1
|
Asimakidou E, Saipuljumri EN, Lo CH, Zeng J. Role of metabolic dysfunction and inflammation along the liver-brain axis in animal models with obesity-induced neurodegeneration. Neural Regen Res 2025; 20:1069-1076. [PMID: 38989938 PMCID: PMC11438328 DOI: 10.4103/nrr.nrr-d-23-01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/26/2024] [Indexed: 07/12/2024] Open
Abstract
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship. Peripheral lipid accumulation, particularly in the liver, initiates a cascade of inflammatory processes that extend to the brain, influencing critical metabolic regulatory regions. Ceramide and palmitate, key lipid components, along with lipid transporters lipocalin-2 and apolipoprotein E, contribute to neuroinflammation by disrupting blood-brain barrier integrity and promoting gliosis. Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation. Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models. However, translating these findings to clinical practice requires further investigation into human subjects. In conclusion, metabolic dysfunction, peripheral inflammation, and insulin resistance are integral to neuroinflammation and neurodegeneration. Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eka Norfaishanty Saipuljumri
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Tezcan ME, Ekici F, Ugur C, Can Ü, Karatoprak S, Sağlıyan GA, Uçak EF, Güleç A, Erbasan V, Sen B, Simsek F, Atas AE. Do specific myelin autoantibodies and increased cerebral dopamine neurotrophic factor in the context of inflammation predict the diagnosis of attention deficit hyperactivity disorder in medication-free children? Brain Behav Immun 2025; 124:125-136. [PMID: 39617068 DOI: 10.1016/j.bbi.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND The aim of this study was to investigate the serum levels of anti-myelin basic protein (anti-MBP), anti-myelin oligodentrocyte glycoprotein (anti-MOG), myelin-associated glycoprotein (MAG), high-sensitivity C-reactive protein (hs-CRP), cerebral dopamine neurotrophic factor (CDNF), cerebellin-1, and reelin and their relationships with clinical severity and irritability behaviours in children with attention deficit (AD) hyperactivity disorder (ADHD) and typically developing (TD) healthy controls. METHODS In this study, 141 children with ADHD between the ages of 8 and 14 years who were medication-free and 135 TD healthy controls were included. The serum levels of anti-MBP, anti-MOG, MAG, CDNF, hs-CRP, cerebellin, and reelin were measured using enzyme-linked immunosorbent assay kits. The Turgay Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)-based Screening and Evaluation Scale for Attention Deficit and Disruptive Behavior Disorders-Parent Form (TDSM-IV-O) and the affective reactivity index (ARI) scale were used to assess clinical severity and irritability behaviours in the children. RESULTS The MAG, CDNF, hs-CRP, reelin, and cerebellin levels were significantly higher in the ADHD group than in the control group, but no significant differences in anti-MBP and anti-MOG levels were found between the groups. Compared with the controls, the patients with ADHD showed significantly higher scores on the ARI self- and parent-report scales. The reelin, hs-CRP, and MAG levels were significantly associated with the TDSM-IV-O AD scores, AD and oppositional defiant (OD) disorder scores and hyperactivity, and OD and conduct disorder scores, respectively. Hs-CRP was significantly associated with anti-MBP and cerebellin levels. In an analysis of covariance, the results were unchanged even after controlling for potential confounders such as age, body mass index, and sex. CONCLUSION This study demonstrates that MAG, CDNF, hs-CRP, reelin, and cerebellin levels may play a potential role in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Mustafa Esad Tezcan
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Fatih Ekici
- Department of Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Cüneyt Ugur
- Department of Pediatrics, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya 42020, Turkey.
| | - Ümmügülsüm Can
- Department of Medical Biochemistry, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya 42020, Turkey.
| | - Serdar Karatoprak
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | | | - Ekrem Furkan Uçak
- Department of Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Ahmet Güleç
- Department of Child and Adolescent Psychiatry, Balıkesir City Hospital, Altıeylül, Balıkesir, Turkey.
| | - Vefa Erbasan
- Department of Psychiatry, İzmir City Hospital, Bayraklı, 35540 Izmir, Turkey.
| | - Barıs Sen
- Department of Psychiatry, Manavgat State Hospital, Manavgat-Antalya, Turkey.
| | - Fulya Simsek
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Abdullah Enes Atas
- Department of Radiology, Konya City Hospital, Karatay-Konya 42020, Turkey.
| |
Collapse
|
3
|
Sánchez SV, Otavalo GN, Gazeau F, Silva AKA, Morales JO. Intranasal delivery of extracellular vesicles: A promising new approach for treating neurological and respiratory disorders. J Control Release 2025; 379:489-523. [PMID: 39800240 DOI: 10.1016/j.jconrel.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier. They can also be engineered to carry therapeutic molecules. EVs can be delivered via various routes. The intranasal route is particularly advantageous for delivering them to the central nervous system, making it a promising approach for treating neurological disorders. SCOPE OF REVIEW This review delves into the promising potential of intranasally administered EVs-based therapies for various medical conditions, with a particular focus on those affecting the brain and central nervous system. Additionally, the potential use of these therapies for pulmonary conditions, cancer, and allergies is examined, offering a hopeful outlook for the future of medical treatments. MAJOR CONCLUSIONS The intranasal administration of EVs offers significant advantages over other delivery methods. By directly delivering EVs to the brain, specifically targeting areas that have been injured, this administration proves to be highly efficient and effective, providing reassurance about the progress in medical treatments. Intranasal delivery is not limited to brain-related conditions. It can also benefit other organs like the lungs and stimulate a mucosal immune response against various pathogens due to the highly vascularized nature of the nasal cavity and airways. Moreover, it has the added benefit of minimizing toxicity to non-targeted organs and allows the EVs to remain longer in the body. As a result, there is a growing emphasis on conducting clinical trials for intranasal administration of EVs, particularly in treating respiratory tract pathologies such as coronavirus disease.
Collapse
Affiliation(s)
- Sofía V Sánchez
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Gabriela N Otavalo
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Florence Gazeau
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Amanda K A Silva
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Javier O Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile.
| |
Collapse
|
4
|
Zhang S, Wang N, Gao Z, Gao J, Wang X, Xie H, Wang CY, Zhang S. Reductive stress: The key pathway in metabolic disorders induced by overnutrition. J Adv Res 2025:S2090-1232(25)00031-1. [PMID: 39805424 DOI: 10.1016/j.jare.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health. AIM OF REVIEW In this review, we present an extensive array of evidence for the occurrence of reductive stress and its significant implications mainly in metabolic and cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Reductive stress is defined as a shift in the cellular redox balance towards a more reduced state, characterized by an excess of endogenous reductants (such as NADH, NADPH, and GSH) over their oxidized counterparts (NAD+, NADP+, and GSSG). While oxidative stress has been the predominant mechanism studied in obesity, metabolic disorders, and cardiovascular diseases, growing evidence underscores the critical role of reductive stress. This review discusses how reductive stress contributes to metabolic and cardiovascular pathologies, emphasizing its effects on key cellular processes. For example, excessive NADH accumulation can disrupt mitochondrial function by impairing the electron transport chain, leading to decreased ATP production and increased production of reactive oxygen species. In the endoplasmic reticulum (ER), an excess of reductive equivalents hampers protein folding, triggering ER stress and activating the unfolded protein response, which can lead to insulin resistance and compromised cellular homeostasis. Furthermore, we explore how excessive antioxidant supplementation can exacerbate reductive stress by further shifting the redox balance, potentially undermining the beneficial effects of exercise, impairing cardiovascular health, and aggravating metabolic disorders, particularly in obese individuals. This growing body of evidence calls for a reevaluation of the role of reductive stress in disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Shiyi Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Xie
- Institute of Translational Medicine, Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Butler MJ, Muscat SM, Caetano-Silva ME, Shrestha A, Olmo BMG, Mackey-Alfonso SE, Massa N, Alvarez BD, Blackwell JA, Bettes MN, DeMarsh JW, McCusker RH, Allen JM, Barrientos RM. Obesity-associated memory impairment and neuroinflammation precede widespread peripheral perturbations in aged rats. Immun Ageing 2025; 22:2. [PMID: 39754121 PMCID: PMC11697663 DOI: 10.1186/s12979-024-00496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown. Moreover, deviations in gut microbiome composition have been associated with obesity and cognitive impairment, but how diet and aging interact to impact the gut microbiome, or how rapidly these changes occur, is less clear. Thus, our study investigated the impact of HFD after two distinct consumption durations: 3 months (to model diet-induced obesity) or 3 days (to detect the rapid changes occurring with HFD) on memory function, anxiety-like behavior, central and peripheral inflammation, and gut microbiome profile in young and aged rats. RESULTS Our data indicated that both short-term and long-term HFD consumption impaired memory function and increased anxiety-like behavior in aged, but not young adult, rats. These behavioral changes were accompanied by pro- and anti-inflammatory cytokine dysregulation in the hippocampus and amygdala of aged HFD-fed rats at both time points. However, changes to fasting glucose, insulin, and inflammation in peripheral tissues such as the distal colon and visceral adipose tissue were increased in young and aged rats only after long-term, but not short-term, HFD consumption. Furthermore, while subtle HFD-induced changes to the gut microbiome did occur rapidly, robust age-specific effects were only present following long-term HFD consumption. CONCLUSIONS Overall, these data suggest that HFD-evoked neuroinflammation, memory impairment, and anxiety-like behavior in aging develop quicker than, and separately from the peripheral hallmarks of diet-induced obesity.
Collapse
Affiliation(s)
- Michael J Butler
- Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Stephanie M Muscat
- Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | | | - Akriti Shrestha
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brigitte M González Olmo
- Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Sabrina E Mackey-Alfonso
- Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Nashali Massa
- Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Bryan D Alvarez
- Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Jade A Blackwell
- Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - James W DeMarsh
- Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Robert H McCusker
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jacob M Allen
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, 460 Medical Center Drive, OH, 43210, USA.
- Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Wu J, Alfredsson L, Olsson T, Hillert JA, Hedström AK. Obesity Affects Disease Activity and Progression, Cognitive Functioning, and Quality of Life in People With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200334. [PMID: 39536290 PMCID: PMC11563565 DOI: 10.1212/nxi.0000000000200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVES While obesity is a known risk factor of the development of multiple sclerosis (MS), its impact on MS disease progression remains unclear. We aimed to investigate the influence of body mass index (BMI) on disease activity and progression, cognitive performance, and health-related quality of life in patients with MS. METHODS Patients from an incident population-based case-control study (n = 3,249) were categorized based on BMI status at diagnosis and followed up after diagnosis through the Swedish MS registry. Outcomes included changes in the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Impact Scale 29, and Symbol Digit Modalities Test. The mean follow-up time was 10.6 years (SD 6.1). Linear mixed models were used to analyze long-term changes while Cox regression models assessed the risk of 24-week confirmed disability worsening, time to reach EDSS score 3 and EDSS score 4, the appearance of new lesions on MRI, patient-reported physical and psychological worsening, and processing speed worsening. RESULTS Obesity, compared with healthy weight, was associated with a 0.02-point faster annual increase in the EDSS score (β for EDSS score x time 0.02, 95% CI 0.00-0.04). In addition, obesity was linked to a higher risk of reaching EDSS score 3 (HR 1.43, 95% CI 1.17-1.75) and EDSS score 4 (HR 1.40, 95% CI 1.07-1.73) and an increased risk of physical and psychological worsening. New lesions on MRI were more frequent among those with overweight and obesity, compared with those with healthy weight (HR 1.21, 95% CI 1.02-1.44 and HR 1.29, 95% CI 1.03-1.62, respectively). Among those who had not changed BMI group during follow-up, the associations between obesity and unfavorable outcomes became more pronounced, and the HR of cognitive disability worsening was 1.51 (95% CI 1.09-2.09) among those with obesity, compared with nonobese participants. DISCUSSION In participants with MS, obesity was associated with faster disease progression, poorer health-related quality of life, and more rapid cognitive decline. Both overweight and obesity were associated with higher MRI activity.
