1
|
de Faria CDFP, Gonçalez FL, Urbinati EC. Temperature, dietary lipids, and Aeromonas hydrophila modulate self-protection mechanisms in pacu Piaractus mesopotamicus Holmberg 1887. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39385400 DOI: 10.1111/jfb.15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Water temperature has a direct influence on several physiological processes in fish. This study investigated the effects of the exposure of pacu (Piaractus mesopotamicus) to 10 days of reduced temperature in stress and innate immune and antioxidant systems, all of which are involved in energy mobilization. Two groups of fish, fed a control diet or a diet with a higher lipid level, were exposed for 10 days to 16°C and then inoculated with Aeromonas hydrophila bacterin. Samples were taken before and after 5 and 10 days of exposure. The results showed that the low temperature (16°C) was a stressor, increasing cortisol levels. Higher levels of cortisol were seen in fish with more body fat, especially at 16°C, compared to those fed control diet. The immune system was enhanced by low temperature that activated the hemolytic activity of the complement system (HAC50) and lysozyme after 10 days of exposure in fish with more body fat. Bacterin inoculation, regardless of temperature and body fat, impaired the respiratory activity of leukocytes, but the complement system activity remained at the levels seen before cold activation. Similarly, lysozyme remained at the levels seen before cold activation, showing later activation. Furthermore, soon after inoculation (at 3 and 6 h), bacterin induced oxidative stress that decreased at 24 h when the concentration of reduced glutathione (GSH) showed lower levels, suggesting that GSH was consumed to attenuate the oxidative stress. Pacu was resilient to the reduced temperature, displaying protective responses to the stressful condition using lipids to modulate these responses.
Collapse
Affiliation(s)
| | - Fábio Lopes Gonçalez
- Universidade Estadual Paulista, UNESP, Faculdade de Ciências Agrárias e Veterinárias, São Paulo, Brazil
| | - Elisabeth Criscuolo Urbinati
- Universidade Estadual Paulista, UNESP, Centro de Aquicultura, São Paulo, Brazil
- Universidade Estadual Paulista, UNESP, Faculdade de Ciências Agrárias e Veterinárias, São Paulo, Brazil
| |
Collapse
|
2
|
Zarei S, Ghafouri H, Vahdatiraad L, Heidari B. The influence of HSP inducers on salinity stress in sterlet sturgeon (Acipenser ruthenus): In vitro study on HSP expression, immune responses, and antioxidant capacity. Cell Stress Chaperones 2024; 29:552-566. [PMID: 38909654 PMCID: PMC11268179 DOI: 10.1016/j.cstres.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024] Open
Abstract
Heat shock proteins (HSPs) play a crucial role in antioxidant systems, immune responses, and enzyme activation during stress conditions. Salinity changes can cause stress and energy expenditure in fish, resulting in mortality, especially in fingerlings. The purpose of this study was to examine the relationship between salinity and HSPs in stressed fish by assessing the effects of various HSP inducers (HSPis), including Pro-Tex® (800 mM), amygdalin (80 mM), and a novel synthetic compound derived from pirano piranazole (80 µM), on isolated cells from Sterlet Sturgeon (Acipenser ruthenus) exposed to 13 ‰ salinity (S13). After liver, kidney, and gill cells were cultured, the HSPi compounds were treated in vitro in the presence and absence of salinity. The expression patterns of HSP27, HSP70, and HSP90 were assessed by Western blotting. Biochemical enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase), cortisol levels, and immune parameters (component 3, immunoglobulin M, and lysozyme) were measured before and after treatment with HSPis and HSPi + S13. According to these findings, HSPis positively modulate HSP expression, immune responses, and antioxidant levels. Furthermore, they increased in vitro cell survival by maintaining cortisol levels and biochemical enzyme activities in A. ruthenus under saline conditions (P < 0.0001). In conclusion, HSPis can increase A. ruthenus resistance to salinity stress. However, the results also indicated that these compounds can reverse the adverse effects of salinity. The effectiveness of this approach depends on further research into the effects of these ecological factors on the health status of the species, especially in vivo and in combination with other stresses.
Collapse
Affiliation(s)
- Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Leila Vahdatiraad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| |
Collapse
|
3
|
Reda RM, El-Murr A, Abdel-Basset NA, Metwally MMM, Ibrahim RE. Implications of ammonia stress for the pathogenicity of Shewanella spp. in Oreochromis niloticus: effects on hematological, biochemical, immunological, and histopathological parameters. BMC Vet Res 2024; 20:324. [PMID: 39026304 PMCID: PMC11256577 DOI: 10.1186/s12917-024-04175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Environmental stressors (such as ammonia) in aquaculture could increase the risk of pathogenicity, posing a more severe threat to farmed fish. The aim of this study was to investigate the effects of ammonia stress on the pathogenicity of Shewanella spp. in Oreochromis niloticus. First, a 96-hour static test was used to determine the median lethal concentration (LC50) of unionized ammonia to Nile tilapia. After 96 h of exposure, the Un-ionized ammonia (UIA) LC50 was estimated to be 4.26 mg/L. Second, an experiment was conducted to test the effect of unionized ammonia stress on the pathogenicity of Shewanella spp. in O. niloticus for 30 days. A study involved 180 fish divided into six groups, with the first group serving as a control. The second group (AMN1/10) and the third group (AMN1/20) were not challenged and were exposed to 1/10 (0.42 mg/L) and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. Then 0.2 mL (0.14 × 105) of Shewanella spp. was intraperitoneally injected into the fourth (SH), fifth (SH + AMN1/10), and sixth (SH + AMN1/20) groups, which were subjected to 0, 1/10 (0.42 mg/L), and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. The survival rate, hematological indices, immunological parameters, and antioxidant activity of the fish significantly decreased when they were exposed to ammonia and Shewanella infection separately or together. Histopathological changes were also observed in the kidney and liver. Furthermore, both individual and combined exposures significantly altered renal and hepatic function, with notable increases in glucose and cortisol levels, as well as in the expression of proinflammatory cytokine genes (TNF-α and IL-1ß). However, the detrimental effects of co-exposure to ammonia stress and Shewanella infection were greater than those of separate exposures. As a result, we may say that increased ammonia concentrations enhance the infection of Shewanella spp. These findings could contribute to a better understanding of Shewanella infection in Nile tilapia.
Collapse
Affiliation(s)
- Rasha M Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Nehal A Abdel-Basset
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| |
Collapse
|
4
|
Monzón-Atienza L, Bravo J, Torrecillas S, Gómez-Mercader A, Montero D, Ramos-Vivas J, Galindo-Villegas J, Acosta F. An In-Depth Study on the Inhibition of Quorum Sensing by Bacillus velezensis D-18: Its Significant Impact on Vibrio Biofilm Formation in Aquaculture. Microorganisms 2024; 12:890. [PMID: 38792721 PMCID: PMC11123725 DOI: 10.3390/microorganisms12050890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Amid growing concerns about antibiotic resistance, innovative strategies are imperative in addressing bacterial infections in aquaculture. Quorum quenching (QQ), the enzymatic inhibition of quorum sensing (QS), has emerged as a promising solution. This study delves into the QQ capabilities of the probiotic strain Bacillus velezensis D-18 and its products, particularly in Vibrio anguillarum 507 communication and biofilm formation. Chromobacterium violaceum MK was used as a biomarker in this study, and the results confirmed that B. velezensis D-18 effectively inhibits QS. Further exploration into the QQ mechanism revealed the presence of lactonase activity by B. velezensis D-18 that degraded both long- and short-chain acyl homoserine lactones (AHLs). PCR analysis demonstrated the presence of a homologous lactonase-producing gene, ytnP, in the genome of B. velezensis D-18. The study evaluated the impact of B. velezensis D-18 on V. anguillarum 507 growth and biofilm formation. The probiotic not only controls the biofilm formation of V. anguillarum but also significantly restrains pathogen growth. Therefore, B. velezensis D-18 demonstrates substantial potential for preventing V. anguillarum diseases in aquaculture through its QQ capacity. The ability to disrupt bacterial communication and control biofilm formation positions B. velezensis D-18 as a promising eco-friendly alternative to conventional antibiotics in managing bacterial diseases in aquaculture.
Collapse
Affiliation(s)
- Luis Monzón-Atienza
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
| | - Jimena Bravo
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentáries (IRTA), Centre de Sant Carles de la Rápita (IRTA-SCR), 43540 Sant Carles de la Rápita, Spain
| | - Antonio Gómez-Mercader
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
| | - José Ramos-Vivas
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39010 Santander, Spain
| | - Jorge Galindo-Villegas
- Deparment of Genomics, Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway;
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
| |
Collapse
|
5
|
Sánchez-Velázquez J, Peña-Herrejón GA, Aguirre-Becerra H. Fish Responses to Alternative Feeding Ingredients under Abiotic Chronic Stress. Animals (Basel) 2024; 14:765. [PMID: 38473149 DOI: 10.3390/ani14050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Aquaculture has become one of the most attractive food production activities as it provides high-quality protein for the growing human population. However, the abiotic chronic stress of fish in intensive fish farming leads to a detrimental condition that affects their health and somatic growth, comprising productive performance. This work aims to comprehensively review the impact of alternative and novel dietary protein sources on fish somatic growth, metabolism, and antioxidative capacity under environmental/abiotic stressors. The documental research indicates that ingredients from rendered animal by-products, insects, bacteria as single-cell proteins, and fungal organisms (e.g., yeast, filamentous fungus, and mushrooms) benefit fish health and performance. A set of responses allows fish growth, health, and survival to remain unaffected by feeding with alternative ingredients during chronic environmental stress. Those ingredients stimulate the production of enzymes such as catalase, glutathione peroxidase, and selenoproteins that counteract ROS effects. In addition, the humoral immune system promotes immunoglobulin production (IgM) and cortisol plasmatic reduction. Further investigation must be carried out to establish the specific effect by species. Additionally, the mixture and the pre-treatment of ingredients such as hydrolysates, solid fermentations, and metabolite extraction potentialize the beneficial effects of diets in chronically stressed fish.
