1
|
Yang X, Wang X, Dong W. Aryl hydrocarbon receptor (AhR) is regulated by hyperoxia in premature infants. J Matern Fetal Neonatal Med 2024; 37:2349179. [PMID: 38816997 DOI: 10.1080/14767058.2024.2349179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To investigate whether aryl hydrocarbon receptor (AhR) is involved in hyperoxia-mediated oxidative stress by observing the relationship between AhR and reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMCs) after oxygen exposure in premature infants. METHODS After 48 h of oxygen inhalation at different concentrations, discarded peripheral blood was collected to separate PBMCs and plasma. ROS were labeled with MitoSOXTM Red and detected by fluorescence microscopy in PBMCs. The level of MDA in plasma was detected by thiobarbituric acid colorimetry, the level of MCP-1 in plasma was detected by enzyme-linked immunosorbent assay (ELISA), the localization of AhR was detected by immunofluorescence, and the level of AhR expression in PBMCs was detected by Western blotting. RESULTS As the volume fraction of inspired oxygen increased, compared with those in the air control group, the levels of ROS, MDA in plasma, and MCP-1 in plasma increased gradually in the low concentration oxygen group, medium concentration oxygen group and high concentration oxygen group. The cytoplasm-nuclear translocation rate of AhR gradually increased, and the expression level of AhR gradually decreased. The levels of ROS in PBMCs, MDA in the plasma and MCP-1 in the plasma of premature infants were positively correlated with the cytoplasm-nuclear translocation rate of AhR but negatively correlated with the level of AhR expression. CONCLUSION Aryl hydrocarbon receptor (AhR) is regulated by hyperoxia in premature infants.
Collapse
Affiliation(s)
- Xi Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Xia Wang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
2
|
Anagnostou M, Tomou EM, Goya-Jorge E, Chatzopoulou P, Giner RM, Skaltsa H. Phytochemical Study of Stachys iva Griseb. and In Vitro Evaluation of AhR Transcriptional Activity. Chem Biodivers 2024; 21:e202400457. [PMID: 39302845 DOI: 10.1002/cbdv.202400457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/29/2024] [Indexed: 09/22/2024]
Abstract
Genus Stachys L. consists of approximately 365 species, distributed mainly in temperate regions. Several members of this genus are widely used in the traditional medicine of different countries worldwide. In Greece, 54 Stachys taxa are found in parts of the mainland and/or insular country. The present study focused on the phytochemical investigation of Stachys iva Griseb. and the in vitro anti-inflammatory evaluation of the isolated compounds. In total, eighteen compounds were isolated and identified from the dichloromethane-methanol extract, belonging to iridoids, flavonoids, phenylethanoid glycosides, and phenolic acids. An in vitro approach assessed the aryl hydrocarbon receptor (AhR) modulatory effects of these compounds, revealing an AhR agonistic activity of the flavonoid aglycones apigenin and cirsimaritin in HepG2 and HT29 cell lines. The present study contributes to the evidence of the traditional uses of Stachys spp. and its bioactive constituents, justifying the ethnopharmacological use as an anti-inflammatory plant genus.
Collapse
Affiliation(s)
- Maria Anagnostou
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Ekaterina-Michaela Tomou
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Elizabeth Goya-Jorge
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Paschalina Chatzopoulou
- Hellenic Agricultural Organization DEMETER, Institute of Breeding and Plant Genetic Resources, IBPGR, Department of Medicinal and Aromatic Plants, Thermi, 57001, Thessaloniki, Greece
| | - Rosa María Giner
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Helen Skaltsa
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| |
Collapse
|
3
|
Jasionowska J, Gałecki P, Kalinka E, Skiba A, Szemraj J, Turska E, Talarowska M. Level of selected exponents of the kynurenine pathway in patients diagnosed with depression and selected cancers. J Psychiatr Res 2024; 179:175-181. [PMID: 39303569 DOI: 10.1016/j.jpsychires.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Altered immune system activity is one of the common pathomechanisms of depressive disorders and cancer. The aim of this study is to evaluate level of selected elements of the kynurenine pathway in groups of depressed and oncological patients. The study included 156 individuals, aged 19-65 years (M = 43.46, SD = 13.99), divided into three groups, namely depressive disorders (DD), oncology patients (OG), and a comparison group of healthy subjects (CG). A sociodemographic questionnaire and the Hamilton Depression Rating Scale (HDRS) were used in the study to assess the intensity of depressive symptoms. Level of TDO2, L-KYN, HK, AA and QA was significantly higher in patients from OG and DD groups than in the comparison group. TDO2 level in the OG group was positively correlated with the severity of depressive symptoms. When the OG and DD groups were analyzed together, level of TDO2, 3-HKYN, AA, QA correlated positively with the severity of depressive symptoms. Thus, kynurenine pathway might play an integral role in the pathogenesis of depression.
Collapse
Affiliation(s)
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Aleksandra Skiba
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Turska
- Department of Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Monika Talarowska
- Institute of Psychology, Faculty of Educational Sciences, University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Dai W, Yin S, Wang F, Kuang T, Xiao H, Kang W, Yun C, Wang F, Luo L, Ao S, Zhou J, Yang X, Fan C, Li W, He D, Jin H, Tang W, Liu L, Wang R, Liang H, Zhu J. Punicalagin as a novel selective aryl hydrocarbon receptor (AhR) modulator upregulates AhR expression through the PDK1/p90RSK/AP-1 pathway to promote the anti-inflammatory response and bactericidal activity of macrophages. Cell Commun Signal 2024; 22:473. [PMID: 39363344 PMCID: PMC11448010 DOI: 10.1186/s12964-024-01847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) plays an important role in inflammation and immunity as a new therapeutic target for infectious disease and sepsis. Punicalagin (PUN) is a Chinese herbal monomer extract of pomegranate peel that has beneficial anti-inflammatory, antioxidant and anti-infective effects. However, whether PUN is a ligand of AhR, its effect on AhR expression, and its signaling pathway remain poorly understood. In this study, we found that PUN was a unique polyphenolic compound that upregulated AhR expression at the transcriptional level, and regulated the AhR nongenomic pathway. AhR expression in lipopolysaccharide-induced macrophages was upregulated by PUN in vitro and in vivo in a time- and dose-dependent manner. Using specific inhibitors and siRNA, induction of AhR by PUN depended on sequential phosphorylation of 90-kDa ribosomal S6 kinase (p90RSK), which was activated by the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-dependent protein kinase (PDK)1 pathways. PUN promoted p90RSK-mediated activator protein-1 (AP-1) activation. AhR knockout or inhibitors reversed suppression of interleukin (IL)-6 and IL-1β expression by PUN. PUN decreased Listeria load and increased macrophage survival via AhR upregulation. In conclusion, we identified PUN as a novel selective AhR modulator involved in AhR expression via the MEK/ERK and PDK1 pathways targeting p90RSK/AP-1 in inflammatory macrophages, which inhibited macrophage inflammation and promoted bactericidal activity.
Collapse
Affiliation(s)
- Weihong Dai
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Shuangqin Yin
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fangjie Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tianyin Kuang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hongyan Xiao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wenyuan Kang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Caihong Yun
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Fei Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Li Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shengxiang Ao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Zhou
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xue Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Chao Fan
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Li
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dongmei He
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - He Jin
- Department of Cardiothoracic Surgery, 926th Hospital of Joint Logistics Support Force of PLA, Kaiyuan, 661600, China
| | - Wanqi Tang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lizhu Liu
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Rixing Wang
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China.