Collapse
Affiliation(s)
- Jing Wu
- From the Aging Research Center (J.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Institute of Environmental Medicine (L.A.), Karolinska Institutet; Centre for Occupational and Environmental Medicine (L.A.), Region Stockholm; and Department of Clinical Neuroscience (L.A., T.O., J.A.H., A.K.H.), Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- From the Aging Research Center (J.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Institute of Environmental Medicine (L.A.), Karolinska Institutet; Centre for Occupational and Environmental Medicine (L.A.), Region Stockholm; and Department of Clinical Neuroscience (L.A., T.O., J.A.H., A.K.H.), Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- From the Aging Research Center (J.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Institute of Environmental Medicine (L.A.), Karolinska Institutet; Centre for Occupational and Environmental Medicine (L.A.), Region Stockholm; and Department of Clinical Neuroscience (L.A., T.O., J.A.H., A.K.H.), Karolinska Institutet, Stockholm, Sweden
| | - Jan A Hillert
- From the Aging Research Center (J.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Institute of Environmental Medicine (L.A.), Karolinska Institutet; Centre for Occupational and Environmental Medicine (L.A.), Region Stockholm; and Department of Clinical Neuroscience (L.A., T.O., J.A.H., A.K.H.), Karolinska Institutet, Stockholm, Sweden
| | - Anna Karin Hedström
- From the Aging Research Center (J.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Institute of Environmental Medicine (L.A.), Karolinska Institutet; Centre for Occupational and Environmental Medicine (L.A.), Region Stockholm; and Department of Clinical Neuroscience (L.A., T.O., J.A.H., A.K.H.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Ronchetti S, Labombarda F, Del Core J, Roig P, De Nicola AF, Pietranera L. The phytoestrogen genistein improves hippocampal neurogenesis and cognitive impairment and decreases neuroinflammation in an animal model of metabolic syndrome. J Neuroendocrinol 2024:e13480. [PMID: 39676329 DOI: 10.1111/jne.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Metabolic syndrome (MS) is the medical term for the combination of at least three of the following factors: obesity, hyperlipidemia, hyperglycemia, insulin resistance, and hypertension. The spontaneously hypertensive rat (SHR) is an accepted animal model for the study of human MS that reveals all the features of the syndrome when fed high-fat, high-carbohydrate diets. The intake of high-fat diets in rats has been shown to produce brain neuropathology. In humans, MS increases the risk of cognitive impairment, dementia, and Alzheimer's disease. Genistein (GEN) is a phytoestrogen found in soy that lacks feminizing and carcinogenic effects and was found to have neuroprotective and anti-inflammatory effects in many pathological conditions. Considering that multiple data support that natural phytoestrogens may be therapeutic options for CNS maladies, we aim to elucidate if these properties also apply to a rat model of MS. Thus, GEN effects on neuroinflammation, neurogenesis, and cognition were evaluated in SHR eating a fat/carbohydrate-enriched diet. To characterize the neuropathology and cognitive dysfunction of MS we fed SHR with a high-fat diet (4520 kcal/kg) along with a 20% sucrose solution to drink. MS rats displayed a significant increase in body weight, BMI and obesity indexes along with an increased in fasting glucose levels, glucose intolerance, high blood pressure, and high blood triglyceride levels. MS rats were injected with GEN during 2 weeks a dose of 10 mg/kg. We found that MS rats showed a decreased number of DCX+ neural progenitors in the dentate gyrus and treatment with GEN increased this parameter. Expression of GFAP was increased in the DG and CA1 areas of the hippocampus and treatment decreased astrogliosis in all of them. We measured the expression of IBA1+ microglia in the same regions and classified microglia according to their morphology: we found that MS rats presented an increased proportion of the hypertrophied phenotype and GEN produced a shift in microglial phenotypes toward a ramified type. Furthermore, colocalization of IBA1 with the proinflammatory marker TNFα showed increased proportion of proinflammatory microglia in MS and a reduction with GEN treatment. On the other hand, colocalization with the anti-inflammatory marker Arg1 showed that MS has decreased proportion of anti-inflammatory microglia and GEN treatment increased this parameter. Cognitive dysfunction was evaluated in rats with MS using a battery of behavioral tests that assessed hippocampus-dependent spatial and working memory, such as the novel object recognition test (NOR), the novel object location test (NOL), and the free-movement pattern Y-maze (FMP-YMAZE) and the d-YMAZE. In all of them, MS performed poorly and GEN was able to improve cognitive impairments. These results indicate that GEN was able to exert neuroprotective actions increasing neurogenesis and improving cognitive impairments while decreasing astrogliosis, microgliosis, and neuroinflammatory environment in MS rats. Together, these results open an interesting possibility for proposing this phytoestrogen as a neuroprotective therapy for MS.
Collapse
Affiliation(s)
- Santiago Ronchetti
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julian Del Core
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Nicolas JC, Lee TH, Quarta C. Can brain neurons change identity? Lessons from obesity. Trends Endocrinol Metab 2024:S1043-2760(24)00297-2. [PMID: 39643545 DOI: 10.1016/j.tem.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
It has long been thought that the functional identity of mammalian brain neurons is programmed during development and remains stable throughout adult life; however, certain populations of neurons continue to express active regulators of neuronal identity into adulthood. Prolonged exposure to diet-induced metabolic stress induces features of neuronal identity modification in adult mice, and maladaptive changes in neuronal identity maintenance have been linked to cognitive impairment in humans suffering from neurodegenerative diseases often associated with obesity. Here we discuss how, by unraveling the neurological roots of obesity, we may solve the puzzle of whether mammalian brain neurons retain identity plasticity into adulthood, while advancing knowledge of the pathogenic mechanisms at the interface of metabolic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jean Charles Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Thomas H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
9
|
Chen Y, Fogel A, Bi Y, Yen CC. Factors associated with eating rate: a systematic review and narrative synthesis informed by socio-ecological model. Nutr Res Rev 2024; 37:376-395. [PMID: 37749936 DOI: 10.1017/s0954422423000239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Accumulating evidence shows associations between rapid eating and overweight. Modifying eating rate might be a potential weight management strategy without imposing additional dietary restrictions. A comprehensive understanding of factors associated with eating speed will help with designing effective interventions. The aim of this review was to synthesise the current state of knowledge on the factors associated with eating rate. The socio-ecological model (SEM) was utilised to scaffold the identified factors. A comprehensive literature search of eleven databases was conducted to identify factors associated with eating rate. The 104 studies that met the inclusion criteria were heterogeneous in design and methods of eating rate measurement. We identified thirty-nine factors that were independently linked to eating speed and mapped them onto the individual, social and environmental levels of the SEM. The majority of the reported factors pertained to the individual characteristics (n = 20) including demographics, cognitive/psychological factors and habitual food oral processing behaviours. Social factors (n = 11) included eating companions, social and cultural norms, and family structure. Environmental factors (n = 8) included food texture and presentation, methods of consumption or background sounds. Measures of body weight, food form and characteristics, food oral processing behaviours and gender, age and ethnicity were the most researched and consistent factors associated with eating rate. A number of other novel and underresearched factors emerged, but these require replication and further research. We highlight directions for further research in this space and potential evidence-based candidates for interventions targeting eating rate.
Collapse
Affiliation(s)
- Yang Chen
- Division of Industrial Design, National University of Singapore, Singapore
- Keio-NUS CUTE Center, National University of Singapore, Singapore
| | - Anna Fogel
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yue Bi
- Department of Psychology, National University of Singapore, Singapore
| | - Ching Chiuan Yen
- Division of Industrial Design, National University of Singapore, Singapore
- Keio-NUS CUTE Center, National University of Singapore, Singapore
| |
Collapse
|
10
|
Eroglu B, Isales C, Eroglu A. Age and duration of obesity modulate the inflammatory response and expression of neuroprotective factors in mammalian female brain. Aging Cell 2024; 23:e14313. [PMID: 39230054 PMCID: PMC11634740 DOI: 10.1111/acel.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
Obesity has become a global epidemic and is associated with comorbidities, including diabetes, cardiovascular, and neurodegenerative diseases, among others. While appreciable insight has been gained into the mechanisms of obesity-associated comorbidities, effects of age, and duration of obesity on the female brain remain obscure. To address this gap, adolescent and mature adult female mice were subjected to a high-fat diet (HFD) for 13 or 26 weeks, whereas age-matched controls were fed a standard diet. Subsequently, the expression of inflammatory cytokines, neurotrophic/neuroprotective factors, and markers of microgliosis and astrogliosis were analyzed in the hypothalamus, hippocampus, and cerebral cortex, along with inflammation in visceral adipose tissue. HFD led to a typical obese phenotype in all groups independent of age and duration of HFD. However, the intermediate duration of obesity induced a limited inflammatory response in adolescent females' hypothalamus while the hippocampus, cerebral cortex, and visceral adipose tissue remained unaffected. In contrast, the prolonged duration of obesity resulted in inflammation in all three brain regions and visceral adipose tissue along with upregulation of microgliosis/astrogliosis and suppression of neurotrophic/neuroprotective factors in all brain regions, denoting the duration of obesity as a critical risk factor for neurodegenerative diseases. Importantly, when female mice were older (i.e., mature adult), even the intermediate duration of obesity induced similar adverse effects in all brain regions. Taken together, our findings suggest that (1) both age and duration of obesity have a significant impact on obesity-associated comorbidities and (2) early interventions to end obesity are critical to preserving brain health.
Collapse
Affiliation(s)
- Binnur Eroglu
- Department of Neuroscience and Regenerative MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
| | - Carlos Isales
- Department of Neuroscience and Regenerative MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
- Department of MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
| | - Ali Eroglu
- Department of Neuroscience and Regenerative MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
- Department of Obstetrics and GynecologyMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
11
|
Luciano TF, Teodoro de Souza C, de Oliveira J, Muller AP. Reversal of high-fat diet-induced cognitive impairment and oxidative stress in the brain through Zingiber officinale supplementation. Metab Brain Dis 2024; 39:1495-1503. [PMID: 39120852 DOI: 10.1007/s11011-024-01406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Obesity is a significant health concern that is correlated with various adverse health outcomes. Diet-induced obesity (DIO) is associated with impaired cognitive function. Pharmacological treatments for obesity are limited and may have serious adverse effects. Zingiber officinale (ZO) has anti-inflammatory and antioxidant effects, in addition to metabolic effects. This study aimed to assess the effects of Zingiber officinale supplementation on cognitive function, anxiety levels, neurotrophin levels, and the inflammatory and oxidative status in the cortex following DIO in mice. Two-month-old male Swiss mice were fed DIO or standard chow for 4 months and subsequently subdivided into the following groups (n = 10 mice/group): (i) control - vehicle (CNT + vehicle); (ii) CNT supplemented with ZO (CNT + ZO); (iii) obese mice (DIO + vehicle); and (iv) obese mice supplemented with ZO (DIO + ZO) (n = 10). Zingiber officinale extract (400 mg/kg/day) was administered for 35 days via oral gavage. The DIO + vehicle group exhibited impaired recognition memory. The CNT + ZO group presented a greater number of crossings in the open field. No difference between the groups was observed in the plus maze test. DIO + vehicle increased the DCFH and carbonylation levels in the cortex. The DIO + vehicle group presented a reduction in catalase activity. The expression of inflammatory or neurotrophin markers in the cerebral cortex was not different. In conclusion, our findings indicate that supplementation with ZO reverses the cognitive impairment in DIO mice and enhances the antioxidant status of the cerebral cortex.
Collapse
Affiliation(s)
- Thais Fernandes Luciano
- Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Claudio Teodoro de Souza
- Postgraduate Program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil
| | - Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alexandre Pastoris Muller
- Department of Biochemistry, Postgraduate Program in Biochemistry and Postgraduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
12
|
Zuo Q, Song L, Gao X, Cen M, Fu X, Qin S, Wu J. Associations of metabolic syndrome with cognitive function and dementia risk: Evidence from the UK Biobank cohort. Diabetes Obes Metab 2024; 26:6023-6033. [PMID: 39360436 DOI: 10.1111/dom.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
AIM To investigate the associations of metabolic syndrome (MetS) with cognitive function, dementia and its subtypes. METHODS Based on the participants recruited by UK Biobank, this study aims to investigate the associations of MetS with cognitive function, dementia and its subtypes. Generalized estimating equations, Cox proportional risk models, and multiple linear regression models were respectively used to assess associations between MetS and dementia-related outcomes. RESULTS Among the 363,231 participants, 95,713 had MetS at baseline. The results showed that MetS was significantly associated with cognitive function related to fluid intelligence and prospective memory at follow-up. Among participants aged ≥60 years, MetS was correlated with elevated risk of all-cause dementia, particularly vascular dementia (VaD) [hazard ratio 1.115 (95% confidence interval: 1.047, 1.187), hazard ratio 1.393 (95% confidence interval: 1.233, 1.575), respectively]. With increasing MetS components, the risk of all-cause dementia and VaD tended to be elevated. MetS has also been associated with dementia-related structural changes in the brain, including alterations in overall brain volume, white matter volume, grey matter volume and white matter integrity. CONCLUSION MetS was associated with poorer cognitive performance and might increase the risk of all-cause dementia as well as VaD, but the effect on Alzheimer's disease was not significant. Holistic control of the MetS may benefit the prevention and control of cognitive impairment and dementia.
Collapse
Affiliation(s)
- Qianlin Zuo
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manqiu Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xihang Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shifan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Zheng JY, Pang RK, Ye JH, Su S, Shi J, Qiu YH, Pan HF, Zheng RY, Hu XR, Deng QW, Li XX, Cai YF, Zhang SJ. Huang-Lian-Jie-Du decoction alleviates cognitive impairment in high-fat diet-induced obese mice via Trem2/Dap12/Syk pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156248. [PMID: 39556986 DOI: 10.1016/j.phymed.2024.156248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/28/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Cognitive impairment induced by a high-fat diet (HFD) is common, but its mechanism is largely unknown. Huang-Lian-Jie-Du (HLJD) decoction is a classical and powerful prescription in China. It consists of four medicinal plants and is widely used in traditional Chinese medicines (TCM). Studies have shown that HLJD decoction is effective in treating obesity, depression, and so on. However, the therapeutic mechanism of HLJD is still poorly understood. PURPOSE Our study aimed to explore whether inflammatory factors and Trem2/Dap12/Syk pathway are involved in this process and whether HLJD treatment can repair cognitive impairment in HFD-induced obesity. METHODS To obtain the obese mice, male mice were treated with HFD (60 Kcal% fat) for 16 weeks. After an additional eight weeks, HLJD decoction was administered orally at doses of 4 and 8 g/kg daily for eight weeks. The mice were then subjected to four behavior tests. Aβ42, total Tau, inflammatory-related, and microglial dysregulation-related markers expression were measured. Molecular docking analysis was also conducted to predict the interaction of the chemical constituents of HLJD with human TREM2, DAP12, and SYK. HLJD at doses of 12.5, 25, and 50 µg/mL or limonin at concentrations of 12.5, 25, and 50 µM were used to treat BV2 cells for 24 h. CCK8 assay and Trem2, Dap12, Syk, and p-Syk expression were measured. RESULTS Our study revealed that cognitive impairment was evident in mice treated with HFD, indicating the impact of obesity on cognitive function. The expression of Aβ42 and total Tau in the hippocampus (HIP) was significantly higher in obese (HFD-V) mice compared to normal control (NC-V) mice. The Il6, Il1b, and Il10 mRNA expression levels were also markedly increased in the HIP of obese mice. Furthermore, Trem2, Dap12, p-Syk, and Iba1 expression were elevated in the HIP of obese mice. Importantly, HLJD treatment was found to repair cognitive impairment and lower the protein expression of Aβ42, Tau, Trem2, Dap12, p-Syk, and the expression of Il6, Il1b, and Il10 mRNA in HIP of HFD-V mice. The increased expression of Trem2, Dap12, p-Syk, and Iba1 in HIP after HFD consumption could be reduced after receiving HLJD decoction. The compound Limonin showed a well-predicted binding energy with TREM2, DAP12, and SYK. BV2 cells with HLJD or limonin detected the mRNA expressions of Trem2/Dap12. HLJD at 25 and 50 µg/mL decreased Trem2, Dap12, and p-Syk protein levels in BV2 cells. CONCLUSION These results reveal that HLJD treatment could alleviate cognitive impairment in HFD-induced obese mice by controlling the activation of the Trem2/Dap12 pathway and reducing Syk phosphorylation in HIP microglia. HLJD and limonin suppressed Trem2/Dap12/Syk signaling pathway in BV2 cells. HLJD therapy might represent a novel treatment for patients with cognitive impairment induced by obesity.