Collapse
Affiliation(s)
- Julieta Sánchez-Velázquez
- Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, El Marqués 76265, Querétaro, Mexico
| | - Guillermo Abraham Peña-Herrejón
- Centro de Investigación y Desarrollo Tecnológico en Materia Agrícola Pecuaria Acuícola y Forestal (CIDAF), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Concá, Arroyo Seco 76410, Querétaro, Mexico
| | - Humberto Aguirre-Becerra
- Cuerpo Académico de Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, El Marqués 76265, Querétaro, Mexico
| |
Collapse
|
6
|
Ucar A, Günay A, Parlak V, Yeltekin AC, Ozgeris FB, Turkez H, Alak G, Atamanalp M. Modulatory role ulexit against thiamethoxam-induced hematotoxicity/hepatotoxicity oxidative stress and immunotoxicity in Oncorhynchusmykiss. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106294. [PMID: 38096712 DOI: 10.1016/j.marenvres.2023.106294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Contamination of the aquatic environment with different insecticides is a major concern in the aquatic ecosystem today. For this reason, in the designed study, Thiamethoxam (TMX) for which there is limited information on its negative effects on Oncorhynchus mykiss was investigated, its effects on hematotoxicity, oxidative status, cytotoxicity, DNA damage and apoptotic status indicators in blood/liver tissue. However, the antitoxic potential of ulexite (UX) supplementation in the elimination of TMX-mediated toxicity has been determined. LC50-96h value determined for TMX 0.73 mg/L has been determined. As a result of hematology profile, TMX application, RBC, Hgb and Hct values showed a temporal decrease compared to the control group, while increases were determined in MCV, MCH and MCHC values. It was determined that the inhibition/induction of hematological parameters was slowed down by adding UX to the medium. During the trial (48th and 96th hours), it was noted that TMX induced cortisol level, while UX supplementation slowed this induction at 48th hour. Antioxidant enzyme activities were significantly inhibited by TMX application, and MDA and MPO values increased as a result of the stimulation of ROS. It was determined that UX added to the medium showed activity in favor of antioxidants and tried to inhibit MDA and MPO levels. When Nrf-2, one of the inflammation parameters, was compared with the administration and control groups, it was determined that it inhibited depending on time, TNF-α, IL-6, DNA damage and apoptosis were induced, and UX suppressed this situation. The results obtained were evaluated as statistically meaningful. Briefly, it was determined that TMX induced oxidative damage in all tissues at 48th - 96th hours, whereas UX mitigated this situation. The results provide possible in vivo evidence that UX supplements can reduce TMX-mediated oxidative stress and tissues damage in O. mykiss blood and liver tissues.
Collapse
Affiliation(s)
- Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye.
| | - Ayşe Günay
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye; Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye
| | - Aslı Cilingir Yeltekin
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye; Department of Chemistry, Faculty of Science, University of Yızüncü Yıl, Van, Türkiye
| | - Fatma Betul Ozgeris
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye; Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Türkiye
| | - Hasan Turkez
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye; Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye; Department of Sea Food Processing, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye; Atatürk University, Fisheries Faculty, Türkiye
| |
Collapse
|
7
|
Faught E, Schaaf MJM. Molecular mechanisms of the stress-induced regulation of the inflammatory response in fish. Gen Comp Endocrinol 2024; 345:114387. [PMID: 37788784 DOI: 10.1016/j.ygcen.2023.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/10/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Stressors in the environment of aquatic organisms can profoundly affect their immune system. The stress response in fish involves the activation of the hypothalamus-pituitary-interrenal (HPI) axis, leading to the release of several stress hormones, among them glucocorticoids, such as cortisol, which bind and activate corticosteroid receptors, namely the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). These receptors are highly expressed on immune cells, thereby allowing stress to have a potent effect that is classically considered to suppress immune function. In this review, we highlight the conserved structure and function of GR and MR among vertebrates and describe their role in modulating inflammation by regulating the expression of pro-inflammatory and anti-inflammatory genes. In particular, the involvement of MR during inflammation is reviewed, which in many studies has been shown to be immune-enhancing. In recent years, the use of zebrafish as a model organism has opened up new possibilities to study the effects of stress on inflammation, making it possible to investigate knockout lines for MR and/or GR, in combination with transgenic models with fluorescently labeled leukocyte subpopulations that enable the visualization and manipulation of these immune cells. The potential roles of other hormones of the HPI axis, such as corticotrophin-releasing hormone (Crh) and adrenocorticotropic hormone (Acth), in immune modulation are also discussed. Overall, this review highlights the need for further research to elucidate the specific roles of GR, MR and other stress hormones in regulating immune function in fish. Understanding these mechanisms will contribute to improving fish health and advancing our knowledge of stress signalling.
Collapse
Affiliation(s)
- Erin Faught
- Institute of Biology Leiden, Leiden University, The Netherlands
| | | |
Collapse
|
8
|
da Santa Lopes T, Costas B, Ramos-Pinto L, Reynolds P, Imsland AKD, Fernandes JMO. Exploring the Effects of Acute Stress Exposure on Lumpfish Plasma and Liver Biomarkers. Animals (Basel) 2023; 13:3623. [PMID: 38066974 PMCID: PMC10705318 DOI: 10.3390/ani13233623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 06/22/2024] Open
Abstract
This study aimed to expand knowledge on lumpfish stress physiology by investigating the effects of acute stress on primary (i.e., cortisol) and secondary (e.g., metabolites) stress responses, as well as oxidative stress biomarkers, from stress exposure to a recovery phase. The results showed that the lumpfish physiological response to 1 min air exposure is mild, in line with recent studies, and comparable to that described for white sturgeons. Cortisol seems to be the most reliable acute stress biomarker in lumpfish, with a significant increase in plasma 30 min after stress exposure, returning to resting levels 2 h after exposure. In contrast, glucose and lactate were not significantly altered by short-term air exposure. Effects on hepatic energy mobilisation were also detected following the acute stress. This study showed that acute 1 min air exposure seems tolerable, allowing a swift recovery. However, more studies on the impacts of air exposure and repeated acute stressors on lumpfish stress and immune responses are required to develop industry standards for lumpfish health and welfare monitoring.
Collapse
Affiliation(s)
- Tiago da Santa Lopes
- Gildeskål Forskningsstasjon AS, 8140 Inndyr, Norway; (T.d.S.L.); (P.R.)
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, 4050-313 Porto, Portugal
| | - Lourenço Ramos-Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
| | - Patrick Reynolds
- Gildeskål Forskningsstasjon AS, 8140 Inndyr, Norway; (T.d.S.L.); (P.R.)
| | - Albert K. D. Imsland
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway;
- Akvaplan-niva Iceland Office, 201 Kópavogur, Iceland
| | | |
Collapse
|
9
|
Vahdatiraad L, Heidari B, Zarei S, Sohrabi T, Ghafouri H. Biological responses of stellate sturgeon fingerlings (Acipenser stellatus) immersed in HSP inducer to salinity changes. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106145. [PMID: 37595360 DOI: 10.1016/j.marenvres.2023.106145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/15/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Changes in salinity is a stressful and energy-consuming process in fish which give rise to mortalities, especially in fish fingerlings that are more sensitive during the early stages of their life. In the present study, the effects of three salinities, 3‰ (downstream of river), 8‰ (estuarine), and 13‰ (the maximum salinity in the Caspian Sea), on HSP70 gene expression, cortisol level, immune response (lysozyme, complement C3, IgM), and antioxidant enzyme activities (SOD, CAT, T-AOC) of the stellate sturgeon fingerlings in the presence of HSP inducer compound (TEX-OE®) were evaluated. Our results showed that levels of plasma cortisol and heat shock protein (HSP70) in Acipenser stellatus fingerlings increased due to salinity changes. In the presence of the HSP inducer, HSP70 expression in both gill and liver was significantly increased, whereas cortisol level was notably decreased. Exposure to salinity changes resulted in an increase in antioxidant defense activities (SOD, CAT, and T-AOC) and immune response (lysozyme, IgM, and C3) in the presence of an HSP inducer. In conclusion, an HSP-inducing compounds can have a positive effect in strengthening the immunity and antioxidant system of sturgeon fingerlings by increasing the expression of the HSP70 gene against salinity fluctuations and generally increase the body's physiological tolerance.
