1
|
Wang J, Zhang L, Gao X, Sun Y, Zhao C, Gao X, Wu C. Molecular Cloning of the scd1 Gene and Its Expression in Response to Feeding Artificial Diets to Mandarin Fish ( Siniperca chuatsi). Genes (Basel) 2024; 15:1211. [PMID: 39336802 PMCID: PMC11431013 DOI: 10.3390/genes15091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Stearoyl-coenzyme A desaturase 1 (SCD1) plays a crucial role in fatty acid metabolism. However, its roles in the feeding habit transformation of mandarin fish (Siniperca chuatsi) remain largely unknown. Methods: Juvenile mandarin fish (10.37 ± 0.54)g were trained to feed on an artificial diet and then divided into artificial diet feeders and nonfeeders according to their feed preference. Afterwards, the scd1 gene of mandarin fish (Sc-scd1) was identified and characterized, and its transcription difference was determined between S. chuatsi fed live artificial diets and those fed prey fish. Results: Our results show that Sc-scd1 coding sequence is 1002 bp long, encoding 333 amino acids. The assumed Sc-SCD1 protein lacks a signal peptide, and it contains 1 N-linked glycosylation site, 24 phosphorylation sites, 4 transmembrane structures, and 3 conserved histidine elements. We found that Sc-SCD1 exhibits a high similarity with its counterparts in other fish by multiple alignments and phylogenetic analysis. The expression level of Sc-scd1 was detected with different expression levels in all tested tissues between male and female individuals fed either live prey fish or artificial diets. Conclusions: In particular, the Sc-scd1 expression level was the highest in the liver of both male and female mandarin fish fed artificial diets, indicating that scd1 genes may be associated with feed adaption of mandarin fish. Taken together, our findings offer novel perspectives on the potential roles of scd1 in specific domestication, and they provide valuable genetic information on feeding habits for the domestication of mandarin fish.
Collapse
Affiliation(s)
- Jiangjiang Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
| | - Lihan Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| | - Xiaowei Gao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| | - Chunlong Zhao
- Hebei Academy of Ocean and Fishery Sciences, Qinhuangdao 066200, China;
| | - Xiaotian Gao
- Hebei Academy of Ocean and Fishery Sciences, Qinhuangdao 066200, China;
| | - Chengbin Wu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| |
Collapse
|
2
|
Rivera JC, Espinoza-Derout J, Hasan KM, Molina-Mancio J, Martínez J, Lao CJ, Lee ML, Lee DL, Wilson J, Sinha-Hikim AP, Friedman TC. Hepatic steatosis induced by nicotine plus Coca-Cola™ is prevented by nicotinamide riboside (NR). Front Endocrinol (Lausanne) 2024; 15:1282231. [PMID: 38756999 PMCID: PMC11097688 DOI: 10.3389/fendo.2024.1282231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Cigarettes containing nicotine (Nic) are a risk factor for the development of cardiovascular and metabolic diseases. We reported that Nic delivered via injections or e-cigarette vapor led to hepatic steatosis in mice fed with a high-fat diet. High-fructose corn syrup (HFCS) is the main sweetener in sugar-sweetened beverages (SSBs) in the US. Increased consumption of SSBs with HFCS is associated with increased risks of non-alcoholic fatty liver disease (NAFLD). Nicotinamide riboside (NR) increases mitochondrial nicotinamide adenine dinucleotide (NAD+) and protects mice against hepatic steatosis. This study evaluated if Nic plus Coca-Cola™ (Coke) with HFCS can cause hepatic steatosis and that can be protected by NR. Methods C57BL/6J mice received twice daily intraperitoneal (IP) injections of Nic or saline and were given Coke (HFCS), or Coke with sugar, and NR supplementation for 10 weeks. Results Our results show that Nic+Coke caused increased caloric intake and induced hepatic steatosis, and the addition of NR prevented these changes. Western blot analysis showed lipogenesis markers were activated (increased cleavage of the sterol regulatory element-binding protein 1 [SREBP1c] and reduction of phospho-Acetyl-CoA Carboxylase [p-ACC]) in the Nic+Coke compared to the Sal+Water group. The hepatic detrimental effects of Nic+Coke were mediated by decreased NAD+ signaling, increased oxidative stress, and mitochondrial damage. NR reduced oxidative stress and prevented mitochondrial damage by restoring protein levels of Sirtuin1 (Sirt1) and peroxisome proliferator-activated receptor coactivator 1-alpha (PGC1) signaling. Conclusion We conclude that Nic+Coke has an additive effect on producing hepatic steatosis, and NR is protective. This study suggests concern for the development of NAFLD in subjects who consume nicotine and drink SSBs with HFCS.
Collapse
Affiliation(s)
- Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Kamrul M. Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Jocelyn Molina-Mancio
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Jason Martínez
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Candice J. Lao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Martin L. Lee
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Biostatistics Department, UCLA Fielding School of Public Health, Los Angeles, CA, United States
| | - Desean L. Lee
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Julian Wilson
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Tretola M, Mazzoleni S, Silacci P, Dubois S, Proserpio C, Pagliarini E, Bernardi CEM, Pinotti L, Bee G. Sustainable pig diets: partial grain replacement with former food products and its impact on meat quality. J Anim Sci 2024; 102:skae070. [PMID: 38490265 PMCID: PMC10989651 DOI: 10.1093/jas/skae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024] Open
Abstract
This study investigated the effects of salty and sugary former foodstuff products (FFPs) on the quality traits and meat composition of 36 male castrated pigs (Swiss Large White breed) as well as sensory characteristics of the loins. The animals were fed three different diets for both the growing (G) and finishing (F) phases: (1) a standard diet (ST), 0% FFPs; (2) a diet with 30% of sugary FFPs (e.g., chocolate, biscuits, cakes) as a replacement for traditional ingredients (SU); and (3) a diet with 30% of salty FFPs (e.g., bread, pasta, and breadsticks) as a replacement for traditional ingredients (SA). For a comprehensive assessment of meat quality, protein and fat content in the LD were analyzed. AA and FA profile were determined both in the LD and backfat. Meat quality traits such as pH and temperature, thawing, cooking and drip losses, and shear force have been evaluated. Then, pork loins have been assessed for sensory attributes by a trained sensory panel. The SA diet decreased 20:5 n-3 levels (P < 0.001) in the muscle and 22:5 n-3 levels (P < 0.05) in both muscle and backfat but increased (P < 0.05) the ratio of mono-unsaturated to saturated fatty acids compared to the ST group. Both the SU and SA diets elevated (P < 0.001) the n-6:n-3 fatty acids ratio compared to the ST diet. Dietary treatments did not affect other meat quality traits. Regarding sensory attributes, the loin from pigs fed with SU and SA diets were sweeter (P < 0.001). Loins of SA pigs were more tender (P < 0.001), had a more intense pork aroma (P < 0.001) and had more flavor (P < 0.01) compared to ST loins. Overall, the use of FFPs affected the fatty acid profile of pork while improving the sensory quality of the loins, with no negative effects observed on the technological and nutritional quality of the meat.
Collapse
Affiliation(s)
- Marco Tretola
- Agroscope, Posieux 1725, Switzerland
- Department of Veterinary Medicine and Animal Science, DIVAS, University of Milan, Lodi 26900, Italy
| | - Sharon Mazzoleni
- Department of Veterinary Medicine and Animal Science, DIVAS, University of Milan, Lodi 26900, Italy
| | | | | | - Cristina Proserpio
- Sensory & Consumer Science Lab (SCS_Lab), Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milano 20133, Italy
| | - Ella Pagliarini
- Sensory & Consumer Science Lab (SCS_Lab), Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milano 20133, Italy
| | - Cristian E M Bernardi
- Department of Veterinary Medicine and Animal Science, DIVAS, University of Milan, Lodi 26900, Italy
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Science, DIVAS, University of Milan, Lodi 26900, Italy
- CRC I-WE, Coordinating Research Centre: Innovation for Well-Being and Environment, University of Milan, Milan 20134, Italy
| | | |
Collapse
|
4
|
Wang B, Liu Z, Chen X, Zhang C, Geng Z. Green cabbage supplementation influences the gene expression and fatty acid levels of adipose tissue in Chinese Wanxi White geese. Anim Biosci 2023; 36:1558-1567. [PMID: 37170525 PMCID: PMC10475381 DOI: 10.5713/ab.22.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/26/2023] [Accepted: 03/05/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE Dietary green cabbage was evaluated for its impact on fatty acid synthetic ability in different adipose tissues during fattening of Wanxi White geese. METHODS A total of 256 Wanxi White geese at their 70 days were randomly allocated into 4 groups with 4 replicates and fed 0%, 15%, 30%, and 45% fresh green cabbage (relative to dry matter), respectively, in each group. Adipose tissues (subcutaneous and abdominal fat), liver and blood were collected from 4 birds in each replicate at their 70, 80, 90, and 100 days for fatty acid composition, relative gene expression and serum lipid analysis. Two-way or three-way analysis of variance was used for analysis. RESULTS The contents of palmitic acid (C16:0), palmitoleic acid (C16:1), linoleic acid (C18:2), and alpha-linolenic acid (C18:3) were feeding time dependently increased. The C16:0 and stearic acid (C18:0) were higher in abdominal fat, while C16:1, oleic acid (C18:1), and C18:2 were higher in subcutaneous fat. Geese fed 45% green cabbage exhibited highest level of C18:3. Geese fed green cabbage for 30 d exhibited higher level of C16:0 and C18:0 in abdominal fat, while geese fed 30% to 45% green cabbage exhibited higher C18:3 in subcutaneous fat. The expression of Acsl1 (p = 0.003) and Scd1 (p<0.0001) were decreased with green cabbage addition. Interaction between feeding time and adipose tissue affected elongation of long-chain fatty acids family member 6 (Elovl6), acyl-CoA synthetase longchain family member 1 (Acsl1), and stearoly-coA desaturase 1 (Scd1) gene expression levels (p = 0.013, p = 0.003, p = 0.005). Feeding time only affected serum lipid levels of free fatty acid and chylomicron. Higher contents of C16:0, C18:1, and C18:3 were associated with greater mRNA expression of Scd1 (p<0.0001), while higher level of C18:2 was associated with less mRNA expression of Scd1 (p<0.0001). CONCLUSION Considering content of C18:2 and C18:3, 30% addition of green cabbage could be considered for fattening for 30 days in Wanxi White geese.
Collapse
Affiliation(s)
- Bin Wang
- Department of primary education, Tongcheng Teachers College, Tongcheng 231400,
China
| | - Zhengquan Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Xingyong Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Cheng Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Zhaoyu Geng
- Anhui Province Key Laboratory of Local Livestock and Poultry, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| |
Collapse
|
5
|
Torrecilhas JA, Pereira GL, Vito ES, Fiorentini G, Ramirez-Zamudio GD, Fonseca LS, Torres RDNS, Simioni TA, Duarte JM, Machado Neto OR, Curi RA, Chardulo LAL, Baldassini WA, Berchielli TT. Changes in the Lipid Metabolism of the Longissimus thoracis Muscle in Bulls When Using Different Feeding Strategies during the Growing and Finishing Phases. Metabolites 2023; 13:1042. [PMID: 37887367 PMCID: PMC10608670 DOI: 10.3390/metabo13101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
The objective was to evaluate the supplementation strategy's effect on beef cattle during the growing phase and two systems during the finishing phase. One hundred and twenty young bulls were randomly divided in a 2 × 2 factorial design to receive either mineral (ad libitum) or protein + energy (3 g/kg body weight (BW)/day) during the growing phase and pasture plus concentrate supplementation (20 g/kg BW/day) or feedlot (25:75% corn silage:concentrate) during the finishing phase. Feedlot-fed bulls had meat (Longissimus thoracis-LT) with a higher content of lipids and saturated and monounsaturated fatty acids and a greater upregulation of stearoyl-CoA desaturase and sterol regulatory element-binding protein-1c than animals that fed on pasture (p < 0.05). On the other hand, pasture-fed bulls had meat with a higher content of α-linoleic acid, linolenic acid, and n6 and a greater n6:n3 ratio compared to the feedlot-fed group (p < 0.05). In addition, meat from pasture-fed bulls during the finishing phase had 17.6% more isocitrate dehydrogenase enzyme concentration than the feedlot group (p = 0.02). Mineral-fed and pasture-finished bulls showed down-regulation of peroxisome proliferator-activated receptor gamma (p < 0.05), while the bulls fed protein + energy and finished in the feedlot had higher carnitine palmitoyltransferase 2 expression (p ≤ 0.013). In conclusion, mineral or protein + energy supplementation in the growing does not affect the fatty acid composition of intramuscular fat of LT muscle. In the finishing phase, feeding bulls in the feedlot upregulates the lipogenic genes and consequently improves the intramuscular fat content in the meat.
