1
|
Popović T, Nenadović A, Stanković A, Martačić JD, Ranković S, Kovačević S, Nešović Ostojić J, Ilić A, Milašin J, De Luka S, Trbovich AM. Liver phospholipid fatty acid composition in response to chronic high-fat diets. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159526. [PMID: 38871115 DOI: 10.1016/j.bbalip.2024.159526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Liver phospholipid fatty acid composition depends on the dietary lipid intake and the efficiency of hepatic enzymatic activity. Our study aimed to simultaneously investigate the liver phospholipid fatty acid composition in response to chronic linseed, palm, or sunflower oil diets. We used adult female C57/BL6 mice and randomly divided them into control and three groups treated with 25 % dietary oils. Prior to treatment, we analyzed the fatty acid profiles in dietary oils and hepatocytes and, after 100 days, the fatty acid composition in the liver using gas-liquid chromatography. Linseed oil treatment elevated alpha-linolenic, eicosapentaenoic, and docosapentaenoic acids and reduced arachidonic and docosatetraenoic acids, consequently lowering the n-6/n-3 ratio. Palm oil treatment increased linoleic acid and decreased docosahexaenoic acid, contributing to an elevated n-6/n-3 ratio. Sunflower oil treatment elevated total monounsaturated fatty acids by increasing palmitoleic, oleic, and vaccenic acids. The estimated activity of Δ9 desaturase was significantly elevated in the sunflower oil group, while Δ5 desaturase was the highest, and Δ6 desaturase was the lowest after the linseed oil diet. Our findings demonstrate that chronic consumption of linseed, palm, or sunflower oil alters the distribution of liver phospholipid fatty acids differently. Sunflower oil diet elevated total monounsaturated fatty acids, proposing potential benefits for liver tissue health. Considering these outcomes, a substantial recommendation emerges to elevate linseed oil intake, recognized as the principal ALA source, thereby aiding in reducing the n-6/n-3 ratio. Moreover, modifying dietary habits to incorporate specific vegetable oils in daily consumption could substantially enhance overall health.
Collapse
Affiliation(s)
- Tamara Popović
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Aleksandra Nenadović
- Department of Pathophysiology, University of Belgrade School of Medicine, 1 Dr Subotić Street, 11000 Belgrade, Serbia.
| | - Anica Stanković
- Department of Pathophysiology, University of Belgrade School of Medicine, 1 Dr Subotić Street, 11000 Belgrade, Serbia
| | - Jasmina Debeljak Martačić
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Slavica Ranković
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Sanjin Kovačević
- Department of Pathophysiology, University of Belgrade School of Medicine, 1 Dr Subotić Street, 11000 Belgrade, Serbia
| | - Jelena Nešović Ostojić
- Department of Pathophysiology, University of Belgrade School of Medicine, 1 Dr Subotić Street, 11000 Belgrade, Serbia
| | - Andjelija Ilić
- Institute of Physics Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Jelena Milašin
- Department of Human Genetics, University of Belgrade School of Dental Medicine, 6 Dr Subotić Street, 11000 Belgrade, Serbia
| | - Silvio De Luka
- Department of Pathophysiology, University of Belgrade School of Medicine, 1 Dr Subotić Street, 11000 Belgrade, Serbia
| | - Alexander M Trbovich
- Department of Pathophysiology, University of Belgrade School of Medicine, 1 Dr Subotić Street, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Sabinari I, Horakova O, Cajka T, Kleinova V, Wieckowski MR, Rossmeisl M. Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD. Physiol Res 2024; 73:S295-S320. [PMID: 39016154 PMCID: PMC11412347 DOI: 10.33549/physiolres.935396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- I Sabinari
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
3
|
Stanca E, Spedicato F, Giudetti AM, Giannotti L, Di Chiara Stanca B, Damiano F, Siculella L. EPA and DHA Enhance CACT Promoter Activity by GABP/NRF2. Int J Mol Sci 2024; 25:9095. [PMID: 39201781 PMCID: PMC11354350 DOI: 10.3390/ijms25169095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Carnitine-acylcarnitine translocase (CACT) is a nuclear-encoded mitochondrial carrier that catalyzes the transfer of long-chain fatty acids across the inner mitochondrial membrane for β-oxidation. In this study, we conducted a structural and functional characterization of the CACT promoter to investigate the molecular mechanism underlying the transcriptional regulation of the CACT gene by n-3 PUFA, EPA and DHA. In hepatic BRL3A cells, EPA and DHA stimulate CACT mRNA and protein expression. Deletion promoter analysis using a luciferase reporter gene assay identified a n-3 PUFA response region extending from -202 to -29 bp. This region did not contain a response element for PPARα, a well-known PUFA-responsive nuclear receptor. Instead, bioinformatic analysis revealed two highly conserved GABP responsive elements within this region. Overexpression of GABPα and GABPβ subunits, but not PPARα, increased CACT promoter activity, more remarkably upon treatment with EPA and DHA. ChIP assays showed that n3-PUFA enhanced the binding of GABPα to the -202/-29 bp sequence. Furthermore, both EPA and DHA induced nuclear accumulation of GABPα. In conclusion, our findings indicate that the upregulation of CACT by n3-PUFA in hepatic cells is independent from PPARα and could be mediated by GABP activation.
Collapse
Affiliation(s)
- Eleonora Stanca
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (A.M.G.)
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (A.M.G.)
| | - Laura Giannotti
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | | | - Fabrizio Damiano
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | - Luisa Siculella
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| |
Collapse
|
4
|
Benova A, Ferencakova M, Bardova K, Funda J, Prochazka J, Spoutil F, Cajka T, Dzubanova M, Balcaen T, Kerckhofs G, Willekens W, van Lenthe GH, Charyyeva A, Alquicer G, Pecinova A, Mracek T, Horakova O, Coupeau R, Hansen MS, Rossmeisl M, Kopecky J, Tencerova M. Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity. Commun Biol 2023; 6:1043. [PMID: 37833362 PMCID: PMC10575870 DOI: 10.1038/s42003-023-05407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity adversely affects bone and fat metabolism in mice and humans. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been shown to improve glucose metabolism and bone homeostasis in obesity. However, the impact of omega-3 PUFAs on bone marrow adipose tissue (BMAT) and bone marrow stromal cell (BMSC) metabolism has not been intensively studied yet. In the present study we demonstrated that omega-3 PUFA supplementation in high fat diet (HFD + F) improved bone parameters, mechanical properties along with decreased BMAT in obese mice when compared to the HFD group. Primary BMSCs isolated from HFD + F mice showed decreased adipocyte and higher osteoblast differentiation with lower senescent phenotype along with decreased osteoclast formation suggesting improved bone marrow microenvironment promoting bone formation in mice. Thus, our study highlights the beneficial effects of omega-3 PUFA-enriched diet on bone and cellular metabolism and its potential use in the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Ferencakova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Tim Balcaen
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | - Arzuv Charyyeva
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Glenda Alquicer
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinova
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Roman Coupeau
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Morten Svarer Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense, C DK-5000, Denmark
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
5
|
Tung YT, Chen YL, Fan TY, Fong TH, Chiu WC. Effects of dietary adjustment of n-3: n-6 fatty-acid ratio to 1:2 on anti-inflammatory and insulin-signaling pathways in ovariectomized mice with high fat diet-induced obesity. Heliyon 2023; 9:e20451. [PMID: 37817999 PMCID: PMC10560786 DOI: 10.1016/j.heliyon.2023.e20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Estrogen deficiency increases the secretion of inflammatory mediators and can lead to obesity. Consequently, estrogen deficiency can cause metabolic syndrome, particularly insulin resistance during menopause. Both fish oil and perilla oil contain n-3 fatty acids, which may regulate several inflammatory cytokines. Additionally, adjusting the dietary n-3:n-6 fatty-acid ratio to 1:2 may help treat or prevent chronic diseases. Therefore, we investigated the effect of anti-inflammatory and insulin-signaling pathways, not solely in relation to the (n-3:n-6 fatty-acid ratio at 1:2), but also considering the origin of n-3 fatty acids found in fish oil and perilla oil, in a mouse model of estrogen deficiency induced by ovariectomy and obesity induced by a high-fat diet (HFD). Female C57BL/6J mice were divided into five groups: sham mice on a normal diet; ovariectomized (OVX) mice on a normal diet (OC); OVX mice on a HFD plus lard oil (OL), fish oil (OF), or perilla oil (OP). The dietary n-3:n-6 ratio in the OF and OP groups was adjusted to 1:2. The results showed OF group exhibited significantly lower abdominal adipose tissue weight, fewer liver lipid droplets, and smaller uterine adipocytes, compared with the OL group. Compared with the OL group, the OF and OP groups exhibited higher oral glucose tolerance and lower serum alanine aminotransferase activity, triacylglycerol levels, and total cholesterol levels. Hepatic JAK2, STAT3, and SOCS3 mRNA expression and p-NF-κB p65 and IL-6 levels were significantly lower in the OF and OP groups than in the OL group. Only the OF group exhibited an increase in PI3K and Akt mRNA expression, decrease in GLUT2 mRNA expression, and considerable elevation of p-Akt. Both fish and perilla oil reduced inflammatory signaling markers. However, only fish oil improved insulin signaling (PI3K, Akt, and GLUT2). Our data suggest that fish oil can alleviate insulin signaling through activating the PI3K-Akt-GLUT2 cascade signaling pathway.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Cell Therapy Center, Chang Gung Memorial Hospital, New Taipei City 333, Taiwan
| | - Tzu-Yu Fan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Cell Therapy Center, Chang Gung Memorial Hospital, New Taipei City 333, Taiwan
| | - Tsorng-Harn Fong
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
6
|
Gunasekar SK, Heebink J, Carpenter DH, Kumar A, Xie L, Zhang H, Schilling JD, Sah R. Adipose-targeted SWELL1 deletion exacerbates obesity- and age-related nonalcoholic fatty liver disease. JCI Insight 2023; 8:e154940. [PMID: 36749637 PMCID: PMC10077479 DOI: 10.1172/jci.insight.154940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Healthy expansion of adipose tissue is critical for the maintenance of metabolic health, providing an optimized reservoir for energy storage in the form of triacylglycerol-rich lipoproteins. Dysfunctional adipocytes that are unable to efficiently store lipid can result in lipodystrophy and contribute to nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. Leucine-rich repeat containing protein 8a/SWELL1 functionally encodes the volume-regulated anion channel complex in adipocytes, is induced in early obesity, and is required for normal adipocyte expansion during high-fat feeding. Adipose-specific SWELL1 ablation (Adipo KO) leads to insulin resistance and hyperglycemia during caloric excess, both of which are associated with NAFLD. Here, we show that Adipo-KO mice exhibited impaired adipose depot expansion and excess lipolysis when raised on a variety of high-fat diets, resulting in increased diacylglycerides and hepatic steatosis, thereby driving liver injury. Liver lipidomic analysis revealed increases in oleic acid-containing hepatic triacylglycerides and injurious hepatic diacylglyceride species, with reductions in hepatocyte-protective phospholipids and antiinflammatory free fatty acids. Aged Adipo-KO mice developed hepatic steatosis on a regular chow diet, and Adipo-KO male mice developed spontaneous, aggressive hepatocellular carcinomas (HCCs). These data highlight the importance of adipocyte SWELL1 for healthy adipocyte expansion to protect against NAFLD and HCC in the setting of overnutrition and with aging.
