1
|
Wydrych A, Pakuła B, Jakubek-Olszewska P, Janikiewicz J, Dobosz AM, Cudna A, Rydzewski M, Pierzynowska K, Gaffke L, Cyske Z, Rintz E, Kurkowska-Jastrzębska I, Cwyl M, Pinton P, Węgrzyn G, Koopman WJH, Dobrzyń A, Skowrońska M, Lebiedzińska-Arciszewska M, Wieckowski MR. Metabolic alterations in fibroblasts of patients presenting with the MPAN subtype of neurodegeneration with brain iron accumulation (NBIA). Biochim Biophys Acta Mol Basis Dis 2025; 1871:167541. [PMID: 39419454 DOI: 10.1016/j.bbadis.2024.167541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Mutations in the following genes: PANK2, PLA2G6, C19orf12, WDR45, CP, FA2H, ATP13A2, FTL, DCAF17, and CoASY are associated with the development of different subtypes of inherited rare disease Neurodegeneration with Brain Iron Accumulation (NBIA). Additionally, recently described mutations in FTH1, AP4M1, REPS1, SCP2, CRAT and GTPBP2 affecting iron and lipid metabolism also are thought to be involved in NBIA development. Four main subtypes, pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN), are responsible for up to 82 % of all NBIA cases. Here we studied fibroblasts from 11 patients with pathogenic mutations in C19orf12, and demonstrate various cellular aberrations. Differences between fibroblasts from healthy individuals and MPAN patients were potentiated when cells were grown under oxidative phosphorylation (OXPHOS) promoting condition suggesting an impaired metabolic flexibility. The extent of some of the cellular aberrations quantitatively correlated with disease severity, suggesting their involvement in the NBIA pathomechanism.
Collapse
Affiliation(s)
- Agata Wydrych
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Pakuła
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Cudna
- II(nd) Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marcel Rydzewski
- II(nd) Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Maciej Cwyl
- Warsaw University of Technology, Warsaw, Poland; NBIA Poland Association, Warsaw, Poland
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Werner J H Koopman
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Skowrońska
- II(nd) Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Magdalena Lebiedzińska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Wydrych A, Pakuła B, Janikiewicz J, Dobosz AM, Jakubek-Olszewska P, Skowrońska M, Kurkowska-Jastrzębska I, Cwyl M, Popielarz M, Pinton P, Zavan B, Dobrzyń A, Lebiedzińska-Arciszewska M, Więckowski MR. Metabolic impairments in neurodegeneration with brain iron accumulation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149517. [PMID: 39366438 DOI: 10.1016/j.bbabio.2024.149517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a broad, heterogeneous group of rare inherited diseases (1-3 patients/1,000,000 people) characterized by progressive symptoms associated with excessive abnormal iron deposition in the brain. Approximately 15,000-20,000 individuals worldwide are estimated to be affected by NBIA. NBIA is usually associated with slowly progressive pyramidal and extrapyramidal symptoms, axonal motor neuropathy, optic nerve atrophy, cognitive impairment and neuropsychiatric disorders. To date, eleven subtypes of NBIA have been described and the most common ones include pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN). We present a comprehensive overview of the evidence for disturbed cellular homeostasis and metabolic alterations in NBIA variants, with a careful focus on mitochondrial bioenergetics and lipid metabolism which drives a new perspective in understanding the course of this infrequent malady.
Collapse
Affiliation(s)
- Agata Wydrych
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Barbara Pakuła
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Skowrońska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Maciej Cwyl
- Warsaw University of Technology, Warsaw, Poland; NBIA Poland Association, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | | | - Mariusz R Więckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
3
|
Jiao L, Shao W, Quan W, Xu L, Liu P, Yang J, Peng X. iPLA2β loss leads to age-related cognitive decline and neuroinflammation by disrupting neuronal mitophagy. J Neuroinflammation 2024; 21:228. [PMID: 39294744 PMCID: PMC11409585 DOI: 10.1186/s12974-024-03219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND During brain aging, disturbances in neuronal phospholipid metabolism result in impaired cognitive function and dysregulation of neurological processes. Mutations in iPLA2β are associated with neurodegenerative conditions that significantly impact brain phospholipids. iPLA2β deficiency exacerbates mitochondrial dysfunction and abnormal mitochondrial accumulation. We hypothesized that iPLA2β contributes to age-related cognitive decline by disrupting neuronal mitophagy. METHODOLOGY We used aged wild-type (WT) mice and iPLA2β-/- mice as natural aging models to assess cognitive performance, iPLA2β expression in the cortex, levels of chemokines and inflammatory cytokines, and mitochondrial dysfunction, with a specific focus on mitophagy and the mitochondrial phospholipid profile. To further elucidate the role of iPLA2β, we employed adeno-associated virus (AAV)-mediated iPLA2β overexpression in aged mice and re-evaluated these parameters. RESULTS Our findings revealed a significant reduction in iPLA2β levels in the prefrontal cortex of aged brains. Notably, iPLA2β-deficient mice exhibited impaired learning and memory. Loss of iPLA2β in the PFC of aged mice led to increased levels of chemokines and inflammatory cytokines. This damage was associated with altered mitochondrial morphology, reduced ATP levels due to dysregulation of the parkin-independent mitophagy pathway, and changes in the mitochondrial phospholipid profile. AAV-mediated overexpression of iPLA2β alleviated age-related parkin-independent mitophagy pathway dysregulation in primary neurons and the PFC of aged mice, reduced inflammation, and improved cognitive function. CONCLUSIONS Our study suggests that age-related iPLA2β loss in the PFC leads to cognitive decline through the disruption of mitophagy. These findings highlight the potential of targeting iPLA2β to ameliorate age-related neurocognitive disorders.
Collapse
Affiliation(s)
- Li Jiao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Wenxin Shao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Wenqi Quan
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Longjiang Xu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Penghui Liu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Jinling Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Xiaozhong Peng
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Innovation for Animal Model, Institute of Laboratory Animal Sciences, National Center of Technology, CAMS & PUMC, Beijing, 100021, China.
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China.
| |
Collapse
|
4
|
Ebright B, Duro MV, Chen K, Louie S, Yassine HN. Effects of APOE4 on omega-3 brain metabolism across the lifespan. Trends Endocrinol Metab 2024; 35:745-757. [PMID: 38609814 PMCID: PMC11321946 DOI: 10.1016/j.tem.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), have important roles in human nutrition and brain health by promoting neuronal functions, maintaining inflammatory homeostasis, and providing structural integrity. As Alzheimer's disease (AD) pathology progresses, DHA metabolism in the brain becomes dysregulated, the timing and extent of which may be influenced by the apolipoprotein E ε4 (APOE4) allele. Here, we discuss how maintaining adequate DHA intake early in life may slow the progression to AD dementia in cognitively normal individuals with APOE4, how recent advances in DHA brain imaging could offer insights leading to more personalized preventive strategies, and how alternative strategies targeting PUFA metabolism pathways may be more effective in mitigating disease progression in patients with existing AD dementia.
Collapse
Affiliation(s)
- Brandon Ebright
- Department of Clinical Pharmacy, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Marlon V Duro
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan Louie
- Department of Clinical Pharmacy, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hussein N Yassine
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
5
|
Marupudi N, Xiong MP. Genetic Targets and Applications of Iron Chelators for Neurodegeneration with Brain Iron Accumulation. ACS BIO & MED CHEM AU 2024; 4:119-130. [PMID: 38911909 PMCID: PMC11191567 DOI: 10.1021/acsbiomedchemau.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 06/25/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of neurodegenerative diseases that are typically caused by a monogenetic mutation, leading to development of disordered movement symptoms such as dystonia, hyperreflexia, etc. Brain iron accumulation can be diagnosed through MRI imaging and is hypothesized to be the cause of oxidative stress, leading to the degeneration of brain tissue. There are four main types of NBIA: pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MKAN), and beta-propeller protein-associated neurodegeneration (BPAN). There are no causative therapies for these diseases, but iron chelators have been shown to have potential toward treating NBIA. Three chelators are investigated in this Review: deferoxamine (DFO), desferasirox (DFS), and deferiprone (DFP). DFO has been investigated to treat neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD); however, dose-related toxicity in these studies, as well as in PKAN studies, have shown that the drug still requires more development before it can be applied toward NBIA cases. Iron chelation therapies other than the ones currently in clinical use have not yet reached clinical studies, but they may possess characteristics that would allow them to access the brain in ways that current chelators cannot. Intranasal formulations are an attractive dosage form to study for chelation therapy, as this method of delivery can bypass the blood-brain barrier and access the CNS. Gene therapy differs from iron chelation therapy as it is a causal treatment of the disease, whereas iron chelators only target the disease progression of NBIA. Because the pathophysiology of NBIA diseases is still unclear, future courses of action should be focused on causative treatment; however, iron chelation therapy is the current best course of action.
Collapse
Affiliation(s)
- Neharika Marupudi
- Department of Pharmaceutical
& Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2352, United States
| | - May P. Xiong
- Department of Pharmaceutical
& Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2352, United States
| |
Collapse
|
6
|
Salimi Z, Afsharinasab M, Rostami M, Eshaghi Milasi Y, Mousavi Ezmareh SF, Sakhaei F, Mohammad-Sadeghipour M, Rasooli Manesh SM, Asemi Z. Iron chelators: as therapeutic agents in diseases. Ann Med Surg (Lond) 2024; 86:2759-2776. [PMID: 38694398 PMCID: PMC11060230 DOI: 10.1097/ms9.0000000000001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/04/2024] Open
Abstract
The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.