Collapse
Affiliation(s)
- Leila Vahdatiraad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Tooraj Sohrabi
- International Caspian Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| |
Collapse
|
10
|
Wang J, Chen Z, Carru C, Capobianco G, Sedda S, Li Z. What is the impact of stress on the onset and anti-thyroid drug therapy in patients with graves' disease: a systematic review and meta-analysis. BMC Endocr Disord 2023; 23:194. [PMID: 37700292 PMCID: PMC10496195 DOI: 10.1186/s12902-023-01450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The effect of stress on Graves' disease (GD) is controversial. Our purpose was to quantify the impacts of stress on patients with Graves' disease. METHODS Systematic searches of PubMed, MEDLINE, Embase, Web of Science, Scopus, Cochrane Library and PsycInfo were conducted from inception to 1 January 2023. Studies comparing the incidence of stressful life events (SLEs) that occurred before diagnosis and during drug therapy in cases diagnosed with GD and controls were included in the final analysis. RESULTS Nine case-control studies and four cohort studies enrolling 2892 participants (1685 [58%] patients) were included. Meta-analysis revealed a high and significant effect-size index in a random effect model (d = 1.81, P = 0.01), indicating that stress is an important factor in the onset of GD. The relationship between SLEs and GD was stronger in studies with higher proportions of female patients (β = 0.22, P < 0.01) and weaker in studies with older patients with GD (β =-0.62, P < 0.01). However, stress did not significantly affect the outcome of antithyroid drug therapy for GD (d = 0.32, P = 0.09). CONCLUSIONS The results of this meta-analysis suggest that stress is one of the environmental triggers for the onset of GD. Therefore, we recommend stress management assistance for individuals genetically susceptible to GD, especially for young females.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Zhichao Chen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giampiero Capobianco
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Zhi Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
11
|
Su H, Li Y, Ma D, Fan J, Zhong Z, Zhu H. Metabolism responses in the intestine of Oreochromis mossambicus exposed to salinity, alkalinity and salt-alkalinity stress using LC-MS/MS-based metabolomics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101044. [PMID: 36495832 DOI: 10.1016/j.cbd.2022.101044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Multiple abiotic stresses are imposed on fish as a result of unprecedented changes in temperature and precipitation patterns in recent decades. It is unclear how teleosts respond to severe ambient salinity, alkalinity, and saline-alkalinity in terms of their metabolic and molecular osmoregulation processes. The metabolic reactions in the intestine of Oreochromis mossambicus under salinity (25 g/L, S_C), alkalinity (4 g/L, A_C), and saline-alkalinity (salinity: 25 g/L & alkalinity: 4 g/L, SA_C) stresses were examined in this research utilizing LC-MS/MS-based metabolomics. The findings demonstrated that the three osmotic-stressed groups' metabolic profiles were considerably different from those of the control group. Osmolytes, energy sources, free amino acids, and several intermediate metabolites were all synthetically adjusted as part of the osmoregulation associated with the salinity, alkalinity, and saline-alkalinity stress. Following osmotic stress, osmoregulation-related pathways, including the mTOR signaling pathway, TCA cycle, glycolysis/gluconeogenesis, etc., were also discovered in the intestine of O. mossambicus. Overall, our findings can assist in better comprehending the molecular regulatory mechanism in euryhaline fish under various osmotic pressures and can offer a preliminary profile of osmotic regulation.
Collapse
Affiliation(s)
- Huanhuan Su
- Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Yaya Li
- Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Dongmei Ma
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Jiajia Fan
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Zaixuan Zhong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China.
| |
Collapse
|
12
|
Transcriptomes of Zebrafish in Early Stages of Multiple Viral Invasions Reveal the Role of Sterols in Innate Immune Switch-On. Int J Mol Sci 2023; 24:ijms24054427. [PMID: 36901854 PMCID: PMC10003308 DOI: 10.3390/ijms24054427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Although it is widely accepted that in the early stages of virus infection, fish pattern recognition receptors are the first to identify viruses and initiate innate immune responses, this process has never been thoroughly investigated. In this study, we infected larval zebrafish with four different viruses and analyzed whole-fish expression profiles from five groups of fish, including controls, at 10 h after infection. At this early stage of virus infection, 60.28% of the differentially expressed genes displayed the same expression pattern across all viruses, with the majority of immune-related genes downregulated and genes associated with protein synthesis and sterol synthesis upregulated. Furthermore, these protein synthesis- and sterol synthesis-related genes were strongly positively correlated in the expression pattern of the rare key upregulated immune genes, IRF3 and IRF7, which were not positively correlated with any known pattern recognition receptor gene. We hypothesize that viral infection triggered a large amount of protein synthesis that stressed the endoplasmic reticulum and the organism responded to this stress by suppressing the body's immune system while also mediating an increase in steroids. The increase in sterols then participates the activation of IRF3 and IRF7 and triggers the fish's innate immunological response to the virus infection.
Collapse
|
13
|
Madaro A, Nilsson J, Whatmore P, Roh H, Grove S, Stien LH, Olsen RE. Acute stress response on Atlantic salmon: a time-course study of the effects on plasma metabolites, mucus cortisol levels, and head kidney transcriptome profile. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:97-116. [PMID: 36574113 PMCID: PMC9935726 DOI: 10.1007/s10695-022-01163-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Farmed Atlantic salmon (Salmo salar) welfare and performance can be strongly influenced by stress episodes caused by handling during farming practices. To better understand the changes occurring after an acute stress response, we exposed a group of Atlantic salmon parr to an acute stressor, which involved netting and transferring fish to several new holding tanks. We describe a time-course response to stress by sampling parr in groups before (T0) and 10, 20, 30, 45, 60, 120, 240, 300, and 330 min post-stress. A subgroup of fish was also subjected to the same stressor for a second time to assess their capacity to respond to the same challenge again within a short timeframe (ReStressed). Fish plasma was assessed for adrenocorticotropic hormone (ACTH), cortisol, and ions levels. Mucus cortisol levels were analyzed and compared with the plasma cortisol levels. At 5 selected time points (T0, 60, 90, 120, 240, and ReStressed), we compared the head kidney transcriptome profile of 10 fish per time point. The considerably delayed increase of ACTH in the plasma (60 min post-stress), and the earlier rise of cortisol levels (10 min post-stress), suggests that cortisol release could be triggered by more rapidly responding factors, such as the sympathetic system. This hypothesis may be supported by a high upregulation of several genes involved in synaptic triggering, observed both during the first and the second stress episodes. Furthermore, while the transcriptome profile showed few changes at 60 min post-stress, expression of genes in several immune-related pathways increased markedly with each successive time point, demonstrating the role of the immune system in fish coping capacity. Although many of the genes discussed in this paper are still poorly characterized, this study provides new insights regarding the mechanisms occurring during the stress response of salmon parr and may form the basis for a useful guideline on timing of sampling protocols.
Collapse
Affiliation(s)
| | | | - Paul Whatmore
- Department of eResearch, Queensland University of Technology, GPO Box 2434, Brisbane, QLD, 4001, Australia
| | - HyeongJin Roh
- Institute of Marine Research, NO-5984, Matredal, Norway
| | - Søren Grove
- Institute of Marine Research, NO-5984, Matredal, Norway
- Fish Health Group, Norwegian Veterinary Institute, 1433, Ås, Norway
| | - Lars H Stien
- Institute of Marine Research, NO-5984, Matredal, Norway
| | - Rolf Erik Olsen
- Institute of Marine Research, NO-5984, Matredal, Norway
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
14
|
Prentice PM, Houslay TM, Wilson AJ. Exploiting animal personality to reduce chronic stress in captive fish populations. Front Vet Sci 2022; 9:1046205. [PMID: 36590805 PMCID: PMC9794626 DOI: 10.3389/fvets.2022.1046205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic stress is a major source of welfare problems in many captive populations, including fishes. While we have long known that chronic stress effects arise from maladaptive expression of acute stress response pathways, predicting where and when problems will arise is difficult. Here we highlight how insights from animal personality research could be useful in this regard. Since behavior is the first line of organismal defense when challenged by a stressor, assays of shy-bold type personality variation can provide information about individual stress response that is expected to predict susceptibility to chronic stress. Moreover, recent demonstrations that among-individual differences in stress-related physiology and behaviors are underpinned by genetic factors means that selection on behavioral biomarkers could offer a route to genetic improvement of welfare outcomes in captive fish stocks. Here we review the evidence in support of this proposition, identify remaining empirical gaps in our understanding, and set out appropriate criteria to guide development of biomarkers. The article is largely prospective: fundamental research into fish personality shows how behavioral biomarkers could be used to achieve welfare gains in captive fish populations. However, translating potential to actual gains will require an interdisciplinary approach that integrates the expertise and viewpoints of researchers working across animal behavior, genetics, and welfare science.
