1
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
2
|
Tang Z, Liang D, Deubler EL, Sarnat JA, Chow SS, Diver WR, Wang Y. Lung cancer metabolomics: a pooled analysis in the Cancer Prevention Studies. BMC Med 2024; 22:262. [PMID: 38915026 PMCID: PMC11197282 DOI: 10.1186/s12916-024-03473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND A better understanding of lung cancer etiology and the development of screening biomarkers have important implications for lung cancer prevention. METHODS We included 623 matched case-control pairs from the Cancer Prevention Study (CPS) cohorts. Pre-diagnosis blood samples were collected between 1998 and 2001 in the CPS-II Nutrition cohort and 2006 and 2013 in the CPS-3 cohort and were sent for metabolomics profiling simultaneously. Cancer-free controls at the time of case diagnosis were 1:1 matched to cases on date of birth, blood draw date, sex, and race/ethnicity. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression, controlling for confounders. The Benjamini-Hochberg method was used to correct for multiple comparisons. RESULTS Sphingomyelin (d18:0/22:0) (OR: 1.32; 95% CI: 1.15, 1.53, FDR = 0.15) and taurodeoxycholic acid 3-sulfate (OR: 1.33; 95% CI: 1.14, 1.55, FDR = 0.15) were positively associated with lung cancer risk. Participants diagnosed within 3 years of blood draw had a 55% and 48% higher risk of lung cancer per standard deviation increase in natural log-transformed sphingomyelin (d18:0/22:0) and taurodeoxycholic acid 3-sulfate level, while 26% and 28% higher risk for those diagnosed beyond 3 years, compared to matched controls. Lipid and amino acid metabolism accounted for 47% to 80% of lung cancer-associated metabolites at P < 0.05 across all participants and subgroups. Notably, ever-smokers exhibited a higher proportion of lung cancer-associated metabolites (P < 0.05) in xenobiotic- and lipid-associated pathways, whereas never-smokers showed a more pronounced involvement of amino acid- and lipid-associated metabolic pathways. CONCLUSIONS This is the largest prospective study examining untargeted metabolic profiles regarding lung cancer risk. Sphingomyelin (d18:0/22:0), a sphingolipid, and taurodeoxycholic acid 3-sulfate, a bile salt, may be risk factors and potential screening biomarkers for lung cancer. Lipid and amino acid metabolism may contribute significantly to lung cancer etiology which varied by smoking status.
Collapse
Affiliation(s)
- Ziyin Tang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Emily L Deubler
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Jeremy A Sarnat
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sabrina S Chow
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, GA, USA.
| |
Collapse
|
3
|
Koyuncu I, Temiz E, Seker F, Balos MM, Akkafa F, Yuksekdag O, Yılmaz MA, Zengin G. A mixed-apoptotic effect of Jurinea mesopotamica extract on prostate cancer cells: a promising source for natural chemotherapeutics. Chem Biodivers 2024; 21:e202301747. [PMID: 38161146 DOI: 10.1002/cbdv.202301747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/03/2024]
Abstract
This research investigates the potential use of Jurinea mesopotamica Hand.-Mazz. (Asteraceae) in cancer treatment. In this study, a plant extract was prepared using all parts of J. mesopotamica, and its effect on the proliferation of cancer and normal cells was tested using the MTT method. It was found to have a selective cytotoxic effect on prostate cancer cells, with the lowest IC50 (half-maximal inhibitory concentration) of 10μg/mL found in the butanol extract (JMBE). The extract suppressed the proliferation of prostate cancer cells (67 %), disrupted organelle integrity (49 %), increased reactive oxidative stress (66 %), and triggered cell death (51 %). In addition, apoptotic gene expressions and protein levels increased, and the profile of amino acids related to energy metabolism was elevated. Based on LC-MS/MS results, the plant contained higher levels of flavonoids, including isoquercitrin, cosmosiin, astragalin, nicotiflorin, luteolin, and apigenin. These results suggest that J. mesopotamica has a selective effect on prostate cancer due to its high flavonoid content and might be a promising natural alternative for cancer treatment.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Fatma Seker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Harran University, Sanliurfa, Turkey
| | - M Maruf Balos
- Sanliurfa Provincial Directorate of National Education, Sanliurfa, Turkey
| | - Feridun Akkafa
- Department of Medical Biology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ozgür Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - M Abdullah Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
4
|
Huang PC, Chang CW, Lin YC, Chen CY, Chen TY, Chuang LT, Liu CJ, Huang CL, Li WC. Pyruvate Kinase Differentially Alters Metabolic Signatures during Head and Neck Carcinogenesis. Int J Mol Sci 2023; 24:16639. [PMID: 38068962 PMCID: PMC10706023 DOI: 10.3390/ijms242316639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
During glycolysis, the muscle isoform of pyruvate kinase PKM2 produces ATP in exchange for dephosphorylation of phosphoenolpyruvate (PEP) into pyruvate. PKM2 has been considered as a tumor-promoting factor in most cancers, whereas the regulatory role of PKM2 during head and neck carcinogenesis remained to be delineated. PKM2 mRNA and protein expression was examined in head and neck tumorous specimens. The role of PKM2 in controlling cellular malignancy was determined in shRNA-mediated PKM2-deficient head and neck squamous cell carcinoma (HNSC) cells. In agreement with the results in other cancers, PKM2 expression is enriched in both mouse and human HNSC tissues. Nevertheless, PKM2 mRNA expression reversely correlated with tumor stage, and greater recurrence-free survival rates are evident in the PKM2high HNSC population, arguing that PKM2 may be tumor-suppressive. Multifaceted analyses showed a greater in vivo xenografic tumor growth and an enhanced cisplatin resistance in response to PKM2 loss, whereas PKM2 silencing led to reduced cell motility. At the molecular level, metabolic shifts towards mitochondrial metabolism and activation of oncogenic Protein kinase B (PKB/Akt) and extracellular signal-regulated kinase (ERK) signals were detected in PKM2-silencing HNSC cells. In sum, our findings demonstrated that PKM2 differentially modulated head and neck tumorigenicity via metabolic reprogramming.
Collapse
Affiliation(s)
- Pei-Chun Huang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
| | - Ching-Wen Chang
- Graduate Institute of Metabolism and Obesity Sciences (GIMOS), College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Lin
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.L.); (C.-J.L.)
- Oral Medicine Innovation Center (OMIC), National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chang-Yi Chen
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
| | - Tsai-Ying Chen
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
| | - Lu-Te Chuang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan;
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.L.); (C.-J.L.)
- Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Chien-Ling Huang
- Department of Health Technology and Informatics (HTI), The Hong Kong Polytechnic University (PolyU), Hung Hom, Kowloon, Hong Kong SAR, China;
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.L.); (C.-J.L.)
- Oral Medicine Innovation Center (OMIC), National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
5
|
Pardo-Rodriguez D, Santamaría-Torres M, Salinas A, Jiménez-Charris E, Mosquera M, Cala MP, García-Perdomo HA. Unveiling Disrupted Lipid Metabolism in Benign Prostate Hyperplasia, Prostate Cancer, and Metastatic Patients: Insights from a Colombian Nested Case-Control Study. Cancers (Basel) 2023; 15:5465. [PMID: 38001725 PMCID: PMC10670336 DOI: 10.3390/cancers15225465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer is a significant global health concern, and its prevalence is increasing worldwide. Despite extensive research efforts, the complexity of the disease remains challenging with respect to fully understanding it. Metabolomics has emerged as a powerful approach to understanding prostate cancer by assessing comprehensive metabolite profiles in biological samples. In this study, metabolic profiles of patients with benign prostatic hyperplasia (BPH), prostate cancer (PCa), and metastatic prostate cancer (Met) were characterized using an untargeted approach that included metabolomics and lipidomics via liquid chromatography and gas chromatography coupled with high-resolution mass spectrometry. Comparative analysis among these groups revealed distinct metabolic profiles, primarily associated with lipid biosynthetic pathways, such as biosynthesis of unsaturated fatty acids, fatty acid degradation and elongation, and sphingolipid and linoleic acid metabolism. PCa patients showed lower levels of amino acids, glycerolipids, glycerophospholipids, sphingolipids, and carnitines compared to BPH patients. Compared to Met patients, PCa patients had reduced metabolites in the glycerolipid, glycerophospholipid, and sphingolipid groups, along with increased amino acids and carbohydrates. These altered metabolic profiles provide insights into the underlying pathways of prostate cancer's progression, potentially aiding the development of new diagnostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 110111, Colombia; (D.P.-R.); (M.S.-T.)
| | - Mary Santamaría-Torres
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 110111, Colombia; (D.P.-R.); (M.S.-T.)
| | - Angela Salinas
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (A.S.); (E.J.-C.); (M.M.)
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (A.S.); (E.J.-C.); (M.M.)
| | - Mildrey Mosquera
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (A.S.); (E.J.-C.); (M.M.)
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 110111, Colombia; (D.P.-R.); (M.S.-T.)
| | - Herney Andrés García-Perdomo
- UROGIV Research Group, School of Medicine, Universidad del Valle, Cali 72824, Colombia
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali 72824, Colombia
| |
Collapse
|
6
|
Alfahel R, Sawicki T, Jabłońska M, Przybyłowicz KE. Anti-Hyperglycemic Effects of Bioactive Compounds in the Context of the Prevention of Diet-Related Diseases. Foods 2023; 12:3698. [PMID: 37835351 PMCID: PMC10572282 DOI: 10.3390/foods12193698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Diet-related diseases are health conditions primary caused by poor nutrition. These diseases encompass obesity, type 2 diabetes, cardiovascular diseases, osteoporosis, and certain types of cancer. Functional foods and nutraceuticals offer a promising dietary approach to addressing diet-related diseases across various clinical contexts. The bioactive compounds found in these foods are the subject of intensive studies aimed at discovering their anti-hyperglycemic effects, which are beneficial in alleviating chronic diseases and protecting human health. Hyperglycemia is a common risk factor for metabolic disease and mortality worldwide. Chronic hyperglycemic states can lead to many long-term complications, such as retinopathy, neuropathy, kidney disease, heart disease, cancer, and diabetes. This review explores the potential anti-hyperglycemic effects of bioactive compounds, specifically flavonoids and phenolic acids, and their proposed roles in mitigating chronic diseases and promoting human health. By thoroughly examining the existing literature, we investigated the potential anti-hyperglycemic effects of these bioactive compounds and their proposed roles in managing chronic diseases. The goal of this paper was to enhance our comprehension of how these compounds modulate glucose transporters, with the ultimate aim of identifying effective strategies for the prevention and treatment of diet-related diseases. Overall, this review investigated the use of bioactive compounds from functional foods as potential inhibitors of glucose transporters in the context of prevention/treatment of diet-related diseases.