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Junyu Zhu
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
5
|
Stockinger B, Diaz OE, Wincent E. The influence of AHR on immune and tissue biology. EMBO Mol Med 2024; 16:2290-2298. [PMID: 39242971 PMCID: PMC11473696 DOI: 10.1038/s44321-024-00135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
The aryl hydrocarbon receptor is a ligand dependent transcription factor which functions as an environmental sensor. Originally discovered as the sensor for man made pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) it has recently gained prominence as an important mediator for environmental triggers via the diet or microbiota which influences many physiological functions in different cell types and tissues across the body. Notably AHR activity contributes to prevent excessive inflammation following tissue damage in barrier organs such as skin, lung or gut which has received wide attention in the past decade. In this review we will focus on emerging common AHR functions across cell types and tissues and discuss ongoing issues that confound the understanding of AHR physiology. Furthermore, we will discuss the need for deeper molecular understanding of the functional activity of AHR in different contexts with respect to development of potential therapeutic applications.
Collapse
Affiliation(s)
| | - Oscar E Diaz
- The Francis Crick Institute, London, United Kingdom
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Maxwell A, Swanson G, Thy Nguyen A, Hu A, Richards D, You Y, Stephan L, Manaloto M, Liao A, Ding J, Mor G. Hydroquinone impairs trophoblast migration and invasion via AHR-twist-IFITM1 axis. Placenta 2024; 155:88-99. [PMID: 39173312 PMCID: PMC11421844 DOI: 10.1016/j.placenta.2024.07.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Embryo implantation is a tightly regulated process, critical for a successful pregnancy. After attachment of the blastocyst to the surface epithelium of the endometrium trophoblast migrate from the trophectoderm and invade into the stromal component of endometrium. Alterations on either process will lead to implantation failure or miscarriage. Volatile organic compounds (VOCs) such as benzene induce pregnancy complications, including preterm birth and miscarriages. The mechanism of this effect is unknown. The objective of this study was to elucidate the impact of benzene metabolite, Hydroquinone, on trophoblast function. We tested the hypothesis that Hydroquinone activates the Aryl hydrocarbon receptor (AhR) pathway modulating trophoblast migration and invasion. METHODS First-trimester trophoblast cells (Sw.71) were treated with hydroquinone (6 and 25 μM). Trophoblast migration and invasion was evaluated using a 3D invasion/migration model. Gene expression was quantified by q-PCR and Western blot analysis. RESULTS Hydroquinone impairs trophoblast migration and invasion. This loss is associated with the activation of the AhR pathway which reduced the expression of Twist1and IFITM1. IFITM1 overexpression can rescue impaired trophoblast migration. DISCUSSION Our study highlights that hydroquinone treatment induces the activation of the AhR pathway in trophoblast cells, which impairs trophoblast invasion and migration. We postulate that activation of the AhR pathway in trophoblast suppress Twist1 and a subsequent IFITM1. Thus, the AhR-Twist1-IFITM1 axis represent a critical pathway involved in the regulation of trophoblast migration and it is sensitive to benzene exposure. These findings provide crucial insights into the molecular mechanisms underlying pregnancy complications induced by air pollution.
Collapse
Affiliation(s)
- Anthony Maxwell
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Grace Swanson
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Annie Thy Nguyen
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Darby Richards
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Laura Stephan
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Marcia Manaloto
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiahui Ding
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Gil Mor
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
7
|
Garcia-Villatoro EL, Bomstein ZS, Allred KF, Callaway ES, Safe S, Chapkin RS, Jayaraman A, Allred CD. Involvement of Intestinal Epithelium Aryl Hydrocarbon Receptor Expression and 3, 3'-Diindolylmethane in Colonic Tertiary Lymphoid Tissue Formation. Int J Mol Sci 2024; 25:10153. [PMID: 39337636 PMCID: PMC11432480 DOI: 10.3390/ijms251810153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Tertiary lymphoid tissues (TLTs) are adaptive immune structures that develop during chronic inflammation and may worsen or lessen disease outcomes in a context-specific manner. Immune cell activity governing TLT formation in the intestines is dependent on immune cell aryl hydrocarbon receptor (AhR) activation. Homeostatic immune cell activity in the intestines is further dependent on ligand activation of AhR in intestinal epithelial cells (IECs), yet whether AhR activation and signaling in IECs influences the formation of TLTs in the presence of dietary AhR ligands is not known. To this end, we used IEC-specific AhR deletion coupled with a mouse model of dextran sodium sulfate (DSS)-induced colitis to understand how dietary AhR ligand 3, 3'-diindolylmethane (DIM) influenced TLT formation. DIM consumption increased the size of TLTs and decreased T-cell aggregation to TLT sites in an IEC-specific manner. In DSS-exposed female mice, DIM consumption increased the expression of genes implicated in TLT formation (Interleukin-22, Il-22; CXC motif chemokine ligand 13, CXCL13) in an IEC AhR-specific manner. Conversely, in female mice without DSS exposure, DIM significantly reduced the expression of Il-22 or CXCL13 in iAhRKO mice, but this effect was not observed in WT animals. Our findings suggest that DIM affects the immunological landscape of TLT formation during DSS-induced colitis in a manner contingent on AhR expression in IECs and biological sex. Further investigations into specific immune cell activity, IEC-specific AhR signaling pathways, and dietary AhR ligand-mediated effects on TLT formation are warranted.
Collapse
Affiliation(s)
| | - Zachary S. Bomstein
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Kimberly F. Allred
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Evelyn S. Callaway
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77840, USA
| | - Robert S. Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX 77843, USA
| | - Arul Jayaraman
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3127, USA
| | - Clinton D. Allred
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
8
|
Guarnieri T. Light Sensing beyond Vision: Focusing on a Possible Role for the FICZ/AhR Complex in Skin Optotransduction. Cells 2024; 13:1082. [PMID: 38994936 PMCID: PMC11240502 DOI: 10.3390/cells13131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Although our skin is not the primary visual organ in humans, it acts as a light sensor, playing a significant role in maintaining our health and overall well-being. Thanks to the presence of a complex and sophisticated optotransduction system, the skin interacts with the visible part of the electromagnetic spectrum and with ultraviolet (UV) radiation. Following a brief overview describing the main photosensitive molecules that detect specific electromagnetic radiation and their associated cell pathways, we analyze their impact on physiological functions such as melanogenesis, immune response, circadian rhythms, and mood regulation. In this paper, we focus on 6-formylindolo[3,2-b]carbazole (FICZ), a photo oxidation derivative of the essential amino acid tryptophan (Trp). This molecule is the best endogenous agonist of the Aryl hydrocarbon Receptor (AhR), an evolutionarily conserved transcription factor, traditionally recognized as a signal transducer of both exogenous and endogenous chemical signals. Increasing evidence indicates that AhR is also involved in light sensing within the skin, primarily due to its ligand FICZ, which acts as both a chromophore and a photosensitizer. The biochemical reactions triggered by their interaction impact diverse functions and convey crucial data to our body, thus adding a piece to the complex puzzle of pathways that allow us to decode and elaborate environmental stimuli.