Collapse
Affiliation(s)
- Susheel K. Gunasekar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John Heebink
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Danielle H. Carpenter
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Litao Xie
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Haixia Zhang
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel D. Schilling
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Al-Moghazy M, El-Sayed HS, Abo-Elwafa GA. Co-encapsulation of probiotic bacteria, fish oil and pomegranate peel extract for enhanced white soft cheese. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Alhoshy M, Shehata AI, Habib YJ, Abdel-Latif HMR, Wang Y, Zhang Z. Nutrigenomics in crustaceans: Current status and future prospects. FISH & SHELLFISH IMMUNOLOGY 2022; 129:1-12. [PMID: 36031039 DOI: 10.1016/j.fsi.2022.08.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/23/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
In aquaculture, nutrigenomics or "nutritional genomics" is concerned with studying the impacts of nutrients and food ingredients on gene expressions and understanding the interactions that may occur between nutrients and dietary bioactive ingredients with the genome and cellular molecules of the treated aquatic animals at the molecular levels that will, in turn, mediate gene expression. This concept will throw light on or provide important information to recognize better how specific nutrients may influence the overall health status of aquatic organisms. In crustaceans, it is well known that the nutritional requirements vary among different species. Thus, studying the nutrigenomics in different crustacean species is of significant importance. Of interest, recognition of the actual mechanisms that may be associated with the effects of the nutrients on the immune responses of crustaceans will provide clear outstanding protection, build a solid immune system, and also decrease the possibilities of the emergence of infectious diseases in the culture systems. Similarly, the growth, molting, lipid metabolism, antioxidant capacity, and reproduction could be effectively enhanced by using specific nutrients. In the area of crustacean research, nutrigenomics has been rapidly grown for addressing several aspects related to the influences of nutrients on crustacean development. Several researchers have studied the relationships between several functional genes and their expression profile with several physiological functions of crustaceans. They found a close association between the effects of optimal feeding with efficient production, growth, reproduction development, and health status of several crustacean species. Moreover, they illustrated that regulation of the gene expression in individual cells by different nutrients and formulated feeds could improve the growth development and immunity-boosting of several crustacean species. The present review will spotlight on such relationships between the dietary nutrients and expression of genes linked with growth, metabolism, molting, antioxidant, reproduction, and immunity of several crustacean species. The literature included in this review article will provide references and future outlooks for the upcoming research plans. This will contribute positively for maintaining the sustainability of the sector of the crustacean industry.
Collapse
Affiliation(s)
- Mayada Alhoshy
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Akram Ismael Shehata
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Yusuf Jibril Habib
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen, 361021, PR China
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
9
|
Fish Oil Enriched n-3 Polyunsaturated Fatty Acids Improve Ketogenic Low-Carbohydrate/High-Fat Diet-Caused Dyslipidemia, Excessive Fat Accumulation, and Weight Control in Rats. Nutrients 2022; 14:nu14091796. [PMID: 35565762 PMCID: PMC9101890 DOI: 10.3390/nu14091796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Low-carbohydrate and high-fat diets have been used for body weight (BW) control, but their adverse effects on lipid profiles have raised concern. Fish oil (FO), rich in omega-3 polyunsaturated fatty acids, has profound effects on lipid metabolism. We hypothesized that FO supplementation might improve the lipid metabolic disturbance elicited by low-carbohydrate and high-fat diets. Male SD rats were randomized into normal control diet (NC), high-fat diet (HF), and low-carbohydrate/high-fat diet (LC) groups in experiment 1, and NC, LC, LC + 5% FO (5CF), and LC + 10% FO diet (10CF) groups in experiment 2. The experimental duration was 11 weeks. In the LC group, a ketotic state was induced, and food intake was decreased; however, it did not result in BW loss compared to either the HF or NC groups. In the 5CF group, rats lost significant BW. Dyslipidemia, perirenal and epididymal fat accumulation, hepatic steatosis, and increases in triglyceride and plasma leptin levels were observed in the LC group but were attenuated by FO supplementation. These findings suggest that a ketogenic low-carbohydrate/high-fat diet with no favorable effect on body weight causes visceral and liver lipid accumulation. FO supplementation not only aids in body weight control but also improves lipid metabolism in low-carbohydrate/high-fat diet-fed rats.
Collapse
|
10
|
Mitrovic M, Sistilli G, Horakova O, Rossmeisl M. Omega-3 phospholipids and obesity-associated NAFLD: Potential mechanisms and therapeutic perspectives. Eur J Clin Invest 2022; 52:e13650. [PMID: 34291454 DOI: 10.1111/eci.13650] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Prevalence of non-alcoholic fatty liver disease (NAFLD) increases in line with obesity and type 2 diabetes, and there is no approved drug therapy. Polyunsaturated fatty acids of n-3 series (omega-3) are known for their hypolipidaemic and anti-inflammatory effects. Existing clinical trials suggest varying effectiveness of triacylglycerol- or ethyl ester-bound omega-3 in the treatment of NAFLD, without affecting advanced stages such as non-alcoholic steatohepatitis. Preclinical studies suggest that the lipid class used to supplement omega-3 may determine the extent and nature of their effects on metabolism. Phospholipids of marine origin represent an alternative source of omega-3. The aim of this review is to summarise the available evidence on the use of omega-3 phospholipids, primarily in obesity-related NAFLD, and to outline perspectives of their use in the prevention/treatment of NAFLD. A PubMed literature search was conducted in May 2021. In total, 1088 articles were identified, but based on selection criteria, 38 original papers were included in the review. Selected articles describing the potential mechanisms of action of omega-3 phospholipids have also been included. Preclinical evidence clearly indicates that omega-3 phospholipids have strong antisteatotic effects in the liver, which are stronger compared to omega-3 administered as triacylglycerols. Multiple mechanisms are likely involved in the overall antisteatotic effects, involving not only the liver but also adipose tissue and the gut. Robust preclinical evidence for strong antisteatotic effects of omega-3 phospholipids in the liver should be confirmed in clinical trials. Further research is needed on the possible effects of omega-3 phospholipids on advanced NAFLD.
Collapse
Affiliation(s)
- Marko Mitrovic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriella Sistilli
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Mozaffarian D, Maki KC, Bays HE, Aguilera F, Gould G, Hegele RA, Moriarty PM, Robinson JG, Shi P, Tur JF, Lapointe JF, Aziz S, Lemieux P. Effectiveness of a Novel ω-3 Krill Oil Agent in Patients With Severe Hypertriglyceridemia: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2141898. [PMID: 34989797 PMCID: PMC8739762 DOI: 10.1001/jamanetworkopen.2021.41898] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
IMPORTANCE Intense interest exists in novel ω-3 formulations with high bioavailability to reduce blood triglyceride (TG) levels. OBJECTIVE To determine the phase 3 efficacy and safety of a naturally derived krill oil with eicosapentaenoic acid and docosahexaenoic acid as both phospholipid esters (PLs) and free fatty acids (FFAs) (ω-3-PL/FFA [CaPre]), measured by fasting TG levels and other lipid parameters in severe hypertriglyceridemia. DESIGN, SETTING, AND PARTICIPANTS This study pooled the results of 2 identical randomized, double-blind, placebo-controlled trials. TRILOGY 1 (Study of CaPre in Lowering Very High Triglycerides) enrolled participants at 71 US centers from January 23, 2018, to November 20, 2019; TRILOGY 2 enrolled participants at 93 US, Canadian, and Mexican centers from April 6, 2018, to January 9, 2020. Patients with fasting TG levels from 500 to 1500 mg/dL, with or without stable treatment with statins, fibrates, or other agents to lower cholesterol levels, were eligible to participate. INTERVENTIONS Randomization (2.5:1.0) to ω-3-PL/FFA, 4 g/d, vs placebo (cornstarch) for 26 weeks. MAIN OUTCOMES AND MEASURES The primary outcome was the mean percentage of change in TG levels at 12 weeks; persistence at 26 weeks was the key secondary outcome. Other prespecified secondary outcomes were effects on levels of non-high-density lipoprotein cholesterol (non-HDL-C), very-low-density lipoprotein cholesterol (VLDL-C), HDL-C, and low-density lipoprotein cholesterol (LDL-C); safety and tolerability; and TG level changes in prespecified subgroups. RESULTS A total of 520 patients were randomized, with a mean (SD) age of 54.9 (11.2) years (339 men [65.2%]), mean (SD) body mass index of 31.5 (5.1), and baseline mean (SD) TG level of 701 (222) mg/dL. Two hundred fifty-six patients (49.2%) were of Hispanic or Latino ethnicity; 275 (52.9%) had diabetes; and 248 (47.7%) were receiving statins. In the intention-to-treat analysis, TG levels were reduced by 26.0% (95% CI, 20.5%-31.5%) in the ω-3-PL/FFA group and 15.1% (95% CI, 6.6%-23.5%) in the placebo group at 12 weeks (mean treatment difference, -10.9% [95% CI, -20.4% to -1.5%]; P = .02), with reductions persisting at 26 weeks (mean treatment difference, -12.7% [95% CI, -23.1% to -2.4%]; P = .02). Compared with placebo, ω-3-PL/FFA had no significant effect at 12 weeks on mean treatment differences for non-HDL-C (-3.2% [95% CI, -8.0% to 1.6%]; P = .18), VLDL-C (-3.8% [95% CI, -12.2% to 4.7%]; P = .38), HDL-C (0.7% [95% CI, -3.7% to 5.1%]; P = .77), or LDL-C (4.5% [95% CI, -5.9% to 14.8%]; P = .40) levels; corresponding differences at 26 weeks were -5.8% (95% CI, -11.3% to -0.3%; P = .04) for non-HDL-C levels, -9.1% (95% CI, -21.5% to 3.2%; P = .15) for VLDL-C levels, 1.9% (95% CI, -4.8% to 8.6%; P = .57) for HDL-C levels, and 6.3% (95% CI, -12.4% to 25.0%; P = .51) for LDL-C levels. Effects on the primary end point did not vary significantly by age, sex, race and ethnicity, country, qualifying TG level, diabetes, or fibrate use but tended to be larger among patients taking statins or cholesterol absorption inhibitors at baseline (mean treatment difference, -19.5% [95% CI, -34.5% to -4.6%]; P = .08 for interaction) and with lower (less than median) baseline blood eicosapentaenoic acid plus docosahexaenoic acid levels (-19.5% [95% CI, -33.8% to -5.3%]; P = .08 for interaction). ω-3-PL/FFA was well tolerated, with a safety profile similar to that of placebo. CONCLUSIONS AND RELEVANCE This study found that ω-3 -PL/FFA, a novel krill oil-derived ω-3 formulation, reduced TG levels and was safe and well tolerated in patients with severe hypertriglyceridemia. TRIAL REGISTRATION ClinicalTrials.gov Identifiers: NCT03398005 and NCT03361501.
