1
|
Pan M, Qian C, Huo S, Wu Y, Zhao X, Ying Y, Wang B, Yang H, Yeerken A, Wang T, Fu M, Wang L, Wei Y, Zhao Y, Shao C, Wang H, Zhao C. Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via Akkermansia muciniphila. Gut Microbes 2025; 17:2447834. [PMID: 39782002 PMCID: PMC11730363 DOI: 10.1080/19490976.2024.2447834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation. In this study, we analyzed 110 athletes undergoing closed training and found that fecal lactate levels were significantly associated with anxiety indicators. We observed a significant negative correlation between Akkermansia abundance and anxiety levels in athletes. Co-supplementation with lactate and Akkermansia muciniphila (A. muciniphila) modulated tryptophan metabolism by increasing key enzyme TPH1 and reducing IDO1, thus shifting metabolism from kynurenine (Kyn) to 5-HT. In addition, lactate enhanced the propionate production capacity of A. muciniphila, potentially contributing to anxiety reduction in mice. Taken together, these findings suggest that enteric lactate and A. muciniphila collaboratively restore the imbalance in tryptophan metabolism, leading to increased 5-HT activity and alleviating anxiety phenotypes. This study highlights the intricate interplay between gut metabolites and anxiety regulation, offering potential avenues for microbiota-targeted therapeutic strategies for anxiety.
Collapse
Affiliation(s)
- Miaomiao Pan
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenglang Qian
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaoye Huo
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yuchen Wu
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | | | | | - Boyu Wang
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Yang
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anaguli Yeerken
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tongyao Wang
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengwei Fu
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lihong Wang
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yuhuan Wei
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yunhua Zhao
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Chunhai Shao
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Department of Clinical Nutrition, Huashan Hospital, Fudan University, Shanghai, China
| | - Huijing Wang
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chao Zhao
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Li T, Zhao Z, Peng M, Zhang L, Wang C, Luo F, Zeng M, Sun K, Fang Z, Luo Y, Xie Y, Lv C, Wang J, Huang JD, Zhou H, Sun H. Multi-omics analysis reveals the interplay between intratumoral bacteria and glioma. mSystems 2025; 10:e0045724. [PMID: 39660865 PMCID: PMC11748541 DOI: 10.1128/msystems.00457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Emerging evidence highlights the potential impact of intratumoral microbiota on cancer. However, the microbial composition and function in glioma remains elusive. Consequently, our study aimed to investigate the microbial community composition in glioma tissues and elucidate its role in glioma development. We parallelly performed microbial profiling, transcriptome sequencing, and metabolomics detection on tumor and adjacent normal brain tissues obtained from 50 glioma patients. We employed immunohistochemistry, multicolor immunofluorescence, and fluorescence in situ hybridization (FISH) staining to observe the presence and location of bacteria. Furthermore, an animal model was employed to validate the impact of key bacteria on glioma development. Six genera were found to be significantly enriched in glioma tissues compared to adjacent normal brain tissues, including Fusobacterium, Longibaculum, Intestinimonas, Pasteurella, Limosilactobacillus, and Arthrobacter. Both bacterial RNA and lipopolysaccharides (LPS) were observed in glioma tissues. Integrated microbiomics, transcriptomics, and metabolomics revealed that genes associated with intratumoral microbes were enriched in multiple synapse-associated pathways and that metabolites associated with intratumoral microbes were (R)-N-methylsalsolinol, N-acetylaspartylglutamic acid, and N-acetyl-l-aspartic acid. Further mediation analysis suggested that the intratumoral microbiome may affect the expression of neuron-related genes through bacteria-associated metabolites. In addition, both in vivo and in vitro models of glioma show that Fusobacterium nucleatum promotes glioma proliferation and upregulates CCL2, CXCL1, and CXCL2 levels. Our findings shed light on the intricate interplay between intratumoral bacteria and glioma. IMPORTANCE Our study adopted a multi-omics approach to unravel the impact of intratumoral microbes on neuron-related gene expression through bacteria-associated metabolites. Importantly, we found bacterial RNA and LPS signals within glioma tissues, which were traditionally considered sterile. We identified key microbiota within glioma tissues, including Fusobacterium nucleatum (Fn). Through in vivo and in vitro experiments, we identified the crucial role of Fn in promoting glioma progression, suggesting that Fn could be a potential diagnostic and therapeutic target for glioma patients. These findings offer valuable insights into the intricate interplay between intratumoral bacteria and glioma, offering novel inspiration to the realm of glioma biology.
Collapse
Affiliation(s)
- Ting Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanyi Zhao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Feiyang Luo
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kaijian Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhencheng Fang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunhao Luo
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yugu Xie
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cui Lv
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxuan Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Dong Huang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hongwei Zhou
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Lewis N, Villani A, Lagopoulos J. Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence. Neuroscience 2025:S0306-4522(25)00033-8. [PMID: 39848564 DOI: 10.1016/j.neuroscience.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attentive-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular Bacteroides species and Faecalibacterium, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood-brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.
Collapse
Affiliation(s)
- Naomi Lewis
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs QLD 4556, Australia; Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya QLD 4575, Australia.
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs QLD 4556, Australia.
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Eccles Blvd, Birtinya QLD, 4575, Australia.
| |
Collapse
|
4
|
Gregory CL, Bradford EL, Fell RD, Haak DC, Belden LK. Utilizing a novel fecal sampling method to examine resistance of the honey bee (Apis mellifera) gut microbiome to a low dose of tetracycline. PLoS One 2025; 20:e0317129. [PMID: 39820943 PMCID: PMC11737664 DOI: 10.1371/journal.pone.0317129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/21/2024] [Indexed: 01/19/2025] Open
Abstract
Disruption of host-associated microbial communities can have detrimental impacts on host health. However, the capacity of individual host-associated microbial communities to resist disturbance has not been well defined. Using a novel fecal sampling method for honey bees (Apis mellifera), we examined the resistance of the honey bee gut microbiome to disruption from a low dose of the antibiotic, tetracycline (4.5 μg). Prior to the experiment, bacterial communities from fecal samples were compared to communities from dissected whole guts of the same individuals to ensure fecal samples accurately represented the gut microbiome. Fecal samples were collected from lab-caged honey bees prior to, and five days after, tetracycline exposure to assess how antibiotic disturbance affected the communities of individuals. We used metrics of alpha and beta diversity calculated from 16S rRNA gene amplicon sequences to compare gut community structure. Low dose tetracycline exposure did not consistently change honey bee gut microbiome structure, but there was individual variation in response to exposure and specific taxa (one ASV assigned to Lactobacillus kunkeei and one ASV in the genus Bombella) were differentially abundant following tetracycline treatment. To assess whether individual variation could be influenced by the presence of tetracycline resistance genes, we quantified the abundance of tet(B) and tet(M) with qPCR. The abundance of tet(M) prior to tetracycline treatment was negatively correlated with change in community membership, assessed by difference in Jaccard dissimilarity over the five-day experiment. Our results suggest that the honey bee gut microbiome has some ability to resist or recover from antibiotic-induced change, specific taxa may vary in their susceptibility to tetracycline exposure, and antibiotic resistance genes may contribute to gut microbiome resistance.
Collapse
Affiliation(s)
- Casey L. Gregory
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Emma L. Bradford
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Richard D. Fell
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David C. Haak
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
5
|
Wang Y, Zhou Z, Broder JC, Woods RL, Orchard SG, Wolfe R, Ernst EJ, Ryan J, Ernst ME, Chan AT. Antibiotic Use and Subsequent Cognitive Decline and Dementia Risk in Healthy Older Adults. Neurology 2025; 104:e210129. [PMID: 39693592 DOI: 10.1212/wnl.0000000000210129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Antibiotics rapidly reduce intestinal bacterial diversity, leading to dysbiosis that persists for months to years. Although emerging evidence from retrospective and claims-based studies has linked dysbiosis to cognitive function, prospective data are lacking. We aim to examine the prospective association of antibiotics with cognitive aging among initially healthy older adults. METHODS We leveraged data from prospective follow-up and observational extension of ASPirin in Reducing Events in the Elderly, a completed randomized trial of community-based Australian older adults. Among participants whose prescription records were available and without dementia during the first 2 years of follow-up, we identified any or repeated antibiotic use based on the Anatomical Therapeutic Chemical code (J01). We assessed the associations of antibiotic use during the first 2 years with longitudinal changes in standardized composite and domain-specific cognitive scores (global cognition, episodic memory, language and executive function, and psychomotor speed) using linear mixed models, and with incident, clinically adjudicated dementia (Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition criteria) and incident cognitive impairment, no dementia (CIND, without a dementia trigger but with significant, nontransient decline), using Cox proportional hazard models. RESULTS Over a median of 4.7 years after the second follow-up visit, we documented 461 dementia and 2,576 CIND cases among 13,571 participants (mean age ± SD 75.0 ± 4.1 years, 54.3% female). Compared with nonuse, antibiotic use was not associated with increased risks for dementia (hazard ratio [HR] 1.03; 95% CI 0.84-1.25), CIND (HR 1.02; 95% CI 0.94-1.11), or subsequent declines in cognitive scores, after adjusting for sociodemographic, lifestyle factors, family history of dementia, baseline cognitive function, and medications known to affect cognition. There were also no associations according to the cumulative frequency of antibiotic use, long-term use, specific antibiotic classes (e.g., beta-lactams, tetracyclines, and sulfonamides), and subgroups defined by risk factors. DISCUSSION Among initially healthy older adults, any or repeated antibiotic use was not associated with incident dementia, CIND, or accelerated cognitive decline. Although prescription data may not reflect the actual use, we examined the frequency of antibiotics within a defined period to capture the extent and duration of antibiotic exposure. Our results do not support an association between antibiotic-associated gut microbiome disruption and dementia risk.