Collapse
Affiliation(s)
- Juliana Akamine Torrecilhas
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Guilherme Luis Pereira
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Elias San Vito
- Confina Beef Cattle Consulting, Sinop 78555-603, MT, Brazil;
| | - Giovani Fiorentini
- Department of Animal Science, Federal University of Pelotas (UFPEL), Pelotas 96160-000, RS, Brazil;
| | - Germán Darío Ramirez-Zamudio
- College of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil;
| | - Larissa Simielli Fonseca
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| | - Rodrigo de Nazaré Santos Torres
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Tiago Adriano Simioni
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| | - Juliana Messana Duarte
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| | - Otavio Rodrigues Machado Neto
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Rogério Abdallah Curi
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Luis Artur Loyola Chardulo
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Welder Angelo Baldassini
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Telma Teresinha Berchielli
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| |
Collapse
|
6
|
Grajchen E, Loix M, Baeten P, Côrte-Real BF, Hamad I, Vanherle S, Haidar M, Dehairs J, Broos JY, Ntambi JM, Zimmermann R, Breinbauer R, Stinissen P, Hellings N, Verberk SGS, Kooij G, Giera M, Swinnen JV, Broux B, Kleinewietfeld M, Hendriks JJA, Bogie JFJ. Fatty acid desaturation by stearoyl-CoA desaturase-1 controls regulatory T cell differentiation and autoimmunity. Cell Mol Immunol 2023; 20:666-679. [PMID: 37041314 DOI: 10.1038/s41423-023-01011-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
The imbalance between pathogenic and protective T cell subsets is a cardinal feature of autoimmune disorders such as multiple sclerosis (MS). Emerging evidence indicates that endogenous and dietary-induced changes in fatty acid metabolism have a major impact on both T cell fate and autoimmunity. To date, however, the molecular mechanisms that underlie the impact of fatty acid metabolism on T cell physiology and autoimmunity remain poorly understood. Here, we report that stearoyl-CoA desaturase-1 (SCD1), an enzyme essential for the desaturation of fatty acids and highly regulated by dietary factors, acts as an endogenous brake on regulatory T-cell (Treg) differentiation and augments autoimmunity in an animal model of MS in a T cell-dependent manner. Guided by RNA sequencing and lipidomics analysis, we found that the absence of Scd1 in T cells promotes the hydrolysis of triglycerides and phosphatidylcholine through adipose triglyceride lipase (ATGL). ATGL-dependent release of docosahexaenoic acid enhanced Treg differentiation by activating the nuclear receptor peroxisome proliferator-activated receptor gamma. Our findings identify fatty acid desaturation by SCD1 as an essential determinant of Treg differentiation and autoimmunity, with potentially broad implications for the development of novel therapeutic strategies and dietary interventions for autoimmune disorders such as MS.
Collapse
Affiliation(s)
- Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Paulien Baeten
- University MS Center Hasselt, Pelt, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Beatriz F Côrte-Real
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium
| | - Ibrahim Hamad
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jelle Y Broos
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - James M Ntambi
- Department of Biochemistry, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, USA
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Rolf Breinbauer
- BioTechMed-Graz, Graz, Austria
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Piet Stinissen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Niels Hellings
- University MS Center Hasselt, Pelt, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sanne G S Verberk
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Bieke Broux
- University MS Center Hasselt, Pelt, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Cardiovascular Research Institute Maastricht, Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands
| | - Markus Kleinewietfeld
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
- University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
7
|
O’Neill LM, Phang YX, Liu Z, Lewis SA, Aljohani A, McGahee A, Wade G, Kalyesubula M, Simcox J, Ntambi JM. Hepatic Oleate Regulates Insulin-like Growth Factor-Binding Protein 1 Partially through the mTORC1-FGF21 Axis during High-Carbohydrate Feeding. Int J Mol Sci 2022; 23:14671. [PMID: 36498997 PMCID: PMC9737156 DOI: 10.3390/ijms232314671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Stearoyl-CoA desaturase-1 (SCD1) catalyzes the rate-liming step of monounsaturated fatty acid biosynthesis and is a key regulator of systemic glucose metabolism. Mice harboring either a global (GKO) or liver-specific deletion (LKO) of Scd1 display enhanced insulin signaling and whole-body glucose uptake. Additionally, GKO and LKO mice are protected from high-carbohydrate diet-induced obesity. Given that high-carbohydrate diets can lead to chronic metabolic diseases such as obesity, diabetes, and hepatic steatosis, it is critical to understand how Scd1 deficiency confers metabolically beneficial phenotypes. Here we show that insulin-like growth factor-binding protein 1 (IGFBP1), a hepatokine that has been reported to enhance insulin signaling, is significantly elevated in the liver and plasma of GKO and LKO mice fed a low-fat high-carbohydrate diet. We also observed that the expression of hepatic Igfbp1 is regulated by oleic acid (18:1n9), a product of SCD1, through the mTORC1-FGF21 axis both in vivo and in vitro.
Collapse
Affiliation(s)
- Lucas M. O’Neill
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Yar Xin Phang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Zhaojin Liu
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Sarah A. Lewis
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ahmed Aljohani
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11564, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11564, Saudi Arabia
| | - Ayren McGahee
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Mugagga Kalyesubula
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
8
|
Hierons SJ, Abbas K, Sobczak AIS, Cerone M, Smith TK, Ajjan RA, Stewart AJ. Changes in plasma free fatty acids in obese patients before and after bariatric surgery highlight alterations in lipid metabolism. Sci Rep 2022; 12:15337. [PMID: 36097032 PMCID: PMC9468139 DOI: 10.1038/s41598-022-19657-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a complex disease that increases an individual’s risk of developing other diseases and health-related problems. A common feature is dyslipidemia characterized by increased levels of plasma lipids, which include non-esterified fatty acids (NEFAs). The role of NEFAs in obesity-related morbidity is interesting as NEFAs constitute a reservoir of metabolic energy, are principal components of cell membranes and are precursors for signalling molecules. Bariatric surgery promotes sustained weight loss in severely obese patients, reducing the incidence and severity of co-morbidities. In this study we measure changes in circulating NEFA species in plasma samples taken from 25 obese individuals before and 9 months after Roux-en-Y gastric bypass surgery. The mean weight of the cohort reduced by 29.2% from 149.0 ± 25.1 kg pre-surgery to 105.5 ± 19.8 kg post-surgery and the BMI by 28.2% from 51.8 ± 6.3 kg/m2 pre-surgery to 37.2 ± 5.4 kg/m2. Mean glycated haemoglobin (HbA1c) reduced from 6.5 ± 1.3 to 5.5 ± 0.5%, consistent with the intervention leading to improved glycaemic control, particularly in those who were dysglycemic prior to surgery. Total and LDL cholesterol concentrations were markedly reduced following surgery. Concentrations of seven NEFAs were found to decrease 9 months after surgery compared to pre-surgery levels: myristate, palmitoleate, palmitate, linoleate, oleate, stearate and arachidonate. Bariatric surgery led to increased lipogenesis and elongase activity and decreased stearoyl-CoA desaturase 1 activity. This study therefore highlights metabolic changes that take place following gastric bypass surgery in severely obese patients.
Collapse
Affiliation(s)
- Stephen J Hierons
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Kazim Abbas
- Renal Transplant Unit, Manchester Royal Infirmary, Manchester, UK
| | | | - Michela Cerone
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK.
| |
Collapse
|
9
|
Liu Y, Xia YY, Zhang T, Yang Y, Cannon RD, Mansell T, Novakovic B, Saffery R, Han TL, Zhang H, Baker PN. Complex Interactions Between Circulating Fatty Acid Levels, Desaturase Activities, and the Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study. Front Nutr 2022; 9:919357. [PMID: 35898714 PMCID: PMC9313599 DOI: 10.3389/fnut.2022.919357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveMaternal abnormal fatty acid desaturation has previously been linked to gestational diabetes mellitus (GDM). However, few studies have investigated this relationship longitudinally throughout pregnancy. In this study, we investigated the relationship between GDM and desaturase activities across the pregnancy trimesters.MethodsA total of 661 women (GDM = 189, non-GDM = 472) were selected from the Complex Lipids in Mothers and Babies (CLIMB) cohort study. Clinical information and maternal serum were collected at 11–14, 22–28, and 32–34 weeks of gestation. Totally, 20 serum fatty acids were quantified using gas chromatography–mass spectrometry (GC-MS) analysis at each timepoint. Polyunsaturated fatty acid (PUFA) product-to-precursor ratios were used to estimate desaturase and elongase activities including delta-5 desaturase, delta-6 desaturase, stearoyl-CoA desaturase, and elongase.ResultsAfter adjusting for major potential confounders including maternal age, BMI, primiparity, smoking, and alcohol consumption, we observed a significant increase in the levels of γ-linolenic acid (GLA) and eicosatrienoic acid (DGLA) in the first trimester of women with GDM, whereas GLA and DGLA were reduced in the third trimester, when compared to the non-GDM group. Arachidonic acid (AA) showed an upward trend in the GDM group throughout pregnancy. Estimated delta-6 desaturase and delta-5 desaturase activity were elevated in the first trimester (OR = 1.40, 95% CI 1.03–1.91; OR = 0.56, 95% CI 0.32–0.96) but attenuated in the third trimester (OR = 0.78, 95% CI 0.58–1.07; OR = 2.64, 95% CI 1.46–4.78) in GDM pregnancies, respective to controls. Estimated delta-9–18 desaturase activity (OR = 3.70, 95% CI 1.49–9.19) was increased in women with GDM in later pregnancy.ConclusionsOur study highlights the potential importance of fatty acid desaturase activities, particularly estimated delta-5 desaturase and delta-9–18 desaturase in the pathophysiology of GDM. These findings may have applications for the early diagnosis and management of GDM.
Collapse
Affiliation(s)
- Yue Liu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Mass Spectrometry Center of Maternal Fetal Medicine, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yin-Yin Xia
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Mass Spectrometry Center of Maternal Fetal Medicine, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ting Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Mass Spectrometry Center of Maternal Fetal Medicine, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Toby Mansell
- Molecular Immunity, Murdoch Childrens Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Novakovic
- Molecular Immunity, Murdoch Childrens Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Richard Saffery
- Molecular Immunity, Murdoch Childrens Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Ting-Li Han
- Mass Spectrometry Center of Maternal Fetal Medicine, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Ting-Li Han
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Mass Spectrometry Center of Maternal Fetal Medicine, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- *Correspondence: Hua Zhang
| | - Philip N. Baker
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
10
|
Li P, Zhang R, Wang M, Chen Y, Chen Z, Ke X, Zuo L, Wang J. Baicalein Prevents Fructose-Induced Hepatic Steatosis in Rats: In the Regulation of Fatty Acid De Novo Synthesis, Fatty Acid Elongation and Fatty Acid Oxidation. Front Pharmacol 2022; 13:917329. [PMID: 35847050 PMCID: PMC9280198 DOI: 10.3389/fphar.2022.917329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), hepatic fibrosis and even hepatocellular carcinoma, is a liver disease worldwide without approved therapeutic drugs. Baicalein (BAL), a flavonoid compound extracted from the Traditional Chinese Medicine (TCM) Scutellariae Radix (Scutellaria baicalensis Georgi.), has been used in TCM clinical practice for thousands of years to treat liver diseases due to its "hepatoprotective effect". However, the underlying liver-protecting mechanisms remain largely unknown. Here, we found that oral administration of BAL significantly decreased excess serum levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) as well as hepatic TG in fructose-fed rats. Attenuation of the increased vacuolization and Oil Red O staining area was evident on hepatic histological examination in BAL-treated rats. Mechanistically, results of RNA-sequencing, western-blot, real-time quantitative PCR (RT-qPCR) and hepatic metabolomics analyses indicated that BAL decreased fructose-induced excessive nuclear expressions of mature sterol regulatory element-binding protein 1c (mSREBP1c) and carbohydrate response element-binding protein (ChREBP), which led to the decline of lipogenic molecules [including fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), elongation of very long chain fatty acids 6 (ELOVL6), acetyl-CoA carboxylase (ACC)], accompanying with the alternation of hepatic fatty acids composition. Meanwhile, BAL enhanced fatty acid oxidation by activating AMPK/PGC1α signaling axis and PPARα signal pathway, which elicited high expression of carnitine palmitoyl transferase 1α (CPT1α) and Acyl-CoA oxidase 1 (ACO1) in livers of fructose-fed rats, respectively. BAL ameliorated fructose-induced hepatic steatosis, which is associated with regulating fatty acid synthesis, elongation and oxidation.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ruoyu Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Meng Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yuwei Chen
- The Pharmacy Department, the Second People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zuo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Torres R, Ghedini C, Paschoaloto J, da Silva D, Coelho L, Almeida Junior G, Ezequiel J, Machado Neto O, Almeida M. Effects of tannins supplementation to sheep diets on their performance, carcass parameters and meat fatty acid profile: A meta-analysis study. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2021.106585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Roškarić P, Šperanda M, Mašek T, Verbanac D, Starčević K. Low Dietary n6/n3 Ratio Attenuates Changes in the NRF 2 Gene Expression, Lipid Peroxidation, and Inflammatory Markers Induced by Fructose Overconsumption in the Rat Abdominal Adipose Tissue. Antioxidants (Basel) 2021; 10:2005. [PMID: 34943108 PMCID: PMC8698844 DOI: 10.3390/antiox10122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to examine the benefits of different n6/n3 polyunsaturated fatty acid ratios on the lipid metabolism, insulin resistance, and oxidative stress in the adipose tissue of rats fed a high-fructose diet. Male and female rats were divided into four groups: a control group (CON) (n6/n3 ratio ~7), a high-fructose group (HF) (n6/n3 ratio ~7), an N6-HF group (n6/n3 ratio ~50), and the DHA-HF group (n6/n3 ratio ~1, with the addition of docosahexaenoic (DHA) and eicosapentaenoic (EPA) acid). The CON group received plain water and the HF group received 15% fructose in their drinking water. Fructose induced an increase in the content of serum triglycerides, serum cholesterol, and HOMA-IR index. Among the fatty acids, elevated proportions of C18:1n9 and C16:1n7, as well as an increase in total monounsaturated fatty acid (MUFA), were found in the adipose tissue of the HF group. Fructose treatment also changed oxidative parameters, including a marked increase in the serum malondialdehyde (MDA) content. Meanwhile, DHA supplementation caused a significant decrease in the serum MDA concentration in comparison with the HF group. In addition, DHA/EPA supplementation attenuated oxidative stress by increasing NRF 2 gene expression. Fructose treatment also significantly decreased the adiponectin level, while DHA supplementation ameliorated it. The changes observed in this trial, including the decrease in the content of DHA and EPA, the decreased EPA/ARA ratio, and the increase in the expression of inflammatory genes, are characteristics of the low-grade inflammation caused by fructose treatment. These changes in the rat adipose tissue could be prevented by dietary intervention consisting of DHA supplementation and a low n6/n3 ratio.