Collapse
Affiliation(s)
- Dariush Mozaffarian
- Tufts Friedman School of Nutrition Science and Policy, Boston, Massachusetts
| | - Kevin C. Maki
- Midwest Biomedical Research, Addison, Illinois
- Indiana University School of Public Health, Bloomington
| | | | | | - Glenn Gould
- Burke Primary Care, Morganton, North Carolina
| | | | - Patrick M. Moriarty
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City
| | - Jennifer G. Robinson
- Prevention Intervention Center, Departments of Epidemiology & Medicine, University of Iowa, Iowa City
| | - Peilin Shi
- Tufts Friedman School of Nutrition Science and Policy, Boston, Massachusetts
| | | | | | - Sarya Aziz
- Acasti Pharma Inc, Laval, Quebec, Canada
| | | |
Collapse
|
12
|
Chanted J, Panpipat W, Panya A, Phonsatta N, Cheong LZ, Chaijan M. Compositional Features and Nutritional Value of Pig Brain: Potential and Challenges as a Sustainable Source of Nutrients. Foods 2021; 10:foods10122943. [PMID: 34945494 PMCID: PMC8700557 DOI: 10.3390/foods10122943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The goal of this study was to establish the nutritional value and compositional properties of the brains of crossbred pigs (Landrace-Large white-Duroc (LLD)), in order to realize the zero-waste concept and increase the use of by-products in the sustainable meat industry. Fat (9.25% fresh weight (fw)) and protein (7.25% fw) were the principal dry matters of pig brain, followed by carbohydrate and ash. Phospholipid and cholesterol had a 3:1 ratio. Pig brain had a red tone (L* = 63.88, a* = 5.60, and b* = 15.43) and a high iron content (66 mg/kg) due to a total heme protein concentration of 1.31 g/100 g fw. The most prevalent macro-element was phosphorus (14 g/kg), followed by potassium, sodium, calcium, and magnesium. Zinc, copper, and manganese were among the other trace elements discovered. The most prevalent nitrogenous constituents were alkali-soluble protein, followed by water-soluble protein, stromal protein, salt-soluble protein, and non-protein nitrogen. Essential amino acids were abundant in pig brain (44% of total amino acids), particularly leucine (28.57 mg/g protein), threonine, valine, and lysine. The total lipid, neutral, and polar lipid fractions of the pig brain had different fatty acid compositions. The largest amount was observed in saturated fatty acids (SFA), followed by monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). Stearic acid and palmitic acid were the most common SFA. Oleic acid was the most prevalent MUFA, while docosahexaenoic acid was the most common PUFA. Thus, the pig brain can be used in food formulations as a source of nutrients.
Collapse
Affiliation(s)
- Jaruwan Chanted
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.C.); (W.P.)
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.C.); (W.P.)
| | - Atikorn Panya
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Bangkok 12120, Thailand; (A.P.); (N.P.)
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Bangkok 12120, Thailand; (A.P.); (N.P.)
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China;
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.C.); (W.P.)
- Correspondence: ; Tel.: +66-7567-2384; Fax: +66-7567-2302
| |
Collapse
|
13
|
Ramalingam L, Menikdiwela KR, Spainhour S, Eboh T, Moustaid-Moussa N. Sex Differences in Early Programming by Maternal High Fat Diet Induced-Obesity and Fish Oil Supplementation in Mice. Nutrients 2021; 13:3703. [PMID: 34835957 PMCID: PMC8625698 DOI: 10.3390/nu13113703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022] Open
Abstract
Pre-pregnancy obesity is a contributing factor for impairments in offspring metabolic health. Interventional strategies during pregnancy are a potential approach to alleviate and/or prevent obesity and obesity related metabolic alterations in the offspring. Fish oil (FO), rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) exerts metabolic health benefits. However, the role of FO in early life remains still unknown. Hence, this study objective was to determine the effect of FO supplementation in mice from pre-pregnancy through lactation, and to study the post-natal metabolic health effects in gonadal fat and liver of offspring fed high fat (HF) diet with or without FO. Female C57BL6J mice aged 4-5 weeks were fed a HF (45% fat) diet supplemented with or without FO (30 g/kg of diet) and low fat (LF; 10% fat) pre-pregnancy through lactation. After weaning, offspring (male and female) from HF or FO dams either continued the same diet (HF-HF and FO-FO) or switched to the other diet (HF-FO and FO-HF) for 13 weeks, creating four groups of treatment, and LF-LF was used as a control group. Serum, gonadal fat and liver tissue were collected at termination for metabolic analyses. Offspring of both sexes fed HF with or without fish oil gained (p < 0.05) more weight post weaning, compared to LF-LF-fed mice. All the female offspring groups supplemented with FO had reduced body weight compared to the respective male groups. Further, FO-FO supplementation in both sexes (p < 0.05) improved glucose clearance and insulin sensitivity compared to HF-HF. All FO-FO fed mice had significantly reduced adipocyte size compared to HF-HF group in both male and females. Inflammation, measured by mRNA levels of monocyte chemoattractant protein 1 (Mcp1), was reduced (p < 0.05) with FO supplementation in both sexes in gonadal fat and in the liver. Markers of fatty acid synthesis, fatty acid synthase (Fasn) showed no sex specific differences in gonadal fat and liver of mice supplemented with HF. Female mice had lower liver triglycerides than male counterparts. Supplementation of FO in mice improved metabolic health of offspring by lowering markers of lipid synthesis and inflammation.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX 74909, USA; (L.R.); (K.R.M.); (S.S.); (T.E.)
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA
| | - Kalhara R. Menikdiwela
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX 74909, USA; (L.R.); (K.R.M.); (S.S.); (T.E.)
| | - Stephani Spainhour
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX 74909, USA; (L.R.); (K.R.M.); (S.S.); (T.E.)
| | - Tochi Eboh
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX 74909, USA; (L.R.); (K.R.M.); (S.S.); (T.E.)
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX 74909, USA; (L.R.); (K.R.M.); (S.S.); (T.E.)
| |
Collapse
|
14
|
Li X, Li S, Huang L, Zhang S, Wong KC. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning. Brief Bioinform 2021; 23:6374131. [PMID: 34553763 DOI: 10.1093/bib/bbab368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies have been heavily developed to probe gene expression profiles at single-cell resolution. Deep imputation methods have been proposed to address the related computational challenges (e.g. the gene sparsity in single-cell data). In particular, the neural architectures of those deep imputation models have been proven to be critical for performance. However, deep imputation architectures are difficult to design and tune for those without rich knowledge of deep neural networks and scRNA-seq. Therefore, Surrogate-assisted Evolutionary Deep Imputation Model (SEDIM) is proposed to automatically design the architectures of deep neural networks for imputing gene expression levels in scRNA-seq data without any manual tuning. Moreover, the proposed SEDIM constructs an offline surrogate model, which can accelerate the computational efficiency of the architectural search. Comprehensive studies show that SEDIM significantly improves the imputation and clustering performance compared with other benchmark methods. In addition, we also extensively explore the performance of SEDIM in other contexts and platforms including mass cytometry and metabolic profiling in a comprehensive manner. Marker gene detection, gene ontology enrichment and pathological analysis are conducted to provide novel insights into cell-type identification and the underlying mechanisms. The source code is available at https://github.com/li-shaochuan/SEDIM.
Collapse
Affiliation(s)
- Xiangtao Li
- School of Artificial Intelligence, Jilin University, Jilin, China.,Department of Computer science, City University of Hong Kong, Hong Kong SAR
| | - Shaochuan Li
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Lei Huang
- Department of Computer science, City University of Hong Kong, Hong Kong SAR
| | - Shixiong Zhang
- Department of Computer science, City University of Hong Kong, Hong Kong SAR
| | - Ka-Chun Wong
- Department of Computer science, City University of Hong Kong, Hong Kong SAR
| |
Collapse
|
15
|
Dietary Phospholipids Enhance Growth Performance and Modulate Cold Tolerance in Meagre ( Argyrosomus regius) Juveniles. Animals (Basel) 2021; 11:ani11092750. [PMID: 34573716 PMCID: PMC8471189 DOI: 10.3390/ani11092750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Meagre is a target species to diversify marine aquaculture in Europe due to its high growth rates and an excellent nutritional profile. Nevertheless, this species is highly sensitive to low temperatures. The objective of this study was to evaluate the effect of dietary phospholipid (PL) levels on growth and cold tolerance. Animals fed with a PL-enriched diet grew faster and significantly reduced the risk of death and increased the lethal doses 50 and 90 without modifying the average temperature at death. Regarding lipid profiles, the cold challenge promoted a general fatty acid accumulation in the liver that was attenuated in fish fed with the PL-enriched diet preventing the negative effect of a fatty liver. Abstract Meagre (Argyrosomus regius) is a fast-growing species currently produced in aquaculture. This species is highly sensitive to low environmental temperatures which results in high mortality events during production cycles. In this study, the effects of dietary phospholipids (PLs) on growth and cold tolerance were evaluated. For this purpose, control (CTRL) and PL-enriched diets (three-fold higher levels than CTRL) were supplied to meagre juveniles (12.9 ± 2.5 g) for 60 days, and growth was determined using a longitudinal approach. Weight gaining and SGR reduction were significantly different between dietary treatments. Animals fed with the PL-enriched diet were 4.1% heavier and grew 3.2% faster than those fed with the CTRL diet. Survival was higher than 98% in both groups. After finishing the growth trial, animals were submitted to two cold challenges and cold tolerance was evaluated as temperature at death (Tdeath), risk to death and lethal doses (LD) 50 and 90 using the cumulative degree cooling hours 6 h (CD6H). Tdeath ranged between 7.54 and 7.91 °C without statistical differences between dietary treatments. However, risk to death was significantly smaller (0.91-fold lower) and LD50 and LD90 were higher in animals fed with the PL-enriched than those supplied the CTRL diet. To assess the fatty acid (FA) composition of liver and brain in animals fed both diets after a cold challenge, FA profiles were determined in juveniles maintained at 14 °C and challenged at 7 °C. FA amounts increased in the liver of animals challenged at 7 °C. In contrast, several FAs reduced their levels in the PL-enriched diet with respect to CTRL indicating that these animals were able to mobilize efficiently lipids from this organ mitigating the negative effects of lipid accumulation during the cold challenge. In brain, the PL-enriched diet increased DHA level during the cold shock indicating a role in maintaining of brain functions. These results open a new research line that could improve the cold tolerance of meagre through dietary supplementation before winter.