Collapse
Affiliation(s)
- Tiziana Guarnieri
- Cell Physiology Laboratory, Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo "Mauro Picone", Via dei Taurini 19, 00185 Roma, Italy
| |
Collapse
|
9
|
Lu W, Cheng S, Xu J, Xiao Z, Yu Y, Xie Q, Fang Y, Chen R, Shen B, Xie Y, Ding X. Roles of AhR/CYP1s signaling pathway mediated ROS production in uremic cardiomyopathy. Toxicol Lett 2024; 396:81-93. [PMID: 38670245 DOI: 10.1016/j.toxlet.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE Uremic cardiomyopathy (UCM) is the leading cause of chronic kidney disease (CKD) related mortality. Uremic toxins including indoxyl sulfate (IS) play important role during the progression of UCM. This study was to explore the underlying mechanism of IS related myocardial injury. METHODS UCM rat model was established through five-sixths nephrectomy to evaluate its effects on blood pressure, cardiac impairment, and histological changes using echocardiography and histological analysis. Additionally, IS was administered to neonatal rat cardiomyocytes (NRCMs) and the human cardiomyocyte cell line AC16. DHE staining and peroxide-sensitive dye 2',7'-dichlorofluorescein diacetate (H2DCFDA) was conducted to assess the reactive oxygen species (ROS) production. Cardiomyocyte hypertrophy was estimated using wheat germ agglutinin (WGA) staining and immunofluorescence. Aryl hydrocarbon receptor (AhR) translocation was observed by immunofluorescence. The activation of AhR was evaluated by immunoblotting of cytochrome P450 1 s (CYP1s) and quantitative real-time PCR (RT-PCR) analysis of AHRR and PTGS2. Additionally, the pro-oxidative and pro-hypertrophic effects were evaluated using the AhR inhibitor CH-223191, the CYP1s inhibitor Alizarin and the ROS scavenger N-Acetylcysteine (NAC). RESULTS UCM rat model was successfully established, and cardiac hypertrophy, accompanied by increased blood pressure, and myocardial fibrosis. Further research confirmed the activation of the AhR pathway in UCM rats including AhR translocation and downstream protein CYP1s expression, accompanied with increasing ROS production detected by DHE staining. In vitro experiment demonstrated a translocation of AhR triggered by IS, leading to significant increase of downstream gene expression. Subsequently study indicated a close relationship between the production of ROS and the activation of AhR/CYP1s, which was effectively blocked by applying AhR inhibitor, CYP1s inhibitor and siRNA against AhR. Moreover, the inhibition of AhR/CYP1s/ROS pathway collectively blocked the pro-hypertrophic effect of IS-mediated cardiomyopathy. CONCLUSION This study provides evidence that the AhR/CYP1s pathway is activated in UCM rats, and this activation is correlated with the uremic toxin IS. In vitro studies indicate that IS can stimulate the AhR translocation in cardiomyocyte, triggering to the production of intracellular ROS via CYP1s. This process leads to prolonged oxidative stress stimulation and thus contributes to the progression of uremic toxin-mediated cardiomyopathy.
Collapse
Affiliation(s)
- Wei Lu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Shi Cheng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Jiarui Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Zilong Xiao
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Yu
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiwen Xie
- Department of Nephrology, Xiamen Branch, Zhongshan hospital, Fudan University; Nephrology, China; Clinical Quality Control Center of Xiamen, No.668 Jinhu Road, Xiamen, Fujian 361006, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Ruizhen Chen
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bo Shen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| | - Yeqing Xie
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| |
Collapse
|
10
|
Kim K. The Role of Endocrine Disruption Chemical-Regulated Aryl Hydrocarbon Receptor Activity in the Pathogenesis of Pancreatic Diseases and Cancer. Int J Mol Sci 2024; 25:3818. [PMID: 38612627 PMCID: PMC11012155 DOI: 10.3390/ijms25073818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) serves as a ligand-activated transcription factor crucial for regulating fundamental cellular and molecular processes, such as xenobiotic metabolism, immune responses, and cancer development. Notably, a spectrum of endocrine-disrupting chemicals (EDCs) act as agonists or antagonists of AHR, leading to the dysregulation of pivotal cellular and molecular processes and endocrine system disruption. Accumulating evidence suggests a correlation between EDC exposure and the onset of diverse pancreatic diseases, including diabetes, pancreatitis, and pancreatic cancer. Despite this association, the mechanistic role of AHR as a linchpin molecule in EDC exposure-related pathogenesis of pancreatic diseases and cancer remains unexplored. This review comprehensively examines the involvement of AHR in EDC exposure-mediated regulation of pancreatic pathogenesis, emphasizing AHR as a potential therapeutic target for the pathogenesis of pancreatic diseases and cancer.
Collapse
Affiliation(s)
- Kyounghyun Kim
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas Medical Sciences, Little Rock, AR 72225, USA
| |
Collapse
|
11
|
Ma EZ, Deng J, Parthasarathy V, Lee KK, Pritchard T, Guo S, Zhang C, Kwatra MM, Le A, Kwatra SG. Integrated plasma metabolomic and cytokine analysis reveals a distinct immunometabolic signature in atopic dermatitis. Front Immunol 2024; 15:1354128. [PMID: 38558806 PMCID: PMC10978712 DOI: 10.3389/fimmu.2024.1354128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Importance Disease models for atopic dermatitis (AD) have primarily focused on understanding underlying environmental, immunologic, and genetic etiologies. However, the role of metabolic mechanisms in AD remains understudied. Objective To investigate the circulating blood metabolomic and cytokine profile of AD as compared to healthy control patients. Design This study collected plasma from 20 atopic dermatitis with moderate-to-severe itch (score of ≥5 on the itch Numeric Rating Scale and IGA score ≥3) and 24 healthy control patients. Mass-spectrometry based metabolite data were compared between AD and healthy controls. Unsupervised and supervised machine learning algorithms and univariate analysis analyzed metabolic concentrations. Metabolite enrichment and pathway analyses were performed on metabolites with significant fold change between AD and healthy control patients. To investigate the correlation between metabolites levels and cytokines, Spearman's rank correlation coefficients were calculated between metabolites and cytokines. Setting Patients were recruited from the Johns Hopkins Itch Center and dermatology outpatient clinics in the Johns Hopkins Outpatient Center. Participants The study included 20 atopic dermatitis patients and 24 healthy control patients. Main outcomes and measures Fold changes of metabolites in AD vs healthy control plasma. Results In patients with AD, amino acids isoleucine, tyrosine, threonine, tryptophan, valine, methionine, and phenylalanine, the amino acid derivatives creatinine, indole-3-acrylic acid, acetyl-L-carnitine, L-carnitine, 2-hydroxycinnamic acid, N-acetylaspartic acid, and the fatty amide oleamide had greater than 2-fold decrease (all P-values<0.0001) compared to healthy controls. Enriched metabolites were involved in branched-chain amino acid (valine, leucine, and isoleucine) degradation, catecholamine biosynthesis, thyroid hormone synthesis, threonine metabolism, and branched and long-chain fatty acid metabolism. Dysregulated metabolites in AD were positively correlated cytokines TARC and MCP-4 and negatively correlated with IL-1a and CCL20. Conclusions and relevance Our study characterized novel dysregulated circulating plasma metabolites and metabolic pathways that may be involved in the pathogenesis of AD. These metabolic pathways serve as potential future biomarkers and therapeutic targets in the treatment of AD.