Collapse
Affiliation(s)
- Petra Roškarić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Marcela Šperanda
- Department of Animal Science, Faculty of Agriculture, University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia;
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Donatella Verbanac
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia;
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| |
Collapse
|
13
|
The effect of dietary inclusion of crude glycerin on performance, ruminal fermentation, meat quality and fatty acid profile of beef cattle: Meta-analysis. Res Vet Sci 2021; 140:171-184. [PMID: 34482153 DOI: 10.1016/j.rvsc.2021.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/18/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
This meta-analysis was carried to evaluate the effect of the use of crude glycerin in diets for beef cattle on the ruminal fermentation, animal performance, physical and chemical characteristics, and fatty acid profile of meat through meta-analysis. Data from forty-eight peer-reviewed publications with 170 treatments means was included in the data set. The effect glycerin in diet were evaluated by examining the weighted mean differences (WMD) between glycerin treatment (diets with crude glycerin) and control diet (without crude glycerin). Heterogeneity was explored by meta-regression and subgroup analysis using genetic type, treatment period, crude glycerin in the diet (g/kg DM), feed systems (pasture or total mixed ration), and concentrate in the diet (g/kg DM). The inclusion of crude glycerin had no effect on the average daily gain, but increased feed efficiency by 3.15% while reducing subcutaneous fat thickness by 3.13%. Inclusion of crude glycerin reduced meat cholesterol by 9.13%, and total saturated fatty acids by 1.05%, and increased total unsaturated (2.02%), monounsaturated (3.17%) fatty acids. However, it did not affect the concentrations of conjugated linoleic acid and omega-3. Crude glycerin inclusions up to 200 g/kg DM did not promote a negative effect on animal performance, carcass and physical-chemical characteristics of meat, and supported an increase in total monounsaturated (1.73%), oleic acid (12.29 mg) and palmitoleic acid (1.24 mg), while reducing myristic acid (3.08 mg), stearic acid (12.00 mg) in beef cattle meat.
Collapse
|
14
|
Tang J, Yang B, Yan Y, Tong W, Zhou R, Zhang J, Mi J, Li D. Palmitoleic Acid Protects against Hypertension by Inhibiting NF-κB-Mediated Inflammation. Mol Nutr Food Res 2021; 65:e2001025. [PMID: 33865240 DOI: 10.1002/mnfr.202001025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/25/2021] [Indexed: 11/08/2022]
Abstract
SCOPE The role of palmitoleic acid (POA) in hypertension or blood pressure remains uncertain. This study aims to investigate the epidemiological association between circulating POA and primary hypertension in humans, and subsequently evaluate the effects of exogenous POA on blood pressure and aortic remodeling in spontaneously hypertensive rats (SHRs). METHODS AND RESULTS A case-control study of 349 hypertensive and 1396 normotensive children and adolescents is conducted, and found hypertensive cases show significant lower erythrocyte phospholipid POA than normotensive controls (p < 0.001). In conditional logistic regression model, participants in the top quartile of POA have a lower prevalence of primary hypertension than those in the bottom (multivariate-adjusted OR: 0.47, 95% CI: 0.25-0.89). In animal study, 24 SHRs are randomly assigned to n-3 PUFAs (500 mg kg-1 ), POA (500 mg kg-1 ), or vehicle (olive oil) for 8 weeks. At the end of intervention, as compared to SHRs treated with vehicle, SHRs treated with POA shows significantly decreased systolic blood pressure (SBP), improved aortic remodeling, and also decreased aortic expressions of NF-κB and its downstream proinflammatory cytokines. CONCLUSIONS Circulating POA is inversely associated with risk of primary hypertension, and exogenous POA supplementation can decrease SBP and improve aortic remodeling by inhibiting NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Jun Tang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Lipids Medicines, Wenzhou Medical University, Wenzhou, China
| | - Yinkun Yan
- Department of Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenfeng Tong
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Renke Zhou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jie Mi
- Department of Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Gómez-Vilarrubla A, Mas-Parés B, Díaz M, Xargay-Torrent S, Carreras-Badosa G, Jové M, Martin-Gari M, Bonmatí-Santané A, de Zegher F, Ibañez L, López-Bermejo A, Bassols J. Fatty acids in the placenta of appropiate- versus small-for-gestational-age infants at term birth. Placenta 2021; 109:4-10. [PMID: 33895685 DOI: 10.1016/j.placenta.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Fatty acids are essential nutrients for the fetus and are supplied by the mother through the placenta. Desaturase and elongase enzymes play an important role in modulating the fatty acid composition of body tissues. We aimed to compare the fatty acid profile and the estimated desaturase and elongase activities in the placenta of appropriate (AGA) versus small-for-gestational-age (SGA), and to determine their relationship with the offspring size at birth. METHODS The placental fatty acid profile was analyzed by gas chromatography in 84 infants (45 AGA and 30 SGA) from a prenatal cohort study. The estimated desaturase and elongase activities were calculated from product-precursor fatty acid ratios. Results were associated with maternal (age, body mass index and weight gain during gestation) and neonatal (gestational age, sex, birth weight and birth length) parameters. RESULTS Differences in placental fatty acid composition between AGA and SGA infants rather than correlations thereof with neonatal parameters were observed. Placentas from SGA infants contained lower levels of omega-3 (ALA, EPA, DPA, and DHA) and high omega-6/omega-3 ratios (AA/DHA and LA/ALA), as well as low elongase (Elovl5) and high desaturase (D9Dn7 and D5Dn6) activity as compared to AGA infants (all p < 0.0001). DISCUSSION Placentas of AGA and SGA infants differed in fatty acids profile as well as in estimated desaturase and elongase activities. A striking feature of SGA placentas was the low availability of omega-3. Hence, omega-3 fatty acid status deserves further attention, as a potential target of prenatal interventions.
Collapse
Affiliation(s)
- Ariadna Gómez-Vilarrubla
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Berta Mas-Parés
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Marta Díaz
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, 08950, Esplugues, Barcelona, Spain; CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), ISCIII, 28029, Madrid, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Meritxell Martin-Gari
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | | | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, 3000, Leuven, Belgium
| | - Lourdes Ibañez
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, 08950, Esplugues, Barcelona, Spain; CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), ISCIII, 28029, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain; Department of Pediatrics, Dr. Josep Trueta Hospital, 17007, Girona, Spain.
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain.
| |
Collapse
|
16
|
Comprehensive analysis of long noncoding RNA and mRNA in five colorectal cancer tissues and five normal tissues. Biosci Rep 2021; 40:222043. [PMID: 32016349 PMCID: PMC7028436 DOI: 10.1042/bsr20191139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/08/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
The present study investigated the role of abnormally expressed mRNA and long noncoding RNA (lncRNA) in the development of colorectal cancer (CRC). We used lncRNA sequencing to analyze the transcriptome (mRNA and lncRNA) of five pairs of CRC tissues and adjacent normal tissues. The total expression of mRNAs and lncRNAs in each sample was determined using the R package and the gene expression was calculated using normalized FPKM. The structural features and expression of all detected lncRNAs were compared with those of mRNAs. Differentially expressed mRNAs were selected to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The functional analysis of differentially expressed lncRNAs was performed by analyzing the GO and KEGG enrichment of predicted cis-regulated target genes. A total of 18.2 × 108 reads were obtained by sequencing, in which the clean reads reached ≥ 94.67%, with a total of 245.2 G bases. The number of mRNAs and lncRNAs differentially expressed in CRC tissues and normal tissues were 113 and 6, respectively. Further predictive analysis of target genes of lncRNAs revealed that six lncRNA genes had potential cis-regulatory effects on 13 differentially expressed mRNA genes and co-expressed with 53 mRNAs. Up-regulated CTD-2256P15.4 and RP11-229P13.23 were the most important lncRNAs in these CRC tissues and involved in cell proliferation and pathway in cancer. In conclusion, our study provides evidence regarding the mRNA and lncRNA transcription in CRC tissues, as well as new insights into the lncRNAs and mRNAs involved in the development of CRC.
Collapse
|
17
|
Ye S, Matthan NR, Lamon-Fava S, Aguilar GS, Turner JR, Walker ME, Chai Z, Lakshman S, Urban JF, Lichtenstein AH. Western and heart healthy dietary patterns differentially affect the expression of genes associated with lipid metabolism, interferon signaling and inflammation in the jejunum of Ossabaw pigs. J Nutr Biochem 2020; 90:108577. [PMID: 33388349 PMCID: PMC8982565 DOI: 10.1016/j.jnutbio.2020.108577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Diet quality and statin therapy are established modulators of coronary artery disease (CAD) progression, but their effect on the gastrointestinal tract and subsequent sequelae that could affect CAD progression are relatively unexplored. To address this gap, Ossabaw pigs (N = 32) were randomly assigned to receive isocaloric amounts of a Western-type diet (WD; high in saturated fat, refined carbohydrate, and cholesterol, and low in fiber) or a heart healthy-type diet (HHD; high in unsaturated fat, whole grains, fruits and vegetables, supplemented with fish oil, and low in cholesterol), with or without atorvastatin, for 6 months. At the end of the study, RNA sequencing with 100 base pair single end reads on NextSeq 500 platform was conducted in isolated pig jejunal mucosa. A two-factor edgeR analysis revealed that the dietary patterns resulted in three differentially expressed genes related to lipid metabolism (SCD, FADS1, and SQLE). The expression of these genes was associated with cardiometabolic risk factors and atherosclerotic lesion severity. Subsequent gene enrichment analysis indicated the WD, compared to the HHD, resulted in higher interferon signaling and inflammation, with some of these genes being significantly associated with serum TNF-α and/or hsCRP concentrations, but not atherosclerotic lesion severity. No significant effect of atorvastatin therapy on gene expression, nor its interaction with dietary patterns, was identified. In conclusion, Western and heart healthy-type dietary patterns differentially affect the expression of genes associated with lipid metabolism, interferon signaling, and inflammation in the jejunum of Ossabaw pigs.