Collapse
|
16
|
Chavanelle V, Otero YF, Le Joubioux F, Ripoche D, Bargetto M, Vluggens A, Montaurier C, Pickering G, Ducheix G, Dubray C, Dualé C, Boulliau S, Macian N, Marceau G, Sapin V, Dutheil F, Guigas B, Maugard T, Boisseau N, Cazaubiel M, Peltier SL, Sirvent P. Effects of Totum-63 on glucose homeostasis and postprandial glycemia: a translational study. Am J Physiol Endocrinol Metab 2021; 320:E1119-E1137. [PMID: 33938234 PMCID: PMC8285600 DOI: 10.1152/ajpendo.00629.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Global prevalence of type 2 diabetes (T2D) is rising and may affect 700 million people by 2045. Totum-63 is a polyphenol-rich natural composition developed to reduce the risk of T2D. We first investigated the effects of Totum-63 supplementation in high-fat diet (HFD)-fed mice for up to 16 wk and thereafter assessed its safety and efficacy (2.5 g or 5 g per day) in 14 overweight men [mean age 51.5 yr, body mass index (BMI) 27.6 kg·m-2] for 4 wk. In HFD-fed mice, Totum-63 reduced body weight and fat mass gain, whereas lean mass was unchanged. Moreover, fecal energy excretion was higher in Totum-63-supplemented mice, suggesting a reduction of calorie absorption in the digestive tract. In the gut, metagenomic analyses of fecal microbiota revealed a partial restoration of HFD-induced microbial imbalance, as shown by principal coordinate analysis of microbiota composition. HFD-induced increase in HOMA-IR score was delayed in supplemented mice, and insulin response to an oral glucose tolerance test was significantly reduced, suggesting that Totum-63 may prevent HFD-related impairments in glucose homeostasis. Interestingly, these improvements could be linked to restored insulin signaling in subcutaneous adipose tissue and soleus muscle. In the liver, HFD-induced steatosis was reduced by 40% (as shown by triglyceride content). In the subsequent study in men, Totum-63 (5 g·day-1) improved glucose and insulin responses to a high-carbohydrate breakfast test (84% kcal carbohydrates). It was well tolerated, with no clinically significant adverse events reported. Collectively, these data suggest that Totum-63 could improve glucose homeostasis in both HFD-fed mice and overweight individuals, presumably through a multitargeted action on different metabolic organs.NEW & NOTEWORTHY Totum-63 is a novel polyphenol-rich natural composition developed to reduce the risk of T2D. Totum-63 showed beneficial effects on glucose homeostasis in HFD-fed mice, presumably through a multitargeted action on different metabolic organs. Totum-63 was well tolerated in humans and improved postprandial glucose and insulin responses to a high-carbohydrate breakfast test.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gisèle Pickering
- CHU Clermont-Ferrand, Centre d'Investigation Clinique, Clermont-Ferrand, France
- INSERM, Clermont-Ferrand, France
| | - Gilles Ducheix
- CHU Clermont-Ferrand, Centre d'Investigation Clinique, Clermont-Ferrand, France
- INSERM, Clermont-Ferrand, France
| | - Claude Dubray
- CHU Clermont-Ferrand, Centre d'Investigation Clinique, Clermont-Ferrand, France
- INSERM, Clermont-Ferrand, France
| | - Christian Dualé
- CHU Clermont-Ferrand, Centre d'Investigation Clinique, Clermont-Ferrand, France
- INSERM, Clermont-Ferrand, France
| | - Sylvia Boulliau
- CHU Clermont-Ferrand, Centre d'Investigation Clinique, Clermont-Ferrand, France
- INSERM, Clermont-Ferrand, France
| | - Nicolas Macian
- CHU Clermont-Ferrand, Centre d'Investigation Clinique, Clermont-Ferrand, France
- INSERM, Clermont-Ferrand, France
| | - Geoffroy Marceau
- Biochemistry and Molecular Genetics Department, University Hospital, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetics Department, University Hospital, Clermont-Ferrand, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Clermont-Ferrand, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thierry Maugard
- La Rochelle Université - LIENSs UMR CNRS 7266, La Rochelle, France
| | | | | | | | | |
Collapse
|
17
|
Characterization of the Plasma Lipidome in Dairy Cattle Transitioning from Gestation to Lactation: Identifying Novel Biomarkers of Metabolic Impairment. Metabolites 2021; 11:metabo11050290. [PMID: 33946522 PMCID: PMC8147189 DOI: 10.3390/metabo11050290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
The discovery of novel biomarkers for peripartal diseases in dairy cows can improve our understanding of normal and dysfunctional metabolism, and lead to nutritional interventions that improve health and milk production. Our objectives were to characterize the plasma lipidome and identify metabolites associated with common markers of metabolic disease in peripartal dairy cattle. Multiparous Holstein cows (n = 27) were enrolled 30 d prior to expected parturition. Blood and liver samples were routinely collected through to d 14 postpartum. Untargeted lipidomics was performed using quadrupole time-of-flight mass spectrometry. Based on postpartum measures, cows were categorized into low or high total fatty acid area under the curve (total FAAUC; d 1-14 postpartum; 4915 ± 1369 vs. 12,501 ± 2761 (μmol/L × 14 d); n = 18), β-hydroxybutyrate AUC (BHBAAUC; d 1-14 postpartum; 4583 ± 459 vs. 7901 ± 1206 (μmol/L × 14 d); n = 18), or liver lipid content (d 5 and 14 postpartum; 5 ± 1 vs. 12 ± 2% of wet weight; n = 18). Cows displayed decreases in plasma triacylglycerols and monoalkyl-diacylglycerols, and the majority of phospholipids reached a nadir at parturition. Phosphatidylcholines (PC) 32:3, 35:5, and 37:5 were specific for high total FAAUC, PC 31:3, 32:3, 35:5, and 37:5 were specific for high BHBAAUC, and PC 31:2, 31:3, and 32:3 were specific for high liver lipid content. PC 32:3 was specific for elevated total FA, BHBA, and liver lipid content. Lipidomics revealed a dynamic peripartal lipidome remodeling, and lipid markers associated with elevated total FA, BHBA, and liver lipid content. The effectiveness of nutrition to impact these lipid biomarkers for preventing excess lipolysis and fatty liver warrants evaluation.
Collapse
|
18
|
Bustamante-Marin XM, Merlino JL, Devericks E, Carson MS, Hursting SD, Stewart DA. Mechanistic Targets and Nutritionally Relevant Intervention Strategies to Break Obesity-Breast Cancer Links. Front Endocrinol (Lausanne) 2021; 12:632284. [PMID: 33815289 PMCID: PMC8011316 DOI: 10.3389/fendo.2021.632284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
The worldwide prevalence of overweight and obesity has tripled since 1975. In the United States, the percentage of adults who are obese exceeds 42.5%. Individuals with obesity often display multiple metabolic perturbations, such as insulin resistance and persistent inflammation, which can suppress the immune system. These alterations in homeostatic mechanisms underlie the clinical parameters of metabolic syndrome, an established risk factor for many cancers, including breast cancer. Within the growth-promoting, proinflammatory milieu of the obese state, crosstalk between adipocytes, immune cells and breast epithelial cells occurs via obesity-associated hormones, angiogenic factors, cytokines, and other mediators that can enhance breast cancer risk and/or progression. This review synthesizes evidence on the biological mechanisms underlying obesity-breast cancer links, with emphasis on emerging mechanism-based interventions in the context of nutrition, using modifiable elements of diet alone or paired with physical activity, to reduce the burden of obesity on breast cancer.
Collapse
Affiliation(s)
| | - Jenna L. Merlino
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Emily Devericks
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Meredith S. Carson
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| |
Collapse
|
19
|
Li J, Zhang H, Dong Y, Wang X, Wang G. Omega-3FAs Can Inhibit the Inflammation and Insulin Resistance of Adipose Tissue Caused by HHcy Induced Lipids Profile Changing in Mice. Front Physiol 2021; 12:628122. [PMID: 33643070 PMCID: PMC7907609 DOI: 10.3389/fphys.2021.628122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The adipose Nod-like receptor protein 3 (NLRP3) inflammasome initiates insulin resistance; however, the mechanism of inflammasome activation in adipose tissue remains elusive. In this study, homocysteine (Hcy) was found to participate in insulin resistance via a NLRP3 inflammasome-related process. Hcy-induced activation of NLRP3 inflammasomes were observed in adipose tissue during the generation of insulin resistance in vivo. This animal model suggests that diets high in omega-3 fatty acids alter serum and adipose lipid profiles, and in this way, omega-3 fatty acids may reduce adipose tissue inflammation and attenuate insulin resistance.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yongqiang Dong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Peking University, Beijing, China
| | - Xian Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Peking University, Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Sistilli G, Kalendova V, Cajka T, Irodenko I, Bardova K, Oseeva M, Zacek P, Kroupova P, Horakova O, Lackner K, Gastaldelli A, Kuda O, Kopecky J, Rossmeisl M. Krill Oil Supplementation Reduces Exacerbated Hepatic Steatosis Induced by Thermoneutral Housing in Mice with Diet-Induced Obesity. Nutrients 2021; 13:437. [PMID: 33572810 PMCID: PMC7912192 DOI: 10.3390/nu13020437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Preclinical evidence suggests that n-3 fatty acids EPA and DHA (Omega-3) supplemented as phospholipids (PLs) may be more effective than triacylglycerols (TAGs) in reducing hepatic steatosis. To further test the ability of Omega-3 PLs to alleviate liver steatosis, we used a model of exacerbated non-alcoholic fatty liver disease based on high-fat feeding at thermoneutral temperature. Male C57BL/6N mice were fed for 24 weeks a lard-based diet given either alone (LHF) or supplemented with Omega-3 (30 mg/g diet) as PLs (krill oil; ω3PL) or TAGs (Epax 3000TG concentrate; ω3TG), which had a similar total content of EPA and DHA and their ratio. Substantial levels of TAG accumulation (~250 mg/g) but relatively low inflammation/fibrosis levels were achieved in the livers of control LHF mice. Liver steatosis was reduced by >40% in the ω3PL but not ω3TG group, and plasma ALT levels were markedly reduced (by 68%) in ω3PL mice as well. Krill oil administration also improved hepatic insulin sensitivity, and its effects were associated with high plasma adiponectin levels (150% of LHF mice) along with superior bioavailability of EPA, increased content of alkaloids stachydrine and trigonelline, suppression of lipogenic gene expression, and decreased diacylglycerol levels in the liver. This study reveals that in addition to Omega-3 PLs, other constituents of krill oil, such as alkaloids, may contribute to its strong antisteatotic effects in the liver.
Collapse
Affiliation(s)
- Gabriella Sistilli
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic
| | - Veronika Kalendova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic
| | - Tomas Cajka
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Illaria Irodenko
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic
| | - Kristina Bardova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Marina Oseeva
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic
| | - Petr Zacek
- Proteomics Core Facility, Faculty of Science, Charles University, Division BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic;
| | - Petra Kroupova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Olga Horakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Karoline Lackner
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria;
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56100 Pisa, Italy;
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Jan Kopecky
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Martin Rossmeisl
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| |
Collapse
|
21
|
Bardova K, Funda J, Pohl R, Cajka T, Hensler M, Kuda O, Janovska P, Adamcova K, Irodenko I, Lenkova L, Zouhar P, Horakova O, Flachs P, Rossmeisl M, Colca J, Kopecky J. Additive Effects of Omega-3 Fatty Acids and Thiazolidinediones in Mice Fed a High-Fat Diet: Triacylglycerol/Fatty Acid Cycling in Adipose Tissue. Nutrients 2020; 12:nu12123737. [PMID: 33291653 PMCID: PMC7761951 DOI: 10.3390/nu12123737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Long-chain n-3 polyunsaturated fatty acids (Omega-3) and anti-diabetic drugs thiazolidinediones (TZDs) exhibit additive effects in counteraction of dietary obesity and associated metabolic dysfunctions in mice. The underlying mechanisms need to be clarified. Here, we aimed to learn whether the futile cycle based on the hydrolysis of triacylglycerol and re-esterification of fatty acids (TAG/FA cycling) in white adipose tissue (WAT) could be involved. We compared Omega-3 (30 mg/g diet) and two different TZDs—pioglitazone (50 mg/g diet) and a second-generation TZD, MSDC-0602K (330 mg/g diet)—regarding their effects in C57BL/6N mice fed an obesogenic high-fat (HF) diet for 8 weeks. The diet was supplemented or not by the tested compound alone or with the two TZDs combined individually with Omega-3. Activity of TAG/FA cycle in WAT was suppressed by the obesogenic HF diet. Additive effects in partial rescue of TAG/FA cycling in WAT were observed with both combined interventions, with a stronger effect of Omega-3 and MSDC-0602K. Our results (i) supported the role of TAG/FA cycling in WAT in the beneficial additive effects of Omega-3 and TZDs on metabolism of diet-induced obese mice, and (ii) showed differential modulation of WAT gene expression and metabolism by the two TZDs, depending also on Omega-3.