Collapse
Affiliation(s)
- Yiqing Wang
- From the Clinical and Translational Epidemiology Unit (Y.W., A.T.C.), and Division of Gastroenterology (Y.W., A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston; School of Public Health and Preventive Medicine (Z.Z., J.C.B., R.L.W., S.G.O., R.W., J.R.), Monash University, Melbourne; Menzies Institute for Medical Research (Z.Z.), University of Tasmania, Australia; Department of Pharmacy Practice and Science (E.J.E.. M.E.E.), College of Pharmacy, and Department of Family Medicine (M.E.E.), Carver College of Medicine, University of Iowa, Iowa City; Department of Immunology and Infectious Diseases (A.T.C.), Harvard T.H. Chan School of Public Health, Boston; and Cancer Center (A.T.C.), Massachusetts General Hospital, Boston, MA
| | - Zhen Zhou
- From the Clinical and Translational Epidemiology Unit (Y.W., A.T.C.), and Division of Gastroenterology (Y.W., A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston; School of Public Health and Preventive Medicine (Z.Z., J.C.B., R.L.W., S.G.O., R.W., J.R.), Monash University, Melbourne; Menzies Institute for Medical Research (Z.Z.), University of Tasmania, Australia; Department of Pharmacy Practice and Science (E.J.E.. M.E.E.), College of Pharmacy, and Department of Family Medicine (M.E.E.), Carver College of Medicine, University of Iowa, Iowa City; Department of Immunology and Infectious Diseases (A.T.C.), Harvard T.H. Chan School of Public Health, Boston; and Cancer Center (A.T.C.), Massachusetts General Hospital, Boston, MA
| | - Jonathan C Broder
- From the Clinical and Translational Epidemiology Unit (Y.W., A.T.C.), and Division of Gastroenterology (Y.W., A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston; School of Public Health and Preventive Medicine (Z.Z., J.C.B., R.L.W., S.G.O., R.W., J.R.), Monash University, Melbourne; Menzies Institute for Medical Research (Z.Z.), University of Tasmania, Australia; Department of Pharmacy Practice and Science (E.J.E.. M.E.E.), College of Pharmacy, and Department of Family Medicine (M.E.E.), Carver College of Medicine, University of Iowa, Iowa City; Department of Immunology and Infectious Diseases (A.T.C.), Harvard T.H. Chan School of Public Health, Boston; and Cancer Center (A.T.C.), Massachusetts General Hospital, Boston, MA
| | - Robyn L Woods
- From the Clinical and Translational Epidemiology Unit (Y.W., A.T.C.), and Division of Gastroenterology (Y.W., A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston; School of Public Health and Preventive Medicine (Z.Z., J.C.B., R.L.W., S.G.O., R.W., J.R.), Monash University, Melbourne; Menzies Institute for Medical Research (Z.Z.), University of Tasmania, Australia; Department of Pharmacy Practice and Science (E.J.E.. M.E.E.), College of Pharmacy, and Department of Family Medicine (M.E.E.), Carver College of Medicine, University of Iowa, Iowa City; Department of Immunology and Infectious Diseases (A.T.C.), Harvard T.H. Chan School of Public Health, Boston; and Cancer Center (A.T.C.), Massachusetts General Hospital, Boston, MA
| | - Suzanne Gaye Orchard
- From the Clinical and Translational Epidemiology Unit (Y.W., A.T.C.), and Division of Gastroenterology (Y.W., A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston; School of Public Health and Preventive Medicine (Z.Z., J.C.B., R.L.W., S.G.O., R.W., J.R.), Monash University, Melbourne; Menzies Institute for Medical Research (Z.Z.), University of Tasmania, Australia; Department of Pharmacy Practice and Science (E.J.E.. M.E.E.), College of Pharmacy, and Department of Family Medicine (M.E.E.), Carver College of Medicine, University of Iowa, Iowa City; Department of Immunology and Infectious Diseases (A.T.C.), Harvard T.H. Chan School of Public Health, Boston; and Cancer Center (A.T.C.), Massachusetts General Hospital, Boston, MA
| | - Rory Wolfe
- From the Clinical and Translational Epidemiology Unit (Y.W., A.T.C.), and Division of Gastroenterology (Y.W., A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston; School of Public Health and Preventive Medicine (Z.Z., J.C.B., R.L.W., S.G.O., R.W., J.R.), Monash University, Melbourne; Menzies Institute for Medical Research (Z.Z.), University of Tasmania, Australia; Department of Pharmacy Practice and Science (E.J.E.. M.E.E.), College of Pharmacy, and Department of Family Medicine (M.E.E.), Carver College of Medicine, University of Iowa, Iowa City; Department of Immunology and Infectious Diseases (A.T.C.), Harvard T.H. Chan School of Public Health, Boston; and Cancer Center (A.T.C.), Massachusetts General Hospital, Boston, MA
| | - Erika J Ernst
- From the Clinical and Translational Epidemiology Unit (Y.W., A.T.C.), and Division of Gastroenterology (Y.W., A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston; School of Public Health and Preventive Medicine (Z.Z., J.C.B., R.L.W., S.G.O., R.W., J.R.), Monash University, Melbourne; Menzies Institute for Medical Research (Z.Z.), University of Tasmania, Australia; Department of Pharmacy Practice and Science (E.J.E.. M.E.E.), College of Pharmacy, and Department of Family Medicine (M.E.E.), Carver College of Medicine, University of Iowa, Iowa City; Department of Immunology and Infectious Diseases (A.T.C.), Harvard T.H. Chan School of Public Health, Boston; and Cancer Center (A.T.C.), Massachusetts General Hospital, Boston, MA
| | - Joanne Ryan
- From the Clinical and Translational Epidemiology Unit (Y.W., A.T.C.), and Division of Gastroenterology (Y.W., A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston; School of Public Health and Preventive Medicine (Z.Z., J.C.B., R.L.W., S.G.O., R.W., J.R.), Monash University, Melbourne; Menzies Institute for Medical Research (Z.Z.), University of Tasmania, Australia; Department of Pharmacy Practice and Science (E.J.E.. M.E.E.), College of Pharmacy, and Department of Family Medicine (M.E.E.), Carver College of Medicine, University of Iowa, Iowa City; Department of Immunology and Infectious Diseases (A.T.C.), Harvard T.H. Chan School of Public Health, Boston; and Cancer Center (A.T.C.), Massachusetts General Hospital, Boston, MA
| | - Michael E Ernst
- From the Clinical and Translational Epidemiology Unit (Y.W., A.T.C.), and Division of Gastroenterology (Y.W., A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston; School of Public Health and Preventive Medicine (Z.Z., J.C.B., R.L.W., S.G.O., R.W., J.R.), Monash University, Melbourne; Menzies Institute for Medical Research (Z.Z.), University of Tasmania, Australia; Department of Pharmacy Practice and Science (E.J.E.. M.E.E.), College of Pharmacy, and Department of Family Medicine (M.E.E.), Carver College of Medicine, University of Iowa, Iowa City; Department of Immunology and Infectious Diseases (A.T.C.), Harvard T.H. Chan School of Public Health, Boston; and Cancer Center (A.T.C.), Massachusetts General Hospital, Boston, MA
| | - Andrew T Chan
- From the Clinical and Translational Epidemiology Unit (Y.W., A.T.C.), and Division of Gastroenterology (Y.W., A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston; School of Public Health and Preventive Medicine (Z.Z., J.C.B., R.L.W., S.G.O., R.W., J.R.), Monash University, Melbourne; Menzies Institute for Medical Research (Z.Z.), University of Tasmania, Australia; Department of Pharmacy Practice and Science (E.J.E.. M.E.E.), College of Pharmacy, and Department of Family Medicine (M.E.E.), Carver College of Medicine, University of Iowa, Iowa City; Department of Immunology and Infectious Diseases (A.T.C.), Harvard T.H. Chan School of Public Health, Boston; and Cancer Center (A.T.C.), Massachusetts General Hospital, Boston, MA
| |
Collapse
|
6
|
Cai W, Gross A. Are Antibiotics Associated With Cognitive Decline?: Not for Healthy Older Adults. Neurology 2025; 104:e210255. [PMID: 39693593 DOI: 10.1212/wnl.0000000000210255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024] Open
Affiliation(s)
- Wenjie Cai
- From the Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Alden Gross
- From the Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
7
|
Lana D, Ugolini F, Iovino L, Attorre S, Giovannini MG. Astrocytes phenomics as new druggable targets in healthy aging and Alzheimer's disease progression. Front Cell Neurosci 2025; 18:1512985. [PMID: 39835288 PMCID: PMC11743640 DOI: 10.3389/fncel.2024.1512985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
For over a century after their discovery astrocytes were regarded merely as cells located among other brain cells to hold and give support to neurons. Astrocytes activation, "astrocytosis" or A1 functional state, was considered a detrimental mechanism against neuronal survival. Recently, the scientific view on astrocytes has changed. Accumulating evidence indicate that astrocytes are not homogeneous, but rather encompass heterogeneous subpopulations of cells that differ from each other in terms of transcriptomics, molecular signature, function and response in physiological and pathological conditions. In this review, we report and discuss the recent literature on the phenomic differences of astrocytes in health and their modifications in disease conditions, focusing mainly on the hippocampus, a region involved in learning and memory encoding, in the age-related memory impairments, and in Alzheimer's disease (AD) dementia. The morphological and functional heterogeneity of astrocytes in different brain regions may be related to their different housekeeping functions. Astrocytes that express diverse transcriptomics and phenomics are present in strictly correlated brain regions and they are likely responsible for interactions essential for the formation of the specialized neural circuits that drive complex behaviors. In the contiguous and interconnected hippocampal areas CA1 and CA3, astrocytes show different, finely regulated, and region-specific heterogeneity. Heterogeneous astrocytes have specific activities in the healthy brain, and respond differently to physiological or pathological stimuli, such as inflammaging present in normal brain aging or beta-amyloid-dependent neuroinflammation typical of AD. To become reactive, astrocytes undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. Alterations of astrocytes affect the neurovascular unit, the blood-brain barrier and reverberate to other brain cell populations, favoring or dysregulating their activities. It will be of great interest to understand whether the differential phenomics of astrocytes in health and disease can explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, in order to find new astrocyte-targeted therapies that might prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Ludovica Iovino
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Selene Attorre
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Dalile B, Boyle NB, Ruiz FT, Chakrabarti A, Respondek F, Dodd GF, Kadosh KC, Hepsomali P, Brummer RJ, McArthur S, Dam V, Zanzer YC, Vermeiren Y, Schellekens H. Targeting Cognitive Resilience through Prebiotics: A Focused Perspective. Adv Nutr 2025; 16:100343. [PMID: 39551433 PMCID: PMC11663957 DOI: 10.1016/j.advnut.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
This perspective article is a product of the work of an expert group within the Prebiotic Task Force convened by the International Life Sciences Institute Europe, a non-profit organization that brings together experts from academia, industry, and public service to catalyze nutrition science for public benefit. An expert group was conceived in October 2023 to discuss the evidence base on the use of prebiotics to promote cognitive functioning, with a focus on highlighting knowledge gaps and proposing a list of recommendations to guide this specific area of research forward. To address this, we evaluated existing systematic reviews and meta-analyses of human intervention studies that examine the effects of prebiotics on cognitive functioning. These are predominantly conducted in healthy participants under basal conditions and have, to date, revealed limited effects. In this perspective, we propose that prebiotics should be investigated as agents to promote cognitive resilience by testing their effects on cognitive performance under certain cognition-taxing factors that individuals encounter across their lifespan. These include stress, poor sleep outcomes, sedentary behavior, and unhealthy dietary patterns, all of which have been shown to be associated with altered microbiome and impact global cognition or specific cognitive domains. In addition, we recommend identifying vulnerable populations that are either subclinical or that struggle chronically or periodically with 1 or more cognition-taxing factors, to better uncover the boundary conditions for prebiotic effectiveness. By broadening the scope of research to include diverse populations and challenging conditions in daily life or experimental settings, we can expand our understanding of the role of prebiotics not only in cognitive health or impairment, but also as potential preventative agents that may promote cognitive resilience during aging and in response to various lifestyle-related challenges.