Collapse
Affiliation(s)
| | | | | | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 45f Słoneczna Street, 10-718 Olsztyn, Poland; (R.A.); (T.S.); (M.J.)
| |
Collapse
|
7
|
Lu Q, Sun X, Yegambaram M, Ornatowski W, Wu X, Wang H, Garcia-Flores A, Da Silva V, Zemskov EA, Tang H, Fineman JR, Tieu K, Wang T, Black SM. Nitration-mediated activation of the small GTPase RhoA stimulates cellular glycolysis through enhanced mitochondrial fission. J Biol Chem 2023; 299:103067. [PMID: 36841483 PMCID: PMC10060112 DOI: 10.1016/j.jbc.2023.103067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Mitochondrial fission and a Warburg phenotype of increased cellular glycolysis are involved in the pathogenesis of pulmonary hypertension (PH). The purpose of this study was to determine whether increases in mitochondrial fission are involved in a glycolytic switch in pulmonary arterial endothelial cells (PAECs). Mitochondrial fission is increased in PAEC isolated from a sheep model of PH induced by pulmonary overcirculation (Shunt PAEC). In Shunt PAEC we identified increases in the S616 phosphorylation responsible for dynamin-related protein 1 (Drp1) activation, the mitochondrial redistribution of Drp1, and increased cellular glycolysis. Reducing mitochondrial fission attenuated cellular glycolysis in Shunt PAEC. In addition, we observed nitration-mediated activation of the small GTPase RhoA in Shunt PAEC, and utilizing a nitration-shielding peptide, NipR1 attenuated RhoA nitration and reversed the Warburg phenotype. Thus, our data identify a novel link between RhoA, mitochondrial fission, and cellular glycolysis and suggest that targeting RhoA nitration could have therapeutic benefits for treating PH.
Collapse
Affiliation(s)
- Qing Lu
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Xutong Sun
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | | | - Wojciech Ornatowski
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Hui Wang
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Alejandro Garcia-Flores
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Victoria Da Silva
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Evgeny A Zemskov
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Haiyang Tang
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Ting Wang
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Stephen M Black
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
| |
Collapse
|
8
|
Phytochemicals as Regulators of Tumor Glycolysis and Hypoxia Signaling Pathways: Evidence from In Vitro Studies. Pharmaceuticals (Basel) 2022; 15:ph15070808. [PMID: 35890106 PMCID: PMC9315613 DOI: 10.3390/ph15070808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The full understanding of the complex nature of cancer still faces many challenges, as cancers arise not as a result of a single target disruption but rather involving successive genetic and epigenetic alterations leading to multiple altered metabolic pathways. In this light, the need for a multitargeted, safe and effective therapy becomes essential. Substantial experimental evidence upholds the potential of plant-derived compounds to interfere in several important pathways, such as tumor glycolysis and the upstream regulating mechanisms of hypoxia. Herein, we present a comprehensive overview of the natural compounds which demonstrated, in vitro studies, an effective anticancer activity by affecting key regulators of the glycolytic pathway such as glucose transporters, hexokinases, phosphofructokinase, pyruvate kinase or lactate dehydrogenase. Moreover, we assessed how phytochemicals could interfere in HIF-1 synthesis, stabilization, accumulation, and transactivation, emphasizing PI3K/Akt/mTOR and MAPK/ERK pathways as important signaling cascades in HIF-1 activation. Special consideration was given to cell culture-based metabolomics as one of the most sensitive, accurate, and comprising approaches for understanding the response of cancer cell metabolome to phytochemicals.
Collapse
|
9
|
Krstic J, Deutsch A, Fuchs J, Gauster M, Gorsek Sparovec T, Hiden U, Krappinger JC, Moser G, Pansy K, Szmyra M, Gold D, Feichtinger J, Huppertz B. (Dis)similarities between the Decidual and Tumor Microenvironment. Biomedicines 2022; 10:1065. [PMID: 35625802 PMCID: PMC9138511 DOI: 10.3390/biomedicines10051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by an abetting microenvironment, which influences invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of the abetting microenvironments.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Alexander Deutsch
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Tina Gorsek Sparovec
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julian Christopher Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Daniela Gold
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| |
Collapse
|
10
|
Krstic J, Schindlmaier K, Prokesch A. Combination strategies to target metabolic flexibility in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:159-197. [PMID: 36283766 DOI: 10.1016/bs.ircmb.2022.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapeutically interfering with metabolic pathways has great merit to curtail tumor growth because the demand for copious amounts of energy for growth-supporting biomass production is common to all cancer entities. A major impediment to a straight implementation of metabolic cancer therapy is the metabolic flexibility and plasticity of cancer cells (and their microenvironment) resulting in therapy resistance and evasion. Metabolic combination therapies, therefore, are promising as they are designed to target several energetic routes simultaneously and thereby diminish the availability of alternative substrates. Thus, dietary restrictions, specific nutrient limitations, and/or pharmacological interventions impinging on metabolic pathways can be combined to improve cancer treatment efficacy, to overcome therapy resistance, or even act as a preventive measure. Here, we review the most recent developments in metabolic combination therapies particularly highlighting in vivo reports of synergistic effects and available clinical data. We close with identifying the challenges of the field (metabolic tumor heterogeneity, immune cell interactions, inter-patient variabilities) and suggest a "metabo-typing" strategy to tailor evidence-based metabolic combination therapies to the energetic requirements of the tumors and the patient's nutritional habits and status.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
11
|
Choueiry F, Zhu J. Secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) fingerprinting enabled treatment monitoring of pulmonary carcinoma cells in real time. Anal Chim Acta 2022; 1189:339230. [PMID: 34815037 PMCID: PMC8613447 DOI: 10.1016/j.aca.2021.339230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023]
Abstract
Lung cancer is one of the leading causes of cancer related deaths in the United States. A novel volatile analysis platform is needed to complement current diagnostic techniques and better elucidate chemical signatures of lung cancer and subsequent treatments. A systems biology bottom-up approach using cell culture volatilomics was employed to identify pathological volatile fingerprints of lung cancer in real time. An advanced secondary electrospray ionization (SESI) source, named SuperSESI was used in this study and directly attached to a Thermo Q-Exactive high-resolution mass spectrometer (HRMS). We performed a series of experiments to determine if our optimized SESI-HRMS platform can distinguish between cancer types by sampling their in vitro volatilome profiles. We detected 60 significant volatile organic compound (VOC) features in positive mode that were deemed of cancer cell origin. The cell derived features were used for subsequent analyses to distinguish between our two studied lung cancer types, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Partial least squares-discriminant analysis (PLS-DA) model revealed a good separation of the two cancer types, suggesting unique chemical composition of their headspace profiles. A receiver operating characteristic (ROC) curve using 10 prominent features was used to predict disease type, with an area under the curve (AUC) of 0.811. Cultures were also treated with cisplatin to determine the feasibility of classifying drug treatment from expelled gases. A PLS-DA model revealed independent clustering based on their headspace profiles. An ROC curve using the top features driving separation of PLS-DA model suggested good accuracy with an AUC of 1. It is thus possible to benefit from the advantages of this platform to distinguish the unique volatile fingerprints of cancers to uncover potential biomarkers for cancer type differentiation and treatment monitoring.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University; Columbus, OH 43210
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University; Columbus, OH 43210, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
12
|
Yu C, Niu L, Li L, Li T, Duan L, He Z, Zhao Y, Zou L, Wu X, Luo C. Identification of the metabolic signatures of prostate cancer by mass spectrometry-based plasma and urine metabolomics analysis. Prostate 2021; 81:1320-1328. [PMID: 34590739 DOI: 10.1002/pros.24229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men which is associated with profound metabolic changes. Systematic analysis of the metabolic alterations and identification of new biomarkers may benefit PCa diagnosis and a deep understanding of the pathological mechanism. The purpose of this study was to determine the metabolic features of PCa. METHODS Plasma and urine metabolites from 89 prostate cancer (PCa) patients, 84 benign prostatic hyperplasia (BPH) patients, and 70 healthy males were analyzed using LC-MS/MS and GC-MS. The Orthogonalised Partial Least Squares Discriminant Analysis (OPLS-DA) was used to find the significantly changed metabolites. The clinical value of the candidate markers was examined by receiver operating characteristic curve analysis and compared with prostate-specific antigen (PSA). RESULTS Multivariate statistical analyses found a series of altered metabolites, which related to the urea cycle, tricarboxylic acid cycle (TCA), fatty acid metabolism, and the glycine cleavage system. Plasma Glu/Gln showed the highest predictive value (AUC = 0.984) when differentiating PCa patients from healthy controls, with a higher sensitivity than PSA (96.6% vs. 94.4%). Both Glu/Gln and PSA displayed a low specificity when differentiating PCa patients from BPH patients (<53.2%), while the combination of Glu/Gln and PSA can further increase the diagnostic specificity to 66.9%. CONCLUSIONS The present study showed the metabolic features of PCa, provided strong evidence that the amide nitrogen and the energy metabolic pathways could be a valuable source of markers for PCa. Several candidate markers identified in this study were clinically valuable for further assessment.
