1
|
Sheng J, Ma CF, Wu XF, Li XX. Ratio of remnant cholesterol to high-density lipoprotein cholesterol in relation to gestational diabetes mellitus risk in early pregnancy among Korean women. PLoS One 2025; 20:e0316934. [PMID: 39752447 PMCID: PMC11698353 DOI: 10.1371/journal.pone.0316934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVE There is no evidence to suggest that an association exists between the remnant cholesterol (RC) to high-density lipoprotein cholesterol (HDL-C) ratio and gestational diabetes mellitus (GDM). In this study, the RC/HDL-C ratio during the first trimester was examined as a potential indicator of the onset of GDM during the second trimester. METHODS This was a secondary analysis of data from a Korea-based prospective cohort study. The study involved 582 women within 14 weeks of pregnancy who were examined between November 2014 and July 2016 at two Korean hospitals. RC was calculated as total cholesterol (TC) minus the sum of low-density lipoprotein cholesterol (LDL-C) and HDL-C. The RC/HDL-C ratio was determined by dividing the RC content by the HDL-C content. The RC/HDL-C ratio and GDM occurrence were investigated utilizing a binary logistic regression model, various sensitivity analyses, and subgroup analyses. Additionally, the RC/HDL-C ratio was evaluated using receiver operating characteristic (ROC) analysis. RESULTS The average age of the pregnant women was 32.07 ± 3.78 years, and the RC/HDL-C ratio had a median value of 0.39. The prevalence of GDM was 6.01%. There was a positive association between the RC/HDL-C ratio and the incidence of GDM after adjusting for potential confounding variables (odds ratio: 21.78, 95% confidence interval [CI]: 3.55-133.73, P < 0.001). Furthermore, this association was validated by subgroup and sensitivity analyses. The results indicated that the RC/HDL-C ratio was a robust predictor of GDM, with an area under the ROC curve of 0.795 (95% CI: 0.723-0.868). The optimal threshold value was 0.45, with a sensitivity of 71.4% and a specificity of 75.3%. Compared with traditional lipid markers, including LDL-C, HDL-C, triglycerides, TC, and the emerging marker RC, the RC/HDL-C exhibited higher diagnostic efficacy. CONCLUSION There is an increased risk of GDM associated with higher levels of the RC/HDL-C ratio between 12 and 14 weeks of gestation, independent of traditional risk factors. The RC/HDL-C ratio is more effective in diagnosing GDM than traditional lipid markers.
Collapse
Affiliation(s)
- Jing Sheng
- Department of Clinical Laboratory, Suzhou Ninth People’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Chun-Fang Ma
- Department of Clinical Laboratory, Suzhou Ninth People’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Fei Wu
- Department of Emergency Medicine, Suzhou Ninth People’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Xiang-Xiang Li
- Department of Clinical Laboratory, Suzhou Ninth People’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Borén J, Packard CJ, Binder CJ. Apolipoprotein B-containing lipoproteins in atherogenesis. Nat Rev Cardiol 2025:10.1038/s41569-024-01111-0. [PMID: 39743565 DOI: 10.1038/s41569-024-01111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Apolipoprotein B (apoB) is the main structural protein of LDLs, triglyceride-rich lipoproteins and lipoprotein(a), and is crucial for their formation, metabolism and atherogenic properties. In this Review, we present insights into the role of apoB-containing lipoproteins in atherogenesis, with an emphasis on the mechanisms leading to plaque initiation and growth. LDL, the most abundant cholesterol-rich lipoprotein in plasma, is causally linked to atherosclerosis. LDL enters the artery wall by transcytosis and, in vulnerable regions, is retained in the subendothelial space by binding to proteoglycans via specific sites on apoB. A maladaptive response ensues. This response involves modification of LDL particles, which promotes LDL retention and the release of bioactive lipid products that trigger inflammatory responses in vascular cells, as well as adaptive immune responses. Resident and recruited macrophages take up modified LDL, leading to foam cell formation and ultimately cell death due to inadequate cellular lipid handling. Accumulation of dead cells and cholesterol crystallization are hallmarks of the necrotic core of atherosclerotic plaques. Other apoB-containing lipoproteins, although less abundant, have substantially greater atherogenicity per particle than LDL. These lipoproteins probably contribute to atherogenesis in a similar way to LDL but might also induce additional pathogenic mechanisms. Several targets for intervention to reduce the rate of atherosclerotic lesion initiation and progression have now been identified, including lowering plasma lipoprotein levels and modulating the maladaptive responses in the artery wall.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Pan Z, Zaman MA, Kalsoom S, Zhang Y. Messenger interference RNA therapies targeting apolipoprotein C-III and angiopoietin-like protein 3 for mixed hyperlipidemia: the future of plozasiran and zodasiran. Expert Rev Clin Pharmacol 2024; 17:1017-1023. [PMID: 39469883 DOI: 10.1080/17512433.2024.2423724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Mixed hyperlipidemia represents a substantial public health issue and a considerable burden on healthcare systems. Although the introduction of statins and LDL-cholesterol lowering agents have significantly reduced the incidence of atherosclerotic cardiovascular diseases (ASCVD), a significant portion of the population continues to exhibit ASCVD progression due to elevated triglyceride-rich lipoprotein (TRL) levels. This persistent risk has catalyzed the development of novel pharmacological interventions targeting these lipoproteins. AREAS COVERED Our special report commenced with a targeted PubMed search using keywords such as 'plozasiran,' 'zodasiran,' and terms related to APOC3 and ANGPTL3. As the review progressed, emergent research questions guided further searches, allowing for the inclusion of additional relevant articles to comprehensively illustrate the linkage between TRLs and cardiovascular disease, discuss the roles of APOC3, ANGPTL3, and the pharmaceutical agents that target these proteins, and provide a comparison on the ARCHES-2 and MUIR trials. EXPERT OPINION The ARCHES-2 and MUIR trials demonstrated effective triglyceride reduction by these therapies, yet it is uncertain if this correlates with significant clinical benefits. Advances in antisense oligonucleotide technology, especially the GalNAc delivery platform, show promise for personalized lipid management, though challenges such as cost and safety concerns remain.
Collapse
Affiliation(s)
- Zonghao Pan
- Department of Internal Medicine, Conemaugh Health System, Johnstown, PA, USA
| | | | - Sidra Kalsoom
- Department of Cardiology, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Yani Zhang
- Department of Internal Medicine, MedStar Washington Hospital Center, Washington, DC, USA
| |
Collapse
|
4
|
Muñoz Montiel A, Ruiz-Esteban P, Doménech Del Río A, Valdivielso P, Sánchez Chaparro MÁ, Olveira C. The effect of pulmonary rehabilitation on cardiovascular risk, oxidative stress and systemic inflammation in patients with COPD. Respir Med 2024; 232:107740. [PMID: 39009098 DOI: 10.1016/j.rmed.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is a leading cause of death, and cardiovascular (CV) comorbidities play a role. Evidence of the pulmonary rehabilitation (PR) effect in reducing the CV risk (CVR) in COPD patients is limited. In this study, we aimed to determine the impact of an 8-week PR program (PRP) on the CVR of the overall population and to compare the impact on the exacerbator versus non-exacerbator patients. PATIENTS AND METHODS This was a prospective study that included adults who had post-bronchodilator forced expiratory volume in 1 s (FEV1) to forced vital capacity (FVC) (FEV1/FVC) ratio <70 % and FEV1 <80 % predicted, had quit smoking for at least 1 year and had a history of tobacco consumption greater than 10 packs/year, and were clinically stable in the last 8 weeks. Pre- and post-PRP assessments included respiratory function evaluation, laboratory tests, and exercise capacity assessment (6-min walking test [6MWT]). CVR was assessed using different risk prediction models. RESULTS A total of 50 patients (28 exacerbators and 22 non-exacerbators) completed the PRP (median age: 64.5 years, men: 72 %; arterial hypertension: 70 %, dyslipidemia: 30 %, diabetes: 20 %; CV disease (CVD): 24 %. After the PRP, exacerbator patients showed a significant decrease in the CVR calculated by the COPDCoRi model (p < 0.001); patients with ≥30-m increase on the 6MWT showed statistically significant lower levels of glucose (p = 0.004), HbA1c (p = 0.004) and BODE index score (p = 0.026) compared to patients with <30-m increase. CONCLUSIONS PR reduced certain modifiable CVR factors and CVD risk, especially in exacerbator patients.
Collapse
Affiliation(s)
- Ana Muñoz Montiel
- Pulmonology Service/Unit, Monographic COPD Consultation. Regional University Hospital of Malaga, Malaga, Spain
| | - Pedro Ruiz-Esteban
- Nephrology Department, Regional University Hospital of Malaga, University of Malaga, The Biomedical Research Institute of Malaga (IBIMA), RICORS2040 (RD21/0005/0012), Malaga, Spain.
| | - Adolfo Doménech Del Río
- Pulmonology Service/Unit, Monographic COPD Consultation. Regional University Hospital of Malaga, Malaga, Spain
| | - Pedro Valdivielso
- Laboratory of Lipids and Atherosclerosis, Medico-Sanitarias Research Center (IBIMA), University of Malaga, Malaga, Spain; Internal Medicine, University Hospital Virgen de la Victoria, Department of Medicine and Dermatology and Biomedical Research Institute of Malaga (IBIMA), Platform Bionand. University of Malaga, Malaga, Spain
| | - Miguel Ángel Sánchez Chaparro
- Internal Medicine, University Hospital Virgen de la Victoria, Department of Medicine and Dermatology and Biomedical Research Institute of Malaga (IBIMA), Platform Bionand. University of Malaga, Malaga, Spain
| | - Casilda Olveira
- Department of Medicine and Dermatology and Biomedical Research Institute of Malaga (IBIMA), Platform Bionand. University of Malaga, Malaga, Spain
| |
Collapse
|
5
|
Zubirán R, Neufeld EB, Dasseux A, Remaley AT, Sorokin AV. Recent Advances in Targeted Management of Inflammation In Atherosclerosis: A Narrative Review. Cardiol Ther 2024; 13:465-491. [PMID: 39031302 PMCID: PMC11333429 DOI: 10.1007/s40119-024-00376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality despite effective low-density lipoprotein cholesterol-targeted therapies. This review explores the crucial role of inflammation in the residual risk of ASCVD, emphasizing its impact on atherosclerosis progression and plaque stability. Evidence suggests that high-sensitivity C-reactive protein (hsCRP), and potentially other inflammatory biomarkers, can be used to identify the inflammatory residual ASCVD risk phenotype and may serve as future targets for the development of more efficacious therapeutic approaches. We review the biological basis for the association of inflammation with ASCVD, propose new therapeutic strategies for the use of inflammation-targeted treatments, and discuss current challenges in the implementation of this new treatment paradigm for ASCVD.
Collapse
Affiliation(s)
- Rafael Zubirán
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Edward B Neufeld
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amaury Dasseux
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V Sorokin
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Section of Inflammation and Cardiometabolic Diseases, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Section of Lipoprotein Metabolism, Clinical Research Center, National Heart, Lung and Blood Institute, 9000 Rockville Pike, Bldg 10, Room 5-5150, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Proctor SD, Wang M, Vine DF, Raggi P. Predictive utility of remnant cholesterol in atherosclerotic cardiovascular disease. Curr Opin Cardiol 2024; 39:300-307. [PMID: 38456429 DOI: 10.1097/hco.0000000000001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Remnant cholesterol (RC) is the cholesterol carried in lipoproteins derived from the catabolism of chylomicrons and very low-density lipoproteins. Evidence supporting the causal relationship of RC with atherosclerotic cardiovascular disease (ASVD) is accumulating rapidly. The number of impactful contributions to this field are increasing and provide a pathophysiological insight into the current residual cardiovascular risk beyond low-density cholesterol (LDL)-cholesterol (LDL-C). They also raise the question of whether RC should be used in prediction models and become the target of new therapeutic interventions. The intent of this review is to highlight the recent advances on the role of RC in atherogenesis and the validation of RC as a predictor of ASVD. RECENT FINDINGS Numerous prospective and retrospective cohorts helped validate a significant causal relationship of RC with various forms of ASVD, independent of LDL-C. A recent large Mendelian randomization study reinforced the existence of this relationship and showed that the risk of atherosclerotic events was driven nearly entirely by a direct effect of RC. SUMMARY Both available and accumulating evidence suggest that a lifelong reduction in RC could translate into a substantial reduction in ASVD risk. The data support a revision of current guidelines to incorporate RC as an independent risk factor for ASVD. We propose that early screening of RC should be implemented and that RC lowering should become the target of future drug developments.