Collapse
Affiliation(s)
- Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Radek Pohl
- NMR Spectroscopy, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemmingovo Namesti 542/2, 160 00 Prague 6, Czech Republic;
| | - Tomas Cajka
- Laboratory of Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic;
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Michal Hensler
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic;
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Lucie Lenkova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Pavel Flachs
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Jerry Colca
- Cirius Therapeutics, Kalamazoo, MI 490 07, USA;
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
- Correspondence: ; Tel.: +420-296442554; Fax: +420-296442599
| |
Collapse
|
22
|
Fjære E, Myrmel LS, Dybing K, Kuda O, Holbech Jensen BA, Rossmeisl M, Frøyland L, Kristiansen K, Madsen L. The Anti-Obesogenic Effect of Lean Fish Species is Influenced by the Fatty Acid Composition in Fish Fillets. Nutrients 2020; 12:E3038. [PMID: 33022997 PMCID: PMC7600456 DOI: 10.3390/nu12103038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
Fillets from marine fish species contain n-3 polyunsaturated fatty acids (PUFAs) in the form of phospholipids (PLs). To investigate the importance of PL-bound n-3 PUFAs in mediating the anti-obesogenic effect of lean seafood, we compared the anti-obesogenic properties of fillets from cod with fillets from pangasius, a fresh water fish with a very low content of PL-bound n-3 PUFAs. We prepared high-fat/high-protein diets using chicken, cod and pangasius as the protein sources, and fed male C57BL/6J mice these diets for 12 weeks. Mice fed the diet containing cod gained less adipose tissue mass and had smaller white adipocytes than mice fed the chicken-containing diet, whereas mice fed the pangasius-containing diet were in between mice fed the chicken-containing diet and mice fed the cod-containing diet. Of note, mice fed the pangasius-containing diet exhibited reduced glucose tolerance compared to mice fed the cod-containing diet. Although the sum of marine n-3 PUFAs comprised less than 2% of the total fatty acids in the cod-containing diet, this was sufficient to significantly increase the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA) in mouse tissues and enhance production of n-3 PUFA-derived lipid mediators as compared with mice fed pangasius or chicken.
Collapse
Affiliation(s)
- Even Fjære
- Institute of Marine Research, NO-5817 Bergen, Norway; (E.F.); (L.S.M.); (K.D.); (L.F.)
| | - Lene Secher Myrmel
- Institute of Marine Research, NO-5817 Bergen, Norway; (E.F.); (L.S.M.); (K.D.); (L.F.)
| | - Karianne Dybing
- Institute of Marine Research, NO-5817 Bergen, Norway; (E.F.); (L.S.M.); (K.D.); (L.F.)
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague 4, Czech Republic; (O.K.); (M.R.)
| | - Benjamin Anderschou Holbech Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague 4, Czech Republic; (O.K.); (M.R.)
| | - Livar Frøyland
- Institute of Marine Research, NO-5817 Bergen, Norway; (E.F.); (L.S.M.); (K.D.); (L.F.)
| | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Lise Madsen
- Institute of Marine Research, NO-5817 Bergen, Norway; (E.F.); (L.S.M.); (K.D.); (L.F.)
| |
Collapse
|
23
|
Kroupova P, van Schothorst EM, Keijer J, Bunschoten A, Vodicka M, Irodenko I, Oseeva M, Zacek P, Kopecky J, Rossmeisl M, Horakova O. Omega-3 Phospholipids from Krill Oil Enhance Intestinal Fatty Acid Oxidation More Effectively than Omega-3 Triacylglycerols in High-Fat Diet-Fed Obese Mice. Nutrients 2020; 12:nu12072037. [PMID: 32660007 PMCID: PMC7400938 DOI: 10.3390/nu12072037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Antisteatotic effects of omega-3 fatty acids (Omega-3) in obese rodents seem to vary depending on the lipid form of their administration. Whether these effects could reflect changes in intestinal metabolism is unknown. Here, we compare Omega-3-containing phospholipids (krill oil; ω3PL-H) and triacylglycerols (ω3TG) in terms of their effects on morphology, gene expression and fatty acid (FA) oxidation in the small intestine. Male C57BL/6N mice were fed for 8 weeks with a high-fat diet (HFD) alone or supplemented with 30 mg/g diet of ω3TG or ω3PL-H. Omega-3 index, reflecting the bioavailability of Omega-3, reached 12.5% and 7.5% in the ω3PL-H and ω3TG groups, respectively. Compared to HFD mice, ω3PL-H but not ω3TG animals had lower body weight gain (−40%), mesenteric adipose tissue (−43%), and hepatic lipid content (−64%). The highest number and expression level of regulated intestinal genes was observed in ω3PL-H mice. The expression of FA ω-oxidation genes was enhanced in both Omega-3-supplemented groups, but gene expression within the FA β-oxidation pathway and functional palmitate oxidation in the proximal ileum was significantly increased only in ω3PL-H mice. In conclusion, enhanced intestinal FA oxidation could contribute to the strong antisteatotic effects of Omega-3 when administered as phospholipids to dietary obese mice.
Collapse
Affiliation(s)
- Petra Kroupova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Evert M. van Schothorst
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Annelies Bunschoten
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Martin Vodicka
- Laboratory of Epithelial Physiology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Marina Oseeva
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Petr Zacek
- Proteomics Core Facility, Faculty of Science, Charles University, Division BIOCEV, 25250 Vestec, Czech Republic;
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
- Correspondence: (M.R.); (O.H.); Tel.: +420-296443706 (M.R. & O.H.); Fax: +420 296442599 (M.R. & O.H.)
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
- Correspondence: (M.R.); (O.H.); Tel.: +420-296443706 (M.R. & O.H.); Fax: +420 296442599 (M.R. & O.H.)
| |
Collapse
|
24
|
Zhang S, Li X, Lin Q, Lin J, Wong KC. Uncovering the key dimensions of high-throughput biomolecular data using deep learning. Nucleic Acids Res 2020; 48:e56. [PMID: 32232416 PMCID: PMC7261195 DOI: 10.1093/nar/gkaa191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
Recent advances in high-throughput single-cell RNA-seq have enabled us to measure thousands of gene expression levels at single-cell resolution. However, the transcriptomic profiles are high-dimensional and sparse in nature. To address it, a deep learning framework based on auto-encoder, termed DeepAE, is proposed to elucidate high-dimensional transcriptomic profiling data in an encode-decode manner. Comparative experiments were conducted on nine transcriptomic profiling datasets to compare DeepAE with four benchmark methods. The results demonstrate that the proposed DeepAE outperforms the benchmark methods with robust performance on uncovering the key dimensions of single-cell RNA-seq data. In addition, we also investigate the performance of DeepAE in other contexts and platforms such as mass cytometry and metabolic profiling in a comprehensive manner. Gene ontology enrichment and pathology analysis are conducted to reveal the mechanisms behind the robust performance of DeepAE by uncovering its key dimensions.
Collapse
Affiliation(s)
- Shixiong Zhang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Jilin 132000, China
| | - Qiuzhen Lin
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiecong Lin
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| |
Collapse
|
25
|
Zhang Y, Wu G, Zhang Y, Wang X, Jin Q, Zhang H. Advances in exogenous docosahexaenoic acid-containing phospholipids: Sources, positional isomerism, biological activities, and advantages. Compr Rev Food Sci Food Saf 2020; 19:1420-1448. [PMID: 33337094 DOI: 10.1111/1541-4337.12543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/05/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
In recent years, docosahexaenoic acid-containing phospholipids (DHA-PLs) have attracted much attention because of theirs unique health benefits. Compared with other forms of docosahexaenoic acid (DHA), DHA-PLs possess superior biological effects (e.g., anticancer, lipid metabolism regulation, visual development, and brain and nervous system biochemical reactions), more intricate metabolism mechanisms, and a stronger attraction to consumer. The production of DHA-PLs is hampered by several challenges associated with the limited content of DHA-PLs in natural sources, incomplete utilization of by-products, few microorganisms for DHA-PLs production, high cost, and complex process of artificial preparation of DHA-PLs. In this article, the sources, biological activities, and commercial applications of DHA-PLs were summarized, with intensive discussions on advantages of DHA-PLs over DHA, isomerism of DHA in phospholipids (PLs), and brain health. The excellent biological characteristics of DHA-PLs are primarily concerned with DHA and PLs. The metabolic fate of different DHA-PLs varies from the position of DHA in PLs to polar groups in DHA-PLs. Overall, well understanding of DHA-PLs about their sources and characteristics is critical to accelerate the production of DHA-PLs, economically enhance the value of DHA-PLs, and improve the applicability of DHA-PLs and the acceptance of consumers.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yanjie Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
26
|
Pahlavani M, Ramalingam L, Miller EK, Davis H, Scoggin S, Moustaid-Moussa N. Discordant Dose-Dependent Metabolic Effects of Eicosapentanoic Acid in Diet-Induced Obese Mice. Nutrients 2020; 12:E1342. [PMID: 32397139 PMCID: PMC7284763 DOI: 10.3390/nu12051342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a widespread epidemic that increases the risk for several metabolic diseases. Despite several beneficial health effects of eicosapentaenoic acid (C20:5n-3, EPA), previous studies have used very high doses of EPA. In this study, dose-dependent effects of EPA on metabolic outcomes were determined in diet-induced obese mice. We used B6 male mice, fed high-fat diet (HF, 45% kcal fat) or HF diet supplemented with 9, 18, and 36 g/kg of EPA-enriched fish oil for 14 weeks. We conducted metabolic phenotyping during the feeding period, and harvested tissues and blood at termination. Only mice fed 36 g/kg of EPA significantly (p < 0.05) lowered body weight, fat content and epididymal fat pad weight, compared to HF. Both 18 and 36 g/kg doses of EPA significantly increased glucose clearance and insulin sensitivity, compared to HF or 9 g/kg of EPA. Locomotor activity was significantly increased with both 18 and 36 g/kg doses of EPA. Interestingly, all doses of EPA compared to HF, significantly increased energy expenditure and oxygen consumption and significantly reduced serum insulin, leptin, and triglycerides levels. These results demonstrate weight- and adiposity-independent metabolic benefits of EPA, at doses comparable to those currently used to treat hypertriglyceridemia.