Collapse
Affiliation(s)
- Chaowen Yu
- Center for Clinical Molecular Medicine & Newborn Screening, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lingfang Niu
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Luo Li
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ting Li
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Limei Duan
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhenting He
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yan Zhao
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lin Zou
- Center for Clinical Molecular Medicine & Newborn Screening, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Xiaohou Wu
- Department of Urolog, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunli Luo
- The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
14
|
Kaur P, Nagar S, Bhagwat M, Uddin M, Zhu Y, Vancurova I, Vancura A. Activated heme synthesis regulates glycolysis and oxidative metabolism in breast and ovarian cancer cells. PLoS One 2021; 16:e0260400. [PMID: 34807950 PMCID: PMC8608300 DOI: 10.1371/journal.pone.0260400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Heme is an essential cofactor for enzymes of the electron transport chain (ETC) and ATP synthesis in mitochondrial oxidative phosphorylation (OXPHOS). Heme also binds to and destabilizes Bach1, a transcription regulator that controls expression of several groups of genes important for glycolysis, ETC, and metastasis of cancer cells. Heme synthesis can thus affect pathways through which cells generate energy and precursors for anabolism. In addition, increased heme synthesis may trigger oxidative stress. Since many cancers are characterized by a high glycolytic rate regardless of oxygen availability, targeting glycolysis, ETC, and OXPHOS have emerged as a potential therapeutic strategy. Here, we report that enhancing heme synthesis through exogenous supplementation of heme precursor 5-aminolevulinic acid (ALA) suppresses oxidative metabolism as well as glycolysis and significantly reduces proliferation of both ovarian and breast cancer cells. ALA supplementation also destabilizes Bach1 and inhibits migration of both cell types. Our data indicate that the underlying mechanisms differ in ovarian and breast cancer cells, but involve destabilization of Bach1, AMPK activation, and induction of oxidative stress. In addition, there appears to be an inverse correlation between the activity of oxidative metabolism and ALA sensitivity. Promoting heme synthesis by ALA supplementation may thus represent a promising new anti-cancer strategy, particularly in cancers that are sensitive to altered redox signaling, or in combination with strategies that target the antioxidant systems or metabolic weaknesses of cancer cells.
Collapse
Affiliation(s)
- Pritpal Kaur
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Shreya Nagar
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Madhura Bhagwat
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Mohammad Uddin
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Yan Zhu
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Ales Vancura
- Department of Biological Sciences, St. John’s University, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Aminzadeh Z, Ziamajidi N, Abbasalipourkabir R. Anticancer Effects of Cinnamaldehyde through Inhibition of ErbB2/HSF1/LDHA Pathway in 5637 Cell Line of Bladder Cancer. Anticancer Agents Med Chem 2021; 22:1139-1148. [PMID: 34315398 DOI: 10.2174/1871520621666210726142814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The growing prevalence of bladder cancer worldwide has become a major concern for the researchers, and the side effects of chemotherapy drugs have always been a major problem in cancer treatment. Cinnamaldehyde, the active ingredient in the Cinnamon plant, has long been considered with anti-oxidant and anti-inflammatory effects. METHODS Bladder cancer 5637 cell lines were treated with the different concentrations of Cinnamaldehyde. MTT assay was performed to evaluate cell viability at 24, 48, and 72 hours. The concentration of 0.02, 0.04, and 0.08 mg/ml of Cinnamaldehyde were selected. Apoptosis was assessed with Annexin V-FITC/PI and Hochest33258 staining. Cell migration was performed by the scratch test. To evaluate Cinnamaldehyde effect on glycolysis, the gene expression of epidermal growth factor receptor 2 (ErbB2), heat shock protein transcription factor-1 (HSF1) and lactate dehydrogenase A (LDHA), as well as the protein levels of HSF1 and LDHA, LDH activity and finally glucose consumption and lactate production, were measured. RESULTS Cinnamaldehyde significantly increased apoptosis rate in the 5637 cells (p<0.05). Furthermore, it significantly reduced the gene expression of ErbB2, HSF1, and LDHA, protein level of HSF1 and LDHA, LDH activity, as well as cell migration, glucose consumption, and lactate production (p<0.05). These changes were dose-dependent. CONCLUSION Thus, Cinnamaldehyde induced apoptosis and decreased growth in 5637 cells by reducing ErbB2-HSF1-LDHA pathway.
Collapse
Affiliation(s)
- Zeynab Aminzadeh
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
Recent advances in the role of Th17/Treg cells in tumor immunity and tumor therapy. Immunol Res 2021; 69:398-414. [PMID: 34302619 DOI: 10.1007/s12026-021-09211-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Th17 and Treg cells play an important role in regulating tissue inflammation and maintaining the stability of the immune system. They regulate inflammatory responses, participate in the occurrence and development of autoimmune diseases and tumors, and determine the disease progress. Malignant tumor is one of the diseases with the highest mortality rate in the world. However, the efficacy of traditional treatment is limited, so it is necessary to find safe and efficient treatment methods. Studies have shown that the balance of Th17/Treg cells plays a critical role in tumor progression. In this paper, we review the antitumor and tumor-suppressing effects of Th17/Treg cells, and new strategies for tumor therapy, combined with new research hotspots such as immune checkpoint therapy, miRNA-related gene therapy, and metabolic pathway regulation of Th17/Treg cell differentiation and tumor generation. The synergistic therapy is expected to be widely used in the future clinical practice, providing a new choice for the prevention and treatment of malignant tumors.
Collapse
|
17
|
Hiu JJ, Yap MKK. The effects of Naja sumatrana venom cytotoxin, sumaCTX on alteration of the secretome in MCF-7 breast cancer cells following membrane permeabilization. Int J Biol Macromol 2021; 184:776-786. [PMID: 34174307 DOI: 10.1016/j.ijbiomac.2021.06.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
Naja sumatrana venom cytotoxin (sumaCTX) is a basic protein which belongs to three-finger toxin family. It has been shown to induce caspase-dependent, mitochondrial-mediated apoptosis in MCF-7 cells at lower concentrations. This study aimed to investigate the alteration of secretome in MCF-7 cells following membrane permeabilization by high concentrations of sumaCTX, using label-free quantitative (LFQ) approach. The degree of membrane permeabilization of sumaCTX was determined by lactate dehydrogenase (LDH) assay and calcein-propidium iodide (PI) assays. LDH and calcein-PI assays revealed time-dependent membrane permeabilization within a narrow concentration range. However, as toxin concentrations increased, prolonged exposure of MCF-7 cells to sumaCTX did not promote the progression of membrane permeabilization. The secretome analyses showed that membrane permeabilization was an event preceding the release of intracellular proteins. Bioinformatics analyses of the LFQ secretome revealed the presence of 105 significantly distinguished proteins involved in metabolism, structural supports, inflammatory responses, and necroptosis in MCF-7 cells treated with 29.8 μg/mL of sumaCTX. Necroptosis was presumably an initial stress response in MCF-7 cells when exposed to high sumaCTX concentration. Collectively, sumaCTX-induced the loss of membrane integrity in a concentration-dependent manner, whereby the cell death pattern of MCF-7 cells transformed from apoptosis to necroptosis with increasing toxin concentrations.
Collapse
Affiliation(s)
- Jia Jin Hiu
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia; Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
18
|
Using proteomic and transcriptomic data to assess activation of intracellular molecular pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:1-53. [PMID: 34340765 DOI: 10.1016/bs.apcsb.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analysis of molecular pathway activation is the recent instrument that helps to quantize activities of various intracellular signaling, structural, DNA synthesis and repair, and biochemical processes. This may have a deep impact in fundamental research, bioindustry, and medicine. Unlike gene ontology analyses and numerous qualitative methods that can establish whether a pathway is affected in principle, the quantitative approach has the advantage of exactly measuring the extent of a pathway up/downregulation. This results in emergence of a new generation of molecular biomarkers-pathway activation levels, which reflect concentration changes of all measurable pathway components. The input data can be the high-throughput proteomic or transcriptomic profiles, and the output numbers take both positive and negative values and positively reflect overall pathway activation. Due to their nature, the pathway activation levels are more robust biomarkers compared to the individual gene products/protein levels. Here, we review the current knowledge of the quantitative gene expression interrogation methods and their applications for the molecular pathway quantization. We consider enclosed bioinformatic algorithms and their applications for solving real-world problems. Besides a plethora of applications in basic life sciences, the quantitative pathway analysis can improve molecular design and clinical investigations in pharmaceutical industry, can help finding new active biotechnological components and can significantly contribute to the progressive evolution of personalized medicine. In addition to the theoretical principles and concepts, we also propose publicly available software for the use of large-scale protein/RNA expression data to assess the human pathway activation levels.
Collapse
|
19
|
Shen L, Xia M, Zhang Y, Luo H, Dong D, Sun L. Mitochondrial integration and ovarian cancer chemotherapy resistance. Exp Cell Res 2021; 401:112549. [PMID: 33640393 DOI: 10.1016/j.yexcr.2021.112549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Ovarian cancer has been nicknamed the "silent killer". Most patients with ovarian cancer are diagnosed at an advanced stage of the disease for the first time because of its insignificant early clinical symptoms. In addition to the difficulty of early screening and delay in diagnosis, the high recurrence rate and relapsed refractory status of patients with ovarian cancer are also important factors for their high mortality. Patients with recurrent ovarian cancer often use neoadjuvant chemotherapy followed by surgery as the first choice. However, this is often accompanied by chemotherapy resistance, leading to treatment failure and a mortality rate of more than 90%. In the past, it was believed that the anti-tumor effect of chemotherapeutics represented by cisplatin was entirely attributable to its irreversible damage to DNA, but current research has found that it can inhibit cell growth and cytotoxicity via nuclear and cytoplasmic coordinated integration. As an important hub and integration platform for intracellular signal communication, mitochondria are responsible for multiple key factors during tumor occurrence and development, such as metabolic reprogramming, acquisition of metastatic ability, and chemotherapy drug response. The role of mitochondria in ovarian cancer chemotherapy resistance is becoming increasingly recognized. In this review, we discuss the cellular interactive regulatory network surrounding mitochondria, elucidate the mechanisms of tumor cell survival under chemotherapy, and discuss potential means of interfering with mitochondrial function as a novel anti-cancer therapy.