Collapse
Affiliation(s)
- Pamela M. Prentice
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Thomas M. Houslay
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alastair J. Wilson
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,*Correspondence: Alastair J. Wilson
| |
Collapse
|
15
|
Al-Ashhab A, Alexander-Shani R, Avrahami Y, Ehrlich R, Strem RI, Meshner S, Shental N, Sharon G. Sparus aurata and Lates calcarifer skin microbiota under healthy and diseased conditions in UV and non-UV treated water. Anim Microbiome 2022; 4:42. [PMID: 35729615 PMCID: PMC9210813 DOI: 10.1186/s42523-022-00191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background The welfare of farmed fish is influenced by numerous environmental and management factors. Fish skin is an important site for immunity and a major route by which infections are acquired. The objective of this study was to characterize bacterial composition variability on skin of healthy, diseased, and recovered Gilthead Seabream (Sparus aurata) and Barramundi (Lates calcarifer). S. aurata, which are highly sensitive to gram-negative bacteria, were challenged with Vibrio harveyi. In addition, and to provide a wider range of infections, both fish species (S. aurata and L. calcarifer) were infected with gram-positive Streptococcus iniae, to compare the response of the highly sensitive L. calcarifer to that of the more resistant S. aurata. All experiments also compared microbial communities found on skin of fish reared in UV (a general practice used in aquaculture) and non-UV treated water tanks. Results Skin swab samples were taken from different areas of the fish (lateral lines, abdomen and gills) prior to controlled infection, and 24, 48 and 72 h, 5 days, one week and one-month post-infection. Fish skin microbial communities were determined using Illumina iSeq100 16S rDNA for bacterial sequencing. The results showed that naturally present bacterial composition is similar on all sampled fish skin sites prior to infection, but the controlled infections (T1 24 h post infection) altered the bacterial communities found on fish skin. Moreover, when the naturally occurring skin microbiota did not quickly recover, fish mortality was common following T1 (24 h post infection). We further confirmed the differences in bacterial communities found on skin and in the water of fish reared in non-UV and UV treated water under healthy and diseased conditions. Conclusions Our experimental findings shed light on the fish skin microbiota in relation to fish survival (in diseased and healthy conditions). The results can be harnessed to provide management tools for commercial fish farmers; predicting and preventing fish diseases can increase fish health, welfare, and enhance commercial fish yields. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00191-y.
Collapse
|
16
|
Santymire RM, Young M, Lenihan E, Murray MJ. Preliminary Investigation into Developing the Use of Swabs for Skin Cortisol Analysis for the Ocean Sunfish (Mola mola). Animals (Basel) 2022; 12:ani12202868. [PMID: 36290254 PMCID: PMC9597772 DOI: 10.3390/ani12202868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Zoos and aquaria play an important role in preventing the mass extinction of wildlife through public awareness of conservation issues and providing a safe haven for wildlife populations. Because aquatic populations face many challenges due to pollution and global warming, it is important to develop an understanding of how species can cope with their environment whether it be in the wild or under human care. Here, we were interested in developing non-invasive methods to study fish stress physiology. We use the unique ocean sunfish (Mola mola) to develop the use of skin swabs to measure the stress hormone, cortisol. We used known times of stress including when a mola was injured or ill and during acclimation to the Monterey Bay Aquarium. We found that cortisol increased initially within the first month of being admitted to the aquarium, but returned to normal values afterward. Molas also had elevated cortisol when being treated for an injury or illness. This is the first step in the development of the use of skin swabs to collect samples for stress analysis in the mola. Additional biochemical analysis is needed to confirm these results and allow this method to be applied to other species of fish. Abstract The ocean sunfish (mola; Mola mola) is the heaviest bony fish in the world. This slow-moving fish often is injured by fishing boats that use drift gillnets attributing to its listing as Vulnerable by the IUCN. The Monterey Bay Aquarium (Monterey, CA, USA) has a program that brings in smaller molas from the ocean and acclimates them for an exhibit. When they grow too large for the million-gallon Open Seas exhibit, they are returned to Monterey Bay through a “reverse” acclimatization. Our overall goal was to use skin swabs to evaluate mola stress physiology to better understand the effects of this program. Our objectives were to validate this non-invasive method by taking opportunistic swabs throughout acclimatization and during stressful events. We swabbed each individual (n = 12) in three different body locations. Swabs were analyzed using a cortisol enzyme immunoassay. We averaged the three swabs and examined the absolute change of cortisol from the first taken upon handling to during treatments and the different acclimation stages. We considered elevated cortisol concentrations to be ≥1.5-fold higher than the first sample. Overall, mean (±SEM) cortisol varied among individuals (564.2 ± 191.5 pg/mL swab (range, 18.3–7012.0 pg/mL swab). The majority (four of six) of molas swabbed within the first week or month had elevated skin cortisol compared to their first sample. All seven molas that were being treated for an injury or illness had elevated skin cortisol (range, 1.7- to 127.6-fold higher) compared to their post-acclimation sample. This is the first step in validating the use of non-invasive skin swabs for glucocorticoid analysis in the mola. Further biochemical analysis is needed to determine the specific steroids that are being measured.
Collapse
Affiliation(s)
- Rachel M. Santymire
- Biology Department, Georgia State University, 100 Piedmont Ave SE, 4th Floor, Atlanta, GA 30303, USA
- Correspondence:
| | - Marissa Young
- Veterinary Services, Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA
| | - Erin Lenihan
- Veterinary Services, Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA
| | - Michael J. Murray
- Veterinary Services, Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA
| |
Collapse
|
17
|
Lim HS, Lee SH, Seo H, Lee HH, Yoon K, Kim YU, Park MK, Chung JH, Lee YS, Lee DH, Park G. Early stage ultraviolet irradiation damage to skin collagen can be suppressed by HPA axis control via controlled CYP11B. Biomed Pharmacother 2022; 155:113716. [PMID: 36162374 DOI: 10.1016/j.biopha.2022.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
UV rays constitute an extremely important environmental factor known to operate adaptative mechanisms that maintain biological homeostasis in the skin, adrenal glands, and the brain. The skin is extremely vulnerable to UV rays. UV rays deform collagen, the main component of elastic fibers, decreasing its normal function, and ultimately reducing skin's elasticity. We confirmed that psychological stress occurring during the early stages of UVB-irradiation degraded collagen function by inhibiting production rather than the decomposition of collagen, thereby promoting skin aging. UV irradiation for 0-2 weeks increased the level of a stress factor, corticosterone (CORT). High-performance liquid chromatography and western blot analysis confirmed that the increase was caused by enhanced CYP11B1/2 levels during steroid synthesis in the adrenal gland. Precursor levels decreased significantly during the two weeks of UV irradiation. Skin collagen and collagen fibers reduced drastically during this time. Furthermore, the administration of osilodrostat, a USFDA-approved drug that selectively inhibits CYP11B1/2, preserved skin collagen. The mechanism underlying the reduction of CORT by osilodrostat confirmed that the amount of skin collagen could be preserved with treatment. In addition, upon suppression of the CORT receptor, the amount of collagen was controlled, and skin aging was suppressed by the hypothalamic-pituitary-adrenal axis. Therefore, this study confirmed an inverse relationship between adrenal CYP11B1/2 levels and collagen during the initial stages of UV irradiation of the skin. The findings of this study may be useful for developing new detection mechanisms for aging, following their further verification.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, the Republic of Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon 35015, the Republic of Korea
| | - Huiyun Seo
- Center for Genome Engineering, Institute for Basic Science, 55 Expo-ro, Yuseong-gu, Daejeon 34126, the Republic of Korea
| | - Hwi-Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, the Republic of Korea
| | - Kyeongno Yoon
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, the Republic of Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsangbuk-do 38610, the Republic of Korea
| | - Moon-Ki Park
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsangbuk-do 38610, the Republic of Korea
| | - Jin Ho Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, the Republic of Korea; Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, the Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, the Republic of Korea; Institute on Aging, Seoul National University, Seoul 03080, the Republic of Korea
| | - Yong-Seok Lee
- Department of Physiology, Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, the Republic of Korea
| | - Dong Hun Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, the Republic of Korea; Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, the Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, the Republic of Korea; Institute on Aging, Seoul National University, Seoul 03080, the Republic of Korea
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, the Republic of Korea.
| |
Collapse
|
18
|
Vasdravanidis C, Alvanou MV, Lattos A, Papadopoulos DK, Chatzigeorgiou I, Ravani M, Liantas G, Georgoulis I, Feidantsis K, Ntinas GK, Giantsis IA. Aquaponics as a Promising Strategy to Mitigate Impacts of Climate Change on Rainbow Trout Culture. Animals (Basel) 2022; 12:ani12192523. [PMID: 36230264 PMCID: PMC9559468 DOI: 10.3390/ani12192523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Climate change and overexploitation of natural resources drive the need for innovative food production within a sustainability corridor. Aquaponics, combining the technology of recirculation aquaculture systems (RAS) and hydroponics in a closed-loop network, could contribute to addressing these problems. Aquaponic systems have lower freshwater demands than agriculture, greater land use efficiency, and decreased environmental impact combined with higher fish productivity. Rainbow trout is one of the major freshwater fish cultured worldwide, which, however, has not yet been commercially developed in aquaponics. Nevertheless, research conducted so far indicates that the trout species represents a good candidate for aquaponics. Abstract The impact of climate change on both terrestrial and aquatic ecosystems tends to become more progressively pronounced and devastating over the years. The sector of aquaculture is severely affected by natural abiotic factors, on account of climate change, that lead to various undesirable phenomena, including aquatic species mortalities and decreased productivity owing to oxidative and thermal stress of the reared organisms. Novel innovative technologies, such as aquaponics that are based on the co-cultivation of freshwater fish with plants in a sustainable manner under the context of controlled abiotic factors, represent a promising tool for mitigating the effect of climate change on reared fish. The rainbow trout (Oncorhynchus mykiss) constitutes one of the major freshwater-reared fish species, contributing to the national economies of numerous countries, and more specifically, to regional development, supporting mountainous areas of low productivity. However, it is highly vulnerable to climate change effects, mainly due to the concrete raceways, in which it is reared, that are constructed on the flow-through of rivers and are, therefore, dependent on water’s physical properties. The current review study evaluates the suitability, progress, and challenges of developing innovative and sustainable aquaponic systems to rear rainbow trout in combination with the cultivation of plants. Although not commercially developed to a great extent yet, research has shown that the rainbow trout is a valuable experimental model for aquaponics that may be also commercially exploited in the future. In particular, abiotic factors required in rainbow trout farming along, with the high protein proportion required in the ratios due to the strict carnivorous feeding behavior, result in high nitrate production that can be utilized by plants as a source of nitrogen in an aquaponic system. Intensive farming of rainbow trout in aquaponic systems can be controlled using digital monitoring of the system parameters, mitigating the obstacles originating from extreme temperature fluctuations.