Collapse
Affiliation(s)
- Spencer D Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Division of Nutrition, University of Alberta
| | - Maggie Wang
- Metabolic and Cardiovascular Diseases Laboratory, Division of Nutrition, University of Alberta
| | - Donna F Vine
- Metabolic and Cardiovascular Diseases Laboratory, Division of Nutrition, University of Alberta
| | - Paolo Raggi
- Division of Cardiology and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Raggi P, Becciu ML, Navarese EP. Remnant cholesterol as a new lipid-lowering target to reduce cardiovascular events. Curr Opin Lipidol 2024; 35:110-116. [PMID: 38276967 DOI: 10.1097/mol.0000000000000921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
PURPOSE OF REVIEW Remnant cholesterol has become increasingly recognized as a direct contributor to the development of atherosclerosis and as an additional marker of cardiovascular risk. This review aims to summarize the pathophysiological mechanisms, and the current evidence base from epidemiological investigations and genetic studies that support a causal link between remnant cholesterol and atherosclerotic cardiovascular disease. Current and novel therapeutic approaches to target remnant cholesterol are discussed. RECENT FINDINGS A recent Mendelian randomization study of over 12 000 000 single-nucleotide polymorphisms associated with high levels of remnant cholesterol, demonstrated a genetic association between remnant cholesterol and adverse cardiovascular events among 958 434 participants. SUMMARY In this light, the emerging role of remnant cholesterol as an independent lipid risk marker warrants a reevaluation of lipid management guidelines and underscores the potential for novel therapeutic targets in cardiovascular disease prevention.
Collapse
Affiliation(s)
- Paolo Raggi
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Laura Becciu
- Clinical Experimental Cardiology, Department of Cardiology, Azienda Ospedaliero Universitaria di Sassari
- SIRIO MEDICINE Research Network, Sassari, Italy
| | - Eliano P Navarese
- Clinical Experimental Cardiology, Department of Cardiology, Azienda Ospedaliero Universitaria di Sassari
- SIRIO MEDICINE Research Network, Sassari, Italy
| |
Collapse
|
8
|
Xu D, Xie L, Cheng C, Xue F, Sun C. Triglyceride-rich lipoproteins and cardiovascular diseases. Front Endocrinol (Lausanne) 2024; 15:1409653. [PMID: 38883601 PMCID: PMC11176465 DOI: 10.3389/fendo.2024.1409653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The global prevalence of cardiovascular diseases (CVD) continues to rise steadily, making it a leading cause of mortality worldwide. Atherosclerosis (AS) serves as a primary driver of these conditions, commencing silently at an early age and culminating in adverse cardiovascular events that severely impact patients' quality of life or lead to fatality. Dyslipidemia, particularly elevated levels of low-density lipoprotein cholesterol (LDL-C), plays a pivotal role in AS pathogenesis as an independent risk factor. Research indicates that abnormal LDL-C accumulation within arterial walls acts as a crucial trigger for atherosclerotic plaque formation. As the disease progresses, plaque accumulation may rupture or dislodge, resulting in thrombus formation and complete blood supply obstruction, ultimately causing myocardial infarction, cerebral infarction, and other common adverse cardiovascular events. Despite adequate pharmacologic therapy targeting LDL-C reduction, patients with cardiometabolic abnormalities remain at high risk for disease recurrence, highlighting the importance of addressing lipid risk factors beyond LDL-C. Recent attention has focused on the causal relationship between triglycerides, triglyceride-rich lipoproteins (TRLs), and their remnants in AS risk. Genetic, epidemiologic, and clinical studies suggest a causal relationship between TRLs and their remnants and the increased risk of AS, and this dyslipidemia may be an independent risk factor for adverse cardiovascular events. Particularly in patients with obesity, metabolic syndrome, diabetes, and chronic kidney disease, disordered TRLs and its remnants levels significantly increase the risk of atherosclerosis and cardiovascular disease development. Accumulation of over-synthesized TRLs in plasma, impaired function of enzymes involved in TRLs lipolysis, and impaired hepatic clearance of cholesterol-rich TRLs remnants can lead to arterial deposition of TRLs and its remnants, promoting foam cell formation and arterial wall inflammation. Therefore, understanding the pathogenesis of TRLs-induced AS and targeting it therapeutically could slow or impede AS progression, thereby reducing cardiovascular disease morbidity and mortality, particularly coronary atherosclerotic heart disease.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lin Xie
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Xue
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Chaonan Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
9
|
Moreno-Vedia J, Llop D, Rodríguez-Calvo R, Plana N, Amigó N, Rosales R, Esteban Y, Masana L, Ibarretxe D, Girona J. Lipidomics of triglyceride-rich lipoproteins derived from hyperlipidemic patients on inflammation. Eur J Clin Invest 2024; 54:e14132. [PMID: 38010694 DOI: 10.1111/eci.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIM Triglyceride-rich lipoproteins (TRLs) can have an important role in atherosclerosis development due to their size and ability to penetrate the endothelium. While high plasma triglyceride (TG) levels and chronic inflammation are relevant in metabolic diseases, it remains unclear whether TGs are atherogenic or which TRL-TG-derived metabolites are responsible for inflammation. Here, we aimed to study the lipidome modifications of TRL particles enriched in TG in patients with hyperlipidemia and their associations with a proinflammatory status both in vivo and in vitro. METHODS Using proton nuclear magnetic resonance (1 H-NMR), we analysed the plasma levels of glycoprotein acetyls and the TRL lipidomic profile of 307 patients with dyslipidemia. THP-1-derived macrophages were used as an in vitro model to explore the molecular inflammatory effects mediated by TRL. RESULTS In vivo, higher TRL-TG levels were associated with higher circulating levels of NMR-measured glycoproteins (Glyc-A, Glyc-B and Glyc-F; p < .001). Lipidomic analysis showed that TRL-TG enrichment led to decreased cholesterol and phospholipid content (p < .01), an increase in omega-9, and a decrease in saturated fatty acids (p < .001). THP-1 macrophages exposed to increasing TRL particle concentrations augmented the secretion of IL-1β and TNF-α, which varied based on particle composition. Particles with higher cholesterol and phospholipid contents exerted higher cytokine secretion. The activation of MAPK, Akt/NFκB, and caspase-1 was concurrent with this proinflammatory response. CONCLUSIONS High TRL-TG levels are associated with a higher systemic inflammatory status and increased particle concentrations. In vitro, higher particle numbers increase proinflammatory cytokine secretion, with cholesterol and phospholipid-rich TRL being more proinflammatory.
Collapse
Affiliation(s)
- Juan Moreno-Vedia
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili. Institut Investigacio Sanitaria Pere Virgili (IISPV), Reus, Spain
| | - Dídac Llop
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili. Institut Investigacio Sanitaria Pere Virgili (IISPV), Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ricardo Rodríguez-Calvo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili. Institut Investigacio Sanitaria Pere Virgili (IISPV), Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Núria Plana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili. Institut Investigacio Sanitaria Pere Virgili (IISPV), Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Núria Amigó
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Biosfer Teslab SL, Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Roser Rosales
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili. Institut Investigacio Sanitaria Pere Virgili (IISPV), Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Yaiza Esteban
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili. Institut Investigacio Sanitaria Pere Virgili (IISPV), Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lluís Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili. Institut Investigacio Sanitaria Pere Virgili (IISPV), Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili. Institut Investigacio Sanitaria Pere Virgili (IISPV), Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili. Institut Investigacio Sanitaria Pere Virgili (IISPV), Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
10
|
Andersson DP, Littmann K, Kindborg G, Eklund D, Sejersen K, Yan J, Eriksson Hogling D, Parini P, Brinck J. Relation among hypertriglyceridaemia, cardiometabolic disease, and hereditary factors-design and rationale of the Stockholm hyperTRIglyceridaemia REGister study. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae010. [PMID: 38487365 PMCID: PMC10937219 DOI: 10.1093/ehjopen/oeae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Aims Hypertriglyceridaemia (hTG) is associated with atherosclerotic cardiovascular disease, pancreatitis, and non-alcoholic fatty liver disease (NAFLD) in large population-based studies. The understanding of the impact of hereditary hTG and cardiometabolic disease status on the development of hTG and its associated cardiometabolic outcomes is more limited. We aimed to establish a multigenerational cohort to enable studies of the relationship between hTG, cardiometabolic disease and hereditary factors. Methods and results The population-based observational Stockholm hyperTRIglyceridaemia REGister (STRIREG) study includes 1 460 184 index individuals who have measured plasma triglycerides in the clinical routine in Region Stockholm, Sweden, between 1 January 2000 and 31 December 2021. The laboratory measurements also included basic haematology, blood lipid panel, liver function tests, and HbA1c. Using the Swedish Multi-Generation register, 2 147 635 parents and siblings to the indexes were identified to form the complete study cohort. Laboratory data from participants were combined with data from several national registers that provided information on the cause of death, medical diagnoses, dispensed medicines, and socioeconomic factors including country of birth, education level, and marital status. Conclusion The multi-generational longitudinal STRIREG cohort provides a unique opportunity to investigate different aspects of hTG as well as heredity for other metabolic diseases. Important outcome measures include mortality, cardiovascular mortality, major cardiovascular events, development of incident diabetes, and NAFLD. The STRIREG study will provide a deeper understanding of the impact of hereditary factors and associated cardiometabolic complications.
Collapse
Affiliation(s)
- Daniel P Andersson
- Department of Medicine Huddinge, Karolinska Institutet, Cardio Metabolic Unit, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
- Medical Unit Endocrinology, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Karin Littmann
- Department of Medicine Huddinge, Karolinska Institutet, Cardio Metabolic Unit, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
- Medical Unit Endocrinology, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Gustav Kindborg
- Department of Medicine Huddinge, Karolinska Institutet, Cardio Metabolic Unit, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
- Medical Unit Endocrinology, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Daniel Eklund
- Medical Unit Clinical Chemistry, C1-62, Karolinska University Laboratory, 141 86 Stockholm, Sweden
| | - Kristina Sejersen
- Department of Medical Sciences, Section of Clinical Chemistry, Uppsala University, Uppsala University Hospital, 751 85 Uppsala, Sweden
- Unilabs AB, Unilabs Laboratory Medicine Stockholm, Section of Clinical Chemistry, 171 54 Solna, Sweden
| | - Jane Yan
- Institute of Environmental Medicine, Unit of Biostatistics, Karolinska Institutet, Nobels väg 13, 17 177 Stockholm, Sweden
| | - Daniel Eriksson Hogling
- Department of Medicine Huddinge, Karolinska Institutet, Cardio Metabolic Unit, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
- Medical Unit Endocrinology, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Paolo Parini
- Department of Medicine Huddinge, Karolinska Institutet, Cardio Metabolic Unit, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
- Medical Unit Endocrinology, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
- Department of Laboratory Medicine, Cardio Metabolic Unit, Karolinska Institutet, Alfred Nobels Allé 8, 141 52 Huddinge, Sweden
| | - Jonas Brinck
- Department of Medicine Huddinge, Karolinska Institutet, Cardio Metabolic Unit, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
- Medical Unit Endocrinology, C2:94, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| |
Collapse
|
11
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
12
|
Liu T, Zhao D, Wang M, Sun J, Liu J, Li J, Duan Y, Sun Z, Hu P, Liu J, Qi Y. Association between Intermediate-Density Lipoprotein Particles and the Progression of Carotid Atherosclerosis: A Community-Based Cohort Study. J Atheroscler Thromb 2023; 30:1644-1660. [PMID: 37045783 PMCID: PMC10627743 DOI: 10.5551/jat.63937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023] Open
Abstract
AIM Experimental studies report that intermediate-density lipoprotein (IDL), the precursor of low-density lipoprotein, promotes atherosclerotic plaque formation. However, whether IDL is involved in the development of atherosclerosis in humans is still unclear. The aim of this community-based study is to examine the association between IDL particle (IDL-P) concentrations and the 5-year progression of carotid atherosclerosis. METHODS Baseline IDL-P concentrations were measured using nuclear magnetic resonance spectroscopy in 927 participants aged 45-74 years with no history of cardiovascular disease (CVD) at baseline. To estimate the association between baseline IDL-P concentrations and 5-year progression of carotid atherosclerosis, indicated by atherosclerotic plaque progression and changes in total plaque area (TPA), multivariable-adjusted regression was employed. RESULTS During the 5-year follow-up period, 45.8% of participants developed new plaques. Baseline IDL-P concentrations were significantly associated with the progression of carotid atherosclerosis. Participants in the highest quartile of IDL-P concentrations exhibited 1.36-fold (95% confidence interval [CI]: 1.09-1.68) increased progression of carotid plaque and 1.67-fold (95% CI: 1.04-2.69) higher TPA than those in the lowest quartile. These relationships were independent of baseline concentrations of low-density lipoprotein particles and very-low-density lipoprotein particles and their subclasses. CONCLUSIONS Elevated IDL-P concentrations were independently associated with the progression of carotid atherosclerosis, suggesting that IDL-P is a novel risk factor for the development of atherosclerosis.