Collapse
Affiliation(s)
- Emily Z. Ma
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, United States
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Junwen Deng
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kevin K. Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thomas Pritchard
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, United States
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shenghao Guo
- Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cissy Zhang
- Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Madan M. Kwatra
- Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
- Anesthesiology, Duke University School of Medicine, Durham, NC, United States
| | - Anne Le
- Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shawn G. Kwatra
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, United States
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Li X, Jiang X, Zeng R, Lai X, Wang J, Liu H, Wu H, He J, Liu L, Zhu Z, Li J, Liang X. Formononetin attenuates cigarette smoke-induced COPD in mice by suppressing inflammation, endoplasmic reticulum stress, and apoptosis in bronchial epithelial cells via AhR/CYP1A1 and AKT/mTOR signaling pathways. Phytother Res 2024; 38:1278-1293. [PMID: 38191199 DOI: 10.1002/ptr.8104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/16/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic, progressive, and lethal lung disease with few treatments. Formononetin (FMN) is a clinical preparation extract with extensive pharmacological actions. However, its effect on COPD remains unknown. This study aimed to explore the effect and underlying mechanisms of FMN on COPD. A mouse model of COPD was established by exposure to cigarette smoke (CS) for 24 weeks. In addition, bronchial epithelial BEAS-2B cells were treated with CS extract (CSE) for 24 h to explore the in vitro effect of FMN. FMN significantly improved lung function and attenuated pathological lung damage. FMN treatment reduced inflammatory cell infiltration and pro-inflammatory cytokines secretion. FMN also suppressed apoptosis by regulating apoptosis-associated proteins. Moreover, FMN relieved CS-induced endoplasmic reticulum (ER) stress in the mouse lungs. In BEAS-2B cells, FMN treatment reduced CSE-induced inflammation, ER stress, and apoptosis. Mechanistically, FMN downregulated the CS-activated AhR/CYP1A1 and AKT/mTOR signaling pathways in vivo and in vitro. FMN can attenuate CS-induced COPD in mice by suppressing inflammation, ER stress, and apoptosis in bronchial epithelial cells via the inhibition of AhR/CYP1A1 and AKT/mTOR signaling pathways, suggesting a new therapeutic potential for COPD treatment.
Collapse
Affiliation(s)
- Xiaomei Li
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xianhan Jiang
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Runhao Zeng
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiujuan Lai
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Wang
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hao Liu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huihui Wu
- Department of Endocrinology and Metabolism, Jing'an District Center Hospital of Shanghai, Shanghai, China
| | - Jiaxun He
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lian Liu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiying Zhu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingpei Li
- Department of Thoracic Surgery/Oncology, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xue Liang
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Cheng X, Chen J, Guo X, Cao H, Zhang C, Hu G, Zhuang Y. Disrupting the gut microbiota/metabolites axis by Di-(2-ethylhexyl) phthalate drives intestinal inflammation via AhR/NF-κB pathway in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123232. [PMID: 38171427 DOI: 10.1016/j.envpol.2023.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known for its environmental endocrine-disrupting properties, posing potential risks to various organs. However, the precise impact of DEHP on intestinal health and its contribution to the initiation of intestinal inflammation remains elucidated. This study aims to investigate the underlying mechanisms of DEHP-induced intestinal inflammation in mice, specifically focusing on the complex interplay between the gut microbiota-metabolite axis and associated pathophysiological alterations. Our findings showed that DEHP-induced damage of multiple organs systemically, as indicated by abnormal liver and kidney biochemical markers, along with a disrupted ileum morphology. Additionally, DEHP exposure disrupted gut barrier function, causing intestinal inflammation characterized by bacterial translocation and alterations in defense and inflammation-related gene expressions. Moreover, 16S rRNA analysis suggested that DEHP-induced gut microbial remodeling is characterized by an upregulation of detrimental bacteria (Erysipelotrichaceae) and a downregulation of beneficial bacteria (Muribaculaceae, Ruminococcaceae, and Lachnospiraceae). Metabolomics analysis revealed DEHP perturbed gut metabolic homeostasis, particularly affecting the degradation of aromatic compounds, which generated an aberrant activation of the AhR and NF-κB, subsequently causing intestinal inflammation. Consequently, our results elucidate the mechanistic link between disrupted gut microbiota and metabolome and the initiation of DEHP-induced intestinal inflammation, mediated through the AhR/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jinyan Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
14
|
Yang Q, Saaoud F, Lu Y, Pu Y, Xu K, Shao Y, Jiang X, Wu S, Yang L, Tian Y, Liu X, Gillespie A, Luo JJ, Shi XM, Zhao H, Martinez L, Vazquez-Padron R, Wang H, Yang X. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types. Front Immunol 2024; 14:1348238. [PMID: 38327764 PMCID: PMC10847266 DOI: 10.3389/fimmu.2023.1348238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in aortic diseases. Innate immunity is the main driving force for cardiovascular diseases. Methods To determine the roles of innate immunity in VSMC and aortic pathologies, we performed transcriptome analyses on aortas from ApoE-/- angiotensin II (Ang II)-induced aortic aneurysm (AAA) time course, and ApoE-/- atherosclerosis time course, as well as VSMCs stimulated with danger-associated molecular patterns (DAMPs). Results We made significant findings: 1) 95% and 45% of the upregulated innate immune pathways (UIIPs, based on data of 1226 innate immune genes) in ApoE-/- Ang II-induced AAA at 7 days were different from that of 14 and 28 days, respectively; and AAA showed twin peaks of UIIPs with a major peak at 7 days and a minor peak at 28 days; 2) all the UIIPs in ApoE-/- atherosclerosis at 6 weeks were different from that of 32 and 78 weeks (two waves); 3) analyses of additional 12 lists of innate immune-related genes with 1325 cytokine and chemokine genes, 2022 plasma membrane protein genes, 373 clusters of differentiation (CD) marker genes, 280 nuclear membrane protein genes, 1425 nucleoli protein genes, 6750 nucleoplasm protein genes, 1496 transcription factors (TFs) including 15 pioneer TFs, 164 histone modification enzymes, 102 oxidative cell death genes, 68 necrotic cell death genes, and 47 efferocytosis genes confirmed two-wave inflammation in atherosclerosis and twin-peak inflammation in AAA; 4) DAMPs-stimulated VSMCs were innate immune cells as judged by the upregulation of innate immune genes and genes from 12 additional lists; 5) DAMPs-stimulated VSMCs increased trans-differentiation potential by upregulating not only some of 82 markers of 7 VSMC-plastic cell types, including fibroblast, osteogenic, myofibroblast, macrophage, adipocyte, foam cell, and mesenchymal cell, but also 18 new cell types (out of 79 human cell types with 8065 cell markers); 6) analysis of gene deficient transcriptomes indicated that the antioxidant transcription factor NRF2 suppresses, however, the other five inflammatory transcription factors and master regulators, including AHR, NF-KB, NOX (ROS enzyme), PERK, and SET7 promote the upregulation of twelve lists of innate immune genes in atherosclerosis, AAA, and DAMP-stimulated VSMCs; and 7) both SET7 and trained tolerance-promoting metabolite itaconate contributed to twin-peak upregulation of cytokines in AAA. Discussion Our findings have provided novel insights on the roles of innate immune responses and nuclear stresses in the development of AAA, atherosclerosis, and VSMC immunology and provided novel therapeutic targets for treating those significant cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Qiaoxi Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Beloit College, Beloit, WI, United States
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yujiang Pu
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Tian
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin Jun Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Rogovskii V. Cancer and Autoimmune Diseases as Two Sides of Chronic Inflammation and the Method of Therapy. Curr Cancer Drug Targets 2024; 24:1089-1103. [PMID: 38288812 DOI: 10.2174/0115680096282480240105071638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 09/20/2024]
Abstract
Chronic inflammation is associated with a prolonged increase in various inflammatory factors. According to clinical data, it can be linked with both cancer and autoimmune diseases in the same patients. This raises the critical question of how chronic inflammation relates to seemingly opposing diseases - tumors, in which there is immunosuppression, and autoimmune diseases, in which there is over-activation of the immune system. In this review, we consider chronic inflammation as a prerequisite for both immune suppression and an increased likelihood of autoimmune damage. We also discuss potential disease-modifying therapies targeting chronic inflammation, which can be helpful for both cancer and autoimmunity. On the one hand, pro-inflammatory factors persisting in the areas of chronic inflammation stimulate the production of anti-inflammatory factors due to a negative feedback loop, eliciting immune suppression. On the other hand, chronic inflammation can bring the baseline immunity closer to the threshold level required for triggering an autoimmune response using the bystander activation of immune cells. Focusing on the role of chronic inflammation in cancer and autoimmune diseases may open prospects for more intensive drug discovery for chronic inflammation.