Collapse
Affiliation(s)
- Christos Vasdravanidis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Maria V. Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Athanasios Lattos
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios K. Papadopoulos
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Chatzigeorgiou
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Maria Ravani
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Georgios Liantas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios K. Ntinas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Correspondence:
| |
Collapse
|
19
|
Skin Mucus as a Relevant Low-Invasive Biological Matrix for the Measurement of an Acute Stress Response in Rainbow Trout (Oncorhynchus mykiss). WATER 2022. [DOI: 10.3390/w14111754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Skin mucus is a non-lethal and low-invasive matrix appropriate to assess fish welfare as it contributes to their defence against external aggressions and reflects changes in fish health status. However, more information on the response of this matrix to specific stressors is needed. In this study, rainbow trout (Oncorhynchus mykiss) specimens were subjected to an acute stress by air exposure and sampled after 1, 6, and 24 h post-stress. Blood and skin mucus were collected, and a battery of biochemical biomarkers were measured in both matrices. Cortisol and glucose values showed the expected classical stress response in plasma, increasing after the acute stress. The same pattern was observed in skin mucus, corroborating previous data in fish, and allowing us to confirm that skin mucus can be a useful complementary matrix for stress assessment in fish. The results showed sensitivity to hypoxic stress in skin mucus for cortisol, glucose, alkaline phosphatase (ALP), aspartate transaminase (AST), alanine aminotransferase (ALT), creatinine kinase (CK), and calcium. From the 15 parameters evaluated, 12 did not show statistically significant changes between plasma and mucus; therefore, using skin mucus cannot replace the use of plasma. Finally, the principal component analysis in skin mucus revealed a complete separation between the two experimental groups, being ALP, AST, glucose, cortisol, and CK, the biomarkers that contributed the most to this separation.
Collapse
|
20
|
Feng LL, Dai YW, Lu XJ, Lu JF, Yang GJ, Zhang H, Zhang L, Chen J. Two ACTH analogs exert differential effects on monocytes/macrophages function regulation in ayu (Plecoglossus altivelis). Gen Comp Endocrinol 2022; 315:113796. [PMID: 33901496 DOI: 10.1016/j.ygcen.2021.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 11/04/2022]
Abstract
Adrenocorticotropic hormone (ACTH), a bioactive peptide of the family of melanocortins, is generated from pro-opiomelanocortin (POMC). So far, the research on the specific functions of ACTH in the immune system of teleosts is limited. We determined two complementary DNA (cDNA) sequences of POMC in ayu (Plecoglossus altivelis), termed PaPOMC-A and PaPOMC-B. PaPOMCs transcripts occurred in all examined tissues, and their expression in immune tissues changed following experimental infection with Vibrio anguillarum. PaACTH-B, but not PaACTH-A, suppressed the phagocytosis of monocytes/macrophages (MO/MФ). Two isoforms of PaACTH increased the bactericidal capacity of MO/MФ. PaACTH-A increased anti-inflammatory cytokine expression, while PaACTH-B decreased pro-inflammatory cytokine expression in MO/MФ. Compared with PaACTH-B treatment, the PaACTH-A treatment improved survival rate and reduced the bacterial load in V. anguillarum-infected ayu through interleukin (IL)-10. Our results indicate that the two PaACTH isoforms exert different effects in the host defense against bacterial infection.
Collapse
Affiliation(s)
- Lin-Lin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - You-Wu Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Hao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Li Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
21
|
Watson KB, Lehnert SJ, Bentzen P, Kess T, Einfeldt A, Duffy S, Perriman B, Lien S, Kent M, Bradbury IR. Environmentally associated chromosomal structural variation influences fine-scale population structure of Atlantic Salmon (Salmo salar). Mol Ecol 2021; 31:1057-1075. [PMID: 34862998 DOI: 10.1111/mec.16307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 01/17/2023]
Abstract
Chromosomal rearrangements (e.g., inversions, fusions, and translocations) have long been associated with environmental variation in wild populations. New genomic tools provide the opportunity to examine the role of these structural variants in shaping adaptive differences within and among wild populations of non-model organisms. In Atlantic Salmon (Salmo salar), variations in chromosomal rearrangements exist across the species natural range, yet the role and importance of these structural variants in maintaining adaptive differences among wild populations remains poorly understood. We genotyped Atlantic Salmon (n = 1429) from 26 populations within a highly genetically structured region of southern Newfoundland, Canada with a 220K SNP array. Multivariate analysis, across two independent years, consistently identified variation in a structural variant (translocation between chromosomes Ssa01 and Ssa23), previously associated with evidence of trans-Atlantic secondary contact, as the dominant factor influencing population structure in the region. Redundancy analysis suggested that variation in the Ssa01/Ssa23 chromosomal translocation is strongly correlated with temperature. Our analyses suggest environmentally mediated selection acting on standing genetic variation in genomic architecture introduced through secondary contact may underpin fine-scale local adaptation in Placentia Bay, Newfoundland, Canada, a large and deep embayment, highlighting the importance of chromosomal structural variation as a driver of contemporary adaptive divergence.
Collapse
Affiliation(s)
- K Beth Watson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Sarah J Lehnert
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tony Kess
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Antony Einfeldt
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Steven Duffy
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Ben Perriman
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ian R Bradbury
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
22
|
Guo H, Dixon B. Understanding acute stress-mediated immunity in teleost fish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100010. [DOI: 10.1016/j.fsirep.2021.100010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022] Open
|
23
|
Modulation of immunity and hepatic antioxidant defense by corticosteroids in pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111025. [PMID: 34237465 DOI: 10.1016/j.cbpa.2021.111025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022]
Abstract
We investigated the impact of both the oral administration of hydrocortisone (HC) and an acute stressor on stress, innate immune responses and antioxidant system/oxidative stress responses of juvenile Piaractus mesopotamicus. Fish were either 1) given a commercial feed (C), 2) given a feed supplemented with 400 mg/kg HC, or 3) fed a commercial feed, chased for 2 min and exposed to air for 4 min (S). After initial sampling, fish C and HC were fed and sampled 1, 3, 6, 24 and 72 h post-feeding. Fish S were fed at the same time as the other groups, exposed to a stressor, and sampled 1, 3, 6, 24 and 72 h after. Exposure to the stressor increased circulating glucose and cortisol levels (at 1 and 3 h, respectively), while oral HC increased circulating cortisol at 1 h and glucose at 3 h. The stressor activated respiratory activity of leukocytes (RAL) at 3 h and reduced it at 6 h. HC did not activate RAL, but it did impair it at 6 h. The serum hemolytic activity of the complement system (HAC50) was impaired by the stressor at 1 and 3 h and by HC at 1 h. Regarding the antioxidant system, exposure to the stressor reduced glutathione peroxidase (GPx) and catalase (CAT) activity and decreased concentrations of reduced glutathione (GSH) in the liver up to 6 h. HC only impaired GPx. Additionally, stress induced the accumulation of melano-macrophage (MM) and melano-macrophage centers (MMC), which are biomarkers of oxidative stress, in the spleen. Differences in biomarkers in fish given cortisol and exposed to stress indicate that exogenous hormone was unable to precisely reproduce stress responses.
Collapse
|
24
|
Jiang R, Lu XJ, Lu JF, Chen J. Characterization of ayu (Plecoglossus altivelis) urocortin: The function of an endocrine factor in monocyte/macrophage regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103978. [PMID: 33338518 DOI: 10.1016/j.dci.2020.103978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Urocortin (UCN) is a hormone in the hypothalamic-pituitary-adrenal axis that is expressed in various immune cells. However, the function of teleost UCN in the immune system remains unclear. In this study, we cloned the cDNA sequence of UCN from ayu Plecoglossus altivelis (PaUCN). Sequence and phylogenetic tree analyses showed that PaUCN clustered within the fish UCN 1 group and was most related to the rainbow trout (Oncorhynchus mykiss) UCN. PaUCN was expressed in all tested tissues and its expression increased in the liver, spleen, head kidney, and gill upon Vibrio anguillarum infection. Mature PaUCN protein (mPaUCN) treatment affected the phagocytosis and bacterial killing of monocytes/macrophages (MO/MФ). mPaUCN reduced pro-inflammatory cytokine expression in MO/MФ, which was partially mediated via interaction with ayu interleukin-6. mPaUCN reduced bacterial load and increased the survival of V. anguillarum-infected ayu. Overall, UCN as an endocrine factor regulates the immune response of ayu after infection by activating MO/MФ, thus contributing to enhance fish survival.
