphaiszing their potential to facilitate the early detection of stress or infection, thus minimizing the economic losses that these adverse situations can generate in the field of aquaculture.
Collapse
Affiliation(s)
- María Ortiz
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
17
|
Parolini M, Iacobuzio R, Bassano B, Pennati R. Interspecific competitive interactions affect body size and oxidative status of two nonnative salmonid species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:721-732. [PMID: 38240889 PMCID: PMC11021341 DOI: 10.1007/s10695-024-01301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/10/2024] [Indexed: 04/17/2024]
Abstract
In fish, interspecific interactions between nonnative and other sympatric species are considered determinants in shaping species assemblages. Such interactions can also arise between nonnative fish species only, including salmonids such as the brown trout (Salmo trutta, Linnaeus, 1758) and the rainbow trout (Oncorhynchus mykiss, Walbaum, 1792), returning contrasting outcomes. The present manipulative experiment was aimed at exploring the effect of interspecific competition on the body growth and the oxidative status of parr (2 + -year-old individuals) of the brown trout and the rainbow trout. Allopatric (intraspecific competition) and sympatric (interspecific competition) populations of these species were experimentally recreated in two wild streams. At the end of a 2-month-long experiment, changes in specific growth rate (SGR), oxidative status (i.e., levels of reactive oxygen species and activity of antioxidant enzymes such as superoxide dismutase - SOD, catalase - CAT and glutathione peroxidase - GPx) and oxidative damage (i.e., lipid peroxidation) were investigated in brown and rainbow trout individuals maintained in allopatric or sympatric populations. Sympatric interactions between rainbow and brown trout parr resulted in a significant decrease in SGR of brown trout individuals only. Moreover, an overall modulation of the oxidative status, in terms of an increase in ROS levels coupled with the activation of SOD and CAT activity, occurred in brown trout individuals under sympatric conditions. These findings might suggest that, under sympatric conditions, parr of the rainbow trout are more competitive than brown trout for food acquisition. However, this competition affected the antioxidant defenses of the brown trout only, probably because of reduced ingestion of dietary antioxidants or increased physical activity and aggressive behavior. Thus, interspecific interactions can induce physiological and phenotypic effects on parr of nonnative salmonids, with potential consequences on the establishment of populations of these species in freshwater ecosystems.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133, Milan, Italy.
| | - Rocco Iacobuzio
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133, Milan, Italy
- Parco Nazionale Gran Paradiso, Via Pio VII 9, 10135, Turin, Italy
| | - Bruno Bassano
- Parco Nazionale Gran Paradiso, Via Pio VII 9, 10135, Turin, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133, Milan, Italy
| |
Collapse
|
18
|
Abdollahi-Mousavi SE, Keyvanshokooh S, Torfi Mozanzadeh M, Ghasemi A. Efficacy of nutritional selenium nanoparticles on growth performance, immune response, antioxidant capacity, expression of growth and immune-related genes, and post-stress recovery in juvenile Sobaity seabream (Sparidentex hasta). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109452. [PMID: 38360194 DOI: 10.1016/j.fsi.2024.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
This study evaluated the impacts of nano-Se on the growth, immunity, antioxidant capacity, physiological parameters, gene expression, and stress resistance of fingerling Sobaity seabream (Sparidentex hasta). The fish with an average weight of 21.5 ± 0.1 g were divided into four treatment groups in triplicates that received one of the test diets supplemented with varying levels of nano-Se: 0 (control), 0.5 (Se-0.5), 1 (Se-1), and 2 (Se-2) mg/Kg for 60 days. The results showed that final weight, weight gain rate, specific growth rate, feed intake, and feed conversion ratio improved with significant linear and quadratic trends (P < 0.05) in response to nano-Se-supplemented diets, and the best values were measured in the Se-2 group. Superoxide dismutase activity level remained unaffected among the four groups (P > 0.05). Catalase activity increased in nano-Se-supplemented groups, with the highest level measured in fish fed the Se-0.5 diet. Glutathione peroxidase activity levels were not significantly different between the control and nano-Se groups, but the lowest malondialdehyde concentration was detected in the Se-2 group. Nano-Se had no marked effect on total plasma Ig levels; however, the highest lysozyme activity and alternative complement activity (ACH50) were observed in the Se-0.5 and Se-2 groups, respectively. No significant differences (P > 0.05) were observed in plasma total protein, albumin, globulin, triglyceride, and thyroid hormone (T3 and T4) contents among the groups. However, the lowest cholesterol and low-density lipoprotein values and the highest high-density lipoprotein concentration were measured in the Se-2 group. The Se-0.5 and Se-1 groups exhibited significantly lower levels of aspartate aminotransferase activity, and the lowest alkaline phosphatase activity level was detected in the Se-1 group. The expression level of insulin-like growth factor I gene in all nano-Se-fed groups was significantly higher than the control. Also, the expression of interleukin-1β and lysozyme genes was significantly upregulated in nano-Se-supplemented groups, with the highest values in the Se-2 group. Following acute crowding stress, plasma cortisol and lactate levels at all post-stress time intervals were not significantly different among the experimental groups. Fish fed the Se-0.5 and Se-2 diets tended to have lower plasma glucose concentrations than other groups. In conclusion, dietary nano-Se at 2 mg/kg is recommended to promote growth performance and enhance antioxidant and immune parameters in Sobaity juveniles.
Collapse
Affiliation(s)
- Seyed Eisa Abdollahi-Mousavi
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran.
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran.
| | - Ahmad Ghasemi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
19
|
Gneiding B, Bonotto DR, Bendhack F, Mauerwerk MT, de Oliveira JEB, Madeira HMF, de Macedo REF, Pinto RD, Baldan AP. The influence of eugenol, benzocaine and ice water on the welfare of adult grass carp (Ctenopharyngodon idella). Vet Res Commun 2024; 48:787-796. [PMID: 37923868 DOI: 10.1007/s11259-023-10244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023]
Abstract
The aim of this study was to evaluate the effects of eugenol, benzocaine, and ice water during the sedative, anesthetic or euthanasia processes on the welfare of adult grass carp (Ctenopharyngodon idella). The experimental design was randomized and the animals were divided into eight groups. Sixty-two animals underwent an acclimation period. The neutral group used to obtain basal data of grass carp were not subjected to treatments, but anesthetized to collect blood samples and euthanized by medullary section. The others seven groups were submitted to seven treatments with eight repetitions (control group; ethanol; eugenol 50 mgL-1, eugenol 250 mgL-1, benzocaine 100 mgL-1, benzocaine 300 mgL-1, and ice water 2:1), their behavior was observed. Blood samples was collected and then euthanized by medullary sectioning. Biometric data were measured and a part of the liver was collected for hepatic glycogen analysis. There was a statistically significant difference in the time required to reach the anesthetic stage between the groups (p < 0.01). Benzocaine and eugenol at the higher concentration provided the fastest responses to sedatives and anesthetics, respectively. The animals subjected to higher anesthetic concentrations reached stage five and did not return from anesthesia, therefore, benzocaine and eugenol were effective euthanizing agents. Benzocaine at the lowest concentration showed the highest concentrations of glucose and cortisol (p < 0.05). Although benzocaine at 100 mgL-1 concentrations is widely used as an anesthetic in fish, this study demonstrated its use as a stressor agent. Basal data of grass carp for stress parameters are presented for the first time.
Collapse
Affiliation(s)
- Beatriz Gneiding
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Imaculada Conceição, 1155 - Prado Velho, CEP: 80.215-901, Curitiba, PR, Brazil.
| | | | - Fabiano Bendhack
- Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Paraná, Brazil
| | | | - José Eduardo Basilio de Oliveira
- Department of Veterinary Medicine, University Center for the Development of Alto Vale do Itajaí, Rio do Sul, Santa Catarina, Brazil
| | | | - Renata Ernlund Freitas de Macedo
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Imaculada Conceição, 1155 - Prado Velho, CEP: 80.215-901, Curitiba, PR, Brazil
| | | | | |
Collapse
|
20
|
El-Khayat HMM, Sayed SSM, Mohammed WA, Sadek ASM. Protozoan and helminths infestation of Nile tilapia Oreochromis niloticus and its correlation with certain water quality variables along river Nile in the area of Greater Cairo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123459. [PMID: 38286257 DOI: 10.1016/j.envpol.2024.123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Pollutants and parasites represent stressors for fish at the individual, population, or community levels. The current study outlines the seasonal infestation pattern of Oreochromis niloticus by protozoan and helminths parasites linked to some physicochemical parameters (pH, dissolved oxygen, total dissolved solids, and electrical conductivity), and metals (Cd, Pb, Fe, Zn, and Ca), at nine selected sites in River Nile (Greater Cairo area) from summer 2019 till spring 2020. Most of the studied criteria in Nile water samples showed normal levels during all seasons compared to the recommended limits of EPA. The parasitological examinations recorded three protozoan categories: Myxobolus (8 species), hemoflagellates (Trypanosoma mukasi) and Ciliates (Trichodina compacta), and three helminths; Clinostomum sp., Acanthocephala sp. and Euclinostomum ardeola. The highest incidence of infection was determined for Clinostomum sp., followed in descending order by Myxobolus sp., Acanthocephala sp., T. mukasi, E. ardeolathen, and T. compacta. Notably, this study introduces the novel identification of new species of Myxobolus in the blood of Oreochromis niloticus. The histopathological examination of gills, muscles, and kidneys reveals serious changes and the presence of encysted trematodes, metacercariae, and cysts of protozoan parasites. Additionally, the study employs cluster analysis based on site similarity in water variables and canonical correspondence analysis, explaining 98.7 % of the variables and indicating correlations between parasite infestation and environmental factors. These analytical approaches reveal the impact of land use activities on water variables and the influence of adjacent activities on fish parasite infestation patterns. In conclusion, this study provides a comprehensive perspective by considering various factors to enhance our understanding of pollutants and parasites affecting fish in the River Nile.