Collapse
Affiliation(s)
- Boushra Dalile
- Brain Research on Affective Mechanisms (BRAMLab), Laboratory of Biological Psychology, Research Unit Brain & Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
| | - Neil B Boyle
- School of Psychology, University of Leeds, Leeds, United Kingdom; Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Franco T Ruiz
- Translational Research Center for Gastrointestinal Disorder (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | | | | | | | - Kathrin Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Piril Hepsomali
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Robert J Brummer
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Veerle Dam
- Sensus B.V., Roosendaal, The Netherlands
| | | | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Zhang S, Wang X, Liu S, Hu C, Meng Y. Phlorizin ameliorates cognitive and behavioral impairments via the microbiota-gut-brain axis in high-fat and high-fructose diet-induced obese male mice. Brain Behav Immun 2025; 123:193-210. [PMID: 39277023 DOI: 10.1016/j.bbi.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024] Open
Abstract
The long-term high-fat, high-sugar diet exacerbates type 2 diabetes mellitus (T2DM)-related cognitive impairments. Phlorizin, a well-studied natural compound found in apples and other plants, is recognized for its bioactive properties, including modulation of glucose and lipid metabolism. Despite its established role in mitigating metabolic disorders, the neuroprotective effects of phlorizin, particularly against diabetes-related cognitive dysfunction, have not been fully elucidated. Therefore, the present study aimed to investigate the effect of dietary supplementation of phlorizin on high-fat and high-fructose diet (HFFD)-induced cognitive dysfunction and evaluate the crucial role of the microbiota-gut-brain axis. We found that dietary supplementation of phlorizin for 14 weeks effectively prevented glucolipid metabolism disorder, spatial learning impairment, and memory impairment in HFFD mice. In addition, phlorizin improved the HFFD-induced decrease in synaptic plasticity, neuroinflammation, and excessive activation of microglia in the hippocampus. Transcriptomics analysis shows that the protective effect of phlorizin on cognitive impairment was associated with increased expression of neurotransmitters and synapse-related genes in the hippocampus. Phlorizin treatment alleviated colon microbiota disturbance, mainly manifested by an increase in gut microbiota diversity and the abundance of short-chain fatty acid (SCFA)-producing bacteria. The level of microbial metabolites, including SCFA, inosine 5'-monophosphate (IMP), and D (-)-beta-hydroxybutyric acid (BHB) were also significantly increased after phlorizin treatment. Integrating multiomics analysis observed tight connections between phlorizin-regulated genes, microbiota, and metabolites. Furthermore, removal of the gut microbiota via antibiotics treatment diminished the protective effect of phlorizin against HFFD-induced cognitive impairment, underscoring the critical role of the gut microbiota in mediating cognitive behavior. Importantly, supplementation with SCFA and BHB alone mimicked the regulatory effects of phlorizin on cognitive function. Therefore, phlorizin shows promise as a potential nutritional therapy for addressing cognitive impairment associated with metabolic disorders. Further research is needed to explore its effectiveness in preventing and alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuqing Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory for Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Shenlin Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chingyuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Yonghong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
10
|
K M M, Ghosh P, Nagappan K, Palaniswamy DS, Begum R, Islam MR, Tagde P, Shaikh NK, Farahim F, Mondal TK. From Gut Microbiomes to Infectious Pathogens: Neurological Disease Game Changers. Mol Neurobiol 2025; 62:1184-1204. [PMID: 38967904 DOI: 10.1007/s12035-024-04323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Gut microbiota and infectious diseases affect neurological disorders, brain development, and function. Compounds generated in the gastrointestinal system by gut microbiota and infectious pathogens may mediate gut-brain interactions, which may circulate throughout the body and spread to numerous organs, including the brain. Studies shown that gut bacteria and disease-causing organisms may pass molecular signals to the brain, affecting neurological function, neurodevelopment, and neurodegenerative diseases. This article discusses microorganism-producing metabolites with neuromodulator activity, signaling routes from microbial flora to the brain, and the potential direct effects of gut bacteria and infectious pathogens on brain cells. The review also considered the neurological aspects of infectious diseases. The infectious diseases affecting neurological functions and the disease modifications have been discussed thoroughly. Recent discoveries and unique insights in this perspective need further validation. Research on the complex molecular interactions between gut bacteria, infectious pathogens, and the CNS provides valuable insights into the pathogenesis of neurodegenerative, behavioral, and psychiatric illnesses. This study may provide insights into advanced drug discovery processes for neurological disorders by considering the influence of microbial communities inside the human body.
Collapse
Affiliation(s)
- Muhasina K M
- Department of Pharmacognosy, JSS College of Pharmacy, Ooty, Tamil Nadu, 643001, India.
| | - Puja Ghosh
- Department of Pharmacognosy, JSS College of Pharmacy, Ooty, Tamil Nadu, 643001, India
| | - Krishnaveni Nagappan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, Ooty, Tamil Nadu, 643001, India
| | | | - Rahima Begum
- Department of Microbiology, Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Md Rabiul Islam
- Tennessee State University Chemistry department 3500 John A Merritt Blvd, Nashville, TN, 37209, USA
| | - Priti Tagde
- PRISAL(Pharmaceutical Royal International Society), Branch Office Bhopal, Bhopal, Madhya Pradesh, 462042, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M, Padalia Pharmacy College, Navapura, Ahmedabad, 382 210, Gujarat, India
| | - Farha Farahim
- Department of Nursing, King Khalid University, Abha, 61413, Kingdom of Saudi Arabia
| | | |
Collapse
|
11
|
Jia M, Fan Y, Ma Q, Yang D, Wang Y, He X, Zhao B, Zhan X, Qi Z, Ren Y, Dong Z, Zhu F, Wang W, Gao Y, Ma X. Gut microbiota dysbiosis promotes cognitive impairment via bile acid metabolism in major depressive disorder. Transl Psychiatry 2024; 14:503. [PMID: 39719433 DOI: 10.1038/s41398-024-03211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Evidence suggests that complex interactions among the gut microbiome, metabolic abnormalities, and brain have important etiological and therapeutic implications in major depressive disorder (MDD). However, the influence of microbiome-gut-brain cross-talk on cognitive impairment in MDD remains poorly characterized. We performed serum metabolomic profiling on 104 patients with MDD and 77 healthy controls (HCs), and also performed fecal metagenomic sequencing on a subset of these individuals, including 79 MDD patients and 60 HCs. The findings were validated in a separate cohort that included 40 patients with MDD and 40 HCs using serum-targeted metabolomics. Abnormal bile acid metabolism was observed in patients with MDD, which is related to cognitive dysfunction. The following gut microbiota corresponded to changes in bile acid metabolism and enzyme activities involved in the bile acid metabolic pathway, including Lachnospiraceae (Blautia_massiliensis, Anaerostipes_hadrus, Dorea_formicigenerans, and Fusicatenibacter_saccharivorans), Ruminococcaceae (Ruminococcus_bromii, Flavonifractor_plautii, and Ruthenibacterium_lactatiformans), and Escherichia_coli. Furthermore, a combinatorial marker classifier that robustly differentiated patients with MDD from HCs was identified. In conclusion, this study provides insights into the gut-brain interactions in the cognitive phenotype of MDD, indicating a potential therapeutic strategy for MDD-associated cognitive impairment by targeting the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Min Jia
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yajuan Fan
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingyan Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ding Yang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunpeng Wang
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan He
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binbin Zhao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xianyan Zhan
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiyang Qi
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yifan Ren
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ziqing Dong
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
12
|
Khandayataray P, Murthy MK. Dietary interventions in mitigating the impact of environmental pollutants on Alzheimer's disease - A review. Neuroscience 2024; 563:148-166. [PMID: 39542342 DOI: 10.1016/j.neuroscience.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. This raises the interesting possibility that activities usually considered preventive, including diet, exercise, or mental activity, might be more similar to treatment or therapy for AD. This review focuses on the effects of diet on the effects of environmental pollutants on AD. One of the primary issues addressed in this review is a group of specific diets, including the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for Neurodegenerative Delay (MIND), which prevent exposure to these toxins. Such diets have been proven to decrease oxidative stress and inflammation, which are unfavorable for neuronal growth. Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
13
|
Keerthy D, Spratlen MJ, Wen L, Seeram D, Park H, Calero L, Uhlemann AC, Herbstman JB. An evaluation of in utero polycyclic aromatic hydrocarbon exposure on the neonatal meconium microbiome. ENVIRONMENTAL RESEARCH 2024; 263:120053. [PMID: 39341532 DOI: 10.1016/j.envres.2024.120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION In utero exposure to environmental polycyclic aromatic hydrocarbon (PAH) is associated with neurodevelopmental impairments[1-8], prematurity[9-12] and low birthweight[9,13-15]. The gut microbiome serves as an intermediary between self and external environment; therefore, exploring the impact of PAH on microbiota may elucidate their role in disease. Here, we evaluated the effect of in utero PAH exposure on meconium microbiome. METHODS We evaluated 49 mother-child dyads within Fair Start Birth Cohort with full term delivery and adequate meconium sampling. Prenatal PAH was measured using personal active samplers worn for 48 h during third trimester. Post-processing, 35 samples with adequate biomass were evaluated for association between tertile of PAH exposure (high (H) vs low/medium (L/M)) and microbiome diversity. RESULTS No significant differences were observed in alpha diversity metrics, Chao1 and Shannon index, between exposure groups for total PAH. However, alpha diversity metrics were negatively associated with log benzo[a]anthracene (BaA) and log chrysene (Chry) with high exposure, but positively associated with log benzo[a]pyrene (BaP) with low/medium exposure. After adjustment for birthweight and sex, alpha diversity metrics were negatively associated with log BaA, BaP, Chry, Indeno (Zhang et al., 2021; Perera et al., 2018)pyrene (IcdP) and total PAH with high exposure. Conversely, with low/medium exposure, alpha diversity metrics positively correlated with log BaP and benzo[b]fluoranthane (BbF). No significant difference in beta diversity was observed across groups using UniFrac, weighted UniFrac, or Bray-Curtis methods. Differential expression analysis showed differentially abundant taxa between exposure groups. CONCLUSION Bacterial taxa were detectable in 35/49 (71%) meconium samples. Altered alpha diversity metrics and differentially abundant taxa between groups suggest in utero PAH exposure may impede early colonization. Sample size is limited, but these findings provide supporting evidence for wider scale research. Research on long-term impact of prenatal PAH exposure on childhood health outcomes is ongoing. Differential effects of specific PAHs need further evaluation.
Collapse
Affiliation(s)
- Divya Keerthy
- Neonatal and Perinatal Medicine, Columbia University, New York, NY, United States; Neonatal and Perinatal Medicine, NewYork Presbyterian Queens, Flushing, NY, United States.
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lingsheng Wen
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Dwayne Seeram
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Lehyla Calero
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
14
|
Wei J, Liu C, Qin D, Ren F, Duan J, Chen T, Wu A. Targeting inflammation and gut microbiota with antibacterial therapy: Implications for central nervous system health. Ageing Res Rev 2024; 102:102544. [PMID: 39419400 DOI: 10.1016/j.arr.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The complex symbiotic relationship between inflammation, the gut microbiota, and the central nervous system (CNS) has become a pivotal focus of contemporary biomedical research. Inflammation, as a physiological defense mechanism, plays a dual role as both a protective and pathological factor, and is intricately associated with gut microbiota homeostasis, often termed the "second brain." The gutbrain axis (GBA) exemplifies this multifaceted interaction, where gut health exerts significantly regulatory effects on CNS functions. Antibacterial therapies represent both promising and challenging strategies for modulating inflammation and gut microbiota composition to confer CNS benefits. However, while such therapies may exert positive modulatory effects on the gut microbiota, they also carry the potential to disrupt microbial equilibrium, potentially exacerbating neurological dysfunction. Recent advances have provided critical insights into the therapeutic implications of antibacterial interventions; nevertheless, the application of these therapies in the context of CNS health warrants a judicious and evidence-based approach. As research progresses, deeper investigation into the microbial-neural interface is essential to fully realize the potential of therapies targeting inflammation and the gut microbiota for CNS health. Future efforts should focus on refining antibacterial interventions to modulate the gut microbiota while minimizing disruption to microbial balance, thereby reducing risks and enhancing efficacy in CNS-related conditions. In conclusion, despite challenges, a more comprehensive understanding of the GBA, along with precise modulation through targeted antibacterial therapies, offers significant promise for advancing CNS disorder treatment. Continued research in this area will lead to innovative interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Jing Wei
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China; School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Chunmeng Liu
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Ting Chen
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Shi L, Gao P, Zhang Y, Liu Q, Hu R, Zhao Z, Hu Y, Xu X, Shen Y, Liu J, Long J. 2-(3,4-Dihydroxyphenyl)ethyl 3-hydroxybutanoate Ameliorates Cognitive Dysfunction and Inflammation Via Modulating Gut Microbiota in Aged Senescence-Accelerated Mouse Prone8 Mice. J Gerontol A Biol Sci Med Sci 2024; 79:glae220. [PMID: 39215682 DOI: 10.1093/gerona/glae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 09/04/2024] Open
Abstract
Numerous studies have indicated a close association between gut microbiota dysbiosis, inflammation, and cognitive impairment, highlighting their crucial role in the aging process. 2-(3,4-Dihydroxyphenyl)ethyl 3-hydroxybutanoate (HTHB), a novel derivative of hydroxytyrosol, known for its metabolic and anti-inflammatory properties, was investigated for its effects on memory, inflammation, and gut microbiota in senescence-accelerated mouse prone 8 mice. The study employed behavioral testing, biochemical detection, and 16S RNA analysis. Results revealed that HTHB mitigated memory decline and lymphocyte aberrance, reduced inflammation in the brain cortex, intestine and peripheral system, and modulated gut microbiota dysbiosis. Interestingly, the cognitive function and serum inflammation of mice significantly correlated with differences in gut microbiota in senescence-accelerated mouse prone 8 mice. Furthermore, HTHB treatment exhibited an enhancement of gut barrier integrity in colon tissue in SAMP8 mice. In vitro experiments using HCT116 and DLD1 cells further evidenced that HTHB rescued the tight junction protein levels impaired by lipopolysaccharide. These findings demonstrate that HTHB effectively ameliorates cognitive dysfunction in aged mice, by modulating gut microbiota, suppressing inflammation, and promoting intestinal barrier integrity. This highlights the potential of HTHB as a therapeutic agent for age-related cognitive loss.