Collapse
Affiliation(s)
- Vladimir Rogovskii
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
16
|
Zhang R, Liu H, Lin J, Ding J, You J, Geng J. AhR may be involved in Th17 cell differentiation in chronic hepatitis B. J Viral Hepat 2023; 30:939-950. [PMID: 37608767 DOI: 10.1111/jvh.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Th17 cells which are crucial for host immunity have been demonstrated to increase HBV infection. However, the mechanism of the Th17 cell increase is unknown. Hence, the mechanism of Th17 cell enhancement is important to provide a theoretical foundation for chronic hepatitis B immunotherapy. This study included 15 instances in the healthy control (HC) and 15 cohorts in the chronic hepatitis B (CHB). Their CD4+ T cells were isolated from their peripheral blood and then subjected to RNA transcriptome sequencing. Then, to identify target genes linked to Th17-cell differentiation, DEGs associated with CHB were convergent with the Th17-cell-associated genes from the KEGG database. Hub genes of DEG and target genes linked to Th17 cells were analysed for correlation. The AhR-related genes were located using the GeneMANIA database. To analyse the function of the genes, GO and KEGG pathways were employed. Protein-protein interaction network analysis employed the Metascape, STRING and Cytoscape databases. Finally, Western blotting and RT-qPCR were used to validate AhR. A total of 348 differential genes were identified in CHB patients. CytoHubba was used for screening five hub genes associated with CHB: CXCL10, RACGAP1, TPX2, FN1 and GZMA. This study aimed to determine the mechanism of elevated Th17 cells in CHB. As a result, further investigation using the convergence of DGEs and Th17 cell-related genes identified three target genes: AhR, HLA-DQA1 and HLA-DQB1, all of which were elevated in CHB. The three genes were primarily involved in immune response-related processes, according to the GO enrichment analysis. Correlation analysis of CXCL10, RACGAP1, TPX2, FN1 and GZMA genes with AhR, HLA-DQA1 and HLA-DQB1 revealed that AhR was positively associated with CXCL10 and GZMA genes, which best respond to the severity of CHB disease. Combined with the role of AhR in Th17 cell differentiation, the genes AhR was chosen for confirmation by RT-qPCR and WB in this study. The results showed that the CHB group had higher expression levels of AhR at both RT-qPCR and WB levels. Furthermore, this study's findings revealed that AhR may contribute to the development of CHB by affecting the differentiation of Th17 cells.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Infectious Diseases and Hepatology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Huaie Liu
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Lin
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Ding
- The Third People's Hospital of Kunming, Kunming, China
| | - Jing You
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiawei Geng
- Department of Infectious Diseases and Hepatology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
17
|
Wang K, Zhou M, Si H, Ma J. Gut microbiota-mediated IL-22 alleviates metabolic inflammation. Life Sci 2023; 334:122229. [PMID: 37922980 DOI: 10.1016/j.lfs.2023.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Low-grade chronic inflammation, also known as metabolic inflammation, promotes the development of metabolic diseases. Increasing evidence suggests that changes in gut microbes and metabolites disrupt the integrity of the gut barrier and exert significant effects on the metabolism of various tissues, including the liver and adipose tissue, thereby contributing to metabolic inflammation. We observed that IL-22 is a key signaling molecule that serves as a bridge between intestinal microbes and the host, effectively alleviating metabolic inflammation by modulating the host immunomodulatory network. Here, we focused on elucidating the underlying mechanisms by which the gut microbiota and their metabolites reduce inflammation via IL-22, highlighting the favorable impact of IL-22 on metabolic inflammation. Furthermore, we discuss the potential of IL-22 as a therapeutic target for the management of metabolic inflammation and related diseases.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
18
|
Yang L, Cheng T, Shao J. Perspective on receptor-associated immune response to Candida albicans single and mixed infections: Implications for therapeutics in oropharyngeal candidiasis. Med Mycol 2023; 61:myad077. [PMID: 37533203 DOI: 10.1093/mmy/myad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Oropharyngeal candidiasis (OPC), commonly known as 'thrush', is an oral infection that usually dismantles oral mucosal integrity and malfunctions local innate and adaptive immunities in compromised individuals. The major pathogen responsible for the occurrence and progression of OPC is the dimorphic opportunistic commensal Candida albicans. However, the incidence induced by non-albicans Candida species including C. glabrata, C. tropicalis, C. dubliniensis, C. parapsilosis, and C. krusei are increasing in company with several oral bacteria, such as Streptococcus mutans, S. gordonii, S. epidermidis, and S. aureus. In this review, the microbiological and infection features of C. albicans and its co-contributors in the pathogenesis of OPC are outlined. Since the invasion and concomitant immune response lie firstly on the recognition of oral pathogens through diverse cellular surface receptors, we subsequently emphasize the roles of epidermal growth factor receptor, ephrin-type receptor 2, human epidermal growth factor receptor 2, and aryl hydrocarbon receptor located on oral epithelial cells to delineate the underlying mechanism by which host immune recognition to oral pathogens is mediated. Based on these observations, the therapeutic approaches to OPC comprising conventional and non-conventional antifungal agents, fungal vaccines, cytokine and antibody therapies, and antimicrobial peptide therapy are finally overviewed. In the face of newly emerging life-threatening microbes (C. auris and SARS-CoV-2), risks (biofilm formation and interconnected translocation among diverse organs), and complicated clinical settings (HIV and oropharyngeal cancer), the research on OPC is still a challenging task.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| |
Collapse
|
19
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. Toxicol Appl Pharmacol 2023; 471:116550. [PMID: 37172768 PMCID: PMC10330769 DOI: 10.1016/j.taap.2023.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and subchronic (4 wk) TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of lncRNAs. TCDD dysregulated >4000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 lncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cell-cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolism. Networks were validated by the striking enrichments that predicted regulatory lncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
20
|
Zhang L, Cheng D, Zhang J, Tang H, Li F, Peng Y, Duan X, Meng E, Zhang C, Zeng T, Song F, Wang JS, Zhao X, Zhou J. Role of macrophage AHR/TLR4/STAT3 signaling axis in the colitis induced by non-canonical AHR ligand aflatoxin B1. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131262. [PMID: 36989784 DOI: 10.1016/j.jhazmat.2023.131262] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Here we report that macrophage AHR/TLR/STAT signaling axis is implicated in the colon colitis induced by non-canonical AHR ligand aflatoxin B1 (AFB1). In BALB/c mice gavaged with 5, 25 and 50 µg/kg body weight/day AFB1, we observed severe colitis featured by over-recruitment of myeloid lineage immune cells such as monocytes/macrophage in colon lamina propria. Stressed and damaged colon epithelial cells were observed in low-dose group, while twisted and shortened intestinal crypts being found in middle dose group. Severe tissue damage was induced in the high-dose group. Dose-dependent increases of ROS, NO, and decrease of mitochondrial ROS-suppressor STAT3 were observed in the exposure groups. Further investigation in AFB1-treated human macrophage model found: (1) functional adaptations such as elevation of TNF-alpha and IL-6 secretion, stimulation of phagocytosis, elevation of LTE4 level; (2) overall inflammatory status confirmed by RNA-sequence analysis, in line with up-regulation of immune functional proteins such as ICAM-1, IDO-1, NF-kB-p65, NLRP3, COX-2 and iNOS; (3) mRNA disruption of mitochondrial oxidative phosphorylation complex I units and STATs; (4) perturbation of AHR/TLR/STAT3 signaling axis, including elevated AHR, TLR2, TLR4, and decreased STAT3, p-STAT3 Ser727. Mechanism investigation revealed regulatory links of ligand-dependent AHR/TLR4/STAT3. AHR-TLR4 together regulate MyD88, and STAT3 may be directly regulated by MyD88 (TLR4 downstream molecule) upon AHR/TLR4 binding with ligands. Solely protein level changes of AHR/TLR4 cannot regulate STAT3. Our study suggests that macrophage AHR/TLR4/STAT3 is involved with the colitis induced by sub-acute exposure to AFB1. Future follow-up study will focus on the intervention of the colitis using AHR-anti-inflammatory ligands.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Dong Cheng
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Jing Zhang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Hui Tang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Fenghua Li
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Yi Peng
- Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China
| | - Xinglan Duan
- Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China
| | - En Meng
- Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China
| | - Cuili Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Tao Zeng
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Jia-Sheng Wang
- Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; Division of Chemistry and Physics, Shandong Center for Disease Control and Prevention, Jinan 250014, China.