Collapse
Affiliation(s)
- Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Rui-Kang Pang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Shan Su
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jia Shi
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu-Hui Qiu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - Hua-Feng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China
| | - Ru-Yu Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Xin-Rui Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Qi-Wen Deng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Xiao-Xiao Li
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China.
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
14
|
Son DS, Kim JI, Kim DK. A Longitudinal Study Investigating Whether Chronic Rhinosinusitis Influences the Subsequent Risk of Developing Dementia. J Pers Med 2024; 14:1081. [PMID: 39590573 PMCID: PMC11595754 DOI: 10.3390/jpm14111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Numerous studies have explored the association between chronic rhinosinusitis (CRS) and cognitive decline. However, whether CRS is an independent risk factor for the development of dementia remains unclear. Thus, this retrospective cohort study sought to examine the potential association between CRS and increased incidence and risk of dementia by utilizing a representative population-based cohort dataset. Methods: In this study, we identified 2126 patients with CRS aged >55 years and matched them with 8504 controls to assess the incidence and risk of dementia. Results: We found that the incidence of all-cause dementia in CRS patients was 0.125 per 1000 person-years. The risk of developing all-cause dementia events (adjusted hazard ratio [HR] = 1.0, 95% confidence interval = 0.8-1.3) also did not differ significantly between the control group and the CRS group, irrespective of the CRS phenotype. Subgroup analysis also showed no increased adjusted HR for developing Alzheimer's disease (0.9, 0.7-1.2), Parkinson's disease (0.9, 0.5-1.4), and other types of dementia (1.0, 0.7-1.4) in the CRS group compared to the control group. Conclusions: Therefore, the present study demonstrated that patients over 55 years of age with CRS did not exhibit an increased incidence or risk of dementia compared to individuals without CRS.
Collapse
Affiliation(s)
- Dae-Soon Son
- Department of Data Science and Data Science Convergence Research Center, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Jae-In Kim
- Department of Physiology, Neurology, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
15
|
Zhang Y, Wang R, Liu T, Wang R. Exercise as a Therapeutic Strategy for Obesity: Central and Peripheral Mechanisms. Metabolites 2024; 14:589. [PMID: 39590824 PMCID: PMC11596326 DOI: 10.3390/metabo14110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a complex, multifactorial condition involving excessive fat accumulation due to an imbalance between energy intake and expenditure, with its global prevalence steadily rising. This condition significantly increases the risk of chronic diseases, including sarcopenia, type 2 diabetes, and cardiovascular diseases, highlighting the need for effective interventions. Exercise has emerged as a potent non-pharmacological approach to combat obesity, targeting both central and peripheral mechanisms that regulate metabolism, energy expenditure, and neurological functions. In the central nervous system, exercise influences appetite, mood, and cognitive functions by modulating the reward system and regulating appetite-controlling hormones to manage energy intake. Concurrently, exercise promotes thermogenesis in adipose tissue and regulates endocrine path-ways and key metabolic organs, such as skeletal muscle and the liver, to enhance fat oxidation and support energy balance. Despite advances in understanding exercise's role in obesity, the precise interaction between the neurobiological and peripheral metabolic pathways remains underexplored, particularly in public health strategies. A better understanding of these interactions could inform more comprehensive obesity management approaches by addressing both central nervous system influences on behavior and peripheral metabolic regulation. This review synthesizes recent insights into these roles, highlighting potential therapeutic strategies targeting both systems for more effective obesity interventions.
Collapse
Affiliation(s)
- Yiyin Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| | - Ruwen Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| |
Collapse
|
16
|
Turnquist BE, MacIver PH, Katzel LI, Waldstein SR. Interactive Relations of Body Mass Index, Cardiorespiratory Fitness, and Sex to Cognitive Function in Older Adults. Arch Clin Neuropsychol 2024; 39:787-799. [PMID: 38486431 PMCID: PMC11504700 DOI: 10.1093/arclin/acae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE The course of cognitive aging is influenced by multiple health factors. This cross-sectional study investigated the interactive relations between body mass index (BMI), maximum oxygen consumption (VO2max), and sex on neuropsychological outcomes in community-dwelling predominantly older adults. METHODS Participants were 164 healthy adults [M (SD) = 64.6 (12.5) years, 56% men, 87% white] who participated in an investigation of cardiovascular risk factors and brain health. Multivariable regression analysis, adjusted for age, education, ethnicity, smoking, alcohol consumption, and depression, examined the interactive relations of BMI, VO2max, and sex to multiple neuropsychological outcomes. RESULTS Significant BMI*VO2max*sex interactions for Grooved Pegboard dominant (p = .019) and nondominant (p = .005) hands revealed that men with lower VO2max (l/min) displayed worse performance with each hand as BMI increased (p's < .02). A significant BMI*sex interaction for Logical Memory-Delayed Recall (p = .036) (after adjustment for blood glucose) showed that men, but not women, with higher BMI demonstrated worse performance (p = .036). Lastly, significant main effects indicated that lower VO2max was related to poorer logical memory, and higher BMI was associated with poorer Trail Making B and Stroop interference scores (p's < .05). CONCLUSIONS Among men, higher cardiorespiratory fitness may protect against the negative impact of greater BMI on manual dexterity and motor speed, making VO2max a target for intervention. Higher BMI is further associated with poorer executive function and verbal memory (in men), and lower VO2max is associated with poorer verbal memory.
Collapse
Affiliation(s)
- B Eric Turnquist
- Department of Psychology, University of Maryland, Baltimore, MD, USA
- Department of Psychology, American University, Washington, DC, USA
| | - Peter H MacIver
- Department of Psychology, University of Maryland, Baltimore, MD, USA
| | - Leslie I Katzel
- Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Baltimore, MD, USA
- Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Chu JMT, Chiu SPW, Wang J, Chang RCC, Wong GTC. Adiponectin deficiency is a critical factor contributing to cognitive dysfunction in obese mice after sevoflurane exposure. Mol Med 2024; 30:177. [PMID: 39415089 PMCID: PMC11481458 DOI: 10.1186/s10020-024-00954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The number of major operations performed in obese patients is expected to increase given the growing prevalence of obesity. Obesity is a risk factor for a range of postoperative complications including perioperative neurocognitive disorders. However, the mechanisms underlying this vulnerability are not well defined. We hypothesize that obese subjects are more vulnerable to general anaesthesia induced neurotoxicity due to reduced levels of adiponectin. This hypothesis was tested using a murine surgical model in obese and adiponectin knockout mice exposed to the volatile anaesthetic agent sevoflurane. METHODS Obese mice were bred by subjecting C57BL/6 mice to a high fat diet. Cognitive function, neuroinflammatory responses and neuronal degeneration were assessed in both obese and lean mice following exposure to 2 h of sevoflurane to confirm sevoflurane-induced neurotoxicity. Thereafter, to confirm the role of adiponectin deficiency in, adiponectin knockout mice were established and exposed to the sevoflurane. Finally, the neuroprotective effects of adiponectin receptor agonist (AdipoRon) were examined. RESULTS Sevoflurane triggered significant cognitive dysfunction, neuroinflammatory responses and neuronal degeneration in the obese mice while no significant impact was observed in the lean mice. Similar cognitive dysfunction and neuronal degeneration were also observed in the adiponectin knockout mice after sevoflurane exposure. Administration of AdipoRon partially prevented the deleterious effects of sevoflurane in both obese and adiponectin knockout mice. CONCLUSIONS Our findings demonstrate that obese mice are more susceptible to sevoflurane-induced neurotoxicity and cognitive impairment in which adiponectin deficiency is one of the underlying mechanisms. Treatment with adiponectin receptor agonist ameliorates this vulnerability. These findings may have therapeutic implications in reducing the incidence of anaesthesia related neurotoxicity in obese subjects.
Collapse
Affiliation(s)
- John Man Tak Chu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
- Laboratory of Neurodegenerative Disease, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, HKSAR, China
| | - Suki Pak Wing Chiu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
| | - Jiaqi Wang
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Disease, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, HKSAR, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, HKSAR, China.
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China.
| |
Collapse
|
18
|
Diniz DG, Bento-Torres J, da Costa VO, Carvalho JPR, Tomás AM, Galdino de Oliveira TC, Soares FC, de Macedo LDED, Jardim NYV, Bento-Torres NVO, Anthony DC, Brites D, Picanço Diniz CW. The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms. Int J Mol Sci 2024; 25:10757. [PMID: 39409085 PMCID: PMC11476792 DOI: 10.3390/ijms251910757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. Here we provide a detailed analysis of the complex molecular, cellular, and systemic mechanisms underlying age-related cognitive decline and how lifestyle choices influence these processes. A review of the evidence from animal models, human studies, and postmortem analyses emphasizes the importance of integrating physical exercise with cognitive, multisensory, and motor stimulation as part of a multifaceted approach to mitigating cognitive decline. We highlight the potential of these non-pharmacological interventions to address key aging hallmarks, such as genomic instability, telomere attrition, and neuroinflammation, and underscore the need for comprehensive and personalized strategies to promote cognitive resilience and healthy aging.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Seção de Hepatologia, Belém 66.093-020, Pará, Brazil;
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - João Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Victor Oliveira da Costa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Josilayne Patricia Ramos Carvalho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Alessandra Mendonça Tomás
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Samabaia, Universidade Federal de Goiás (EBTT), CEPAE, Goiânia 74.001-970, Goiás, Brazil
| | - Thaís Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Faculdade de Ceilândia, Ceilândia, Universidade de Brasília, Brasília 72.220-900, Brazil
| | - Fernanda Cabral Soares
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Liliane Dias e Dias de Macedo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
| | - Naina Yuki Vieira Jardim
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Dora Brites
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Medicines, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| |
Collapse
|
19
|
Mo X, Cheng R, Shen L, Liu N, Sun Y, Lin S, Jiang G, Li X, Peng X, Zhang Y, Liao Y, Yan H, Liu L. Yeast β-glucan alleviates high-fat diet-induced Alzheimer's disease-like pathologies in rats via the gut-brain axis. Int J Biol Macromol 2024; 278:134939. [PMID: 39179066 DOI: 10.1016/j.ijbiomac.2024.134939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Targeting the gut microbiota may be an emerging strategy for the prevention and treatment of Alzheimer's disease (AD). Macro-molecular yeast β-glucan (BG), derived from the yeast of Saccharomyces cerevisiae, regulates the gut microbiota. This study aimed to investigate the effect and mechanism of long-term BG in high-fat diet (HFD)-induced AD-like pathologies from the perspective of the gut microbiota. Here, we found that 80 weeks of BG treatment ameliorated HFD-induced cognitive dysfunction in rats. In the hippocampus, BG alleviated HFD-induced the activation of astrocytes, microglia, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome pathway, and AD-like pathologies. BG modulated gut dysbiosis through increasing the levels of beneficial bacteria and short-chain fatty acids (SCFAs). BG also attenuated HFD-induced gut barrier impairment. Correlation analysis revealed a close relationship among microbiota, SCFAs, and AD-like pathologies. Furthermore, the fecal microbiota of BG-treated rats and SCFAs treatment mitigated AD-like pathologies via the NLRP3 inflammasome pathway in HFD-fed aged rats. These results suggested that long-term BG promotes the production of SCFAs derived from gut microbiota, which further inhibits NLRP3 inflammasome-mediated neuroinflammation, thereby alleviating HFD-induced AD-like pathologies in rats. BG may become a new strategy for targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Ruijie Cheng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Lihui Shen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Nian Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yunhong Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Shan Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Guanhua Jiang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Yan Zhang
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China.
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
20
|
Moke BI, Shipman ML, Lui S, Corbit L. Ceftriaxone reverses diet-induced deficits in goal-directed control. Psychopharmacology (Berl) 2024; 241:2103-2115. [PMID: 38822850 DOI: 10.1007/s00213-024-06621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
RATIONALE Obesity is associated with numerous health risks and ever-increasing rates are a significant global concern. However, despite weight loss attempts many people have difficulty maintaining weight loss. Previous studies in animals have shown that chronic access to an obesogenic diet can disrupt goal-directed behavior, impairing the ability of animals to flexibly adjust food-seeking behavior following changes in the value of earned outcomes. Changes in behavioral control have been linked to disruption of glutamate transmission in the dorsal medial striatum (DMS), a region critical for the acquisition and expression of goal-directed behavior. OBJECTIVES The goal of this study was to test whether ceftriaxone, a beta-lactam antibiotic shown elsewhere to upregulate the expression of the glutamate transporter GLT-1, would improve goal-directed control following long-term exposure to an obesogenic diet. METHODS Male and female rats were given access to either standard chow or chow plus sweetened condensed milk (SCM) for 6 weeks. Access to SCM was ended and rats received daily injections of either ceftriaxone or saline for 6 days. Rats were then trained to press a lever to earn a novel food reward and, finally, were assessed for sensitivity to outcome devaluation. Histological analyses examined changes to GLT-1 protein levels and morphological changes to astrocytes, within the DMS. RESULTS We found that ceftriaxone robustly restored goal-directed behavior in animals following long-term exposure to SCM. While we did not observe changes in protein levels of GLT-1 in the DMS, we observed that SCM induced changes in the morphology of astrocytes in the DMS, and that ceftriaxone mitigated these changes. CONCLUSIONS These results demonstrate that long-term access to a SCM diet impairs goal-directed behavior while also altering the morphology of astrocytes in the DMS. Furthermore, these results suggest that ceftriaxone administration can reverse the impairment of goal-directed behavior potentially through its actions on astrocytes in decision-making circuitry.