Collapse
Affiliation(s)
- Zohreh Salimi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Mehdi Afsharinasab
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Seyedeh Fatemeh Mousavi Ezmareh
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Fariba Sakhaei
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
7
|
Ouagueni A, Al-Zoubi RM, Zarour A, Al-Ansari A, Bawadi H. Effects of Omega-3 Polyunsaturated Fatty Acids, Docosahexaenoic Acid and Eicosapentaenoic Acid, on Post-Surgical Complications in Surgical Trauma Patients: Mechanisms, Nutrition, and Challenges. Mar Drugs 2024; 22:207. [PMID: 38786598 PMCID: PMC11123418 DOI: 10.3390/md22050207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 05/25/2024] Open
Abstract
This paper aims to provide an in-depth review of the specific outcomes associated with omega-3 polyunsaturated fatty acids (PUFAs), focusing on their purported effects on post-surgical complications in trauma patients. A comprehensive investigation of omega-3 polyunsaturated fatty acids was conducted until February 2023 using the PubMed database. Surgical trauma is characterized by a disruption in immune response post surgery, known to induce systemic inflammation. Omega-3 PUFAs are believed to offer potential improvements in multiple post-surgical complications because of their anti-inflammatory and antioxidant properties. Inconsistent findings have emerged in the context of cardiac surgeries, with the route of administration playing a mediating role in these outcomes. The effects of omega-3 PUFAs on post-operative atrial fibrillation have exhibited variability across various studies. Omega-3 PUFAs have demonstrated positive effects in liver surgery outcomes and in patients with acute respiratory distress syndrome. Omega-3 is suggested to offer potential benefits, particularly in the perioperative care of patients undergoing traumatic procedures. Incorporating omega-3 in such cases is hypothesized to contribute to a reduction in certain surgical outcomes, such as hospitalization duration and length of stay in the intensive care unit. Therefore, comprehensive assessments of adverse effects can aid in identifying the presence of subtle or inconspicuous side effects associated with omega-3.
Collapse
Affiliation(s)
- Asma Ouagueni
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar; (R.M.A.-Z.); (A.A.-A.)
- Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- Department of Biomedical Sciences, College of Health Science, Qatar University, Doha 2713, Qatar
| | - Ahmad Zarour
- Acute Care Surgery Division, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar;
| | - Abdulla Al-Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar; (R.M.A.-Z.); (A.A.-A.)
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha 576214, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
8
|
Monge P, Astudillo AM, Pereira L, Balboa MA, Balsinde J. Dynamics of Docosahexaenoic Acid Utilization by Mouse Peritoneal Macrophages. Biomolecules 2023; 13:1635. [PMID: 38002317 PMCID: PMC10669016 DOI: 10.3390/biom13111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In this work, the incorporation of docosahexaenoic acid (DHA) in mouse resident peritoneal macrophages and its redistribution within the various phospholipid classes were investigated. Choline glycerophospholipids (PC) behaved as the major initial acceptors of DHA. Prolonged incubation with the fatty acid resulted in the transfer of DHA from PC to ethanolamine glycerophospholipids (PE), reflecting phospholipid remodeling. This process resulted in the cells containing similar amounts of DHA in PC and PE in the resting state. Mass spectrometry-based lipidomic analyses of phospholipid molecular species indicated a marked abundance of DHA in ether phospholipids. Stimulation of the macrophages with yeast-derived zymosan resulted in significant decreases in the levels of all DHA-containing PC and PI species; however, no PE or PS molecular species were found to decrease. In contrast, the levels of an unusual DHA-containing species, namely PI(20:4/22:6), which was barely present in resting cells, were found to markedly increase under zymosan stimulation. The levels of this phospholipid also significantly increased when the calcium-ionophore A23187 or platelet-activating factor were used instead of zymosan to stimulate the macrophages. The study of the route involved in the synthesis of PI(20:4/22:6) suggested that this species is produced through deacylation/reacylation reactions. These results define the increases in PI(20:4/22:6) as a novel lipid metabolic marker of mouse macrophage activation, and provide novel information to understand the regulation of phospholipid fatty acid turnover in activated macrophages.
Collapse
Affiliation(s)
- Patricia Monge
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alma M. Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Pereira
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
10
|
Si L, Wang Z, Li XY, Song Y, Yao T, Xu E, Wang X, Wang C. Novel mutations and molecular pathways identified in patients with brain iron accumulation disorders. Neurogenetics 2023; 24:231-241. [PMID: 37453004 DOI: 10.1007/s10048-023-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Brain iron accumulation disorders (BIADs) are a group of diseases characterized by iron overload in deep gray matter nuclei, which is a common feature of neurodegenerative diseases. Although genetic factors have been reported to be one of the etiologies, much more details about the genetic background and molecular mechanism of BIADs remain unclear. This study aimed to illustrate the genetic characteristics of BIADs and clarify their molecular mechanisms. A total of 84 patients with BIADs were recruited from April 2018 to October 2022 at Xuanwu Hospital. Clinical characteristics including family history, consanguineous marriage history, and age at onset (AAO) were collected and assessed by two senior neurologists. Neuroimaging data were conducted for all the patients, including cranial magnetic resonance imaging (MRI) and susceptibility-weighted imaging (SWI). Whole-exome sequencing (WES) and capillary electrophoresis for detecting sequence mutation and trinucleotide repeat expansion, respectively, were conducted on all patients and part of their parents (whose samples were available). Variant pathogenicity was assessed according to the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP). The NBIA and NBIA-like genes with mutations were included for bioinformatic analysis, using Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genome (KEGG). GO annotation and KEGG pathway analysis were performed on Metascape platform. In the 84 patients, 30 (35.7%) were found to carry mutations, among which 20 carried non-dynamic mutations (missense, stop-gained, frameshift, inframe, and exonic deletion) and 10 carried repeat expansion mutations. Compared with sporadic cases, familial cases had more genetic variants (non-dynamic mutation: P=0.025, dynamic mutation: P=0.003). AAO was 27.85±10.42 years in cases with non-dynamic mutations, which was significantly younger than those without mutations (43.13±17.17, t=3.724, P<0.001) and those with repeated expansions (45.40±8.90, t=4.550, P<0.001). Bioinformatic analysis suggested that genes in lipid metabolism, autophagy, mitochondria regulation, and ferroptosis pathways are more likely to be involved in the pathogenesis of BIADs. This study broadens the genetic spectrum of BIADs and has important implications in genetic counselling and clinical diagnosis. Patients diagnosed as BIADs with early AAO and family history are more likely to carry mutations. Bioinformatic analysis provides new insights into the molecular pathogenesis of BIADs, which may shed lights on the therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lianghao Si
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Zhanjun Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xu-Ying Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yang Song
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Tingyan Yao
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Erhe Xu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xianling Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Chaodong Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
11
|
Lulić AM, Katalinić M. The PNPLA family of enzymes: characterisation and biological role. Arh Hig Rada Toksikol 2023; 74:75-89. [PMID: 37357879 PMCID: PMC10291501 DOI: 10.2478/aiht-2023-74-3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 05/01/2023] [Indexed: 06/27/2023] Open
Abstract
This paper brings a brief review of the human patatin-like phospholipase domain-containing protein (PNPLA) family. Even though it consists of only nine members, their physiological roles and mechanisms of their catalytic activity are not fully understood. However, the results of a number of knock-out and gain- or loss-of-function research models suggest that these enzymes have an important role in maintaining the homeostasis and integrity of organelle membranes, in cell growth, signalling, cell death, and the metabolism of lipids such as triacylglycerol, phospholipids, ceramides, and retinyl esters. Research has also revealed a connection between PNPLA family member mutations or irregular catalytic activity and the development of various diseases. Here we summarise important findings published so far and discuss their structure, localisation in the cell, distribution in the tissues, specificity for substrates, and their potential physiological role, especially in view of their potential as drug targets.
Collapse
Affiliation(s)
- Ana-Marija Lulić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| |
Collapse
|
12
|
Hayashi D, Dennis EA. Molecular basis of unique specificity and regulation of group VIA calcium-independent phospholipase A 2 (PNPLA9) and its role in neurodegenerative diseases. Pharmacol Ther 2023; 245:108395. [PMID: 36990122 PMCID: PMC10174669 DOI: 10.1016/j.pharmthera.2023.108395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Glycerophospholipids are major components of cell membranes and consist of a glycerol backbone esterified with one of over 30 unique fatty acids at each of the sn-1 and sn-2 positions. In addition, in some human cells and tissues as much as 20% of the glycerophospholipids contain a fatty alcohol rather than an ester in the sn-1 position, although it can also occur in the sn-2 position. The sn-3 position of the glycerol backbone contains a phosphodiester bond linked to one of more than 10 unique polar head-groups. Hence, humans contain thousands of unique individual molecular species of phospholipids given the heterogeneity of the sn-1 and sn-2 linkage and carbon chains and the sn-3 polar groups. Phospholipase A2 (PLA2) is a superfamily of enzymes that hydrolyze the sn-2 fatty acyl chain resulting in lyso-phospholipids and free fatty acids that then undergo further metabolism. PLA2's play a critical role in lipid-mediated biological responses and membrane phospholipid remodeling. Among the PLA2 enzymes, the Group VIA calcium-independent PLA2 (GVIA iPLA2), also referred to as PNPLA9, is a fascinating enzyme with broad substrate specificity and it is implicated in a wide variety of diseases. Especially notable, the GVIA iPLA2 is implicated in the sequelae of several neurodegenerative diseases termed "phospholipase A2-associated neurodegeneration" (PLAN) diseases. Despite many reports on the physiological role of the GVIA iPLA2, the molecular basis of its enzymatic specificity was unclear. Recently, we employed state-of-the-art lipidomics and molecular dynamics techniques to elucidate the detailed molecular basis of its substrate specificity and regulation. In this review, we summarize the molecular basis of the enzymatic action of GVIA iPLA2 and provide a perspective on future therapeutic strategies for PLAN diseases targeting GVIA iPLA2.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe 657-8501, Japan.