Collapse
Affiliation(s)
| | | | | | | | | | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (M.P.); (L.R.); (E.K.M.); (H.D.); (S.S.)
| |
Collapse
|
27
|
Rossmeisl M, Pavlisova J, Bardova K, Kalendova V, Buresova J, Kuda O, Kroupova P, Stankova B, Tvrzicka E, Fiserova E, Horakova O, Kopecky J. Increased plasma levels of palmitoleic acid may contribute to beneficial effects of Krill oil on glucose homeostasis in dietary obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158732. [PMID: 32371092 DOI: 10.1016/j.bbalip.2020.158732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 01/17/2023]
Abstract
Omega-3 polyunsatuarted fatty acids (PUFA) are associated with hypolipidemic and anti-inflammatory effects. However, omega-3 PUFA, usually administered as triacylglycerols or ethyl esters, could also compromise glucose metabolism, especially in obese type 2 diabetics. Phospholipids represent an alternative source of omega-3 PUFA, but their impact on glucose homeostasis is poorly explored. Male C57BL/6N mice were fed for 8 weeks a corn oil-based high-fat diet (cHF) alone or cHF-based diets containing eicosapentaenoic acid and docosahexaenoic acid (~3%; wt/wt), admixed either as a concentrate of re-esterified triacylglycerols (ω3TG) or Krill oil containing mainly phospholipids (ω3PL). Lean controls were fed a low-fat diet. Insulin sensitivity (hyperinsulinemic-euglycemic clamps), parameters of glucose homeostasis, adipose tissue function, and plasma levels of N-acylethanolamines, monoacylglycerols and fatty acids were determined. Feeding cHF induced obesity and worsened (~4.3-fold) insulin sensitivity as determined by clamp. Insulin sensitivity was almost preserved in ω3PL but not ω3TG mice. Compared with cHF mice, endogenous glucose production was reduced to 47%, whereas whole-body and muscle glycogen synthesis increased ~3-fold in ω3PL mice that showed improved adipose tissue function and elevated plasma adiponectin levels. Besides eicosapentaenoic and docosapentaenoic acids, principal component analysis of plasma fatty acids identified palmitoleic acid (C16:1n-7) as the most discriminating analyte whose levels were increased in ω3PL mice and correlated negatively with the degree of cHF-induced glucose intolerance. While palmitoleic acid from Krill oil may help improve glucose homeostasis, our findings provide a general rationale for using omega-3 PUFA-containing phospholipids as nutritional supplements with potent insulin-sensitizing effects.
Collapse
Affiliation(s)
- Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Jana Pavlisova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Veronika Kalendova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Jana Buresova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Ondrej Kuda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Petra Kroupova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Barbora Stankova
- 4th Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Eva Tvrzicka
- 4th Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Eva Fiserova
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
28
|
Vovkun TV, Yanchuk PI, Shtanova LY, Veselsky SP, Filimonova NB, Komarov IV. Corvitin modulates the content of lipids in rat liver bile. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.06.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Hu S, Wang J, Yan X, Yang H, Li S, Jiang W, Liu Y. Egg oil from Portunus trituberculatus alleviates insulin resistance through activation of insulin signaling in mice. Appl Physiol Nutr Metab 2019; 44:1081-1088. [PMID: 30802144 DOI: 10.1139/apnm-2018-0718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Marine bioactive lipids have been utilized to overcome insulin resistance. However, oil from swimming crab has never been studied. Here, we analyzed the constituents of egg oil from Portunus trituberculatus (Pt-egg oil) and investigated its protective effects against insulin resistance in mice on a high-fat diet. The results showed that Pt-egg oil contained 52.05% phospholipids, 8.61% free fatty acids (especially eicosapentaenoic acid and docosahexaenoic acid), 32.38% triglyceride, 4.79% total cholesterol, and ditissimus astaxanthin. Animal experiments showed that Pt-egg oil significantly mitigated insulin resistance and was associated with reductions in blood glucose, insulin, glucose tolerance, insulin tolerance, serum lipids, and hepatic glycogen. Pt-egg oil activated the phosphatidylinositol 3-hydroxy kinase (PI3K)/protein kinase B (Akt)/glucose transporter 4 pathway in skeletal muscle both at the transcriptional level and at the translational level. Pt-egg oil also promoted hepatic glycogen synthesis through activation of the PI3K/Akt/glycogen synthase kinase-3 beta pathway. These indicate that Pt-egg oil can be used as an alternative to marine bioactive lipids to improve insulin resistance.
Collapse
Affiliation(s)
- Shiwei Hu
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Xiaojun Yan
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Shijie Li
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| | - Wei Jiang
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| | - Yu Liu
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| |
Collapse
|
30
|
Lu X, Zhong R, Sun H, Zheng B, Chen L, Miao S, Liang P. Inhibition Effect of Triglyceride Accumulation by Large Yellow Croaker Roe DHA-PC in HepG2 Cells. Mar Drugs 2019; 17:md17090485. [PMID: 31438457 PMCID: PMC6780795 DOI: 10.3390/md17090485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
The phospholipids (PLs) of large yellow croaker (Pseudosciaena crocea, P. crocea) roe contain a high level of polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), which can lower blood lipid levels. In previous research, PLs of P. crocea roe were found able to regulate the accumulation of triglycerides. However, none of these involve the function of DHA-containing phosphatidylcholine (DHA-PC), which is the main component of PLs derived from P. crocea roe. The function by which DHA-PC from P. crocea roe exerts its effects has not yet been clarified. Herein, we used purified DHA-PC and oleic acid (OA) induced HepG2 cells to establish a high-fat model, and the cell activity and intracellular lipid levels were then measured. The mRNA and protein expression of Fatty Acid Synthase (FAS), Carnitine Palmitoyl Transferase 1A (CPT1A) and Peroxisome Proliferator-Activated Receptor α (PPARα) in HepG2 cells were detected via RT-qPCR and western blot as well. It was found that DHA-PC can significantly regulate triglyceride accumulation in HepG2 cells, the effect of which was related to the activation of PPARα receptor activity, upregulation of CPT1A, and downregulation of FAS expression. These results can improve the understanding of the biofunction of hyperlipidemia mediated by DHA-PC from P. crocea roe, as well as provide a theoretical basis for the utilization of DHA-PC from P. crocea roe as a functional food additive.
Collapse
Affiliation(s)
- Xiaodan Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - He Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Miao
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
31
|
Zhang TT, Xu J, Wang YM, Xue CH. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res 2019; 75:100997. [DOI: 10.1016/j.plipres.2019.100997] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
32
|
Clugston RD, Gao MA, Blaner WS. The Hepatic Lipidome: A Gateway to Understanding the Pathogenes is of Alcohol-Induced Fatty Liver. Curr Mol Pharmacol 2019; 10:195-206. [PMID: 26278391 DOI: 10.2174/1874467208666150817111419] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/30/2022]
Abstract
Chronic alcohol consumption can lead to the development of alcoholic fatty liver disease. The underlying pathogenic mechanisms however, have not been fully elucidated. Here, we review the current state of the art regarding the application of lipidomics to study alcohol's effect on hepatic lipids. It is clear that alcohol has a profound effect on the hepatic lipidome, with documented changes in the major lipid categories (i.e. fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids and prenol lipids). Alcohol's most striking effect is the marked change in the hepatic fatty acyl pool. This effect includes increased levels of 18-carbon fatty acyl chains incorporated into multiple lipid species, as well as a general shift toward increased unsaturation of fatty acyl moieties. In addition to our literature review, we also make several recommendations to consider when designing lipidomic studies into alcohol's effects. These recommendations include integration of lipidomic data with other measures of lipid metabolism, inclusion of multiple experimental time points, and presentation of quantitative data. We believe rigorous analysis of the hepatic lipidome can yield new insight into the pathogenesis of alcohol-induced fatty liver. While the existing literature has been largely descriptive, the field is poised to apply lipidomics to yield a new level of understanding on alcohol's effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Robin D Clugston
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7. Canada
| | - Madeleine A Gao
- Department of Medicine, Columbia University, New York, NY, 10032. United States
| | - William S Blaner
- Department of Medicine, Columbia University, New York, NY, 10032. United States
| |
Collapse
|
33
|
Fauske KR, Bernhard A, Fjære E, Myrmel LS, Frøyland L, Kristiansen K, Liaset B, Madsen L. Effects of Frozen Storage on Phospholipid Content in Atlantic Cod Fillets and the Influence on Diet-Induced Obesity in Mice. Nutrients 2018; 10:nu10060695. [PMID: 29848963 PMCID: PMC6024676 DOI: 10.3390/nu10060695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
A large fraction of the n-3 polyunsaturated fatty acids (PUFAs) in cod fillet is present in the form of phospholipids (PLs). Freezing initiates hydrolysis of the PLs present in the fillet. Here, we compared the effects of Western diets based on frozen cod, fresh cod or pork with a diet based on casein in male C57BL/6J mice fed for 12 weeks at thermoneutrality. Diets based on fresh cod contained more PL-bound n-3 PUFAs (3.12 mg/g diet) than diets based on frozen cod (1.9 mg/g diet). Mice fed diets containing pork and fresh cod, but not frozen cod, gained more body and fat mass than casein-fed mice. Additionally, the bioavailability of n-3 PUFAs present in the cod fillets was not influenced by storage conditions. In a second experiment, diets with pork as the protein source were supplemented with n-3 PUFAs in the form of PL or triacylglycerol (TAG) to match the levels of the diet containing fresh cod. Adding PL-bound, but not TAG-bound, n-3 PUFAs, to the pork-based diet increased body and fat mass gain. Thus, supplementation with PL-bound n-3 PUFAs did not protect against, but rather promoted, obesity development in mice fed a pork-based diet.
Collapse
Affiliation(s)
- Kristin Røen Fauske
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Annette Bernhard
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
| | - Even Fjære
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
| | | | - Livar Frøyland
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | | | - Bjørn Liaset
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
| | - Lise Madsen
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
34
|
Rossmeisl M, Pavlisova J, Janovska P, Kuda O, Bardova K, Hansikova J, Svobodova M, Oseeva M, Veleba J, Kopecky J, Zacek P, Fiserova E, Pelikanova T, Kopecky J. Differential modulation of white adipose tissue endocannabinoid levels by n-3 fatty acids in obese mice and type 2 diabetic patients. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:712-725. [PMID: 29626526 DOI: 10.1016/j.bbalip.2018.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022]
Abstract
n-3 polyunsaturated fatty acids (n-3 PUFA) might regulate metabolism by lowering endocannabinoid levels. We examined time-dependent changes in adipose tissue levels of endocannabinoids as well as in parameters of glucose homeostasis induced by n-3 PUFA in dietary-obese mice, and compared these results with the effect of n-3 PUFA intervention in type 2 diabetic (T2DM) subjects. Male C57BL/6J mice were fed for 8, 16 or 24 weeks a high-fat diet alone (cHF) or supplemented with n-3 PUFA (cHF + F). Overweight/obese, T2DM patients on metformin therapy were given for 24 weeks corn oil (Placebo; 5 g/day) or n-3 PUFA concentrate as above (Omega-3; 5 g/day). Endocannabinoids were measured by liquid chromatography-tandem mass-spectrometry. Compared to cHF-fed controls, the cHF + F mice consistently reduced 2-arachidonoylglycerol (up to ~2-fold at week 24) and anandamide (~2-fold) in adipose tissue, while the levels of endocannabinoid-related anti-inflammatory molecules N-eicosapentaenoyl ethanolamine (EPEA) and N-docosahexaenoyl ethanolamine (DHEA) increased more than ~10-fold and ~8-fold, respectively. At week 24, the cHF + F mice improved glucose tolerance and fasting blood glucose, the latter being positively correlated with adipose 2-arachidonoylglycerol levels only in obese cHF-fed controls, like fasting insulin and HOMA-IR. In the patients, n-3 PUFA failed to reduce 2-arachidonoylglycerol and anandamide levels in adipose tissue and serum, but they increased both adipose tissue and serum levels of EPEA and DHEA. In conclusion, the inability of n-3 PUFA to reduce adipose tissue and serum levels of classical endocannabinoids might contribute to a lack of beneficial effects of these lipids on glucose homeostasis in T2DM patients.