Collapse
Affiliation(s)
- Tianxiao Liu
- Center for Clinical and Epidemiological Research, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart,
Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education,
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Dong Zhao
- Center for Clinical and Epidemiological Research, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart,
Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education,
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Miao Wang
- Center for Clinical and Epidemiological Research, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart,
Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education,
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Jiayi Sun
- Center for Clinical and Epidemiological Research, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart,
Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education,
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Jun Liu
- Center for Clinical and Epidemiological Research, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart,
Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education,
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Jiangtao Li
- Center for Clinical and Epidemiological Research, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart,
Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education,
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Youling Duan
- Center for Clinical and Epidemiological Research, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart,
Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education,
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Zhaoqing Sun
- Center for Clinical and Epidemiological Research, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart,
Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education,
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Piaopiao Hu
- Center for Clinical and Epidemiological Research, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart,
Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education,
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Jing Liu
- Center for Clinical and Epidemiological Research, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart,
Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education,
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yue Qi
- Center for Clinical and Epidemiological Research, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart,
Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education,
Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
13
|
Yanai H, Adachi H, Hakoshima M, Iida S, Katsuyama H. Metabolic-Dysfunction-Associated Steatotic Liver Disease-Its Pathophysiology, Association with Atherosclerosis and Cardiovascular Disease, and Treatments. Int J Mol Sci 2023; 24:15473. [PMID: 37895151 PMCID: PMC10607514 DOI: 10.3390/ijms242015473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease that affects more than a quarter of the global population and whose prevalence is increasing worldwide due to the pandemic of obesity. Obesity, impaired glucose metabolism, high blood pressure and atherogenic dyslipidemia are risk factors for MASLD. Therefore, insulin resistance may be closely associated with the development and progression of MASLD. Hepatic entry of increased fatty acids released from adipose tissue, increase in fatty acid synthesis and reduced fatty acid oxidation in the liver and hepatic overproduction of triglyceride-rich lipoproteins may induce the development of MASLD. Since insulin resistance also induces atherosclerosis, the leading cause for death in MASLD patients is cardiovascular disease. Considering that the development of cardiovascular diseases determines the prognosis of MASLD patients, the therapeutic interventions for MASLD should reduce body weight and improve coronary risk factors, in addition to an improving in liver function. Lifestyle modifications, such as improved diet and increased exercise, and surgical interventions, such as bariatric surgery and intragastric balloons, have shown to improve MASLD by reducing body weight. Sodium glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been shown to improve coronary risk factors and to suppress the occurrence of cardiovascular diseases. Both SGLT2i and GLP-1 have been reported to improve liver enzymes, hepatic steatosis and fibrosis. We recently reported that the selective peroxisome proliferator-activated receptor-alpha (PPARα) modulator pemafibrate improved liver function. PPARα agonists have multiple anti-atherogenic properties. Here, we consider the pathophysiology of MASLD and the mechanisms of action of such drugs and whether such drugs and the combination therapy of such drugs could be the treatments for MASLD.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Japan; (H.A.); (M.H.); (S.I.); (H.K.)
| | | | | | | | | |
Collapse
|
14
|
Heo JH, Jo SH. Triglyceride-Rich Lipoproteins and Remnant Cholesterol in Cardiovascular Disease. J Korean Med Sci 2023; 38:e295. [PMID: 37750369 PMCID: PMC10519781 DOI: 10.3346/jkms.2023.38.e295] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/02/2023] [Indexed: 09/27/2023] Open
Abstract
Despite the well-established benefits of statin treatments in lowering low-density lipoprotein cholesterol (LDL-C), a significant residual risk for atherosclerotic cardiovascular disease (ASCVD) remains. Triglycerides (TGs) have long been recognized as potential residual risk factors in this context, but recent studies now disclose the substantial role of TG-rich lipoproteins (TRLs) and cholesterol components of metabolized TRLs (commonly referred to as remnant cholesterol) in atherogenesis, not just TGs alone. Evidence derived through diverse sources, including preclinical studies of pathogenic mechanisms, epidemiologic investigations, and genetic research, has consistently supported the considerable contribution of TRLs and remnant cholesterol in predicting occurrences of ASCVD. As emerging biomarkers for predicting atherosclerosis, they have thus become prioritized therapeutic targets, meant to augment LDL-C lowering efforts in individuals at high risk of ASCVD. However, routine clinical testing for remnant cholesterol and TRLs is still in question, necessitating further research into appropriate treatment plans if levels are elevated. New therapies targeting proteins in TG metabolic pathways, particularly angiopoietin-like protein 3 and apolipoprotein C-III, have shown potential advantages in patients with mild-to-moderate hypertriglyceridemia by reducing blood levels of TGs and remnant cholesterol. The aim of this review is to summarize existing evidence linking elevated TRLs and remnant cholesterol with development of ASCVD and to explore additional guidance for clinical therapy.
Collapse
Affiliation(s)
- Ji Hye Heo
- Division of Endocrinology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Sang-Ho Jo
- Division of Cardiology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea.
| |
Collapse
|
15
|
Pintó X, Fanlo M, Esteve V, Millán J. Remnant cholesterol, vascular risk, and prevention of atherosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2023; 35:206-217. [PMID: 36889989 DOI: 10.1016/j.arteri.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In patients who have achieved optimal LDL-C control, there remains a residual risk of atherothrombotic cardiovascular disease (ACVD) related to alterations in lipid metabolism, where alterations in triglyceride-rich lipoproteins and the cholesterol they contain, called remnant cholesterol, play a major role. Remnant cholesterol has an association with residual risk of ACVD that is independent of LDL-C and has been demonstrated in epidemiological and Mendelian randomisation studies, and in analyses of clinical trials of lipid-lowering drugs. Remnant triglyceride-rich lipoproteins particles are highly atherogenic, due to their ability to enter and be retained in the arterial wall, their high cholesterol content, and their ability to generate "foam cells" and an inflammatory response. Assessment of remnant cholesterol may provide information on residual risk of ACVD beyond the information provided by LDL-C, Non-HDL-C, and apoB, particularly in individuals with hypertriglyceridaemia, type 2 diabetes, or metabolic syndrome. In the REDUCE-IT study, icosapent ethyl was shown to have a preventive effect against ACVD in very high cardiovascular risk patients with hypertriglyceridaemia treated with statins and target LDL-C. New lipid-lowering drugs will help to define efficacy and criteria in the treatment of excess remnant cholesterol and hypertriglyceridaemia in the prevention of ACVD.
Collapse
Affiliation(s)
- Xavier Pintó
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, España; Fundación para la Investigación y Prevención de Enfermedades Cardiovasculares (FIPEC), Barcelona, España; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Facultad de Medicina, Universidad de Barcelona, Barcelona, España.
| | - Marta Fanlo
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, España; Fundación para la Investigación y Prevención de Enfermedades Cardiovasculares (FIPEC), Barcelona, España; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España
| | - Virginia Esteve
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, España; Fundación para la Investigación y Prevención de Enfermedades Cardiovasculares (FIPEC), Barcelona, España; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España
| | - Jesús Millán
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, España
| |
Collapse
|
16
|
Cesena FY, Generoso G, Santos RD, Pereira AC, Blaha MJ, Jones SR, Toth PP, Lotufo PA, Bittencourt MS, Benseñor IM. The association between triglyceride-rich lipoproteins, circulating leukocytes, and low-grade inflammation: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). J Clin Lipidol 2023; 17:261-271. [PMID: 36878763 DOI: 10.1016/j.jacl.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Experimental studies have linked triglyceride-rich lipoproteins (TRLs) to inflammation, but the extent of this phenomenon in vivo has not been completely elucidated. OBJECTIVE We investigated the association between TRL subparticles and inflammatory markers (circulating leukocytes, plasma high-sensitivity C-reactive protein [hs-CRP], and GlycA) in the general population. METHODS This was a cross-sectional analysis of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). TRLs (number of particles per unit volume) and GlycA were measured by nuclear magnetic resonance spectroscopy. The association between TRLs and inflammatory markers was determined by multiple linear regression models adjusted for demographic data, metabolic conditions, and lifestyle factors. Standardized regression coefficients (beta) with 95% confidence intervals are reported. RESULTS The study population comprised 4,001 individuals (54% females, age 50 ± 9 years). TRLs, especially medium and large subparticles, were associated with GlycA (beta 0.202 [0.168, 0.235], p<0.001 for total TRLs). There was no association between TRLs and hs-CRP (beta 0.022 [-0.011, 0.056], p = 0.190). Medium, large, and very large TRLs were associated with leukocytes, with stronger connections with neutrophils and lymphocytes than monocytes. When TRL subclasses were analyzed as the proportion of the total pool of TRL particles, medium and large TRLs were positively related to leukocytes and GlycA, whereas smaller particles were inversely associated. CONCLUSIONS There are different patterns of association between TRL subparticles and inflammatory markers. The findings support the hypothesis that TRLs (especially medium and larger subparticles) may induce a low-grade inflammatory environment that involves leukocyte activation and is captured by GlycA, but not hs-CRP.
Collapse
Affiliation(s)
| | - Giuliano Generoso
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Raul D Santos
- Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, SP, Brazil; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Alexandre Costa Pereira
- Laboratory of Genetics and Molecular Cardiology (LIM13), University of São Paulo Medical School Hospital, São Paulo, SP, Brazil; Genetics Department, Harvard Medical School, Boston, MA, USA
| | - Michael J Blaha
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Steven R Jones
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Paulo A Lotufo
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | | | - Isabela M Benseñor
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Šatný M. Dyslipidemia - the known unknown. VNITRNI LEKARSTVI 2023; 69:305-310. [PMID: 37827828 DOI: 10.36290/vnl.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Dyslipidemia (DLP) is the most important risk factor for atherosclerotic cardiovascular disease (ASCVD) and, in the context of severe hypertriglyceridemia (TG > 10 mmol/l), a risk factor for the development of acute pancreatitis. The prevalence of DLP is very high, but their control, especially among the patients at highest risk, is often inadequate. When diagnosing DLP, we should always exclude its possible secondary aetiology (e.g. DLP in the context of hypothyroidism, diabetes, ...). Based on the assessment of the overall CV risk (according to SCORE2/SCORE2-OP or according to the comorbidities of the individual), target values for blood lipids, especially LDL-cholesterol, are determined according to the risk category. The basis of the management of DLP in the prevention of ASCVD is dietary and regimen measures, followed by adequate lipid-lowering therapy in indicated cases. As of April 2023, the portfolio of lipid-lowering medication has been expanded to include inclisiran (small interfering RNA against proprotein convertase subtilisin/kexin type 9 (PCSK9)), which is administered directly in cardiologists' and internists' outpatient clinics, ensuring 100% adherence. In severe hypertriglyceridaemia, fibrate monotherapy may be indicated in addition to dietary and regimen measures; if this treatment fails, some patients may be offered lomitapide, volanesorsen or evinacumab as part of clinical trials or specific treatment programmes if very strict indication criteria are met.