Collapse
Affiliation(s)
- Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peipei Gao
- Department of Health Education and Management, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Yue Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Quanyu Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ranrui Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhuang Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yachong Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaohong Xu
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, China
| | - Jiankang Liu
- Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Zeng M, Peng M, Liang J, Sun H. The Role of Gut Microbiota in Blood-Brain Barrier Disruption after Stroke. Mol Neurobiol 2024; 61:9735-9755. [PMID: 37498481 DOI: 10.1007/s12035-023-03512-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.
Collapse
Affiliation(s)
- Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Babu DD, Mehdi S, Krishna KL, Lalitha MS, Someshwara CK, Pathak S, Pesaladinne UR, Rajashekarappa RK, Mylaralinga PS. Diabetic neuropathy: understanding the nexus of diabetic neuropathy, gut dysbiosis and cognitive impairment. J Diabetes Metab Disord 2024; 23:1589-1600. [PMID: 39610501 PMCID: PMC11599548 DOI: 10.1007/s40200-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 11/30/2024]
Abstract
Objectives Diabetic neuropathy is a traditional and one of the most prevalent complications of diabetes mellitus. The exact pathophysiology of diabetic neuropathy is not fully understood. However, oxidative stress and inflammation are proven to be one of the major underlying mechanisms of neuropathy which is described in detail. Gut dysbiosis is being studied for various neurological disorders and its impact on diabetic neuropathy is also explained. Diabetic neuropathy also causes loss in an individual's quality of life and one such adverse event is cognitive dysfunction. The interrelation between the neuropathy, cognitive dysfunction and gut is reviewed. Methods The exact mechanism is not understood but several hypotheses, cross-sectional studies and systematic reviews suggest a relationship between cognition and neuropathy. The review has collected data from various review and research publications that justifies this inter-relationship. Results The multifactorial etiology and pathophysiology of diabetic neuropathy is described with special emphasis on the role of gut dysbiosis. There might exist a correlation between the neuropathy and cognitive impairment caused simultaneously in diabetic patients. Conclusions This review summarizes the relationship that might exist between diabetic neuropathy, cognitive dysfunction and the impact of disturbed gut microbiome on its development and progression.
Collapse
Affiliation(s)
- Divya Durai Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Kamsagara Linganna Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Mankala Sree Lalitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Chethan Konasuru Someshwara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577201 India
| | - Ujwal Reddy Pesaladinne
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | | | | |
Collapse
|
18
|
Basnet J, Eissa MA, Cardozo LLY, Romero DG, Rezq S. Impact of Probiotics and Prebiotics on Gut Microbiome and Hormonal Regulation. GASTROINTESTINAL DISORDERS 2024; 6:801-815. [PMID: 39649015 PMCID: PMC11623347 DOI: 10.3390/gidisord6040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
The gut microbiome plays a crucial role in human health by influencing various physiological functions through complex interactions with the endocrine system. These interactions involve the production of metabolites, signaling molecules, and direct communication with endocrine cells, which modulate hormone secretion and activity. As a result, the microbiome can exert neuroendocrine effects and contribute to metabolic regulation, adiposity, and appetite control. Additionally, the gut microbiome influences reproductive health by altering levels of sex hormones such as estrogen and testosterone, potentially contributing to conditions like polycystic ovary syndrome (PCOS) and hypogonadism. Given these roles, targeting the gut microbiome offers researchers and clinicians novel opportunities to improve overall health and well-being. Probiotics, such as Lactobacillus and Bifidobacterium, are live beneficial microbes that help maintain gut health by balancing the microbiota. Prebiotics, non-digestible fibers, nourish these beneficial bacteria, promoting their growth and activity. When combined, probiotics and prebiotics form synbiotics, which work synergistically to enhance the gut microbiota balance and improve metabolic, immune, and hormonal health. This integrated approach shows promising potential for managing conditions related to hormonal imbalances, though further research is needed to fully understand their specific mechanisms and therapeutic potential.
Collapse
Affiliation(s)
- Jelina Basnet
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Manar A. Eissa
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Licy L. Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - Damian G. Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Samar Rezq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
19
|
Mallick R, Basak S, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Roles of the gut microbiota in human neurodevelopment and adult brain disorders. Front Neurosci 2024; 18:1446700. [PMID: 39659882 PMCID: PMC11628544 DOI: 10.3389/fnins.2024.1446700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Growing evidence demonstrates the connection between gut microbiota, neurodevelopment, and adult brain function. Microbial colonization occurs before the maturation of neural systems and its association with brain development. The early microbiome interactions with the gut-brain axis evolved to stimulate cognitive activities. Gut dysbiosis can lead to impaired brain development, growth, and function. Docosahexaenoic acid (DHA) is critically required for brain structure and function, modulates gut microbiota, and impacts brain activity. This review explores how gut microbiota influences early brain development and adult functions, encompassing the modulation of neurotransmitter activity, neuroinflammation, and blood-brain barrier integrity. In addition, it highlights processes of how the gut microbiome affects fetal neurodevelopment and discusses adult brain disorders.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ranjit K. Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Wei X, Lu Y, Hong S. Gut Microbiota Modulates Fgf21 Expression and Metabolic Phenotypes Induced by Ketogenic Diet. Nutrients 2024; 16:4028. [PMID: 39683422 DOI: 10.3390/nu16234028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD) is a widely used intervention for obesity and diabetes, effectively reducing body weight and blood glucose levels. However, the molecular mechanisms by which the KD influences body weight and glucose metabolism are not fully understood. While previous research has shown that the KD affects the gut microbiota, the exact role of microbiota in mediating its metabolic effects remains unclear. METHODS In this study, we used antibiotics to eliminate the gut microbiota, confirming its necessity for the KD's impact on weight loss and glucose metabolism. We also demonstrated the significant role of FGF21 in these processes, through antibiotics intervention in Fgf21-deficient mice. RESULTS Furthermore, we revealed that the KD alters serum valine levels via the gut microbiota, which in turn regulates hepatic Fgf21 expression and circulating FGF21 levels through the GCN2-eIF2α-ATF5 signaling pathway. Additionally, we demonstrated that valine supplementation inhibits the elevated expression of FGF21, leading to the reduced body weight and improved glucose metabolism of the KD-fed mice. Overall, we found that the gut microbiota from the KD regulates Fgf21 transcription via the GCN2-eIF2α-ATF5 signaling pathway. ultimately affecting body weight and glucose metabolism. CONCLUSION Our findings highlight a complex regulatory network linking the KD, Fgf21 expression, and gut microbiota, offering a theoretical foundation for targeted therapies to enhance the metabolic benefits of the KD.
Collapse
Affiliation(s)
- Xinyi Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yunxu Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
21
|
Shi L, Feng Y, Wang J, Xiao R, Wang L, Tian P, Jin X, Zhao J, Wang G. Innovative mechanisms of micro- and nanoplastic-induced brain injury: Emphasis on the microbiota-gut-brain axis. Life Sci 2024; 357:123107. [PMID: 39369844 DOI: 10.1016/j.lfs.2024.123107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Micro- and nanoplastics (MNPs), emerging environmental pollutants, infiltrate marine, terrestrial, and freshwater systems via diverse pathways, culminating in their accumulation in the human body through food chain transmission, posing potential health risks. Researches have demonstrated that MNPs disrupt gut microbiota equilibrium and compromise intestinal barrier integrity, as well as traverse the blood-brain barrier, leading to brain damage. Moreover, the complex interaction between the gut and the nervous system, facilitated by the "gut-brain axis," indicates an additional pathway for MNPs-induced brain damage. This has intensified scientific interest in the intercommunication between MNPs and the gut-brain axis. While existing studies have documented microbial imbalances and metabolic disruptions subsequent to MNPs exposure, the precise mechanisms by which the microbiota-gut-brain axis contributes to MNPs-induced central nervous system damage remain unclear. This review synthesizes current knowledge on the microbiota-gut-brain axis, elucidating the pathogenesis of MNPs-induced gut microbiota dysbiosis and its consequent brain injury. It emphasizes the complex interrelation between MNPs and the microbiota-gut-brain axis, advocating for the gut microbiota as a novel therapeutic target to alleviate MNP-induced brain harm.
Collapse
Affiliation(s)
- Liuting Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Jialiang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Rui Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing People's Hospital, Jiangsu, Wuxi 214200, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.
| |
Collapse
|
22
|
Ran Z, Mu BR, Wang DM, Xin-Huang, Ma QH, Lu MH. Parkinson's Disease and the Microbiota-Gut-Brain Axis: Metabolites, Mechanisms, and Innovative Therapeutic Strategies Targeting the Gut Microbiota. Mol Neurobiol 2024:10.1007/s12035-024-04584-9. [PMID: 39531191 DOI: 10.1007/s12035-024-04584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
The human gut microbiota is diverse and abundant and plays important roles in regulating health by participating in metabolism and controlling physiological activities. The gut microbiota and its metabolites have been shown to affect the functioning of the gut and central nervous system through the microbiota-gut-brain axis. It is well established that microbiota play significant roles in the pathogenesis and progression of Parkinson's disease (PD). Disorders of the intestinal microbiota and altered metabolite levels are closely associated with PD. Here, the changes in intestinal microbiota and effects of metabolites in patients with PD are reviewed. Potential mechanisms underlying intestinal microbiota disorders in the pathogenesis of PD are briefly discussed. Additionally, we outline the current strategies for the treatment of PD that target the gut microbiota, emphasizing the development of promising novel strategies.
Collapse
Affiliation(s)
- Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin-Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
23
|
Zahedi E, Naseri FM, Zamani E, Nikbakhtzadeh M, Rastegar T, Sanaeirad A, Sadr SS. Ginger Extract Improves Cognitive Dysfunction via Modulation of Gut Microbiota-Derived Short-Chain Fatty Acids in D-Galactose/Ovariectomy-Induced Alzheimer-Like Disease. Mol Neurobiol 2024:10.1007/s12035-024-04583-w. [PMID: 39505806 DOI: 10.1007/s12035-024-04583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with complex causes and limited treatment options. Recent research has suggested a connection between the progression of AD and the activity of gut microbiota. Ginger, a plant known for its anti-inflammatory, antioxidant, and neuroprotective properties, has gained attention as a potential treatment for alleviating AD symptoms. In this study, we induced an AD model in female rats through ovariectomy and D-galactose injection and then investigated the protective effects of oral administration of ginger ethanolic extract. We assessed changes in short-chain fatty acids (SCFAs), learning and memory abilities, neuroinflammatory markers in plasma, and the hippocampus, as well as histological changes in the intestine and hippocampus in sham-operated, diseased, and treatment groups. Oral administration of ginger ethanolic extract improved gut microbiota activity, increased SCFA levels, and enhanced the expression of tight junction proteins. Additionally, ginger extract reduced the concentrations of TNF-α and IL-1β in both plasma and the hippocampus. Furthermore, it significantly reduced cell death and amyloid plaque deposition in the hippocampal tissue. These physiological changes resulted in improved performance in learning and memory tasks in rats treated with ginger compared with the disease group. These findings provide compelling evidence for the beneficial effects of ginger on the gut-brain axis, leading to improvements in learning and memory through the reduction of neuroinflammation.