| | - Edward A Dennis
- Department of Pharmacology, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0601, USA
| |
Collapse
|
13
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
14
|
Compartmentalized regulation of lipid signaling in oxidative stress and inflammation: Plasmalogens, oxidized lipids and ferroptosis as new paradigms of bioactive lipid research. Prog Lipid Res 2023; 89:101207. [PMID: 36464139 DOI: 10.1016/j.plipres.2022.101207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Perturbations in lipid homeostasis combined with conditions favoring oxidative stress constitute a hallmark of the inflammatory response. In this review we focus on the most recent results concerning lipid signaling in various oxidative stress-mediated responses and inflammation. These include phagocytosis and ferroptosis. The best characterized event, common to these responses, is the synthesis of oxygenated metabolites of arachidonic acid and other polyunsaturated fatty acids. Major developments in this area have highlighted the importance of compartmentalization of the enzymes and lipid substrates in shaping the appropriate response. In parallel, other relevant lipid metabolic pathways are also activated and, until recently, there has been a general lack of knowledge on the enzyme regulation and molecular mechanisms operating in these pathways. Specifically, data accumulated in recent years on the regulation and biological significance of plasmalogens and oxidized phospholipids have expanded our knowledge on the involvement of lipid metabolism in the progression of disease and the return to homeostasis. These recent major developments have helped to establish the concept of membrane phospholipids as cellular repositories for the compartmentalized production of bioactive lipids involved in cellular regulation. Importantly, an enzyme classically described as being involved in regulating the homeostatic turnover of phospholipids, namely the group VIA Ca2+-independent phospholipase A2 (iPLA2β), has taken center stage in oxidative stress and inflammation research owing to its key involvement in regulating metabolic and ferroptotic signals arising from membrane phospholipids. Understanding the role of iPLA2β in ferroptosis and metabolism not only broadens our knowledge of disease but also opens possible new horizons for this enzyme as a target for therapeutic intervention.
Collapse
|
15
|
Asante I, Louie S, Yassine HN. Uncovering mechanisms of brain inflammation in Alzheimer's disease with APOE4: Application of single cell-type lipidomics. Ann N Y Acad Sci 2022; 1518:84-105. [PMID: 36200578 PMCID: PMC10092192 DOI: 10.1111/nyas.14907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chronic state of unresolved inflammation in Alzheimer's disease (AD) is intrinsically involved with the remodeling of brain lipids. This review highlights the effect of carrying the apolipoprotein E ε4 allele (APOE4) on various brain cell types in promoting an unresolved inflammatory state. Among its pleotropic effects on brain lipids, we focus on APOE4's activation of Ca2+ -dependent phospholipase A2 (cPLA2) and its effects on arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid signaling cascades in the brain. During the process of neurodegeneration, various brain cell types, such as astrocytes, microglia, and neurons, together with the neurovascular unit, develop distinct inflammatory phenotypes that impact their functions and have characteristic lipidomic fingerprints. We propose that lipidomic phenotyping of single cell-types harvested from brains differing by age, sex, disease severity stage, and dietary and genetic backgrounds can be employed to probe mechanisms of neurodegeneration. A better understanding of the brain cellular inflammatory/lipidomic response promises to guide the development of nutritional and drug interventions for AD dementia.
Collapse
Affiliation(s)
- Isaac Asante
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
16
|
El-Ansary A, Al-Onazi M, Alhowikan AM, Alghamdi MA, Al-Ayadhi L. Assessment of a combination of plasma anti-histone autoantibodies and PLA2/PE ratio as potential biomarkers to clinically predict autism spectrum disorders. Sci Rep 2022; 12:13359. [PMID: 35922658 PMCID: PMC9349315 DOI: 10.1038/s41598-022-17533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficiencies in social interaction and repetitive behaviors. Multiple studies have reported abnormal cell membrane composition and autoimmunity as known mechanisms associated with the etiopathogenesis of ASD. In this study, multiple regression and combined receiver operating characteristic (ROC) curve as statistic tools were done to clarify the relationship between phospholipase A2 and phosphatidylethanolamine (PE) ratio (PLA2/PE) as marker of lipid metabolism and membrane fluidity, and antihistone-autoantibodies as marker of autoimmunity in the etiopathology of ASD. Furthermore, the study intended to define the linear combination that maximizes the partial area under an ROC curve for a panel of markers. Forty five children with ASD and forty age- and sex-matched controls were enrolled in the study. Using ELISA, the levels of antihistone-autoantibodies, and PLA2 were measured in the plasma of both groups. PE was measured using HPLC. Statistical analyses using ROC curves and multiple and logistic regression models were performed. A notable rise in the area under the curve was detected using combined ROC curve models. Additionally, higher specificity and sensitivity of the combined markers were documented. The present study indicates that the measurement of the predictive value of selected biomarkers related to autoimmunity and lipid metabolism in children with ASD using a ROC curve analysis should lead to a better understanding of the pathophysiological mechanism of ASD and its link with metabolism. This information may enable the early diagnosis and intervention.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Research Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P.O Box 22452, Riyadh, 11495, Saudi Arabia.
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box. 90950, Riyadh, 11623, Saudi Arabia.
| | - Mona Al-Onazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mashael A Alghamdi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box. 90950, Riyadh, 11623, Saudi Arabia
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Antioxidant Role and Cardiolipin Remodeling by Redox-Activated Mitochondrial Ca 2+-Independent Phospholipase A 2γ in the Brain. Antioxidants (Basel) 2022; 11:antiox11020198. [PMID: 35204081 PMCID: PMC8868467 DOI: 10.3390/antiox11020198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial Ca2+-independent phospholipase A2γ (iPLA2γ/PNPLA8) was previously shown to be directly activated by H2O2 and release free fatty acids (FAs) for FA-dependent H+ transport mediated by the adenine nucleotide translocase (ANT) or uncoupling protein 2 (UCP2). The resulting mild mitochondrial uncoupling and consequent partial attenuation of mitochondrial superoxide production lead to an antioxidant effect. However, the antioxidant role of iPLA2γ in the brain is not completely understood. Here, using wild-type and iPLA2γ-KO mice, we demonstrate the ability of tert-butylhydroperoxide (TBHP) to activate iPLA2γ in isolated brain mitochondria, with consequent liberation of FAs and lysophospholipids. The liberated FA caused an increase in respiratory rate, which was fully inhibited by carboxyatractyloside (CATR), a specific inhibitor of ANT. Employing detailed lipidomic analysis, we also demonstrate a typical cleavage pattern for TBHP-activated iPLA2γ, reflecting cleavage of glycerophospholipids from both sn-1 and sn-2 positions releasing saturated FAs, monoenoic FAs, and predominant polyunsaturated FAs. The acute antioxidant role of iPLA2γ-released FAs is supported by monitoring both intramitochondrial superoxide and extramitochondrial H2O2 release. We also show that iPLA2γ-KO mice were more sensitive to stimulation by pro-inflammatory lipopolysaccharide, as reflected by the concomitant increase in protein carbonyls in the brain and pro-inflammatory IL-6 release in the serum. These data support the antioxidant and anti-inflammatory role of iPLA2γ in vivo. Our data also reveal a substantial decrease of several high molecular weight cardiolipin (CL) species and accumulation of low molecular weight CL species in brain mitochondria of iPLA2γ-KO mice. Collectively, our results support a key role of iPLA2γ in the remodeling of lower molecular weight immature cardiolipins with predominantly saturated acyl chains to high molecular weight mature cardiolipins with highly unsaturated PUFA acyl chains, typical for the brain.
Collapse
|
18
|
Schreiber JA, Tajuddin NF, Kouzoukas DE, Kevala K, Kim HY, Collins MA. Moderate blood alcohol and brain neurovulnerability: Selective depletion of calcium-independent phospholipase A2, omega-3 docosahexaenoic acid, and its synaptamide derivative as a potential harbinger of deficits in anti-inflammatory reserve. Alcohol Clin Exp Res 2021; 45:2506-2517. [PMID: 34719812 PMCID: PMC11049540 DOI: 10.1111/acer.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Repetitive, highly elevated blood alcohol (ethanol) concentrations (BACs) of 350 to 450 mg/dl over several days cause brain neurodegeneration and coincident neuroinflammation in adult rats localized in the hippocampus (HC), temporal cortex (especially the entorhinal cortex; ECX), and olfactory bulb (OB). The profuse neuroinflammation involves microgliosis, increased proinflammatory cytokines, and elevations of Ca+2 -dependent phospholipase A2 (cPLA2) and secretory PLA2 (sPLA2), which both mobilize proinflammatory ω-6 arachidonic acid (ARA). In contrast, Ca+2 -independent PLA2 (iPLA2) and anti-inflammatory ω-3 docosahexaenoic acid (DHA), a polyunsaturated fatty acid regulated primarily by iPLA2, are diminished. Furthermore, supplemented DHA exerts neuroprotection. Given uncertainties about the possible effects of lower circulating BACs that are common occurring during short- term binges, we examined how moderate BACs affected the above inflammatory events, and the impact of supplemented DHA. METHODS AND RESULTS Young adult male rats sustaining upper-moderate BACs (~150 mg/dl) from once-daily alcohol intubations were sacrificed with appropriate controls after 1 week. The HC, ECX and OB were quantitatively examined using immunoblotting, neurodegeneration staining, and lipidomics assays. Whereas neurodegeneration, increases in cPLA2 IVA, sPLA2 IIA, and ARA, and microglial activation were not detected, the HC and ECX regions demonstrated significantly reduced iPLA2 levels. Levels of DHA and synaptamide, its anti-inflammatory N-docosahexaenoylethanolamide derivative, also were lower in HC, and DHA supplementation prevented the iPLA2 decrements in HC. Additionally, adult mice maintaining upper-moderate BACs from limited alcohol binges had reduced midbrain iPLA2 levels. CONCLUSIONS The apparently selective depletion by moderate BACs of the metabolically linked anti-inflammatory triad of hippocampal iPLA2, DHA, and synaptamide, and of iPLA2 in the ECX, potentially indicates an unappreciated deficit in brain anti-inflammatory reserve that may be a harbinger of regional neurovulnerability.