Collapse
|
18
|
Qu K, Yan F, Qin X, Zhang K, He W, Dong M, Wu G. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol 2022; 13:1084604. [PMID: 36605901 PMCID: PMC9807884 DOI: 10.3389/fphys.2022.1084604] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The mitochondria are essential organelles that generate large amounts of ATP via the electron transport chain (ECT). Mitochondrial dysfunction causes reactive oxygen species accumulation, energy stress, and cell death. Endothelial mitochondrial dysfunction is an important factor causing abnormal function of the endothelium, which plays a central role during atherosclerosis development. Atherosclerosis-related risk factors, including high glucose levels, hypertension, ischemia, hypoxia, and diabetes, promote mitochondrial dysfunction in endothelial cells. This review summarizes the physiological and pathophysiological roles of endothelial mitochondria in endothelial function and atherosclerosis.
Collapse
Affiliation(s)
- Kai Qu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Fang Yan
- Department of Geriatrics, Geriatric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China,Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Xian Qin
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Kun Zhang
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Wen He
- Department of Geriatrics, Clinical trial center, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China,*Correspondence: Mingqing Dong, ; Guicheng Wu,
| | - Guicheng Wu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,*Correspondence: Mingqing Dong, ; Guicheng Wu,
| |
Collapse
|
19
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Atherogenic Lipoproteins for the Statin Residual Cardiovascular Disease Risk. Int J Mol Sci 2022; 23:ijms232113499. [PMID: 36362288 PMCID: PMC9657259 DOI: 10.3390/ijms232113499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Randomized controlled trials (RCTs) show that decreases in low-density lipoprotein cholesterol (LDL-C) by the use of statins cause a significant reduction in the development of cardiovascular disease (CVD). However, one of our previous studies showed that, among eight RCTs that investigated the effect of statins vs. a placebo on CVD development, 56–79% of patients had residual CVD risk after the trials. In three RCTs that investigated the effect of a high dose vs. a usual dose of statins on CVD development, 78–87% of patients in the high-dose statin arms still had residual CVD risk. The risk of CVD development remains even when statins are used to strongly reduce LDL-C, and this type of risk is now regarded as statin residual CVD risk. Our study shows that elevated triglyceride (TG) levels, reduced high-density lipoprotein cholesterol (HDL-C), and the existence of obesity/insulin resistance and diabetes may be important metabolic factors that determine statin residual CVD risk. Here, we discuss atherogenic lipoproteins that were not investigated in such RCTs, such as lipoprotein (a) (Lp(a)), remnant lipoproteins, malondialdehyde-modified LDL (MDA-LDL), and small-dense LDL (Sd-LDL). Lp(a) is under strong genetic control by apolipoprotein (a), which is an LPA gene locus. Variations in the LPA gene account for 91% of the variability in the plasma concentration of Lp(a). A meta-analysis showed that genetic variations at the LPA locus are associated with CVD events during statin therapy, independent of the extent of LDL lowering, providing support for exploring strategies targeting circulating concentrations of Lp(a) to reduce CVD events in patients receiving statins. Remnant lipoproteins and small-dense LDL are highly associated with high TG levels, low HDL-C, and obesity/insulin resistance. MDA-LDL is a representative form of oxidized LDL and plays important roles in the formation and development of the primary lesions of atherosclerosis. MDA-LDL levels were higher in CVD patients and diabetic patients than in the control subjects. Furthermore, we demonstrated the atherogenic properties of such lipoproteins and their association with CVD as well as therapeutic approaches.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Correspondence: ; Tel.: +81-473-72-3501; Fax: +81-473-72-1858
| | | | | | | |
Collapse
|
20
|
Li Y, Luo Y, Wang Q, Liu X. Detection and Quantification of the Relationship between the Ratio of Triglycerides over High-Density Lipoprotein Cholesterol and the Level of Serum Uric Acid: One Cross-Sectional Study. Int J Endocrinol 2022; 2022:1673335. [PMID: 39263260 PMCID: PMC11390236 DOI: 10.1155/2022/1673335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 09/13/2024] Open
Abstract
Background Hyperuricemia acts as an independently known risk factor for diabetes, cardiovascular disease, and gout. It was previously reported that the ratio of triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) is not only an important marker of cardiovascular disease, stroke, atherosclerosis, and insulin resistance but is also associated with an elevated level of serum uric acid. However, it is still poorly understood what the association is between TG/HDL-C and serum uric acid levels. Hence, the aim of this research was to determine this association. Methods A total of 5,402 participants who underwent physical examinations in 2021 were analyzed during our cross-sectional research. In order to verify this correlation between TG/HDL-C and uric acid, we performed both a generalized additive model (GAM) and a smoothing curve fit. We also performed receiver operating characteristic (ROC) curves for evaluation of differences in clinical risk factor models in identifying hyperuricemia risk before and after the introduction of TG/HDL-C. Results Upon adjustment for confounders, we found that there was a nonlinear positive correlation between TG/HDL-C and the level of uric acid, and the inflection point was 1.41. When TG/HDL-C was less than 1.41, the effect size was 40.56 (19.08-62.04, P = 0.0002), whereas when TG/HDL-C was more than 1.41 the effect size was 17.18 (3.70-30.65, P=0.0125). As shown by the ROC curve, a significant increase in the area under the curve (AUC) was observed upon the introduction of TG/HDL-C into the established risk factor model which elevated from 0.7206(0.7053-0.7359, P < 0.05) to 0.8291 (0.8175-0.8407, P < 0.05). Conclusion Therefore, TG/HDL-C is positively and nonlinearly correlated to the level of uric acid, and the inflection point is 1.41. Furthermore, TG/HDL-C leads to an improvement in hyperuricemia risk stratification.
Collapse
Affiliation(s)
- Yuexi Li
- Health Management Center, Deyang People's Hospital, No. 173, Taishan North Road, Deyang, Sichuan, China
| | - Yuhan Luo
- Health Management Center, Deyang People's Hospital, No. 173, Taishan North Road, Deyang, Sichuan, China
| | - Qiaoli Wang
- Health Management Center, Deyang People's Hospital, No. 173, Taishan North Road, Deyang, Sichuan, China
| | - Xiaoqin Liu
- Health Management Center, Deyang People's Hospital, No. 173, Taishan North Road, Deyang, Sichuan, China
| |
Collapse
|
21
|
Song L, Zhao X, Chen R, Li J, Zhou J, Liu C, Zhou P, Wang Y, Chen Y, Zhao H, Yan H. Association of PCSK9 with inflammation and platelet activation markers and recurrent cardiovascular risks in STEMI patients undergoing primary PCI with or without diabetes. Cardiovasc Diabetol 2022; 21:80. [PMID: 35596184 PMCID: PMC9123773 DOI: 10.1186/s12933-022-01519-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been shown to be predictive of cardiovascular outcomes in stable coronary artery disease with diabetes. We aimed to assess the relationship between PCSK9 and major adverse cardiovascular events (MACEs) in ST-segment elevation myocardial infarction (STEMI) patients with or without diabetes, as well as the relationships between PCSK9 and metabolism, inflammation and platelet activation markers. METHODS A total of 1027 patients with STEMI undergoing primary percutaneous coronary intervention (PCI) and without prior lipid-lowering therapy were consecutively enrolled and the baseline plasma PCSK9 levels were determined by ELISA. Patients were divided into high and low PCSK9 groups according to PCSK9 median. All patients were followed up for the occurrence of MACEs. The associations of PCSK9 with metabolism, inflammation and platelet activation markers and MACEs were evaluated. RESULTS PCSK9 levels were positively correlated with triglycerides, high-sensitivity C reactive protein, soluble CD40 ligand and soluble P-selectin levels, and the correlations were stronger in diabetic patients than in non-diabetic patients. In diabetic patients receiving ticagrelor, PCSK9 levels were positively correlated with maximal platelet aggregation measured by light transmittance aggregometry and maximum amplitude of adenosine diphosphate-induced platelet-fibrin clots measured by thrombelastography in the maintenance phase of treatment, whereas no correlations were found in non-diabetic patients. During a median follow-up of 2.0 years, 155 (15.1%) MACEs occurred. The Kaplan-Meier analysis displayed that the patients with high PCSK9 levels had lower event-free survival rate than those with low PCSK9 levels (P = 0.030). When participants were categorized into 4 subgroups according to PCSK9 levels and diabetes status, high PCSK9 levels plus diabetes subgroup had the lowest cumulative event-free survival rate (P = 0.043). Multivariable Cox regression analysis revealed that high PCSK9 levels were independently associated with MACEs in diabetic patients (hazard ratio 2.283, 95% confidence interval: 1.094-4.764, P = 0.028), but not in the whole cohort or non-diabetic patients. CONCLUSIONS The study showed that high PCSK9 levels were independently associated with MACEs in STEMI patients with diabetes undergoing primary PCI, and the association may be due to stronger correlations of PCSK9 with inflammation and platelet activation markers in diabetic patients.
Collapse
Affiliation(s)
- Li Song
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, 100037, Beijing, China
| | - Xiaoxiao Zhao
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, 100037, Beijing, China
| | - Runzhen Chen
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, 100037, Beijing, China
| | - Jiannan Li
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, 100037, Beijing, China
| | - Jinying Zhou
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, 100037, Beijing, China
| | - Chen Liu
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, 100037, Beijing, China
| | - Peng Zhou
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, 100037, Beijing, China
| | - Ying Wang
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, 100037, Beijing, China
| | - Yi Chen
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, 100037, Beijing, China
| | - Hanjun Zhao
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Xicheng District, 100037, Beijing, China.
| | - Hongbing Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, 12 Langshan Rd, Shenzhen, 518000, China.
| |
Collapse
|
22
|
Taskinen MR, Matikainen N, Björnson E, Söderlund S, Ainola M, Hakkarainen A, Lundbom N, Sihlbom C, Thorsell A, Andersson L, Adiels M, Hartmann B, Deacon CF, Holst JJ, Packard CJ, Borén J. Role of endogenous incretins in the regulation of postprandial lipoprotein metabolism. Eur J Endocrinol 2022; 187:75-84. [PMID: 35521766 DOI: 10.1530/eje-21-1187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Incretins are known to influence lipid metabolism in the intestine when administered as pharmacologic agents. The aggregate influence of endogenous incretins on chylomicron production and clearance is less clear, particularly in light of opposing effects of co-secreted hormones. Here, we tested the hypothesis that physiological levels of incretins may impact on production or clearances rates of chylomicrons and VLDL. DESIGN AND METHODS A group of 22 overweight/obese men was studied to determine associations between plasma levels of glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) after a fat-rich meal and the production and clearance rates of apoB48- and apoB100-containing triglyceride-rich lipoproteins. Subjects were stratified by above- and below-median incretin response (area under the curve). RESULTS Stratification yielded subgroups that differed about two-fold in incretin response. There were neither differences in apoB48 production rates in chylomicrons or VLDL fractions nor in apoB100 or triglyceride kinetics in VLDL between men with above- vs below-median incretin responses. The men with above-median GLP-1 and GLP-2 responses exhibited higher postprandial plasma and chylomicron triglyceride levels, but this could not be related to altered kinetic parameters. No differences were found between incretin response subgroups and particle clearance rates. CONCLUSION We found no evidence for a regulatory effect of endogenous incretins on contemporaneous chylomicron or VLDL metabolism following a standardised fat-rich meal. The actions of incretins at pharmacological doses may not be reflected at physiological levels of these hormones.