Collapse
Affiliation(s)
- Elham Zahedi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Mokhtari Naseri
- Physiology Department and Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Zamani
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Sanaeirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Bano N, Khan S, Ahamad S, Kanshana JS, Dar NJ, Khan S, Nazir A, Bhat SA. Microglia and gut microbiota: A double-edged sword in Alzheimer's disease. Ageing Res Rev 2024; 101:102515. [PMID: 39321881 DOI: 10.1016/j.arr.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The strong association between gut microbiota (GM) and brain functions such as mood, behaviour, and cognition has been well documented. Gut-brain axis is a unique bidirectional communication system between the gut and brain, in which gut microbes play essential role in maintaining various molecular and cellular processes. GM interacts with the brain through various pathways and processes including, metabolites, vagus nerve, HPA axis, endocrine system, and immune system to maintain brain homeostasis. GM dysbiosis, or an imbalance in GM, is associated with several neurological disorders, including anxiety, depression, and Alzheimer's disease (AD). Conversely, AD is sustained by microglia-mediated neuroinflammation and neurodegeneration. Further, GM and their products also affect microglia-mediated neuroinflammation and neurodegeneration. Despite the evidence connecting GM dysbiosis and AD progression, the involvement of GM in modulating microglia-mediated neuroinflammation in AD remains elusive. Importantly, deciphering the mechanism/s by which GM regulates microglia-dependent neuroinflammation may be helpful in devising potential therapeutic strategies to mitigate AD. Herein, we review the current evidence regarding the involvement of GM dysbiosis in microglia activation and neuroinflammation in AD. We also discuss the possible mechanisms through which GM influences the functioning of microglia and its implications for therapeutic intervention. Further, we explore the potential of microbiota-targeted interventions, such as prebiotics, probiotics, faecal microbiota transplantation, etc., as a novel therapeutic strategy to mitigate neuroinflammation and AD progression. By understanding and exploring the gut-brain axis, we aspire to revolutionize the treatment of neurodegenerative disorders, many of which share a common theme of microglia-mediated neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Jitendra Singh Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburg, PA, USA.
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA.
| | - Sumbul Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
25
|
Li Y, Wan TT, Li JX, Xiao X, Liu L, Li HH, Guo SB. ACE2 Rescues Sepsis-Associated Encephalopathy by Reducing Inflammation, Oxidative Stress, and Neuronal Apoptosis via the Nrf2/Sestrin2 Signaling Pathway. Mol Neurobiol 2024; 61:8640-8655. [PMID: 38532242 DOI: 10.1007/s12035-024-04063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Neuroinflammation and oxidative stress contribute to the progression of sepsis-associated encephalopathy (SAE). Angiotensin-converting enzyme 2 (ACE2) is considered to be a neuroprotective factor due to its anti-inflammatory and antioxidant properties. However, the role of ACE2 on myeloid cells in regulating SAE and the underlying mechanism warrants further exploration. SAE was induced in ACE2 transgenic (TG), knockout (KO), and bone marrow (BM) chimeric mice by cecal ligation and puncture (CLP). The expression levels of apoptosis-, oxidation- and neuroinflammation-associated mediators and morphological changes were monitored by quantitative real-time PCR analyses and histological examinations in the cortex of septic mice. The contents of angiotensin (Ang) II and Ang-(1-7) along with the activity of ACE2 were examined with commercial kits. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Sestrin2 was detected by immunoblotting analysis. Our results indicated that the expression of cortical ACE2 was significantly reduced in the early phase of CLP-induced sepsis. Moreover, ACE2 overexpression in TG mice conferred neuroprotection against sepsis, as evidenced by alleviated neuronal apoptosis, oxidative stress, and proinflammatory M1-like microglial polarization, accompanied by upregulation of the Ang-(1-7), Nrf2, and Sestrin2 protein levels. Conversely, ACE2 deficiency in KO mice exacerbated SAE. The neuroprotective effects of ACE2 were further confirmed in wild-type mice transplanted with ACE2-TG and KO BM cells. Therefore, our data suggest that myeloid ACE2 exerts a protective role in the pathogenesis of SAE, potentially by activating Ang-(1-7)-Nrf2/sestrin2 signaling pathway, and highlight that upregulating ACE2 expression and activity may represent a promising approach for the treatment of SAE in patients with sepsis.
Collapse
Affiliation(s)
- Ya Li
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tian-Tian Wan
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Xin Li
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xue Xiao
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lei Liu
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hui-Hua Li
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Shu-Bin Guo
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
26
|
Spinedi E, Docena GH. Physiopathological Roles of White Adiposity and Gut Functions in Neuroinflammation. Int J Mol Sci 2024; 25:11741. [PMID: 39519291 PMCID: PMC11546880 DOI: 10.3390/ijms252111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
White adipose tissue (WAT) and the gut are involved in the development of neuroinflammation when an organism detects any kind of injury, thereby triggering metainflammation. In fact, the autonomous nervous system innervates both tissues, although the complex role played by the integrated sympathetic, parasympathetic, and enteric nervous system functions have not been fully elucidated. Our aims were to investigate the participation of inflamed WAT and the gut in neuroinflammation. Firstly, we conducted an analysis into how inflamed peripheral WAT plays a key role in the triggering of metainflammation. Indeed, this included the impact of the development of local insulin resistance and its metabolic consequences, a serious hypothalamic dysfunction that promotes neurodegeneration. Then, we analyzed the gut-brain axis dysfunction involved in neuroinflammation by examining cell interactions, soluble factors, the sensing of microbes, and the role of dysbiosis-related mechanisms (intestinal microbiota and mucosal barriers) affecting brain functions. Finally, we targeted the physiological crosstalk between cells of the brain-WAT-gut axis that restores normal tissue homeostasis after injury. We concluded the following: because any injury can result not only in overall insulin resistance and dysbiosis, which in turn can impact upon the brain, but that a high-risk of the development of neuroinflammation-induced neurodegenerative disorder can also be triggered. Thus, it is imperative to avoid early metainflammation by applying appropriate preventive (e.g., lifestyle and diet) or pharmacological treatments to cope with allostasis and thus promote health homeostasis.
Collapse
Affiliation(s)
- Eduardo Spinedi
- Centro de Endocrinología Experimental y Aplicada (CENEXA-UNLP-CONICET-CICPBA), University of La Plata Medical School, La Plata 1900, Argentina
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-UNLP-CONICET-CICPBA), School of Sciences, University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
27
|
Jing T, Tang D. Intratumoral microbiota: a new force in the development and treatment of esophageal cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03757-1. [PMID: 39455494 DOI: 10.1007/s12094-024-03757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Esophageal cancer (EC) ranks among the most prevalent cancers worldwide, with a particularly high incidence in the Asian population. Due to the inconspicuous nature of early symptoms, patients with esophageal cancer are typically diagnosed in the middle to late stages, resulting in suboptimal overall treatment outcomes. Consequently, there is an urgent need to explore and refine therapeutic strategies. Microorganisms have been identified in numerous tumor tissues, including EC, and these microorganisms are referred to as the intratumoral microbiome. Intratumoral microbiota and their metabolic byproducts can influence the progression and treatment of esophageal cancer through various mechanisms, such as modulating tumor cell metabolism and local immune responses. Therefore, the intratumoral microbiota may potentially serve as a target for the treatment of esophageal cancer. This review delineates the composition, origin, and diagnostic significance of intratumoral microbiota in esophageal cancer tissue, and discusses the mechanisms by which intratumoral microbiota contribute to the onset of esophageal cancer. In addition, the impact of intratumoral microbiota on the treatment of esophageal cancer and its intervention measures are also addressed.
Collapse
Affiliation(s)
- Tianyang Jing
- Clinical Medical College, Yangzhou University, Yangzhou, 22500, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
28
|
Delgado-Ocaña S, Cuesta S. From microbes to mind: germ-free models in neuropsychiatric research. mBio 2024; 15:e0207524. [PMID: 39207144 PMCID: PMC11481874 DOI: 10.1128/mbio.02075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The gut-microbiota-brain axis refers to the bidirectional communication system between the gut, its microbial community, and the brain. This interaction involves a complex interplay of neural pathways, chemical transmitters, and immunological mechanisms. Germ-free animal models have been extensively employed to investigate gut-microbiota-brain interactions, significantly contributing to our current understanding of the role of intestinal microbes in brain function. However, despite the many benefits, this absence of microbiota is not futile. Germ-free animals present physiological and neurodevelopmental alterations that can persist even after reconstitution with normal microbiota. Therefore, the main goal of this minireview is to discuss how some of the inherent limitations of this model can interfere with the conclusion obtained when using these animals to study the complex nature of neuropsychiatric disorders. Furthermore, we examine the inclusion and use of antibiotic-based treatments as an alternative in the research of gut-brain interactions.
Collapse
Affiliation(s)
- Susana Delgado-Ocaña
- Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| | - Santiago Cuesta
- Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
29
|
Kearns R. Gut-Brain Axis and Neuroinflammation: The Role of Gut Permeability and the Kynurenine Pathway in Neurological Disorders. Cell Mol Neurobiol 2024; 44:64. [PMID: 39377830 PMCID: PMC11461658 DOI: 10.1007/s10571-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024]
Abstract
The increasing prevalence of neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis presents a significant global health challenge. Despite extensive research, the precise mechanisms underlying these conditions remain elusive, with current treatments primarily addressing symptoms rather than root causes. Emerging evidence suggests that gut permeability and the kynurenine pathway are involved in the pathogenesis of these neurological conditions, offering promising targets for novel therapeutic and preventive strategies. Gut permeability refers to the intestinal lining's ability to selectively allow essential nutrients into the bloodstream while blocking harmful substances. Various factors, including poor diet, stress, infections, and genetic predispositions, can compromise gut integrity, leading to increased permeability. This condition facilitates the translocation of toxins and bacteria into systemic circulation, triggering widespread inflammation that impacts neurological health via the gut-brain axis. The gut-brain axis (GBA) is a complex communication network between the gut and the central nervous system. Dysbiosis, an imbalance in the gut microbiota, can increase gut permeability and systemic inflammation, exacerbating neuroinflammation-a key factor in neurological disorders. The kynurenine pathway, the primary route for tryptophan metabolism, is significantly implicated in this process. Dysregulation of the kynurenine pathway in the context of inflammation leads to the production of neurotoxic metabolites, such as quinolinic acid, which contribute to neuronal damage and the progression of neurological disorders. This narrative review highlights the potential and progress in understanding these mechanisms. Interventions targeting the kynurenine pathway and maintaining a balanced gut microbiota through diet, probiotics, and lifestyle modifications show promise in reducing neuroinflammation and supporting brain health. In addition, pharmacological approaches aimed at modulating the kynurenine pathway directly, such as inhibitors of indoleamine 2,3-dioxygenase, offer potential avenues for new treatments. Understanding and targeting these interconnected pathways are crucial for developing effective strategies to prevent and manage neurological disorders.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Belfast, UK.
| |
Collapse
|
30
|
Yan Q, Liu M, Xie Y, Lin Y, Fu P, Pu Y, Wang B. Kidney-brain axis in the pathogenesis of cognitive impairment. Neurobiol Dis 2024; 200:106626. [PMID: 39122123 DOI: 10.1016/j.nbd.2024.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The kidney-brain axis is a bidirectional communication network connecting the kidneys and the brain, potentially affected by inflammation, uremic toxin, vascular injury, neuronal degeneration, and so on, leading to a range of diseases. Numerous studies emphasize the disruptions of the kidney-brain axis may contribute to the high morbidity of neurological disorders, such as cognitive impairment (CI) in the natural course of chronic kidney disease (CKD). Although the pathophysiology of the kidney-brain axis has not been fully elucidated, epidemiological data indicate that patients at all stages of CKD have a higher risk of developing CI compared with the general population. In contrast to other reviews, we mentioned some commonly used medicines in CKD that may play a pivotal role in the pathogenesis of CI. Revealing the pathophysiology interactions between kidney damage and brain function can reduce the potential risk of future CI. This review will deeply explore the characteristics, indicators, and potential pathophysiological mechanisms of CKD-related CI. It will provide a theoretical basis for identifying CI that progresses during CKD and ultimately prevents and treats CKD-related CI.