Collapse
Affiliation(s)
- Rui Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
25
|
Fife-Cook I, Franks B. Koi ( Cyprinus rubrofuscus) Seek Out Tactile Interaction with Humans: General Patterns and Individual Differences. Animals (Basel) 2021; 11:706. [PMID: 33807873 PMCID: PMC7998956 DOI: 10.3390/ani11030706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/11/2023] Open
Abstract
The study of human-animal interactions has provided insights into the welfare of many species. To date, however, research has largely focused on human relationships with captive mammals, with relatively little exploration of interactions between humans and other vertebrates, despite non-mammals constituting the vast majority of animals currently living under human management. With this study, we aimed to address this gap in knowledge by investigating human-fish interactions at a community garden/aquaponics learning-center that is home to approximately 150 goldfish (Carassius auratus) and seven adult and two juvenile koi (Cyprinus rubrofuscus). After a habituation period (July-September 2019) during which time the fish were regularly provided with the opportunity to engage with the researcher's submerged hand, but were not forced to interact with the researcher, we collected video data on 10 non-consecutive study days during the month of October. This procedure produced 18~20-min interaction sessions, 10 during T1 (when the experimenter first arrived and the fish had not been fed) and eight during T2 (20-30 min after the fish had been fed to satiation; two sessions of which were lost due equipment malfunction). Interactions between the researcher and the seven adult koi were coded from video based on location (within reach, on the periphery, or out of reach from the researcher) and instances of physical, tactile interaction. Analyses revealed that overall, koi spent more time than expected within reach of the researcher during both T1 (p < 0.02) and T2 (p < 0.03). There were also substantial differences between individuals' overall propensity for being within-reach and engaging in physical interaction. These results show that koi will voluntarily interact with humans and that individual koi display unique and consistent patterns of interaction. By providing quantitative data to support anecdotal claims that such relationships exist around the world, this research contributes to the ongoing discoveries highlighting the profound dissonance between how humans think about and treat fish and who fish actually are, thereby emphasizing the necessity of stronger moral and legal protections for fishes.
Collapse
Affiliation(s)
| | - Becca Franks
- Department of Environmental Studies, New York University, New York, NY 10003, USA;
| |
Collapse
|
26
|
Moreira M, Schrama D, Farinha AP, Cerqueira M, Raposo de Magalhães C, Carrilho R, Rodrigues P. Fish Pathology Research and Diagnosis in Aquaculture of Farmed Fish; a Proteomics Perspective. Animals (Basel) 2021; 11:E125. [PMID: 33430015 PMCID: PMC7827161 DOI: 10.3390/ani11010125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
One of the main constraints in aquaculture production is farmed fish vulnerability to diseases due to husbandry practices or external factors like pollution, climate changes, or even the alterations in the dynamic of product transactions in this industry. It is though important to better understand and characterize the intervenients in the process of a disease outbreak as these lead to huge economical losses in aquaculture industries. High-throughput technologies like proteomics can be an important characterization tool especially in pathogen identification and the virulence mechanisms related to host-pathogen interactions on disease research and diagnostics that will help to control, prevent, and treat diseases in farmed fish. Proteomics important role is also maximized by its holistic approach to understanding pathogenesis processes and fish responses to external factors like stress or temperature making it one of the most promising tools for fish pathology research.
Collapse
Affiliation(s)
- Márcio Moreira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- IPMA—Portuguese Institute for the Sea and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Denise Schrama
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Paula Farinha
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
| | - Cláudia Raposo de Magalhães
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Raquel Carrilho
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Rodrigues
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
27
|
Islam MJ, Slater MJ, Kunzmann A. What metabolic, osmotic and molecular stress responses tell us about extreme ambient heatwave impacts in fish at low salinities: The case of European seabass, Dicentrarchus labrax. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141458. [PMID: 32829272 DOI: 10.1016/j.scitotenv.2020.141458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Unprecedented shifts in temperature and precipitation patterns in recent decades place multiple abiotic stressors on the fish. In teleosts, metabolic, osmoregulatory, and molecular potential as tolerance responses to extreme ambient heatwave events at different salinities are poorly understood. The study was performed to evaluate the physio-biochemical stress responses and acclimation potential of European seabass, Dicentrarchus labrax maintained at four different salinities followed by an extreme ambient heatwave exposure. Fish were kept at 32, 12, 6, and 2 psu for 35 days followed by a simulated extreme ambient heatwave (33 °C) exposure for 10 days. Fish growth performances, physio-biochemical and molecular responses were recorded. Fish acclimated at 32 and 2 psu exhibited significantly (p < 0.05) decreased growth performance. Serum [Na+] and [Cl-] ions were significantly lowered (p < 0.05) in 32 psu fish on day 10 of heatwave exposure. While serum glucose, triglycerides, and protein tended to decrease during the extreme ambient heatwave exposure, lactate content increased significantly (p < 0.05) in 32 psu fish on day 10. In 32 and 2 psu fish, serum metabolic enzymes, and cortisol levels increased significantly (p < 0.05) during the extreme heatwave exposure. On days 5 and 10, HSP70 mRNA was significantly (p < 0.05) upregulated in kidneys and gills of 32 and 2 psu fish, while Igf1 showed downregulation. In gills of 2 psu fish, ATPase Na+/K+-α1 and NKCC1 expression decreased significantly (p < 0.05) in 2 psu, in contrast, significant upregulation was observed at 32 psu fish during extreme ambient heatwave exposure. On days 5 and 10, cystic fibrosis transmembrane conductance (CFTR) upregulation was significantly lower (p < 0.05) in 32 and 2 psu fish. Results suggest that European seabass held at 12 and 6 psu water fare better physiological fitness during the tested extreme ambient heatwave event (33 °C), providing possible insights into options for future aquaculture management in a warming environment.
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany; Faculty of Biology and Chemistry (FB 02), University of Bremen, 28359 Bremen, Germany.
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| |
Collapse
|
28
|
Stress coping styles: Is the basal level of stress physiological indicators linked to behaviour of sea bream? Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Islam MJ, Kunzmann A, Thiele R, Slater MJ. Effects of extreme ambient temperature in European seabass, Dicentrarchus labrax acclimated at different salinities: Growth performance, metabolic and molecular stress responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139371. [PMID: 32473428 DOI: 10.1016/j.scitotenv.2020.139371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 05/22/2023]
Abstract
Extreme weather events are becoming more intense and frequent as a result of climate change. The modulation of hemato-physiological potential as a compensatory response to extreme warm events combined with different salinities is poorly understood. This study aimed to assess the hemato-physiological and molecular response of European seabass, Dicentrarchus labrax exposed to extreme warm temperature (33 °C) after prior acclimatization at 32 psu, 12 psu, 6 psu, and 2 psu water. Fish were acclimated to 32 psu, 12 psu, 6 psu, and 2 psu followed by 10 days extreme warm (33 °C) exposure. Along with growth performance and survival, hemato-physiological response and molecular response of fish were recorded. Fish held at 32 psu and 2 psu exhibited significantly lower growth performance and survival than those at 12 psu and 6 psu (p < 0.05). Red blood cells (RBC), hematocrit, and hemoglobin content were significantly decreased, while white blood cells (WBC), erythrocytic cellular abnormalities (ECA) and erythrocytic nuclear abnormalities (ENA) were found to increase significantly in 32 psu and 2 psu fish (p < 0.05). Plasma lactate was found to increase significantly in 32 psu fish on day 10 (p < 0.05). Activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), and TNF-α expression increased significantly in 32 psu and 2 psu fish (p < 0.05). Most of the repeated measured parameters indicated limited acclimation capacity during the extreme warm exposure at all four salinity groups. However, overall results indicate that European seabass acclimatized at 12 psu and 6 psu salinities, can cope better during extreme warm exposure (33 °C).
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany.
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| | - Rajko Thiele
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| |
Collapse
|
30
|
Serna-Duque JA, Esteban MÁ. Effects of inflammation and/or infection on the neuroendocrine control of fish intestinal motility: A review. FISH & SHELLFISH IMMUNOLOGY 2020; 103:342-356. [PMID: 32454211 DOI: 10.1016/j.fsi.2020.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Food is the largest expense in fish farms. On the other hand, the fish health and wellbeing are determining factors in aquaculture production where nutrition is a vital process for growing animals. In fact, it is important to remember that digestion and nutrition are crucial for animals' physiology. However, digestion is a very complex process in which food is processed to obtain necessary nutrients and central mechanisms of this process require both endocrine and neuronal regulation. In this context, intestinal motility is essential for the absorption of the nutrients (digestive process determining nutrition). An imbalance in the intestinal motility due to an inadequate diet or an infectious process could result in a lower use of the food and inefficiency in obtaining nutrients from food. Very frequently, farmed fish are infected with different pathogenic microorganism and this situation could alter gastrointestinal physiology and, indirectly reduce fish growth. For these reasons, the present review focuses on analysing how different inflammatory molecules or infections can alter conventional modulators of fish intestinal motility.
Collapse
Affiliation(s)
- Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
| |
Collapse
|
31
|
de Assis RWS, Urbinati EC. Physiological activity of Aloe vera in pacu (Piaractus mesopotamicus) inoculated with Aeromonas hydrophila. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1421-1430. [PMID: 32222856 DOI: 10.1007/s10695-020-00800-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
Aloe vera is a traditional medicinal plant; however, its use in fish is fairly recent. We evaluated the effects of dietary A. vera on stress, innate immunity, and energy metabolism in pacu inoculated with Aeromonas hydrophila. For 7 days, 192 fish were fed with diets supplemented with 0% (control), 0.5%, 1.0%, and 2.0% of the plant extract and then inoculated with bacteria and sampled 3, 6, and 24 h later. All concentrations of A. vera reduced basal levels of cortisol, and 1.0% reduced cortisol levels more intensely 3 h after inoculation. A. vera increased the basal respiratory activity of leukocytes/RAL (0.5 and 1.0%), increased the serum levels of lysozyme (1.0 and 2.0%) 6 h after inoculation, and increased the activity of the complement system after 3 h. Spleen somatic index/SSI increased with 1.0 and 2.0% A. vera. A. vera also promoted metabolic effects. It increased basal levels of lipids in the liver and muscle, as well as hepatosomatic index (1.0%) and, 3 h after inoculation, prevented the reduction of serum triglyceride (1.0%) and reduced the mesenteric fat (1.0%). Bacterial inoculation increased RAL from 3 to 24 h and lysozyme levels at 24 h, increased serum cholesterol at 24 h, and decreased serum triglyceride from 3 to 24 h, regardless of A. vera. We concluded that A. vera offered for only 7 days had stress-reducing effects, stimulated innate immunity, protected triglyceride levels in blood, lipid depots in the liver and muscle, and directed the energy mobilization to visceral depots.