Collapse
Affiliation(s)
- Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Niina Matikainen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sanni Söderlund
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Mari Ainola
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Antti Hakkarainen
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Carina Sihlbom
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
23
|
Borén J, Taskinen MR, Björnson E, Packard CJ. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat Rev Cardiol 2022; 19:577-592. [PMID: 35318466 DOI: 10.1038/s41569-022-00676-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Accumulating evidence points to the causal role of triglyceride-rich lipoproteins and their cholesterol-enriched remnants in atherogenesis. Genetic studies in particular have not only revealed a relationship between plasma triglyceride levels and the risk of atherosclerotic cardiovascular disease, but have also identified key proteins responsible for the regulation of triglyceride transport. Kinetic studies in humans using stable isotope tracers have been especially useful in delineating the function of these proteins and revealing the hitherto unappreciated complexity of triglyceride-rich lipoprotein metabolism. Given that triglyceride is an essential energy source for mammals, triglyceride transport is regulated by numerous mechanisms that balance availability with the energy demands of the body. Ongoing investigations are focused on determining the consequences of dysregulation as a result of either dietary imprudence or genetic variation that increases the risk of atherosclerosis and pancreatitis. The identification of molecular control mechanisms involved in triglyceride metabolism has laid the groundwork for a 'precision-medicine' approach to therapy. Novel pharmacological agents under development have specific molecular targets within a regulatory framework, and their deployment heralds a new era in lipid-lowering-mediated prevention of disease. In this Review, we outline what is known about the dysregulation of triglyceride transport in human hypertriglyceridaemia.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Molecular Biological and Clinical Understanding of the Statin Residual Cardiovascular Disease Risk and Peroxisome Proliferator-Activated Receptor Alpha Agonists and Ezetimibe for Its Treatment. Int J Mol Sci 2022; 23:ijms23073418. [PMID: 35408799 PMCID: PMC8998547 DOI: 10.3390/ijms23073418] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022] Open
Abstract
Several randomized, double blind, placebo-controlled trials (RCTs) have demonstrated that low-density lipoprotein cholesterol (LDL-C) lowering by using statins, including high-doses of strong statins, reduced the development of cardiovascular disease (CVD). However, among the eight RCTs which investigated the effect of statins vs. placebos on the development of CVD, 56-79% of patients had the residual CVD risk after the trials. In three RCTs which investigated the effect of a high dose vs. a usual dose of statins on the development of CVD, 78-87% of patients in the high-dose statin arms still had the CVD residual risk after the trials. An analysis of the characteristics of patients in the RCTs suggests that elevated triglyceride (TG) and reduced high-density lipoprotein cholesterol (HDL-C), the existence of obesity/insulin resistance, and diabetes may be important metabolic factors which determine the statin residual CVD risk. To understand the association between lipid abnormalities and the development of atherosclerosis, we show the profile of lipoproteins and their normal metabolism, and the molecular and biological mechanisms for the development of atherosclerosis by high TG and/or low HDL-C in insulin resistance. The molecular biological mechanisms for the statin residual CVD risk include an increase of atherogenic lipoproteins such as small dense LDL and remnants, vascular injury and remodeling by inflammatory cytokines, and disturbed reverse cholesterol transport. Peroxisome proliferator-activated receptor alpha (PPARα) agonists improve atherogenic lipoproteins, reverse the cholesterol transport system, and also have vascular protective effects, such as an anti-inflammatory effect and the reduction of the oxidative state. Ezetimibe, an inhibitor of intestinal cholesterol absorption, also improves TG and HDL-C, and reduces intestinal cholesterol absorption and serum plant sterols, which are increased by statins and are atherogenic, possibly contributing to reduce the statin residual CVD risk.
Collapse
|
25
|
Levine JA, Sarrafan-Chaharsoughi Z, Patel TP, Brady SM, Chivukula KK, Miller E, Han JM, Periwal V, Wolska A, Remaley AT, Dagur PK, Biancotto A, Babyak A, Fantoni G, Yanovski JA, Demidowich AP. Effects of colchicine on lipolysis and adipose tissue inflammation in adults with obesity and metabolic syndrome. Obesity (Silver Spring) 2022; 30:358-368. [PMID: 34978374 PMCID: PMC8799499 DOI: 10.1002/oby.23341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of this study was to examine whether colchicine's anti-inflammatory effects would improve measures of lipolysis and distribution of leukocyte populations in subcutaneous adipose tissue (SAT). METHODS A secondary analysis was conducted for a double-blind, randomized, placebo-controlled pilot study in which 40 adults with obesity and metabolic syndrome (MetS) were randomized to colchicine 0.6 mg or placebo twice daily for 3 months. Non-insulin-suppressible (l0 ), insulin-suppressible (l2 ), and maximal (l0 +l2 ) lipolysis rates were calculated by minimal model analysis. Body composition was determined by dual-energy x-ray absorptiometry. SAT leukocyte populations were characterized by flow cytometry analysis from biopsied samples obtained before and after the intervention. RESULTS Colchicine treatment significantly decreased l2 and l0 +l2 versus placebo (p < 0.05). These changes were associated with a significant reduction in markers of systemic inflammation, including high-sensitivity C-reactive protein, resistin, and circulating monocytes and neutrophils (p < 0.01). Colchicine did not significantly alter SAT leukocyte population distributions (p > 0.05). CONCLUSIONS In adults with obesity and MetS, colchicine appears to improve insulin regulation of lipolysis and reduce markers of systemic inflammation independent of an effect on local leukocyte distributions in SAT. Further studies are needed to better understand the mechanisms by which colchicine affects adipose tissue metabolic pathways in adults with obesity and MetS.
Collapse
Affiliation(s)
- Jordan A Levine
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Zahra Sarrafan-Chaharsoughi
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Tushar P Patel
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheila M Brady
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - K Karthik Chivukula
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Clinical Endocrinology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily Miller
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung Min Han
- Computational Medicine Section, Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vipul Periwal
- Computational Medicine Section, Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angelique Biancotto
- Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ashley Babyak
- Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Giovanna Fantoni
- Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jack A Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew P Demidowich
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Johns Hopkins Community Physicians at Howard County General Hospital, Johns Hopkins Medicine, Columbia, Maryland, USA
- Department of Endocrinology, Diabetes and Metabolism, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Liang HJ, Zhang QY, Hu YT, Liu GQ, Qi R. Hypertriglyceridemia: A Neglected Risk Factor for Ischemic Stroke? J Stroke 2022; 24:21-40. [PMID: 35135057 PMCID: PMC8829486 DOI: 10.5853/jos.2021.02831] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/27/2021] [Indexed: 11/11/2022] Open
Abstract
Hypertriglyceridemia is caused by defects in triglyceride metabolism and generally manifests as abnormally high plasma triglyceride levels. Although the role of hypertriglyceridemia may not draw as much attention as that of plasma cholesterol in stroke, plasma triglycerides, especially nonfasting triglycerides, are thought to be correlated with the risk of ischemic stroke. Hypertriglyceridemia may increase the risk of ischemic stroke by promoting atherosclerosis and thrombosis and increasing blood viscosity. Moreover, hypertriglyceridemia may have some protective effects in patients who have already suffered a stroke via unclear mechanisms. Therefore, further studies are needed to elucidate the role of hypertriglyceridemia in the development and prognosis of ischemic stroke.
Collapse
Affiliation(s)
- Hai-jie Liang
- Department of Pharmacology, School of Basic Medical Sciences, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Qing-yi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University Health Science Center, Beijing, China
| | - Yi-tong Hu
- Department of Pharmacology, School of Basic Medical Sciences, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Guo-qing Liu
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University Health Science Center, Beijing, China
- Correspondence: Rong Qi Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China Tel: +86-10-8280-5164 Fax: +86-10-8280-5164 E-mail:
| |
Collapse
|
27
|
Tall AR, Thomas DG, Gonzalez-Cabodevilla AG, Goldberg IJ. Addressing dyslipidemic risk beyond LDL-cholesterol. J Clin Invest 2022; 132:e148559. [PMID: 34981790 PMCID: PMC8718149 DOI: 10.1172/jci148559] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the success of LDL-lowering drugs in reducing cardiovascular disease (CVD), there remains a large burden of residual disease due in part to persistent dyslipidemia characterized by elevated levels of triglyceride-rich lipoproteins (TRLs) and reduced levels of HDL. This form of dyslipidemia is increasing globally as a result of the rising prevalence of obesity and metabolic syndrome. Accumulating evidence suggests that impaired hepatic clearance of cholesterol-rich TRL remnants leads to their accumulation in arteries, promoting foam cell formation and inflammation. Low levels of HDL may associate with reduced cholesterol efflux from foam cells, aggravating atherosclerosis. While fibrates and fish oils reduce TRL, they have not been uniformly successful in reducing CVD, and there is a large unmet need for new approaches to reduce remnants and CVD. Rare genetic variants that lower triglyceride levels via activation of lipolysis and associate with reduced CVD suggest new approaches to treating dyslipidemia. Apolipoprotein C3 (APOC3) and angiopoietin-like 3 (ANGPTL3) have emerged as targets for inhibition by antibody, antisense, or RNAi approaches. Inhibition of either molecule lowers TRL but respectively raises or lowers HDL levels. Large clinical trials of such agents in patients with high CVD risk and elevated levels of TRL will be required to demonstrate efficacy of these approaches.
Collapse
Affiliation(s)
- Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - David G. Thomas
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - Ainara G. Gonzalez-Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
28
|
Quispe R, Martin SS, Michos ED, Lamba I, Blumenthal RS, Saeed A, Lima J, Puri R, Nomura S, Tsai M, Wilkins J, Ballantyne CM, Nicholls S, Jones SR, Elshazly MB. Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur Heart J 2021; 42:4324-4332. [PMID: 34293083 PMCID: PMC8572557 DOI: 10.1093/eurheartj/ehab432] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/05/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
AIMS Emerging evidence suggests that remnant cholesterol (RC) promotes atherosclerotic cardiovascular disease (ASCVD). We aimed to estimate RC-related risk beyond low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (apoB) in patients without known ASCVD. METHODS AND RESULTS We pooled data from 17 532 ASCVD-free individuals from the Atherosclerosis Risk in Communities study (n = 9748), the Multi-Ethnic Study of Atherosclerosis (n = 3049), and the Coronary Artery Risk Development in Young Adults (n = 4735). RC was calculated as non-high-density lipoprotein cholesterol (non-HDL-C) minus calculated LDL-C. Adjusted Cox models were used to estimate the risk for incident ASCVD associated with log RC levels. We also performed discordance analyses examining relative ASCVD risk in RC vs. LDL-C discordant/concordant groups using difference in percentile units (>10 units) and clinically relevant LDL-C targets. The mean age of participants was 52.3 ± 17.9 years, 56.7% were women and 34% black. There were 2143 ASCVD events over the median follow-up of 18.7 years. After multivariable adjustment including LDL-C and apoB, log RC was associated with higher ASCVD risk [hazard ratio (HR) 1.65, 95% confidence interval (CI) 1.45-1.89]. Moreover, the discordant high RC/low LDL-C group, but not the low RC/high LDL-C group, was associated with increased ASCVD risk compared to the concordant group (HR 1.21, 95% CI 1.08-1.34). Similar results were shown when examining discordance across clinical cutpoints. CONCLUSIONS In ASCVD-free individuals, elevated RC levels were associated with ASCVD independent of traditional risk factors, LDL-C, and apoB levels. The mechanisms of RC association with ASCVD, surprisingly beyond apoB, and the potential value of targeted RC-lowering in primary prevention need to be further investigated.