| |
Collapse
|
21
|
Dhulkifle H, Sayed TS, Abunada HH, Abulola SM, Alhoshani A, Korashy HM, Maayah ZH. 6-Formylindolo(3,2-b)carbazole Dampens Inflammation and Reduces Endotoxin-Induced Kidney Injury via Nrf2 Activation. Chem Res Toxicol 2023; 36:552-560. [PMID: 36877625 DOI: 10.1021/acs.chemrestox.3c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Patients with sepsis are at a high risk of morbidity and mortality due to multiple organ injuries caused by pathological inflammation. Although sepsis is accompanied by multiple organ injuries, acute renal injury is a significant contributor to sepsis morbidity and mortality. Thus, dampening inflammation-induced renal injury may limit severe consequences of sepsis. As several studies have suggested that 6-formylindolo(3,2-b)carbazole (FICZ) is beneficial for treating various inflammatory diseases, we aimed to examine the potential protective effect of FICZ on the acute endotoxin-induced sepsis model of kidney injury. To test this, male C57Bl/6N mice were injected with FICZ (0.2 mg/kg) or vehicle 1 h prior to an injection of either lipopolysaccharides (LPS) (10 mg/kg), to induce sepsis, or phosphate-buffered saline for 24 h. Thereafter, gene expression of kidney injury and pro-inflammatory markers, circulating cytokines and chemokines, and kidney morphology were assessed. Our results show that FICZ reduced LPS-induced acute injury in kidneys from LPS-injected mice. Furthermore, we found that FICZ dampens both renal and systemic inflammation in our sepsis model. Mechanistically, our data indicated that FICZ significantly upregulates NAD(P)H quinone oxidoreductase 1 and heme oxygenase 1 via aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the kidneys to lessen inflammation and improve septic acute kidney injury. Overall, the data of our study show that FICZ possesses a beneficial reno-protective effect against sepsis-induced renal injury via dual activation of AhR/Nrf2.
Collapse
Affiliation(s)
- Hevna Dhulkifle
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Tahseen S Sayed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Hanan H Abunada
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Sara M Abulola
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Ali Alhoshani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Zaid H Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
22
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523119. [PMID: 36711947 PMCID: PMC9881922 DOI: 10.1101/2023.01.07.523119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo- p -dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and chronic TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of IncRNAs. TCDD dysregulated >4,000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 IncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cellâ€"cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolic. Networks were validated by the striking enrichments that predicted regulatory IncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
|
23
|
Dutta S, Banu SK, Arosh JA. Endocrine disruptors and endometriosis. Reprod Toxicol 2023; 115:56-73. [PMID: 36436816 DOI: 10.1016/j.reprotox.2022.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis is a hormone-dependent inflammatory gynecological disease of reproductive-age women. It is clinically and pathologically characterized by the presence of functional endometrium as heterogeneous lesions outside the uterine cavity. The two major symptoms are chronic pelvic pain and infertility, which profoundly affect women's reproductive health and quality of life. This significant individual and public health concerns underscore the importance of understanding the pathogenesis of endometriosis. The environmental endocrine-disrupting chemicals (EDCs) are exogenous agents that interfere with the synthesis, secretion, transport, signaling, or metabolism of hormones responsible for homeostasis, reproduction, and developmental processes. Endometriosis has been potentially linked to exposure to EDCs. In this review, based on the robust literature search, we have selected four endocrine disruptors (i) polychlorinated biphenyls (PCB)s (ii) dioxins (TCDD) (iii) bisphenol A (BPA) and its analogs and (iv) phthalates to elucidate their critical role in the etiopathogenesis of endometriosis. The epidemiological and experimental data discussed in this review indicate that these four EDCs activate multiple intracellular signaling pathways associated with proinflammation, estrogen, progesterone, prostaglandins, cell survival, apoptosis, migration, invasion, and growth of endometriosis. The available information strongly indicates that environmental exposure to EDCs such as PCBs, dioxins, BPA, and phthalates individually or collectively contribute to the pathophysiology of endometriosis. Further understanding of the molecular mechanisms of how these EDCs establish endometriosis and therapeutic strategies to mitigate the effects of these EDCs in the pathogenesis of endometriosis are timely needed. Moreover, understanding the interactive roles of these EDCs in the pathogenesis of endometriosis will help regulate the exposure to these EDCs in reproductive age women.
Collapse
Affiliation(s)
- Sudipta Dutta
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| | - Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| |
Collapse
|
24
|
Batiha GES, Al-Gareeb AI, Elekhnawy E, Al-kuraishy HM. Potential role of lipoxin in the management of COVID-19: a narrative review. Inflammopharmacology 2022; 30:1993-2001. [PMID: 36114383 PMCID: PMC9483298 DOI: 10.1007/s10787-022-01070-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection leads to the development of coronavirus disease 2019 (COVID-19), which causes endothelial dysfunction (ED), oxidative stress (OS), and inflammatory disorders. These changes cause hypoxia and cytokine storm with the development of cardio-pulmonary complications. Bioactive lipids and other polyunsaturated fatty acids participate in a vital role in the SARS-CoV-2 infection process. One of these mediators is the anti-inflammatory compound, lipoxin (LX). LXs are produced from arachidonic acid (AA) by collaboration between 5-lipoxygenase (5-LO) and 12-15 LO during cell interactions. Thus, our goal was to review the probable role of LXs in COVID-19 regarding the effects of LXs on the inflammatory signaling pathways that are linked with COVID-19 pathogenesis and complications.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| |
Collapse
|
25
|
Han Y, Li L, Wang B. Role of Akkermansia muciniphila in the development of nonalcoholic fatty liver disease: current knowledge and perspectives. Front Med 2022; 16:667-685. [PMID: 36318353 DOI: 10.1007/s11684-022-0960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
|
26
|
Pamuk F, Kantarci A. Inflammation as a link between periodontal disease and obesity. Periodontol 2000 2022; 90:186-196. [PMID: 35916870 DOI: 10.1111/prd.12457] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrition plays a critical role in the homeostatic balance, maintenance of health, and longevity. There is a close link between inflammatory diseases and nutritional health. Obesity is a severe pathological process with grave implications on several organ systems and disease processes, including type 2 diabetes, cardiovascular disease, osteoarthritis, and rheumatoid arthritis. The impact of obesity on periodontal inflammation has not been fully understood; the association between nutritional balance and periodontal inflammation is much less explored. This review is focused on the potential mechanistic links between periodontal diseases and obesity and common inflammatory activity pathways that can be pharmacologically targeted.