Collapse
Affiliation(s)
- Luyan Shen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Meihui Xia
- Department of Obstetrics, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Zhang
- Laboratory Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haoge Luo
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Delu Dong
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
20
|
Benot-Dominguez R, Tupone MG, Castelli V, d'Angelo M, Benedetti E, Quintiliani M, Cinque B, Forte IM, Cifone MG, Ippoliti R, Barboni B, Giordano A, Cimini A. Olive leaf extract impairs mitochondria by pro-oxidant activity in MDA-MB-231 and OVCAR-3 cancer cells. Biomed Pharmacother 2020; 134:111139. [PMID: 33360155 DOI: 10.1016/j.biopha.2020.111139] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Breast and ovarian cancers are the leading and fifth reason for tumor death among females, respectively. Recently, many studies demonstrated antiproliferative activities of natural aliments in cancer. In this study, we investigated the antitumor potential of Olive Leaf Extract (OLE) in triple-negative breast and ovarian cancer cells. A HPLC/DAD analysis on OLE has been performed to assess the total polyphenolics and other secondary metabolites content. HCEpiC, MDA-MB-231, and OVCAR-3 cell lines were used. MTS, Cytofluorimetric, Western Blot analysis were performed to analyze cell viability, cell proliferation, apoptosis, and oxidative stress. Fluorimetric and IncuCyte® analyses were carried out to evaluate apoptosis and mitochondrial function. We confirmed that OLE, containing a quantity of oleuropein of 87 % of the total extract, shows anti-proliferative and pro-apoptotic activity on MDA-MB-231 cells. For the first time, our results indicate that OLE inhibits OVCAR-3 cell viability inducing cell cycle arrest, and it also increases apoptotic cell death up-regulating the protein level of cleaved-PARP and caspase 9. Moreover, our data show that OLE treatment causes a significant decrease in mitochondrial functionality, paralleled by a reduction of mitochondrial membrane potential. Interestingly, OLE increased the level of intracellular and mitochondrial reactive oxygen species (ROS) together with a decreased activity of ROS scavenging enzymes, confirming oxidative stress in both models. Our data demonstrate that mitochondrial ROS generation represented the primary mechanism of OLE antitumor activity, as pretreatment with antioxidant N-acetylcysteine prevented OLE-induced cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Center for Microscopy, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Massimiliano Quintiliani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; S.I.R.E. srl, 80129, Napoli, Italy.
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131, Napoli, Italy.
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, 19122, USA.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
21
|
Zhang J, Hang C, Jiang T, Yi S, Shao W, Li W, Lin D. Nuclear Magnetic Resonance-Based Metabolomic Analysis of the Anticancer Effect of Metformin Treatment on Cholangiocarcinoma Cells. Front Oncol 2020; 10:570516. [PMID: 33330044 PMCID: PMC7735195 DOI: 10.3389/fonc.2020.570516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Metformin is a widely prescribed anti-diabetes drug with potential utilities for cancer therapies. Several studies have related metformin to the reduced risk of cholangiocarcinoma (CCA), highlighting its potentialities for the treatments of CCA. However, the underlying molecular mechanisms remain elusive. Here, we demonstrated that metformin treatment could inhibit proliferations of the human CCA cell lines Mz-ChA-1 and QBC939 in dose-dependent manners. The NMR-based metabonomic analyses showed distinct discriminations between the metformin-treated (Met) and control (Ctrl) groups of both CCA cells. Characteristic metabolites were identified by a combination of multivariate statistical analysis of 1D 1H-NMR spectral data and the pair-wise t-test of metabolite levels. We then identified four significantly altered metabolic pathways based on the characteristic metabolites, including glucose metabolism, oxidative stress-related metabolism, energy metabolism, and amino acids metabolism. Comparing CCA cells with normal human umbilical vein endothelial cells (HUVECs), we found that metformin treatment profoundly promoted glycolysis and specifically increased the levels of BCAAs and UDP-GlcNAc, implying the occurrence of autophagy and cell cycle arrest in metformin-treated CAA cells. This work provides a mechanistic understanding of the anticancer effect of metformin treatment on CAA cells, and is beneficial to further developments of metformin as an anticancer drug.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, China
| | - Caihua Hang
- Department of Physical Education, Xiamen University of Technology, Xiamen, China
| | - Ting Jiang
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, China
| | - Shenghui Yi
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, China
| | - Wei Shao
- Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Wengang Li
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Sublethal exposure of small few-layer graphene promotes metabolic alterations in human skin cells. Sci Rep 2020; 10:18407. [PMID: 33110217 PMCID: PMC7591887 DOI: 10.1038/s41598-020-75448-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022] Open
Abstract
Small few-layer graphene (sFLG), a novel small-sized graphene-related material (GRM), can be considered as an intermediate degradation product of graphene. GRMs have a promising present and future in the field of biomedicine. However, safety issues must be carefully addressed to facilitate their implementation. In the work described here, the effect of sub-lethal doses of sFLG on the biology of human HaCaT keratinocytes was examined. A one-week treatment of HaCaTs with sub-lethal doses of sFLG resulted in metabolome remodeling, dampening of the mitochondrial function and a shift in the redox state to pro-oxidant conditions. sFLG raises reactive oxygen species and calcium from 24 h to one week after the treatment and this involves the activation of NADPH oxidase 1. Likewise, sFLG seems to induce a shift from oxidative phosphorylation to glycolysis and promotes the use of glutamine as an alternative source of energy. When sub-toxic sFLG exposure was sustained for 30 days, an increase in cell proliferation and mitochondrial damage were observed. Further research is required to unveil the safety of GRMs and degradation-derived products before their use in the workplace and in practical applications.
Collapse
|
23
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:E2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
24
|
Lee KB, Ang L, Yau WP, Seow WJ. Association between Metabolites and the Risk of Lung Cancer: A Systematic Literature Review and Meta-Analysis of Observational Studies. Metabolites 2020; 10:E362. [PMID: 32899527 PMCID: PMC7570231 DOI: 10.3390/metabo10090362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, lung cancer is the most prevalent cancer type. However, screening and early detection is challenging. Previous studies have identified metabolites as promising lung cancer biomarkers. This systematic literature review and meta-analysis aimed to identify metabolites associated with lung cancer risk in observational studies. The literature search was performed in PubMed and EMBASE databases, up to 31 December 2019, for observational studies on the association between metabolites and lung cancer risk. Heterogeneity was assessed using the I2 statistic and Cochran's Q test. Meta-analyses were performed using either a fixed-effects or random-effects model, depending on study heterogeneity. Fifty-three studies with 297 metabolites were included. Most identified metabolites (252 metabolites) were reported in individual studies. Meta-analyses were conducted on 45 metabolites. Five metabolites (cotinine, creatinine riboside, N-acetylneuraminic acid, proline and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene) and five metabolite groups (total 3-hydroxycotinine, total cotinine, total nicotine, total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (sum of concentrations of the metabolite and its glucuronides), and total nicotine equivalent (sum of total 3-hydroxycotinine, total cotinine and total nicotine)) were associated with higher lung cancer risk, while three others (folate, methionine and tryptophan) were associated with lower lung cancer risk. Significant heterogeneity was detected across most studies. These significant metabolites should be further evaluated as potential biomarkers for lung cancer.
Collapse
Affiliation(s)
- Kian Boon Lee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (K.B.L.); (W.-P.Y.)
| | - Lina Ang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
| | - Wai-Ping Yau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (K.B.L.); (W.-P.Y.)
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
| |
Collapse
|
25
|
Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C, Varghese E, Abotaleb M, Qaradakhi T, Zulli A, Kello M, Mojzis J, Zubor P, Kwon TK, Shakibaei M, Büsselberg D, Sarria GR, Golubnitschaja O, Kubatka P. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J 2020; 11:377-398. [PMID: 32843908 PMCID: PMC7429635 DOI: 10.1007/s13167-020-00217-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
The Warburg effect is characterised by increased glucose uptake and lactate secretion in cancer cells resulting from metabolic transformation in tumour tissue. The corresponding molecular pathways switch from oxidative phosphorylation to aerobic glycolysis, due to changes in glucose degradation mechanisms known as the 'Warburg reprogramming' of cancer cells. Key glycolytic enzymes, glucose transporters and transcription factors involved in the Warburg transformation are frequently dysregulated during carcinogenesis considered as promising diagnostic and prognostic markers as well as treatment targets. Flavonoids are molecules with pleiotropic activities. The metabolism-regulating anticancer effects of flavonoids are broadly demonstrated in preclinical studies. Flavonoids modulate key pathways involved in the Warburg phenotype including but not limited to PKM2, HK2, GLUT1 and HIF-1. The corresponding molecular mechanisms and clinical relevance of 'anti-Warburg' effects of flavonoids are discussed in this review article. The most prominent examples are provided for the potential application of targeted 'anti-Warburg' measures in cancer management. Individualised profiling and patient stratification are presented as powerful tools for implementing targeted 'anti-Warburg' measures in the context of predictive, preventive and personalised medicine.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011 Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011 Australia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafarik University, 040 11 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafarik University, 040 11 Košice, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- OBGY Health & Care, Ltd., 01001 Zilina, Slovak Republic
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, 426 01 South Korea
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Gustavo R. Sarria
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
26
|
Shokat S, Großkinsky DK, Roitsch T, Liu F. Activities of leaf and spike carbohydrate-metabolic and antioxidant enzymes are linked with yield performance in three spring wheat genotypes grown under well-watered and drought conditions. BMC PLANT BIOLOGY 2020; 20:400. [PMID: 32867688 PMCID: PMC7457523 DOI: 10.1186/s12870-020-02581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/27/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND To improve our understanding about the physiological mechanism of grain yield reduction at anthesis, three spring wheat genotypes [L1 (advanced line), L2 (Vorobey) and L3 (Punjab-11)] having contrasting yield potential under drought in field were investigated under controlled greenhouse conditions, drought stress was imposed at anthesis stage by withholding irrigation until all plant available water was depleted, while well-watered control plants were kept at 95% pot water holding capacity. RESULTS Compared to genotype L1 and L2, pronounced decrease in grain number (NGS), grain yield (GY) and harvest index (HI) were found in genotype L3, mainly due to its greater kernel abortion (KA) under drought. A significant positive correlation of leaf monodehydroascorbate reductase (MDHAR) with both NGS and HI was observed. In contrast, significant negative correlations of glutathione S-transferase (GST) and vacuolar invertase (vacInv) both within source and sink were found with NGS and HI. Likewise, a significant negative correlation of leaf abscisic acid (ABA) with NGS was noticed. Moreover, leaf aldolase and cell wall peroxidase (cwPOX) activities were significantly and positively associated with thousand kernel weight (TKW). CONCLUSION Distinct physiological markers correlating with yield traits and higher activity of leaf aldolase and cwPOX may be chosen as predictive biomarkers for higher TKW. Also, higher activity of MDHAR within the leaf can be selected as a predictive biomarker for higher NGS in wheat under drought. Whereas, lower activity of vacInv and GST both within leaf and spike can be selected as biomarkers for higher NGS and HI. The results highlighted the role of antioxidant and carbohydrate-metabolic enzymes in the modulation of source-sink balance in wheat crops, which could be used as bio-signatures for breeding and selection of drought-resilient wheat genotypes for a future drier climate.