Collapse
Affiliation(s)
- Renato Quispe
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Shay Martin
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin Donelly Michos
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isha Lamba
- Department of Medicine, New York Presbyterian Hospital-Cornell, 525 East 68th Street, New York, NY, USA
| | - Roger Scott Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anum Saeed
- Department of Cardiovascular Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Joao Lima
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Rishi Puri
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sarah Nomura
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - John Wilkins
- Division of Cardiology and the Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christie Mitchell Ballantyne
- Department of Cardiovascular Medicine, Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Stephen Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Steven Richard Jones
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamed Badreldin Elshazly
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Lipid-mediated atherogenesis is hallmarked by a chronic inflammatory state. Low-density lipoprotein cholesterol (LDL-C), triglyceride rich lipoproteins (TRLs), and lipoprotein(a) [Lp(a)] are causally related to atherosclerosis. Within the paradigm of endothelial activation and subendothelial lipid deposition, these lipoproteins induce numerous pro-inflammatory pathways. In this review, we will outline the effects of lipoproteins on systemic inflammatory pathways in atherosclerosis. RECENT FINDINGS Apolipoprotein B-containing lipoproteins exert a variety of pro-inflammatory effects, ranging from the local artery to systemic immune cell activation. LDL-C, TRLs, and Lp(a) induce endothelial dysfunction with concomitant activation of circulating monocytes through enhanced lipid accumulation. The process of trained immunity of the innate immune system, predominantly induced by LDL-C particles, hallmarks the propagation of the low-grade inflammatory response. In concert, bone marrow activation induces myeloid skewing, further contributing to immune cell mobilization and plaque progression. SUMMARY Lipoproteins and inflammation are intertwined in atherogenesis. Elucidating the inflammatory pathways will provide new opportunities for therapeutic agents.
Collapse
Affiliation(s)
- Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - G. Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Jeffrey Kroon
- Amsterdam UMC, University of Amsterdam, Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Ginsberg HN, Packard CJ, Chapman MJ, Borén J, Aguilar-Salinas CA, Averna M, Ference BA, Gaudet D, Hegele RA, Kersten S, Lewis GF, Lichtenstein AH, Moulin P, Nordestgaard BG, Remaley AT, Staels B, Stroes ESG, Taskinen MR, Tokgözoğlu LS, Tybjaerg-Hansen A, Stock JK, Catapano AL. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J 2021; 42:4791-4806. [PMID: 34472586 PMCID: PMC8670783 DOI: 10.1093/eurheartj/ehab551] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD). Key points are (i) a working definition of normo- and hypertriglyceridaemic states and their relation to risk of ASCVD, (ii) a conceptual framework for the generation of remnants due to dysregulation of TRL production, lipolysis, and remodelling, as well as clearance of remnant lipoproteins from the circulation, (iii) the pleiotropic proatherogenic actions of TRL and remnants at the arterial wall, (iv) challenges in defining, quantitating, and assessing the atherogenic properties of remnant particles, and (v) exploration of the relative atherogenicity of TRL and remnants compared to LDL. Assessment of these issues provides a foundation for evaluating approaches to effectively reduce levels of TRL and remnants by targeting either production, lipolysis, or hepatic clearance, or a combination of these mechanisms. This consensus statement updates current understanding in an integrated manner, thereby providing a platform for new therapeutic paradigms targeting TRL and their remnants, with the aim of reducing the risk of ASCVD.
Collapse
Affiliation(s)
- Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, PH-10-305, New York, NY 10032, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - M John Chapman
- Sorbonne University Endocrinology-Metabolism Division, Pitié-Salpetriere University Hospital, and National Institute for Health and Medical Research (INSERM), 47 Hôpital boulevard, Paris 75013, France
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Blå Stråket 5, Gothenburg 413 45, Sweden
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto, Monterrey, Nuevo León 3000, Mexico
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Marina Square, 61, Palermo 90133, Italy
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE, Clinical and Translational Research Center, and Lipid Clinic, Chicoutimi Hospital, 305 Rue St Vallier, Chicoutimi, Québec G7H 5H6, Canada
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine, Banting & Best Diabetes Centre, University of Toronto, Eaton Building, Room 12E248, 200 Elizabeth St, Toronto, Ontario M5G 2C4, Canada
| | - Alice H Lichtenstein
- Cardiovascular Nutrition, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St Ste 9, Boston, MA 02111, USA
| | - Philippe Moulin
- Department of Endocrinology, GHE, Hospices Civils de Lyon, CarMeN Laboratory, Inserm UMR 1060, CENS-ELI B, Univ-Lyon1, Lyon 69003, France
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev 2730, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Dr Ste 10-7C114, Bethesda, MD 20892, USA
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, 1541 Kings Hwy, Amsterdam 71103, The Netherlands
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, 06100 Sıhhiye, Ankara, Turkey
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Blegdamsvej 9, Rigshospitalet, Copenhagen 2100, Denmark.,Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark.,Copenhagen City Heart Study, Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg 57 2000, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, Copenhagen 3B 2200, Denmark
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, Gothenburg SE-412 51, Sweden
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano and IRCCS MultiMedica, Via Festa del Perdono 7, Milan 20122, Italy
| |
Collapse
|
31
|
Han S, Mei L, Quach T, Porter C, Trevaskis N. Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles. Pharm Res 2021; 38:1497-1518. [PMID: 34463935 DOI: 10.1007/s11095-021-03093-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023]
Abstract
Lipophilic conjugates (LCs) of small molecule drugs have been used widely in clinical and pre-clinical studies to achieve a number of pharmacokinetic and therapeutic benefits. For example, lipophilic derivatives of drugs are employed in several long acting injectable products to provide sustained drug exposure for hormone replacement therapy and to treat conditions such as neuropsychiatric diseases. LCs can also be used to modulate drug metabolism, and to enhance drug permeation across membranes, either by increasing lipophilicity to enhance passive diffusion or by increasing protein-mediated active transport. Furthermore, such conjugation strategies have been employed to promote drug association with endogenous macromolecular carriers (e.g. albumin and lipoproteins), and this in turn results in altered drug distribution and pharmacokinetic profiles, where the changes can be 'general' (e.g. prolonged plasma half-life) or 'specific' (e.g. enhanced delivery to specific tissues in parallel with the macromolecular carriers). Another utility of LCs is to enhance the encapsulation of drugs within engineered nanoscale drug delivery systems, in order to best take advantage of the targeting and pharmacokinetic benefits of nanomedicines. The current review provides a summary of the mechanisms by which lipophilic conjugates, including in combination with delivery vehicles, can be used to control drug delivery, distribution and therapeutic profiles. The article is structured into sections which highlight a specific benefit of LCs and then demonstrate this benefit with case studies. The review attempts to provide a toolbox to assist researchers to design and optimise drug candidates, including consideration of drug-formulation compatibility.
Collapse
Affiliation(s)
- Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China.
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Tim Quach
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- PureTech Health, 6 Tide Street, Boston, MA, 02210, USA
| | - Chris Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Natalie Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
32
|
Duran EK, Pradhan AD. Triglyceride-Rich Lipoprotein Remnants and Cardiovascular Disease. Clin Chem 2021; 67:183-196. [PMID: 33409533 DOI: 10.1093/clinchem/hvaa296] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Triglycerides, cholesterol, and their metabolism are linked due to shared packaging and transport within circulating lipoprotein particles. While a case for a causal role of cholesterol-carrying low-density lipoproteins (LDLs) in atherosclerosis is well made, the body of scientific evidence for a causal role of triglyceride-rich lipoproteins (TRLs) is rapidly growing, with multiple lines of evidence (old and new) providing robust support. CONTENT This review will discuss current perspectives and accumulated evidence that an overabundance of remnant lipoproteins stemming from intravascular remodeling of nascent TRLs-chylomicrons and very low-density lipoproteins (VLDL)-results in a proatherogenic milieu that augments cardiovascular risk. Basic mechanisms of TRL metabolism and clearance will be summarized, assay methods reviewed, and pivotal clinical studies highlighted. SUMMARY Remnant lipoproteins are rendered highly atherogenic by their high cholesterol content, altered apolipoprotein composition, and physicochemical properties. The aggregate findings from multiple lines of evidence suggest that TRL remnants play a central role in residual cardiovascular risk.
Collapse
Affiliation(s)
- Edward K Duran
- Cardiovascular Division, University of Minnesota Medical Center, Minneapolis, MN
| | - Aruna D Pradhan
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Division of Cardiovascular Medicine, VA Boston Medical Center, Boston, MA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Triglycerides (TGs) are measured as part of routine lipid profiles but their relationship to cardiovascular disease (CVD) risk has been controversial and overshadowed by high-density lipoprotein cholesterol (HDL-C). RECENT FINDINGS Epidemiological studies show a clear relationship of TG-containing lipoproteins including remnant particles with CVD risk with the effect being most clearly demonstrated through the excess risk captured by non-HDL-C compared with low-density lipoprotein-cholesterol (LDL-C). Mendelian randomisation studies show a consistent relationship of gene variants linked to TG metabolism with rates of CVD. Furthermore, meta-analyses of intervention trials with statins and other nonstatin drugs also suggest that reducing TGs is associated with benefits on rates of CVD events. Historical subgroup data from fibrate trials suggest benefits in patients with high TG:HDL ratios but seem to add little to optimized statin therapy. Recent trials with omega-3 fatty acids (specifically eicosapentaenoic acid) have suggested that high-dose formulations in contrast to low dose formulations have benefits on CVD outcomes. SUMMARY Further studies with newer agents are required to determine the place of TG-lowering drugs in therapeutic pathways. Trials with agents such as pemafibrate and vupanorsen may finally answer these questions.
Collapse
Affiliation(s)
| | - Anthony S Wierzbicki
- Metabolic Medicine/Chemical Pathology, Guy's & St Thomas Hospitals, London SE1 7EH, UK
| |
Collapse
|
34
|
Padro T, Muñoz-Garcia N, Badimon L. The role of triglycerides in the origin and progression of atherosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2021; 33 Suppl 2:20-28. [PMID: 34006350 DOI: 10.1016/j.arteri.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/13/2021] [Indexed: 01/02/2023]
Abstract
Hypertriglyceridaemia has been associated with cardiovascular disease risk in humans for several decades. However, only recently, data from basic research, as well as from genetic and observational studies, have suggested triglyceride-rich lipoproteins (TRLs) as causal factors for atherosclerotic cardiovascular disease. Novel findings highlighting the relevance of TRL-derived lipolytic products (remnant lipoprotein particles "RLPs"), rather than plasma triglycerides or TRL themselves, as the true mediators in atherosclerosis, have contributed to explain a causal relationship through a number of direct and indirect mechanisms. Thus, experimental studies in animal models and in vitro cell culture methods reveal that RLPs, having sizes below 70-80nm, enter the arterial wall and accumulate within the sub-endothelial space. They then become involved in the cholesterol deposition of cholesterol in the intima in addition to several pro-inflammatory and pro-apoptotic pathways. In this review, a summary is presented of current understanding of the pathophysiological mechanisms by which TRLs and their lipolytic derived RLP induce the formation and progression of atherosclerotic lesions, and actively contribute to cardiovascular disease.