Collapse
Affiliation(s)
- Hanaa M M El-Khayat
- Environmental Research and Medical Malacology Division, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Sara S M Sayed
- Environmental Research and Medical Malacology Division, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Wafaa A Mohammed
- Environmental Research and Medical Malacology Division, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Al-Shaimaa M Sadek
- Zoology and Entomology Department, College of Science, Al-Azhar University, P. O. 11765, Cairo, 11865, Egypt.
| |
Collapse
|
21
|
Yousaf MN, Røn Ø, Keitel-Gröner F, McGurk C, Obach A. Heart rate as an indicator of stress during the critical swimming speed test of farmed Atlantic salmon (Salmo salar L.). JOURNAL OF FISH BIOLOGY 2024; 104:633-646. [PMID: 37903720 DOI: 10.1111/jfb.15602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023]
Abstract
A swim tunnel is to fish as a treadmill is to humans, and is a device used for indirect measuring of the metabolic rate. This study aims to explore the fish stress (if any) during the critical swimming test routines (fish handling, confinement, and swimming) using heart rate (fH , heartbeat per minute) bio-loggers in farmed Atlantic salmon (Salmo salar L.). In addition, the recovery dynamics of exercised fish using fH were explored for 48 h post swim tests. Continuous fH data were acquired following the surgical implantation and throughout the trials, such as during fish handling, swim tests (critical swimming speed, Ucrit ), and 48 h post swim tests. After 3 weeks of surgical recovery, fH stabilized at 46.20 ± 1.26 beats min-1 , equalizing a ~38% reduction in fH recorded post-surgical tachycardia (74.13 ± 1.44 beats min-1 ). Interestingly, fH was elevated by ~200% compared to baseline levels not only due to the Ucrit (92.04 ± 0.23 beats min-1 ) but also due to fish handling and confinement in the swim tunnel, which was 66% above the baseline levels (77.48 ± 0.34 beats min-1 ), suggesting fish stress. Moreover, significantly higher plasma cortisol levels (199.56 ± 77.17 ng mL-1 ) corresponding to a ~300% increase compared to baseline levels (47.92 ± 27.70 ng mL-1 ) were identified after Ucrit , predicting post-swim test stress (physiological exhaustion). These findings reinforce the importance of fish acclimation in the swim tunnel prior to the swimming tests. However, fH dropped over the course of the 48-h post-swim test, but remained comparatively higher than the basal levels, suggesting fish should be given at least 48 h to recover from handling stress for better fish welfare. This study further explored the influence of fish tagging on Ucrit , which resulted in reduced swimming capabilities of tagged fish (1.95 ± 0.37 body lengths s-1 ) compared to untagged fish (2.54 ± 0.42 body length s-1 ), although this was not significant (p = 0.06), and therefore future tagging studies are warranted.
Collapse
Affiliation(s)
| | - Øyvind Røn
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| | | | - Charles McGurk
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| | - Alex Obach
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| |
Collapse
|
22
|
Xiao K, Wang X, Wang MM, Guo HX, Liu WB, Jiang GZ. Metabolism, antioxidant and immunity in acute and chronic hypoxic stress and the improving effect of vitamin C in the channel catfish (Ictalurus punctatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:183-196. [PMID: 37291452 DOI: 10.1007/s10695-023-01205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Hypoxia is the most significant factor that threatens the health and even survival of freshwater and marine fish. Priority should be given to the investigation of hypoxia adaptation mechanisms and their subsequent modulation. Acute and chronic studies were designed for the current study. Acute hypoxia comprised of normoxia dissolved oxygen (DO) 7.0 ± 0.5 mg/mL (N0), low-oxygen 5.0 ± 0.5 mg/mL(L0), and hypoxia 1.0 ± 0.1 mg/mL (H0) and 300 mg/L Vc for hypoxia regulation (N300, L300, H300). Chronic hypoxia comprised of normoxia (DO 7.0 ± 0.5 mg/mL) with 50 mg/kg Vc in the diet (N50) and low oxygen (5.0 ± 0.5 mg/mL) with 50, 250, 500 mg/kg Vc in the diet (L50, L250, L500) to assess the effect of Vc in hypoxia. The growth, behavior, hematological parameters, metabolism, antioxidants, and related inflammatory factors of channel catfish were investigated, and it was found that channel catfish have a variety of adaptive mechanisms in response to acute and chronic hypoxia. Under acute 5 mg/mL DO, the body color lightened (P < 0.05) and reverted to normal with 300 mg/mL Vc. PLT was significantly elevated after 300 mg/L Vc (P < 0.05), indicating that Vc can effectively restore hemostasis following oxygen-induced tissue damage. Under acute hypoxia, the significantly increased of cortisol, blood glucose, the gene of pyruvate kinase (pk), and phosphofructokinase (pfk), together with the decreased expression of fructose1,6-bisphosphatase (fbp) and the reduction in myoglycogen, suggested that Vc might enhance the glycolytic ability of the channel catfish. And the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) and the gene expression of sod rose significantly, showing that Vc might improve the antioxidant capacity of the channel catfish. The significant up-regulation of tumor necrosis factor-alpha (tnf-α), interleukin-1β (il-1β), and cd68 under acute hypoxia implies that hypoxia may generate inflammation in channel catfish, whereas the addition of Vc and down-regulation of these genes suggests that Vc suppresses inflammation under acute hypoxia. We found that the final weight, WGR, FCR, and FI of channel catfish were significantly reduced under chronic hypoxia, and that feeding 250 mg/kg of Vc in the diet was effective in alleviating the growth retardation caused by hypoxia. The significant increase in cortisol, blood glucose, myoglycogen, and the expression of tnf-α, il-1β, and cd68 (P < 0.05) and the significant decrease in lactate (P < 0.05) under chronic hypoxia indicated that the channel catfish had gradually adapted to the survival threat posed by hypoxia and no longer relied on carbohydrates as their primary source of energy. While the addition of Vc did not appear to increase the energy supply of the fish under hypoxia in terms of glucose metabolism, but the significantly decreased expression of tnf-α, il-1β, and cd68 (P < 0.05) also were found, indicating that chronic hypoxia, similar acute hypoxia, may increase inflammation in the channel catfish. This study indicates that under acute stress, channel catfish withstand stress by raising energy supply through glycolysis, and acute hypoxic stress significantly promotes inflammation in channel catfish, but Vc assists the channel catfish resist stress by raising glycolysis, antioxidant capacity, and decreasing the production of inflammatory markers. Under chronic hypoxia, the channel catfish no longer utilize carbohydrates as their primary energy source, and Vc may still effectively reduce inflammation in the channel catfish under hypoxia.
Collapse
Affiliation(s)
- Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Mang-Mang Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
23
|
Abdel-Tawwab M, Khalil RH, Younis NA, Abo Selema TAM, Saad AH, El-Werwary SOM, Gouda AH, Soliman AM, Shady SHH, Monier MN. Saccharomyces cerevisiae supplemented diets mitigate the effects of waterborne cadmium toxicity on gilthead seabream (Sparus aurata L.): growth performance, haemato-biochemical, stress biomarkers, and histopathological investigations. Vet Res Commun 2024; 48:69-84. [PMID: 37530964 PMCID: PMC10811111 DOI: 10.1007/s11259-023-10176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Yeast, Saccharomyces cerevisiae, has been utilized as a probiotic in aqua-feeds to promote growth and alleviate the stress in aquatic animals. On the other hand, cadmium (Cd) toxicity causes serious retardation of growth and welfare status of aquatic animals. The present study was conducted to evaluate the protective role of dietary yeast in mitigating the waterborne Cd toxicity effects on the growth, haemato-biochemical, stress biomarkers, and histopathological investigations of gilthead seabream (Sparus aurata L.). In a 3 × 3 factorial design, the acclimated fish (20-24 g) were randomly distributed into nine treatments in triplicates where they were fed on 0.0% (control), 0.5%, and 1.0% of yeast along with exposure to 0.0, 1.0, and 2.0 mg Cd/L for 60 days. All growth parameters and mRNA expressions of IGF-1 and GH genes as well as haematological parameters were markedly increased with the increase of dietary yeast levels; meanwhile these variables were significantly retarded with Cd exposure. Contradictory effects on the above-mentioned variables were observed with Cd toxicity. In contrast, blood cortisol, glucose, total cholesterol, and triglyceride, lactate dehydrogenase, alanine transaminase, aspartate transaminase, alkaline phosphatase, in addition to DNA fragments % were noticeably increased with Cd toxicity especially at the treatment of 2.0 mg Cd/L, while decreasing with increasing dietary yeast levels. Compared with the control fish group, Cd concentrations in the gill, liver, and muscle tissues of gilthead seabream were higher in Cd-exposed treatments, especially at the treatment of 2.0 mg Cd/L. Deposition of Cd in fish liver was higher than that in gill tissues but lowest Cd residue was observed in muscle tissues. No significant changes in Cd residues in fish organs were observed in yeast-fed fish with no Cd exposure. The Cd exposure negatively affected histological status of gill, liver, and kidney tissues of S. aurata; while feeding Cd-exposed fish on yeast diets lowered the Cd residues in fish organs and recovered the adverse effects of Cd toxicity. Hence, this study recommends the addition of bakery yeast (1.0%) to fish diets to improve the performance, overall welfare, and histopathological status of gilthead seabream, S. aurata.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt.