Collapse
Affiliation(s)
- Sajid Shokat
- Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 13, 2630, Taastrup, Denmark.
- Wheat Breeding Group, Plant Breeding and Genetic Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan.
| | - Dominik K Großkinsky
- Transport Biology, Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Thomas Roitsch
- Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 13, 2630, Taastrup, Denmark
| | - Fulai Liu
- Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 13, 2630, Taastrup, Denmark
| |
Collapse
|
27
|
Irvin S, Clarke MA, Trabert B, Wentzensen N. Systematic review and meta-analysis of studies assessing the relationship between statin use and risk of ovarian cancer. Cancer Causes Control 2020; 31:869-879. [PMID: 32685996 DOI: 10.1007/s10552-020-01327-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The link between lipid-stabilizing medications and epithelial ovarian carcinogenesis is incompletely understood. Statins may reduce ovarian cancer risk, but results are inconclusive. METHODS We conducted a systematic review and meta-analysis of studies reporting associations between statin use and ovarian cancer risk in PubMed. Summary risk ratios (RRs) and confidence intervals (CIs) were calculated. Subgroup analyses by cancer histotype, statin class (lipo- or hydrophilic) and duration of statin use were conducted. Use of individual statins in populations was assessed to determine population-specific differences in statin types. RESULTS Nine studies with 435,237 total women were included (1 randomized controlled trial (RCT); 4 prospective; 4 case-control). Statin use was associated with a reduced risk of ovarian cancer (RR 0.87, 95% CI 0.74-1.03) and risk was significantly reduced in populations with low pravastatin use (RR 0.83, 95% CI 0.70-0.99). Risk estimates varied by statin class (3 studies; lipophilic: RR 0.88, 95% CI 0.69-1.12; hydrophilic: RR 1.06, 95% CI 0.72-1.57) and cancer histotype (3 studies; serous: RR 0.95, 95% CI 0.69-1.30; clear cell: RR 1.17, 95% CI 0.74-1.86). Long-term use was associated with a reduced risk of ovarian cancer (RR 0.77, 95% CI 0.54-1.10) that further reduced when pravastatin use was low (RR 0.68, 95% CI 0.46-1.01). Between-study heterogeneity was high overall and in subgroups (I2 > 60%). CONCLUSION Statins may be associated with a reduced risk of ovarian cancer, but the effect likely differs by individual statin, duration of use and cancer histotype. Additional well-powered studies are needed to elucidate important subgroup effects.
Collapse
Affiliation(s)
- Sarah Irvin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Megan A Clarke
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| |
Collapse
|
28
|
Peng C, Hou ST, Deng CX, Zhang Y. Function of DHX33 in promoting Warburg effect via regulation of glycolytic genes. J Cell Physiol 2020; 236:981-996. [PMID: 32617965 DOI: 10.1002/jcp.29909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/21/2023]
Abstract
Cancer cells metabolize glucose through glycolysis to promote cell proliferation even with abundant oxygen. Multiple glycolysis genes are deregulated during cancer development. Despite intensive effort, the cause of their deregulation remains incompletely understood. Here in this study, we discovered that DHX33 plays a critical role in Warburg effect of cancer cells. DHX33 deficient cells have markedly reduced glycolysis activity. Through RNA-seq analysis, we found multiple critical genes involved in Warburg effect were downregulated after DHX33 deficiency. These genes include lactate dehydrogenase A (LDHA), pyruvate dehydrogenase kinase 1 (PDK1), pyruvate kinase muscle isoform 2 (PKM2), enolase 1 (ENO1), ENO2, hexokinase 1/2, among others. With LDHA, PDK1, and PKM2 as examples, we further revealed that DHX33 altered the epigenetic marks around the promoter of glycolytic genes. This is through DHX33 in complex with Gadd45a-a growth arrest and DNA damage protein. DHX33 is required for the loading of Gadd45a and DNA dioxygenase Tet1 at the promoter sites, which resulted in active DNA demethylation and enhanced histone H4 acetylation. We conclude that DHX33 changes local epigenetic marks in favor of the transcription of glycolysis genes to promote cancer cell proliferation. Our study highlights the significance of RNA helicase DHX33 in Warburg effect and cancer therapeutics.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Sheng-Tao Hou
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yandong Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shenzhen KeYe Life Technologies, Co., Ltd., Shenzhen, Guangdong, China
| |
Collapse
|
29
|
Potent Anticancer Effect of the Natural Steroidal Saponin Gracillin Is Produced by Inhibiting Glycolysis and Oxidative Phosphorylation-Mediated Bioenergetics. Cancers (Basel) 2020; 12:cancers12040913. [PMID: 32276500 PMCID: PMC7226187 DOI: 10.3390/cancers12040913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 01/19/2023] Open
Abstract
Metabolic rewiring to utilize aerobic glycolysis is a hallmark of cancer. However, recent findings suggest the role of mitochondria in energy generation in cancer cells and the metabolic switch to oxidative phosphorylation (OXPHOS) in response to the blockade of glycolysis. We previously demonstrated that the antitumor effect of gracillin occurs through the inhibition of mitochondrial complex II-mediated energy production. Here, we investigated the potential of gracillin as an anticancer agent targeting both glycolysis and OXPHOS in breast and lung cancer cells. Along with the reduction in adenosine triphosphate (ATP) production, gracillin markedly suppresses the production of several glycolysis-associated metabolites. A docking analysis and enzyme assay suggested phosphoglycerate kinase 1 (PGK1) is a potential target for the antiglycolytic effect of gracillin. Gracillin reduced the viability and colony formation ability of breast cancer cells by inducing apoptosis. Gracillin displayed efficacious antitumor effects in mice bearing breast cancer cell line or breast cancer patient-derived tumor xenografts with no overt changes in body weight. An analysis of publicly available datasets further suggested that PGK1 expression is associated with metastasis status and poor prognosis in patients with breast cancer. These results suggest that gracillin is a natural anticancer agent that inhibits both glycolysis and mitochondria-mediated bioenergetics.
Collapse
|
30
|
Fan Z, Li L, Li X, Zhang M, Dou M, Zhao J, Cao J, Deng X, Zhang M, Li H, Suo Z. Anti-senescence role of heterozygous fumarate hydratase gene knockout in rat lung fibroblasts in vitro. Aging (Albany NY) 2020; 11:573-589. [PMID: 30668541 PMCID: PMC6366963 DOI: 10.18632/aging.101761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/05/2019] [Indexed: 12/21/2022]
Abstract
Abnormalities in tricarboxylic acid (TCA) cycle function were related to a variety of pathological processes. Fumarate hydratase (FH) is a required enzyme in the TCA cycle. To explore the general influence of FH knockout, we isolated FH+/- rat and normal rat lung fibroblasts and cultured these cells in vitro. The isolated fibroblasts with the current method were rather homogeneous and were confirmed spindle in morphology, positive for vimentin and negative for α-SMA (α-smooth muscle actin). Sequencing of the PCR (polymerase chain reaction) products flanking the FH gene mutation verified the FH+/- status, and the FH gene and protein expression were confirmed to be reduced in the FH+/- cells. No sign of ageing for the FH+/- cells after 61 passages was observed, but the controls died out at this stage. Flow cytometry revealed increased S-phase and decreased G1/G0 proportions with significantly less early apoptosis in FH+/- cells compared to that in control cells. At the same time, increased glucose consumption, intracellular fumarate production and extracellular lactate secretion were verified in the FH+/- cells. Correspondingly, FH+/- cells showed a lower basal oxygen consumption rate (OCR) but a higher level of reactive oxygen species (ROS) production. Single cell cloning and cell line establishment were successfully performed with the FH+/- cells at the 84th passage. All the above results indicate an important role for FH+/- in the longevity or immortality of the FH+/- cells, in which increased p53 and TERT (telomerase reverse transcriptase) protein expression, decreased p21 and p16 protein expression and negative SA-β-Gal (senescence-associated beta-galactosidase) were verified along with metabolic reprogramming.
Collapse
Affiliation(s)
- Zhirui Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lifeng Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Meng Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengmeng Dou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Cao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoming Deng
- Department of Chinese and Western Integrative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Montebello, Oslo, Norway
| |
Collapse
|
31
|
Krstic J, Pieber TR, Prokesch A. Stratifying nutritional restriction in cancer therapy: Next stop, personalized medicine. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:231-259. [PMID: 32475475 DOI: 10.1016/bs.ircmb.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary interventions combined with cancer drugs represent a clinically valid polytherapy. In particular nutrient restriction (NR) in the form of varied fasting or caloric restriction regimens holds great clinical promise, conceptually due to the voracious anabolic appetite of cancer cells. This metabolic dependency is driven by a strong selective pressure to increasingly acquire biomass of a proliferating tumor and can be therapeutically exploited as vulnerability. A host of preclinical data suggest that NR can potentiate the efficacy of, or alleviate resistance to, cancer drugs. However, complicating clinical implementation are the many variables involved, such as host biology, cancer stage and type, oncogenic mutation landscape, tumor heterogeneity, variations in treatment modalities, and patient compliance to NR protocols. This calls for systematic preclinical screens and co-clinical studies to predict effective combinations of NR with cancer drugs and to allow for patient stratification regarding responsiveness to polytherapy. Such screen-and-stratify pipelines should consider tumor heterogeneity as well as the role of immune effectors in the tumor microenvironment and may lead to biomarker discovery advancing the oncology field toward personalized options with improved translatability to clinical settings. This opinion-based review provides a critical overview of recent literature investigating NR for cancer treatment, pinpoints limitations of current studies, and suggests standardizations and refinements for future studies and trials. The proposed measures aim to increase the translational value of preclinical data and effectively harness the vast potential of NR as adjuvant for cancer therapy.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Thomas R Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; Health Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
32
|
Burrell JA, Richard AJ, King WT, Stephens JM. Mitochondrial Pyruvate Carriers are not Required for Adipogenesis but are Regulated by High-Fat Feeding in Brown Adipose Tissue. Obesity (Silver Spring) 2020; 28:293-302. [PMID: 31970913 PMCID: PMC6986308 DOI: 10.1002/oby.22678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The objectives of this study were to assess the role of mitochondrial pyruvate carriers (MPCs) in adipocyte development in vitro and determine whether MPCs are regulated in vivo by high-fat feeding in male and female C57BL/6J mice. METHODS This study utilized small interfering RNA-mediated knockdown to assess the requirement of MPC1 for adipogenesis in the 3T3-L1 model system. Treatment with UK-5099, a potent pharmacological MPC inhibitor, was also used to assess the loss of MPC activity. Western blot analysis was performed on adipose tissue samples from mice on a low-fat diet or a high-fat diet (HFD) for 12 weeks. RESULTS The loss of MPC expression via small interfering RNA-mediated knockdown or pharmacological inhibition did not affect adipogenesis of 3T3-L1 cells. In vivo studies indicated that expression of MPCs was significantly decreased in brown adipose tissue of male mice, but not female, on an HFD. CONCLUSIONS Although MPCs are essential for pyruvate transport, MPCs are not required for adipogenesis in vitro, suggesting that other substrates can be used for energy production when the MPC complex is not functional. Also, a significant decrease in MPC1 and 2 expression occurred in brown fat, but not white fat, of male mice fed an HFD.