Collapse
Affiliation(s)
- Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jana Pavlisova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristina Bardova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Hansikova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Svobodova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marina Oseeva
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Veleba
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Kopecky
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Zacek
- Proteomics Core Facility, Faculty of Science, Charles University, Division BIOCEV, Vestec, Czech Republic
| | - Eva Fiserova
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University, Olomouc, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Terezie Pelikanova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
35
|
Abstract
The current paradigms of prevention and treatment are unable to curb obesity rates, which indicates the need to explore alternative therapeutic approaches. Obesity leads to several damages to the body and is an important risk factor for a number of other chronic diseases. Furthermore, despite the first alterations in obesity being observed and reported in peripheral tissues, studies indicate that obesity can also cause brain damage. Obesity leads to a chronic low-grade inflammatory state, and the therapeutic manipulation of inflammation can be explored. In this context, the use of n-3 PUFA (especially in the form of fish oil, rich in EPA and DHA) may be an interesting strategy, as this substance is known by its anti-inflammatory effect and numerous benefits to the body, such as reduction of TAG, cardiac arrhythmias, blood pressure and platelet aggregation, and has shown potential to help treat obesity. Thereby, the aim of this narrative review was to summarise the literature related to n-3 PUFA use in obesity treatment. First, the review provides a brief description of the obesity pathophysiology, including alterations that occur in peripheral tissues and at the central nervous system. In the sequence, we describe what are n-3 PUFA, their sources and their general effects. Finally, we explore the main topic linking obesity and n-3 PUFA. Animal and human studies were included and alterations on the whole organism were described (peripheral tissues and brain).
Collapse
|
36
|
Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman SM, Robert-McComb J, Moustaid-Moussa N. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J Nutr Biochem 2018; 58:1-16. [PMID: 29621669 DOI: 10.1016/j.jnutbio.2018.02.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/24/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Strategies to reduce obesity have become public health priorities as the prevalence of obesity has risen in the United States and around the world. While the anti-inflammatory and hypotriglyceridemic properties of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) are well known, their antiobesity effects and efficacy against metabolic syndrome, especially in humans, are still under debate. In animal models, evidence consistently suggests a role for n-3 PUFAs in reducing fat mass, particularly in the retroperitoneal and epididymal regions. In humans, however, published research suggests that though n-3 PUFAs may not aid weight loss, they may attenuate further weight gain and could be useful in the diet or as a supplement to help maintain weight loss. Proposed mechanisms by which n-3 PUFAs may work to improve body composition and counteract obesity-related metabolic changes include modulating lipid metabolism; regulating adipokines, such as adiponectin and leptin; alleviating adipose tissue inflammation; promoting adipogenesis and altering epigenetic mechanisms.
Collapse
Affiliation(s)
- Kembra Albracht-Schulte
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA; Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Shaikh Mizanoor Rahman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Jacalyn Robert-McComb
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
37
|
Lin SM, Li FJ, Yuangsoi B, Doolgindachbaporn S. Effect of dietary phospholipid levels on growth, lipid metabolism, and antioxidative status of juvenile hybrid snakehead (Channa argus×Channa maculata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:401-410. [PMID: 29147969 DOI: 10.1007/s10695-017-0443-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/07/2017] [Indexed: 05/27/2023]
Abstract
The study was conducted to evaluate the effect of dietary phospholipids (PLs) on growth, lipid metabolism, and antioxidative status of hybrid snakehead (Channa argus × Channa maculata). Five isonitrogenous and isolipidic diets with graded levels of PLs (8.5, 19.3, 30.7, 41.5, and 50.8 g kg-1) were fed to triplicate groups of juveniles (initial body weight 12.6 ± 0.23 g) for 8 weeks. Results showed that dietary PL supplementation significantly improved growth of juveniles. The final body weight (FBW) and specific growth rate (SGR) significantly increased with dietary PLs increasing from 8.5 to 41.5 g kg-1 (P < 0.05). Fish fed with the diet containing 8.5 g kg-1 PLs showed higher feed conversion ratio (FCR) compared to the other treatments (P < 0.05). Survival rate (SR) was not affected by dietary PL levels (P > 0.05). Liver lipid contents, serum triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) contents significantly decreased with the increasing levels of dietary PLs (P < 0.05). However, serum total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) contents and HDL-C/TC and HDL-C/LDL-C value significantly increased with increasing dietary PL levels (P < 0.05). The catalase (CAT), superoxide dismutase (SOD), and carnitine palmitoyl transferase I (CPT-1) activities in the liver significantly increased with incremental dietary PL level (P < 0.05), while the liver malondialdehyde (MDA) contents and fatty acid synthase (FAS) activity significantly reduced (P < 0.05). No significant difference was observed in the glutathione peroxidase (GPx) activity among dietary treatments (P > 0.05).These results confirmed that dietary PL supplementation has beneficial effects on growth performance and antioxidant capacity of juvenile hybrid snakehead. Dietary PLs might reduce lipid deposition in the liver of juvenile hybrid snakehead.
Collapse
Affiliation(s)
- Shi-Mei Lin
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, People's Republic of China.
- Department of Fisheries, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Fa-Jian Li
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, People's Republic of China
| | - Bundit Yuangsoi
- Department of Fisheries, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | |
Collapse
|
38
|
Kuda O, Rossmeisl M, Kopecky J. Omega-3 fatty acids and adipose tissue biology. Mol Aspects Med 2018; 64:147-160. [PMID: 29329795 DOI: 10.1016/j.mam.2018.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
This review provides evidence for the importance of white and brown adipose tissue (i.e. WAT and BAT) function for the maintenance of healthy metabolic phenotype and its preservation in response to omega-3 polyunsaturated fatty acids (omega-3 PUFA), namely in the context of diseased states linked to aberrant accumulation of body fat, systemic low-grade inflammation, dyslipidemia and insulin resistance. More specifically, the review deals with (i) the concept of immunometabolism, i.e. how adipose-resident immune cells and adipocytes affect each other and define the immune-metabolic interface; and (ii) the characteristic features of "healthy adipocytes" in WAT, which are relatively small fat cells endowed with a high capacity for mitochondrial oxidative phosphorylation, triacylglycerol/fatty acid (TAG/FA) cycling and de novo lipogenesis (DNL). The intrinsic metabolic features of WAT and their flexible regulations, reflecting the presence of "healthy adipocytes", provide beneficial local and systemic effects, including (i) protection against in situ endoplasmic reticulum stress and related inflammatory response during activation of adipocyte lipolysis; (ii) prevention of ectopic fat accumulation and dyslipidemia caused by increased hepatic VLDL synthesis, as well as prevention of lipotoxic damage of insulin signaling in extra-adipose tissues; and also (iii) increased synthesis of anti-inflammatory and insulin-sensitizing lipid mediators with pro-resolving properties, including the branched fatty acid esters of hydroxy fatty acids (FAHFAs), also depending on the activity of DNL in WAT. The "healthy adipocytes" phenotype can be induced in WAT of obese mice in response to various stimuli including dietary omega-3 PUFA, especially when combined with moderate calorie restriction, and possibly also with other life style (e.g. physical activity) or pharmacological (e.g. thiazolidinediones) interventions. While omega-3 PUFA could exert beneficial systemic effects by improving immunometabolism of WAT without a concomitant induction of BAT, it is currently not clear whether the metabolic effects of the combined intervention using omega-3 PUFA and calorie restriction or thiazolidinediones depend also on the activation of BAT function and/or the induction of brite/beige adipocytes in WAT. It remains to be established why omega-3 PUFA intervention in type 2 diabetic subjects does not improve insulin sensitivity and glucose homeostasis despite inducing various anti-inflammatory mediators in WAT, including the recently discovered docosahexaenoyl esters of hydroxy linoleic acid, the lipokines from the FAHFA family, as well as several endocannabinoid-related anti-inflammatory lipids. To answer the question whether and to which extent omega-3 PUFA supplementation could promote the formation of "healthy adipocytes" in WAT of human subjects, namely in the obese insulin-resistant patients, represents a challenging task that is of great importance for the treatment of some serious non-communicable diseases.
Collapse
Affiliation(s)
- Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska, 1083 Prague 4, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska, 1083 Prague 4, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska, 1083 Prague 4, Czech Republic.
| |
Collapse
|
39
|
Sun D, Zhang L, Chen H, Feng R, Cao P, Liu Y. Effects of Antarctic krill oil on lipid and glucose metabolism in C57BL/6J mice fed with high fat diet. Lipids Health Dis 2017; 16:218. [PMID: 29157255 PMCID: PMC5697064 DOI: 10.1186/s12944-017-0601-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/30/2017] [Indexed: 12/04/2022] Open
Abstract
Background Obesity and other metabolic diseases have become epidemic which greatly affect human health. Diets with healthy nutrition are efficient means to prevent this epidemic occurrence. Novel food resources and process technology were needed for these purpose. In this study, Antarctic krill oil (KO) extracted from a dry krill by a procedure of hot pump dehydration in combined with freezing-drying was used to investigate health effect in animals including the growth, lipid and glucose metabolism. Methods C57BL/6J mice were fed with a lard based high fat (HF) diet and substituted with KO for a period of 12 weeks in comparison with low fat normal control (NC) diet. Mice body weight and food consumption were recorded. Serum lipid metabolism - of C57BL/6J mice serum was measured. A glucose tolerance tests (GTTs) and pathology analysis of mice were performed at the end of the experiment. Results The KO fed mice had less body weight gain, less fat accumulation in tissue such as adipose and liver. Dyslipidemia induced by high fat diet was partially improved by KO feeding with significant reduction of serum low density lipoprotein-cholesterol (LDL-C) content. Furthermore, KO feeding also improved glucose metabolism in C57BL/6J mice including a glucose tolerance of about 22% vs. 32% of AUC (area under the curve) for KO vs HF diet and the fast blood glucose level of 8.5 mmol/L, 9.8 mmol/L and 9.3 mmol/L for NC, HF and KO diet groups, respectively. In addition, KO feeding also reduced oxidative damage in liver with a decrease of malondialdehyde (MDA) content and increase of superoxide dismutase (SOD) content. Conclusion This study provided evidence of the beneficial effects of KO on animal health from the processed technology, particularly on lipid and glucose metabolism. This study confirmed that as the Antarctic krill was extracted with a procedure of efficient energy, it might make it possible for Krill oil to be available for food industry.