Collapse
Affiliation(s)
- Jennifer A Schreiber
- Neuroscience Graduate Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Alcohol Research Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, USA
| | - Nuzhath F Tajuddin
- Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Dimitrios E Kouzoukas
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, USA
- Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Karl Kevala
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A Collins
- Neuroscience Graduate Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Alcohol Research Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
19
|
Dynamic Role of Phospholipases A2 in Health and Diseases in the Central Nervous System. Cells 2021; 10:cells10112963. [PMID: 34831185 PMCID: PMC8616333 DOI: 10.3390/cells10112963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipids are major components in the lipid bilayer of cell membranes. These molecules are comprised of two acyl or alkyl groups and different phospho-base groups linked to the glycerol backbone. Over the years, substantial interest has focused on metabolism of phospholipids by phospholipases and the role of their metabolic products in mediating cell functions. The high levels of polyunsaturated fatty acids (PUFA) in the central nervous system (CNS) have led to studies centered on phospholipases A2 (PLA2s), enzymes responsible for cleaving the acyl groups at the sn-2 position of the phospholipids and resulting in production of PUFA and lysophospholipids. Among the many subtypes of PLA2s, studies have centered on three major types of PLA2s, namely, the calcium-dependent cytosolic cPLA2, the calcium-independent iPLA2 and the secretory sPLA2. These PLA2s are different in their molecular structures, cellular localization and, thus, production of lipid mediators with diverse functions. In the past, studies on specific role of PLA2 on cells in the CNS are limited, partly because of the complex cellular make-up of the nervous tissue. However, understanding of the molecular actions of these PLA2s have improved with recent advances in techniques for separation and isolation of specific cell types in the brain tissue as well as development of sensitive molecular tools for analyses of proteins and lipids. A major goal here is to summarize recent studies on the characteristics and dynamic roles of the three major types of PLA2s and their oxidative products towards brain health and neurological disorders.
Collapse
|
20
|
Hayashi D, Mouchlis VD, Dennis EA. Omega-3 versus Omega-6 fatty acid availability is controlled by hydrophobic site geometries of phospholipase A 2s. J Lipid Res 2021; 62:100113. [PMID: 34474084 PMCID: PMC8551542 DOI: 10.1016/j.jlr.2021.100113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/12/2022] Open
Abstract
Human phospholipase A2s (PLA2) constitute a superfamily of enzymes that hydrolyze the sn-2 acyl-chain of glycerophospholipids, producing lysophospholipids and free fatty acids. Each PLA2 enzyme type contributes to specific biological functions based on its expression, subcellular localization, and substrate specificity. Among the PLA2 superfamily, the cytosolic cPLA2 enzymes, calcium-independent iPLA2 enzymes, and secreted sPLA2 enzymes are implicated in many diseases, but a central issue is the preference for double-bond positions in polyunsaturated fatty acids (PUFAs) occupying the sn-2 position of membrane phospholipids. We demonstrate that each PLA2 has a unique preference between the specific omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the omega-6 arachidonic acid (AA), which are the precursors of most proinflammatory and anti-inflammatory or resolving eicosanoids and related oxylipins. Surprisingly, we discovered that human cPLA2 selectively prefers AA, whereas iPLA2 prefers EPA, and sPLA2 prefers DHA as substrate. We determined the optimal binding of each phospholipid substrate in the active site of each PLA2 to explain these specificities. To investigate this, we utilized recently developed lipidomics-based LC-MS/MS and GC/MS assays to determine the sn-2 acyl chain specificity in mixtures of phospholipids. We performed μs timescale molecular dynamics (MD) simulations to reveal unique active site properties, especially how the precise hydrophobic cavity accommodation of the sn-2 acyl chain contributes to the stability of substrate binding and the specificity of each PLA2 for AA, EPA, or DHA. This study provides the first comprehensive picture of the unique substrate selectivity of each PLA2 for omega-3 and omega-6 fatty acids.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Varnavas D Mouchlis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Edward A Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Parkinson's Disease-Related Genes and Lipid Alteration. Int J Mol Sci 2021; 22:ijms22147630. [PMID: 34299248 PMCID: PMC8305702 DOI: 10.3390/ijms22147630] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a complex and progressive neurodegenerative disorder with a prevalence of approximately 0.5–1% among those aged 65–70 years. Although most of its clinical manifestations are due to a loss of dopaminergic neurons, the PD etiology is largely unknown. PD is caused by a combination of genetic and environmental factors, and the exact interplay between genes and the environment is still debated. Several biological processes have been implicated in PD, including mitochondrial or lysosomal dysfunctions, alteration in protein clearance, and neuroinflammation, but a common molecular mechanism connecting the different cellular alterations remains incompletely understood. Accumulating evidence underlines a significant role of lipids in the pathological pathways leading to PD. Beside the well-described lipid alteration in idiopathic PD, this review summarizes the several lipid alterations observed in experimental models expressing PD-related genes and suggests a possible scenario in relationship to the molecular mechanisms of neuronal toxicity. PD could be considered a lipid-induced proteinopathy, where alteration in lipid composition or metabolism could induce protein alteration—for instance, alpha-synuclein accumulation—and finally neuronal death.
Collapse
|
22
|
Neurodegeneration with Brain Iron Accumulation and a Brief Report of the Disease in Iran. Can J Neurol Sci 2021; 49:338-351. [PMID: 34082843 DOI: 10.1017/cjn.2021.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a term used for a group of hereditary neurological disorders with abnormal accumulation of iron in basal ganglia. It is clinically and genetically heterogeneous with symptoms such as dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset and rate of progression are variable among individuals. Current therapies are exclusively symptomatic and unable to hinder the disease progression. Approximately 16 genes have been identified and affiliated to such condition with different functions such as iron metabolism (only two genes: Ferritin Light Chain (FTL) Ceruloplasmin (CP)), lipid metabolism, lysosomal functions, and autophagy process, but some functions have remained unknown so far. Subgroups of NBIA are categorized based on the mutant genes. Although in the last 10 years, the development of whole-exome sequencing (WES) technology has promoted the identification of disease-causing genes, there seem to be some unknown genes and our knowledge about the molecular aspects and pathogenesis of NBIA is not complete yet. There is currently no comprehensive study about the NBIA in Iran; however, one of the latest discovered NBIA genes, GTP-binding protein 2 (GTPBP2), has been identified in an Iranian family, and there are some patients who have genetically remained unknown.
Collapse
|
23
|
Wang S, Li B, Solomon V, Fonteh A, Rapoport SI, Bennett DA, Arvanitakis Z, Chui HC, Miller C, Sullivan PM, Wang HY, Yassine HN. Calcium-dependent cytosolic phospholipase A 2 activation is implicated in neuroinflammation and oxidative stress associated with ApoE4. Mol Neurodegener 2021; 16:26. [PMID: 33863362 PMCID: PMC8052701 DOI: 10.1186/s13024-021-00438-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Apolipoprotein E4 (APOE4) is associated with a greater response to neuroinflammation and the risk of developing late-onset Alzheimer's disease (AD), but the mechanisms for this association are not clear. The activation of calcium-dependent cytosolic phospholipase A2 (cPLA2) is involved in inflammatory signaling and is elevated within the plaques of AD brains. The relation between APOE4 genotype and cPLA2 activity is not known. METHODS Mouse primary astrocytes, mouse and human brain samples differing by APOE genotypes were collected for measuring cPLA2 expression, phosphorylation, and activity in relation to measures of inflammation and oxidative stress. RESULTS Greater cPLA2 phosphorylation, cPLA2 activity and leukotriene B4 (LTB4) levels were identified in ApoE4 compared to ApoE3 in primary astrocytes, brains of ApoE-targeted replacement (ApoE-TR) mice, and in human brain homogenates from the inferior frontal cortex of patients with AD carrying APOE3/E4 compared to APOE3/E3. Greater cPLA2 phosphorylation was also observed in human postmortem frontal cortical synaptosomes and primary astrocytes after treatment with recombinant ApoE4 ex vivo. In ApoE4 astrocytes, the greater levels of LTB4, reactive oxygen species (ROS), and inducible nitric oxide synthase (iNOS) were reduced after cPLA2 inhibition. CONCLUSIONS Our findings implicate greater activation of cPLA2 signaling system with APOE4, which could represent a potential drug target for mitigating the increased neuroinflammation with APOE4 and AD.