Collapse
Affiliation(s)
- Jasmine A Burrell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Allison J Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - William T King
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Jacqueline M Stephens
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
33
|
Mutation Enrichment and Transcriptomic Activation Signatures of 419 Molecular Pathways in Cancer. Cancers (Basel) 2020; 12:cancers12020271. [PMID: 31979117 PMCID: PMC7073226 DOI: 10.3390/cancers12020271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Carcinogenesis is linked with massive changes in regulation of gene networks. We used high throughput mutation and gene expression data to interrogate involvement of 278 signaling, 72 metabolic, 48 DNA repair and 47 cytoskeleton molecular pathways in cancer. Totally, we analyzed 4910 primary tumor samples with individual cancer RNA sequencing and whole exome sequencing profiles including ~1.3 million DNA mutations and representing thirteen cancer types. Gene expression in cancers was compared with the corresponding 655 normal tissue profiles. For the first time, we calculated mutation enrichment values and activation levels for these pathways. We found that pathway activation profiles were largely congruent among the different cancer types. However, we observed no correlation between mutation enrichment and expression changes both at the gene and at the pathway levels. Overall, positive median cancer-specific activation levels were seen in the DNA repair, versus similar slightly negative values in the other types of pathways. The DNA repair pathways also demonstrated the highest values of mutation enrichment. However, the signaling and cytoskeleton pathways had the biggest proportions of representatives among the outstandingly frequently mutated genes thus suggesting their initiator roles in carcinogenesis and the auxiliary/supporting roles for the other groups of molecular pathways.
Collapse
|
34
|
Kaur P, Nagar S, Bhagwat M, Uddin MM, Zhu Y, Vancura A. Probing Metabolic Changes in IFNγ-Treated Ovarian Cancer Cells. Methods Mol Biol 2020; 2108:197-207. [PMID: 31939182 DOI: 10.1007/978-1-0716-0247-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Interferon-γ (IFNγ) is a pleiotropic cytokine that signals to many different cell types. IFNγ has both antitumor functions and pro-tumorigenic effects and regulates different aspects of cell physiology, including metabolism. Cancer cells undergo a complex rearrangement of metabolic pathways that allows them to satisfy the needs of increased proliferation, and many cancer cells redirect glucose metabolism from oxidative phosphorylation to aerobic glycolysis. In this chapter, we describe a protocol that utilizes the Agilent Seahorse XFp Analyzer to assess mitochondrial respiration and glycolysis in ovarian cancer cells treated with IFNγ.
Collapse
Affiliation(s)
- Pritpal Kaur
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Shreya Nagar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Madhura Bhagwat
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Mohammad M Uddin
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Yan Zhu
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
35
|
Cancer Biology and Carcinogenesis: Fundamental Biological Processes and How They Are Deranged in Oral Cancer. TEXTBOOK OF ORAL CANCER 2020. [DOI: 10.1007/978-3-030-32316-5_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Li, J, Wang, T, Xia J, Yao W, Huang F. Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases. FASEB J 2019; 33:11640-11654. [PMID: 31370704 PMCID: PMC6902721 DOI: 10.1096/fj.201901175r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Impaired glycolysis has pathologic effects on the occurrence and progression of liver diseases, and it appears that glycolysis is increased to different degrees in different liver diseases. As an important post-translational modification, reversible lysine acetylation regulates almost all cellular processes, including glycolysis. Lysine acetylation can occur enzymatically with acetyltransferases or nonenzymatically with acetyl-coenzyme A. Accompanied by the progression of liver diseases, there seems to be a temporal and spatial variation between enzymatic and nonenzymatic acetylations in the regulation of glycolysis. Here, we summarize the most recent findings on the functions and targets of acetylation in controlling glycolysis in the different stages of liver diseases. In addition, we discuss the differences and causes between enzymatic and nonenzymatic acetylations in regulating glycolysis throughout the progression of liver diseases. Then, we review these new discoveries to provide the potential implications of these findings for therapeutic interventions in liver diseases.-Li, J., Wang, T., Xia, J., Yao, W., Huang, F. Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases.
Collapse
Affiliation(s)
- Juan Li,
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tongxin Wang,
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
37
|
Review and Comparison of Cancer Biomarker Trends in Urine as a Basis for New Diagnostic Pathways. Cancers (Basel) 2019; 11:cancers11091244. [PMID: 31450698 PMCID: PMC6770126 DOI: 10.3390/cancers11091244] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the major causes of mortality worldwide and its already large burden is projected to increase significantly in the near future with a predicted 22 million new cancer cases and 13 million cancer-related deaths occurring annually by 2030. Unfortunately, current procedures for diagnosis are characterized by low diagnostic accuracies. Given the proved correlation between cancer presence and alterations of biological fluid composition, many researchers suggested their characterization to improve cancer detection at early stages. This paper reviews the information that can be found in the scientific literature, regarding the correlation of different cancer forms with the presence of specific metabolites in human urine, in a schematic and easily interpretable form, because of the huge amount of relevant literature. The originality of this paper relies on the attempt to point out the odor properties of such metabolites, and thus to highlight the correlation between urine odor alterations and cancer presence, which is proven by recent literature suggesting the analysis of urine odor for diagnostic purposes. This investigation aims to evaluate the possibility to compare the results of studies based on different approaches to be able in the future to identify those compounds responsible for urine odor alteration.
Collapse
|
38
|
Espinosa Ruiz C, Manuguerra S, Cuesta A, Esteban MA, Santulli A, Messina CM. Sub-lethal doses of polybrominated diphenyl ethers affect some biomarkers involved in energy balance and cell cycle, via oxidative stress in the marine fish cell line SAF-1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:1-10. [PMID: 30797971 DOI: 10.1016/j.aquatox.2019.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of persistent contaminants which are found all over the world in the marine environment. Sparus aurata fibroblast cell line (SAF-1) was exposed to increasing concentrations of PBDEs 47 and 99, until 72 h to evaluate the cytotoxicity, reactive oxygen species (ROS) production and the expression of some selected molecular markers related to cell cycle, cell signaling, energetic balance and oxidative stress (p53, erk-1, hif-1α and nrf-2), by real-time PCR. Furthermore, SAF-1 cells were exposed for 7 and 15 days to sub-lethal concentrations, in order to evaluate the response of some biomarkers by immunoblotting (p53, ERK-1, AMPK, HIF-1α and NRF-2). After 48 and 72 h, the cells showed a significant decrease of cell vitality as well as an increase of intracellular ROS production. Gene expression analysis showed that sub-lethal concentrations of BDE-99 and 47, after 72 h, up-regulated cell cycle and oxidative stress biomarkers, although exposure to 100 μmol L-1 down-regulated the selected markers related to cell cycle, cell signaling, energetic balance. After 7 and 15 days of sub-lethal doses exposure, all the analyzed markers resulted affected by the contaminants. Our results suggest that PBDEs influence the cells homeostasis first of all via oxidative stress, reducing the cell response and defense capacity and affecting its energetic levels. This situation of stress and energy imbalance could represents a condition that, modifying some of the analyzed biochemical pathways, would predispose to cellular transformation.
Collapse
Affiliation(s)
- Cristobal Espinosa Ruiz
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Simona Manuguerra
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Maria Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Andrea Santulli
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Consorzio Universitario della Provincia di Trapani, Marine Biology Institute, Via Barlotta 4, 91100, Trapani, Italy
| | - Concetta M Messina
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy.
| |
Collapse
|
39
|
Antoniou SX, Gaude E, Ruparel M, van der Schee MP, Janes SM, Rintoul RC. The potential of breath analysis to improve outcome for patients with lung cancer. J Breath Res 2019; 13:034002. [PMID: 30822771 DOI: 10.1088/1752-7163/ab0bee] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer remains the most common cause of cancer related death in both the UK and USA. Development of diagnostic approaches that have the ability to detect lung cancer early are a research priority with potential to improve survival. Analysis of exhaled breath metabolites, or volatile organic compounds (VOCs) is an area of considerable interest as it could fulfil such requirements. Numerous studies have shown that VOC profiles are different in the breath of patients with lung cancer compared to healthy individuals or those with non-malignant lung diseases. This review provides a scientific and clinical assessment of the potential value of a breath test in lung cancer. It discusses the current understanding of metabolic pathways that contribute to exhaled VOC production in lung cancer and reviews the research conducted to date. Finally, we highlight important areas for future research and discuss how a breath test could be incorporated into various clinical pathways.