Collapse
Affiliation(s)
- Dewei Sun
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liang Zhang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Hongjian Chen
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Rong Feng
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Peirang Cao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
40
|
Henkel J, Coleman CD, Schraplau A, Jöhrens K, Weber D, Castro JP, Hugo M, Schulz TJ, Krämer S, Schürmann A, Püschel GP. Induction of steatohepatitis (NASH) with insulin resistance in wildtype B6 mice by a western-type diet containing soybean oil and cholesterol. Mol Med 2017; 23:70-82. [PMID: 28332698 PMCID: PMC5429885 DOI: 10.2119/molmed.2016.00203] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/15/2017] [Indexed: 12/27/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are hepatic manifestations of the metabolic syndrome. Many currently used animal models of NAFLD/NASH lack clinical features of either NASH or metabolic syndrome such as hepatic inflammation and fibrosis (e.g. high-fat diets) or overweight and insulin resistance (e.g. methionine-choline-deficient diets) or they are based on monogenetic defects (e.g. ob/ob mice). In the current study, a western-type diet containing soybean oil with high n 6-PUFA and 0.75% cholesterol (SOD+Cho) induced steatosis, inflammation and fibrosis accompanied by hepatic lipid peroxidation and oxidative stress in livers of C57BL/6-mice which in addition showed increased weight gain and insulin resistance, thus displaying a phenotype closely resembling all clinical features of NASH in patients with metabolic syndrome. In striking contrast a soybean oil-containing western-type diet without cholesterol (SOD) induced only mild steatosis but neither hepatic inflammation nor fibrosis, weight gain or insulin resistance. Another high-fat diet mainly consisting of lard and supplemented with fructose in drinking water (LAD+Fru) resulted in more prominent weight gain, insulin resistance and hepatic steatosis than SOD+Cho but livers were devoid of inflammation and fibrosis. Although both LAD+Fru- and SOD+Cho-fed animals had high plasma cholesterol, liver cholesterol was elevated only in SOD+Cho animals. Cholesterol induced expression of chemotactic and inflammatory cytokines in cultured Kupffer cells and rendered hepatocytes more susceptible to apoptosis. Summarizing, dietary cholesterol in SOD+Cho diet may trigger hepatic inflammation and fibrosis. SOD+Cho-fed animals may be a useful disease model displaying many clinical features of patients with the metabolic syndrome and NASH.
Collapse
Affiliation(s)
- Janin Henkel
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Charles Dominic Coleman
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Anne Schraplau
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Korinna Jöhrens
- Institute of Pathology, Charité University Hospital Berlin, Berlin, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
- NutriAct – Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - José Pedro Castro
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
- Faculty of Medicine, Department of Biomedicine, University of Porto, Porto, Portugal
- Aging and Stress Group, Institute for Innovation and Health Research, Porto, Portugal
| | - Martin Hugo
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Tim Julius Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Stephanie Krämer
- Animal Facility, German Institute of Human Nutrition, Nuthetal, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Gerhard Paul Püschel
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
41
|
Indrio F, Martini S, Francavilla R, Corvaglia L, Cristofori F, Mastrolia SA, Neu J, Rautava S, Russo Spena G, Raimondi F, Loverro G. Epigenetic Matters: The Link between Early Nutrition, Microbiome, and Long-term Health Development. Front Pediatr 2017; 5:178. [PMID: 28879172 PMCID: PMC5572264 DOI: 10.3389/fped.2017.00178] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Epigenetic modifications are among the most important mechanisms by which environmental factors can influence early cellular differentiation and create new phenotypic traits during pregnancy and within the neonatal period without altering the deoxyribonucleic acid sequence. A number of antenatal and postnatal factors, such as maternal and neonatal nutrition, pollutant exposure, and the composition of microbiota, contribute to the establishment of epigenetic changes that can not only modulate the individual adaptation to the environment but also have an influence on lifelong health and disease by modifying inflammatory molecular pathways and the immune response. Postnatal intestinal colonization, in turn determined by maternal flora, mode of delivery, early skin-to-skin contact and neonatal diet, leads to specific epigenetic signatures that can affect the barrier properties of gut mucosa and their protective role against later insults, thus potentially predisposing to the development of late-onset inflammatory diseases. The aim of this review is to outline the epigenetic mechanisms of programming and development acting within early-life stages and to examine in detail the role of maternal and neonatal nutrition, microbiota composition, and other environmental factors in determining epigenetic changes and their short- and long-term effects.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Pediatrics, Aldo Moro University, Bari, Italy
| | - Silvia Martini
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Luigi Corvaglia
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Salvatore Andrea Mastrolia
- Department of Biomedical Science and Human Oncology, Section of Obstetrics and Gynecology, Aldo Moro University, Bari, Italy
| | - Josef Neu
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Samuli Rautava
- Department of Pediatrics, University of Turku, Turku University Hospital, Turku, Finland
| | - Giovanna Russo Spena
- Division of Neonatology, Department of Translational Medical Sciences, University "Federico II" di Napoli, Naples, Italy
| | - Francesco Raimondi
- Division of Neonatology, Department of Translational Medical Sciences, University "Federico II" di Napoli, Naples, Italy
| | - Giuseppe Loverro
- Department of Biomedical Science and Human Oncology, Section of Obstetrics and Gynecology, Aldo Moro University, Bari, Italy
| |
Collapse
|
42
|
Ermilova I, Lyubartsev AP. Extension of the Slipids Force Field to Polyunsaturated Lipids. J Phys Chem B 2016; 120:12826-12842. [DOI: 10.1021/acs.jpcb.6b05422] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Inna Ermilova
- Department of Materials and
Environmental Chemistry, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Alexander P. Lyubartsev
- Department of Materials and
Environmental Chemistry, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
43
|
Pauter AM, Trattner S, Gonzalez-Bengtsson A, Talamonti E, Asadi A, Dethlefsen O, Jacobsson A. Both maternal and offspring Elovl2 genotypes determine systemic DHA levels in perinatal mice. J Lipid Res 2016; 58:111-123. [PMID: 27864326 DOI: 10.1194/jlr.m070862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/08/2016] [Indexed: 01/09/2023] Open
Abstract
The molecular details relevant to dietary supplementation of the omega-3 fatty acid DHA in mothers as well as in their offspring are not clear. The PUFA elongase, elongation of very long-chain fatty acid (ELOVL)2, is a critical enzyme in the formation of DHA in mammals. In order to address the question regarding the origin of DHA during perinatal life, we have used DHA-deficient Elovl2-ablated mice as a model system to analyze the maternal impact on the DHA level in their offspring of various genotypes. Elovl2-/- mothers maintained on control diet had significantly lower systemic levels of DHA compared with the Elovl2+/- and Elovl2+/+ mothers. Dietary DHA administration during the pregnancy and lactation periods led to increased DHA accretion in maternal tissues and serum of all genotypes. The proportion of DHA in the liver and serum of the Elovl2-/- offspring was significantly lower than in the Elovl2+/+ offspring. Remarkably, the DHA level in the Elovl2+/- offspring nursed by DHA-free-fed Elovl2-/- mothers was almost as high as in +/+ pups delivered by +/+ mothers, suggesting that endogenous synthesis in the offspring can compensate for maternal DHA deficiency. Maternal DHA supplementation had a strong impact on offspring hepatic gene expression, especially of the fatty acid transporter, Mfsd2a, suggesting a dynamic interplay between DHA synthesis and DHA uptake in the control of systemic levels in the offspring.
Collapse
Affiliation(s)
- Anna M Pauter
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE-10691 Sweden
| | - Sofia Trattner
- Department of Food Science, Swedish University of Agricultural Science, Uppsala, SE-75007 Sweden
| | - Amanda Gonzalez-Bengtsson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE-10691 Sweden
| | - Emanuela Talamonti
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE-10691 Sweden
| | - Abolfazl Asadi
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE-10691 Sweden
| | - Olga Dethlefsen
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, SE-10691 Sweden
| | - Anders Jacobsson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE-10691 Sweden
| |
Collapse
|
44
|
Davis JE, Cain J, Small C, Hales DB. Therapeutic effect of flax-based diets on fatty liver in aged laying hens. Poult Sci 2016; 95:2624-2632. [PMID: 27143762 PMCID: PMC5049100 DOI: 10.3382/ps/pew160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/04/2015] [Accepted: 03/22/2016] [Indexed: 12/13/2022] Open
Abstract
This study examined the ability of flax-based ingredients to attenuate nonalcoholic fatty liver disease ( NAFLD: ) in aged laying hens-a novel and more physiologically relevant model of human disease. Our results showed only hens supplemented with whole flaxseed ( WFX: ) reduced steatosis and hepatocellular ballooning. Serum AST was also reduced in hens provided WFX and defatted flaxseed meal ( DFM: ). Hepatic ω-3 PUFA enrichment was improved with supplementation of WFX, DFM, and flaxseed oil ( FXO: ). However, this effect was more evident in the WFX group. In contrast, transcript abundance of genes linked to NAFLD were predominantly modified with FXO supplementation. Taken together, our data indicate a potential synergistic relationship between the fatty acid and lignan content in flaxseed which attenuated the progression of NAFLD in aged laying hens. Although more research is necessary, these findings demonstrate the potential use of whole flaxseed for the treatment and prevention of NAFLD in humans.
Collapse
Affiliation(s)
- J E Davis
- Department of Animal Science, Food & Nutrition, Southern Illinois University, Carbondale, IL 62901
| | - J Cain
- Department of Biology, Aurora University, Aurora, IL 60506
| | - C Small
- Department of Physiology, Southern Illinois University, School of Medicine, Carbondale, IL 62901
| | - D B Hales
- Department of Physiology, Southern Illinois University, School of Medicine, Carbondale, IL 62901
| |
Collapse
|
45
|
Cai Z, Feng S, Xiang X, Mai K, Ai Q. Effects of dietary phospholipid on lipase activity, antioxidant capacity and lipid metabolism-related gene expression in large yellow croaker larvae (Larimichthys crocea). Comp Biochem Physiol B Biochem Mol Biol 2016; 201:46-52. [DOI: 10.1016/j.cbpb.2016.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/31/2022]
|
46
|
Liang P, Cheng X, Xu Y, Cheng W, Chen L. Determination of Fatty Acid Composition and Phospholipid Molecular Species of Large Yellow Croaker (Pseudosciaena crocea) Roe from China. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2016. [DOI: 10.1080/10498850.2016.1210269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xinwei Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yanping Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
47
|
Pavlisova J, Bardova K, Stankova B, Tvrzicka E, Kopecky J, Rossmeisl M. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition. Biochimie 2016; 124:150-162. [DOI: 10.1016/j.biochi.2015.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/02/2015] [Indexed: 02/09/2023]
|
48
|
Lipids and bariatric procedures Part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA) 1. Surg Obes Relat Dis 2016; 12:468-495. [DOI: 10.1016/j.soard.2016.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/17/2022]
|
49
|
Caesar R, Nygren H, Orešič M, Bäckhed F. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism. J Lipid Res 2016; 57:474-81. [PMID: 26783361 DOI: 10.1194/jlr.m065847] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Heli Nygren
- VTT Technical Research Centre of Finland, FI-02044 VTT, Espoo, Finland
| | - Matej Orešič
- VTT Technical Research Centre of Finland, FI-02044 VTT, Espoo, Finland Steno Diabetes Center A/S, DK-2820 Gentofte, Denmark
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
50
|
Eratte D, McKnight S, Gengenbach TR, Dowling K, Barrow CJ, Adhikari BP. Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.037] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|