Collapse
Affiliation(s)
- Shumao Ye
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gloria Solano Aguilar
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Woman's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maura E Walker
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA
| | - Zhi Chai
- Intercollege Graduate Degree Program in Physiology, Department of Nutritional Science, Pennsylvania State University, University Park, PA, USA
| | - Sukla Lakshman
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Joseph F Urban
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
18
|
Hinds TD, Creeden JF, Gordon DM, Stec DF, Donald MC, Stec DE. Bilirubin Nanoparticles Reduce Diet-Induced Hepatic Steatosis, Improve Fat Utilization, and Increase Plasma β-Hydroxybutyrate. Front Pharmacol 2020; 11:594574. [PMID: 33390979 PMCID: PMC7775678 DOI: 10.3389/fphar.2020.594574] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
The inverse relationship of plasma bilirubin levels with liver fat accumulation has prompted the possibility of bilirubin as a therapeutic for non-alcoholic fatty liver disease. Here, we used diet-induced obese mice with non-alcoholic fatty liver disease treated with pegylated bilirubin (bilirubin nanoparticles) or vehicle control to determine the impact on hepatic lipid accumulation. The bilirubin nanoparticles significantly reduced hepatic fat, triglyceride accumulation, de novo lipogenesis, and serum levels of liver dysfunction marker aspartate transaminase and ApoB100 containing very-low-density lipoprotein. The bilirubin nanoparticles improved liver function and activated the hepatic β-oxidation pathway by increasing PPARα and acyl-coenzyme A oxidase 1. The bilirubin nanoparticles also significantly elevated plasma levels of the ketone β-hydroxybutyrate and lowered liver fat accumulation. This study demonstrates that bilirubin nanoparticles induce hepatic fat utilization, raise plasma ketones, and reduce hepatic steatosis, opening new therapeutic avenues for NAFLD.
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, United States
| | - Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, United States
| | - Donald F Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | - Matthew C Donald
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
19
|
Sergi D, Williams LM. Potential relationship between dietary long-chain saturated fatty acids and hypothalamic dysfunction in obesity. Nutr Rev 2020; 78:261-277. [PMID: 31532491 DOI: 10.1093/nutrit/nuz056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diet-induced hypothalamic inflammation, which leads to hypothalamic dysfunction and a loss of regulation of energy balance, is emerging as a potential driver of obesity. Excessive intake of long-chain saturated fatty acids is held to be the causative dietary component in hypothalamic inflammation. This review summarizes current evidence on the role of long-chain saturated fatty acids in promoting hypothalamic inflammation and the related induction of central insulin and leptin insensitivity. Particularly, the present review focuses on the molecular mechanisms linking long-chain saturated fatty acids and hypothalamic inflammation, emphasizing the metabolic fate of fatty acids and the resulting lipotoxicity, which is a key driver of hypothalamic dysfunction. In conclusion, long-chain saturated fatty acids are key nutrients that promote hypothalamic inflammation and dysfunction by fostering the build-up of lipotoxic lipid species, such as ceramide. Furthermore, when long-chain saturated fatty acids are consumed in combination with high levels of refined carbohydrates, the proinflammatory effects are exacerbated via a mechanism that relies on the formation of advanced glycation end products.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
20
|
St-Amand R, Ngo Sock ÉT, Quinn S, Lavoie JM, St-Pierre DH. Two weeks of western diet disrupts liver molecular markers of cholesterol metabolism in rats. Lipids Health Dis 2020; 19:192. [PMID: 32825820 PMCID: PMC7442981 DOI: 10.1186/s12944-020-01351-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background The present study was designed to test the hypothesis that in the liver, excessive fat accumulation impairs cholesterol metabolism mainly by altering the low-density lipoprotein-receptor (LDL-R) pathway. Method Young male Wistar rats were fed standard (SD), high fat (HFD; 60% kcal) or Western (WD; 40% fat + 35% sucrose (17.5% fructose)) diets for 2 or 6 weeks. Results Weight gain (~ 40 g) was observed only following 6 weeks of the obesogenic diets (P < 0.01). Compared to the 2-week treatment, obesogenic diets tripled fat pad weight (~ 20 vs 7 g) after 6 weeks. Hepatic triglyceride (TG) levels were greater in response to both the WD and HFD compared to the SD (P < 0.01) at 2 and 6 weeks and their concentrations were greater (P < 0.05) in WD than HFD at 2 weeks. Plasma total cholesterol levels were higher (P < 0.05) in animals submitted to WD. After 2 and 6 weeks, liver expression of LDL-R, proprotein convertase subtilisin/kexin 9 (PCSKk9) and sterol regulatory element binding protein 2 (SREBP2), involved in LDL-cholesterol uptake, was lower in animals submitted to WD than in others treated with HFD or SD (P < 0.01). Similarly, low-density lipoprotein-receptor-related protein 1 (LRP1) and acyl-CoA cholesterol acyltransferase-2 (ACAT-2) mRNA levels were lower (P < 0.01) among WD compared to SD-fed rats. Expression of the gene coding the main regulator of endogenous cholesterol synthesis, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR) was reduced in response to WD compared to SD and HFD at 2 (P < 0.001) and 6 (P < 0.05) weeks. Being enriched in fructose, the WD strongly promoted the expression of carbohydrate-response element binding protein (ChREBP) and acetyl-CoA carboxylase (ACC), two key regulators of de novo lipogenesis. Conclusion These results show that the WD promptly increased TG levels in the liver by potentiating fat storage. This impaired the pathway of hepatic cholesterol uptake via the LDL-R axis, promoting a rapid increase in plasma total cholesterol levels. These results indicate that liver fat content is a factor involved in the regulation of plasma cholesterol.
Collapse
Affiliation(s)
- Roxane St-Amand
- École de Kinésiologie et des Sciences de l'Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Émilienne T Ngo Sock
- École de Kinésiologie et des Sciences de l'Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Samantha Quinn
- Department of Exercise Sciences, Université du Québec à Montréal, 141, Avenue Président-Kennedy, C.P. 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Jean-Marc Lavoie
- École de Kinésiologie et des Sciences de l'Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - David H St-Pierre
- Department of Exercise Sciences, Université du Québec à Montréal, 141, Avenue Président-Kennedy, C.P. 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada.
| |
Collapse
|
21
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
22
|
Yang M, Zhang D, Zhao Z, Sit J, Saint-Sume M, Shabandri O, Zhang K, Yin L, Tong X. Hepatic E4BP4 induction promotes lipid accumulation by suppressing AMPK signaling in response to chemical or diet-induced ER stress. FASEB J 2020; 34:13533-13547. [PMID: 32780887 DOI: 10.1096/fj.201903292rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Prolonged ER stress has been known to be one of the major drivers of impaired lipid homeostasis during the pathogenesis of non-alcoholic liver disease (NAFLD). However, the downstream mediators of ER stress pathway in promoting lipid accumulation remain poorly understood. Here, we present data showing the b-ZIP transcription factor E4BP4 in both the hepatocytes and the mouse liver is potently induced by the chemical ER stress inducer tunicamycin or by high-fat, low-methionine, and choline-deficient (HFLMCD) diet. We showed that such an induction is partially dependent on CHOP, a known mediator of ER stress and requires the E-box element of the E4bp4 promoter. Tunicamycin promotes the lipid droplet formation and alters lipid metabolic gene expression in primary mouse hepatocytes from E4bp4flox/flox but not E4bp4 liver-specific KO (E4bp4-LKO) mice. Compared with E4bp4flox/flox mice, E4bp4-LKO female mice exhibit reduced liver lipid accumulation and partially improved liver function after 10-week HFLMCD diet feeding. Mechanistically, we observed elevated AMPK activity and the AMPKβ1 abundance in the liver of E4bp4-LKO mice. We have evidence supporting that E4BP4 may suppress the AMPK activity via promoting the AMPKβ1 ubiquitination and degradation. Furthermore, acute depletion of the Ampkβ1 subunit restores lipid droplet formation in E4bp4-LKO primary mouse hepatocytes. Our study highlighted hepatic E4BP4 as a key factor linking ER stress and lipid accumulation in the liver. Targeting E4BP4 in the liver may be a novel therapeutic avenue for treating NAFLD.
Collapse
Affiliation(s)
- Meichan Yang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Deqiang Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zifeng Zhao
- Department of Pharmacology of Chinese Materia, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Julian Sit
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Omar Shabandri
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Nono Nankam PA, Mendham AE, van Jaarsveld PJ, Adams K, Fortuin-de Smidt MC, Clamp L, Blüher M, Goedecke JH. Exercise Training Alters Red Blood Cell Fatty Acid Desaturase Indices and Adipose Tissue Fatty Acid Profile in African Women with Obesity. Obesity (Silver Spring) 2020; 28:1456-1466. [PMID: 32627952 DOI: 10.1002/oby.22862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study assessed the changes in red blood cell total phospholipid (RBC-TPL) and subcutaneous adipose tissue (SAT) fatty acid (FA) composition in response to 12 weeks of exercise training in South African women with obesity and the associations with changes in cardiometabolic risk factors. METHODS Previously sedentary women were randomized into control (n = 15) or exercise (n = 20) groups. RBC-TPL and SAT FA profiles, SAT gene expression, systemic inflammatory markers, liver fat, and insulin sensitivity (SI ) were measured before and after the intervention. RESULTS Compared with control, exercise training induced decreases in RBC-TPL dihomo-γ-linolenic acid content and stearoyl-CoA desaturase-1 and increased delta-5 desaturase-estimated activity (P < 0.05). In the combined group, these changes correlated with changes in circulating leptin and TNFα (P < 0.05), as well as lower liver fat (P < 0.01). Exercise training decreased saturated FA (lauric and myristic acids) and increased polyunsaturated FA (eicosadienoic and adrenic acids) (P < 0.05) in abdominal SAT, whereas γ-linolenic acid decreased (P < 0.01) in gluteal SAT. These changes in RBC-TPL and SAT FA compositions were not associated with changes in SAT gene expression and SI . CONCLUSIONS Exercise training alters RBC-TPL desaturase activities, which correlate with lower liver fat and systemic inflammation but not with the improvement of SI .
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Department of Endocrinology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Amy E Mendham
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Paul J van Jaarsveld
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Kevin Adams
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Melony C Fortuin-de Smidt
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Louise Clamp
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Matthias Blüher
- Department of Endocrinology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig-University Hospital Leipzig, Leipzig, Germany
| | - Julia H Goedecke
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
24
|
Tutunchi H, Ostadrahimi A, Saghafi-Asl M. The Effects of Diets Enriched in Monounsaturated Oleic Acid on the Management and Prevention of Obesity: a Systematic Review of Human Intervention Studies. Adv Nutr 2020; 11:864-877. [PMID: 32135008 PMCID: PMC7360458 DOI: 10.1093/advances/nmaa013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is associated with an increased risk of several major noncommunicable diseases, and is an important public health concern globally. Dietary fat content is a major contributor to the increase in global obesity rates. Changes in dietary habits, such as the quality of fatty acids in the diet, are proposed to prevent obesity and its metabolic complications. In recent years, a number of studies have found that oleic acid (OA), the most common MUFA in daily nutrition, has protective effects against human disease. Importantly, there is emerging evidence indicating the beneficial effects of OA in regulating body weight. Accordingly, the objective of this systematic review was to investigate the effects of diets enriched in monounsaturated OA on the management and prevention of obesity, emphasizing possible mechanisms of action of OA in energy homeostasis. Searches were performed in PubMed/MEDLINE, ScienceDirect, Scopus, ProQuest, and Google Scholar databases for clinical trials that examined the effects of diets rich in OA on obesity. Of 821 full-text articles assessed, 28 clinical trials were included in the present study. According to the studies examined in this review, diets enriched in OA can influence fat balance, body weight, and possibly energy expenditure. Importantly, abdominal fat and central obesity can be reduced following consumption of high-OA-containing meals. Mechanistically, OA-rich diets can be involved in the regulation of food intake, body mass, and energy expenditure by stimulating AMP-activated protein kinase signaling. Other proposed mechanisms include the prevention of the nucleotide-binding oligomerization domain-like receptor 3/caspase-1 inflammasome pathway, the induction of oleoylethanolamide synthesis, and possibly the downregulation of stearoyl-CoA desaturase 1 activity. In summary, current findings lend support to advice not restricting consumption of OA-rich meals so as to maintain a healthy body weight.