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nehal A Younis
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Talal A M Abo Selema
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Adel H Saad
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Suzan O M El-Werwary
- Department of Fish Hatching and Physiology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Ali H Gouda
- Central Laboratory for Aquaculture Research, Sakha Aquaculture Research Unit, Kafrelsheikh, Egypt
| | - Ashraf M Soliman
- Limnology Department, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Sherien H H Shady
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Mohamed N Monier
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| |
Collapse
|
24
|
Kumar N, Thorat ST, Chavhan SR. Multifunctional role of dietary copper to regulate stress-responsive gene for mitigation of multiple stresses in Pangasianodon hypophthalmus. Sci Rep 2024; 14:2252. [PMID: 38278845 PMCID: PMC10817903 DOI: 10.1038/s41598-024-51170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/01/2024] [Indexed: 01/28/2024] Open
Abstract
It is an urgent needs to address climate change and pollution in aquatic systems using suitable mitigation measures to avoid the aquatic animals' extinction. The vulnerability and extinction of the aquatic animals in the current scenario must be addressed to enhance safe fish food production. Taking into consideration of such issues in fisheries and aquaculture, an experiment was designed to mitigate high temperature (T) and low pH stress, as well as arsenic (As) pollution in fish using copper (Cu) containing diets. In the present investigation, the Cu-containing diets graded with 0, 4, 8, and 12 mg kg-1 were prepared and fed to Pangasianodon hypophthalmus reared under As, low pH, and high-temperature stress. The gene expression was highly affected in terms of the primary, secondary, and tertiary stress response, whereas supplementation of Cu-containing diet mitigates the stress response. Oxidative stress genes such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were significantly upregulated by stressors (As, As + T, and As + pH + T). Whereas, heat shock protein (HSP 70), inducible nitric oxide synthase (iNOS), metallothionine (MT), caspase 3a (Cas 3a), and cytochrome P450 (CYP 450) were highly upregulated by stressors, while dietary Cu at 8 mg kg-1 diet significantly downregulated these gene expressions. Indeed, the immunity-related genes viz. TNFα, Ig, TLR, and immune-related attributes viz. albumin, globulin, total protein, A:G ratio, blood glucose, NBT, and myeloperoxidase (MPO) were also improved with Cu-containing diets. Cu containing diets substantially improved neurotransmitter enzyme (AChE) and vitamin C (Vit C). DNA damage was also reduced with supplementation of Cu at 8 mg kg-1 diet. The growth index viz. final body weight gain (%), specific growth rate, protein efficiency ratio, food conversion ratio, relative feed intake, and daily growth index were noticeably enhanced by Cu diets (4 and 8 mg kg-1 diet). The growth-related genes expressions viz. growth hormone (GH), growth hormone regulator 1 (Ghr1), growth hormone regulator β (Ghrβ,) myostatin (MYST), and somatostatin (SMT) supported the growth enhancement with Cu at 8 mg kg-1 diet. The bioaccumulation of As was reduced with Cu-containing diets. The fish were infected with Aeromonas hydrophila at the end of the 105 days experimental trial. Cu at 8 mg kg-1 diet improved immunity, reduced the cumulative mortality, and enhanced the relative percentage survival of the fish. The results revealed that the innovative Cu diets could reduce the extinction of the fish against climate change and pollution era and produce the safest production that is safe to humans for consumption.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India.
| | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Samiksha R Chavhan
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| |
Collapse
|
25
|
Calabrese S, Jonassen TM, Steigum E, Åsnes HØ, Imsland AKD, Saude CS, Wergeland T, Höglund E. Does sedation with AQUI-S ® mitigate transport stress and post transport mortality in ballan wrasse ( Labrus bergyltae)? Front Vet Sci 2024; 11:1347062. [PMID: 38288140 PMCID: PMC10822889 DOI: 10.3389/fvets.2024.1347062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Ballan wrasse (Labrus bergylta) are commonly used as cleaner fish in salmon farms as a biological treatment to mitigate sea lice infestation. Improved welfare for cleaner fish both during production of these fish and when in sea-cages with salmon is crucial for the industry's development. A common operational procedure in ballan wrasse production is transporting juveniles from one land-based farm to another for further on-growing. Episodes of increased mortality have been reported after such transportations. In this study, the relationship between transport stress and post-transport mortality at the on-growing facility was examined. It was also investigated if light sedation with AQUI-S® can mitigate stress during transport. Stress was quantified by measuring cortisol release rate to the tank water during transport. This was investigated in 10 commercial live carrier truck transports (6 without AQUI-S® sedation and 4 with sedation during loading and transport). The total time of transport varied between 12 and 21 h. In general, mortality was significantly higher (1.0 ± 0.6% day-1) the first five days post-transport compared to 15-20 days post transport (0.5% day-1). There was also a strong relationship between fish weight at transport and post-transport mortality, where higher mean weight at transport reduced mortality. In contrast to what was expected, AQUI-S® treatment during transport procedures increased cortisol excretion rate, suggesting a stimulating effect of AQUI-S® on the stress axis in ballan wrasse. Considering these results, the value of using AQUI-S® to reduce stress during transport of juvenile ballan wrasse might be questioned. However, there was no relationship between cortisol release rate during transport and post-transport mortality. Furthermore, this study emphasizes that water cortisol measurements can be used as a none-invasive tool for monitoring stress and can be integrated into the welfare evaluation during commercial fish transports.
Collapse
Affiliation(s)
| | | | - Endre Steigum
- Norwegian Institute for Water Research, Bergen, Norway
| | | | | | | | | | - Erik Höglund
- Norwegian Institute for Water Research, Bergen, Norway
- University of Agder, Kristiansand, Norway
| |
Collapse
|
26
|
Memesh R, Yasir M, Ledder RG, Zowawi H, McBain AJ, Azhar EI. An update on the prevalence of colistin and carbapenem-resistant Gram-negative bacteria in aquaculture: an emerging threat to public health. J Appl Microbiol 2024; 135:lxad288. [PMID: 38059867 DOI: 10.1093/jambio/lxad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Aquaculture has been recognized as a hotspot for the emergence and spread of antimicrobial resistance genes conferring resistance to clinically important antibiotics. This review gives insights into studies investigating the prevalence of colistin and carbapenem resistance (CCR) among Gram-negative bacilli in aquaculture. Overall, a high incidence of CCR has been reported in aquatic farms in several countries, with CCR being more prevalent among opportunistic human pathogens such as Acinetobacter nosocomialis, Shewanella algae, Photobacterium damselae, Vibrio spp., Aeromonas spp., as well as members of Enterobacteriaceae family. A high proportion of isolates in these studies exhibited wide-spectrum profiles of antimicrobial resistance, highlighting their multidrug-resistance properties (MDR). Several mobile colistin resistance genes (including, mcr-1, mcr-1.1, mcr-2, mcr-2.1, mcr-3, mcr-3.1, mcr-4.1, mcr-4.3, mcr-5.1, mcr-6.1, mcr-7.1, mcr-8.1, and mcr-10.1) and carbapenemase encoding genes (including, blaOXA-48, blaOXA-55, blaNDM, blaKPC, blaIMI, blaAIM, blaVIM, and blaIMP) have been detected in aquatic farms in different countries. The majority of these were carried on MDR Incompatibility (Inc) plasmids including IncA/C, and IncX4, which have been associated with a wide host range of different sources. Thus, there is a risk for the possible spread of resistance genes between fish, their environments, and humans. These findings highlight the need to monitor and regulate the usage of antimicrobials in aquaculture. A multisectoral and transdisciplinary (One Health) approach is urgently needed to reduce the spread of resistant bacteria and/or resistance genes originating in aquaculture and avoid their global reach.
Collapse
Affiliation(s)
- Roa Memesh
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ruth G Ledder
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hosam Zowawi
- College of Medicine, King Saud bin Abdul-Aziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Cao J, Mei J, Xie J. Combined effects of hypoxia and ammonia-N exposure on the immune response, oxidative stress, tissue injury and apoptosis of hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:845-856. [PMID: 38032527 DOI: 10.1007/s11356-023-31100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
In order to investigate the simultaneous exposure to hypoxia and ammonia-N on oxidative stress, immune response, and apoptosis of the hybrid grouper, 120 healthy groupers were selected for hypoxia and/or ammonia-N exposure experiment. The fish were divided into four experimental groups: hypoxia and ammonia-N group, hypoxia group, ammonia-N group, and control group. The results demonstrated that ammonia-N and hypoxia exposures induced the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities increased first and then decreased, and malondialdehyde (MDA) accumulated. Additionally, antioxidant genes (SOD, CAT, GSH-Px, HSP70, and HSP90), apoptosis genes (p53, bax, caspase 3, caspase 8, and caspase 9), and inflammatory genes (TNF-α, IL-1β, IL-6, and IL-8) were upregulated by hypoxia and ammonia-N exposure. Severe inflammatory features were noticed in fish under hypoxia and ammonia-N co-exposure and speculating that the p53-bax pathway may induce apoptosis in hybrid groupers. Furthermore, hybrid grouper exposed to hypoxia or ammonia-N revealed some abnormalities in liver histology, with combined exposure resulting in the most severe liver tissue lesions. In summary, the hypoxia and ammonia-N co-exposure induced oxidative stress, accelerating the cell damage and activated inflammation and apoptosis.
Collapse
Affiliation(s)
- Jie Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China.
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
| |
Collapse
|
28
|
Cai H, Zhang Y, Xiong Y, Liu Y, Sun F, Zhou Q, Wu Y, Ma H, Sun Y. Preference of juvenile tiger puffer for light spectrum and tank colours based on different body size and breeding background. Animal 2023; 17:101021. [PMID: 38061178 DOI: 10.1016/j.animal.2023.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023] Open
Abstract
As important environmental factors, the light spectra and tank colours have not received sufficient attention. Most fishes have the ability to perceive environment, distinguish colours, and exhibit preferences or aversions towards different environments, which can provide a reference for the design of their rearing environment. Tiger puffer (Takifugu rubripes) is an important mariculture species in China and East Asia, but its preference for illumination spectra and tank colours is unclear. This study focuses on the preferences of juvenile tiger puffers for different spectra and tank background colours in different rearing backgrounds and body sizes. The experiments were conducted in a preference testing device, and the behavioural videos were recorded and analysed using a motion behaviour tracking system (EthoVision XT 12). The results show that the puffers showed preference for short-wavelength lights ((i.e., cyan, green, etc.), avoidance of long-wavelength light (i.e., red) and less stay time in the full light spectrum and dark. For tank colours, the puffers showed a preference for light background colours (i.e., white), and avoidance of deep background colours (i.e., dark, red, etc.). Fish body sizes and original breeding environment could significantly affect the selective preference of juvenile puffer (P < 0.05). Large puffers preferred green tank colour than small ones, while small ones preferred grey and red. The puffers reared in green light and grey tank for 3 months preferred green light spectrum and green tank colour compared with those reared in full spectrum and grey tank, while the fish reared in full spectrum preferred grey tank colour and area without light. It was also found that the movement rate of juvenile puffers was affected by the light spectra and tank colours and was positively correlated with light wavelength (P < 0.05). Therefore, for tiger puffer breeding, short-wavelength light spectrums (cyan, green, etc.) and light-coloured tank backgrounds (white) are recommended. Long-wavelength Light-emitting diodes and dark tank colours should be avoided in breeding. This study would provide a reference basis for fish light spectra and background colour preference studies, as well as for the improvement of breeding welfare and production efficiency of juvenile tiger puffer.