Collapse
Affiliation(s)
- Shaowei Wang
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Boyang Li
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Victoria Solomon
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Alfred Fonteh
- Huntington Medical Research Institutes, Pasadena, CA USA
| | | | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Helena C. Chui
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Carol Miller
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Patrick M. Sullivan
- Department of Medicine, Duke University Medical Center, Durham Veterans Health Administration Medical Center’s Geriatric Research, Education and Clinical Center, Durham, NC USA
| | - Hoau-Yan Wang
- The City University of New York School of Medicine, New York, NY USA
- Graduate School of The City University of New York, New York, USA
| | - Hussein N. Yassine
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
24
|
Otoki Y, Kato S, Nakagawa K, Harvey DJ, Jin LW, Dugger BN, Taha AY. Lipidomic Analysis of Postmortem Prefrontal Cortex Phospholipids Reveals Changes in Choline Plasmalogen Containing Docosahexaenoic Acid and Stearic Acid Between Cases With and Without Alzheimer's Disease. Neuromolecular Med 2021; 23:161-175. [PMID: 33475971 DOI: 10.1007/s12017-020-08636-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive and incurable brain disorder that has been associated with structural changes in brain phospholipids (PLs), including diacyl species and ether-linked PLs known as plasmalogens. Most studies have characterized total changes in brain PL pools (e.g., choline plasmalogens), particularly in prefrontal cortex, but detailed and quantitative information on the molecular PL species impacted by the disease is limited. In this study, we used a comprehensive mass-spectrometry method to quantify diacyl and plasmalogen species, alkyl synthetic precursors of plasmalogens, and lysophospholipid degradation products of diacyl and plasmalogen PLs, in postmortem samples of prefrontal cortex from 21 AD patients and 20 age-matched controls. Total PLs were also quantified with gas-chromatography analysis of bound fatty acids following thin layer chromatography isolation. There was a significant 27% reduction in the concentration (nmol/g wet weight) of choline plasmalogen containing stearic acid (alkenyl group) and docosahexaenoic acid in AD compared to controls. Stearic acid concentration in total PLs was reduced by 26%. Our findings suggest specific changes in PLs containing stearic acid and docosahexaenoic acid in AD prefrontal cortex, highlighting structural and turnover PL pathways that could be targeted.
Collapse
Affiliation(s)
- Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.,Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Shunji Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan.,J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California - Davis, Davis, CA, USA
| | - Lee-Way Jin
- Department of Pathology, University of California - Davis School of Medicine, Davis, CA, USA
| | - Britany N Dugger
- Department of Pathology, University of California - Davis School of Medicine, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA. .,NIH-West Coast Metabolomics Center, Genome Center, University of California - Davis, Davis, CA, USA.
| |
Collapse
|
25
|
Garić D, Dumut DC, Shah J, De Sanctis JB, Radzioch D. The role of essential fatty acids in cystic fibrosis and normalizing effect of fenretinide. Cell Mol Life Sci 2020; 77:4255-4267. [PMID: 32394023 PMCID: PMC11105061 DOI: 10.1007/s00018-020-03530-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) is the most common autosomal-recessive disease in Caucasians caused by mutations in the CF transmembrane regulator (CFTR) gene. Patients are usually diagnosed in infancy and are burdened with extensive medical treatments throughout their lives. One of the first documented biochemical defects in CF, which predates the cloning of CFTR gene for almost three decades, is an imbalance in the levels of polyunsaturated fatty acids (PUFAs). The principal hallmarks of this imbalance are increased levels of arachidonic acid and decreased levels of docosahexaenoic acids (DHA) in CF. This pro-inflammatory profile of PUFAs is an important component of sterile inflammation in CF, which is known to be detrimental, rather than protective for the patients. Despite decades of intensive research, the mechanistic basis of this phenomenon remains unclear. In this review we summarized the current knowledge on the biochemistry of PUFAs, with a focus on the metabolism of AA and DHA in CF. Finally, a synthetic retinoid called fenretinide (N-(4-hydroxy-phenyl) retinamide) was shown to be able to correct the pro-inflammatory imbalance of PUFAs in CF. Therefore, its pharmacological actions and clinical potential are briefly discussed as well.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
26
|
Hinarejos I, Machuca C, Sancho P, Espinós C. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel) 2020; 9:antiox9101020. [PMID: 33092153 PMCID: PMC7589120 DOI: 10.3390/antiox9101020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
The syndromes of neurodegeneration with brain iron accumulation (NBIA) encompass a group of invalidating and progressive rare diseases that share the abnormal accumulation of iron in the basal ganglia. The onset of NBIA disorders ranges from infancy to adulthood. Main clinical signs are related to extrapyramidal features (dystonia, parkinsonism and choreoathetosis), and neuropsychiatric abnormalities. Ten NBIA forms are widely accepted to be caused by mutations in the genes PANK2, PLA2G6, WDR45, C19ORF12, FA2H, ATP13A2, COASY, FTL1, CP, and DCAF17. Nonetheless, many patients remain without a conclusive genetic diagnosis, which shows that there must be additional as yet undiscovered NBIA genes. In line with this, isolated cases of known monogenic disorders, and also, new genetic diseases, which present with abnormal brain iron phenotypes compatible with NBIA, have been described. Several pathways are involved in NBIA syndromes: iron and lipid metabolism, mitochondrial dynamics, and autophagy. However, many neurodegenerative conditions share features such as mitochondrial dysfunction and oxidative stress, given the bioenergetics requirements of neurons. This review aims to describe the existing link between the classical ten NBIA forms by examining their connection with mitochondrial impairment as well as oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Isabel Hinarejos
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Candela Machuca
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Unit of Stem Cells Therapies in Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Department of Genetics, University of Valencia, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-963-289-680
| |
Collapse
|
27
|
Fernandez RF, Ellis JM. Acyl-CoA synthetases as regulators of brain phospholipid acyl-chain diversity. Prostaglandins Leukot Essent Fatty Acids 2020; 161:102175. [PMID: 33031993 PMCID: PMC8693597 DOI: 10.1016/j.plefa.2020.102175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Each individual cell-type is defined by its distinct morphology, phenotype, molecular and lipidomic profile. The importance of maintaining cell-specific lipidomic profiles is exemplified by the numerous diseases, disorders, and dysfunctional outcomes that occur as a direct result of altered lipidome. Therefore, the mechanisms regulating cellular lipidome diversity play a role in maintaining essential biological functions. The brain is an organ particularly rich in phospholipids, the main constituents of cellular membranes. The phospholipid acyl-chain profile of membranes in the brain is rather diverse due in part to the high degree of cellular heterogeneity. These membranes and the acyl-chain composition of their phospholipids are highly regulated, but the mechanisms that confer this tight regulation are incompletely understood. A family of enzymes called acyl-CoA synthetases (ACSs) stands at a pinnacle step allowing influence over cellular acyl-chain selection and subsequent metabolic flux. ACSs perform the initial reaction for cellular fatty acid metabolism by ligating a Coenzyme A to a fatty acid which both traps a fatty acid within a cell and activates it for metabolism. The ACS family of enzymes is large and diverse consisting of 25-26 family members that are nonredundant, each with unique distribution across and within cell types, and differential fatty acid substrate preferences. Thus, ACSs confer a critical intracellular fatty acid selecting step in a cell-type dependent manner providing acyl-CoA moieties that serve as essential precursors for phospholipid synthesis and remodeling, and therefore serve as a key regulator of cellular membrane acyl-chain compositional diversity. Here we will discuss how the contribution of individual ACSs towards brain lipid metabolism has only just begun to be elucidated and discuss the possibilities for how ACSs may differentially regulate brain lipidomic diversity.
Collapse
Affiliation(s)
- Regina F Fernandez
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States
| | - Jessica M Ellis
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States.
| |
Collapse
|
28
|
How is the acyl chain composition of phosphoinositides created and does it matter? Biochem Soc Trans 2020; 47:1291-1305. [PMID: 31657437 PMCID: PMC6824679 DOI: 10.1042/bst20190205] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
The phosphoinositide (PIPn) family of signalling phospholipids are central regulators in membrane cell biology. Their varied functions are based on the phosphorylation pattern of their inositol ring, which can be recognized by selective binding domains in their effector proteins and be modified by a series of specific PIPn kinases and phosphatases, which control their interconversion in a spatial and temporal manner. Yet, a unique feature of PIPns remains largely unexplored: their unusually uniform acyl chain composition. Indeed, while most phospholipids present a range of molecular species comprising acyl chains of diverse length and saturation, PIPns in several organisms and tissues show the predominance of a single hydrophobic backbone, which in mammals is composed of arachidonoyl and stearoyl chains. Despite evolution having favoured this specific PIPn configuration, little is known regarding the mechanisms and functions behind it. In this review, we explore the metabolic pathways that could control the acyl chain composition of PIPns as well as the potential roles of this selective enrichment. While our understanding of this phenomenon has been constrained largely by the technical limitations in the methods traditionally employed in the PIPn field, we believe that the latest developments in PIPn analysis should shed light onto this old question.
Collapse
|
29
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
30
|
Nelson AJ, Stephenson DJ, Cardona CL, Lei X, Almutairi A, White TD, Tusing YG, Park MA, Barbour SE, Chalfant CE, Ramanadham S. Macrophage polarization is linked to Ca 2+-independent phospholipase A 2β-derived lipids and cross-cell signaling in mice. J Lipid Res 2019; 61:143-158. [PMID: 31818877 DOI: 10.1194/jlr.ra119000281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)β (iPLA2β). Here, we assessed the link between iPLA2β-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2β-/-) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2β.Tg mice with selective iPLA2β overexpression in β-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2β-/- , and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2β.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2β-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that β-cell iPLA2β-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders.
Collapse
Affiliation(s)
- Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620
| | - Christopher L Cardona
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Abdulaziz Almutairi
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tayleur D White
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ying G Tusing
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Margaret A Park
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620
| | - Suzanne E Barbour
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620.,Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294 .,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
31
|
Parkinson's disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling. Proc Natl Acad Sci U S A 2019; 116:20689-20699. [PMID: 31548400 PMCID: PMC6789907 DOI: 10.1073/pnas.1902958116] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mechanisms of α-synuclein aggregation and subsequent Lewy body formation are a key pathogenesis of Parkinson’s disease (PD). PARK14-linked PD, which is caused by mutations of the iPLA2-VIA/PLA2G6 gene, exhibits a marked Lewy body pathology. iPLA2-VIA, which belongs to the phospholipase A2 family, is another causative gene of neurodegeneration with brain iron accumulation (NBIA). Here, we demonstrate that iPLA2-VIA loss results in acyl-chain shortening in phospholipids, which affects ER homeostasis and neurotransmission and promotes α-synuclein aggregation. The administration of linoleic acid or the overexpression of C19orf12, one of the NBIA-causative genes, also suppresses the acyl-chain shortening by iPLA2-VIA loss. The rescue of iPLA2-VIA phenotypes by C19orf12 provides significant molecular insight into the underlying common pathogenesis of PD and NBIA. Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.