Collapse
Affiliation(s)
- Helda Tutunchi
- Nutrition Research Center, Student Research Committee, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
25
|
Gopal Reddy MR, Kumar MS, Acharya V, Venkata SM, Putcha UK, Jeyakumar SM. Vitamin A deficiency increases the oleic acid (C18:1) levels in the kidney of high fructose diet-fed rats. Indian J Med Res 2020; 150:620-629. [PMID: 32048626 PMCID: PMC7038806 DOI: 10.4103/ijmr.ijmr_1574_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background & objectives Stearoyl-CoA desaturase 1 (SCD1) is a key lipogenic enzyme responsible for endogenous synthesis of monounsaturated fatty acids (MUFA) and plays a key role in various pathophysiology, including fatty liver diseases. In this experimental study the impact of vitamin A deficiency was assessed on SCD1 regulation in relation to kidney biology, under high fructose (HFr) diet-fed condition in rats. Methods Forty male weanling (21 day old) Wistar rats were divided into four groups control, vitamin A-deficient (VAD), HFr, VAD with HFr consisting of eight rats each, except 16 for the VAD group. The groups received one of the following diets: control, VAD, HFr and VAD with HFr for 16 wk, except half of the VAD diet-fed rats were shifted to HFr diet, after eight week period. Results Feeding of VAD diet (alone or with HFr) significantly reduced the kidney retinol (0.51, 0.44 μg/g vs. 2.1 μg/g; P < 0.05), while increased oleic (C18:1) and total MUFA levels (23.3, 22.2% and 27.3, 25.4% respectively vs. 14.7 and 16.6%; P < 0.05) without affecting the SCD1, both at protein and mRNA levels, when compared with HFr. Comparable, immunohistological staining for SCD1 was observed in the distal convoluted tubules. Despite an increase in MUFA, morphology, triglyceride content and markers of kidney function were not affected by VAD diet feeding. Interpretation & conclusions Feeding of VAD diet either alone or under HFr condition increased the kidney oleic acid (C18:1) levels and thus total MUFA, which corroborated with elevated SCD1 activity index, without affecting its expression status. However, these changes did not alter the kidney morphology and function. Thus, nutrient-gene regulation in kidney biology seems to be divergent.
Collapse
Affiliation(s)
- Mooli Raja Gopal Reddy
- Divisions of Lipid Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Manchiryala Sravan Kumar
- Divisions of Lipid Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Vani Acharya
- Divisions of Lipid Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | | | - Uday Kumar Putcha
- Divisions of Pathology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | | |
Collapse
|
26
|
Consumption of salt leads to ameliorate symptoms of metabolic disorder and change of gut microbiota. Eur J Nutr 2020; 59:3779-3790. [DOI: 10.1007/s00394-020-02209-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
|
27
|
Challenges and opportunities in drug development for nonalcoholic steatohepatitis. Eur J Pharmacol 2020; 870:172913. [PMID: 31926994 DOI: 10.1016/j.ejphar.2020.172913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are considered major global medical burdens with high prevalence and steeply rising incidence. Despite the characterization of numerous pathophysiologic pathways leading to metabolic disorder, lipid accumulation, inflammation, fibrosis, and ultimately end-stage liver disease or liver cancer formation, so far no causal pharmacological therapy is available. Drug development for NAFLD and NASH is limited by long disease duration and slow progression and the need for sequential biopsies to monitor the disease stage. Additional non-invasive biomarkers could therefore improve design and feasibility of such. Here, the current concepts on preclinical models, biomarkers and clinical endpoints and trial designs are briefly reviewed.
Collapse
|
28
|
Guo L, Kang JS, Park YH, Je BI, Lee YJ, Kang NJ, Park SY, Hwang DY, Choi YW. S-petasin inhibits lipid accumulation in oleic acid-induced HepG2 cells through activation of the AMPK signaling pathway. Food Funct 2020; 11:5664-5673. [DOI: 10.1039/d0fo00594k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
S-petasin inhibits lipid accumulation in oleic acid-induced HepG2 cells.
Collapse
Affiliation(s)
- Lu Guo
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Jum Soon Kang
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Young Hoon Park
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Beong Il Je
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Yong Jae Lee
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Nam Jun Kang
- Department of Horticulture
- Gyeongsang National University
- Jinju 52828
- Republic of Korea
| | - Sun Young Park
- Bio-IT Fusion Technology Research Institute
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
- Life and Industry Convergence Research Institute
| |
Collapse
|
29
|
Weiss-Hersh K, Garcia AL, Marosvölgyi T, Szklenár M, Decsi T, Rühl R. Saturated and monounsaturated fatty acids in membranes are determined by the gene expression of their metabolizing enzymes SCD1 and ELOVL6 regulated by the intake of dietary fat. Eur J Nutr 2019; 59:2759-2769. [PMID: 31676951 PMCID: PMC7413877 DOI: 10.1007/s00394-019-02121-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE We investigated the effect of dietary fats on the incorporation of saturated (SAFAs) and monounsaturated dietary fatty acids (MUFAs) into plasma phospholipids and the regulation of the expression of lipid-metabolizing enzymes in the liver. METHODS Mice were fed different diets containing commonly used dietary fats/oils (coconut fat, margarine, fish oil, sunflower oil, or olive oil) for 4 weeks (n = 6 per diet group). In a second experiment, mice (n = 6 per group) were treated for 7 days with synthetic ligands to activate specific nuclear hormone receptors (NHRs) and the hepatic gene expression of CYP26A1 was investigated. Hepatic gene expression of stearoyl-coenzyme A desaturase 1 (SCD1), elongase 6 (ELOVL6), and CYP26A1 was examined using quantitative real-time PCR (QRT-PCR). Fatty acid composition in mouse plasma phospholipids was analyzed by gas chromatography (GC). RESULTS We found significantly reduced hepatic gene expression of SCD1 and ELOVL6 after the fish oil diet compared with the other diets. This resulted in reduced enzyme-specific fatty acid ratios, e.g., 18:1n9/18:0 for SCD1 and 18:0/16:0 and 18:1n7/16:1n7 for ELOVL6 in plasma phospholipids. Furthermore, CYP26A1 a retinoic acid receptor-specific target was revealed as a new player mediating the suppressive effect of fish oil-supplemented diet on SCD1 and ELOVL6 hepatic gene expression. CONCLUSION Plasma levels of MUFAs and SAFAs strongly reflect an altered hepatic fatty acid-metabolizing enzyme expression after supplementation with different dietary fats/oils.
Collapse
Affiliation(s)
- Kathrin Weiss-Hersh
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Ada L Garcia
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | - Tamás Decsi
- Department of Paediatrics, University of Pécs, Pécs, Hungary
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
30
|
Associations of maternal and fetal SCD-1 markers with infant anthropometry and maternal diet: Findings from the ROLO study. Clin Nutr 2019; 39:2129-2136. [PMID: 31708235 DOI: 10.1016/j.clnu.2019.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Elevated stearoyl-CoA desaturase 1 (SCD-1) activity showed associations with obesity in cross-sectional studies. In non-pregnant populations, nutrition regulates SCD-1 transcription and activity. OBJECTIVE To investigate the longitudinal associations of maternal and fetal SCD-1 activity markers with infant anthropometry up to 2 years of age, and to explore how selected dietary intakes modulate SCD-1 activity in pregnancy. METHODS As a secondary analysis from the ROLO intervention study, which was conducted in a population at risk for macrosomia, non-esterified fatty acids (NEFA) from maternal plasma at 13 and 28 weeks' gestation and in cord blood were measured via liquid-chromatography-mass-spectrometry. Fatty acid ratios 18:1/18:0 and 16:1/16:0 were used as markers for SCD-1 activity ('desaturation indices', DIs). Relationships of DIs with infant anthropometry up to 2 years of age and maternal dietary parameters during pregnancy were investigated using adjusted linear regression models and p-values correction for multiple testing. RESULTS 18:1/18:0, but not 16:1/16:0, was associated with measures of infant anthropometry at birth (maternal and fetal markers) and up to 2 years of age (maternal markers only). Dietary intakes did not show strong associations with 18:1/18:0, but 16:1/16:0 was associated with absolute and relative dietary intakes. CONCLUSIONS In a population at risk for macrosomia, maternal SCD-1 activity measured via 18:1/18:0 was involved in the fetal programming of infant obesity, but could not be substantially modulated by short-term diet in pregnancy. CLINICAL TRIAL REGISTRATION ISRCTN Registration number: ISRCTN54392969 (http://www.isrctn.com/ISRCTN54392969).
Collapse
|
31
|
Marchioro L, Geraghty AA, Uhl O, Shokry E, O'Brien EC, Koletzko B, McAuliffe FM. Effect of a low glycaemic index diet during pregnancy on maternal and cord blood metabolomic profiles: results from the ROLO randomized controlled trial. Nutr Metab (Lond) 2019; 16:59. [PMID: 31467584 PMCID: PMC6712779 DOI: 10.1186/s12986-019-0378-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
Background Elevated post-prandial blood glucose during pregnancy has been associated with adverse pregnancy and offspring outcomes, such as maternal gestational diabetes and excessive foetal growth. The ROLO Study is a randomized controlled trial (RCT) investigating the effect of a low glycaemic index (GI) diet in pregnancy to prevent foetal macrosomia (birth weight > 4000 g). We described the impact of a low-GI diet on the maternal and feto-placental unit metabolism by studying how the ROLO intervention affected maternal and cord blood metabolomes. Methods Fasting maternal plasma samples pre- and post-intervention of 51 pregnant women and 132 cord blood samples were measured with a targeted metabolomics approach using liquid-chromatography coupled to tandem mass spectrometry. The differences between RCT groups were explored via multivariate models with covariates correction. Significance was set at Bonferroni-corrected level of 0.05. Results A total of 262 metabolites species, sums and ratios were investigated. While no metabolite reached statistical significance after Bonferroni correction, many maternal phospholipids and acylcarnitines were elevated in the intervention group at uncorrected 0.05 alpha level. Most species contained saturated and monounsaturated fatty acid chains with 16 or 18 carbon atoms. In cord blood, no differences were identified between RCT groups. Conclusions A low-GI diet in pregnancy was associated with a trend to modest but consistent changes in maternal lipid and fatty acid metabolism. The intervention seemed not to affect foetal metabolism. Our exploratory findings may be used to direct further investigations about low GI diets before and during pregnancy, to improve patient care for pre-conceptional and pregnant women with lipid dysregulations and potentially modulate the offspring's risk for future metabolic diseases. Trial registration Current Controlled Trials ISRCTN54392969.