Collapse
Affiliation(s)
- Teresa Padro
- Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV Instituto de Salud Carlos III, Barcelona, Spain.
| | - Natalia Muñoz-Garcia
- Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV Instituto de Salud Carlos III, Barcelona, Spain; Cardiovascular Research Chair, UAB, Barcelona, Spain
| |
Collapse
|
35
|
Barve K. Garcinol enriched fraction from the fruit rind of Garcinia indica ameliorates atherosclerotic risk factor in diet induced hyperlipidemic C57BL/6 mice. J Tradit Complement Med 2021; 11:95-102. [PMID: 33728268 PMCID: PMC7936105 DOI: 10.1016/j.jtcme.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/19/2019] [Accepted: 11/08/2019] [Indexed: 02/08/2023] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Kalyani Barve
- Shobhaben Pratapbhai Patel- School of Pharmacy and Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| |
Collapse
|
36
|
Dogdus M, Yenercag M, Ozyasar M, Yilmaz A, Can LH, Kultursay H. Serum Endocan Levels Predict Angiographic No-Reflow Phenomenon in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Coronary Intervention. Angiology 2020; 72:221-227. [PMID: 32996338 DOI: 10.1177/0003319720961954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
No-reflow phenomenon (NRP) is an important problem in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (pPCI). Endocan is synthesized and secreted by activated vascular endothelium, and it has been shown to be related to endothelial dysfunction and inflammation. We aimed to evaluate the relationship between endocan levels and NRP. Consecutive patients (n = 137) with STEMI who had undergone coronary angiography and pPCI were enrolled into the study. The clinical characteristics of the patients were obtained and endocan levels were measured. Endocan levels were significantly higher in the NRP (+) group compared with the NRP (-) group (P < .001). In multivariate analysis, endocan (P < .001, OR = 2.39, 95% CI = 1.37-4.15) was found to be an independent predictor of NRP. An endocan value of >2.7 ng/mL has 89.6% sensitivity and 74.2% specificity for the prediction of the NRP (area under the curve: 0.832, P < .001). The present study demonstrated that the endocan level is an independent predictor of the NRP in patients with STEMI who underwent pPCI. Endocan levels may be helpful in detecting patients with a higher risk of insufficient myocardial perfusion and worse clinical outcome.
Collapse
Affiliation(s)
- Mustafa Dogdus
- Department of Cardiology, Usak University, Training and Research Hospital, Turkey
| | - Mustafa Yenercag
- Department of Cardiology, University of Health Sciences, Samsun Training and Research Hospital, Turkey
| | - Mehmet Ozyasar
- Department of Cardiology, 166263Karaman State Hospital, Turkey
| | - Ahmet Yilmaz
- Department of Cardiology, 166263Karaman State Hospital, Turkey
| | - Levent Hurkan Can
- Department of Cardiology, Faculty of Medicine, 37509Ege University, Izmir, Turkey
| | - Hakan Kultursay
- Department of Cardiology, Faculty of Medicine, 37509Ege University, Izmir, Turkey
| |
Collapse
|
37
|
Belyaeva VS, Stepenko YV, Lyubimov II, Kulikov AL, Tietze AA, Kochkarova IS, Martynova OV, Pokopeyko ON, Krupen’kina LA, Nagikh AS, Pokrovskiy VM, Patrakhanov EA, Belashova AV, Lebedev PR, Gureeva AV. Non-hematopoietic erythropoietin-derived peptides for atheroprotection and treatment of cardiovascular diseases. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.58891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Relevance: Cardiovascular diseases continue to be the leading cause of premature adult death.Lipid profile and atherogenesis: Dislipidaemia leads to subsequent lipid accumulation and migration of immunocompetent cells into the vessel intima. Macrophages accumulate cholesterol forming foam cells – the morphological substrate of atherosclerosis in its initial stage.Inflammation and atherogenesis: Pro-inflammatory factors provoke oxidative stress, vascular wall damage and foam cells formation.Endothelial and mitochondrial dysfunction in the development of atherosclerosis: Endothelial mitochondria are some of the organelles most sensitive to oxidative stress. Damaged mitochondria produce excess superoxide and H2O2, which are the main factors of intracellular damage, further increasing endothelial dysfunction.Short non-hematopoietic erythropoietin-based peptides as innovative atheroprotectors: Research in recent decades has shown that erythropoietin has a high cytoprotective activity, which is mainly associated with exposure to the mitochondrial link and has been confirmed in various experimental models. There is also a short-chain derivative, the 11-amino acid pyroglutamate helix B surface peptide (PHBSP), which selectively binds to the erythropoietin heterodymic receptor and reproduces its cytoprotective properties. This indicates the promising use of short-chain derivatives of erythropoietin for the treatment and prevention of atherosclerotic vascular injury. In the future, it is planned to study the PHBSP derivatives, the modification of which consists in adding RGD and PGP tripeptides with antiaggregant properties to the original 11-member peptide.
Collapse
|
38
|
Hu Y, Yao Z, Wang G. The Relationship Between the Impairment of Endothelial Function and Thyroid Antibodies in Hashimoto's Thyroiditis Patients with Euthyroidism. Horm Metab Res 2020; 52:642-646. [PMID: 32542626 DOI: 10.1055/a-1178-5882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endothelial dysfunction is the important early step in the development of atherosclerosis. Hypothyroidism caused by Hashimoto's thyroiditis and other thyroid disease is one of the risk factors of endothelial dysfunction. The present study tried to investigate the endothelial function and its associated factors in Hashimoto thyroiditis with euthyroidism. A total of 95 newly diagnosed Hashimoto's thyroiditis patients with euthyroidism and 45 healthy controls were studied. Hashimoto's patients were divided into 3 subgroups namely, single thyroglobulin antibody (TGAb) positive subgroup, single thyroid peroxidase antibody (TPOAb) positive subgroup, and both TGAb and TPOAb positive subgroup. Endothelial function was tested by the reactive hyperemia index (RHI). Hashimoto's thyroiditis patients had lower RHI than healthy controls (1.73±0.42 vs 1.96±0.51, p<0.05). Hashimoto's thyroiditis with single TGAb positive patients had higher RHI than single TPOAb positive (1.98±0.57 vs. 1.69±0.33, p<0.05) and TGAB + TPOAb positive patients (1.98±0.57 vs. 1.68±0.42, p<0.05). RHI were negatively associated with total cholesterol (TC, r=-0.215, p<0.05), low density lipoprotein cholesterol (LDL-C, r=-0.268, p<0.05), triglyceride (TG, r=-0.192, p<0.05), and TPOAb (r=-0.288, p<0.05). In the regression analysis, LDL-C (β=-0.146, p<0.05), TG (β=-0.034, p<0.05) and TPOAb (β=-0.001, p<0.05) were independently associated with RHI. Hashimoto's patients had poor endothelial function. TPOAb levels were negatively associated with endothelial function.
Collapse
Affiliation(s)
- Yanjin Hu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University. Beijing P.R. China
| | - Zhi Yao
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University. Beijing P.R. China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University. Beijing P.R. China
| |
Collapse
|
39
|
Nallathambi R, Poulev A, Zuk JB, Raskin I. Proanthocyanidin-Rich Grape Seed Extract Reduces Inflammation and Oxidative Stress and Restores Tight Junction Barrier Function in Caco-2 Colon Cells. Nutrients 2020; 12:nu12061623. [PMID: 32492806 PMCID: PMC7352846 DOI: 10.3390/nu12061623] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Grape polyphenols have previously been shown to improve gut health and attenuate the symptoms of metabolic syndrome; however, the mechanism of these beneficial effects is still debated. In this study, we investigated the protective effect of proanthocyanidin-rich grape seed extract (GSE) on bacterial lipopolysaccharide (LPS)-induced oxidative stress, inflammation, and barrier integrity of human Caco-2 colon cells. GSE significantly reduced the LPS-induced intracellular reactive oxygen species (ROS) production and mitochondrial superoxide production, and upregulated the expression of antioxidant enzyme genes. GSE also restored the LPS-damaged mitochondrial function by increasing mitochondrial membrane potential. In addition, GSE increased the expression of tight junction proteins in the LPS-treated Caco-2 cells, increased the expression of anti-inflammatory cytokines, and decreased pro-inflammatory cytokine gene expression. Our findings suggest that GSE exerts its beneficial effects on metabolic syndrome by scavenging intestinal ROS, thus reducing oxidative stress, increasing epithelial barrier integrity, and decreasing intestinal inflammation.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To critically appraise new insights into the biology of remnant lipoproteins and their putative role in the pathophysiology of atherosclerotic cardiovascular disease, and to compare the atherogenicity of remnant particles with that of low-density lipoproteins (LDL). RECENT FINDINGS New in-vivo stable isotope tracer studies of the kinetics of apoB48 and apoB100-containing lipoproteins in postprandial conditions have revealed that apoB48-containing very low-density lipoproteins (VLDL) accumulated markedly in hypertriglyceridemic patients. These intestinally-derived particles were cleared slowly, and represented up to 25% of circulating VLDL; as part of the remnant particle population, they may increase cardiovascular risk. Importantly, the PCSK9 inhibitor, evolocumab, was shown to reduce remnant levels (-29%) during the postprandial period in diabetic patients on statin therapy - an effect which may be additive to that of LDL-cholesterol reduction in conferring cardiovascular benefit. In recent Mendelian randomization studies, the effect of lowering triglyceride-rich lipoproteins or LDL-cholesterol translated to similar clinical benefit per unit of apoB. Finally, in randomized trials involving statin-treated patients with atherosclerotic cardiovascular disease, remnant cholesterol levels were associated with coronary atheroma progression independently of LDL-cholesterol. SUMMARY Overall, data from observational studies in large cohorts, Mendelian randomization studies, meta-regression analyses, and post-hoc analyses of randomized trials are consistent with the contention that remnants are highly atherogenic particles and contribute to the atherosclerotic burden in an equivalent manner to that of LDL.
Collapse
Affiliation(s)
- Carlos A Aguilar Salinas
- Unidad de Investigación en Enfermedades Metabólicas
- Departamento de Endocrinología y Metabolismo. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., México
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitie-Salpetriere University Hospital
- Faculty of Medicine, Sorbonne University
- National Institute for Health and Medical Research (INSERM), Paris, France
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Saghebjoo M, Kargar-Akbariyeh N, Mohammadnia-Ahmadi M, Saffari I. How to exercise to increase lipolysis and insulin sensitivity: Fasting or following a single high-protein breakfast. J Sports Med Phys Fitness 2020; 60:625-633. [PMID: 32043347 DOI: 10.23736/s0022-4707.20.10403-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the lipolysis response and insulin sensitivity to high-intensity interval exercise (HIIE) upon fasting (HIIEFAST) and following the intake of a high-protein breakfast (HIIEHPFED). METHODS Overweight men participated in two sessions of HIIE after an overnight fast and post-HPFED with an interval of one week. Metabolic biomarkers were assessed before, immediately after, and 3h postexercise. To evaluate the metabolic effects of HIIE, two-way repeated-measures ANOVA was used. RESULTS Glycerol levels increased immediately after HIIEFAST and HIIEHPFED (P=0.0001) and decreased 3h after exercise in both states (P=0.001). There were no significant changes in free fatty acid (FFA) levels immediately after exercise, but a significant increase was observed 3h after exercise compared to the baseline and immediately after exercise in HIIEFAST and HIIEHPFED (P=0.0001). Insulin sensitivity was increased for 3h after HIIEHPFED compared to the baseline and immediately after exercise (P=0.04). CONCLUSIONS These findings suggest that fasting during exercise is not necessary for the greater stimulation of lipolysis and an increase in insulin sensitivity and that exercise following a high-protein breakfast can have a similar effect in overweight young men.
Collapse
Affiliation(s)
- Marziyeh Saghebjoo
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran -
| | - Nasrin Kargar-Akbariyeh
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | | | - Iman Saffari
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| |
Collapse
|
42
|
Wu P, Chen J, Chen J, Tao J, Wu S, Xu G, Wang Z, Wei D, Yin W. Trimethylamine N-oxide promotes apoE -/- mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway. J Cell Physiol 2020; 235:6582-6591. [PMID: 32012263 DOI: 10.1002/jcp.29518] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Trimethylamine N-oxide (TMAO) is produced from the phosphatidylcholine metabolism of gut flora and acts as a risk factor of cardiovascular disease. However, the underlying mechanisms for its proatherogenic action remain unclear. This study aimed to observe the effect of TMAO on endothelial cell pyroptosis and explore the underlying mechanisms. Our results showed that TMAO promoted the progression of atherosclerotic lesions in apolipoprotein E-deficient (apoE-/- ) mice fed a high-fat diet. Pyroptosis and succinate dehydrogenase complex subunit B (SDHB) upregulation were detected in the vascular endothelial cells of apoE-/- mice and in cultured human umbilical vein endothelial cells (HUVECs) treated with TMAO. Overexpression of SDHB in HUVECs enhanced pyroptosis and impaired mitochondria and high reactive oxygen species (ROS) level. Pyroptosis in the SDHB overexpression of endothelial cells was inhibited by the ROS scavenger NAC. In summary, TMAO promotes vascular endothelial cell pyroptosis via ROS induced through SDHB upregulation, thereby contributing to the progression of atherosclerotic lesions.