Collapse
Affiliation(s)
- Benjamin-Israel Moke
- Department of Cell and Systems Biology, The University of Toronto, 25 Harbord Street, ON, M5S 3G5, Toronto, Canada
| | - Megan L Shipman
- Department of Psychology, The University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Simon Lui
- Department of Psychology, The University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laura Corbit
- Department of Cell and Systems Biology, The University of Toronto, 25 Harbord Street, ON, M5S 3G5, Toronto, Canada.
- Department of Psychology, The University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
21
|
Arnetz BB, Arnetz JE, Kaminski N, Tomlin R, Cole A, Bartlett P, Crawford R, Jameson A. Relationship between Stress and Neuroimmunological Responses and Health Literacy in Newly Diagnosed HIV-Infected Patients: An Exploratory Study. AIDS Res Treat 2024; 2024:3432569. [PMID: 39345356 PMCID: PMC11436276 DOI: 10.1155/2024/3432569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/30/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
Objectives We aimed to study self-rated health and psycho-neuroimmunological responses during the initial 6 months after testing positive for human immunodeficiency virus (HIV) and its relationship to health literacy, that is, the ability to take in and understand information about one's illness. Health literacy plays a critical role in patients' ability to adhere to antiretroviral treatment (ART). However, there is a lack of studies on the possible impact of HIV-induced proinflammatory processes on health literacy. Methods Twelve patients with newly diagnosed HIV attending an urban Ryan White-funded HIV clinic responded to a questionnaire and had blood samples drawn at baseline (first visit) and after 1, 3, and 6 months, respectively. The questionnaire measured stress, depression, and health literacy. Blood was analyzed for HIV RNA plasma viral load, CD4 cell count, pro- and antistress, and inflammatory markers. Results Complete data for the entire 4 collection periods were available for nine patients. Over the 6-month period, mean viral load decreased from 353,714.83 (standard deviation 870,334.61) to 35.89 (14.04) copies/mL (p < 0.001). CD4 cell count increased from 321.08 (167.96) to 592.44 (300.06) cells/mm3 (p < 0.001). Self-rated stress decreased from a baseline mean of 7.33 (2.29) to 3.56 (3.21), on a 0-10 visual analogue scale, at the 6-month follow-up (p < 0.01). C-reactive protein (CRP) decreased from 5757.05 (3146.86) to 2360.84 (2277.33) ng/mL (p < 0.05). Mean health literacy score at baseline was 17.67 (3.50; scale range 0-20) and did not change during the follow-up period. However, increased stress and decreased CRP (p = 0.05) during the 6-month follow-up predicted higher health literacy scores at 6 months. Conclusion Both stress and proinflammatory processes in newly diagnosed HIV-infected patients might adversely impact patients' health literacy and thus their capacity to align with treatment guidance.
Collapse
Affiliation(s)
- Bengt B Arnetz
- Department of Family Medicine Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Judith E Arnetz
- Department of Family Medicine Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Norbert Kaminski
- Department of Pharmacology and Toxicology Michigan State University College of Human Medicine, East Lansing, Michigan, USA
- Institute for Integrative Toxicology Michigan State University, East Lansing, MI, USA
| | - Ryan Tomlin
- Department of Pharmacy Trinity Health Grand Rapids Hospital, Grand Rapids, Michigan, USA
| | - Andrew Cole
- Department of Family Medicine Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Pamela Bartlett
- Department of Research & Innovation Trinity Health Grand Rapids Hospital, Grand Rapids, Michigan, USA
| | - Robert Crawford
- Institute for Integrative Toxicology Michigan State University, East Lansing, MI, USA
| | - Andrew Jameson
- Department of Medicine Trinity Health Grand Rapids Hospital, Grand Rapids, Michigan, USA
- Department of Medicine College of Human Medicine Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Fang Y, Shen P, Xu L, Shi Y, Wang L, Yang M. PDTC improves cognitive impairment in LPS-induced ARDS by regulating miR-181c/NF-κB axis-mediated neuroinflammation. Brain Inj 2024; 38:918-927. [PMID: 38828532 DOI: 10.1080/02699052.2024.2361623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Cognitive impairment is a severe complication of acute respiratory distress syndrome (ARDS). Emerging studies have revealed the effects of pyrrolidine dithiocarbamate (PDTC) on improving surgery-induced cognitive impairment. The major aim of the study was to investigate whether PDTC protected against ARDS-induced cognitive dysfunction and to identify the underlying mechanisms involved. METHODS The rat model of ARDS was established by intratracheal instillation of lipopolysaccharide (LPS), followed by treatment with PDTC. The cognitive function of rats was analyzed by the Morris Water Maze, and pro-inflammatory cytokines were assessed by quantitative real-time PCR, enzyme-linked immunosorbent assay, and western blot assays. A dual-luciferase reporter gene assay was performed to identify the relationship between miR-181c and its target gene, TAK1 binding protein 2 (TAB2). RESULTS The results showed that PDTC improved cognitive impairment and alleviated neuroinflammation in the hippocampus in LPS-induced ARDS model. Furthermore, we demonstrated that miR-181c expression was downregulated in the hippocampus of the ARDS rats, which was restored by PDTC treatment. In vitro studies showed that miR-181c alleviated LPS-induced pro-inflammatory response by inhibiting TAB2, a critical molecule in the nuclear factor (NF)-κB signaling pathway. CONCLUSION PDTC improves cognitive impairment in LPS-induced ARDS by regulating miR-181c/NF-κB axis-mediated neuroinflammation, providing a potential opportunity for the treatment of this disease.
Collapse
Affiliation(s)
- Ying Fang
- Department of Pathology, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Peng Shen
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Longsheng Xu
- Department of Central Laboratory, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yunchao Shi
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liyan Wang
- Department of General Practice, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Maoxian Yang
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
23
|
Ma J, Liu Y, Hu J, Liu X, Xia Y, Xia W, Shen Z, Kong X, Wu X, Mao L, Li Q. Tirzepatide administration improves cognitive impairment in HFD mice by regulating the SIRT3-NLRP3 axis. Endocrine 2024:10.1007/s12020-024-04013-w. [PMID: 39222203 DOI: 10.1007/s12020-024-04013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE High-fat diet (HFD) currently is reported that in connection with cognitive impairment. Tirzepatide is a novel dual receptor agonist for glycemic control. But whether Tirzepatide exerts a protective effect in HFD-related cognitive impairment remains to be explore. METHODS During the study, the cognitive dysfunction mice model induced by HFD were established. The expressions synapse-associated protein and other target proteins were detected. The oxidative stress parameters, levels of inflammatory cytokine were also detected. RESULTS Our findings proved that Tirzepatide administration attenuates high fat diet-related cognitive impairment. Tirzepatide administration suppresses microglia activation, alleviates oxidative stress as well as suppressed the expression of NLRP3 in HFD mice by up-regulating SIRT3 expression. In conclusion, Tirzepatide attenuates HFD-induced cognitive impairment through reducing oxidative stress and neuroinflammation via SIRT3-NLRP3 signaling. CONCLUSION This study suggest that Tirzepatide has neuroprotective effects in HFD-related cognitive dysfunction mice model, which provides a promising treatment of HFD-related cognitive impairment.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Yuanyuan Liu
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Junya Hu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
| | - Xingjing Liu
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Yin Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Xia Wu
- Department of Endocrinology, Affiliated Jiangyin Hospital of Nantong University, Wuxi, 214400, China
| | - Li Mao
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| | - Qian Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China.
| |
Collapse
|
24
|
Chen L, Hou Y, Sun Y, Peng D. Association of obesity indicators with cognitive function among US adults aged 60 years and older: Results from NHANES. Brain Behav 2024; 14:e70006. [PMID: 39262162 PMCID: PMC11391027 DOI: 10.1002/brb3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Midlife obesity is a significant risk factor for Alzheimer's disease, but the effects of obesity on cognitive function, either detrimental or beneficial, are controversial among older individuals. This study aims to assess this associations of body mass index (BMI) or waist circumference (WC) with cognitive function among United States older individuals. METHODS A cross-sectional research study was conducted utilizing data from the 2011 to 2014 National Health and Nutrition Examination Survey (NHANES). Initially, the study compared differences in cognitive function among the normal weight, overweight, and obese groups. Subsequently, we examined the relationships between BMI or WC and cognitive function using multivariate linear regression. Finally, structural equation models were constructed to assess the relationships among body shape, lifestyle, and cognitive function pathways. RESULTS The study included 2254 individuals. Obese subjects had lower scores in the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) word list learning tasks (CERAD-WL) (χ2 = 7.804, p = .020) and digit symbol substitution test (χ2 = 8.869, p = .012). The regression analysis showed that WC was negatively connected with the CERAD-WL score after adjusting for confounding factors (β = -.029, p = .045). Moreover, WC had a mediating effect on the path from lifestyle to cognition (CERAD-WL). However, there was no difference in the CERAD delayed recall score and the animal fluency test between the obese and the other groups. CONCLUSIONS Obese older adults exhibited impaired cognitive abilities in terms of learning and working memory performance. The impact of lifestyle on cognition was mediated by obesity-related anthropometric indices. Sleep, physical activity, and diet influenced the degree of obesity, which subsequently determined cognitive function. Prioritizing weight management in elderly people is crucial for safeguarding cognitive function.
Collapse
Affiliation(s)
- Leian Chen
- China‐Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
| | - Ying Hou
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
- Peking University China‐Japan Friendship School of Clinical MedicineBeijingChina
| | - Yu Sun
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
| | - Dantao Peng
- China‐Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
- Peking University China‐Japan Friendship School of Clinical MedicineBeijingChina
| |
Collapse
|
25
|
Yamamoto EA, Koike S, Wong C, Dennis LE, Luther MN, Scatena A, Khambadkone S, Iliff JJ, Lim MM, Levendovszky SR, Elliott JE, Barisano G, Müller-Oehring EM, Morales AM, Baker FC, Nagel BJ, Piantino J. Biological sex and BMI influence the longitudinal evolution of adolescent and young adult MRI-visible perivascular spaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608337. [PMID: 39229241 PMCID: PMC11370374 DOI: 10.1101/2024.08.17.608337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background and Purpose An association recently emerged between magnetic resonance imaging (MRI)-visible perivascular spaces (MV-PVS) with intracerebral solute clearance and neuroinflammation, in adults. However, it is unknown how MV-PVS change throughout adolescence and what factors influence MV-PVS volume and morphology. This study assesses the temporal evolution of MV-PVS volume in adolescents and young adults, and secondarily evaluates the relationship between MV-PVS, age, sex, and body mass index (BMI). Materials and Methods This analysis included a 783 participant cohort from the longitudinal multicenter National Consortium on Alcohol and Neurodevelopment in Adolescence study that involved up to 6 imaging visits spanning 5 years. Healthy adolescents aged 12-21 years at study entry with at least two MRI scans were included. The primary outcome was mean MV-PVS volume (mm 3 /white matter cm 3 ). Results On average, males had greater MV-PVS volume at all ages compared to females. A linear mixed-effect model for MV-PVS volume was performed. Mean BMI and increases in a person's BMI were associated with increases in MV-PVS volume over time. In females only, changes in BMI correlated with MV-PVS volume. One unit increase in BMI above a person's average BMI was associated with a 0.021 mm 3 /cm 3 increase in MV-PVS volume (p<0.001). Conclusion This longitudinal study showed sex differences in MV-PVS features during adolescence and young adulthood. Importantly, we report that increases in BMI from a person's mean BMI are associated with increases in MV-PVS volume in females only. These findings suggest a potential link between MV-PVS, sex, and BMI that warrants future study.
Collapse
|
26
|
Weijie Z, Meng Z, Chunxiao W, Lingjie M, Anguo Z, Yan Z, Xinran C, Yanjiao X, Li S. Obesity-induced chronic low-grade inflammation in adipose tissue: A pathway to Alzheimer's disease. Ageing Res Rev 2024; 99:102402. [PMID: 38977081 DOI: 10.1016/j.arr.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive impairment worldwide. Overweight and obesity are strongly associated with comorbidities, such as hypertension, diabetes, and insulin resistance (IR), which contribute substantially to the development of AD and subsequent morbidity and mortality. Adipose tissue (AT) is a highly dynamic organ composed of a diverse array of cell types, which can be classified based on their anatomic localization or cellular composition. The expansion and remodeling of AT in the context of obesity involves immunometabolic and functional shifts steered by the intertwined actions of multiple immune cells and cytokine signaling within AT, which contribute to the development of metabolic disorders, IR, and systemic markers of chronic low-grade inflammation. Chronic low-grade inflammation, a prolonged, low-dose stimulation by specific immunogens that can progress from localized sites and affect multiple organs throughout the body, leads to neurodystrophy, increased apoptosis, and disruption of homeostasis, manifesting as brain atrophy and AD-related pathology. In this review, we sought to elucidate the mechanisms by which AT contributes to the onset and progression of AD in obesity through the mediation of chronic low-grade inflammation, particularly focusing on the roles of adipokines and AT-resident immune cells.