Collapse
Affiliation(s)
- Linda Marchioro
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, University hospital, LMU Munich, Lindwurmstraße 4, D-80337 Munich, Germany
| | - Aisling A Geraghty
- 2UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Olaf Uhl
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, University hospital, LMU Munich, Lindwurmstraße 4, D-80337 Munich, Germany
| | - Engy Shokry
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, University hospital, LMU Munich, Lindwurmstraße 4, D-80337 Munich, Germany
| | - Eileen C O'Brien
- 2UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, University hospital, LMU Munich, Lindwurmstraße 4, D-80337 Munich, Germany
| | - Fionnuala M McAuliffe
- 2UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| |
Collapse
|
32
|
Yang ZH, Pryor M, Noguchi A, Sampson M, Johnson B, Pryor M, Donkor K, Amar M, Remaley AT. Dietary Palmitoleic Acid Attenuates Atherosclerosis Progression and Hyperlipidemia in Low-Density Lipoprotein Receptor-Deficient Mice. Mol Nutr Food Res 2019; 63:e1900120. [PMID: 30921498 DOI: 10.1002/mnfr.201900120] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/12/2019] [Indexed: 01/22/2023]
Abstract
SCOPE Palmitoleic acid (palmitoleate; C16:1 n-7), an omega-7 monounsaturated fatty acid (MUFA) found in plants and marine sources, has been shown to favorably modulate lipid and glucose metabolism. However, its impact on atherosclerosis has not been examined in detail. METHODS AND RESULTS LDL receptor knock out (LDLR-KO) mice are fed a Western diet supplemented with 5% (w/w) palmitoleate concentrate, oleic-rich olive oil, or none (control) for 12 weeks. Dietary palmitoleate increases hepatic C16:1 levels, improves plasma and hepatic lipid/lipoprotein profiles (≈40% decrease in triglycerides), and reduces the atherosclerotic plaque area by ≈45% compared with control or olive oil group (p < 0.05). These favorable changes are accompanied by the downregulation of key genes, such as Srebp1c, Scd1, Il-1β, and Tnfα. ApoB-depleted plasma from mice fed palmitoleate has increased cholesterol efflux capacity by 20% from ABCA1-expressing cells (p < 0.05). A beneficial effect of palmitoleate on glucose metabolism (54% decreased in HOMA-IR, p < 0.05) is also observed. CONCLUSIONS Dietary-supplemented palmitoleate reduces atherosclerosis development in LDLR-KO mice, and is associated with improvement of lipid and glucose metabolism and favorable changes in regulatory genes involved in lipogenesis and inflammation. These findings imply the potential role of dietary palmitoleate in the prevention of cardiovascular disease and diet-induced metabolic disorders.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Milton Pryor
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Audrey Noguchi
- Murine Phenotyping Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maureen Sampson
- Clinical Center, Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brittany Johnson
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Matthew Pryor
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Kwame Donkor
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Marcelo Amar
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
33
|
Effect of Breed on Transcriptional and Protein Expression of Lipogenic Enzymes in Tail and Subcutaneous Adipose Tissue from Two Grazing Breeds of Lambs. Animals (Basel) 2019; 9:ani9020064. [PMID: 30781423 PMCID: PMC6406757 DOI: 10.3390/ani9020064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 01/22/2023] Open
Abstract
Simple Summary An experiment to determine the effect of sheep breed on subcutaneous fatty acid composition was carried out at the Butalcura Research Station, Chiloé, Chile. To this end, two breeds of lambs were challenged to graze a typical, naturalized pasture of the Chiloé Archipelago, Chile, from 60 d to 120 d after birth. The animals were sacrificed to collect samples from subcutaneous fat (SCF) from the back, and tail fat (TF) to determine the effect of breed on transcriptional expression of lipogenic enzymes and fatty acid profile in these two fat depots. The results showed that although mRNA expression of enzymes was similar in both breeds, there were differences in certain protein levels in the SCF, partially related with the fatty acid profiles, thus affecting the selection of lamb breed either for human consumption or experimental purposes. Abstract This experiment was carried out to determine the effect of breed on mRNA and protein expression levels of lipogenic enzymes acetyl-CoA carboxylase α (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1) plus sterol regulatory element binding transcription factor 1c (SREBP1c) in the subcutaneous fat (SCF) from the back of the animal, and tail fat (TF) of both Chilota and Suffolk Down lambs grazing Calafatal. Eight Chilota and six Suffolk Down 2-month-old male lambs were allocated to graze a “Calafatal”, a typical secondary succession of Chiloé Archipelago, Chile. After 62 d, lambs were slaughtered according to Chile’s meat industry standards. Fatty acid profile, RT-qPCR, and Western blot analyses from SCF and TF samples were performed. Although the mRNA expression levels of ACC, FAS, SCD1 and SREBP1c in SCF did not differ significantly between breeds (p > 0.05), a trend to higher mRNA expression of FAS and SREBP1c in TF from Chilota lambs was observed (p = 0.06). On the other hand, FAS levels in SCF were higher in Chilota than in Suffolk Down lambs (p < 0.02), although Suffolk Down showed higher fat contents and saturated fatty acid (SFA) proportions than Chilota lambs (p < 0.01). The FAS protein expression in TF was similar in both breeds (p > 0.05). Although the fat content was higher in Suffolk Down than in Chilota lambs (p < 0.01), the SFA proportions were similar in both breeds. Finally, it can be concluded that although mRNA expression of enzymes was similar in both breeds, there were differences in some protein levels in the SCF, partially related with the fatty acid profiles, thus affecting the selection of lamb breed either for human consumption or experimental purposes.
Collapse
|
34
|
Kamal S, Saleem A, Rehman S, Bibi I, Iqbal HMN. Protein engineering: Regulatory perspectives of stearoyl CoA desaturase. Int J Biol Macromol 2018; 114:692-699. [PMID: 29605251 DOI: 10.1016/j.ijbiomac.2018.03.171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/08/2023]
Abstract
Stearoyl Co A desaturase (SCD) is a rate-limiting lipogenic enzyme that plays an integral role in catalyzing the synthesis of monounsaturated fatty acids, chiefly oleate and palmitoleate. Both contribute a major part of the biological membrane. Numerous SCD isoforms exist in mouse and humans, i.e., SCD-1 to SCD-4 and SCD-1 and SCD-5, respectively. From the biological viewpoint, hyperexpression of SCD1 cause many metabolic disorders including obesity, insulin resistance, hypertension, and hypertriglyceridemia, etc. Herein, an effort has been made to highlight the value of protein engineering in controlling the SCD-1 expression with the involvement of different inhibitors as therapeutic agents. The first part of the review describes Stearoyl CoA desaturase index and different SCD isoforms. Various regulatory aspects of SCD are reviewed in four subsections, i.e., (1) hormonal regulation, (2) regulation by dietary carbohydrates, (3) regulation by green tea, and (4) regulation via polyunsaturated fatty acids (PUFAs). Moreover, the regulation of Stearoyl CoA desaturase expression in the metabolism of fats and carbohydrates is discussed. The third part mainly focuses on natural and synthetic inhibitors. Towards the end, information is also given on potential future considerations of SCD-1 inhibitors as metabolic syndrome therapeutics, yet additional work is required.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan.
| | - Ayesha Saleem
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Saima Rehman
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Ismat Bibi
- Department of Chemistry, Islamia University, Bahawalpur 63100, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
35
|
Wang F, Tipoe GL, Yang C, Nanji AA, Hao X, So KF, Xiao J. Lycium barbarum Polysaccharide Supplementation Improves Alcoholic Liver Injury in Female Mice by Inhibiting Stearoyl-CoA Desaturase 1. Mol Nutr Food Res 2018; 62:e1800144. [PMID: 29797417 DOI: 10.1002/mnfr.201800144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Indexed: 01/21/2023]
Abstract
SCOPE Lycium barbarum polysaccharide (LBP) is a water fraction of wolfberry, which has been demonstrated to possess a hepatoprotective effect in several liver disease models. However, the anti-alcoholic liver disease (anti-ALD) mechanism of LBP has not been investigated thoroughly. Its protective effects on both male and femal mice are investigated in the current study. METHODS AND RESULTS A chronic ethanol-fed ALD in vivo model is applied to study the effect of LBP in both male and female mice. It is observed that ethanol causes more severe liver injury in female than male mice, and the ameliorative effects of LBP are also more significant in female mice, which are impaired after complete bilateral oophorectomy. The hepatic SCD1 expression is found to be positively correlated with the severity of the liver damage and the main mediator of LBP inducer of protection. The AMPK-CPT pathway is also activated by LBP to rebalance the dysregulated lipid metabolism during ALD development. By using concurrent sodium palmitate and an ethanol-induced in vitro cell damage model in AML-12 cell line, it is characterized that LBP directly interacts with ERα instead of ERβ to activate the SCD1-AMPK-CPT pathway. CONCLUSIONS LBP is an effective and safe hepatoprotective agent against ALD primarily through the SCD1-AMPK-CPT pathway after ERα agonist.
Collapse
Affiliation(s)
- Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - George L Tipoe
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Amin A Nanji
- School of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H1V, Canada
| | - Xiangfeng Hao
- Yinchuan Bairuiyuan Biotechnology, Yinchuan, 750200, China
| | - Kwok-Fai So
- GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 510632, China
| | - Jia Xiao
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong.,GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
36
|
Du X, Huang Q, Guan Y, Lv M, He X, Fang C, Wang X, Sheng J. Caffeine Promotes Conversion of Palmitic Acid to Palmitoleic Acid by Inducing Expression of fat-5 in Caenorhabditis elegans and scd1 in Mice. Front Pharmacol 2018; 9:321. [PMID: 29681853 PMCID: PMC5897652 DOI: 10.3389/fphar.2018.00321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/20/2018] [Indexed: 02/02/2023] Open
Abstract
The synthesis and metabolism of fatty acids in an organism is related to many biological processes and is involved in several diseases. The effects of caffeine on fatty acid synthesis and fat storage in Caenorhabditis elegans and mice were studied. After 6 h of food deprivation, adult C. elegans were treated with 0.1 mg/mL caffeine for 24 h. Quantitative reverse-transcription polymerase chain reaction showed that, among all the genes involved in fat accumulation, the mRNA expression of fat-5 in caffeine-treated C. elegans was significantly higher than that of controls, whereas fat-6 and fat-7 displayed no significant difference. Gas chromatography-mass spectrometry was used to verify the fatty acid composition of C. elegans. Results showed that the ratio of palmitoleic acid (16:1) to that of palmitic acid (16:0) was higher in the caffeine-treated group. Several mutant strains, including those involved in the insulin-like growth factor-1, dopamine, and serotonin pathways, and nuclear hormone receptors (nhrs), were used to assess their necessity to the effects of caffeine. We found that mdt-15 was essential for the effects of caffeine, which was independent of nhr-49 and nhr-80. Caffeine may increase fat-5 expression by acting on mdt-15. In high fat diet (HFD), but not in normal diet (ND) mice, caffeine induced expression of scd1 in both subcutaneous and epididymal white adipose tissue, which was consistent with the palmitoleic/palmitic ratio results by gas chromatograph analysis. In mature adipocytes, caffeine treatment induced both mRNA and protein expression of scd1 and pgc-1α. Overall, our results provided a possible mechanism on how caffeine modulates metabolism homeostasis in vivo.
Collapse
Affiliation(s)
- Xiaocui Du
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qin Huang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yun Guan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ming Lv
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaofang He
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chongye Fang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| |
Collapse
|
37
|
Skuladottir GV, Oskarsdottir H, Pisanu C, Sjödin M, Lindberg J, Mwinyi J, Schiöth HB. Plasma stearoyl-CoA desaturase activity indices and bile acid concentrations after a low-fat meal: association with a genetic variant in the FTO gene. Diabetes Metab Syndr Obes 2018; 11:611-618. [PMID: 30349339 PMCID: PMC6183591 DOI: 10.2147/dmso.s175730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Dietary macronutrient composition, stearoyl-CoA desaturase (SCD) activity indices, and primary bile acid (BA) concentrations are among the factors that have been associated with lipid metabolism and contributed to obesity. We investigated the association between the polymorphic expression of the fat mass and obesity-associated (FTO) gene and its relationship with SCD activity indices and primary BA concentrations after a low-fat meal. SUBJECTS AND METHODS Blood plasma samples were collected from 56 young (20-36 years) healthy subjects with different rs9939609 FTO genotypes. Fasting and post-meal (2 hours after a low-fat breakfast) blood samples were collected on the subsequent morning for the analysis of DNA methylation, SCD activity indices (product-to-precursor fatty acid ratios; 16:1n-7/16:0 and 18:1n-9/18:0), and chenodeoxycholic acid (CDCA) and cholic acid (CA) concentrations. Expression of lipogenic genes was investigated post-meal to assess the relationship between the CDCA and CA concentrations and mRNA levels of lipogenic genes. RESULTS The FTO AA (obesity risk) genotype group (n=18) had higher (P<0.05) post-meal SCD-16 activity index than the FTO TT (wild type) genotype group (n=26). In both the FTO TT (n=16) and AA (n=8) genotype groups, the post-meal concentrations of CDCA and CA were lower (P<0.05) compared with the fasted state. No difference in BA concentrations between the FTO TT and AA genotype groups in both meal states was observed. After adjusting for the body mass index, the highest 50% post-meal concentrations of CA were inversely (P=0.010) correlated with the level of mRNA SCD expression. CONCLUSION FTO AA carriers may be at a higher risk for obesity through higher SCD activity in a low-fat diet environment. This effect may be partly pronounced by very low CA concentrations.
Collapse
Affiliation(s)
- Gudrun Valgerdur Skuladottir
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland,
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden,
| | - Harpa Oskarsdottir
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland,
| | - Claudia Pisanu
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden,
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marcus Sjödin
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
| | - Johan Lindberg
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden,
| | - Helgi Birgir Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden,
| |
Collapse
|
38
|
Ben Khedher MR, Bouhajja H, Haj Ahmed S, Abid M, Jamoussi K, Hammami M. Role of disturbed fatty acids metabolism in the pathophysiology of diabetic erectile dysfunction. Lipids Health Dis 2017; 16:241. [PMID: 29233142 PMCID: PMC5727868 DOI: 10.1186/s12944-017-0637-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vasculogenic erectile dysfunction (VED) is considered as a common complication among people with type 2 diabetes (T2D). We tested whether changes in fatty acid (FAs) classes measured in erythrocytes are associated with increased risk of diabetic VED along with related risk factors. METHODS We assessed erythrocyte FAs composition, lipid peroxidation parameters and inflammatory cytokines among 72 T2D men with VED, 78 T2D men without VED and 88 healthy volunteers with similar age. Biochemical, hepatic, lipid and hormonal profiles were measured. RESULTS T2D people with VED had significant decrease in the indexes of Δ6-desaturase and elongase activities compared to the other studied groups. The same group of participants displayed lower erythrocytes levels of dihomo-γ-linolenic acid (C20:3n-6) (P < .001), precursor of the messenger molecule PGE1 mainly involved in promoting erection. Moreover, absolute SFAs concentration and HOMA IR levels were higher in T2D people with VED when compared to controls and associated with impaired NO concentration (1.43 vs 3.30 ng/L, P < .001). Our results showed that IL-6 and TNF-α were significantly increased and positively correlated with MDA levels only in T2D people with VED (r = 0.884, P = .016 and r = 0.753, P = .035; respectively) suggesting a decrease in the relative availability of vasodilator mediators and an activation of vasoconstrictors release. CONCLUSION Our findings show that the deranged FAs metabolism represents a potential marker of VED in progress, or at least an indicator of increased risk within men with T2D.