Collapse
Affiliation(s)
- S X Antoniou
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom.,Equal contribution
| | - E Gaude
- Owlstone Medical, Cambridge, United Kingdom,Equal contribution
| | - M Ruparel
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | | | - S M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - R C Rintoul
- Papworth Trials Unit Collaboration, Royal Papworth Hospital, Cambridge, United Kingdom,Department of Oncology, University of Cambridge, United Kingdom
| | | |
Collapse
|
40
|
Yun CW, Han YS, Lee SH. PGC-1α Controls Mitochondrial Biogenesis in Drug-Resistant Colorectal Cancer Cells by Regulating Endoplasmic Reticulum Stress. Int J Mol Sci 2019; 20:ijms20071707. [PMID: 30959809 PMCID: PMC6480203 DOI: 10.3390/ijms20071707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Anti-cancer drug resistance is a serious issue for patients with colorectal cancer (CRC). Although recent studies have shown the mechanism by which CRC cells become drug resistant, novel strategies for overcoming this drug resistance have not yet been developed. To address this problem, we characterized 5-fluorouracil (5FU)-resistant CRC cells after treatment with 5FU, and focused on the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in these cells. In 5FU-resistant CRC cells, the 5FU did not considerably decrease the mitochondrial biogenesis or mitochondrial complex I and IV activities, and only partially decreased the antioxidant enzymatic activity, oxygen consumption ratio, and cell survival. The expression of PGC-1α was remarkably increased in the 5FU-resistant CRC cells compared with the 5FU-sensitive CRC cells. The 5FU-resistant CRC cells displayed enhanced mitochondrial biogenesis, oxidative phosphorylation, and antioxidant enzyme activities against 5FU-induced reactive oxygen species, because of the increased expression of PGC-1α. PGC-1α inhibited 5FU-induced endoplasmic reticulum (ER) stress in the 5FU-resistant CRC cells, resulting in the suppression of apoptosis. These findings reveal that PGC-1α plays an important role in drug resistance in 5FU-resistant CRC cells. Moreover, PGC-1α could serve as a novel target in patients with 5FU-resistant CRC.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 336-745, Korea.
| | - Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 336-745, Korea.
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 336-745, Korea.
- Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 330-930, Korea.
| |
Collapse
|
41
|
Wang Y, Wang CH, Zhang YF, Zhu L, Lei HM, Tang YB. UPLC-MS-based metabolomics reveals metabolic dysregulation in ALDH1A1-overexpressed lung adenocarcinoma cells. Metabolomics 2019; 15:52. [PMID: 30911937 DOI: 10.1007/s11306-019-1514-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/18/2019] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Specific oncogenotypes can produce distinct metabolic changes in cancer. Recently it is considered that metabolic reprograming contributes heavily to drug resistance. Aldehyde dehydrogenase 1A1 (ALDH1A1), is overexpressed in drug resistant lung adenocarcinomas and may be the cause of acquired drug resistance. However, how ALDH1A1 affects metabolic profiling in lung adenocarcinoma cells remains elusive. OBJECTIVE We sought to investigate metabolic alterations induced by ALDH1A1 in lung adenocarcinoma in order to better understand the reprogramming and metabolic mechanism of resistance induced by ALDH1A1. METHODS Metabolic alterations in lung adenocarcinoma HCC827-ALDH1A1 cells were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). HCC827-ALDH1A1 metabolic signatures were extracted by univariate and multivariate statistical analysis. Furthermore, metabolite enrichment analysis and pathway analysis were performed using MetaboAnalyst 4.0 software. RESULTS Twenty-two metabolites were positively identified using authentic standards, including uridine monophosphate (UMP), uridine diphosphate (UDP), adenosine diphosphate (ADP), malic acid, malonyl-coenzyme A, nicotinamide adenine dinucleotide (NAD), coenzyme A and so on. Furthermore, metabolic pathway analysis revealed several dysregulated pathways in HCC827-ALDH1A1 cells, including nucleotide metabolism, urea cycle, tricarboxylic acid (TCA) cycle, and glycerol phospholipid metabolism etc. CONCLUSION: Lung cancer is the most frequent cause of cancer-related deaths worldwide. Nearly all patients eventually undergo disease progression due to acquired resistance. Mechanisms of biological acquired resistance need to be identified. Our study identified altered metabolites in HCC827-ALDH1A1 cells, enhancing our knowledge of lung adenocarcinoma metabolic alterations induced by ALDH1A1, creating a novel therapeutic pathway. These metabolic signatures of ALDH1A1 overexpression may shed light on molecular mechanisms in drug-resistant tumors, and on candidate drug targets. Furthermore, new molecular targets may provide the foundation for potential anticancer strategies for lung cancer therapy.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Cong-Hui Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu-Fei Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui-Min Lei
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ya-Bin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
42
|
Oxidative Stress, Induced by Sub-Lethal Doses of BDE 209, Promotes Energy Management and Cell Cycle Modulation in the Marine Fish Cell Line SAF-1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030474. [PMID: 30736298 PMCID: PMC6388118 DOI: 10.3390/ijerph16030474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/26/2022]
Abstract
The effects of sub-lethal doses of polybrominated diphenyl ether (PBDE)-209 in terms of toxicity, oxidative stress, and biomarkers were evaluated in the Sparus aurata fibroblast cell line (SAF-1). Vitality and oxidative stress status were studied after incubation with PBDE for 72 h. Concomitantly, the quantification of proteins related to cell cycle and DNA repair (p53), cell proliferation (extracellular signal–regulated kinase 1 (ERK1)), energetic restriction (hypoxia-inducible factor 1 (HIF1)), and redox status (Nuclear factor erythroid 2–related factor 2 (NRF2)) was also determined after prolonged exposure (7–15 days) by immunoblotting. Our results demonstrated that rising concentrations of PBDEs exposure-induced oxidative stress, and that this event modulates different cell pathways related to cell cycle, cell signaling, and energetic balance in the long term, indicating the negative impact of sub-lethal dose exposure to cell homeostasis.
Collapse
|
43
|
Gaude E, Schmidt C, Gammage PA, Dugourd A, Blacker T, Chew SP, Saez-Rodriguez J, O'Neill JS, Szabadkai G, Minczuk M, Frezza C. NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction. Mol Cell 2019; 69:581-593.e7. [PMID: 29452638 PMCID: PMC5823973 DOI: 10.1016/j.molcel.2018.01.034] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/12/2017] [Accepted: 01/25/2018] [Indexed: 11/27/2022]
Abstract
The bioenergetics and molecular determinants of the metabolic response to mitochondrial dysfunction are incompletely understood, in part due to a lack of appropriate isogenic cellular models of primary mitochondrial defects. Here, we capitalize on a recently developed cell model with defined levels of m.8993T>G mutation heteroplasmy, mTUNE, to investigate the metabolic underpinnings of mitochondrial dysfunction. We found that impaired utilization of reduced nicotinamide adenine dinucleotide (NADH) by the mitochondrial respiratory chain leads to cytosolic reductive carboxylation of glutamine as a new mechanism for cytosol-confined NADH recycling supported by malate dehydrogenase 1 (MDH1). We also observed that increased glycolysis in cells with mitochondrial dysfunction is associated with increased cell migration in an MDH1-dependent fashion. Our results describe a novel link between glycolysis and mitochondrial dysfunction mediated by reductive carboxylation of glutamine.
Collapse
Affiliation(s)
- Edoardo Gaude
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Christina Schmidt
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Payam A Gammage
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Aurelien Dugourd
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Blacker
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Sew Peak Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 2QH, UK
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 2QH, UK
| | - Gyorgy Szabadkai
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Department of Biomedical Sciences, University of Padua and CNR Neuroscience Institute, Padua 35121, Italy; The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.
| |
Collapse
|
44
|
Ovarian tumours of different histologic type and clinical stage induce similar changes in lipid metabolism. Br J Cancer 2018; 119:847-854. [PMID: 30293997 PMCID: PMC6189177 DOI: 10.1038/s41416-018-0270-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 11/25/2022] Open
Abstract
Background Previous results obtained from serum samples of late-stage, high-grade serous ovarian carcinoma patients showed large alterations in lipid metabolism. To validate and extend the results, we studied lipidomic changes in early-stage ovarian tumours. In addition to serous ovarian cancer, we investigated whether these changes occur in mucinous and endometrioid histological subtypes as well. Methods Altogether, 354 serum or plasma samples were collected from three centres, one from Germany and two from Finland. We performed lipidomic analysis of samples from patients with malignant (N = 138) or borderline (N = 25) ovarian tumours, and 191 controls with benign pathology. These results were compared to previously published data. Results We found 39 lipids that showed consistent alteration both in early- and late-stage ovarian cancer patients as well as in pre- and postmenopausal women. Most of these changes were already significant at an early stage and progressed with increasing stage. Furthermore, 23 lipids showed similar alterations in all investigated histological subtypes. Conclusions Changes in lipid metabolism due to ovarian cancer occur in early-stage disease but intensify with increasing stage. These changes occur also in other histological subtypes besides high-grade serous carcinoma. Understanding lipid metabolism in ovarian cancer may lead to new therapeutic and diagnostic alternatives.
Collapse
|
45
|
Saadat N, Liu F, Haynes B, Nangia-Makker P, Bao X, Li J, Polin LA, Gupta S, Mao G, Shekhar MP. Nano-delivery of RAD6/Translesion Synthesis Inhibitor SMI#9 for Triple-negative Breast Cancer Therapy. Mol Cancer Ther 2018; 17:2586-2597. [PMID: 30242094 DOI: 10.1158/1535-7163.mct-18-0364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/02/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022]
Abstract
The triple-negative breast cancer (TNBC) subtype, regardless of their BRCA1 status, has the poorest outcome compared with other breast cancer subtypes, and currently there are no approved targeted therapies for TNBC. We have previously demonstrated the importance of RAD6-mediated translesion synthesis pathway in TNBC development/progression and chemoresistance, and the potential therapeutic benefit of targeting RAD6 with a RAD6-selective small-molecule inhibitor, SMI#9. To overcome SMI#9 solubility limitations, we recently developed a gold nanoparticle (GNP)-based platform for conjugation and intracellular release of SMI#9, and demonstrated its in vitro cytotoxic activity toward TNBC cells. Here, we characterized the in vivo pharmacokinetic and therapeutic properties of PEGylated GNP-conjugated SMI#9 in BRCA1 wild-type and BRCA1-mutant TNBC xenograft models, and investigated the impact of RAD6 inhibition on TNBC metabolism by 1H-NMR spectroscopy. GNP conjugation allowed the released SMI#9 to achieve higher systemic exposure and longer retention as compared with the unconjugated drug. Systemically administered SMI#9-GNP inhibited the TNBC growth as effectively as intratumorally injected unconjugated SMI#9. Inductively coupled mass spectrometry analysis showed highest GNP concentrations in tumors and liver of SMI#9-GNP and blank-GNP-treated mice; however, tumor growth inhibition occurred only in the SMI#9-GNP-treated group. SMI#9-GNP was tolerated without overt signs of toxicity. SMI#9-induced sensitization was associated with perturbation of a common set of glycolytic pathways in BRCA1 wild-type and BRCA1-mutant TNBC cells. These data reveal novel SMI#9 sensitive markers of metabolic vulnerability for TNBC management and suggest that nanotherapy-mediated RAD6 inhibition offers a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Nadia Saadat
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Fangchao Liu
- Department of Chemical Engineering and Materials Science, Wayne State University College of Engineering, Detroit, Michigan
| | - Brittany Haynes
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Pratima Nangia-Makker
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Xun Bao
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jing Li
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Lisa A Polin
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Smiti Gupta
- Department of Nutrition and Food Sciences, Wayne State University College of Liberal Arts and Science, Detroit, Michigan
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University College of Engineering, Detroit, Michigan.