Collapse
Affiliation(s)
- Ferda Pamuk
- Forsyth Institute, Cambridge, Massachusetts, USA.,Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
27
|
Holme JA, Valen H, Brinchmann BC, Vist GE, Grimsrud TK, Becher R, Holme AM, Øvrevik J, Alexander J. Polycyclic aromatic hydrocarbons (PAHs) may explain the paradoxical effects of cigarette use on preeclampsia (PE). Toxicology 2022; 473:153206. [PMID: 35550401 DOI: 10.1016/j.tox.2022.153206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Tobacco smoking and use of snus (smokeless tobacco) are associated with adverse effects on pregnancy and neonatal outcomes. Nicotine is considered a key toxicant involved in effects caused by both smoking and snus, while pyrolysis products including polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke represents the constituents most unequally divided between these two groups of tobacco products. The aim of this review was: i) to compare the impact, in terms of relative effect estimates, of cigarette smoking and use of Swedish snus on pregnancy outcomes using similar non-tobacco user controls, and ii) to examine whether exposure to PAHs from smoking could explain possible differences in impact on pregnancy outcomes. We systematically searched MEDLINE, Embase, PsycInfo, Web of Science and the Cochrane Database of Systematic Reviews up to October 2021 and identified studies reporting risks for adverse pregnancy and neonatal outcomes associated with snus use and with smoking relative to pregnant women with no use of tobacco. Both snus use and smoking were associated with increased risk of stillbirth, preterm birth, and oral cleft malformation, with comparable point estimates. These effects were likely due to comparable nicotine exposure. We also found striking differences. While both smoking and snus increased the risk of having small for gestational age (SGA) infants, risk from maternal smoking was markedly higher as was the reduction in birthweight. In contrast, the risk of preeclampsia (PE) was markedly lower in smokers than in controls, while snus use was associated with a slightly increased risk. We suggest that PAHs acting via AhR may explain the stronger effects of tobacco smoking on SGA and also to the apparent protective effect of cigarette smoking on PE. Possible mechanisms involved include: i) disrupted endocrine control of fetal development as well as placental development and function, and ii) stress adaption and immune suppression in placenta and mother.
Collapse
Affiliation(s)
- Jørn A Holme
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Håkon Valen
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Bendik C Brinchmann
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway.
| | - Gunn E Vist
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway.
| | - Tom K Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway.
| | - Rune Becher
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Ane M Holme
- Department of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway.
| | - Johan Øvrevik
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jan Alexander
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
28
|
Lv X, Chen G, Wu Y, Yu L, Zhou Y, Yu Y, Lan S, Hu J. Ecological and AhR-mediated risk assessment of polycyclic aromatic hydrocarbons and polybrominated diphenyl ethers on multiple aquatic species in river water: A combined chemical analysis and in silico approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153287. [PMID: 35066031 DOI: 10.1016/j.scitotenv.2022.153287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Assessing the adverse health risks at molecular endpoints to various aquatic organisms could be an urgent issue. In this manuscript, the ecological and AhR-mediated risk of sixteen polycyclic aromatic hydrocarbons (PAHs) and six polybrominated diphenyl ethers (PBDEs) in surface water of Dongjiang River, Southern China was evaluated using chemical analysis and in silico approaches. Average concentrations of ∑16PAHs and ∑6PBDEs were 586.3 ng/L and 2.672 ng/L in the dry season (DS), and 366.8 ng/L and 2.554 ng/L in the wet season (WS). Concentrations of PAHs during the DS were significantly higher than that in the WS, while no obvious seasonal distribution was observed for PBDEs. Only Ant and BaP in all congers of PAHs posed low to medium ecological risks, and PBDEs posed a low ecological risk. Moreover, AhR-mediated risk from PAHs was two orders of magnitude higher that from PBDEs, and the AhR-mediated toxicity on frog and eel were higher than those on other aquatic organisms in Dongjiang River. Phe and BDE209 were the significant contributor to the AhR-mediated risk induced by PAHs and PBDEs, respectively. This study is the first attempt to assess AhR-mediated risk of river water in multiple aquatic organisms.
Collapse
Affiliation(s)
- Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Guilian Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Yicong Wu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Lili Yu
- Shenzhen People's Hospital, The 2nd Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Yi Zhou
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Yingxin Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Shanhong Lan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
| |
Collapse
|
29
|
Xiang K, Shen P, Gao Z, Liu Z, Hu X, Liu B, Fu Y. Formononetin Protects LPS-Induced Mastitis Through Suppressing Inflammation and Enhancing Blood-Milk Barrier Integrity via AhR-Induced Src Inactivation. Front Immunol 2022; 13:814319. [PMID: 35185907 PMCID: PMC8850474 DOI: 10.3389/fimmu.2022.814319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Formononetin (FOR), a natural flavonoid derived from Radix Astragali, has been reported to have anti-inflammatory and anti-oxidative effects. However, its protective mechanism against mastitis is still unknown. Nuclear factor kappa-B (NF-κB) signaling pathway plays an important role in inflammation, especially mastitis. Aryl hydrocarbon receptor (AhR) is involved in inflammatory regulation and defense against diseases. We investigated the protective effect of FOR on LPS-induced mastitis in mice and the effect of Ahr and NF-κB signaling pathways on the development of mastitis. In this study, mastitis model was induced by LPS injection through the nipple duct. Protective effect of FOR on LPS-induced mastitis was assessed by FOR pretreatment. The protective mechanism of FOR against mastitis was further investigated using LPS stimulation on mouse mammary epithelial cells EpH4-Ev. The results showed that LPS-induced mammary histological injury was inhibited by FOR. FOR significantly inhibited LPS-induced MPO activity. FOR administration enhanced the integrity of blood-milk barrier. In vitro and in vivo experiments showed that FOR inhibited LPS-induced NF-κB signaling pathway activation and the production of inflammatory factors TNF-α and IL-1ß. Moreover, FOR increased the expression of tight junction protein and enhanced blood-milk barrier integrity. LPS activated AhR and Src expression. But FOR induced significant increase in AhR inhibited Src phosphorylation to exert anti-inflammatory effects. In addition, AhR antagonist CH223191 reversed the inhibition of FOR on Src expression. And the inhibition of FOR on NF-κB activation and inflammatory cytokine production were reversed by AhR antagonist CH223191. In conclusion, FOR had protective effects against LPS-induced mastitis via suppressing inflammation and enhancing blood-milk barrier integrity via AhR-induced Src inactivation.