Collapse
Affiliation(s)
- Haowei Cai
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yining Zhang
- College of Marine Science, Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yuyu Xiong
- College of Marine Science, Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fei Sun
- College of Marine Science, Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Qiming Zhou
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yanling Wu
- College of Marine Science, Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - He Ma
- College of Marine Science, Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China.
| | - Yan Sun
- College of Marine Science, Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| |
Collapse
|
29
|
Dong Y, Zhang H, Guo M, Mei J, Xie J. Effect of different slaughter/stunning methods on stress response, quality indicators and susceptibility to oxidation of large yellow croaker (Larimichthys crocea). Vet Res Commun 2023; 47:1879-1891. [PMID: 37171556 DOI: 10.1007/s11259-023-10136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
This study aimed to investigate the effects of different slaughter methods (immersion in ice/water slurry, T1; gill cut, T2; CO2 asphyxia, T3; percussion (hit on the head with a stick), T4; Melissa officinalis L. essential oil + CO2, T5) on physiological stress, oxidative stress, and muscle quality in large yellow croaker. In terms of physiological stress, the levels of glucose (GLU), lactate dehydrogenase (LDH), and catalase (CAT) in CO2 asphyxia samples were significantly lower than those in other samples (p < 0.05). The level of cortisol (COR) in T1 sample was 1.25-1.84 times higher than that of other samples. The GLU level of T1 group was 3.2 times higher than that of T3 sample, and significantly higher than that of other samples. The creatine phosphokinase (CPK) and CAT levels of T2 samples were the highest (2.03 ng/mL and 8.34 U/mL, respectively). Furthermore, the superoxide dismutase (SOD) and glutathione peroxidase (GPx) analysis revealed that T3 and T4 samples could maintain good antioxidant enzyme activity during cold storage. The T3 samples maintained the stability of the protein (the lowest carbonyls and surface hydrophobicity) and reduced lipid oxidation (lower TBARS). In addition, the analysis of pH and water-holding capacity (WHC) revealed that T3 samples had better muscle quality. The muscle of T2 samples kept better color due to bloodletting treatment. The samples obtained after addition of Melissa officinalis L. essential oil had poorer indexes in all aspects compared to the T3 samples, which might be caused by the long anesthesia time of the essential oil.
Collapse
Affiliation(s)
- Yixuan Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Hongzhi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Meijie Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306, China.
| |
Collapse
|
30
|
da Santa Lopes T, Costas B, Ramos-Pinto L, Reynolds P, Imsland AKD, Fernandes JMO. Exploring the Effects of Acute Stress Exposure on Lumpfish Plasma and Liver Biomarkers. Animals (Basel) 2023; 13:3623. [PMID: 38066974 PMCID: PMC10705318 DOI: 10.3390/ani13233623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 06/22/2024] Open
Abstract
This study aimed to expand knowledge on lumpfish stress physiology by investigating the effects of acute stress on primary (i.e., cortisol) and secondary (e.g., metabolites) stress responses, as well as oxidative stress biomarkers, from stress exposure to a recovery phase. The results showed that the lumpfish physiological response to 1 min air exposure is mild, in line with recent studies, and comparable to that described for white sturgeons. Cortisol seems to be the most reliable acute stress biomarker in lumpfish, with a significant increase in plasma 30 min after stress exposure, returning to resting levels 2 h after exposure. In contrast, glucose and lactate were not significantly altered by short-term air exposure. Effects on hepatic energy mobilisation were also detected following the acute stress. This study showed that acute 1 min air exposure seems tolerable, allowing a swift recovery. However, more studies on the impacts of air exposure and repeated acute stressors on lumpfish stress and immune responses are required to develop industry standards for lumpfish health and welfare monitoring.
Collapse
Affiliation(s)
- Tiago da Santa Lopes
- Gildeskål Forskningsstasjon AS, 8140 Inndyr, Norway; (T.d.S.L.); (P.R.)
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, 4050-313 Porto, Portugal
| | - Lourenço Ramos-Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
| | - Patrick Reynolds
- Gildeskål Forskningsstasjon AS, 8140 Inndyr, Norway; (T.d.S.L.); (P.R.)
| | - Albert K. D. Imsland
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway;
- Akvaplan-niva Iceland Office, 201 Kópavogur, Iceland
| | | |
Collapse
|
31
|
Win EHA, Mumu S, Fahim N, Parajuli K, Blumenthal E, Palu R, Mustafa A. Comparative physiological study of sea cucumbers from eastern waters of United States. PLoS One 2023; 18:e0293481. [PMID: 37903114 PMCID: PMC10615258 DOI: 10.1371/journal.pone.0293481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
Sea cucumbers, belonging to the phylum Echinodermata, are known to possess valuable bioactive compounds that have medicinal properties. In several countries, such as Korea, China, and Japan, they are cultured in the aquaculture industries for food and medicinal purposes. Research has shown that different species of sea cucumbers each possesses unique medicinal values. As a result, we strive towards finding species with better health resilience in aquaculture system to be cultured for nutritional and medicinal purposes. In this paper, we compared the physiological and immunological parameters of three species of sea cucumbers, Cucumaria frondosa (C. frondosa), Isostychopus badionotus (I. badionotus), and Pentacta pygmaea (P. Pygmaea) from the waters of the eastern United States as they have not been studied extensively. Four different cells of sea cucumbers, phagocytic, red spherule, white spherule, and vibratile cells, that contribute to their immunity were counted. C. frondosa exhibited the highest concentrations of phagocytic cells, white spherule cells, and vibratile cells, compared to the two other species. Due to its high phagocytic cell concentration, the highest phagocytic capacity was seen in C. frondosa although it was not statistically significant. We also observed that C. frondosa had the highest total cell count and the highest concentration of coelomic protein among the three species. Lastly, C. frondosa possessed the highest lysozyme activity. Taken together, we concluded that C. frondosa is the best of the three species compared to be reared in the aquaculture systems for use in the food and biomedicine industries due to its immunological and physiological properties.
Collapse
Affiliation(s)
- Eaint Honey Aung Win
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Sinthia Mumu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Nahian Fahim
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Kusum Parajuli
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Elliott Blumenthal
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Rebecca Palu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Ahmed Mustafa
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
32
|
Yin-Liao I, Mahabir PN, Fisk AT, Bernier NJ, Laberge F. Lingering Effects of Legacy Industrial Pollution on Yellow Perch of the Detroit River. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2158-2170. [PMID: 37341539 DOI: 10.1002/etc.5701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
We used yellow perch (Perca flavescens) captured at four sites differing in legacy industrial pollution in the Lake St. Clair-Detroit River system to evaluate the lingering sublethal effects of industrial pollution. We emphasized bioindicators of direct (toxicity) and indirect (chronic stress, impoverished food web) effects on somatic and organ-specific growth (brain, gut, liver, heart ventricle, gonad). Our results show that higher sediment levels of industrial contaminants at the most downstream Detroit River site (Trenton Channel) are associated with increased perch liver detoxification activity and liver size, reduced brain size, and reduced scale cortisol content. Trenton Channel also displayed food web disruption, where adult perch occupied lower trophic positions than forage fish. Somatic growth and relative gut size were lower in perch sampled at the reference site in Lake St. Clair (Mitchell's Bay), possibly because of increased competition for resources. Models used to determine the factors contributing to site differences in organ growth suggest that the lingering effects of industrial pollution are best explained by trophic disruption. Thus, bioindicators of fish trophic ecology may prove advantageous to assess the health of aquatic ecosystems. Environ Toxicol Chem 2023;42:2158-2170. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Irene Yin-Liao
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Pria N Mahabir
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Aaron T Fisk
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
33
|
Kumar N, Thorat ST, Gite A, Patole PB. Nano-copper Enhances Gene Regulation of Non-specific Immunity and Antioxidative Status of Fish Reared Under Multiple Stresses. Biol Trace Elem Res 2023; 201:4926-4950. [PMID: 36715880 DOI: 10.1007/s12011-023-03575-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Arsenic pollution, water temperature, and pH are the major concern for aquaculture. Moreover, the aim of the present investigation was to delineate the role of nano-copper (Cu-NPs) in the mitigation of arsenic toxicity, high temperature (34 °C) and low pH (6.5) stress on Pangasianodon hypophthalmus. Four isonitrogenous and isocaloric experimental diets of Cu-NPs at 0, 1.0, 1.5 and 2.0 mg kg-1 were formulated and prepared. Arsenic pollution, low pH and high temperature stress significantly reduced the anti-oxidative status (super oxide dismutase, catalase, glutathione peroxidase and glutathione-s-transferase), lipid peroxidation, total anti-oxidative capacity and lipid profiling (cholesterol, total lipid, phospholipid, very low-density lipoprotein and triglyceride). Further, the supplementation of Cu-NPs at 1.5 and 1.0 mg kg-1 diets noticeably improve the anti-oxidant status and capacity. The stressors groups (As + pH + T, As + T and As) significantly reduced fish immunity viz. albumin, globulin, total protein, albumin globulin ratio (A:G ratio), myeloperoxidase, respiratory burst activities, tumor necrosis factor, total immunoglobulin, and interleukin. Whereas supplementation of Cu-NPs at 1.5 and 1.0 mg kg-1 diets improved the immunity of the fish reared under multiple stresses (As + pH + T). Tail DNA %, DNA damage-inducible protein (DDIP) and inducible nitric oxide (iNOS) synthase gene expression were significantly enhanced with exposure to arsenic, low pH and high temperature but supplementation of Cu-NPs protects the tissues against DNA damage and improved the gene expression of iNOS and DDIP. Cu-NPs at 1.5 and 1.0 mg kg-1 diets significantly enhanced the body weight gain %, protein efficiency ratio, specific growth rate, daily growth index, relative feed intake and reduced the feed conversion ratio. Whereas, the growth-related gene expression such as myostatin (MYST), somatostatin (SMT) was downregulated by Cu supplementation and upregulated the gene expression of growth hormone regulator 1 and β (GHR1 and GHR β) and growth hormone (GH) gene in fish. Dietary Cu-NPs supplementation protects the fish against bacterial infection and enhances arsenic detoxification in different tissues. The present investigation revealed that supplementation of Cu-NPs at 1.5 and 1.0 mg kg-1 diet has the potential to mitigate multiple stress (As + pH + T) in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