Collapse
Affiliation(s)
- Mohamed Raâfet Ben Khedher
- Laboratory of Nutrition, Functional Food and Vascular Health, Department of Biochemistry, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia.
| | - Houda Bouhajja
- Unit of Obesity and Metabolic Syndrome, Department of Endocrinology, University Hospital Hedi Chaker of Sfax, Sfax, Tunisia
| | - Samia Haj Ahmed
- Laboratory of Nutrition, Functional Food and Vascular Health, Department of Biochemistry, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| | - Mohamed Abid
- Unit of Obesity and Metabolic Syndrome, Department of Endocrinology, University Hospital Hedi Chaker of Sfax, Sfax, Tunisia
| | - Kamel Jamoussi
- Biochemistry Laboratory, University Hospital Hedi Chaker of Sfax, Sfax, Tunisia
| | - Mohamed Hammami
- Laboratory of Nutrition, Functional Food and Vascular Health, Department of Biochemistry, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| |
Collapse
|
39
|
Liu L, Wang G, Xiao Y, Shipp SL, Siegel PB, Cline MA, Gilbert ER. Peripheral neuropeptide Y differentially influences adipogenesis and lipolysis in chicks from lines selected for low or high body weight. Comp Biochem Physiol A Mol Integr Physiol 2017; 213:1-10. [PMID: 28789975 DOI: 10.1016/j.cbpa.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) stimulates appetite and promotes lipid deposition. We demonstrated a differential sensitivity in the food intake response to central NPY in chicks from lines selected for low (LWS) or high (HWS) body weight, but have not reported whether such differences exist in the periphery. At 5days, LWS and HWS chicks were intraperitoneally injected with 0 (vehicle), 60, or 120μg/kg BW NPY and subcutaneous adipose tissue and plasma were collected at 1, 3, 6, 12, and 24h (n=12). NPY injection increased glycerol-3-phosphate dehydrogenase (G3PDH) activity at 1 and 3h and reduced plasma non-esterified fatty acids (NEFAs) at 1 and 12h. G3PDH activity was greater in HWS than LWS while NEFAs were greater in LWS. At 1h, peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein (C/EBP)α, and microsomal triglyceride transfer protein (MTTP) mRNAs were reduced in NPY-injected chicks whereas NPY receptor 1 (NPYR1) was increased. Expression of stearoyl-CoA desaturase (SCD1) was increased by NPY at 1h in HWS but not LWS. PPARγ (3 and 6h), C/EBPβ (3h), C/EBPα (6h) and NPYR1 and 2 (24h) mRNAs were greater in NPY- than vehicle-injected chicks. At several times, adipose triglyceride lipase, MTTP, perilipin 1, NPYR1, and NPYR2 mRNAs were greater in LWS than HWS, while expression of SCD1, glycerol-3-phosphate acyltransferase 3 and lipoprotein lipase was greater in HWS than LWS. Thus, NPY promotes fat deposition and inhibits lipolysis in chicks, with line differences indicative of greater rates of lipolysis in LWS and adipogenesis in HWS.
Collapse
Affiliation(s)
- Lingbin Liu
- Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Guoqing Wang
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Yang Xiao
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Steven L Shipp
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Paul B Siegel
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Mark A Cline
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Elizabeth R Gilbert
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States.
| |
Collapse
|
40
|
Aglago EK, Biessy C, Torres-Mejía G, Angeles-Llerenas A, Gunter MJ, Romieu I, Chajès V. Association between serum phospholipid fatty acid levels and adiposity in Mexican women. J Lipid Res 2017; 58:1462-1470. [PMID: 28465289 PMCID: PMC5496042 DOI: 10.1194/jlr.p073643] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/23/2017] [Indexed: 12/31/2022] Open
Abstract
Fatty acids (FAs) have been postulated to impact adiposity, but few epidemiological studies addressing this hypothesis have been conducted. This study investigated the association between serum phospholipid FAs (S-PLFAs) and indicators of obesity. BMI and waist-to-hip ratio (WHR) were collected from 372 healthy Mexican women included as controls in a case-control study. S-PLFA percentages were determined through gas chromatography. Desaturation indices, SCD-16, SCD-18, FA desaturase (FADS)1, and FADS2, biomarkers of endogenous metabolism, were proxied respectively as 16:1n-7/16:0, 18:1n-9/18:0, 20:4n-6/20:3n-6, and 22:6n-3/20:5n-3. Multiple linear regressions adjusted for relevant confounders and corrected for multiple testing were conducted to determine the association between S-PLFA, desaturation indices, and indicators of adiposity. SCD-16 (β = 0.034, P = 0.001, q = 0.014), palmitoleic acid (β = 0.031, P = 0.001, q = 0.014), and dihomo-γ-linolenic acid (β = 0.043, P = 0.000, q = 0.0002) were positively associated with BMI. Total n-6 PUFAs (β = 1.497, P = 0.047, q = 0.22) and the ratio of n-6/n-3 PUFAs (β = 0.034, P = 0.040, q = 0.19) were positively associated with WHR, while odd-chain FAs (pentadecanoic and heptadecanoic acid) showed negative associations with all the adiposity indicators. In conclusion, increased endogenous synthesis of palmitoleic acid and a high n-6/n-3 ratio are associated with increased adiposity, while odd-chain FAs are associated with decreased adiposity. Further studies are needed to determine the potential causality behind these associations.
Collapse
Affiliation(s)
- Elom K Aglago
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
| | - Carine Biessy
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Gabriela Torres-Mejía
- National Institute of Public Health, Center for Population Health Research, Cuernavaca Morelos, Mexico
| | - Angélica Angeles-Llerenas
- National Institute of Public Health, Center for Population Health Research, Cuernavaca Morelos, Mexico
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Isabelle Romieu
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Veronique Chajès
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| |
Collapse
|
41
|
Botchlett R, Woo SL, Liu M, Pei Y, Guo X, Li H, Wu C. Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol 2017; 233:R145-R171. [PMID: 28400405 PMCID: PMC5511693 DOI: 10.1530/joe-16-0580] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023]
Abstract
Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscles, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb the local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in controlling the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Rachel Botchlett
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Pinnacle Clinical ResearchLive Oak, USA
| | - Shih-Lung Woo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Mengyang Liu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Ya Pei
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Xin Guo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Baylor College of MedicineHouston, USA
| | - Honggui Li
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| |
Collapse
|
42
|
Rocha-Rodrigues S, Rodríguez A, Gonçalves IO, Moreira A, Maciel E, Santos S, Domingues MR, Frühbeck G, Ascensão A, Magalhães J. Impact of physical exercise on visceral adipose tissue fatty acid profile and inflammation in response to a high-fat diet regimen. Int J Biochem Cell Biol 2017; 87:114-124. [PMID: 28438715 DOI: 10.1016/j.biocel.2017.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 01/14/2023]
Abstract
PURPOSE Studies associate specific fatty-acids (FA) with the pathophysiology of inflammation. We aimed to analyze the impact of exercise on adipose tissue FA profile in response to a high-fat diet (HFD) and to ascertain whether these exercise-induced changes in specific FA have repercussions on obesity-related inflammation. METHODS Sprague-Dawley rats were assigned into sedentary, voluntary physical-activity (VPA) and endurance training (ET) groups fed a standard (S, 35kcal% fat) or high-fat (71kcal% fat) diets. VPA-animals had unrestricted access to wheel-running. After 9-wks, ET-animals engaged a running protocol for 8-wks, while maintained dietary treatments. The FA content in epididymal white-adipose tissue (eWAT) triglycerides was analyzed by gas-chromatography and the expression of inflammatory markers was determined using RT-qPCR, Western and slot blotting. RESULTS Eight-wks of ET reversed obesity-related anatomical features. HFD increased plasma tumor necrosis factor (TNF)-α content and eWAT monocyte chemoattractant protein (MCP)-1 protein expression. HFD decreased eWAT content of saturated FA and monounsaturated FA, while increased linoleic acid and prostaglandin E2 (PGE2) levels in eWAT. VPA decreased visceral adiposity, adipocyte size and MCP-1 in HFD-fed animals. The VPA and ET interventions diminished palmitoleic acid and increased linoleic acid in HFD-fed groups. Moreover, both interventions increased PGE2 levels in standard diet-fed groups and decreased in HFD. ET increased eWAT fatty acid desaturase 1 (FADS1) and elongase 5 (ELOVL5) protein content in both diet types. ET reduced eWAT inflammatory markers (TNF-α, IL-6), macrophage recruitment (MCP-1 and F4/80) and increased IL-10/TNF-α ratio in plasma and in eWAT in both diet types. CONCLUSIONS Exercise induced FA-specific changes independently of dietary FA composition, but only ET attenuated the inflammatory response in VAT of HFD-fed rats. Moreover, the exercise-induced FA changes did not correlate with the inflammatory response in VAT of rats submitted to HFD.
Collapse
Affiliation(s)
- Sílvia Rocha-Rodrigues
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Obesity & Adipobiology Group, Instituto de Investigación Sanitario de Navarra (IdiSNA), CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
| | - Inês O Gonçalves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - Ana Moreira
- Mass spectrometry Centre, UI-QOPNA Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Elisabete Maciel
- Mass spectrometry Centre, UI-QOPNA Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sónia Santos
- CICECO, Department of Chemistry, University of Aveiro, Campus Santiago, 3810-193 Aveiro, Portugal
| | - Maria R Domingues
- Mass spectrometry Centre, UI-QOPNA Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Obesity & Adipobiology Group, Instituto de Investigación Sanitario de Navarra (IdiSNA), CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - António Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - José Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
43
|
Giardina S, Sala-Vila A, Hernández-Alonso P, Calvo C, Salas-Salvadó J, Bulló M. Carbohydrate quality and quantity affects the composition of the red blood cell fatty acid membrane in overweight and obese individuals. Clin Nutr 2017; 37:481-487. [PMID: 28237295 DOI: 10.1016/j.clnu.2017.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cell membrane fatty acid (FA) composition may play a role in human metabolic diseases. However, the modulatory effect of nutrients other than fat is poorly explored. OBJECTIVE To investigate the effect of moderate-carbohydrate diets with different glycemic indices (GI) and a low-fat diet (LF) on red blood cell (RBC) FA membrane composition. DESIGN The RBC FA profile was measured in 87 subjects from the GLYNDIET study. Participants were randomly assigned to one of the following energy-restricted diet for 6 months: moderate-carbohydrate/low-GI diet (LGI, n = 31), moderate-carbohydrate/high-GI diet (HGI, n = 30) or LF-diet (n = 26). RESULTS We observed a significant increase in C20:0 and decrease in C20:3n-6 in the LGI and HGI groups compared to LF group. Compared to LF-diet, C22:4n-6 was lower after the HGI while C22:6n-3 was higher after LGI diet. Also, a tendency was found for higher concentrations of long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) in LGI compared to HGI and LF groups. The intra-group analysis showed significantly increased levels of total monounsaturated fatty acids (MUFA) after LGI and HGI interventions, as well as a significant increase in C22:5n-6 and a decrease in LCn-3PUFA and omega-3-index after the LF diet. The decrease in C20:5n-3 after HGI and LF diets was also significant. CONCLUSION Diets with a moderate amount of carbohydrates and healthy fat, mainly with LGI, modify the RBC fatty acid membrane composition.