Collapse
Affiliation(s)
- Zhai Weijie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wei Chunxiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Lingjie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Anguo
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000 China
| | - Zhang Yan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Cui Xinran
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xu Yanjiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Sun Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
27
|
Leonard KM, Schmiedecke SS, Talley RL, Damicis JR, Walton RB, Burd I, Napolitano PG, Ieronimakis N. Maternal obesity alters fetal neuroinflammation in a murine model of preterm birth. AJOG GLOBAL REPORTS 2024; 4:100361. [PMID: 39072339 PMCID: PMC11278798 DOI: 10.1016/j.xagr.2024.100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Preterm birth from intrauterine infection is a leading cause of neonatal neurologic morbidity. Likewise, maternal obesity is associated with intra-amniotic infection and inflammation. Whether maternal obesity is a risk factor for fetal brain injury that occurs with premature birth remains unknown. This study hypothesized that maternal obesity intensifies fetal neuroinflammation in the setting of premature delivery. OBJECTIVE This study aimed to examine the influence of maternal obesity on perinatal neuroinflammatory responses that arise with preterm birth using a murine model. STUDY DESIGN Dams with obesity were generated via a high-fat diet that was maintained throughout pregnancy. In parallel, dams without obesity (normal) received a control diet. All dams were paired with males on normal diet. Pregnant dams were randomized to receive an intrauterine administration of bacterial endotoxin (lipopolysaccharide) or the vehicle (phosphate-buffered saline) on embryo day 15.5 of what is typically a 19- to 21-day gestation. Fetal brains were harvested 6 hours after intrauterine administrations, and the expressions of key inflammatory cytokines (Il1b, Il6, and Tnf) and panels of metabolic, immune, and inflammatory genes were analyzed. RESULTS With the phosphate-buffered saline, there was no difference in gene expression related to maternal obesity. There were substantial differences in Il6 and immune/inflammatory expression profiles in fetal brains from dams with obesity vs normal dams that received lipopolysaccharide. Few differences were observed among the metabolic genes examined under these conditions. The gene expression pattern associated with maternal obesity correlated with pathways related to white matter injury. CONCLUSION The expression of neuroinflammatory markers instigated by bacterial endotoxin via intrauterine lipopolysaccharide was greater in embryo brains obtained from dams with obesity. Expression profiles suggest that in combination with intrauterine inflammation, maternal obesity may increase the risk of fetal white matter injury. Further investigation is warranted to understand the relationship between maternal health and neurologic outcomes associated with prematurity.
Collapse
Affiliation(s)
- Katherine M. Leonard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA (Leonard, Schmiedecke, Walton, and Ieronimakis)
| | - Stacey S. Schmiedecke
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA (Leonard, Schmiedecke, Walton, and Ieronimakis)
| | - Rebecca L. Talley
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA (Talley, Damicis, and Ieronimakis)
| | - Jennifer R. Damicis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA (Talley, Damicis, and Ieronimakis)
| | - Robert B. Walton
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA (Leonard, Schmiedecke, Walton, and Ieronimakis)
| | - Irina Burd
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland, Baltimore, MD (Burd)
| | - Peter G. Napolitano
- Department of Obstetrics and Gynecology, University of Washington Medical Center, Seattle, WA (Napolitano)
| | - Nicholas Ieronimakis
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA (Leonard, Schmiedecke, Walton, and Ieronimakis)
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA (Talley, Damicis, and Ieronimakis)
| |
Collapse
|
28
|
Malik S, Xavier S, Soch A, Younesi S, Yip J, Slayo M, Barrientos RM, Sominsky L, Spencer SJ. High-fat diet and aging-associated memory impairments persist in the absence of microglia in female rats. Neurobiol Aging 2024; 140:22-32. [PMID: 38703636 DOI: 10.1016/j.neurobiolaging.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Aging is associated with a priming of microglia such that they are hypersensitive to further immune challenges. As such high-fat diet during aging can have detrimental effects on cognition that is not seen in the young. However, conflicting findings also suggest that obesity may protect against cognitive decline during aging. Given this uncertainty we aimed here to examine the role of microglia in high-fat, high-sucrose diet (HFSD)-induced changes in cognitive performance in the aging brain. We hypothesised that 8 weeks of HFSD-feeding would alter microglia and the inflammatory milieu in aging and worsen aging-related cognitive deficits in a microglia-dependent manner. We found that both aging and HFSD reduced hippocampal neuron numbers and open field exploration; they also impaired recognition memory. However, the aging-related deficits occurred in the absence of a pro-inflammatory response and the deficits in memory performance persisted after depletion of microglia in the Cx3cr1-Dtr knock-in rat. Our data suggest that mechanisms additional to the acute microglial contribution play a role in aging- and HFSD-associated memory dysfunction.
Collapse
Affiliation(s)
- Sajida Malik
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Soniya Xavier
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Alita Soch
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Simin Younesi
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jackson Yip
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Mary Slayo
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Germany; Center for Mind, Brain and Behavior-CMBB, Giessen, Marburg, Germany
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Luba Sominsky
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; Barwon Health, Geelong, Victoria, Australia; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Wang MB, Rahmani F, Benzinger TLS, Raji CA. Edge Density Imaging Identifies White Matter Biomarkers of Late-Life Obesity and Cognition. Aging Dis 2024; 15:1899-1912. [PMID: 37196133 PMCID: PMC11272213 DOI: 10.14336/ad.2022.1210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/10/2022] [Indexed: 05/19/2023] Open
Abstract
Alzheimer disease (AD) and obesity are related to disruptions in the white matter (WM) connectome. We examined the link between the WM connectome and obesity and AD through edge-density imaging/index (EDI), a tractography-based method that characterizes the anatomical embedding of tractography connections. A total of 60 participants, 30 known to convert from normal cognition or mild-cognitive impairment to AD within a minimum of 24 months of follow up, were selected from the Alzheimer disease Neuroimaging Initiative (ADNI). Diffusion-weighted MR images from the baseline scans were used to extract fractional anisotropy (FA) and EDI maps that were subsequently averaged using deterministic WM tractography based on the Desikan-Killiany atlas. Multiple linear and logistic regression analysis were used to identify the weighted sum of tract-specific FA or EDI indices that maximized correlation to body-mass-index (BMI) or conversion to AD. Participants from the Open Access Series of Imaging Studies (OASIS) were used as an independent validation for the BMI findings. The edge-density rich, periventricular, commissural and projection fibers were among the most important WM tracts linking BMI to FA as well as to EDI. WM fibers that contributed significantly to the regression model related to BMI overlapped with those that predicted conversion; specifically in the frontopontine, corticostriatal, and optic radiation pathways. These results were replicated by testing the tract-specific coefficients found using ADNI in the OASIS-4 dataset. WM mapping with EDI enables identification of an abnormal connectome implicated in both obesity and conversion to AD.
Collapse
Affiliation(s)
- Maxwell Bond Wang
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
- Medical Scientist Training Program, University of Pittsburgh/Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, Missouri, USA.
| | - Tammie L. S Benzinger
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, Missouri, USA.
| | - Cyrus A Raji
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, Missouri, USA.
- Department of Neurology, Washington University in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Le GH, Kwan ATH, Guo Z, Wong S, Badulescu S, Gill H, Teopiz KM, Meshkat S, Ceban F, Phan L, Subramaniapillai M, Di Vincenzo JD, Rosenblat JD, Mansur RB, d'Andrea G, Ho R, Rhee TG, McIntyre RS. Impact of elevated body mass index (BMI) on cognitive functioning and inflammation in persons with post-COVID-19 condition: a secondary analysis. Acta Neuropsychiatr 2024; 36:211-217. [PMID: 38605630 DOI: 10.1017/neu.2024.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
BACKGROUND Individuals who have recovered from the acute stage of SARS-CoV-2 infection may be at risk of developing post-COVID-19 condition (PCC), characterised by a spectrum of persisting, non-specific, and functionally impairing symptoms across multiple organ systems. Obesity has been implicated as a risk factor for PCC, mediated by chronic systemic inflammation. The foregoing has also been separately reported to mediate cognitive dysfunction in PCC. METHODS This is a post-hoc analysis of a randomised, double-blinded, placebo-controlled clinical trial evaluating vortioxetine treatment for cognitive impairments in persons with PCC who received vortioxetine or placebo for eight weeks. This analysis comprises baseline data, examining the impact of BMI on cognitive functioning measured by the Digit Symbol Substitution Test (DSST) and Trails Making Tests (TMT)-A/B, as well as inflammation, via serum c-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). RESULTS Complete data from 70 participants were statistically analysed and adjusted for age and sex. BMI was negatively correlated with performance on the DSST (β = -0.003, p = 0.047), TMT-A (β = -0.006, p = 0.025), and TMT-B (β = -0.006, p = 0.002). BMI was positively correlated with serum CRP (unstandardized β = 0.193, standardized β = 0.612, p < 0.001) and ESR (β = 0.039, p < 0.001) levels. CONCLUSION We observed a significant negative correlation between BMI and cognitive functioning, and a significant positive correlation between BMI and inflammation in persons with PCC, suggesting a bidirectional interplay between BMI, PCC, and cognitive function; individuals with an elevated BMI may be at a greater risk of developing PCC and/or presenting with greater cognitive deficits mediated by chronic systemic inflammation.
Collapse
Affiliation(s)
- Gia Han Le
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Angela T H Kwan
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ziji Guo
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sabrina Wong
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Sebastian Badulescu
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Hartej Gill
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Shakila Meshkat
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Felicia Ceban
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
- Michael G. DeGroote School of Medicine. McMaster University, Hamilton, ON, Canada
| | - Lee Phan
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | | | - Joshua D Rosenblat
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Rodrigo B Mansur
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Giacomo d'Andrea
- Department of Neuroscience, Imaging and Clinical Sciences University "G d'Annunzio", Chieti, Italy
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Xu J, Xie L, Yin J, Shi X, Dong K, Tao J, Xu W, Ma D, Zhang S, Chen J, Yang Y. A High-Carbohydrate Diet Induces Cognitive Impairment and Promotes Amyloid Burden and Tau Phosphorylation via PI3K/Akt/GSK-3β Pathway in db/db Mice. Biomedicines 2024; 12:1701. [PMID: 39200168 PMCID: PMC11351503 DOI: 10.3390/biomedicines12081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Cognitive impairment is a prevalent complication of type 2 diabetes, influenced significantly by various dietary patterns. High-carbohydrate diets (HCDs) are commonly consumed nowadays; however, the specific impact of HCDs on cognitive function in diabetes remains unclear. METHODS The objective of this study was to investigate whether an HCD has effects on cognition in diabetes. Eight-week-old diabetic (db/db) mice and wild-type (WT) mice underwent a twelve-week dietary intervention, including a normal diet (ND), an HCD, or a high-fat diet (HFD). Following this, behavioral tests were conducted, and related hippocampal pathology was evaluated. RESULTS Our results demonstrated that an HCD exacerbated cognitive decline in db/db mice compared to an ND. Additionally, an HCD increased amyloid-β burden and expression of β-site APP cleaving enzyme-1. An HCD was also found to promote the phosphorylation of tau protein via the PI3K/Akt/GSK-3β pathway. Furthermore, an HCD markedly induced neuroinflammation and increased the quantity of microglia and astrocytes. However, these damages induced by an HCD were less severe than those caused by an HFD. CONCLUSIONS Collectively, our findings indicate that a high intake of carbohydrates can have an adverse impact on cognitive function in diabetes.
Collapse
Affiliation(s)
- Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Jiaxin Yin
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Jing Tao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| |
Collapse
|
32
|
Jantsch J, da Silva Rodrigues F, Silva Dias V, de Farias Fraga G, Eller S, Giovenardi M, Guedes RP. Calorie Restriction Attenuates Memory Impairment and Reduces Neuroinflammation in Obese Aged Rats. Mol Neurobiol 2024:10.1007/s12035-024-04360-9. [PMID: 39037530 DOI: 10.1007/s12035-024-04360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Obesity and aging collectively potentiate inflammatory responses, particularly within the central nervous system. Managing obesity presents a significant challenge, even more so considering the context of aging. Caloric restriction (CR) has been extensively documented in the literature for its multiple health benefits. Motivated by these findings, we hypothesized that CR could serve as a valuable intervention to address the brain alterations and cognitive decline associated with obesity in aged rats. Our investigation revealed that cafeteria diet increased hippocampal and hypothalamic transcripts related to neuroinflammation, along with cognitive deficits determined in the object recognition test in 18-month-old male rats. Western blot data indicate that the obesogenic diet may disrupt the blood-brain barrier and lead to an increase in Toll-like receptor 4 in the hippocampus, events that could contribute to the cognitive deficits observed. Implementing CR after the onset of obesity mitigated neuroinflammatory changes and cognitive impairments. We found that CR increases GABA levels in the hippocampus of aged animals, as demonstrated by liquid chromatography coupled with mass spectrometry analysis. These findings underscore the potential of CR as a therapeutic opportunity to ameliorate the neuroinflammatory and cognitive alterations of obesity, especially in the context of aging.