Collapse
Affiliation(s)
- Qianqian Yan
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mengyuan Liu
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu 610011, China
| | - Yiling Xie
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yimi Lin
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Bo Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
31
|
Mathias K, Machado RS, Stork S, Martins CD, Dos Santos D, Lippert FW, Prophiro JS, Petronilho F. Short-chain fatty acid on blood-brain barrier and glial function in ischemic stroke. Life Sci 2024; 354:122979. [PMID: 39147315 DOI: 10.1016/j.lfs.2024.122979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/01/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Stroke is the second most common cause of death and one of the most common causes of disability worldwide. The intestine is home to several microorganisms that fulfill essential functions for the natural and physiological functioning of the human body. There is an interaction between the central nervous system (CNS) and the gastrointestinal system that enables bidirectional communication between them, the so-called gut-brain axis. Based on the gut-brain axis, there is evidence of a link between the gut microbiota and the regulation of microglial functions through glial activation. This interaction is partly due to the immunological properties of the microbiota and its connection with the CNS, such that metabolites produced by the microbiota can cross the gut barrier, enter the bloodstream and reach the CNS and significantly affect microglia, astrocytes and other cells of the immune system. Studies addressing the effects of short-chain fatty acids (SCFAs) on glial function and the BBB in ischemic stroke are still scarce. Therefore, this review aims to stimulate the investigation of these associations, as well as to generate new studies on this topic that can clarify the role of SCFAs after stroke in a more robust manner.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabrício Weinheimer Lippert
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
32
|
Saadh MJ, Mustafa AN, Mustafa MA, S RJ, Dabis HK, Prasad GVS, Mohammad IJ, Adnan A, Idan AH. The role of gut-derived short-chain fatty acids in Parkinson's disease. Neurogenetics 2024; 25:307-336. [PMID: 39266892 DOI: 10.1007/s10048-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | | | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh-531162, India
| | - Imad Jassim Mohammad
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Ahmed Adnan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
33
|
Hong B. Gut flora reflects potential risk factors for cognitive dysfunction in patients with epilepsy. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:155. [PMID: 39342383 PMCID: PMC11439293 DOI: 10.1186/s41043-024-00639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE This cross-sectional study aims to analyze the differences in gut flora between patients with epilepsy with and without cognitive impairment and normal subjects. METHODS One hundred patients with epilepsy who came to our hospital from 2020.12 to 2022.12 (epilepsy group) were selected, and another 100 family members of the patients were selected as the control group (control group). Patients with epilepsy were further classified by the MMSE scale into 62 patients with combined cognitive impairment (Yes group) and 38 patients without cognitive impairment (No group). Detection of gut flora in feces by 16 S rRNA high-throughput sequencing. Logistic regression was used to analyze risk factors for cognitive dysfunction in patients with epilepsy. RESULTS There were more significant differences in the structure and composition of the gut flora between patients in the epilepsy group and the control group, but no significant differences in diversity analysis (P > 0.05). Actinobacteriota, Faecalibacterium and Collinsella were significantly lower in the Yes group than in the No group (P < 0.05), and the Alpha diversity index was numerically slightly smaller than in the No group, with the PCoA analysis demonstrating a more dispersed situation in both groups. Five metabolic pathways, including glycolysis and heterolactic fermentation, were upregulated in the Yes group. LEfSe analysis showed that five groups of bacteria, including Coriobacteriaceae and Collinsella, were selected as marker species for the presence or absence of comorbid cognitive impairment. Of these, Collinsella, Oscillospirales, and Ruminococcaceae have a greater impact on epilepsy combined with cognitive impairment. CONCLUSION There was an imbalance in the gut flora of patients with epilepsy compared to healthy controls. The gut flora of patients with epilepsy with cognitive dysfunction differs significantly from that of patients without cognitive dysfunction. Collinsella, Oscillospirales, and Ruminococcaceae have a greater impact on epilepsy with cognitive dysfunction and can be used as an indicator for the observation of epilepsy with cognitive dysfunction.
Collapse
Affiliation(s)
- BingCong Hong
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
34
|
Xu Y, Li Y, Yan Q, Mao X, Yang S, Jiang Z. The Function and Mechanism of Laminaripentaose Prepared from Curdlan for the Amelioration of the Cognitive Dysfunctions in Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19904-19919. [PMID: 39215716 DOI: 10.1021/acs.jafc.4c05163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Functional oligosaccharides induce specific alterations in gut microbiota, potentially providing physiological benefits. However, the effects of laminaripentaose (LPA) on metabolic syndrome and the mechanism underlying it have not been intensively investigated yet. This study aimed to determine the effects of LPA on obesity and obesity-induced cognition impairment in mice. C57BL/6N mice fed with a high-fat diet received an LPA treatment for 12 weeks. An antibiotic intervention was further applied to evaluate the effects of the gut microbiota on cognitive functions. LPA treatment (500 mg/kg) reduced the weight gain by 32.4%. Furthermore, LPA improved memory functions and reduced hippocampal insulin resistance and neuronal injury. LPA markedly reduced systemic low-grade inflammation and intestinal barrier injury. Moreover, LPA increased gut beneficial bacteria, and Butyricimonas and Bifidobacterium were increased by 94.0 and 422.7%, respectively, accompanied by increased fecal short-chain fatty acids. Interestingly, antibiotic cocktail treatment abrogated the beneficial effects of LPA on cognition, which further suggests that LPA may attenuate obesity-induced cognition impairment via the gut-brain axis. Our findings provide the first evidence for the potential of dietary LPA to prevent obesity and obesity-associated complications.
Collapse
Affiliation(s)
- Yuncong Xu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
35
|
Kearns R. The Kynurenine Pathway in Gut Permeability and Inflammation. Inflammation 2024:10.1007/s10753-024-02135-x. [PMID: 39256304 DOI: 10.1007/s10753-024-02135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
The gut-brain axis (GBA) is a crucial communication network linking the gastrointestinal (GI) tract and the central nervous system (CNS). The gut microbiota significantly influences metabolic, immune, and neural functions by generating a diverse array of bioactive compounds that modulate brain function and maintain homeostasis. A pivotal mechanism in this communication is the kynurenine pathway, which metabolises tryptophan into various derivatives, including neuroactive and neurotoxic compounds. Alterations in gut microbiota composition can increase gut permeability, triggering inflammation and neuroinflammation, and contributing to neuropsychiatric disorders. This review elucidates the mechanisms by which changes in gut permeability may lead to systemic inflammation and neuroinflammation, with a focus on the kynurenine pathway. We explore how probiotics can modulate the kynurenine pathway and reduce neuroinflammation, highlighting their potential as therapeutic interventions for neuropsychiatric disorders. The review integrates experimental data, discusses the balance between neurotoxic and neuroprotective kynurenine metabolites, and examines the role of probiotics in regulating inflammation, cognitive development, and gut-brain axis functions. The insights provided aim to guide future research and therapeutic strategies for mitigating GI complaints and their neurological consequences.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Newry, Northern Ireland, United Kingdom.
| |
Collapse
|
36
|
Chao YW, Tung YT, Yang SC, Shirakawa H, Su LH, Loe PY, Chiu WC. The Effects of Rice Bran on Neuroinflammation and Gut Microbiota in Ovariectomized Mice Fed a Drink with Fructose. Nutrients 2024; 16:2980. [PMID: 39275295 PMCID: PMC11397027 DOI: 10.3390/nu16172980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Rice bran, which is abundant in dietary fiber and phytochemicals, provides multiple health benefits. Nonetheless, its effects on neuroinflammation and gut microbiota in postmenopausal conditions are still not well understood. This study investigated the effects of rice bran and/or tea seed oil supplementation in d-galactose-injected ovariectomized (OVX) old mice fed a fructose drink. The combination of d-galactose injection, ovariectomy, and fructose drink administration creates a comprehensive model that simulates aging in females under multiple metabolic stressors, including oxidative stress, estrogen deficiency, and high-sugar diets, and allows the study of their combined impact on metabolic disorders and related diseases. Eight-week-old and 6-8-month-old female C57BL/6 mice were used. The mice were divided into six groups: a sham + young mice, a sham + old mice, an OVX + soybean oil, an OVX + soybean oil with rice bran, an OVX + tea seed oil (TO), and an OVX + TO with rice bran diet group. The OVX groups were subcutaneously injected with d-galactose (100 mg/kg/day) and received a 15% (v/v) fructose drink. The rice bran and tea seed oil supplementation formed 10% of the diet (w/w). The results showed that the rice bran with TO diet increased the number of short-chain fatty acid (SCFA)-producing Clostridia and reduced the number of endotoxin-producing Tannerellaceae, which mitigated imbalances in the gut-liver-brain axis. Rice bran supplementation reduced the relative weight of the liver, levels of hepatic triglycerides and total cholesterol; aspartate transaminase and alanine aminotransferase activity; brain levels of proinflammatory cytokines, including interleukin-1β and tumor necrosis factor-α; and plasma 8-hydroxy-2-deoxyguanosine. This study concludes that rice bran inhibits hepatic fat accumulation, which mitigates peripheral metaflammation and oxidative damage and reduces neuroinflammation in the brain.