Collapse
|
32
|
Yang B, Fritsche KL, Beversdorf DQ, Gu Z, Lee JC, Folk WR, Greenlief CM, Sun GY. Yin-Yang Mechanisms Regulating Lipid Peroxidation of Docosahexaenoic Acid and Arachidonic Acid in the Central Nervous System. Front Neurol 2019; 10:642. [PMID: 31275232 PMCID: PMC6591372 DOI: 10.3389/fneur.2019.00642] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Phospholipids in the central nervous system (CNS) are rich in polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (ARA) and docosahexaenoic acid (DHA). Besides providing physical properties to cell membranes, these PUFAs are metabolically active and undergo turnover through the “deacylation-reacylation (Land's) cycle”. Recent studies suggest a Yin-Yang mechanism for metabolism of ARA and DHA, largely due to different phospholipases A2 (PLA2s) mediating their release. ARA and DHA are substrates of cyclooxygenases and lipoxygenases resulting in an array of lipid mediators, which are pro-inflammatory and pro-resolving. The PUFAs are susceptible to peroxidation by oxygen free radicals, resulting in the production of 4-hydroxynonenal (4-HNE) from ARA and 4-hydroxyhexenal (4-HHE) from DHA. These alkenal electrophiles are reactive and capable of forming adducts with proteins, phospholipids and nucleic acids. The perceived cytotoxic and hormetic effects of these hydroxyl-alkenals have impacted cell signaling pathways, glucose metabolism and mitochondrial functions in chronic and inflammatory diseases. Due to the high levels of DHA and ARA in brain phospholipids, this review is aimed at providing information on the Yin-Yang mechanisms for regulating these PUFAs and their lipid peroxidation products in the CNS, and implications of their roles in neurological disorders.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, and the Thompson Center, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - William R Folk
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - C Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| |
Collapse
|
33
|
Zhu X, Gan-Schreier H, Otto AC, Cheng Y, Staffer S, Tuma-Kellner S, Ganzha A, Liebisch G, Chamulitrat W. iPla2β deficiency in mice fed with MCD diet does not correct the defect of phospholipid remodeling but attenuates hepatocellular injury via an inhibition of lipid uptake genes. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:677-687. [PMID: 30735854 DOI: 10.1016/j.bbalip.2019.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
Abstract
Group VIA calcium-independent phospholipase A2 (iPla2β) is among modifier genes of non-alcoholic fatty liver disease which leads to non-alcoholic steatohepatitis (NASH). Consistently, iPla2β deletion protects hepatic steatosis and obesity in genetic ob/ob and obese mice chronically fed with high-fat diet by replenishing the loss of hepatic phospholipids (PL). As mouse feeding with methionine- and choline-deficient (MCD) diet is a model of lean NASH, we tested whether iPla2β-null mice could still be protected since PL syntheses are disturbed. MCD-diet feeding of female wild-type for 5 weeks induced hepatic steatosis with a severe reduction of body and visceral fat weights concomitant with a decrease of hepatic phosphatidylcholine. These parameters were not altered in MCD-fed iPla2β-null mice. However, iPla2β deficiency attenuated MCD-induced elevation of serum transaminase activities and hepatic expression of fatty-acid translocase Cd36, fatty-acid binding protein-4, peroxisome-proliferator activated receptorγ, and HDL-uptake scavenger receptor B type 1. The reduction of lipid uptake genes was consistent with a decrease of hepatic esterified and unesterified fatty acids and cholesterol esters. On the contrary, iPla2β deficiency under MCD did not have any effects on inflammasomes and pro-inflammatory markers but exacerbated hepatic expression of myofibroblast α-smooth muscle actin and vimentin. Thus, without any rescue of PL loss, iPla2β inactivation attenuated hepatocellular injury in MCD-induced NASH with a novel mechanism of lipid uptake inhibition. Taken together, we have shown that iPla2β mediates hepatic steatosis and lipotoxicity in hepatocytes in both obese and lean NASH, but elicits exacerbated liver fibrosis in lean NASH likely by affecting other cell types.
Collapse
Affiliation(s)
- Xingya Zhu
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ann-Christin Otto
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Yuting Cheng
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Alexandra Ganzha
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
34
|
Turk J, White TD, Nelson AJ, Lei X, Ramanadham S. iPLA 2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:846-860. [PMID: 30408523 DOI: 10.1016/j.bbalip.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
The Ca2+-independent phospholipases, designated as group VI iPLA2s, also referred to as PNPLAs due to their shared homology with patatin, include the β, γ, δ, ε, ζ, and η forms of the enzyme. The iPLA2s are ubiquitously expressed, share a consensus GXSXG catalytic motif, and exhibit organelle/cell-specific localization. Among the iPLA2s, iPLA2β has received wide attention as it is recognized to be involved in membrane remodeling, cell proliferation, cell death, and signal transduction. Ongoing studies implicate participation of iPLA2β in a variety of disease processes including cancer, cardiovascular abnormalities, glaucoma, and peridonditis. This review will focus on iPLA2β and its links to male fertility, neurological disorders, metabolic disorders, and inflammation.
Collapse
Affiliation(s)
- John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tayleur D White
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
35
|
Selectivity of phospholipid hydrolysis by phospholipase A 2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:772-783. [PMID: 30010011 DOI: 10.1016/j.bbalip.2018.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.
Collapse
|
36
|
Mouchlis VD, Chen Y, McCammon JA, Dennis EA. Membrane Allostery and Unique Hydrophobic Sites Promote Enzyme Substrate Specificity. J Am Chem Soc 2018; 140:3285-3291. [PMID: 29342349 PMCID: PMC5846079 DOI: 10.1021/jacs.7b12045] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
demonstrate that lipidomics coupled with molecular dynamics
reveal unique phospholipase A2 specificity toward membrane
phospholipid substrates. We discovered unexpected headgroup and acyl-chain
specificity for three major human phospholipases A2. The
differences between each enzyme’s specificity, coupled with
molecular dynamics-based structural and binding studies, revealed
unique binding sites and interfacial surface binding moieties for
each enzyme that explain the observed specificity at a hitherto inaccessible
structural level. Surprisingly, we discovered that a unique hydrophobic
binding site for the cleaved fatty acid dominates each enzyme’s
specificity rather than its catalytic residues and polar headgroup
binding site. Molecular dynamics simulations revealed the optimal
phospholipid binding mode leading to a detailed understanding of the
preference of cytosolic phospholipase A2 for cleavage of
proinflammatory arachidonic acid, calcium-independent phospholipase
A2, which is involved in membrane remodeling for cleavage
of linoleic acid and for antibacterial secreted phospholipase A2 favoring linoleic acid, saturated fatty acids, and phosphatidylglycerol.
Collapse
Affiliation(s)
- Varnavas D Mouchlis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California , San Diego, La Jolla , California 92093-0601 , United States
| | - Yuan Chen
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California , San Diego, La Jolla , California 92093-0601 , United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California , San Diego, La Jolla , California 92093-0601 , United States
| | - Edward A Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California , San Diego, La Jolla , California 92093-0601 , United States
| |
Collapse
|
37
|
Brain docosahexaenoic acid uptake and metabolism. Mol Aspects Med 2018; 64:109-134. [PMID: 29305120 DOI: 10.1016/j.mam.2017.12.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field.
Collapse
|
38
|
Tajuddin N, Kim HY, Collins MA. PARP Inhibition Prevents Ethanol-Induced Neuroinflammatory Signaling and Neurodegeneration in Rat Adult-Age Brain Slice Cultures. J Pharmacol Exp Ther 2018; 365:117-126. [PMID: 29339456 DOI: 10.1124/jpet.117.245290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/13/2017] [Indexed: 12/24/2022] Open
Abstract
Using rat adult-age hippocampal-entorhinal cortical (HEC) slice cultures, we examined the role of poly [ADP-ribose] polymerase (PARP) in binge ethanol's brain inflammatory and neurodegenerative mechanisms. Activated by DNA strand breaks, PARP (principally PARP1 in the brain) promotes DNA repair via poly [ADP-ribose] (PAR) products, but PARP overactivation triggers regulated neuronal necrosis (e.g., parthanatos). Previously, we found that brain PARP1 levels were upregulated by neurotoxic ethanol binges in adult rats and HEC slices, and PARP inhibitor PJ34 abrogated slice neurodegeneration. Binged HEC slices also exhibited increased Ca+2-dependent phospholipase A2 (PLA2) isoenzymes (cPLA2 IVA and sPLA2 IIA) that mobilize proinflammatory ω6 arachidonic acid (ARA). We now find in 4-day-binged HEC slice cultures (100 mM ethanol) that PARP1 elevations after two overnight binges precede PAR, cPLA2, and sPLA2 enhancements by 1 day and high-mobility group box-1 (HMGB1), an ethanol-responsive alarmin that augments proinflammatory cytokines via toll-like receptor-4 (TLR4), by 2 days. After verifying that PJ34 effectively blocks PARP activity (↑PAR), we demonstrated that, like PJ34, three other PARP inhibitors-olaparib, veliparib, and 4-aminobenzamide-provided neuroprotection from ethanol. Importantly, PJ34 and olaparib also prevented ethanol's amplification of the PLA2 isoenzymes, and two PLA2 inhibitors were neuroprotective-thus coupling PARP to PLA2, with PLA2 activity promoting neurodegeneration. Also, PJ34 and olaparib blocked ethanol-induced HMGB1 elevations, linking brain PARP induction to TLR4 activation. The results provide evidence in adult brains that induction of PARP1 may mediate dual neuroinflammatory pathways (PLA2→phospholipid→ARA and HMGB1→TLR4→proinflammatory cytokines) that are complicit in binge ethanol-induced neurodegeneration.