34
|
Valcarce DG, Riesco MF, Martínez-Vázquez JM, Villanueva JLR, Robles V. Impact of different levels of handling on Solea senegalensis culture: effects on growth and molecular markers of stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023:10.1007/s10695-023-01239-9. [PMID: 37733196 DOI: 10.1007/s10695-023-01239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Aquaculture routine practices may cause stress induction on the fish and compromise their welfare affecting the production. This experiment aimed to evaluate the potential links between handling during culture with stress responses and growth on Senegalese sole (Solea senegalensis). We worked with two fish cohorts in terms of initial body weight and culture stage: Trial 1 included specimens in the fattening stage (226 ± 4.96 g) and Trial 2 animals in the pre-fattening stage (27.20 ± 0.44 g). The tested culture protocol, which lasted 6 and 4 months for Trial 1 and 2, respectively, mainly reduced handling-derived stressors in the experimental tanks via lowering routine samplings to a minimum. This decrease of the handling-derived stress was reflected in both trials with lower concentration of circulating cortisol in blood plasma from the experimental fish when compared to controls. Moreover, the proposed protocol promoted higher growth in the fish cultured in the less disturbing protocol in Trial 2. Higher specific growth rates and mean body weight and length were reported. In order to further explore the potential beneficial effects of our protocol, we studied the musculoskeletal from Trial 2 gene expression of key genes regulating glucocorticoid signaling pathway and apoptosis: glucocorticoid receptors 1 and 2 (gr1, gr2), heat shock protein 90 AA (hsp90aa), and caspase 6 (casp6). In line with the cortisol reduced level in this trial, gr1, hsp90aa, and casp6 genes showed lower expression in the samples coming from the experimental group. The findings of this study provide valuable information to the aquaculture industry for the management of Solea senegalensis stress and welfare.
Collapse
Affiliation(s)
- David G Valcarce
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16, 39004, Santander, Spain
| | - Marta F Riesco
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Juan Manuel Martínez-Vázquez
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16, 39004, Santander, Spain
| | | | - Vanesa Robles
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
35
|
Mortuza A, Fahim N, Ahmed M, Mustafa A. Effects of CBD (Cannabidiol) on the physiology of Nile tilapia (Oreochromisn niloticus) as a chronic stress mitigating agent In-vivo. PLoS One 2023; 18:e0290835. [PMID: 37713426 PMCID: PMC10503728 DOI: 10.1371/journal.pone.0290835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
This study evaluates the effects of Cannabidiol (CBD) on the physiology of stressed and non-stressed Nile tilapia, reared in a recirculating aquaculture system. Tilapia were fed with and without CBD (0.001% of feed weight) and with and without hydrocortisone stress hormone (0.01% of body weight) every day for four weeks. This experiment compared the plasma cortisol, blood glucose and protein levels, liver and spleen somatic indices (HSI and SSI, respectively), and lysozyme activity of the fish. Stress group (S) had a significantly higher value than the control group (C) in two of the parameters, glucose and lysozyme activity, this is an indication of stress. CBD had a stress reducing effect under stressed conditions in lysozyme activity. Although not significant, the stress reducing effect of CBD on stress biomarkers such as glucose and HSI also seemed promising. Further investigation into the matter may not just be useful in stress mediation in aquatic organisms but may also have implications in human medicine as well.
Collapse
Affiliation(s)
- Asif Mortuza
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Nahian Fahim
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Malaika Ahmed
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Ahmed Mustafa
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| |
Collapse
|
36
|
Antonopoulou E, Kolygas M, Panteli N, Gouva E, Kontogeorgiou P, Feidantsis K, Chatzopoulos A, Bitchava K, Zacharis C, Bonos E, Giannenas I, Skoufos I, Andreadis SS, Skoulakis G, Athanassiou CG, Nathanailides C. Breeding Substrate Containing Distillation Residues of Mediterranean Medicinal Aromatic Plants Modulates the Effects of Tenebrio molitor as Fishmeal Substitute on Blood Signal Transduction and WBC Activation of Gilthead Seabream ( Sparus aurata). Animals (Basel) 2023; 13:2537. [PMID: 37570345 PMCID: PMC10417334 DOI: 10.3390/ani13152537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
This work assesses the dietary use of two insect meals of Tenebrio molitor (TM) larvae reared in conventional (TM-10) or MAP-enriched substrates (MAP-TM-10) as fish meal replacements (10%) in the diets of gilthead seabream (Sparus aurata). Fish (n = 4500; 207.19 ± 1.47 g) were divided into three groups with triplicates: control (fed conventional diet), TM-10, and MAP-TM-10 groups. The fish were reared in floating cages for 12 weeks and the dietary effects on white blood cell activation, heat shock proteins, MAPKs, and apoptosis of the fish were evaluated. The MAP-TM-10 group exhibited the highest eosinophilic induction. Phosphorylated levels of p38 MAPK, p44/42 MAPK, HSP70, and HSP90 increased in the TM-10 and MAP-TM-10 groups. In terms of apoptosis, Bax levels were lower in the TM groups compared to the control, and the MAP-TM-10 group showed even lower levels than the TM-10 group. Bcl-2 levels increased in the TM-10 group compared to the control, and further increased in the MAP-TM-10 group. The Bax/Bcl-2 ratio, an apoptosis indicator, decreased in the TM groups, with the MAP-TM-10 group showing a further decrease compared to TM-10. These findings suggest that insects' breeding substrate being enriched with MAPs modulated the effect of TM on cellular stress and apoptosis.
Collapse
Affiliation(s)
- Efthimia Antonopoulou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Markos Kolygas
- Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (M.K.)
| | - Nikolas Panteli
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evangelia Gouva
- Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (M.K.)
| | - Panagiota Kontogeorgiou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Fisheries and Aquaculture, University of Patras, 26504 Messolonghi, Greece
| | - Achilleas Chatzopoulos
- Laboratory of Applied Hydrobiology, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
- Skaloma Fishery [A.C], 46300 Sagaida, Greece
| | - Christos Zacharis
- Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (M.K.)
| | - Eleftherios Bonos
- Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (M.K.)
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Skoufos
- Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (M.K.)
| | - Stefanos S. Andreadis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization “DEMETER”, 57001 Thermi, Greece
| | - Georgios Skoulakis
- AgriScienceGEO, Melpomenis Str. P.O. Box 60561, Industrial Area of Thermi, 57001 Thessaloniki, Greece
| | - Christos G. Athanassiou
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Nea Ionia, Greece
| | | |
Collapse
|
37
|
Wang LC, Chen LH, Chiu YC, Liou CY, Chen HC, Lu CY, Chen JL. Teleost skin microbiome: An intimate interplay between the environment and the host immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108869. [PMID: 37285875 DOI: 10.1016/j.fsi.2023.108869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The mucosal microbiome plays a role in regulating host health. The research conducted in humans and mice has governed and detailed the information on microbiome-host immunity interactions. Teleost fish, different from humans and mice, lives in and relies on the aquatic environment and is subjected to environmental variation. The growth of teleost mucosal microbiome studies, the majority in the gastrointestinal tract, has emphasized the essential role of the teleost microbiome in growth and health. However, research in the teleost external surface microbiome, as the skin microbiome, has just started. In this review, we examine the general findings in the colonization of the skin microbiome, how the skin microbiome is subjected to environmental change and the reciprocal regulation with the host immune system, and the current challenges that potential study models can address. The information collected from teleost skin microbiome-host immunity research would help future teleost culturing from the potential parasitic infestation and bacterial infection as foreseeing growing threats.
Collapse
Affiliation(s)
- Liang-Chun Wang
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan; Committee of Fisheries Extension Service, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan.
| | - Li-Hsuan Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan; Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | - Yu-Che Chiu
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chung-Yi Liou
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Han-Chung Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chia-Yun Lu
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Jian-Lin Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| |
Collapse
|
38
|
Zargari A, Nejatian M, Abbaszadeh S, Jahanbin K, Bagheri T, Hedayati A, Sheykhi M. Modulation of toxicity effects of CuSO 4 by sulfated polysaccharides extracted from brown algae (Sargassum tenerrimum) in Danio rerio as a model. Sci Rep 2023; 13:11429. [PMID: 37454230 PMCID: PMC10349887 DOI: 10.1038/s41598-023-38549-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Copper is widely used in agriculture and aquaculture due to its high disinfection properties and relatively low cost. However, the increase in copper concentration due to evaporation can lead to water reservoir pollution, which can harm the health of consumers. The present study aimed to determine the role of sulfated polysaccharides (SPs) extracted from Sargassum tenerimum algae in reducing lesions caused by the heavy metal copper. Zebrafish (Danio rerio) were used as a human model in five treatments. The negative and positive control groups were fed a diet containing zero percent of SPs, while the experimental groups were fed 0.5%, 1%, and 1.5% of SPs in three treatments for 56 days, finally CuSO4 was exposed only to the positive control group and the groups fed with SPs. Results showed a significant decrease in the activity level of ALT enzymes (39-16 U/mL), AST (67-46 U/mL), and ALP (485-237 U/mL), confirming the results obtained from histopathological studies in CuSO4 exposed groups. The addition of SPs to the diet resulted in a significant reduction (sig < 0.05) of mortalities due to the decrease of tissue damage. Additionally, due to the anti-inflammatory properties and the protective effect of SPs, a significant decrease (sig < 0.05) was observed in the relative expression of Il-1β and Tnf-α genes.