Collapse
Affiliation(s)
- Peng Wu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Innovative Training Base for Medical Postgraduate, University of South China and Yueyang Woman & Children's Medical Center, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,Hunan YueYang Maternal and Child Medicine Health-Care Hospital, Hunan Province Innovative Training Base for Medical Postgraduates, Yueyang, Hunan, China
| | - JinNa Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Innovative Training Base for Medical Postgraduate, University of South China and Yueyang Woman & Children's Medical Center, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - JiaoJiao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Innovative Training Base for Medical Postgraduate, University of South China and Yueyang Woman & Children's Medical Center, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Innovative Training Base for Medical Postgraduate, University of South China and Yueyang Woman & Children's Medical Center, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - ShiYuan Wu
- Hunan YueYang Maternal and Child Medicine Health-Care Hospital, Hunan Province Innovative Training Base for Medical Postgraduates, Yueyang, Hunan, China
| | - GaoSheng Xu
- Hunan YueYang Maternal and Child Medicine Health-Care Hospital, Hunan Province Innovative Training Base for Medical Postgraduates, Yueyang, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Innovative Training Base for Medical Postgraduate, University of South China and Yueyang Woman & Children's Medical Center, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - DangHeng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Innovative Training Base for Medical Postgraduate, University of South China and Yueyang Woman & Children's Medical Center, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - WeiDong Yin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Innovative Training Base for Medical Postgraduate, University of South China and Yueyang Woman & Children's Medical Center, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
43
|
Süleymanoğlu M, Rencüzoğulları İ, Karabağ Y, Çağdaş M, Yesin M, Gümüşdağ A, Çap M, Gök M, Yıldız İ. The relationship between atherogenic index of plasma and no-reflow in patients with acute ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention. Int J Cardiovasc Imaging 2020; 36:789-796. [DOI: 10.1007/s10554-019-01766-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022]
|
44
|
Abstract
PURPOSE OF REVIEW Recently, a high level of triglycerides has attracted much attention as an important residual risk factor of cardiovascular events. We will review and show the mechanisms underlying the association of endothelial dysfunction with hypertriglyceridemia and present clinical evidence for a relationship between endothelial function and triglycerides. RECENT FINDINGS Clinical studies have shown that hypertriglyceridemia is associated with endothelial dysfunction. It is likely that hypertriglyceridemia impairs endothelial function through direct and indirect mechanisms. Therefore, hypertriglyceridemia is recognized as a therapeutic target in the treatment of endothelial dysfunction. Although experimental and clinical studies have shown that fibrates and omega-3 fatty acids not only decrease triglycerides but also improve endothelial function, the effects of these therapies on cardiovascular events are controversial. SUMMARY Accumulating evidence suggests that hypertriglyceridemia is an independent risk factor for endothelial dysfunction. Triglycerides should be considered more seriously as a future target to reduce cardiovascular events. Results of ongoing studies may show the benefit of lowering triglycerides and provide new standards of care for patients with hypertriglyceridemia possibly through improvement in endothelial function.
Collapse
Affiliation(s)
- Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital
| | - Yukihito Higashi
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
45
|
Gomes APO, Ferreira MA, Camargo JM, Araújo MDO, Mortoza AS, Mota JF, Coelho ASG, Capitani CD, Coltro WKT, Botelho PB. Organic beet leaves and stalk juice attenuates HDL-C reduction induced by high-fat meal in dyslipidemic patients: A pilot randomized controlled trial. Nutrition 2019; 65:68-73. [DOI: 10.1016/j.nut.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 02/09/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
|
46
|
Basurto L, Sánchez L, Díaz A, Valle M, Robledo A, Martínez-Murillo C. Differences between metabolically healthy and unhealthy obesity in PAI-1 level. Thromb Res 2019; 180:110-114. [DOI: 10.1016/j.thromres.2019.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/19/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
|
47
|
Öörni K, Lehti S, Sjövall P, Kovanen PT. Triglyceride-Rich Lipoproteins as a Source of Proinflammatory Lipids in the Arterial Wall. Curr Med Chem 2019; 26:1701-1710. [DOI: 10.2174/0929867325666180530094819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/27/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
Apolipoprotein B –containing lipoproteins include triglyceride-rich lipoproteins
(chylomicrons and their remnants, and very low-density lipoproteins and their remnants) and
cholesterol-rich low-density lipoprotein particles. Of these, lipoproteins having sizes below
70-80 nm may enter the arterial wall, where they accumulate and induce the formation of
atherosclerotic lesions. The processes that lead to accumulation of lipoprotein-derived lipids
in the arterial wall have been largely studied with a focus on the low-density lipoprotein particles.
However, recent observational and genetic studies have discovered that the triglyceriderich
lipoproteins and their remnants are linked with cardiovascular disease risk. In this review,
we describe the potential mechanisms by which the triglyceride-rich remnant lipoproteins can
contribute to the development of atherosclerotic lesions, and highlight the differences in the
atherogenicity between low-density lipoproteins and the remnant lipoproteins.
Collapse
Affiliation(s)
| | - Satu Lehti
- Wihuri Research Institute, Helsinki, Finland
| | | | | |
Collapse
|
48
|
Björnson E, Packard CJ, Adiels M, Andersson L, Matikainen N, Söderlund S, Kahri J, Sihlbom C, Thorsell A, Zhou H, Taskinen MR, Borén J. Investigation of human apoB48 metabolism using a new, integrated non-steady-state model of apoB48 and apoB100 kinetics. J Intern Med 2019; 285:562-577. [PMID: 30779243 PMCID: PMC6849847 DOI: 10.1111/joim.12877] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Triglyceride-rich lipoproteins and their remnants have emerged as major risk factors for cardiovascular disease. New experimental approaches are required that permit simultaneous investigation of the dynamics of chylomicrons (CM) and apoB48 metabolism and of apoB100 in very low-density lipoproteins (VLDL). METHODS Mass spectrometric techniques were used to determine the masses and tracer enrichments of apoB48 in the CM, VLDL1 and VLDL2 density intervals. An integrated non-steady-state multicompartmental model was constructed to describe the metabolism of apoB48- and apoB100-containing lipoproteins following a fat-rich meal, as well as during prolonged fasting. RESULTS The kinetic model described the metabolism of apoB48 in CM, VLDL1 and VLDL2 . It predicted a low level of basal apoB48 secretion and, during fat absorption, an increment in apoB48 release into not only CM but also directly into VLDL1 and VLDL2 . ApoB48 particles with a long residence time were present in VLDL, and in subjects with high plasma triglycerides, these lipoproteins contributed to apoB48 measured during fasting conditions. Basal apoB48 secretion was about 50 mg day-1 , and the increment during absorption was about 230 mg day-1 . The fractional catabolic rates for apoB48 in VLDL1 and VLDL2 were substantially lower than for apoB48 in CM. DISCUSSION This novel non-steady-state model integrates the metabolic properties of both apoB100 and apoB48 and the kinetics of triglyceride. The model is physiologically relevant and provides insight not only into apoB48 release in the basal and postabsorptive states but also into the contribution of the intestine to VLDL pool size and kinetics.
Collapse
Affiliation(s)
- E Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - C J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M Adiels
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - L Andersson
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - N Matikainen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - S Söderlund
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland
| | - J Kahri
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland
| | - C Sihlbom
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - A Thorsell
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - H Zhou
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ, USA
| | - M-R Taskinen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland
| | - J Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
49
|
Association of plasminogen activator inhibitor-1 and low-density lipoprotein heterogeneity as a risk factor of atherosclerotic cardiovascular disease with triglyceride metabolic disorder: a pilot cross-sectional study. Coron Artery Dis 2018; 28:577-587. [PMID: 28692480 DOI: 10.1097/mca.0000000000000521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND We hypothesized that an increase in plasminogen activator inhibitor 1 (PAI-1) might reduce low-density lipoprotein (LDL) particle size in conjunction with triglyceride (TG) metabolism disorder, resulting in an increased risk of atherosclerotic cardiovascular disease (ASCVD). METHODS This study was carried out as a hospital-based cross-sectional study in 537 consecutive outpatients (mean age: 64 years; men: 71%) with one or more risk factors for ASCVD from April 2014 to October 2014 at the Cardiovascular Center of Nihon University Surugadai Hospital. The estimated LDL-particle size was measured as relative LDL migration using polyacrylamide gel electrophoresis with the LipoPhor system.The plasma PAI-1 level, including the tissue PA/PAI-1 complex and the active and latent forms of PAI-1, was determined using a latex photometric immunoassay method. RESULTS A multivariate regression analysis after adjustments for ASCVD risk factors showed that an elevated PAI-1 level was an independent predictor of smaller-sized LDL-particle in both the overall patients population (β=0.209, P<0.0001) and a subset of patients with a serum low-density lipoprotein cholesterol (LDL-C) level lower than 100 mg/dl (β=0.276, P<0.0001). Furthermore, an increased BMI and TG-rich lipoprotein related markers [TG, remnant-like particle cholesterol, apolipoprotein (apo) B, apo C-II, and apo C-III] were found to be independent variables associated with an increased PAI-1 level in multivariate regression models. A statistical analysis of data from nondiabetic patients with well-controlled serum LDL-C levels yielded similar findings. Furthermore, in the 310 patients followed up for at least 6 months, a multiple-logistic regression analysis after adjustments for ASCVD risk factors identified the percent changes of the plasma PAI-1 level in the third tertile compared with those in the first tertile as being independently predictive of decreased LDL-particle size [odds ratio (95% confidence interval): 2.11 (1.12/3.40), P=0.02]. CONCLUSION The plasma PAI-1 levels may be determined by the degree of obesity and TG metabolic disorders. These factors were also shown to be correlated with a decreased LDL-particle size, increasing the risk of ASCVD, even in nondiabetic patients with well-controlled serum LDL-C levels.
Collapse
|
50
|
Finamore A, Ambra R, Nobili F, Garaguso I, Raguzzini A, Serafini M. Redox Role of Lactobacillus casei Shirota Against the Cellular Damage Induced by 2,2'-Azobis (2-Amidinopropane) Dihydrochloride-Induced Oxidative and Inflammatory Stress in Enterocytes-Like Epithelial Cells. Front Immunol 2018; 9:1131. [PMID: 29881384 PMCID: PMC5976738 DOI: 10.3389/fimmu.2018.01131] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/04/2018] [Indexed: 12/27/2022] Open
Abstract
In western societies where most of the day is spent in the postprandial state, the existence of oxidative and inflammatory stress conditions makes postprandial stress an important factor involved in the development of cardiovascular risk factors. A large body of evidence have been accumulated on the anti-inflammatory effects of probiotics, but no information is available on the mechanisms through which intestinal microbiota modulates redox unbalance associated with inflammatory stress. Here, we aimed to investigate the ability of Lactobacillus casei Shirota (LS) to induce an antioxidant response to counteract oxidative and inflammatory stress in an in vitro model of enterocytes. Our results show that pretreatment of enterocytes with LS prevents membrane barrier disruption and cellular reactive oxygen species (ROS) accumulation inside the cells, modulates the expression of the gastro-intestinal glutathione peroxidase (GPX2) antioxidant enzyme, and reduces p65 phosphorylation, supporting the involvement of the Nfr2 and nuclear factor kappa B pathways in the activation of antioxidant cellular defenses by probiotics. These results suggest, for the first time, a redox mechanism by LS in protecting intestinal cells from AAPH-induced oxidative and inflammatory stress.
Collapse
Affiliation(s)
- Alberto Finamore
- Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Roberto Ambra
- Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Fabio Nobili
- Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Ivana Garaguso
- Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Anna Raguzzini
- Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Mauro Serafini
- Functional Foods and Metabolic Stress Prevention Laboratory, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|