Collapse
Affiliation(s)
- Yu-Wen Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Hitoshi Shirakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Li-Han Su
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Pei-Yu Loe
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
37
|
Wang K, Zhou W, Wen L, Jin X, Meng T, Li S, Hong Y, Xu Y, Yuan H, Hu F. The protective effects of Axitinib on blood-brain barrier dysfunction and ischemia-reperfusion injury in acute ischemic stroke. Exp Neurol 2024; 379:114870. [PMID: 38897539 DOI: 10.1016/j.expneurol.2024.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND PURPOSE The pathophysiological features of acute ischemic stroke (AIS) often involve dysfunction of the blood-brain barrier (BBB), characterized by the degradation of tight junction proteins (Tjs) leading to increased permeability. This dysfunction can exacerbate cerebral injury and contribute to severe complications. The permeability of the BBB fluctuates during different stages of AIS and is influenced by various factors. Developing effective therapies to restore BBB function remains a significant challenge in AIS treatment. High levels of vascular endothelial growth factor (VEGF) in the early stages of AIS have been shown to worsen BBB breakdown and stroke progression. Our study aimed to investigate the protective effects of the VEGF receptor inhibitor Axitinib on BBB dysfunction and cerebral ischemia/reperfusion-induced injury. METHODS BEnd3 cell exposed to oxygen-glucose deprivation (OGD) model was constructed to estimate pharmacological activity of Axitinib (400 ng/ml) on anti-apoptosis and pathological barrier function recovery. In vivo, rats were subjected to a 1 h transient middle cerebral artery occlusion and 23 h reperfusion (tMCAO/R) to investigate the permeability of BBB and cerebral tissue damage. Axitinib was administered through the tail vein at the beginning of reperfusion. BBB integrity was assessed by Evans blue leakage and the expression levels of Tjs claudin-5 and occludin. RESULTS Our research revealed that co-incubation with Axitinib enhanced the cell viability of OGD-insulted bEnd3 cells, decreased LDH leakage rate, and suppressed the expression of apoptosis-related proteins cytochrome C and Bax. Axitinib also mitigated the damage to Tjs and facilitated the restoration of transepithelial electrical resistance in OGD-insulted bEnd.3 cells. In vivo, Axitinib administration reduced intracerebral Evans blue leakage and up-regulated the expression of Tjs in the penumbra brain tissue in tMCAO/R rats. Notably, 10 mg/kg Axitinib exerted a significant anti-ischemic effect by decreasing cerebral infarct volume and brain edema volume, improving neurological function, and reducing pro-inflammatory cytokines IL-6 and TNF-α in the brain. CONCLUSIONS Our study highlights Axitinib as a potent protectant of blood-brain barrier function, capable of promoting pathological blood-brain barrier recovery through VEGF inhibition and increased expression of tight junction proteins in AIS. This suggests that VEGF antagonism within the first 24 h post-stroke could be a novel therapeutic approach to enhance blood-brain barrier function and mitigate ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Wentao Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Lijun Wen
- National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Xiangyu Jin
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Tingting Meng
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Sufen Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yiling Hong
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yichong Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
38
|
Kooij KL, Andreani NA, van der Gun LL, Keller L, Trinh S, van der Vijgh B, Luijendijk M, Dempfle A, Herpertz-Dahlmann B, Seitz J, van Elburg A, Danner UN, Baines J, Adan RAH. Fecal microbiota transplantation of patients with anorexia nervosa did not alter flexible behavior in rats. Int J Eat Disord 2024; 57:1868-1881. [PMID: 38934721 DOI: 10.1002/eat.24231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Patients with anorexia nervosa (AN) are often anxious, display inflexible behavior and disrupted reward processing. Emerging evidence suggests that gut dysbiosis in patients contributes to the disease phenotype and progression. METHODS In a preclinical study, we explored whether AN-derived microbiota impacts cognitive flexibility, anxiety, and dopamine signaling using fecal microbiota transplantation (FMT) in tyrosine hydroxylase-cre rats. We performed probabilistic reversal learning task (PRLT) at the baseline, after antibiotic treatment, and following FMT from patients with AN and controls. We assessed flexible behavior, task engagement, and ventral tegmental area (VTA) dopamine signaling during and in the absence of reward. Furthermore, anxiety-like behavior was evaluated with open field (OF) and elevated plus maze (EPM) tests. RESULTS Neither antibiotic-induced dysbiosis nor AN FMT led to significant alterations in the number of reversals or lever press strategies after reinforced or nonreinforced lever presses (win and lose-stay) in the PRLT. However, the number of initiated trials decreased after antibiotic treatment while remaining unchanged after FMT. No significant differences were observed in VTA dopamine activity, anxiety measures in the OF and EPM tests. Microbiome analysis revealed limited overlap between the microbiota of the donors and recipients. DISCUSSION No evidence was found that the microbiota of patients compared to controls, nor a depleted microbiome impacts cognitive flexibility. Nonetheless, antibiotic-induced dysbiosis resulted in reduced task engagement during the PRLT. The relatively low efficiency of the FMT is a limitation of our study and highlights the need for improved protocols to draw robust conclusions in future studies. PUBLIC SIGNIFICANCE While our study did not reveal direct impacts of AN-associated gut microbiota on cognitive flexibility or anxiety behaviors in our preclinical model, we observed a decrease in task engagement after antibiotic-induced dysbiosis, underscoring that the presence of a gut microbiome matters. Our findings underscore the need for further refinement in FMT protocols to better elucidate the complex interplay between gut microbiota and behaviors characteristic of anorexia nervosa.
Collapse
Affiliation(s)
- Karlijn L Kooij
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - Nadia Andrea Andreani
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section Evolutionary Medicine, Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Luna L van der Gun
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lara Keller
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | | | - Mieneke Luijendijk
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | | | - Jochen Seitz
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LVR University Hospital Essen, Essen, Germany
| | - Annemarie van Elburg
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
- Faculty of Social Sciences, Utrecht University, Utrecht, The Netherlands
| | - Unna N Danner
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - John Baines
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section Evolutionary Medicine, Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Roger A H Adan
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
- Department of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
40
|
Molska M, Mruczyk K, Cisek-Woźniak A, Prokopowicz W, Szydełko P, Jakuszewska Z, Marzec K, Trocholepsza M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024; 16:2891. [PMID: 39275207 PMCID: PMC11397622 DOI: 10.3390/nu16172891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus. A novel area of research is the emerging role of gut microbiota as a significant contributor to neurogenesis and neurotrophin production. Studies have shown that reduced BDNF levels can lead to mood disorders, which are observed in intestinal dysbiosis, characterized by an imbalance in the composition and quantity of the intestinal microbiota. There is evidence in the literature that there is a link between brain function and gut microbiota. Physical activity, and especially the regularity and intensity of exercise, is important in relation to the level of BDNF and the intestinal microbiota. Probiotics, prebiotics and physical activity may have a positive effect on the intestinal microbiota, and therefore also on the level of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Wojciech Prokopowicz
- GSP Clinic Limited Liability Company, Kostrzyńska Street 12, 66-400 Gorzow Wielkopolski, Poland;
| | - Patrycja Szydełko
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Zuzanna Jakuszewska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Karolina Marzec
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Martyna Trocholepsza
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| |
Collapse
|
41
|
Li K, Xiao X, Li Y, Lu S, Zi J, Sun X, Xu J, Liu HY, Li X, Song T, Cai D. Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines. J Anim Sci Biotechnol 2024; 15:114. [PMID: 39118186 PMCID: PMC11308499 DOI: 10.1186/s40104-024-01073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals, including dogs and cats. Obesity occurs with multiple comorbidities, such as diabetes, hypertension, heart disease and osteoarthritis in dogs and cats. A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated. However, the understanding of such pathophysiology in companion animals is limited. This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity, emphasizing the involvement of the gut microbiota. Furthermore, we also discuss the management of obesity, including approaches like nutritional interventions, thus providing novel insights into obesity prevention and treatment for canines and felines.
Collapse
Affiliation(s)
- Kaiqi Li
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiangyu Xiao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Li
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China
| | - Sichen Lu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianghang Zi
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqiang Sun
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Xu
- College of Agriculture, Jinhua Polytechnic, Jinhua, 321017, China
| | - Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
42
|
Hu A, Zaongo SD, Harypursat V, Wang X, Ouyang J, Chen Y. HIV-associated neurocognitive disorder: key implications of the microbiota-gut-brain axis. Front Microbiol 2024; 15:1428239. [PMID: 39155987 PMCID: PMC11327151 DOI: 10.3389/fmicb.2024.1428239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is now recognized to be relatively common in people living with HIV (PLWH), and remains a common cause of cognitive impairment. Unfortunately, the fundamental pathogenic processes underlying this specific outcome of HIV infection have not as yet been fully elucidated. With increased interest in research related to the microbiota-gut-brain axis, the gut-brain axis has been shown to play critical roles in regulating central nervous system disorders such as Alzheimer's disease and Parkinson's disease. PLWH are characterized by a particular affliction, referred to as gut-associated dysbiosis syndrome, which provokes an alteration in microbial composition and diversity, and of their associated metabolite composition within the gut. Interestingly, the gut microbiota has also been recognized as a key element, which both positively and negatively influences human brain health, including the functioning and development of the central nervous system (CNS). In this review, based on published evidence, we critically discuss the relevant interactions between the microbiota-gut-brain axis and the pathogenesis of HAND in the context of HIV infection. It is likely that HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis syndrome and a leaky gut on the one hand and (ii) inflammation on the other hand. In other words, the preceding features of HIV infection negatively alter the composition of the gut microbiota (microbes and their associated metabolites) and promote proinflammatory immune responses which singularly or in tandem damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is fairly prevalent in PLWH. This work aims to demonstrate that in the quest to prevent and possibly treat HAND, the gut microbiota may ultimately represent a therapeutically targetable "host factor."
Collapse
Affiliation(s)
- Aizhen Hu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Wang
- Phase I Clinical Trial Center, Chonggang General Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
43
|
Lin K, Peng F, He K, Qian Z, Mei X, Su Z, Wujimaiti Y, Xia X, Zhang T. Research progress on intestinal microbiota regulating cognitive function through the gut-brain axis. Neurol Sci 2024; 45:3711-3721. [PMID: 38632176 DOI: 10.1007/s10072-024-07525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
The intestinal microbiota community is a fundamental component of the human body and plays a significant regulatory role in maintaining overall health and in the management disease states.The intestinal microbiota-gut-brain axis represents a vital connection in the cognitive regulation of the central nervous system by the intestinal microbiota.The impact of intestinal microbiota on cognitive function is hypothesized to manifest through both the nervous system and circulatory system. Imbalances in intestinal microbiota during the perioperative period could potentially contribute to perioperative neurocognitive dysfunction. This article concentrates on a review of existing literature to explore the potential influence of intestinal microbiota on brain and cognitive functions via the nervous and circulatory systems.Additionally, it summarizes recent findings on the impact of perioperative intestinal dysbacteriosis on perioperative neurocognitive dysfunction and suggests novel approaches for prevention and treatment of this condition.
Collapse
Affiliation(s)
- Kaijie Lin
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng Peng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- The First Affiliated Hospital Of Chengdu Medical College, Chengdu, Sichuan, China
| | - Kunyang He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Zhengyu Qian
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xuan Mei
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Zhikun Su
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | | | - Xun Xia
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China.
- The First Affiliated Hospital Of Chengdu Medical College, Chengdu, Sichuan, China.
| | - Tianyao Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China.
- The First Affiliated Hospital Of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
44
|
Yin C, Zhang M, Jin S, Zhou Y, Ding L, Lv Q, Huang Z, Zhou J, Chen J, Wang P, Zhang S, You Q. Mechanism of Salvia miltiorrhiza Bunge extract to alleviate Chronic Sleep Deprivation-Induced cognitive dysfunction in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155725. [PMID: 38772181 DOI: 10.1016/j.phymed.2024.155725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/16/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Bidirectional communication between the gut microbiota and the brain may play an essential role in the cognitive dysfunction associated with chronic sleep deprivation(CSD). Salvia miltiorrhiza Bunge (Danshen, DS), a famous Chinese medicine and functional tea, is extensively used to protect learning and memory capacities, although the mechanism of action remains unknown. PURPOSE The purpose of this research was to explore the efficacy and the underlying mechanism of DS in cognitive dysfunction caused by CSD. METHODS DS chemical composition was analyzed by UPLC-QTOF-MS/MS. Forty rats were randomly assigned to five groups (n = 8): control (CON), model (MOD), low- (1.35 g/kg, DSL), high-dose (2.70 g/kg, DSH) DS group, and Melatonin(100 mg/kg, MT) group. A CSD rat model was established over 21 days. DS's effects and the underlying mechanism were explored using the open-field test(OFT), Morris water-maze(MWM), tissue staining(Hematoxylin and Eosin Staining, Nissl staining, Alcian blue-periodic acid SCHIFF staining, and Immunofluorescence), enzyme-linked immunosorbent assay, Western blot, quantitative real-time polymerase chain reaction(qPCR), and 16S rRNA sequencing. RESULTS We demonstrated that CSD caused gut dysbiosis and cognitive dysfunction. Furthermore, 16S rRNA sequencing demonstrated that Firmicutes and Proteobacteria were more in fecal samples from model group rats, whereas Bacteroidota and Spirochaetota were less. DS therapy, on the contrary hand, greatly restored the gut microbial community, consequently alleviating cognitive impairment in rats. Further research revealed that DS administration reduced systemic inflammation via lowering intestinal inflammation and barrier disruption. Following that, DS therapy reduced Blood Brain Barrier(BBB) and neuronal damage, further decreasing neuroinflammation in the hippocampus(HP). Mechanistic studies revealed that DS therapy lowered lipopolysaccharide (LPS) levels in the HP, serum, and colon, consequently blocking the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products(IL-1β, IL-6, TNF-α, iNOS, and COX2) in the HP and colon. CONCLUSION DS treatment dramatically improved spatial learning and memory impairments in rats with CSD by regulating the composition of the intestinal flora, preserving gut and brain barrier function, and reducing inflammation mediated by the LPS-TLR4 signaling pathway. Our findings provide novel insight into the mechanisms by which DS treats cognitive dysfunction caused by CSD.