Collapse
Affiliation(s)
- Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Victor Silva Dias
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
33
|
Zagaria A, Fiori V, Vacca M, Lombardo C, Pariante CM, Ballesio A. Inflammation as a mediator between adverse childhood experiences and adult depression: A meta-analytic structural equation model. J Affect Disord 2024; 357:85-96. [PMID: 38677656 DOI: 10.1016/j.jad.2024.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Exposure to adverse childhood experiences (ACEs) confers a higher risk of developing depression in adulthood, yet the mediation of inflammation remains under debate. To test this model, we conducted a systematic review and two-stage structural equation modelling meta-analysis of studies reporting correlations between ACEs before age 18, inflammatory markers and depression severity in adulthood. Scopus, Pubmed, Medline, PsycInfo, and CINAHL were searched up to 2 October 2023. Twenty-two studies reporting data on C-reactive protein (CRP, n = 12,935), interleukin-6 (IL-6, n = 4108), tumour necrosis factor-α (TNF-α, n = 2256) and composite measures of inflammation (n = 1674) were included. Unadjusted models revealed that CRP (β = 0.003, 95 % LBCI 0.0002 to 0.0068), IL-6 (β = 0.003, 95 % LBCI 0.001 to 0.006), and composite inflammation (β = 0.009, 95 % LBCI 0.004 to 0.018) significantly mediated the association between ACEs and adult depression. The mediation effects no longer survived after adjusting for BMI; however, a serial mediation model revealed that BMI and IL-6 sequentially mediated the association between ACEs and depression (β = 0.002, 95 % LBCI 0.0005 to 0.0046), accounting for 14.59 % and 9.94 % of the variance of IL-6 and depressive symptoms, respectively. Due to the cross-sectional nature of assessment of inflammation and depression findings should be approached with caution; however, results suggest that complex interactions of psychoneuroimmunological and metabolic factors underlie the association between ACEs and adulthood depression.
Collapse
Affiliation(s)
- Andrea Zagaria
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Valeria Fiori
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Mariacarolina Vacca
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Caterina Lombardo
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrea Ballesio
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy.
| |
Collapse
|
34
|
Alves MDR, Nascimento RDP, da Fonseca Machado AP, Dos Santos P, Aledo E, Morandi Vuolo M, Cavalheiro CO, Giaculi VO, Berilli P, Dos Santos NM, Marostica Junior MR. Hop ( Humulus lupulus L.) extract reverts glycaemic imbalance and cognitive impairment in an animal model of obesity. Food Funct 2024; 15:7669-7680. [PMID: 38961720 DOI: 10.1039/d4fo02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The rates of overweight and obesity around the world have increased in past years. The body's adipose tissue stimulates the antioxidant and oxidation imbalance capacity at the cellular level. This scenario favors an inflammatory low-grade systemic condition starting with insulin resistance, which in turn may involve diabetes mellitus type 2 and cognitive decline afterward. Neurological diseases have been correlated to senile age diseases over time. This scenario calls for a change in the incidence of obesity in the younger generation. An unhealthy dietary consumption together with sedentary habits might lead to poor gut absorption of nutrients. Several plants and foods have bioactive compounds that can reduce or inhibit radical scavengers, reactive oxygen species, and metal ion complexes that threaten the cerebral defense system. The bitter acids from hops (Humulus lupulus L.) have been demonstrated to have promising effects on lipid and carbohydrate metabolism improvement, reducing inflammatory responses through alpha acids, beta acids, and analogs action. Therefore, the current study aimed to investigate the bioactivity of hop bitter acids in obese and lean mice. For that, a dry hop extract (DHE) was obtained by applying carbon dioxide as the fluid of supercritical extraction. Afterward, seventy-eight male mice of the C57BL/6J strain were weighed and randomly distributed into six groups of 13 animals each according to the diet offered: (NO) normolipidic diet, (NO1) normolipidic diet containing 0.35% alpha acids, (NO2) normolipidic diet containing 3.5% alpha acids, (HP) hyperlipidic diet, (HP1) hyperlipidic diet containing 0.35% alpha acids, and (HP2) hyperlipidic diet containing 3.5% alpha acids. After applying the glycemic tolerance and insulin tolerance tests, a better stabilization of glycemia levels and weight gain among those animals fed with DHE (NO2 and HP2) were observed in comparison to the obese control group (HP) (p < 0.05). There was also an amelioration of antioxidant capacity observed by checking the enzymatic profile by SOD and an apparent mitigation of brain degeneration by checking GSK3β and p-IRS1 proteins expression (p < 0.05). The y-maze cognitive test applied to highlight possible obesity-harmful animal brains did not indicate a statistical difference between the groups. Although the weekly dietary intake between the obese HP2 group (33.32 ± 4.11, p < 0.05) and control HP (42.3 ± 5.88, p < 0.05) was different. The bioactive compounds present in DHE have demonstrated relevant effects on glycemic control, insulin signaling, and the consequent modulatory action of the obesity-related markers with the brain's inflammatory progression.
Collapse
Affiliation(s)
- Mariana da Rocha Alves
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Roberto de Paula Nascimento
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Ana Paula da Fonseca Machado
- Universidade Federal da Grande Dourados, Faculdade de Engenharia, Rod. Dourados-Itahum Km 12, C.P.: 79804-970 - Dourados, Mato Grosso do Sul, Brasil
| | - Philipe Dos Santos
- Rubian xtratos LTDA, Rua do Café, 375 Vila Valle, 13174-000, Sumaré, São Paulo, Brazil
| | - Eduardo Aledo
- Rubian xtratos LTDA, Rua do Café, 375 Vila Valle, 13174-000, Sumaré, São Paulo, Brazil
| | - Milena Morandi Vuolo
- Rubian xtratos LTDA, Rua do Café, 375 Vila Valle, 13174-000, Sumaré, São Paulo, Brazil
| | - Carolina Oliveira Cavalheiro
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Vinícius Oliveira Giaculi
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Patrícia Berilli
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Nathália Medina Dos Santos
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Mario Roberto Marostica Junior
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
35
|
Del Campo-Rota IM, Delgado-Casillas OM, Ibarra A. Cognitive Impairment Induced by Gestational Diabetes: The Role of Oxidative Stress. Arch Med Res 2024; 55:103016. [PMID: 38870549 DOI: 10.1016/j.arcmed.2024.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Cognitive impairment is defined as a neurological condition that alters multiple cerebral functions such as reasoning, memory, concentration, and association, among others. It has found to be widely correlated with several factors such as oxidative stress. The latter could be induced by numerous pathological conditions characterized by increased levels of free radicals and decreased levels of antioxidants. Pregnancy is a period when women undergo a physiological state of oxidative stress due to hormonal changes and increased oxygen requirements to maintain pregnancy. However, when oxidative stress exceeds antioxidant capacity, this leads to cellular damage that promotes a diabetogenic state. Recent studies suggest a possible association between gestational diabetes and cognitive impairment, but the underlying mechanisms remain unclear. AIMS We aim to explore the pathophysiological relationship between cognitive impairment and oxidative stress, focusing on the possible involvement of oxidative stress as the inducing mechanism. METHODS We performed a comprehensive literature review through PubMed and Google Scholar. Our keywords were "neuroinflammation", "cognitive impairment", "gestational diabetes", "oxidative stress", "antioxidants", and "free radicals". RESULTS From the initial 400 records identified, a total of 78 studies were analyzed and included in our study. CONCLUSION Oxidative stress plays a fundamental role in the development of cognitive impairment. Understanding this correlation is essential to the development of targeted medical interventions and, ultimately, promote research and prevention that will benefit the mother-child binomial in the short and long term.
Collapse
Affiliation(s)
- Isabel Martin Del Campo-Rota
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo. de México, Mexico
| | - Oscar Mario Delgado-Casillas
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo. de México, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo. de México, Mexico; Secretaría de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de México, Mexico.
| |
Collapse
|
36
|
Campanile AA, Eckel LA, Keel PK. Elevated interleukin-6 in women with binge-eating spectrum disorders. Int J Eat Disord 2024; 57:1510-1517. [PMID: 38445571 PMCID: PMC11262979 DOI: 10.1002/eat.24183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE Binge-eating spectrum disorders (BESD) involve large eating episodes accompanied by a sense of loss of control that occur in individuals with body weights spanning the full body mass index (BMI) spectrum. While research links BESD with peripheral inflammation, this literature is limited by underpowered studies and a failure to control for confounding variables that could promote inflammation independent of dysregulated eating, specifically elevated body adiposity and depression. Our study examined plasma interleukin-6 (IL-6), a marker of peripheral inflammation, in a sample of women with BESD and non-eating disorder controls, controlling for BMI, body adiposity, and depression. METHOD Participants (N = 94) included women with BESD (n = 73) or no eating disorder (n = 21) who completed structured clinical interviews in a larger study, selected to represent BMI categories ranging from underweight to obese in both groups. Fasting blood samples were processed for plasma IL-6 concentration via enzyme-linked immunosorbent assays. In addition to assessing group differences in plasma IL-6, exploratory analyses examined associations between IL-6 and biological and clinical markers of BESD. RESULTS Significantly elevated plasma IL-6 was found in women with BESD, relative to controls, that was not accounted for by BMI, adiposity, or depression. Plasma IL-6 was positively correlated with plasma leptin concentration, clinical assessments of eating disorder severity, and participants' largest self-reported eating episode. DISCUSSION Peripheral inflammation is specifically linked to presence of dysregulated eating independently from weight, adiposity, and depression in BESD. Future research should probe the potential role of neuroinflammation in altered eating behavior. PUBLIC SIGNIFICANCE This study provides the first demonstration that inflammation, characterized by elevated plasma IL-6 concentration, is uniquely associated with dysregulated eating in a transdiagnostic group of individuals with BESD. A better understanding of whether immune factors contribute to dysregulated eating could help identify novel biological targets for intervention.
Collapse
Affiliation(s)
- Alexis A. Campanile
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - Lisa A. Eckel
- Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Pamela K. Keel
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
37
|
Fabris-Moraes W, Lacerda GJM, Pacheco-Barrios K, Fregni F. The Impact of Obesity as a Peripheral Disruptor of Brain Inhibitory Mechanisms in Fibromyalgia: A Cross-Sectional Study. J Clin Med 2024; 13:3878. [PMID: 38999444 PMCID: PMC11242580 DOI: 10.3390/jcm13133878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objective: Obesity, characterized by chronic inflammation, may serve as a surrogate marker for more dysfunctional peripheral inflammation, potentially exacerbating FM symptomatology. Given this premise, this study aimed to investigate the effects of obesity as an effect modifier on neural and clinical variables, specifically those indexing pain-compensatory mechanisms in FM symptoms. Methods: A cross-sectional study was conducted with 108 participants who underwent a standardized TMS protocol assessment to measure resting motor threshold (MT), intracortical facilitation (ICF), and intracortical inhibition (ICI). Clinical data were collected using Beck's Depression Index (BDI), PROMIS, the Brief Pain Inventory (BPI), and conditioned pain modulation (CPM). Linear regression models were used to explore the relationship between these variables while examining Body Mass Index (BMI) as a potential effect modifier. If it was found to be a modifier, we stratified the sample into two groups with a BMI cutoff of 30 and performed another regression model within the subgroups. Results: BMI was identified as an effect modifier in the relationships between ICI and BDI, PROMIS fatigue, and CPM and in MT versus CPM. After stratification, non-obese fibromyalgia subjects demonstrated significant correlations between clinical symptoms and CPM and ICI activity. However, these correlations were absent in the obese group, suggesting obesity disrupts pain mechanisms and their compensatory effects. Higher MT values were associated with weaker endogenous pain control, particularly evident in the obese group. Conclusions: Obesity appears to be a significant effect modifier and delineates two patient groups across multiple clinical and neural assessments of fibromyalgia. Additionally, it suggests a role for obesity in exacerbating fibromyalgia symptoms and disrupting physiological pain-inhibitory mechanisms.
Collapse
Affiliation(s)
- Walter Fabris-Moraes
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (W.F.-M.)
- Faculty of Medicine FMUSP, University of São Paulo, São Paulo 01246-903, SP, Brazil
| | - Guilherme J. M. Lacerda
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (W.F.-M.)
- Faculty of Medicine FMUSP, University of São Paulo, São Paulo 01246-903, SP, Brazil
- Instituto de MedicinaFísica e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 04116-030, SP, Brazil
| | - Kevin Pacheco-Barrios
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (W.F.-M.)