Collapse
Affiliation(s)
- Nuzhath Tajuddin
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois (N.T.; M.A.C.) and Laboratory of Molecular Signaling, National Institute of Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland (H.-Y.K.)
| | - Hee-Yong Kim
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois (N.T.; M.A.C.) and Laboratory of Molecular Signaling, National Institute of Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland (H.-Y.K.)
| | - Michael A Collins
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois (N.T.; M.A.C.) and Laboratory of Molecular Signaling, National Institute of Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland (H.-Y.K.)
| |
Collapse
|
39
|
Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulation. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:293-305. [PMID: 29325618 DOI: 10.1016/b978-0-444-63233-3.00019-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders affecting children and adults. These rare disorders are often first suspected when increased basal ganglia iron is observed on brain magnetic resonance imaging. For the majority of NBIA disorders the genetic basis has been delineated, and clinical testing is available. The four most common NBIA disorders include pantothenate kinase-associated neurodegeneration (PKAN) due to mutations in PANK2, phospholipase A2-associated neurodegeneration caused by mutation in PLA2G6, mitochondrial membrane protein-associated neurodegeneration from mutations in C19orf12, and beta-propeller protein-associated neurodegeneration due to mutations in WDR45. The ultrarare NBIA disorders are caused by mutations in CoASY, ATP13A2, and FA2H (causing CoA synthase protein-associated neurodegeneration, Kufor-Rakeb disease, and fatty acid hydroxylase-associated neurodegeneration, respectively). Together, these genes account for disease in approximately 85% of patients diagnosed with an NBIA disorder. New NBIA genes are being recognized with increasing frequency as a result of whole-exome sequencing, which is also facilitating early ascertainment of patients whose phenotype is often nonspecific.
Collapse
Affiliation(s)
- Susan J Hayflick
- Departments of Molecular and Medical Genetics, Pediatrics and Neurology, Oregon Health and Science University, Portland, OR, United States.
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Institute of Child Health, University College London and Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Penelope Hogarth
- Departments of Molecular and Medical Genetics and Neurology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
40
|
Jiao L, Gan-Schreier H, Zhu X, Wei W, Tuma-Kellner S, Liebisch G, Stremmel W, Chamulitrat W. Ageing sensitized by iPLA 2β deficiency induces liver fibrosis and intestinal atrophy involving suppression of homeostatic genes and alteration of intestinal lipids and bile acids. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1520-1533. [PMID: 28888832 DOI: 10.1016/j.bbalip.2017.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 01/06/2023]
Abstract
Ageing is a major risk factor for various forms of liver and gastrointestinal (GI) disease and genetic background may contribute to the pathogenesis of these diseases. Group VIA phospholipase A2 or iPLA2β is a homeostatic PLA2 by playing a role in phospholipid metabolism and remodeling. Global iPLA2β-/- mice exhibit aged-dependent phenotypes with body weight loss and abnormalities in the bone and brain. We have previously reported the abnormalities in these mutant mice showing susceptibility for chemical-induced liver injury and colitis. We hypothesize that iPLA2β deficiency may sensitize with ageing for an induction of GI injury. Male wild-type and iPLA2β-/- mice at 4 and 20-22months of age were studied. Aged, but not young, iPLA2β-/-mice showed increased hepatic fibrosis and biliary ductular expansion as well as severe intestinal atrophy associated with increased apoptosis, pro-inflammation, disrupted tight junction, and reduced number of mucin-containing globlet cells. This damage was associated with decreased expression of intestinal endoplasmic stress XBP1 and its regulator HNF1α, FATP4, ACSL5, bile-acid transport genes as well as nuclear receptors LXRα and FXR. By LC/MS-MS profiling, iPLA2β deficiency in aged mice caused an increase of intestinal arachidonate-containing phospholipids concomitant with a decrease in ceramides. By the suppression of intestinal FXR/FGF-15 signaling, hepatic bile-acid synthesis gene expression was increased leading to an elevation of secondary and hydrophobic bile acids in liver, bile, and intestine. In conclusions, ageing sensitized by iPLA2β deficiency caused a decline of key intestinal homeostatic genes resulting in the development of GI disease in a gut-to-liver manner.
Collapse
Affiliation(s)
- Li Jiao
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany; Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Xingya Zhu
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Wang Wei
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany.
| |
Collapse
|
41
|
Yassine HN, Croteau E, Rawat V, Hibbeln JR, Rapoport SI, Cunnane SC, Umhau JC. DHA brain uptake and APOE4 status: a PET study with [1- 11C]-DHA. ALZHEIMERS RESEARCH & THERAPY 2017; 9:23. [PMID: 28335828 PMCID: PMC5364667 DOI: 10.1186/s13195-017-0250-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The apolipoprotein E ɛ4 (APOE4) allele is the strongest genetic risk factor identified for developing Alzheimer's disease (AD). Among brain lipids, alteration in the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) homeostasis is implicated in AD pathogenesis. APOE4 may influence both brain DHA metabolism and cognitive outcomes. METHODS Using positron emission tomography, regional incorporation coefficients (k*), rates of DHA incorporation from plasma into the brain using [1-11C]-DHA (J in), and regional cerebral blood flow using [15O]-water were measured in 22 middle-aged healthy adults (mean age 35 years, range 19-65 years). Data were partially volume error-corrected for brain atrophy. APOE4 phenotype was determined by protein expression, and unesterified DHA concentrations were quantified in plasma. An exploratory post hoc analysis of the effect of APOE4 on DHA brain kinetics was performed. RESULTS The mean global gray matter DHA incorporation coefficient, k*, was significantly higher (16%) among APOE4 carriers (n = 9) than among noncarriers (n = 13, p = 0.046). Higher DHA incorporation coefficients were observed in several brain regions, particularly in the entorhinal subregion, an area affected early in AD pathogenesis. Cerebral blood flow, unesterified plasma DHA, and whole brain DHA incorporation rate (J in) did not differ significantly between the APOE groups. CONCLUSIONS Our findings suggest an increase in the DHA incorporation coefficient in several brain regions in APOE4 carriers. These findings may contribute to understanding how APOE4 genotypes affect AD risk.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, University of Southern California, 2250 Alcazar Street, Room 210, Los Angeles, CA, 90033, USA.
| | - Etienne Croteau
- Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Varun Rawat
- Department of Medicine, University of Southern California, 2250 Alcazar Street, Room 210, Los Angeles, CA, 90033, USA
| | - Joseph R Hibbeln
- Section on Nutritional Neurosciences, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stephen C Cunnane
- Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - John C Umhau
- Section on Nutritional Neurosciences, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.,Division of Psychiatry Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
42
|
Chew WS, Shalini SM, Torta F, Wenk MR, Stohler C, Yeo JF, Herr DR, Ong WY. Role of prefrontal cortical calcium-independent phospholipase A 2 in antinociceptive effect of the norepinephrine reuptake inhibitor antidepresssant maprotiline. Neuroscience 2016; 340:91-100. [PMID: 27789386 DOI: 10.1016/j.neuroscience.2016.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Abstract
The prefrontal cortex is essential for executive functions such as decision-making and planning. There is also accumulating evidence that it is important for the modulation of pain. In this study, we investigated a possible role of prefrontal cortical calcium-independent phospholipase A2 (iPLA2) in antinociception induced by the norepinephrine reuptake inhibitor (NRI) and tetracyclic (tricyclic) antidepressant, maprotiline. Intraperitoneal injections of maprotiline increased iPLA2 mRNA and protein expression in the prefrontal cortex. This treatment also reduced grooming responses to von-Frey hair stimulation of the face after facial carrageenan injection, indicating decreased sensitivity to pain. The antinociceptive effect of maprotiline was abrogated by iPLA2 antisense oligonucleotide injection to the prefrontal cortex, indicating a role of this enzyme in antinociception. In contrast, injection of iPLA2 antisense oligonucleotide to the somatosensory cortex did not reduce the antinociceptive effect of maprotiline. Lipidomic analysis of the prefrontal cortex showed decrease in phosphatidylcholine species, but increase in lysophosphatidylcholine species, indicating increased PLA2 activity, and release of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) after maprotiline treatment. Differences in sphingomyelin/ceramide were also detected. These changes were not observed in maprotiline-treated mice that received iPLA2 antisense oligonucleotide to the prefrontal cortex. Metabolites of DHA and EPA may help to strengthen a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate a role of prefrontal cortical iPLA2 and its enzymatic products in the antinociceptive effect of maprotiline.