| | - Malathy P Shekhar
- Karmanos Cancer Institute, Detroit, Michigan. .,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
46
|
Mattarei A, Romio M, Managò A, Zoratti M, Paradisi C, Szabò I, Leanza L, Biasutto L. Novel Mitochondria-Targeted Furocoumarin Derivatives as Possible Anti-Cancer Agents. Front Oncol 2018; 8:122. [PMID: 29740538 PMCID: PMC5925966 DOI: 10.3389/fonc.2018.00122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023] Open
Abstract
Targeting small molecules to appropriate subcellular compartments is a way to increase their selectivity and effectiveness while minimizing side effects. This can be accomplished either by stably incorporating specific "homing" properties into the structure of the active principle, or by attaching to it a targeting moiety via a labile linker, i.e., by producing a "targeting pro-drug." Mitochondria are a recognized therapeutic target in oncology, and blocking the population of the potassium channel Kv1.3 residing in the inner mitochondrial membrane (mtKv1.3) has been shown to cause apoptosis of cancerous cells expressing it. These concepts have led us to devise novel, mitochondria-targeted, membrane-permeant drug candidates containing the furocoumarin (psoralenic) ring system and the triphenylphosphonium (TPP) lipophilic cation. The strategy has proven effective in various cancer models, including pancreatic ductal adenocarcinoma, melanoma, and glioblastoma, stimulating us to devise further novel molecules to extend and diversify the range of available drugs of this type. New compounds were synthesized and tested in vitro; one of them-a prodrug in which the coumarinic moiety and the TPP group are linked by a bridge comprising a labile carbonate bond system-proved quite effective in in vitro cytotoxicity assays. Selective death induction is attributed to inhibition of mtKv1.3. This results in oxidative stress, which is fatal for the already-stressed malignant cells. This compound may thus be a candidate drug for the mtKv1.3-targeting therapeutic approach.
Collapse
Affiliation(s)
- Andrea Mattarei
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Matteo Romio
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
47
|
Marro M, Nieva C, de Juan A, Sierra A. Unravelling the Metabolic Progression of Breast Cancer Cells to Bone Metastasis by Coupling Raman Spectroscopy and a Novel Use of Mcr-Als Algorithm. Anal Chem 2018; 90:5594-5602. [PMID: 29589914 DOI: 10.1021/acs.analchem.7b04527] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Raman spectroscopy (RS) has shown promise as a tool to reveal biochemical changes that occur in cancer processes at the cellular level. However, when analyzing clinical samples, RS requires improvements to be able to resolve biological components from the spectra. We compared the strengths of Multivariate Curve Resolution (MCR) versus Principal Component Analysis (PCA) to deconvolve meaningful biological components formed by distinct mixtures of biological molecules from a set of mixed spectra. We exploited the flexibility of the MCR algorithm to easily accommodate different initial estimates and constraints. We demonstrate the ability of MCR to resolve undesired background signals from the RS that can be subtracted to obtain clearer cancer cell spectra. We used two triple negative breast cancer cell lines, MDA-MB 231 and MDA-MB 435, to illustrate the insights obtained by RS that infer the metabolic changes required for metastasis progression. Our results show that increased levels of amino acids and lower levels of mitochondrial signals are attributes of bone metastatic cells, whereas lung metastasis tropism is characterized by high lipid and mitochondria levels. Therefore, we propose a method based on the MCR algorithm to achieve unique biochemical insights into the molecular progression of cancer cells using RS.
Collapse
Affiliation(s)
- Monica Marro
- ICFO- Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels (Barcelona) , Spain
| | - Claudia Nieva
- IDIBELL-Institut d'Investigació Biomèdica de Bellvitge , Av. Castelldefels, Km 2.7 , 08907 L'Hospitalet de Llobregat, Barcelona , Spain
| | - Anna de Juan
- Department of Chemical Engineering and Analytical Chemistry , Universitat de Barcelona , Diagonal 645 , 08028 Barcelona , Spain
| | - Angels Sierra
- Molecular and Translational Oncology Laboratory, Biomedical Research Center CELLEX-CRBC, Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS , Centre de Recerca Biomèdica CELLEX , 08036 Barcelona , Spain.,Faculty of Sciences , Universitat de VIC-Universitat Central de Catalunya , 08500 Vic, Barcelona , Spain
| |
Collapse
|
48
|
MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent. Cell Death Dis 2018; 9:220. [PMID: 29445162 PMCID: PMC5833827 DOI: 10.1038/s41419-018-0295-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Heightened aerobic glycolysis and glutaminolysis are characteristic metabolic phenotypes in cancer cells. Neuroblastoma (NBL), a devastating pediatric cancer, is featured by frequent genomic amplification of MYCN, a member of the Myc oncogene family that is primarily expressed in the early stage of embryonic development and required for neural crest development. Here we report that an enriched glutaminolysis gene signature is associated with MYCN amplification in children with NBL. The partial knockdown of MYCN suppresses glutaminolysis in NBL cells. Conversely, forced overexpression of MYCN in neural crest progenitor cells enhances glutaminolysis. Importantly, glutaminolysis induces oxidative stress by producing reactive oxygen species (ROS), rendering NBL cells sensitive to ROS augmentation. Through a small-scale metabolic-modulator screening, we have found that dimethyl fumarate (DMF), a Food and Drug Administration-approved drug for multiple sclerosis, suppresses NBL cell proliferation in vitro and tumor growth in vivo. DMF suppresses NBL cell proliferation through inducing ROS and subsequently suppressing MYCN expression, which is rescued by an ROS scavenger. Our findings suggest that the metabolic modulation and ROS augmentation could be used as novel strategies in treating NBL and other MYC-driven cancers.
Collapse
|
49
|
Ha JH, Radhakrishnan R, Jayaraman M, Yan M, Ward JD, Fung KM, Moxley K, Sood AK, Isidoro C, Mukherjee P, Song YS, Dhanasekaran DN. LPA Induces Metabolic Reprogramming in Ovarian Cancer via a Pseudohypoxic Response. Cancer Res 2018; 78:1923-1934. [PMID: 29386184 DOI: 10.1158/0008-5472.can-17-1624] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/08/2017] [Accepted: 01/26/2018] [Indexed: 11/16/2022]
Abstract
Although hypoxia has been shown to reprogram cancer cells toward glycolytic shift, the identity of extrinsic stimuli that induce metabolic reprogramming independent of hypoxia, especially in ovarian cancer, is largely unknown. In this study, we use patient-derived ovarian cancer cells and high-grade serous ovarian cancer cell lines to demonstrate that lysophosphatidic acid (LPA), a lipid growth factor and GPCR ligand whose levels are substantially increased in ovarian cancer patients, triggers glycolytic shift in ovarian cancer cells. Inhibition of the G protein α-subunit Gαi2 disrupted LPA-stimulated aerobic glycolysis. LPA stimulated a pseudohypoxic response via Rac-mediated activation of NADPH oxidase and generation of reactive oxygen species, resulting in activation of HIF1α. HIF1α in turn induced expression of glucose transporter-1 and the glycolytic enzyme hexokinase-2 (HKII). Treatment of mice bearing ovarian cancer xenografts with an HKII inhibitor, 3-bromopyruvate, attenuated tumor growth and conferred a concomitant survival advantage. These studies reveal a critical role for LPA in metabolic reprogramming of ovarian cancer cells and identify this node as a promising therapeutic target in ovarian cancer.Significance: These findings establish LPA as a potential therapeutic target in ovarian cancer, revealing its role in the activation of HIF1α-mediated metabolic reprogramming in this disease. Cancer Res; 78(8); 1923-34. ©2018 AACR.
Collapse
Affiliation(s)
- Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mingda Yan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jeremy D Ward
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kar-Ming Fung
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Katherine Moxley
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, and the Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ciro Isidoro
- Università del Piemonte Orientale, Novara, Italy
| | - Priyabrata Mukherjee
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yong Sang Song
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, Korea
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. .,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
50
|
Wang L, Xu M, Qin J, Lin SC, Lee HJ, Tsai SY, Tsai MJ. MPC1, a key gene in cancer metabolism, is regulated by COUPTFII in human prostate cancer. Oncotarget 2018; 7:14673-83. [PMID: 26895100 PMCID: PMC4924743 DOI: 10.18632/oncotarget.7405] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial pyruvate carrier 1 (MPC1) and MPC 2 form a transporter complex in cells to control pyruvate transportation into mitochondria. Reduced expression of MPC1 disrupts the transporter function, induces metabolic shift to increase glycolysis, and thus plays important roles in several diseases, including cancer. However, the role of MPC1 in prostate cancer and the underlying mechanism causing the down-regulation of MPC1 in tumor cells remain to be defined. Here, we show that MPC1 serves as a critical regulator of glycolysis in prostate cancer cells, which in turn controls cancer cell growth, invasion, and the tumorigenic capability. More importantly, we identified that chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), a steroid receptor superfamily member, transcriptionally regulates the expression of MPC1. We further demonstrate that COUP-TFII, which is upregulated in the prostate cancer patient, regulates MPC1 and glycolysis to promote tumor growth and metastasis. Our findings reveal that COUP-TFII represses MPC1 expression in prostate cancer cells to facilitate a metabolism switch to increase glycolysis and promote cancer progression. This observation raises an intriguing possibility of targeting COUP-TFII to modulate cancer cell metabolism for prostate cancer intervention.
Collapse
Affiliation(s)
- Leiming Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mafei Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jun Qin
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai JiaoTong University School of Medicine, Shanghai 200031, China
| | - Shih-Chieh Lin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hui-Ju Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|