- Unidad de Investigación para la Generación y Síntesis de Evidenciasen Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima 150114, Peru
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (W.F.-M.)
| |
Collapse
|
38
|
da Silva Rodrigues F, Jantsch J, de Farias Fraga G, Luiza de Camargo Milczarski V, Silva Dias V, Scheid C, de Oliveira Merib J, Giovernardi M, Padilha Guedes R. Cannabidiol improves maternal obesity-induced behavioral, neuroinflammatory and neurochemical dysfunctions in the juvenile offspring. Brain Behav Immun 2024; 119:301-316. [PMID: 38608740 DOI: 10.1016/j.bbi.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Maternal obesity is associated with an increased risk of psychiatric disorders such as anxiety, depression, schizophrenia and autism spectrum disorder in the offspring. While numerous studies focus on preventive measures targeting the mothers, only a limited number provide practical approaches for addressing the damages once they are already established. We have recently demonstrated the interplay between maternal obesity and treatment with cannabidiol (CBD) on hypothalamic inflammation and metabolic disturbances, however, little is known about this relationship on behavioral manifestations and neurochemical imbalances in other brain regions. Therefore, here we tested whether CBD treatment could mitigate anxiety-like and social behavioral alterations, as well as neurochemical disruptions in both male and female offspring of obese dams. Female Wistar rats were fed a cafeteria diet for 12 weeks prior to mating, and during gestation and lactation. Offspring received CBD (50 mg/kg) from weaning for 3 weeks. Behavioral tests assessed anxiety-like manifestations and social behavior, while neuroinflammatory and neurochemical markers were evaluated in the prefrontal cortex (PFC) and hippocampus. CBD treatment attenuated maternal obesity-induced anxiety-like and social behavioral alterations, followed by rescuing effects on imbalanced neurotransmitter and endocannabinoid concentrations and altered expression of glial markers, CB1, oxytocin and dopamine receptors, with important differences between sexes. Overall, the findings of this study provide insight into the signaling pathways for the therapeutic benefits of CBD on neuroinflammation and neurochemical imbalances caused by perinatal maternal obesity in the PFC and the hippocampus, which translates into the behavioral manifestations, highlighting the sexual dimorphism encompassing both the transgenerational effect of obesity and the endocannabinoid system.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória Luiza de Camargo Milczarski
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Silva Dias
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Scheid
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josias de Oliveira Merib
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia Giovernardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170 Rio Grande do Sul, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170 Rio Grande do Sul, Brazil.
| |
Collapse
|
39
|
Raitamaa L, Kautto J, Tuunanen J, Helakari H, Huotari N, Järvelä M, Korhonen V, Kiviniemi V. Association of body-mass index with physiological brain pulsations across adulthood - a fast fMRI study. Int J Obes (Lond) 2024; 48:1011-1018. [PMID: 38553569 PMCID: PMC11216984 DOI: 10.1038/s41366-024-01515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND/OBJECTIVE Obesity is a risk factor for several brain-related health issues, and high body-mass index (BMI) is associated with an increased risk for several neurological conditions, including cognitive decline and dementia. Cardiovascular, respiratory, and vasomotor brain pulsations have each been shown to drive intracranial cerebrovascular fluid (CSF) flow, which is linked to the brain metabolite efflux that sustains homeostasis. While these three physiological pulsations are demonstrably altered in numerous brain diseases, there is no previous investigation of the association between physiological brain pulsations and BMI. SUBJECTS/METHODS We measured the amplitudes of the physiological brain pulsations using amplitude of low frequency fluctation (ALFF) based method with resting-state functional magnetic resonance imaging via high temporal resolution whole-brain magnetic resonance encephalography (MREG) in 115 healthy subjects. We next undertook multiple linear regression to model the BMI effect voxel-wise whole-brain on very low frequency (VLF), respiration, cardiovascular, and respiratory induced modulation of cardiovascular pulsation amplitudes with age, pulse pressure, and gender as nuisance variables. RESULTS In our study population, BMI was positively associated with the amplitudes of vasomotor, respiratory, and respiratory induced modulations of cardiovascular pulsations (p < 0.05), while negatively associated with the amplitudes of cardiovascular pulsations (p < 0.05). CONCLUSIONS The findings suggest that BMI is a significant factor in alterations of cardiovascular pulsation of neurofluids. As physiological pulsations are the drivers of CSF flow and subsequent metabolite clearance, these results emphasize the need for further research into the mechanisms through which obesity affects brain clearance.
Collapse
Affiliation(s)
- Lauri Raitamaa
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland.
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland.
| | - Joona Kautto
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Johanna Tuunanen
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Heta Helakari
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Niko Huotari
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Matti Järvelä
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
40
|
Adise S, Ottino-Gonzalez J, Rezvan PH, Kan E, Rhee KE, Goran MI, Sowell ER. Smaller subcortical volume relates to greater weight gain in girls with initially healthy weight. Obesity (Silver Spring) 2024; 32:1389-1400. [PMID: 38710591 PMCID: PMC11211063 DOI: 10.1002/oby.24028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE Among 3614 youth who were 9 to 12 years old and initially did not have overweight or obesity (12% [n = 385] developed overweight or obesity), we examined the natural progression of weight gain and brain structure development during a 2-year period with a high risk for obesity (e.g., pre- and early adolescence) to determine the following: 1) whether variation in maturational trajectories of the brain regions contributes to weight gain; and/or 2) whether weight gain contributes to altered brain development. METHODS Data were gathered from the Adolescent Brain Cognitive Development (ABCD) Study. Linear mixed-effects regression models controlled for puberty, caregiver education, handedness, and intracranial volume (random effects: magnetic resonance scanner [MRI] scanner and participant). Because pubertal development occurs earlier in girls, analyses were stratified by sex. RESULTS For girls, but not boys, independent of puberty, greater increases in BMI were driven by smaller volumes over time in the bilateral accumbens, amygdala, hippocampus, and thalamus, right caudate and ventral diencephalon, and left pallidum (all p < 0.05). CONCLUSIONS The results suggest a potential phenotype for identifying obesity risk because underlying differences among regions involved in food intake were related to greater weight gain in girls, but not in boys. Importantly, 2 years of weight gain may not be sufficient to alter brain development, highlighting early puberty as a critical time to prevent negative neurological outcomes.
Collapse
Affiliation(s)
- Shana Adise
- Department of Pediatrics, Division of Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Jonatan Ottino-Gonzalez
- Department of Pediatrics, Division of Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Panteha Hayati Rezvan
- Biostatistics and Data Management Core, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Eric Kan
- Department of Pediatrics, Division of Pediatric Research Administration, Children’s Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Kyung E. Rhee
- Department of Pediatrics, University of California, San Diego, San Diego, California, United States of America
| | - Michael I Goran
- Department of Pediatrics, Division of Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Elizabeth R. Sowell
- Department of Pediatrics, Division of Neurology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
41
|
Shi R, Tian X, Zhang T, Ji A, Xu H, Qi Z, Zhao C, Li D. The consumption of lard oil during pregnancy and postpartum periods has negative effects on cognitive function by altering the fatty acid profile and activating neuroinflammation via calcium signaling pathway in the maternal mice brain. Curr Res Food Sci 2024; 9:100797. [PMID: 39005495 PMCID: PMC11246016 DOI: 10.1016/j.crfs.2024.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
It has been suggested that dietary intake of lipids and fatty acids may influence cognitive function, however, the effect of lard intake during pregnancy and postpartum periods on cognitive function of mother remains to be elucidated. We investigated the effect and mechanism of consuming soybean oil (SO), the mixed oil of lard and soybean oil at the ratio of 1:1 (LS) and lard oil (LO) during the pregnancy and postpartum periods on cognitive function of the maternal mice. All pregnant C57BL/6JNifdc mice were fed with soybean oil diet during day 0-10 (the day when vaginal plugs appeared in female mice was recorded as day 0), and then randomly assigned to SO, LS and LO groups (n = 10) from day 11 to day 44. The time in center zone and the number of times to enter in center zone were significantly higher in the SO group than in the LO group detected by the open-field test. The levels of neuroglial cells, NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex and pyroptosis related proteins in brain of the LO group were significantly higher than those in the SO group. RNA-sequencing results showed that the calcium signaling pathway related genes in brain, including Adcy8, Ntsr1, Trhr, Oxtr, Htr5b and Camk2d levels significantly higher in the LO group than in the SO group. Lipidomic analysis indicated that PG 18:2_18:2, PG 20:5_22:6, and CL 12:0_16:0_22:3_22:5 of glycerophospholipid metabolism in brain significantly connected with Htr5b of calcium signaling pathway. In conclusion, the intake of lard during the pregnancy and postpartum periods is detrimental to the cognitive function of maternal mice, which probably due to changes in the composition of fatty acid in the brain, thereby activating neuroinflammation via calcium signaling pathway in brain.
Collapse
Affiliation(s)
- Runjia Shi
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiaoying Tian
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Tianyu Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
- College of Life Sciences, Dezhou University, Dezhou, 253023, China
| | - Andong Ji
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Huina Xu
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Zhongshi Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Chunhui Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC3168, Australia
| |
Collapse
|
42
|
Mikkelsen ACD, Kjærgaard K, Mookerjee RP, Vilstrup H, Wegener G, Bay-Richter C, Thomsen KL. Non-alcoholic Fatty Liver Disease: Also a Disease of the Brain? A Systematic Review of the Preclinical Evidence. Neurochem Res 2024; 49:1468-1488. [PMID: 35230646 DOI: 10.1007/s11064-022-03551-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/19/2021] [Accepted: 02/05/2022] [Indexed: 12/09/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) currently affects 25% of the global adult population. Cognitive impairment is a recently recognised comorbidity impeding memory, attention, and concentration, affecting the patients' activities of daily living and reducing their quality of life. This systematic review provides an overview of the evidence for, and potential pathophysiological mechanisms behind brain dysfunction at a neurobiological level, in preclinical NAFLD. We performed a systematic literature search for animal models of NAFLD studying intracerebral conditions using PubMed, Embase and Scopus. We included studies that reported data on neurobiology in rodent and pig models with evidence of steatosis or steatohepatitis assessed by liver histology. 534 unique studies were identified, and 30 studies met the selection criteria, and were included. Findings of neurobiological changes were divided into five key areas: (1) neuroinflammation, (2) neurodegeneration, (3) neurotransmitter alterations, (4) oxidative stress, and (5) changes in proteins and synaptic density. Despite significant heterogeneity in the study designs, all but one study of preclinical NAFLD reported changes in one or more of the above key areas when compared to control animals. In conclusion, this systematic review supports an association between all stages of NAFLD (from simple steatosis to non-alcoholic steatohepatitis (NASH)) and neurobiological changes in preclinical models.
Collapse
Affiliation(s)
| | - Kristoffer Kjærgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Rajeshwar Prosad Mookerjee
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, UK
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Cecilie Bay-Richter
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, UK
| |
Collapse
|
43
|
Rogers RJ, Doherty M, Jones D, Jakicic JM, Church TS. Impact of a digital employer-based weight loss program on individuals age 65 or older. FRONTIERS IN AGING 2024; 5:1337418. [PMID: 38841343 PMCID: PMC11150599 DOI: 10.3389/fragi.2024.1337418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Introduction Older adults are not protected from obesity, which has been linked to frailty, cognitive impairment, and other aging-related factors. Intensive lifestyle interventions have been shown to be effective for weight loss in older adults; however, these have typically been highly intensive and less feasible for dissemination. This analysis describes weight loss in a large-scale, commercially available, digital intervention in a subset of older adults. Methods Older adults (N = 20,443, males = 6,238; females = 14,205) between 65 and 85 years of age with overweight (43.3%) or obesity (46.7%) participated in an online, self-directed weight loss program. Behavioral-based content was delivered through weekly video lessons within an online platform that included weight and physical activity tracking, an online community, a reference library, and access to coaching support. Self-reported measures taken at the time of entry into the program were used for this analysis (demographics, height, body weight, and health status). Weight was reported across weeks of engagement in the curriculum. Results The average weight loss was -3.15 kg (95% CI: [-3.20, -3.11]) at 15.5 weeks. Weight loss was significantly greater in male individuals (-3.79 kg [95% CI: -3.89, -3.71]) versus female individuals (-2.87 kg [95% CI: -2.94, -2.82]) (p < 0.001), with a similar engagement in curriculum weeks. Percent weight loss was statistically significant for all age categories (p < 0.05) and self-reported health conditions (p < 0.05). Discussion Short-term weight loss was observed in older adults exposed to a low-touch, self-guided, and digital behavioral-based weight loss program. Weight loss was also observed even in the presence of various chronic health conditions.
Collapse
Affiliation(s)
- Renee J. Rogers
- Department of Internal Medicine, Division of Physical Activity and Weight Management, University of Kansas Medical Center, Kansas City, KS, United States
- Wondr Health, Dallas, TX, United States
| | | | | | - John M. Jakicic
- Department of Internal Medicine, Division of Physical Activity and Weight Management, University of Kansas Medical Center, Kansas City, KS, United States
| | | |
Collapse
|
44
|
Angarita-Rodríguez A, Matiz-González JM, Pinzón A, Aristizabal AF, Ramírez D, Barreto GE, González J. Enzymatic Metabolic Switches of Astrocyte Response to Lipotoxicity as Potential Therapeutic Targets for Nervous System Diseases. Pharmaceuticals (Basel) 2024; 17:648. [PMID: 38794218 PMCID: PMC11124372 DOI: 10.3390/ph17050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators by potentially exacerbating neurotoxicity, thereby offering promising therapeutic targets. Herein, we characterized these enzymatic MSs in silico as potential therapeutic targets, employing protein-protein and drug-protein interaction networks alongside structural characterization techniques. Our findings indicate that five MSs (P00558, P04406, Q08426, P09110, and O76062) were functionally linked to nervous system drug targets and may be indirectly regulated by specific neurological drugs, some of which exhibit polypharmacological potential (e.g., Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol). Furthermore, four MSs (P00558, P04406, Q08426, and P09110) feature ligand-binding or allosteric cavities with druggable potential. Our results advocate for a focused exploration of P00558 (phosphoglycerate kinase 1), P04406 (glyceraldehyde-3-phosphate dehydrogenase), Q08426 (peroxisomal bifunctional enzyme, enoyl-CoA hydratase, and 3-hydroxyacyl CoA dehydrogenase), P09110 (peroxisomal 3-ketoacyl-CoA thiolase), and O76062 (Delta(14)-sterol reductase) as promising targets for the development or repurposing of pharmacological compounds, which could have the potential to modulate lipotoxic-altered metabolic pathways, offering new avenues for the treatment of related human diseases such as neurological diseases.