Collapse
Affiliation(s)
- Chao Yin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Meiya Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Shuna Jin
- Hubei Shizhen Laboratory, Wuhan 430065, PR China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yuan Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Li Ding
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Qing Lv
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Zixuan Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Jiaqi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Jianmei Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Ping Wang
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China.
| | - Shunbo Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Qiuyun You
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China.
| |
Collapse
|
45
|
Shen X, Mu X. Systematic Insights into the Relationship between the Microbiota-Gut-Brain Axis and Stroke with the Focus on Tryptophan Metabolism. Metabolites 2024; 14:399. [PMID: 39195495 DOI: 10.3390/metabo14080399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Stroke, as a serious cerebral vascular disease with high incidence and high rates of disability and mortality, has limited therapeutic options due to the narrow time window. Compelling evidence has highlighted the significance of the gut microbiota and gut-brain axis as critical regulatory factors affecting stroke. Along the microbiota-gut-brain axis, tryptophan metabolism further acquires increasing attention for its intimate association with central nervous system diseases. For the purpose of exploring the potential role of tryptophan metabolism in stroke and providing systematic insights into the intricate connection of the microbiota-gut-brain axis with the pathological procedure of stroke, this review first summarized the practical relationship between microbiota and stroke by compiling the latest case-control research. Then, the microbiota-gut-brain axis, as well as its interaction with stroke, were comprehensively elucidated on the basis of the basic anatomical structure and physiological function. Based on the crosstalk of microbiota-gut-brain, we further focused on the tryptophan metabolism from the three major metabolic pathways, namely, the kynurenine pathway, serotonin pathway, and microbial pathway, within the axis. Moreover, the effects of tryptophan metabolism on stroke were appreciated and elaborated here, which is scarcely found in other reviews. Hopefully, the systematic illustration of the mechanisms and pathways along the microbiota-gut-brain axis will inspire more translational research from metabolic perspectives, along with more attention paid to tryptophan metabolism as a promising pharmaceutical target in order to reduce the risk of stroke, mitigate the stroke progression, and ameliorate the stroke prognosis.
Collapse
Affiliation(s)
- Xinyu Shen
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Xiaoqin Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
46
|
Shridhar SV, Beghini F, Alexander M, Singh A, Juárez RM, Brito IL, Christakis NA. Environmental, socioeconomic, and health factors associated with gut microbiome species and strains in isolated Honduras villages. Cell Rep 2024; 43:114442. [PMID: 38968070 PMCID: PMC11290354 DOI: 10.1016/j.celrep.2024.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/27/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
Despite a growing interest in the gut microbiome of non-industrialized countries, data linking deeply sequenced microbiomes from such settings to diverse host phenotypes and situational factors remain uncommon. Using metagenomic data from a community-based cohort of 1,871 people from 19 isolated villages in the Mesoamerican highlands of western Honduras, we report associations between bacterial species and human phenotypes and factors. Among them, socioeconomic factors account for 51.44% of the total associations. Meta-analysis of species-level profiles across several datasets identified several species associated with body mass index, consistent with previous findings. Furthermore, the inclusion of strain-phylogenetic information modifies the overall relationship between the gut microbiome and the phenotypes, especially for some factors like household wealth (e.g., wealthier individuals harbor different strains of Eubacterium rectale). Our analysis suggests a role that gut microbiome surveillance can play in understanding broad features of individual and public health.
Collapse
Affiliation(s)
- Shivkumar Vishnempet Shridhar
- Yale Institute for Network Science, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Francesco Beghini
- Yale Institute for Network Science, Yale University, New Haven, CT, USA
| | - Marcus Alexander
- Yale Institute for Network Science, Yale University, New Haven, CT, USA
| | - Adarsh Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Nicholas A Christakis
- Yale Institute for Network Science, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA; Department of Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
47
|
Mian M, Tahiri J, Eldin R, Altabaa M, Sehar U, Reddy PH. Overlooked cases of mild cognitive impairment: Implications to early Alzheimer's disease. Ageing Res Rev 2024; 98:102335. [PMID: 38744405 PMCID: PMC11180381 DOI: 10.1016/j.arr.2024.102335] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Mild cognitive impairment (MCI) marks the initial phase of memory decline or other cognitive functions like language or spatial perception, while individuals typically retain the capacity to carry out everyday tasks independently. Our comprehensive article investigates the intricate landscape of cognitive disorders, focusing on MCI and Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRD). The study aims to understand the signs of MCI, early Alzheimer's disease, and healthy brain aging while assessing factors influencing disease progression, pathology development and susceptibility. A systematic literature review of over 100 articles was conducted, emphasizing MCI, AD and ADRD within the elderly populations. The synthesis of results reveals significant findings regarding ethnicity, gender, lifestyle, comorbidities, and diagnostic tools. Ethnicity was found to influence MCI prevalence, with disparities observed across diverse populations. Gender differences were evident in cognitive performance and decline, highlighting the need for personalized management strategies. Lifestyle factors and comorbidities were identified as crucial influencers of cognitive health. Regarding diagnostic tools, the Montreal Cognitive Assessment (MoCA) emerged as superior to the Mini-Mental State Examination (MMSE) in early MCI detection. Overall, our article provides insights into the multifaceted nature of cognitive disorders, emphasizing the importance of tailored interventions and comprehensive assessment strategies for effective cognitive health management.
Collapse
Affiliation(s)
- Maamoon Mian
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jihane Tahiri
- School of Biology, Texas Tech University, Lubbock, TX 79430, USA
| | - Ryan Eldin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Mohamad Altabaa
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
48
|
Singh J, Vanlallawmzuali, Singh A, Biswal S, Zomuansangi R, Lalbiaktluangi C, Singh BP, Singh PK, Vellingiri B, Iyer M, Ram H, Udey B, Yadav MK. Microbiota-brain axis: Exploring the role of gut microbiota in psychiatric disorders - A comprehensive review. Asian J Psychiatr 2024; 97:104068. [PMID: 38776563 DOI: 10.1016/j.ajp.2024.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mental illness is a hidden epidemic in modern science that has gradually spread worldwide. According to estimates from the World Health Organization (WHO), approximately 10% of the world's population suffers from various mental diseases each year. Worldwide, financial and health burdens on society are increasing annually. Therefore, understanding the different factors that can influence mental illness is required to formulate novel and effective treatments and interventions to combat mental illness. Gut microbiota, consisting of diverse microbial communities residing in the gastrointestinal tract, exert profound effects on the central nervous system through the gut-brain axis. The gut-brain axis serves as a conduit for bidirectional communication between the two systems, enabling the gut microbiota to affect emotional and cognitive functions. Dysbiosis, or an imbalance in the gut microbiota, is associated with an increased susceptibility to mental health disorders and psychiatric illnesses. Gut microbiota is one of the most diverse and abundant groups of microbes that have been found to interact with the central nervous system and play important physiological functions in the human gut, thus greatly affecting the development of mental illnesses. The interaction between gut microbiota and mental health-related illnesses is a multifaceted and promising field of study. This review explores the mechanisms by which gut microbiota influences mental health, encompassing the modulation of neurotransmitter production, neuroinflammation, and integrity of the gut barrier. In addition, it emphasizes a thorough understanding of how the gut microbiome affects various psychiatric conditions.
Collapse
Affiliation(s)
- Jawahar Singh
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Vanlallawmzuali
- Department of Biotechnology, Mizoram Central University, Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Amit Singh
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Ruth Zomuansangi
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - C Lalbiaktluangi
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Bhim Pratap Singh
- Department of Agriculture and Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College Campus, Mizoram University (A Central University), Aizawl 796001, Mizoram, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab 151401, India
| | - Mahalaxmi Iyer
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan 342001, India
| | - Bharat Udey
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
49
|
Roussin L, Gry E, Macaron M, Ribes S, Monnoye M, Douard V, Naudon L, Rabot S. Microbiota influence on behavior: Integrative analysis of serotonin metabolism and behavioral profile in germ-free mice. FASEB J 2024; 38:e23648. [PMID: 38822661 DOI: 10.1096/fj.202400334r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.
Collapse
Affiliation(s)
- Léa Roussin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elisa Gry
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Mira Macaron
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sandy Ribes
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Véronique Douard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
50
|
Maimaiti M, Li C, Cheng M, Zhong Z, Hu J, Yang L, Zhang L, Hong Z, Song J, Pan M, Ma X, Cui S, Zhang P, Hao H, Wang C, Hu H. Blocking cGAS-STING pathway promotes post-stroke functional recovery in an extended treatment window via facilitating remyelination. MED 2024; 5:622-644.e8. [PMID: 38663402 DOI: 10.1016/j.medj.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/15/2024] [Accepted: 03/27/2024] [Indexed: 06/17/2024]
Abstract
BACKGROUND Ischemic stroke is a major cause of worldwide death and disability, with recombinant tissue plasminogen activator being the sole effective treatment, albeit with a limited treatment window. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway is emerging as the major DNA-sensing pathway to invoke immune responses in neuroinflammatory disorders. METHODS By performing a series of neurobehavioral assessments, electrophysiological analysis, high-throughput sequencing, and cell-based assays based on the transient middle cerebral artery occlusion (tMCAO) mouse stroke model, we examined the effects and underlying mechanisms of genetic and pharmacological inhibition of the cGAS-STING pathway on long-term post-stroke neurological functional outcomes. FINDINGS Blocking the cGAS-STING pathway, even 3 days after tMCAO, significantly promoted functional recovery in terms of white matter structural and functional integrity as well as sensorimotor and cognitive functions. Mechanistically, the neuroprotective effects via inhibiting the cGAS-STING pathway were contributed not only by inflammation repression at the early stage of tMCAO but also by modifying the cell state of phagocytes to facilitate remyelination at the sub-acute phase. The activation of the cGAS-STING pathway significantly impeded post-stroke remyelination through restraining myelin debris uptake and degradation and hindering oligodendrocyte differentiation and maturation. CONCLUSIONS Manipulating the cGAS-STING pathway has an extended treatment window in promoting long-term post-stroke functional recovery via facilitating remyelination in a mouse stroke model. Our results highlight the roles of the cGAS-STING pathway in aggregating stroke pathology and propose a new way for improving functional recovery after ischemic stroke. FUNDING This work was primarily funded by the National Key R&D Program of China.
Collapse
Affiliation(s)
- Munire Maimaiti
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chenhui Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Mingxing Cheng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ziwei Zhong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiameng Hu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ze Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Song
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaonan Ma
- Cellular and Molecular Biology Center, China Pharmaceutical University, Nanjing, China
| | - Shufang Cui
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Peng Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Haiyang Hu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China.
| |
Collapse
|