Collapse
Affiliation(s)
- Simona Giardina
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Aleix Sala-Vila
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pablo Hernández-Alonso
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlos Calvo
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mònica Bulló
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
44
|
Mika A, Sledzinski T. Alterations of specific lipid groups in serum of obese humans: a review. Obes Rev 2017; 18:247-272. [PMID: 27899022 DOI: 10.1111/obr.12475] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022]
Abstract
Obesity is a major contributor to the dysfunction of liver, cardiac, pulmonary, endocrine and reproductive system, as well as a component of metabolic syndrome. Although development of obesity-related disorders is associated with lipid abnormalities, most previous studies dealing with the problem in question were limited to routinely determined parameters, such as serum concentrations of triacylglycerols, total cholesterol, low-density and high-density lipoprotein cholesterol. Many authors postulated to extend the scope of analysed lipid compounds and to study obesity-related alterations in other, previously non-examined groups of lipids. Comprehensive quantitative, structural and functional analysis of specific lipid groups may result in identification of new obesity-related alterations. The review summarizes available evidence of obesity-related alterations in various groups of lipids and their impact on health status of obese subjects. Further, the role of diet and endogenous lipid synthesis in the development of serum lipid alterations is discussed, along with potential application of various lipid compounds as risk markers for obesity-related comorbidities.
Collapse
Affiliation(s)
- A Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - T Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
45
|
Transcriptome Analysis Reveals that Vitamin A Metabolism in the Liver Affects Feed Efficiency in Pigs. G3-GENES GENOMES GENETICS 2016; 6:3615-3624. [PMID: 27633790 PMCID: PMC5100860 DOI: 10.1534/g3.116.032839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Feed efficiency (FE) is essential for pig production. In this study, 300 significantly differentially expressed (DE) transcripts, including 232 annotated genes, 28 cis-natural antisense transcripts (cis-NATs), and 40 long noncoding RNAs (lncRNAs), were identified between the liver of Yorkshire pigs with extremely high and low FE. Among these transcripts, 25 DE lncRNAs were significantly correlated with 125 DE annotated genes at a transcriptional level. These DE genes were enriched primarily in vitamin A (VA), fatty acid, and steroid hormone metabolism. VA metabolism is regulated by energy status, and active derivatives of VA metabolism can regulate fatty acid and steroid hormones metabolism. The key genes of VA metabolism (CYP1A1, ALDH1A2, and RDH16), fatty acid biosynthesis (FASN, SCD, CYP2J2, and ANKRD23), and steroid hormone metabolism (CYP1A1, HSD17B2, and UGT2B4) were significantly upregulated in the liver of high-FE pigs. Previous study with the same samples indicated that the mitochondrial function and energy expenditure were reduced in the muscle tissue of high-FE pigs. In conclusion, VA metabolism in liver tissues plays important roles in the regulation of FE in pigs by affecting energy metabolism, which may mediate fatty acid biosynthesis and steroid hormone metabolism. Furthermore, our results identified novel transcripts, such as cis-NATs and lncRNAs, which are also involved in the regulation of FE in pigs.
Collapse
|
46
|
Igal RA. Stearoyl CoA desaturase-1: New insights into a central regulator of cancer metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1865-1880. [PMID: 27639967 DOI: 10.1016/j.bbalip.2016.09.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022]
Abstract
The processes of cell proliferation, cell death and differentiation involve an intricate array of biochemical and morphological changes that require a finely tuned modulation of metabolic pathways, chiefly among them is fatty acid metabolism. The critical participation of stearoyl CoA desaturase-1 (SCD1), the fatty acyl Δ9-desaturing enzyme that converts saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA), in the mechanisms of replication and survival of mammalian cells, as well as their implication in the biological alterations of cancer have been actively investigated in recent years. This review examines the growing body of evidence that argues for a role of SCD1 as a central regulator of the complex synchronization of metabolic and signaling events that control cellular metabolism, cell cycle progression, survival, differentiation and transformation to cancer.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Medical Center, New York City, NY, United States.
| |
Collapse
|
47
|
Yamauchi I, Uemura M, Hosokawa M, Iwashima-Suzuki A, Shiota M, Miyashita K. The dietary effect of milk sphingomyelin on the lipid metabolism of obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice. Food Funct 2016; 7:3854-67. [PMID: 27501823 DOI: 10.1039/c6fo00274a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purified milk sphingomyelin (SM) was obtained from lipid concentrated butter serum (LC-BS) by successive separations involving solvent fractionation, selective saponification, and silicic acid column chromatography. The SM obtained was given to obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice. SM supplementation significantly increased fecal lipids paralleled with a decrease in non-HDL cholesterol levels in the serum and neutral lipids and in cholesterol levels in the livers of KK-A(y) mice. The reduction of liver lipid levels also resulted in a decrease in the total fatty acid content of the KK-A(y) mice livers, while n-3 fatty acids derived from the conversion of α-linolenic acid (18:3n-3) increased due to SM supplementation. In contrast to the KK-A(y) mice, little change in the serum and liver lipids was observed in wild-type C57BL/6J mice. The present study suggests that SM may be effective only in subjects with metabolic disorders.
Collapse
Affiliation(s)
- Ippei Yamauchi
- Laboratory of Bio-functional Material Chemistry, Division of Marine Bioscience, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Imamura F, Micha R, Wu JHY, de Oliveira Otto MC, Otite FO, Abioye AI, Mozaffarian D. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-analysis of Randomised Controlled Feeding Trials. PLoS Med 2016; 13:e1002087. [PMID: 27434027 PMCID: PMC4951141 DOI: 10.1371/journal.pmed.1002087] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 06/10/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Effects of major dietary macronutrients on glucose-insulin homeostasis remain controversial and may vary by the clinical measures examined. We aimed to assess how saturated fat (SFA), monounsaturated fat (MUFA), polyunsaturated fat (PUFA), and carbohydrate affect key metrics of glucose-insulin homeostasis. METHODS AND FINDINGS We systematically searched multiple databases (PubMed, EMBASE, OVID, BIOSIS, Web-of-Knowledge, CAB, CINAHL, Cochrane Library, SIGLE, Faculty1000) for randomised controlled feeding trials published by 26 Nov 2015 that tested effects of macronutrient intake on blood glucose, insulin, HbA1c, insulin sensitivity, and insulin secretion in adults aged ≥18 years. We excluded trials with non-isocaloric comparisons and trials providing dietary advice or supplements rather than meals. Studies were reviewed and data extracted independently in duplicate. Among 6,124 abstracts, 102 trials, including 239 diet arms and 4,220 adults, met eligibility requirements. Using multiple-treatment meta-regression, we estimated dose-response effects of isocaloric replacements between SFA, MUFA, PUFA, and carbohydrate, adjusted for protein, trans fat, and dietary fibre. Replacing 5% energy from carbohydrate with SFA had no significant effect on fasting glucose (+0.02 mmol/L, 95% CI = -0.01, +0.04; n trials = 99), but lowered fasting insulin (-1.1 pmol/L; -1.7, -0.5; n = 90). Replacing carbohydrate with MUFA lowered HbA1c (-0.09%; -0.12, -0.05; n = 23), 2 h post-challenge insulin (-20.3 pmol/L; -32.2, -8.4; n = 11), and homeostasis model assessment for insulin resistance (HOMA-IR) (-2.4%; -4.6, -0.3; n = 30). Replacing carbohydrate with PUFA significantly lowered HbA1c (-0.11%; -0.17, -0.05) and fasting insulin (-1.6 pmol/L; -2.8, -0.4). Replacing SFA with PUFA significantly lowered glucose, HbA1c, C-peptide, and HOMA. Based on gold-standard acute insulin response in ten trials, PUFA significantly improved insulin secretion capacity (+0.5 pmol/L/min; 0.2, 0.8) whether replacing carbohydrate, SFA, or even MUFA. No significant effects of any macronutrient replacements were observed for 2 h post-challenge glucose or insulin sensitivity (minimal-model index). Limitations included a small number of trials for some outcomes and potential issues of blinding, compliance, generalisability, heterogeneity due to unmeasured factors, and publication bias. CONCLUSIONS This meta-analysis of randomised controlled feeding trials provides evidence that dietary macronutrients have diverse effects on glucose-insulin homeostasis. In comparison to carbohydrate, SFA, or MUFA, most consistent favourable effects were seen with PUFA, which was linked to improved glycaemia, insulin resistance, and insulin secretion capacity.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Renata Micha
- Tufts Friedman School of Nutrition Science & Policy, Boston, Massachusetts, United States of America
| | - Jason H. Y. Wu
- George Institute for Global Health, The University of Sydney, Sydney Medical School, Camperdown, Australia
| | - Marcia C. de Oliveira Otto
- Department of Epidemiology, Human Genetics & Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Fadar O. Otite
- Department of Neurology, University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, Florida, United States of America
| | - Ajibola I. Abioye
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Dariush Mozaffarian
- Tufts Friedman School of Nutrition Science & Policy, Boston, Massachusetts, United States of America
| |
Collapse
|
49
|
Bushkofsky JR, Maguire M, Larsen MC, Fong YH, Jefcoate CR. Cyp1b1 affects external control of mouse hepatocytes, fatty acid homeostasis and signaling involving HNF4α and PPARα. Arch Biochem Biophys 2016; 597:30-47. [PMID: 27036855 DOI: 10.1016/j.abb.2016.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 1b1 (Cyp1b1) is expressed in endothelia, stellate cells and pre-adipocytes, but not hepatocytes. Deletion alters liver fatty acid metabolism and prevents obesity and hepatic steatosis. This suggests a novel extra-hepatocyte regulation directed from cells that express Cyp1b1. To characterize these mechanisms, microarray gene expression was analyzed in livers of normal and congenic Cyp1b1-ko C57BL/6 J mice fed either low or high fat diets. Cyp1b1-ko gene responses indicate suppression of endogenous PPARα activity, a switch from triglyceride storage to mitochondrial fatty acid oxidation and decreased oxidative stress. Many gene responses in Cyp1b1-ko are sexually dimorphic and correspond to increased activity of growth hormone mediated by HNF4α. Male responses stimulated by GH pulses are enhanced, whereas responses that decline exhibit further suppression, including Cyp regulation by PPARα, CAR and PXR. These effects of Cyp1b1 deletion overlap with effects caused by deletion of the small heterodimeric partner, a suppressor of these nuclear factors. Redirection of gene expression associated with liver fat homeostasis in Cyp1b1-ko mice that directs hypothalamic control of GH and leptin. Cyp1b1-ko suppresses neonatal Scd1 and delays adult maturation of dimorphic GH/HNF4α signaling. Alternatively, deletion may diminish hypothalamic metabolism of estradiol, which establishes adult GH regulation.
Collapse
Affiliation(s)
- Justin R Bushkofsky
- Molecular and Environmental Toxicology Center, Endocrinology, University of Wisconsin, Madison, WI, 53706, United States; Reproductive Physiology Program, University of Wisconsin, Madison, WI, 53706, United States
| | - Meghan Maguire
- Reproductive Physiology Program, University of Wisconsin, Madison, WI, 53706, United States
| | - Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, 53706, United States
| | - Yee Hoon Fong
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, 53706, United States
| | - Colin R Jefcoate
- Molecular and Environmental Toxicology Center, Endocrinology, University of Wisconsin, Madison, WI, 53706, United States; Reproductive Physiology Program, University of Wisconsin, Madison, WI, 53706, United States; Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, 53706, United States.
| |
Collapse
|
50
|
Liu L, Zhao X, Zhao L, Li J, Yang H, Zhu Z, Liu J, Huang G. Arginine Methylation of SREBP1a via PRMT5 Promotes De Novo Lipogenesis and Tumor Growth. Cancer Res 2016; 76:1260-72. [PMID: 26759235 DOI: 10.1158/0008-5472.can-15-1766] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022]
Abstract
Dysregulation of the sterol regulatory element-binding transcription factors sterol regulatory element-binding protein (SREBP) and SREBF activates de novo lipogenesis to high levels in cancer cells, a critical event in driving malignant growth. In this study, we identified an important posttranslational mechanism by which SREBP1a is regulated during metabolic reprogramming in cancer cells. Mass spectrometry revealed protein arginine methyltransferase 5 (PRMT5) as a binding partner of SREBP1a that symmetrically dimethylated it on R321, thereby promoting transcriptional activity. Furthermore, PRMT5-induced methylation prevented phosphorylation of SREBP1a on S430 by GSK3β, leading to its disassociation from Fbw7 (FBXW7) and its evasion from degradation through the ubiquitin-proteasome pathway. Consequently, methylation-stabilized SREBP1a increased de novo lipogenesis and accelerated the growth of cancer cells in vivo and in vitro. Clinically, R321 symmetric dimethylation status was associated with malignant progression of human hepatocellular carcinoma, where it served as an independent risk factor of poor prognosis. By showing how PRMT5-induced methylation of SREBP1a triggers hyperactivation of lipid biosynthesis, a key event in tumorigenesis, our findings suggest a new generalized strategy to selectively attack tumor metabolism.
Collapse
Affiliation(s)
- Liu Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajin Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongping Zhu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|