Collapse
Affiliation(s)
- Andrea Angarita-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - J. Manuel Matiz-González
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá 110121, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Andrés Felipe Aristizabal
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
45
|
Chen W, Sun X, Han J, Wu X, Wang Q, Li M, Lei X, Wu Y, Li Z, Luo G, Wei M. Joint effect of abnormal systemic immune-inflammation index (SII) levels and diabetes on cognitive function and survival rate: A population-based study from the NHANES 2011-2014. PLoS One 2024; 19:e0301300. [PMID: 38709763 PMCID: PMC11073711 DOI: 10.1371/journal.pone.0301300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/13/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE The purpose of this study was to investigate whether the combination of abnormal systemic immune-inflammation index (SII) levels and hyperglycemia increased the risk of cognitive function decline and reduced survival rate in the United States. METHODS This cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) database from 2011-2014 and enrolled 1,447 participants aged 60 years or older. Restricted cubic splines (RCS), linear regression and kaplan-meier(KM) curve were employed to explore the combined effects of abnormal SII and hyperglycemia on cognitive function and survival rate, and subgroup analysis was also conducted. RESULTS The RCS analysis revealed an inverted U-shaped relationship between lgSII levels and cognitive function. Linear regression analysis indicated that neither abnormal SII nor diabetes alone significantly contributed to the decline in cognitive function compared to participants with normal SII levels and blood glucose. However, when abnormal SII coexisted with diabetes (but not prediabetes), it resulted to a significant decline in cognitive function. After adjusting for various confounding factors, these results remained significant in Delayed Word Recall (β:-0.76, P<0.05) and Digit Symbol Substitution tests (β:-5.02, P<0.05). Nevertheless, these results showed marginal significance in Total Word Recall test as well as Animal Fluency test. Among all subgroup analyses performed, participants with both abnormal SII levels and diabetes exhibited the greatest decline in cognitive function compared to those with only diabetes. Furthermore, KM curve demonstrated that the combination of abnormal SII levels and diabetes decreased survival rate among participants. CONCLUSION The findings suggest that the impact of diabetes on cognitive function/survival rate is correlated with SII levels, indicating that their combination enhances predictive power.
Collapse
Affiliation(s)
- Wanying Chen
- Department of Neurology, The First Affiliated Hospital of Xi ’an Jiaotong University, Xi’an, China
| | - Xinyue Sun
- Department of Neurology, The First Affiliated Hospital of Xi ’an Jiaotong University, Xi’an, China
| | - Jiaxin Han
- Department of Neurology, The First Affiliated Hospital of Xi ’an Jiaotong University, Xi’an, China
| | - Xiaoyu Wu
- Department of Neurology, The First Affiliated Hospital of Xi ’an Jiaotong University, Xi’an, China
| | - Qingfan Wang
- Department of Neurology, The First Affiliated Hospital of Xi ’an Jiaotong University, Xi’an, China
| | - Mengmeng Li
- Department of Neurology, The First Affiliated Hospital of Xi ’an Jiaotong University, Xi’an, China
| | - Xiangyu Lei
- Department of Neurology, The First Affiliated Hospital of Xi ’an Jiaotong University, Xi’an, China
| | - Yixuan Wu
- Department of Neurology, The First Affiliated Hospital of Xi ’an Jiaotong University, Xi’an, China
| | - Zhiheng Li
- Department of Neurology, The First Affiliated Hospital of Xi ’an Jiaotong University, Xi’an, China
| | - Guogang Luo
- Department of Neurology, The First Affiliated Hospital of Xi ’an Jiaotong University, Xi’an, China
| | - Meng Wei
- Department of Neurology, The First Affiliated Hospital of Xi ’an Jiaotong University, Xi’an, China
| |
Collapse
|
46
|
Zhang G, Wang S, Ma P, Li S, Sun X, Zhao Y, Pan J. Increased regional body fat is associated with depressive symptoms: a cross-sectional analysis of NHANES data obtained during 2011-2018. BMC Psychiatry 2024; 24:336. [PMID: 38702637 PMCID: PMC11067210 DOI: 10.1186/s12888-024-05782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS The findings from previous epidemiological studies of the association between regional body fat and depressive symptoms have been unclear. We aimed to determine the association between the body fat in different regions and depressive symptoms based on data from the National Health and Nutrition Examination Survey (NHANES). METHODS This study included 3393 participants aged ≥ 20 years from the NHANES performed during 2011-2018. Depressive symptoms were assessed using the Patient Health Questionnaire-9. The fat mass (FM) was measured in different regions using dual-energy X-ray absorptiometry to determine the total FM, trunk FM, arm FM, and leg FM. The FM index (FMI) was obtained by dividing the FM in kilograms by the square of the body height in meters. Weighted data were calculated in accordance with analytical guidelines. Linear logistic regression models were used to quantify the association between regional FMI and depressive symptoms. Univariate and stratified analyses were also performed. RESULTS The participants in this study comprised 2066 males and 1327 females. There were 404 (11.91%) participants with depressive symptoms, who were aged 40.89 ± 11.74 years and had a body mass index of 30.07 ± 7.82 kg/m². A significant association was found between total FMI and depressive symptoms. In the fully adjusted multivariate regression model, a higher total FMI (odds ratio = 2.18, 95% confidence interval [CI] = 1.08-4.39) was related to a higher risk of depressive symptoms, while increased total FMI (β = 1.55, 95% CI = 0.65-2.44, p = 0.001), trunk FMI (β = 0.57, 95% CI = 0.04-1.10, p = 0.036), and arm FMI (β = 0.96, 95% CI = 0.33-1.59, p = 0.004) were significantly associated with PHQ-9 (Patient Health Questionnaire-9) scores, whereas the leg FMI was not (p = 0.102). The weighted association between total FMI and depressive symptoms did not differ significantly between most of the subpopulations (all p values for interaction > 0.05). The risk of having depression was higher in individuals who were non-Hispanic Whites, smokers, drinkers, obese, and had diabetes and thyroid problems (p < 0.05). CONCLUSION These findings suggest that the population with a higher regional FMI is more likely to have depressive symptoms, especially in those who also have an increased total FMI. The association is more pronounced in individuals who are smokers, drinkers, obese, and have diabetes and thyroid problems.
Collapse
Affiliation(s)
- GuiMei Zhang
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Sisi Wang
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Ping Ma
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Shuna Li
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xizhe Sun
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Yang Zhao
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Jiyang Pan
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China.
| |
Collapse
|
47
|
Huang H, Liao X, Zhang A, Qiu B, Mei F, Liu F, Zeng K, Yang C, Ma H, Ding W, Qi S, Bao Y. Cerebrospinal Fluid from Patients After Craniotomy with the Appearance of Interleukin-6 Storm Can Activate Microglia to Damage the Hypothalamic Neurons in Mice. Mol Neurobiol 2024; 61:2707-2718. [PMID: 37924484 DOI: 10.1007/s12035-023-03693-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
We monitored CSF (cerebrospinal fluid) for Th1/Th2 inflammatory cytokines in a patient with unexplained postoperative disturbance of consciousness after craniotomy and found that the level of IL-6 (interleukin-6) concentrations was extremely high, meeting the traditional criteria for an inflammatory cytokine storm. Subsequently, the cerebrospinal fluid specimens of several patients were tested, and it was found that IL-6 levels were increased in different degrees after craniotomy. Previous studies have focused more on mild and long-term IL-6 elevation, but less on the effects of this short-term IL-6 inflammatory cytokine storm. Cerebrospinal fluid rich in IL-6 may play a significant role in patients after craniotomy. The objective is to explore the degree of IL-6 elevation and the incidence of IL-6 inflammatory cytokine storm in patients after craniotomy, as well as the effect of IL-6 elevation on the brain. In this study, the levels and clinical manifestations of inflammatory factors in cerebrospinal fluid after craniotomy were statistically classified, and the underlying mechanisms were discussed preliminarily. CSF specimens of patients after craniotomy were collected, IL-6 level was measured at 1, 5, and 10 days after operation, and cognitive function was analyzed at 1, 10, and 180 days after surgery. Craniotomy mouse model, cerebrospinal fluid of patients with the appearance of IL-6 storm after craniotomy, and IL-6 at the same concentration stimulation model were established. Behavioral tests, fluorescence in situ hybridization (FISH), pathological means, western blot, and ELISA (enzyme-linked immune-sorbent assay) were performed for verification. CSF from patients after craniotomy caused disturbance of consciousness in mice, affected neuronal damage in the hypothalamus, activation of microglia in the hypothalamus, and decreased expression of barrier proteins in the hypothalamus and brain. The large amount of interleukin-6 in CSF after craniotomy was found to be mainly derived from astrocytes. The IL-6 level in CSF after craniotomy correlated inversely with patients' performance in MoCA test. High levels of IL-6 in the cerebrospinal fluid derived from astrocytes after craniotomy may lead to disruption of the brain-cerebrospinal fluid barrier, most notably around the hypothalamus, which might result in inflammatory activation of microglia to damage the hypothalamic neurons and impaired cognitive function/more gradual cognitive repairment in patients after craniotomy with the appearance of IL-6 storm.
Collapse
Affiliation(s)
- Haorun Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Xixian Liao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - An Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Binghui Qiu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fen Mei
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fan Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Kai Zeng
- The First Clinical College, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Chunen Yang
- The First Clinical College, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Haidie Ma
- The First Clinical College, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Wenjie Ding
- The First Clinical College, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China.
| | - Yun Bao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
48
|
Anderson T, Sharma S, Kelberman MA, Ware C, Guo N, Qin Z, Weinshenker D, Parent MB. Obesity during preclinical Alzheimer's disease development exacerbates brain metabolic decline. J Neurochem 2024; 168:801-821. [PMID: 37391269 DOI: 10.1111/jnc.15900] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Obesity in middle age increases AD risk and severity, which is alarming given that obesity prevalence peaks at middle age and obesity rates are accelerating worldwide. Midlife, but not late-life obesity increases AD risk, suggesting that this interaction is specific to preclinical AD. AD pathology begins in middle age, with accumulation of amyloid beta (Aβ), hyperphosphorylated tau, metabolic decline, and neuroinflammation occurring decades before cognitive symptoms appear. We used a transcriptomic discovery approach in young adult (6.5 months old) male and female TgF344-AD rats that overexpress mutant human amyloid precursor protein and presenilin-1 and wild-type (WT) controls to determine whether inducing obesity with a high-fat/high-sugar "Western" diet during preclinical AD increases brain metabolic dysfunction in dorsal hippocampus (dHC), a brain region vulnerable to the effects of obesity and early AD. Analyses of dHC gene expression data showed dysregulated mitochondrial and neurotransmission pathways, and up-regulated genes involved in cholesterol synthesis. Western diet amplified the number of genes that were different between AD and WT rats and added pathways involved in noradrenergic signaling, dysregulated inhibition of cholesterol synthesis, and decreased intracellular lipid transporters. Importantly, the Western diet impaired dHC-dependent spatial working memory in AD but not WT rats, confirming that the dietary intervention accelerated cognitive decline. To examine later consequences of early transcriptional dysregulation, we measured dHC monoamine levels in older (13 months old) AD and WT rats of both sexes after long-term chow or Western diet consumption. Norepinephrine (NE) abundance was significantly decreased in AD rats, NE turnover was increased, and the Western diet attenuated the AD-induced increases in turnover. Collectively, these findings indicate obesity during prodromal AD impairs memory, potentiates AD-induced metabolic decline likely leading to an overproduction of cholesterol, and interferes with compensatory increases in NE transmission.
Collapse
Affiliation(s)
- Thea Anderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Sumeet Sharma
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael A Kelberman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher Ware
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Nanxi Guo
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
- Department of Psychology, Georgia State University, Georgia, USA
| |
Collapse
|
49
|
Henry RJ, Barrett JP, Vaida M, Khan NZ, Makarevich O, Ritzel RM, Faden AI, Stoica BA. Interaction of high-fat diet and brain trauma alters adipose tissue macrophages and brain microglia associated with exacerbated cognitive dysfunction. J Neuroinflammation 2024; 21:113. [PMID: 38685031 PMCID: PMC11058055 DOI: 10.1186/s12974-024-03107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.
Collapse
Affiliation(s)
- Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Vaida
- Harrisburg University of Science and Technology, 326 Market St, Harrisburg, PA, USA
| | - Niaz Z Khan
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Oleg Makarevich
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, 21201, USA
| |
Collapse
|
50
|
Veneziani I, Grimaldi A, Marra A, Morini E, Culicetto L, Marino S, Quartarone A, Maresca G. Towards a Deeper Understanding: Utilizing Machine Learning to Investigate the Association between Obesity and Cognitive Decline-A Systematic Review. J Clin Med 2024; 13:2307. [PMID: 38673581 PMCID: PMC11051247 DOI: 10.3390/jcm13082307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Background/Objectives: Several studies have shown a relation between obesity and cognitive decline, highlighting a significant global health challenge. In recent years, artificial intelligence (AI) and machine learning (ML) have been integrated into clinical practice for analyzing datasets to identify new risk factors, build predictive models, and develop personalized interventions, thereby providing useful information to healthcare professionals. This systematic review aims to evaluate the potential of AI and ML techniques in addressing the relationship between obesity, its associated health consequences, and cognitive decline. Methods: Systematic searches were performed in PubMed, Cochrane, Web of Science, Scopus, Embase, and PsycInfo databases, which yielded eight studies. After reading the full text of the selected studies and applying predefined inclusion criteria, eight studies were included based on pertinence and relevance to the topic. Results: The findings underscore the utility of AI and ML in assessing risk and predicting cognitive decline in obese patients. Furthermore, these new technology models identified key risk factors and predictive biomarkers, paving the way for tailored prevention strategies and treatment plans. Conclusions: The early detection, prevention, and personalized interventions facilitated by these technologies can significantly reduce costs and time. Future research should assess ethical considerations, data privacy, and equitable access for all.
Collapse
Affiliation(s)
- Isabella Veneziani
- Department of Nervous System and Behavioural Sciences, Psychology Section, University of Pavia, Piazza Botta, 11, 27100 Pavia, Italy (A.G.)
| | - Alessandro Grimaldi
- Department of Nervous System and Behavioural Sciences, Psychology Section, University of Pavia, Piazza Botta, 11, 27100 Pavia, Italy (A.G.)
| | - Angela Marra
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Elisabetta Morini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Laura Culicetto
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Angelo Quartarone
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Giuseppa Maresca
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| |
Collapse
|