Collapse
Affiliation(s)
- Ashkan Zargari
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sepideh Abbaszadeh
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kambiz Jahanbin
- Faculty of Agricultural Engineering, Department of Food Science and Technology, Shahrood University of Technology, Shahrood, Iran
| | - Tahereh Bagheri
- Offshore Water Research Center (OWRC), Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Chabahar, Iran
| | - Aliakbar Hedayati
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Monireh Sheykhi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Vaage BM, Liss SA, Fischer ES, Khan F, Hughes JS. Can portable glucose and lactate meters be a useful tool in quantifying stress of juvenile Chinook salmon? CONSERVATION PHYSIOLOGY 2023; 11:coad046. [PMID: 37425483 PMCID: PMC10326608 DOI: 10.1093/conphys/coad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Blood plasma analyses can provide researchers, aquaculture facilities and fisheries managers with valuable insights into the physiological state and welfare of fish. For example, glucose and lactate are part of the secondary stress response system, and elevated concentrations are indicators of stress. However, analysing blood plasma in the field can be logistically difficult and typically involves sample storage and transport to quantify concentrations in a laboratory setting. Portable glucose and lactate meters offer an alternative to laboratory assays and have shown to be relatively accurate in fish, but these tools have only been validated for a few fish species. The objective of this study was to investigate if portable meters could be reliably used in Chinook salmon (Oncorhynchus tshawytscha). As part of a larger stress response study, juvenile Chinook salmon (157 ± 17 mm fork length [mean ± standard deviation; SD]) were exposed to stress-inducing treatments and sampled for blood. Laboratory reference glucose concentrations (milligrams per deciliter; mg/dl; n = 70) were positively correlated with the Accu-Check Aviva meter (Roche Diagnostics, Indianapolis, IN) measurements (R2 = 0.79), although glucose values were 1.21 ± 0.21 (mean ± SD) times higher in the laboratory than with the portable meter. Lactate concentrations (milliMolar; mM; n = 52) of the laboratory reference were also positively correlated (R2 = 0.76) with the Lactate Plus meter (Nova Biomedical, Waltham, MA) and were 2.55 ± 0.50 times higher than portable meter. Our results indicate both meters could be used to measure relative glucose and lactate concentrations in Chinook salmon and provide fisheries professionals with a valuable tool, particularly in remote field settings.
Collapse
Affiliation(s)
- Benjamin M Vaage
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, United States, 99354
| | - Stephanie A Liss
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, United States, 99354
| | - Eric S Fischer
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, United States, 99354
| | - Fenton Khan
- U.S. Army Corps of Engineers, 333 SW 1st Ave, Portland, OR, United States, 97204
| | - James S Hughes
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, United States, 99354
| |
Collapse
|
40
|
Ramteke MH, Swain HS, Upadhyay A, Kumar V, Kumari S, Das BK. Multivariate characterization of biochemical and physiological attributes umpires Pangasianodon hypophthalmus for a welfare-based open-water cage culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80628-80642. [PMID: 37300727 DOI: 10.1007/s11356-023-27937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
The striped catfish, Pangasianodon hypophthalmus, dominates in the Indian inland freshwater cage culture because of its rapid growth and adaptive feeding habits; however, suitable stocking density based on growth without compromising the health of fish is important. Furthermore, fish growth and survival are inversely proportional to stocking density. Many farmers face size differentiation and poor survival at higher stocking densities. To address the aforementioned practical issue, the current study was carried out to study the influence of different stocking densities on the growth performance of P. hypophthalmus in cages. The fingerlings of P. hypophthalmus (10.63 ± 0.27 g) were stocked in triplicate in five different stocking densities (20, 30, 40, 50, and 60 m-3), and the fishes were given commercial feed for 240 days. The outcome demonstrated that the fish stocking densities and their growth attributes were inversely related. Stocking density in the range of 20 to 40 m-3 produced the highest final weight, relative growth rate, and specific growth rate. The feed conversion ratio was significantly lower in 20, 30, and 40 m-3 than the higher densities of 50 and 60 m-3. The level of serum biochemical markers such as serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) and glucose and cortisol levels elevated significantly in higher stocking densities. The muscle quality changed as crude fat and muscle pH decreased at 50 and 60 m-3, leading to a drop in drip loss and frozen leakage rate. The vital water quality parameters were found within a suitable range. According to the outcomes of principal component analysis (PCA), elevated levels of SGOT, SGPT, glucose, and cortisol were detrimental to fish growth. The stocking density of 30 m-3 had the highest benefit-cost ratio (B:C) and return on investment (RI), followed by 20 and 40 m-3. Higher economic return was achieved at lower densities (30-40 m-3). This study suggests that rearing P. hypophthalmus at stocking densities of about 30-40 m-3 could be considered as an optimum for the inland freshwater cage culture which gives the best performance in terms of growth and production in tropical reservoirs of India. The best-suited stocking density is also taken into consideration based on the characterization of multivariate biochemical and physiological attributes.
Collapse
Affiliation(s)
- Mitesh H Ramteke
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Himanshu S Swain
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Aurobinda Upadhyay
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Vikas Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Suman Kumari
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Basanta K Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India.
| |
Collapse
|
41
|
Pasparakis C, Lohroff T, Biefel F, Cocherell DE, Carson EW, Hung TC, Connon RE, Fangue NA, Todgham AE. Effects of turbidity, temperature and predation cue on the stress response of juvenile delta smelt. CONSERVATION PHYSIOLOGY 2023; 11:coad036. [PMID: 37383481 PMCID: PMC10295165 DOI: 10.1093/conphys/coad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The San Francisco Estuary (SFE) is one of the most degraded ecosystems in the United States, and organisms that inhabit it are exposed to a suite of environmental stressors. The delta smelt (Hypomesus transpacificus), a small semi-anadromous fish endemic to the SFE and considered an indicator species, is close to extinction in the wild. The goal of this study was to investigate how environmental alterations to the SFE, such as reductions in turbidities, higher temperatures and increased prevalence of invasive predators affect the physiology and stress response of juvenile delta smelt. Juvenile delta smelt were exposed to two temperatures (17 and 21°C) and two turbidities (1-2 and 10-11 NTU) for 2 weeks. After the first week of exposure, delta smelt were exposed to a largemouth bass (Micropterus salmoides) predator cue at the same time every day for 7 days. Fish were measured and sampled on the first (acute) and final (chronic) day of exposures to predator cues and later analyzed for whole-body cortisol, glucose, lactate, and protein. Length and mass measurements were used to calculate condition factor of fish in each treatment. Turbidity had the greatest effect on juvenile delta smelt and resulted in reduced cortisol, increased glucose and lactate, and greater condition factor. Elevated temperatures reduced available energy in delta smelt, indicated by lower glucose and total protein, whereas predator cue exposure had negligible effects on their stress response. This is the first study to show reduced cortisol in juvenile delta smelt held in turbid conditions and adds to the growing data that suggest this species performs best in moderate temperatures and turbidities. Multistressor experiments are necessary to understand the capacity of delta smelt to respond to the multivariate and dynamic changes in their natural environment, and results from this study should be considered for management-based conservation efforts.
Collapse
Affiliation(s)
- Christina Pasparakis
- Department of Environmental Toxicology, University of California Davis, 1 Shields Ave., Davis, CA, USA
- Bodega Marine Laboratory, University of California Davis, 2099 Westshore Rd., Bodega Bay, CA, USA
| | - Toni Lohroff
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, 1 Shields Ave., Davis, CA, USA
- Department of Animal Science, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Felix Biefel
- School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Evan W Carson
- San Francisco Bay-Delta Fish and Wildlife Office, U.S. Fish and Wildlife Service, 650 Capitol Mall, Sacramento, CA, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Richard E Connon
- School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, 1 Shields Ave., Davis, CA, USA
| |
Collapse
|
42
|
Silva Jungles de Carvalho LÂ, Oya-Silva LF, Perussolo MC, de Oliveira Guaita G, Moreira Brito JC, Evans AA, Prodocimo MM, Cestari MM, Bragah TT, Silva deAssis HC. Experimentally exposed toxic effects of long-term exposure to environmentally relevant concentrations of CIP in males and females of the silver catfish Rhamdia quelen. CHEMOSPHERE 2023:139216. [PMID: 37321459 DOI: 10.1016/j.chemosphere.2023.139216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Ciprofloxacin (CIP) is an antibiotic commonly used in human and veterinary medicine. It is present in the aquatic environment, but we still know very little about its effect on non-targeted organisms. This study aimed to evaluate the effects of long-term exposure to environmental CIP concentrations (1, 10, and 100 μg.L-1) in males and females of Rhamdia quelen. After 28 days of exposure, we collected the blood for the analysis of hematological and genotoxic biomarkers. Additionally, we measured 17 β-estradiol and 11 keto-testosterone levels. After the euthanasia, we collected the brain and the hypothalamus to analyze acetylcholinesterase (AChE) activity and neurotransmitters, respectively. The liver and gonads were assessed for biochemical, genotoxic, and histopathological biomarkers. At 100 μg.L-1 CIP, we observed genotoxicity in the blood, nuclear morphological changes, apoptosis, leukopenia, and a reduction of AChE in the brain. In the liver was observed oxidative stress and apoptosis. At 10 μg.L-1 CIP, leukopenia, morphological changes, and apoptosis were presented in the blood and a reduction of AChE in the brain. Apoptosis, leukocyte infiltration, steatosis, and necrosis occurred in the liver. Even at the lowest concentration (1 μg.L-1), adverse effects such as erythrocyte and liver genotoxicity, hepatocyte apoptosis, oxidative stress, and a decrease in somatic indexes were observed. The results showed the importance of monitoring CIP concentrations in the aquatic environment that cause sublethal effects on fish.