Collapse
Affiliation(s)
- Wee-Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| | - Suku-Maran Shalini
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore; Neurobiology and Ageing Research Programme, National University of Singapore, Singapore 119260, Singapore
| | - Federico Torta
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore 119260, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| | - Markus R Wenk
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore 119260, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 119260, Singapore
| | | | - Jin-Fei Yeo
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore 119260, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore; Neurobiology and Ageing Research Programme, National University of Singapore, Singapore 119260, Singapore.
| |
Collapse
|
43
|
Hermansson M, Hänninen S, Hokynar K, Somerharju P. The PNPLA-family phospholipases involved in glycerophospholipid homeostasis of HeLa cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1058-1065. [DOI: 10.1016/j.bbalip.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
|
44
|
Farrar MA, Teoh HL, Brammah S, Roscioli T, Cardamone M. Glial mitochondropathy in infantile neuroaxonal dystrophy: pathophysiological and therapeutic implications. Brain 2016; 139:e67. [PMID: 27497490 DOI: 10.1093/brain/aww174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Michelle A Farrar
- 1 Department of Neurology, Sydney Children's Hospital, Sydney, Australia .,2 Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
| | - Hooi Ling Teoh
- 1 Department of Neurology, Sydney Children's Hospital, Sydney, Australia.,2 Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
| | - Susan Brammah
- 3 Electron Microscope Unit, Anatomical Pathology, Concord Hospital, Concord, Australia
| | - Tony Roscioli
- 4 Kinghorn Centre for Clinical Genomics, Darlinghurst, NSW, Australia; GOLD Service, Royal North Shore Hospital, Sydney, Australia.,5 South Eastern Area Laboratory Services Haematology and Genetics Laboratory, Prince of Wales Hospital, Sydney, Australia.,6 Department of Medical Genetics, Sydney Children's Hospital, Sydney Australia
| | - Michael Cardamone
- 1 Department of Neurology, Sydney Children's Hospital, Sydney, Australia.,2 Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
45
|
Sumi-Akamaru H, Beck G, Shinzawa K, Kato S, Riku Y, Yoshida M, Fujimura H, Tsujimoto Y, Sakoda S, Mochizuki H. High expression of α-synuclein in damaged mitochondria with PLA2G6 dysfunction. Acta Neuropathol Commun 2016; 4:27. [PMID: 27030050 PMCID: PMC4815115 DOI: 10.1186/s40478-016-0298-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/10/2016] [Indexed: 01/03/2023] Open
Abstract
To clarify the role of α-synuclein (αSyn) in neuronal membrane remodeling, we analyzed the expression of αSyn in neurons with a dysfunction of PLA2G6, which is indispensable for membrane remodeling. αSyn/phosphorylated-αSyn (PαSyn) distribution and neurodegeneration were quantitatively estimated in PLA2G6-knockout (KO) mice, which demonstrate marked mitochondrial membrane degeneration. We also assessed the relationship between αSyn deposits and mitochondria in brain tissue from patients with PLA2G6-associated neurodegeneration (PLAN) and Parkinson’s disease (PD), and quantitatively examined Lewy bodies (LBs) and neurons. The expression level of αSyn was elevated in PLA2G6-knockdown cells and KO mouse neurons. Strong PαSyn expression was observed in neuronal granules in KO mice before onset of motor symptoms. The granules were mitochondrial outer membrane protein (TOM20)-positive. Ultramicroscopy revealed that PαSyn-positive granules were localized to mitochondria with degenerated inner membranes. After symptom onset, TOM20-positive granules were frequently found in ubiquitinated spheroids, where PαSyn expression was low. Axons were atrophic, but the neuronal loss was not evident in KO mice. In PLAN neurons, small PαSyn-positive inclusions with a TOM20-positive edge were frequently observed and clustered into LBs. The surfaces of most LBs were TOM20-positive in PLAN and TOM20-negative in PD brains. The high proportion of LB-bearing neurons and the preserved neuronal number in PLAN suggested long-term survival of LB-bearing neurons. Elevated expression of αSyn/PαSyn in mitochondria appears to be the early response to PLA2G6-deficiency in neurons. The strong affinity of αSyn for damaged mitochondrial membranes may promote membrane stabilization of mitochondria and neuronal survival in neurons.
Collapse
|
46
|
Deng X, Wang J, Jiao L, Utaipan T, Tuma-Kellner S, Schmitz G, Liebisch G, Stremmel W, Chamulitrat W. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:449-61. [PMID: 26873633 DOI: 10.1016/j.bbalip.2016.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/01/2016] [Accepted: 02/06/2016] [Indexed: 01/12/2023]
Abstract
PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD.
Collapse
Affiliation(s)
- Xiuling Deng
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Jiliang Wang
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Li Jiao
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Tanyarath Utaipan
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
47
|
Kinghorn KJ, Castillo-Quan JI. Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation. Rare Dis 2016; 4:e1128616. [PMID: 27141409 PMCID: PMC4838319 DOI: 10.1080/21675511.2015.1128616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/11/2015] [Accepted: 12/01/2015] [Indexed: 10/26/2022] Open
Abstract
The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H.
Collapse
Affiliation(s)
- Kerri J Kinghorn
- Institute of Healthy Ageing and Department of Genetics, Environment and Evolution, University College London, London, UK; Institute of Neurology, University College London, Queen Square, London, UK
| | - Jorge Iván Castillo-Quan
- Institute of Healthy Ageing and Department of Genetics, Environment and Evolution, University College London, London, UK; Institute of Neurology, University College London, Queen Square, London, UK
| |
Collapse
|
48
|
Kinghorn KJ, Castillo-Quan JI, Bartolome F, Angelova PR, Li L, Pope S, Cochemé HM, Khan S, Asghari S, Bhatia KP, Hardy J, Abramov AY, Partridge L. Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction. Brain 2015; 138:1801-16. [PMID: 26001724 PMCID: PMC4559908 DOI: 10.1093/brain/awv132] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/31/2022] Open
Abstract
The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in a subgroup of patients with autosomal recessive early-onset dystonia-parkinsonism. Neuropathological examination revealed widespread Lewy body pathology and the accumulation of hyperphosphorylated tau, supporting a link between PLA2G6 mutations and parkinsonian disorders. Here we show that knockout of the Drosophila homologue of the PLA2G6 gene, iPLA2-VIA, results in reduced survival, locomotor deficits and organismal hypersensitivity to oxidative stress. Furthermore, we demonstrate that loss of iPLA2-VIA function leads to a number of mitochondrial abnormalities, including mitochondrial respiratory chain dysfunction, reduced ATP synthesis and abnormal mitochondrial morphology. Moreover, we show that loss of iPLA2-VIA is strongly associated with increased lipid peroxidation levels. We confirmed our findings using cultured fibroblasts taken from two patients with mutations in the PLA2G6 gene. Similar abnormalities were seen including elevated mitochondrial lipid peroxidation and mitochondrial membrane defects, as well as raised levels of cytoplasmic and mitochondrial reactive oxygen species. Finally, we demonstrated that deuterated polyunsaturated fatty acids, which inhibit lipid peroxidation, were able to partially rescue the locomotor abnormalities seen in aged flies lacking iPLA2-VIA gene function, and restore mitochondrial membrane potential in fibroblasts from patients with PLA2G6 mutations. Taken together, our findings demonstrate that loss of normal PLA2G6 gene activity leads to lipid peroxidation, mitochondrial dysfunction and subsequent mitochondrial membrane abnormalities. Furthermore we show that the iPLA2-VIA knockout fly model provides a useful platform for the further study of PLA2G6-associated neurodegeneration.
Collapse
Affiliation(s)
- Kerri J Kinghorn
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Jorge Iván Castillo-Quan
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK 3 Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Str. 9b, D-50931, Cologne, Germany
| | - Fernando Bartolome
- 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Plamena R Angelova
- 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Li Li
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Simon Pope
- 4 Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Helena M Cochemé
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK 3 Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Str. 9b, D-50931, Cologne, Germany
| | - Shabana Khan
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Shabnam Asghari
- 5 Department of Family Medicine, Memorial University, St. John's, NL, Canada
| | - Kailash P Bhatia
- 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - John Hardy
- 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Andrey Y Abramov
- 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Linda Partridge
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK 3 Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Str. 9b, D-50931, Cologne, Germany
| |
Collapse
|
49
|
Ramanadham S, Ali T, Ashley JW, Bone RN, Hancock WD, Lei X. Calcium-independent phospholipases A2 and their roles in biological processes and diseases. J Lipid Res 2015; 56:1643-68. [PMID: 26023050 DOI: 10.1194/jlr.r058701] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/24/2022] Open
Abstract
Among the family of phospholipases A2 (PLA2s) are the Ca(2+)-independent PLA2s (iPLA2s) and they are designated group VI iPLA2s. In relation to secretory and cytosolic PLA2s, the iPLA2s are more recently described and details of their expression and roles in biological functions are rapidly emerging. The iPLA2s or patatin-like phospholipases (PNPLAs) are intracellular enzymes that do not require Ca(2+) for activity, and contain lipase (GXSXG) and nucleotide-binding (GXGXXG) consensus sequences. Though nine PNPLAs have been recognized, PNPLA8 (membrane-associated iPLA2γ) and PNPLA9 (cytosol-associated iPLA2β) are the most widely studied and understood. The iPLA2s manifest a variety of activities in addition to phospholipase, are ubiquitously expressed, and participate in a multitude of biological processes, including fat catabolism, cell differentiation, maintenance of mitochondrial integrity, phospholipid remodeling, cell proliferation, signal transduction, and cell death. As might be expected, increased or decreased expression of iPLA2s can have profound effects on the metabolic state, CNS function, cardiovascular performance, and cell survival; therefore, dysregulation of iPLA2s can be a critical factor in the development of many diseases. This review is aimed at providing a general framework of the current understanding of the iPLA2s and discussion of the potential mechanisms of action of the iPLA2s and related involved lipid mediators.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tomader Ali
- Undergraduate Research Office, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jason W Ashley
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert N Bone
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - William D Hancock
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiaoyong Lei
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
50
|
Sumi-Akamaru H, Beck G, Kato S, Mochizuki H. Neuroaxonal dystrophy inPLA2G6knockout mice. Neuropathology 2015; 35:289-302. [DOI: 10.1111/neup.12202] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 01/25/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Hisae Sumi-Akamaru
- Department of Neurology; Osaka University Graduate School of Medicine; Suita Japan
| | - Goichi Beck
- Department of Neurology; Osaka University Graduate School of Medicine; Suita Japan
| | - Shinsuke Kato
- Division of Neuropathology; Department of Brain and Neurosciences; Tottori University Faculty of Medicine; Yonago Japan
| | - Hideki Mochizuki
- Department of Neurology; Osaka University Graduate School of Medicine; Suita Japan
| |
Collapse
|