Collapse
Affiliation(s)
- Rudney Weiber Silva de Assis
- Centro de Aquicultura, Campus de Jaboticabal, Universidade Estadual Paulista UNESP, Via de Acesso Prof. Paulo Donato Castelane, S/N, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Elisabeth Criscuolo Urbinati
- Centro de Aquicultura, Campus de Jaboticabal, Universidade Estadual Paulista UNESP, Via de Acesso Prof. Paulo Donato Castelane, S/N, Jaboticabal, São Paulo, 14884-900, Brazil.
- Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Universidade Estadual Paulista UNESP, Via de Acesso Prof. Paulo Donato Castelane, S/N, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
32
|
Uren Webster TM, Rodriguez-Barreto D, Consuegra S, Garcia de Leaniz C. Cortisol-Related Signatures of Stress in the Fish Microbiome. Front Microbiol 2020; 11:1621. [PMID: 32765459 PMCID: PMC7381252 DOI: 10.3389/fmicb.2020.01621] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Exposure to environmental stressors can compromise fish health and fitness. Little is known about how stress-induced microbiome disruption may contribute to these adverse health effects, including how cortisol influences fish microbial communities. We exposed juvenile Atlantic salmon to a mild confinement stressor for two weeks. We then measured cortisol in the plasma, skin-mucus, and feces, and characterized the skin and fecal microbiome. Fecal and skin cortisol concentrations increased in fish exposed to confinement stress, and were positively correlated with plasma cortisol. Elevated fecal cortisol was associated with pronounced changes in the diversity and structure of the fecal microbiome. In particular, we identified a marked decline in the lactic acid bacteria Carnobacterium sp. and an increase in the abundance of operational taxonomic units within the classes Clostridia and Gammaproteobacteria. In contrast, cortisol concentrations in skin-mucus were lower than in the feces, and were not related to any detectable changes in the skin microbiome. Our results demonstrate that stressor-induced cortisol production is associated with disruption of the gut microbiome, which may, in turn, contribute to the adverse effects of stress on fish health. They also highlight the value of using non-invasive fecal samples to monitor stress, including simultaneous determination of cortisol and stress-responsive bacteria.
Collapse
Affiliation(s)
- Tamsyn M. Uren Webster
- Centre for Sustainable Aquatic Research, College of Science, Swansea University, Swansea, United Kingdom
| | | | | | | |
Collapse
|
33
|
Hedayatirad M, Mirvaghefi A, Nematollahi MA, Forsatkar MN, Brown C. Transgenerational disrupting impacts of atrazine in zebrafish: Beneficial effects of dietary spirulina. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108685. [PMID: 31874286 DOI: 10.1016/j.cbpc.2019.108685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
In a range of fish species, offspring sustainability is much dependent to their mother's investment into the egg yolk. A healthy environment helps broodfish to produce normal quality offspring. However, deviation from optimal conditions can disturb body functions that effect the next generation. Here, zebrafish (Danio rerio) was employed to investigate the transgenerational impacts of an immunotoxic and endocrine disruptor, atrazine (AZ). In addition, the possible ameliorated effects of a nutraceutical, Arthrospira platensis (spirulina- SP), was considered. Adult females were either exposed to 0 (Cn), 5 (AZ5), and 50 (AZ50) μg/L AZ or fed SP-supplemented diet (10 g/kg; SP). In combination treatments, fish were also exposed to AZ and fed SP (SP-AZ5 and SP-AZ50). Embryos were obtained after 28 d of exposure. Exposure to AZ50 caused females to produce eggs with significantly lower fertilization and hatching. No changes were observed in the concentrations of thyroid hormones. AZ significantly increased cortisol response and reduced levels of immunoglobulin, lysozyme and complement activities in females and their offspring. SP-AZ5 and SP-AZ50 females, however, resisted to the toxic effects of AZ, produced embryos with lower cortisol content and higher immunity competence. Bactericidal activity of the embryos also showed the transgenerational antimicrobial effects of SP along with the AZ immunotoxicity. Overall, these results indicate that AZ could have long lasting toxic effects on fish, and that dietary SP-supplementation could ameliorate AZ induced transgenerational toxic effects.
Collapse
Affiliation(s)
- Maryam Hedayatirad
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Alireza Mirvaghefi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | | | | | - Culum Brown
- Department of Biological Sciences, Macquarie University, Eastern Road, Sydney, New South Wales 2109, Australia
| |
Collapse
|
34
|
Sabioni RE, Zanuzzo FS, Gimbo RY, Urbinati EC. β-Glucan enhances respiratory activity of leukocytes suppressed by stress and modulates blood glucose levels in pacu (Piaractus mesopotamicus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:629-640. [PMID: 31840217 DOI: 10.1007/s10695-019-00739-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
We evaluated the immune response of pacu fed with a β-glucan diet (0.5%) for 10 days. After the feeding period, fish were subjected to handling and 3 h after, inoculated with Aeromonas hydrophila. Fish were sampled before handling (baseline condition), 3, 6, and 24 h and 1 week after inoculation. A higher level of blood glucose was found in fish treated with β-glucan in baseline conditions. Handling and bacterial inoculation increased the circulating levels of cortisol and glucose and promoted the acute inflammatory response (lymphopenia and neutrophilia). β-Glucan prevented the decrease in the respiratory activity of leukocytes observed in the control group at 3 h sampling. β-Glucan did not affect the complement and lysozyme, which were activated 24 h after the bacterial challenge in control fish. A reduction in the number of leukocytes was found in fish treated with β-glucan 1 week after the challenge. We suggest two plausible hypotheses for this event: (1) it could be attributed to a depletion of the immune responses or (2) it could be due to a mobilization of the leukocytes to the spleen for antigen presenting/processing. In general, β-glucan avoided the reduction of the activity of leukocytes after stress and the bacterial challenge and increased the baseline glucose levels. Our findings confirm the immunomodulatory action of glucan and add evidence showing that glucan can have a role in stress response.
Collapse
Affiliation(s)
- Rafael Estevan Sabioni
- Centro de Aquicultura da UNESP (CAUNESP), Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, Sao Paulo, 14884-900, Brazil.
| | - Fábio Sabbadin Zanuzzo
- Centro de Aquicultura da UNESP (CAUNESP), Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Rodrigo Yukihiro Gimbo
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Elisabeth Criscuolo Urbinati
- Centro de Aquicultura da UNESP (CAUNESP), Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, Sao Paulo, 14884-900, Brazil
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, Sao Paulo, 14884-900, Brazil
| |
Collapse
|
35
|
Ullah I, Zuberi A, Rehman H, Ali Z, Thörnqvist PO, Winberg S. Effects of early rearing enrichments on modulation of brain monoamines and hypothalamic-pituitary-interrenal axis (HPI axis) of fish mahseer (Tor putitora). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:75-88. [PMID: 31515639 DOI: 10.1007/s10695-019-00697-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Enriching rearing environment is the strategy suggested for improving the post release survivorship of captive-reared animals. Here, an attempt has been made to evaluate the impact of early rearing enrichment on the hypothalamic-pituitary-interrenal axis (HPI axis), blood glucose, and brain dopaminergic and serotonergic systems of Tor putitora. Fifteen-day-old hatchlings of T. putitora were reared up to advanced fry stage in barren, semi-natural, and physically enriched environments and compared them with regard to pre-stress and post-stress levels of whole-body cortisol, blood glucose, brain serotonergic activity (5HIAA/5HT ratio), dopaminergic activity (DOPAC/DA and HVA/DA ratios) and norepinephrine (NE) levels. Significantly low basal whole-body cortisol, glucose and brain NE levels were observed in a physically enriched group of fish as compared to the other two groups. However, after acute stress, all rearing groups showed elevated levels of cortisol, blood glucose, brain 5HIAA/5HT, DOPAC/DA and HVA/DA ratios and NE levels but the magnitude of response was different among different rearing groups. The barren reared group showed a higher magnitude of response as compared to semi-natural and physically enriched groups. Similarly, the recovery rate of whole-body cortisol, blood glucose, and whole-brain monoamines were long-lasting in barren-reared mahseer. We illustrate that increased structural complexity (physical enrichment) during the early rearing significantly modulates various physiological and stress-coping mechanisms of mahseer.
Collapse
Affiliation(s)
- Imdad Ullah
- Department of Zoology, Abbottabad University of Science and Technology, Havelian, Abbottabad, Pakistan.