Collapse
Affiliation(s)
| | - Laís Fernanda Oya-Silva
- Department of Genetics, Federal University of Paraná, PO Box 19071, 81530-980, Curitiba, PR, Brazil
| | - Maiara Carolina Perussolo
- Pelé Pequeno Principe Research Institute, 80.250-200, Curitiba, PR, Parana, Brazil; Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil
| | - Gisele de Oliveira Guaita
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil
| | | | - Allan Arnold Evans
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil; School of Medicine, Pequeno Principe Faculty, 80.230-020, Curitiba, PR, Brazil
| | - Maritana Mela Prodocimo
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil
| | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, PO Box 19071, 81530-980, Curitiba, PR, Brazil
| | - Tarcio Teodoro Bragah
- Department of Pathology, Federal University of Paraná, Curitiba, Brazil; Biosciences and Biotechnology Graduation Program, Instituto Carlos Chagas (ICC), Fiocruz, Curitiba, PR, Brazil
| | - Helena Cristina Silva deAssis
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, PO Box 19031, 81531-980, Curitiba, PR, Brazil; Ezequiel Dias Foundation, 30510-010, Belo Horizonte, MG, Brazil.
| |
Collapse
|
43
|
Wang X, Li H, Zhang R, Liu L, Zhu H. Effects of saline immersion on the physiological alterations of grass goldfish (Carassius auratus) during subsequent recovery in freshwater. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:455-470. [PMID: 37115340 DOI: 10.1007/s10695-023-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
The present work aims to evaluate the tolerance, osmoregulation, metabolism, and antioxidant ability of saline water immersed grass goldfish (Carassius auratus) during the recovery in freshwater. Grass goldfish (38.15 ± 5.48g) acclimated in freshwater were immersed by salinities (0‰, 20‰ and 30‰) for different time durations (10, 20, 30 and 60 min); and the physiological responses were measured during freshwater recovery. The blood osmolalities were not significantly different at any group fish, while whereas the decline of Na+ concentration and the ratio of Na+/Cl- as well as the rise of Cl- concentration was observed in saline treated fish. Soon after freshwater recovery, the transcription of NKA-α and NKA-β mRNA in gills of salinity 20 immersed fish elevated significantly and then decreased, whereas no obvious changes were detected in salinity 30 treated fish. Till 24h post freshwater recovery, gill Na+/K+-ATPase activities in saline treated fish were lower than control group except for the fish immersed by salinity 20 for 10-30 min. At 24h of recovery, cortisol levels in salinity 20 immersed fish were lower than salinity 30 treated fish, but remained higher than control. As for serum lactic acid, fish treated by salinity 20 for 10 or 20 min did not show any fluctuation. However, higher lactic acid contents were detected in all other five salinity treated groups during recovery. Generally, at 24 h of recovery, salinity 20 treated fish exhibited higher SOD and CAT activities than fish immersed by salinity 30. In summary, grass goldfish could survive by immersion in salinity 20 less than 60 min or salinity 30 less than 30min, even though immersion by salinity 20 could minimize the negative effects.
Collapse
Affiliation(s)
- Xiaowen Wang
- Beijing Key Laboratory of fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, China
| | - Huijuan Li
- Beijing Key Laboratory of fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, China
| | - Rong Zhang
- Beijing Key Laboratory of fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, China
| | - Lili Liu
- Beijing Key Laboratory of fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, China
| | - Hua Zhu
- Beijing Key Laboratory of fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China.
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, China.
| |
Collapse
|
44
|
Feugere L, Bates A, Emagbetere T, Chapman E, Malcolm LE, Bulmer K, Hardege J, Beltran-Alvarez P, Wollenberg Valero KC. Heat induces multiomic and phenotypic stress propagation in zebrafish embryos. PNAS NEXUS 2023; 2:pgad137. [PMID: 37228511 PMCID: PMC10205475 DOI: 10.1093/pnasnexus/pgad137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
Heat alters biology from molecular to ecological levels, but may also have unknown indirect effects. This includes the concept that animals exposed to abiotic stress can induce stress in naive receivers. Here, we provide a comprehensive picture of the molecular signatures of this process, by integrating multiomic and phenotypic data. In individual zebrafish embryos, repeated heat peaks elicited both a molecular response and a burst of accelerated growth followed by a growth slowdown in concert with reduced responses to novel stimuli. Metabolomes of the media of heat treated vs. untreated embryos revealed candidate stress metabolites including sulfur-containing compounds and lipids. These stress metabolites elicited transcriptomic changes in naive receivers related to immune response, extracellular signaling, glycosaminoglycan/keratan sulfate, and lipid metabolism. Consequently, non-heat-exposed receivers (exposed to stress metabolites only) experienced accelerated catch-up growth in concert with reduced swimming performance. The combination of heat and stress metabolites accelerated development the most, mediated by apelin signaling. Our results prove the concept of indirect heat-induced stress propagation toward naive receivers, inducing phenotypes comparable with those resulting from direct heat exposure, but utilizing distinct molecular pathways. Group-exposing a nonlaboratory zebrafish line, we independently confirm that the glycosaminoglycan biosynthesis-related gene chs1 and the mucus glycoprotein gene prg4a, functionally connected to the candidate stress metabolite classes sugars and phosphocholine, are differentially expressed in receivers. This hints at the production of Schreckstoff-like cues in receivers, leading to further stress propagation within groups, which may have ecological and animal welfare implications for aquatic populations in a changing climate.
Collapse
Affiliation(s)
- Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Adam Bates
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Timothy Emagbetere
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Emma Chapman
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Linsey E Malcolm
- Biomedical Institute for Multimorbidities, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Kathleen Bulmer
- Biomedical Institute for Multimorbidities, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Jörg Hardege
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidities, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK
| | | |
Collapse
|
45
|
Silva HNPD, Almeida APG, Souza CDF, Mancera JM, Martos-Sitcha JA, Martínez-Rodríguez G, Baldisserotto B. Stress response of Rhamdia quelen to the interaction stocking density - Feeding regimen. Gen Comp Endocrinol 2023; 335:114228. [PMID: 36781023 DOI: 10.1016/j.ygcen.2023.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
This study aimed to verify the effect of different feeding and stocking conditions during 14 days on the gene expression of several hormones and enzymes related to the stress cascade and metabolic parameters in silver catfish Rhamdia quelen under the following experimental conditions: 1) fed at low stocking density (2.5 kg m-3, LSD-F); 2) fed at high stocking density (32 kg m-3, HSD-F); 3) food-deprived at LSD (LSD-FD); and 4) food-deprived at HSD (HSD-FD). Fish from LSD-F and HSD-F groups were fed daily (1 % of their body mass), while fish from food-deprived groups (LSD-FD and HSD-FD) were not fed during the experimental time. Plasma metabolic parameters (glucose, lactate, triglycerides, and proteins) and hepatosomatic index (HSI) were evaluated. In addition, mRNA expression of genes related to the stress axis (crh, pomca, pomcb, nr3c2, star, hsd11b2 and hsd20b), heat shock protein family (hsp90 and hspa12a), sodium-dependent noradrenaline transporter (slc6a2), and growth axis (gh and igf1) were also assessed. Specific growth rate and HSI decreased in food-deprived fish regardless of stocking density. The HSD-FD group showed weight loss compared to the HSD-F, LSD-F, and LSD-FD groups. Plasma glucose and triglycerides were reduced in food-deprived groups, while lactate and protein levels did not change. The expression of key players of the stress response (crh, pomca, pomcb, hsd11b2, nr3c2, and hsp90b) and growth (gh and igf1) pathways were differently regulated depending on the experimental condition, whereas no statistical difference between treatments was found for hsd20b, scl6a2, hspa12a, and star mRNAs expression. This study suggests that LSD acts as a stressor affecting negatively the physiological status of fed fish, as demonstrated by the reduction in growth rates, altered metabolic orchestration, and a higher crh mRNA expression. In addition, food deprivation also increased mRNA expression of other assessed genes (nr3c2, hsp90b, pomca, and pomcb) in fish from the HSD group, indicating higher responsiveness to stress in this stocking density when combined with food deprivation.
Collapse
Affiliation(s)
| | - Ana Paula G Almeida
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carine de F Souza
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Juan Miguel Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Cádiz, Spain
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
46
|
Behera BK, Parida SN, Kumar V, Swain HS, Parida PK, Bisai K, Dhar S, Das BK. Aeromonas veronii Is a Lethal Pathogen Isolated from Gut of Infected Labeo rohita: Molecular Insight to Understand the Bacterial Virulence and Its Induced Host Immunity. Pathogens 2023; 12:pathogens12040598. [PMID: 37111485 PMCID: PMC10143776 DOI: 10.3390/pathogens12040598] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A case of severe mortality in farmed Labeo rohita was investigated to characterize the causative agent. We identified the bacterial strain as Aeromonas veronii isolated from the gut of infected L. rohita by biochemical assay, scanning electron microscopy and 16S rRNA gene sequence analysis. The in vivo challenge experiment showed that the LD50 of A. veronii was 2.2 × 104 CFU/fish. Virulence gene investigation revealed that the isolated A. veronii possesses Aerolysin, Cytotoxic enterotoxin, Serine protease, Dnase and Type III secretion system genes. The isolated strain was resistant to two antibiotics (ampicillin and dicloxacillin) while susceptible to 22 other antibiotics. The study further revealed that A. veronii induced both stresses along with non-specific and specific immune responses marked by elevated cortisol HSP70, HSP90 and IgM levels in the treated L. rohita fingerlings. Although the bacterial pathogen enhances the immune response, the negative effect on fish, including stress, and high mortality, create concern and a need for A. veronii management in L. rohita farms. The knowledge gained from this study would facilitate future research aimed at assessing the pathogenicity of A. veronii, with an emphasis on microbial disease management in other farmed fish species.
Collapse
Affiliation(s)
- Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Satya Narayan Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Vikash Kumar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Himanshu Sekhar Swain
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Orissa, India
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Kampan Bisai
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Souvik Dhar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| |
Collapse
|
47
|
Couch CE, Neal WT, Herron CL, Kent ML, Schreck CB, Peterson JT. Gut microbiome composition associates with corticosteroid treatment, morbidity, and senescence in Chinook salmon (Oncorhynchus tshawytscha). Sci Rep 2023; 13:2567. [PMID: 36782001 PMCID: PMC9925776 DOI: 10.1038/s41598-023-29663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Pacific salmon experience prolonged elevation in corticosteroid hormones during important life history events including migration, reproduction, and senescence. These periods of elevated corticosteroids correspond with changes to immunity and energy metabolism; therefore, fish may be particularly vulnerable to mortality at these times. Recent studies found that stress-induced cortisol release associated with microbial community shifts in salmonids, raising the question of how longer-term corticosteroid dynamics that accompany life history transitions affect salmonid microbiomes. In this work, we experimentally evaluated the relationships between gut microbiome composition, chronically elevated corticosteroids, and mortality in juvenile Chinook salmon (Oncorhynchus tshawytscha). We found that treatment with slow-release implants of the corticosteroids cortisol or dexamethasone resulted in changes to the gut microbiome. Morbidity was also associated with microbiome composition, suggesting that the gut microbiome reflects individual differences in susceptibility to opportunistic pathogens. Additionally, we analyzed a small number of samples from adult fish at various stages of senescence. Results from these samples suggest that microbiome composition associated with gut integrity, and that the microbial communities of corticosteroid treated juveniles shift in composition toward those of senescent adults. Overall, findings from this work indicate that the gut microbiome correlates with mortality risk during periods of chronic corticosteroid elevation.
Collapse
Affiliation(s)
- Claire E Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA.
| | - William T Neal
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | - Crystal L Herron
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Carl B Schreck
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | - James T Peterson
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
- U.S. Geological Survey Oregon Cooperative Fish and Wildlife Research Unit, Corvallis, OR, USA
| |
Collapse
|
48
|
Idenyi JN, Eya JC, Abanikannda MF, Huber DH, Gannam AL, Sealey WM. Dynamics of mitochondrial adaptation and energy metabolism in rainbow trout (Oncorhynchus mykiss) in response to sustainable diet and temperature. J Anim Sci 2023; 101:skad348. [PMID: 37813378 PMCID: PMC10625652 DOI: 10.1093/jas/skad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
Impacts of plant-based ingredients and temperatures on energy metabolism in rainbow trout was investigated. A total of 288 fish (mean body weight: 45.6 g) were fed four isocaloric, isolipidic, and isonitrogenous diets containing 40% protein and 20% lipid and formulated as 100% animal-based protein (AP) and a blend of 50% fish oil (FO) and 50% camelina oil (CO); 100% AP and100% CO; 100% plant-based protein (PP) and a blend of 50% FO and 50% CO or 100% PP and 100% CO at 14 or 18 °C for 150 d. Diet did not significantly affect weight gain (WG) (P = 0.1902), condition factor (CF) (P = 0.0833) or specific growth rate (SGR) (P = 0.1511), but diet significantly impacted both feed efficiency (FE) (P = 0.0076) and feed intake (FI) (P = 0.0076). Temperature did not significantly affect WG (P = 0.1231), FE (P = 0.0634), FI (P = 0.0879), CF (P = 0.8277), or SGR (P = 0.1232). The diet × temperature interaction did not significantly affect WG (P = 0.7203), FE (P = 0.4799), FI (P = 0.2783), CF (P = 0.5071), or SGR (P = 0.7429). Furthermore, temperature did not influence protein efficiency ratio (P = 0.0633), lipid efficiency ratio (P = 0.0630), protein productive value (P = 0.0756), energy productive value (P = 0.1048), and lipid productive value (P = 0.1386); however, diet had significant main effects on PER (P = 0.0076), LPV (P = 0.0075), and PPV (P = 0.0138). Temperature regimens induced increased activities of mitochondrial complexes I (P = 0.0120), II (P = 0.0008), III (P = 0.0010), IV (P < 0.0001), V (P < 0.0001), and citrate synthase (CS) (P < 0.0001) in the intestine; complexes I (P < 0.0001), II (P < 0.0001), and CS (P = 0.0122) in the muscle; and complexes I (P < 0.0001), II (P < 0.0001), and III (P < 0.0001) in the liver. Similarly, dietary composition significantly affected complexes I (P < 0.0001), II (P < 0.0001), IV (P < 0.0001), V (P < 0.0001), and CS (P < 0.0001) in the intestine; complexes I (P < 0.0001), II (P < 0.0001), III (P = 0.0002), IV (P < 0.0001), V (P = 0.0060), and CS (P < 0.0001) in the muscle; and complexes I (P < 0.0001), II (P < 0.0001), IV (P < 0.0001), V (P < 0.0001), and CS (P < 0.0001) in the liver activities except complex III activities in intestine (P = 0.0817) and liver (P = 0.4662). The diet × temperature interaction impacted CS activity in the intestine (P = 0.0010), complex II in the muscle (P = 0.0079), and complexes I (P = 0.0009) and II (P = 0.0348) in the liver. Overall, comparing partial to full dietary substitution of FO with CO, partial dietary replacement showed similar effects on complex activities.
Collapse
Affiliation(s)
- John N Idenyi
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Jonathan C Eya
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Mosope F Abanikannda
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - David H Huber
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Ann L Gannam
- Abernathy Fish Technology Center Longview, 1440 Abernathy Creek Road, WA 98632, USA
| | - Wendy M Sealey
- USDA ARS Bozeman Fish Technology Center 4050 Bridger Canyon Road, Bozeman, MT 59715-8433, USA
| |
Collapse
|
49
|
Birnie-Gauvin K, Berthelsen C, Larsen T, Aarestrup K. The Physiological Costs of Reproduction in a Capital Breeding Fish. Physiol Biochem Zool 2023; 96:40-52. [PMID: 36626845 DOI: 10.1086/722136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractReproduction represents the most energetically demanding period of life for many organisms. Capital breeders, such as anadromous sea trout (Salmo trutta), provide a particularly interesting group of organisms to study within the context of reproduction because they rely on energy stores accrued before breeding to reproduce and sustain all phenotypic and behavioral changes related to reproduction. Energy allocation into current reproduction therefore cannot be mitigated via food intake, resulting in an important life history trade-off. For this reason, exploring indexes related to energetics in salmonids can provide powerful insights into the physiological costs of reproduction. In this study, we sampled blood from and PIT tagged 232 fish captured in the wild before the spawning season. We recaptured and resampled 74 individuals (53 females and 21 males) at the end of the spawning season. Females were further divided into spawning phases (nonspawned, partially spawned, and spawned individuals), though males could not be classified as such. We compared nutritional correlates (triglycerides, cholesterol, calcium, inorganic phosphorus, and total protein), stress correlates (cortisol, sodium, potassium, chloride, and glucose), and indexes of tissue damage (aspartate aminotransferase) between initial capture and recapture as well as among spawning phases in females. We found that nutritional status decreased in all fish throughout the spawning season but that it was substantially lower in females that had spawned. We further found that spawning itself appears stressful, with elevated glucose in partially spawned females and elevated cortisol in male sea trout at recapture. Our findings thus support the idea that the cost of reproduction is energetically high and that incurred stress and a decrease in nutritional status are important physiological costs.
Collapse
|
50
|
Khan MM, Mortuza A, Ibrahim M, Mustafa A. Assessment of the role of anthocyanin standardized elderberry (Sambucus nigra) extract as an immune-stimulating nutraceutical of Nile tilapia, Oreochromis niloticus. PLoS One 2022; 17:e0279471. [PMID: 36584192 PMCID: PMC9803303 DOI: 10.1371/journal.pone.0279471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
The study of nutraceuticals and their connection to immunity is an expanding field of research. The use of nutraceuticals to alleviate stress and enhance immunity in adverse aquaculture environments have been examined to a certain extent. To elucidate the understanding, we focused on the immunological effect of membrane-separated 13% anthocyanin standardized elderberry (EB) extract with maltodextrin excipient, widely used first-line nutraceuticals to augment the immunity, in aquaculture fish, Nile tilapia. To evaluate the potential of EB-extract, we assessed their capability to enhance lymphocyte proliferation and interleukin-2 production in an in-vitro condition using spleen and thymus lymphocytes. The experiments on spleen and thymus T-cells demonstrated significantly higher T-cell proliferation by EB-extract when lectin mitogen Con A was present as a stimulator. Likewise, our spleen B-cell proliferation result reveals a significant effect of EB-extracts, along with B-cell stimulator non-lectin mitogen LPS. Further, the quantification of IL-2 indicates elevated IL-2 levels when spleen T-cells were cultured with EB-extracts and with Con A present as a stimulator. These suggest that 13% anthocyanin standardized EB-extracts can aggrandize fish cells' cellular and humoral immune responses. With further research, elderberry extracts could be used to supplement commercial feed in aquaculture to reduce stress and stimulate the immune response.
Collapse
Affiliation(s)
- Md Mursalin Khan
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Asif Mortuza
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Md Ibrahim
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Ahmed Mustafa
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
- * E-mail:
| |
Collapse
|