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden.
| | - Amina Zuberi
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Humaira Rehman
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Zulfiqar Ali
- Department of Statistics, Quaid-I-Azam University, Islamabad, Pakistan
| | - Per-Ove Thörnqvist
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden
| | - Svante Winberg
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden
| |
Collapse
|
36
|
Madaro A, Kristiansen TS, Pavlidis MA. How Fish Cope with Stress? Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Yada T, Fukuda N, Abe M, Tsukamoto K. Changes in PRL Gene Expression During Upstream Movement of the Japanese Eel, Anguilla japonica. Zoolog Sci 2019; 36:521-527. [PMID: 31833323 DOI: 10.2108/zs190012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/17/2019] [Indexed: 11/17/2022]
Abstract
Changes in mRNA levels of prolactin (PRL) during upstream movement were examined in juvenile Japanese eels, Anguilla japonica. Glass eels and elvers were collected from 2007 to 2009 near the entrance of Hamana Lake, and in a small inflowing stream, the Egawa River. Quantification of mRNA was performed by real-time PCR and expressed as whole-body content. PRL mRNA levels of glass eels caught in the coastal zone and tidal area were low. Eels that moved downward in the tidal zone and migrated upstream to enter into freshwater showed increased levels of PRL mRNA. These changes suggest the importance of up-regulation of PRL gene expression in juvenile eels during their upstream movement from seawater to fresh water, particularly in relation to hyperosmoregulation.
Collapse
Affiliation(s)
- Takashi Yada
- Nikko Station, National Research Institute of Fisheries Science, Tochigi 321-1661, Japan,
| | - Nobuto Fukuda
- Yokohama Station, National Research Institute of Fisheries Science, Kanagawa 236-8648, Japan
| | - Michihisa Abe
- Nikko Station, National Research Institute of Fisheries Science, Tochigi 321-1661, Japan
| | - Katsumi Tsukamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
38
|
Carbonara P, Alfonso S, Zupa W, Manfrin A, Fiocchi E, Pretto T, Spedicato MT, Lembo G. Behavioral and physiological responses to stocking density in sea bream (Sparus aurata): Do coping styles matter? Physiol Behav 2019; 212:112698. [PMID: 31626890 DOI: 10.1016/j.physbeh.2019.112698] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
Stocking density is considered a stress factor for fish and is therefore one of the numerous concerns about fish welfare in an aquaculture context. Stress coping styles (SCS) are defined as a coherent set of individual physiological and behavioral differences in stress responses that are consistent across time and context and appear to be promising for improving fish welfare in aquaculture. The aim of the present study was to describe the physiological and zootechnical performances of gilthead sea bream (Sparus aurata) at different stocking densities (low density, LD: 15 kg/m3 and high density, HD: 30 kg/m3), depending on individual SCS. To do so, the fish SCS were first screened by measuring boldness (prior to the experiment). Three consecutive samplings were performed over the experiment to measure several blood parameters, including hematocrit (Hct), red blood cell count (RBCC), hemoglobin (Hb), cortisol, adrenalin, noradrenalin, glucose, lactate, and lysozyme, to infer the consequence of the SCS profile on the welfare condition in response to stocking density. Finally, swimming activity was recorded in a subsample of individuals (9 BOLD and 9 SHY individuals per density), and BOLD individuals displayed higher swimming activity than SHY ones at HD, while the opposite pattern was observed at LD. According to principal component analysis, physiological parameters are linked to the SCS profile, mostly at the beginning of the experiment, while density effects on physiology remain during the entire experiment duration. In conclusion, regarding all the variables observed, fish SCS appeared to be promising criteria to select the most adaptive individuals relating to rearing conditions and therefore improve welfare.
Collapse
Affiliation(s)
| | | | | | - Amedeo Manfrin
- Istituto Zooprofilattico delle Venezie, sede di Adria, Italy
| | | | - Tobia Pretto
- Istituto Zooprofilattico delle Venezie, sede di Adria, Italy
| | | | | |
Collapse
|
39
|
Major determinants of the occurrence of a globally invasive parasite in riverine fish over large-scale environmental gradients. Int J Parasitol 2019; 49:625-634. [PMID: 31121168 DOI: 10.1016/j.ijpara.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
The increased rate of outbreaks of infectious diseases in ecosystems is a dramatic consequence of global change, particularly when outbreaks affect important resources such as freshwater fish. However, the links between disease-inducing epizootics and widespread human impacts, including nutrient pollution and high water conductivity, in freshwater organisms are largely unexplored. We used data from extensive surveys in northeastern Spain (99,700 km2, 15 river catchments, n = 530 sites) to explore the environmental factors that singly, or in combination, are likely to influence the occurrence of the invasive parasite, Lernaea cyprinacea, after accounting for host fish characteristics. Smaller fish, lower altitudes, higher water conductivity and nutrient pollution were associated with higher probabilities of infection in 19 endemic and widely distributed fish species. We found no evidence that interactive effects among riverine stressors related to water and physical habitat quality better explained the probability of occurrence of L. cyprinacea in fish than did additive-stressor combinations. Nutrient pollution and high water conductivity were two of the major factors contributing to the increased occurrence of L. cyprinacea. Therefore, the improvement of wastewater treatment processes and agricultural practices probably would help to reduce the occurrence of this parasite among native fish.
Collapse
|
40
|
Oyarzún R, Vargas-Lagos C, Martínez D, Muñoz J, Dantagnan L, Vargas-Chacoff L. The effects of intraperitoneal administration of Francisella noatunensis subsp. noatunensis on hepatic intermediary metabolism and indicators of stress in Patagonian blennie Eleginops maclovinus. Comp Biochem Physiol B Biochem Mol Biol 2019; 230:48-56. [DOI: 10.1016/j.cbpb.2019.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
|
41
|
Modulation of stress and innate immune response by corticosteroids in pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:39-48. [PMID: 30703560 DOI: 10.1016/j.cbpa.2019.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Understanding how stress and corticosteroid modulates the innate immune response is one of the keys to improving productivity and reducing losses in intensive aquaculture. Thus, we investigated the effects of dietary corticosteroids (7 days; long-term exposure) and transport (4 h; short-term stress) on stress and innate immune response in pacu. For this end, fish were fed with diets containing dexamethasone (100 mg kg-1) or hydrocortisone (200 mg kg-1), followed by transport, and then were intraperitoneally inoculated with heat-killed Aeromonas hydrophila or PBS (sham-inoculation). Fish were sampled after a 7-day feeding period, immediately post-transport and 24 h post-transport and inoculation. The dietary treatment of corticosteroids decreased resting cortisol levels by inhibiting the production of cortisol on the hypothalamus pituitary interrenal-axis. Further, both corticosteroids reduced hematocrit, red blood cells, haemoglobin and hemolytic activity of the complement, while they increased glucose levels and serum lysozyme concentrations. The transport increased cortisol and glucose levels and reduced the humoral immune defenses such as serum lysozyme concentration and hemolytic activity of the complement system. Interestingly, the hemolytic activity of the complement system increased sharply in fish fed with corticosteroids immediately post-transport, when they had their HPI-axis partially suppressed by the corticosteroids. This finding suggests a stimulatory effect of the catecholamines released during the transport on the activity of the complement system. Our results are highly valuable to understanding the stress and innate immune responses to long-term exposure to corticosteroids and short-term stress in fish and may provide insights into how corticosteroids modulate the innate immune system.
Collapse
|
42
|
Lawrence MJ, Godin JGJ, Cooke SJ. Does experimental cortisol elevation mediate risk-taking and antipredator behaviour in a wild teleost fish? Comp Biochem Physiol A Mol Integr Physiol 2018; 226:75-82. [PMID: 30099116 DOI: 10.1016/j.cbpa.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/06/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
Abstract
The hypothalamic-pituitary-interrenal (HPI) axis is centrally implicated in stressor mitigation in teleost fishes. Sustained HPI axis activation can be detrimental to the physiological functioning of an organism and can result in fitness-related trade-offs. Predator-induced mortality is known to be higher in stressed fish than in unstressed conspecifics, suggesting a role for the HPI axis in mediating fish behaviour. However, the underlying specific mechanism(s) for this phenomenon is(are) unknown. The purpose of the current study was to address how the HPI axis influences risk-taking, and antipredator behaviours in a wild teleost, the pumpkinseed sunfish (Lepomis gibbosus). Here, individual juvenile pumpkinseed were implanted either with cocoa butter as a sham control or with a biologically-relevant concentration of cortisol. Forty-eight hours post-implantation, fish were assessed for behavioural metrics associated with boldness and risk taking in three sequential behavioural tests: (i) a predation-risk test, (ii) an exploration tendency test, and (iii) a shoaling tendency test, with test order randomized among different trials. Cortisol treatment had no influence on antipredator, exploratory, or shoaling behaviours. However, post-attack swimming duration (in predation-risk test) and exploratory activity (in Z-maze exploration test) were significantly affected by body mass. Collectively, our results indicate that cortisol may not have a role in mediating sociability, boldness, and risk-taking behaviours in pumpkinseed sunfish, at least under the current laboratory conditions. However, cortisol may nonetheless play a role in mediating predator-prey interactions in fishes in more natural environmental settings that were not considered here.
Collapse
Affiliation(s)
- Michael J Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Jean-Guy J Godin
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
43
|
Aballai V, Aedo JE, Maldonado J, Bastias-Molina M, Silva H, Meneses C, Boltaña S, Reyes A, Molina A, Valdés JA. RNA-seq analysis of the head-kidney transcriptome response to handling-stress in the red cusk-eel ( Genypterus chilensis ). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:111-117. [DOI: 10.1016/j.cbd.2017.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 01/12/2023]
|