Collapse
Affiliation(s)
- Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Clinical Veterinary Medicine, College of Agriculture, Eastern Liaoning University, Dandong, China
| | - Peng Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyang Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuoyu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, First Hospital of Jilin University, Changchun, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
30
|
Mahmoudi A, Butler AE, Majeed M, Banach M, Sahebkar A. Investigation of the Effect of Curcumin on Protein Targets in NAFLD Using Bioinformatic Analysis. Nutrients 2022; 14:nu14071331. [PMID: 35405942 PMCID: PMC9002953 DOI: 10.3390/nu14071331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a prevalent metabolic disorder. Defects in function/expression of genes/proteins are critical in initiation/progression of NAFLD. Natural products may modulate these genes/proteins. Curcumin improves steatosis, inflammation, and fibrosis progression. Here, bioinformatic tools, gene−drug and gene-disease databases were utilized to explore targets, interactions, and pathways through which curcumin could impact NAFLD. METHODS: Significant curcumin−protein interaction was identified (high-confidence:0.7) in the STITCH database. Identified proteins were investigated to determine association with NAFLD. gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed for significantly involved targets (p < 0.01). Specificity of obtained targets with NAFLD was estimated and investigated in Tissue/Cells−gene associations (PanglaoDB Augmented 2021, Mouse Gene Atlas) and Disease−gene association-based EnrichR algorithms (Jensen DISEASES, DisGeNET). RESULTS: Two collections were constructed: 227 protein−curcumin interactions and 95 NAFLD-associated genes. By Venn diagram, 14 significant targets were identified, and their biological pathways evaluated. Based on gene ontology, most targets involved stress and lipid metabolism. KEGG revealed chemical carcinogenesis, the AGE-RAGE signaling pathway in diabetic complications and NAFLD as the most common significant pathways. Specificity to diseases database (EnrichR algorithm) revealed specificity for steatosis/steatohepatitis. CONCLUSION: Curcumin may improve, or inhibit, progression of NAFLD through activation/inhibition of NAFLD-related genes.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran;
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | | | - Maciej Banach
- Nephrology and Hypertension, Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
- Correspondence: (M.B.); (A.S.)
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Correspondence: (M.B.); (A.S.)
| |
Collapse
|
31
|
Guarnieri T. Hypothesis: Emerging Roles for Aryl Hydrocarbon Receptor in Orchestrating CoV-2-Related Inflammation. Cells 2022; 11:cells11040648. [PMID: 35203299 PMCID: PMC8869960 DOI: 10.3390/cells11040648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the pathogenic agent of Coronavirus-Induced Disease-2019 (COVID-19), a multi-organ syndrome which primarily targets the respiratory system. In this review, considering the large amount of data pointing out the role of the Aryl hydrocarbon Receptor (AhR) in the inflammatory response and in the modulation of innate and adaptive immunity, we describe some mechanisms that strongly suggest its involvement in the management of COVID-19′s inflammatory framework. It regulates both the expression of Angiotensin Converting Enzyme-2 (ACE-2) and its stabilizing partner, the Broad neutral Amino acid Transporter 1 (B0AT1). It induces Indolamine 2,3 dioxygenase (IDO-1), the enzyme which, starting from Tryptophan (Trp), produces Kynurenine (Kyn, Beta-Anthraniloyl-L-Alanine). The accumulation of Kyn and the depletion of Trp arrest T cell growth and induce apoptosis, setting up an immune-tolerant condition, whereas AhR and interferon type I (IFN-I) build a mutual inhibitory loop that also involves NF-kB and limits the innate response. AhR/Kyn binding boosts the production of Interleukin-6 (IL-6), thus reinforcing the inflammatory state and counteracting the IDO-dependent immune tolerance in the later stage of COVID-19. Taken together, these data depict a framework where sufficient clues suggest the possible participation of AhR in the management of COVID-19 inflammation, thus indicating an additional therapeutic target for this disease.
Collapse
Affiliation(s)
- Tiziana Guarnieri
- Cell Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy;
- Interuniversity Consortium “Istituto Nazionale Biostrutture e Biosistemi” (INBB–Biostructures and Biosystems National Institute), 00136 Rome, Italy
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
32
|
Ishihara N, Okuda T, Hagino H, Oguro A, Tani Y, Okochi H, Tokoro C, Fujii-Kuriyama Y, Itoh K, Vogel CF, Ishihara Y. Involvement of polycyclic aromatic hydrocarbons and endotoxin in macrophage expression of interleukin-33 induced by exposure to particulate matter. J Toxicol Sci 2022; 47:201-210. [PMID: 35527008 PMCID: PMC9469799 DOI: 10.2131/jts.47.201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Air pollutants are important factors that contribute to the development and/or exacerbation of allergic inflammation accompanied by asthma, but experimental evidence still needs to be collected. Interleukin 33 (IL-33) is closely involved in the onset and progression of asthma. In this study, we examined the effects of particulate matter (PM) on IL-33 expression in macrophages. PM2.5 collected in Yokohama, Japan by the cyclone device significantly induced IL-33 expression in human THP-1 macrophages, and the induction was clearly suppressed by pretreatment with the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the Toll-like receptor 4 (TLR4) antagonist TAK-242. PM2.5-induced IL-33 expression was significantly attenuated in AhR-knockout or TLR4-mutated macrophages, suggesting an important role of polycyclic aromatic hydrocarbons (PAHs) and endotoxin in IL-33 stimulation. PM samples derived from tunnel dust slightly but significantly induced IL-33 expression, while road dust PM did not affect IL-33 expression. The PAH concentration in tunnel dust was higher than that in road dust. Tunnel dust or road dust PM contained less endotoxin than PM2.5 collected in Yokohama. These data suggest that the potency of IL-33 induction could depend on the concentration of PAHs as well as endotoxin in PMs. Caution regarding PAHs and endotoxin levels in air pollutants should be taken to prevent IL-33-induced allergic inflammation.
Collapse
Affiliation(s)
- Nami Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, 223-8522, Japan
| | - Hiroyuki Hagino
- Japan Automobile Research Institute, Ibaraki, 305-0822, Japan
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Yuto Tani
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Hiroshi Okochi
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Chiharu Tokoro
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Yoshiaki Fujii-Kuriyama
- Medical Research Institute, Molecular Epidemiology, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2101, Japan
| | - Christoph F.A. Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, 95616, USA,Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan,Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
33
|
Gold A, Zhu J. Not just a gut feeling: a deep exploration of functional bacterial metabolites that can modulate host health. Gut Microbes 2022; 14:2125734. [PMID: 36127825 PMCID: PMC9519022 DOI: 10.1080/19490976.2022.2125734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria have been known to reside in the human gut for roughly two centuries, but their modulatory effects on host health status are still not fully characterized. The gut microbiota is known to interact with dietary components and nutrients, producing functional metabolites that may alter host metabolic processes. The majority of thoroughly researched and understood gut microbial metabolites fall into two categories: short-chain fatty acids (SCFAs) and bacterial derivatives of dietary tryptophan. Despite the heavy emphasis on these metabolites, other metabolites stemming from microbial origin have significant impacts on host health and disease states. In this narrative review, we summarize eight recent studies elucidating novel bacterial metabolites, detailing the process by which these metabolites are identified, their actions within specific categories of human health, and how diet may impact production of these metabolites. With similar future mechanistic research, a more complete picture of bacterial impact on host metabolism may be constructed.
Collapse
Affiliation(s)
- Andrew Gold
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jiangjiang Zhu
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
34
|
Fling RR, Zacharewski TR. Aryl Hydrocarbon Receptor (AhR) Activation by 2,3,7,8-Tetrachlorodibenzo- p-Dioxin (TCDD) Dose-Dependently Shifts the Gut Microbiome Consistent with the Progression of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:12431. [PMID: 34830313 PMCID: PMC8625315 DOI: 10.3390/ijms222212431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Gut dysbiosis with disrupted enterohepatic bile acid metabolism is commonly associated with non-alcoholic fatty liver disease (NAFLD) and recapitulated in a NAFLD-phenotype elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. TCDD induces hepatic fat accumulation and increases levels of secondary bile acids, including taurolithocholic acid and deoxycholic acid (microbial modified bile acids involved in host bile acid regulation signaling pathways). To investigate the effects of TCDD on the gut microbiota, the cecum contents of male C57BL/6 mice orally gavaged with sesame oil vehicle or 0.3, 3, or 30 µg/kg TCDD were examined using shotgun metagenomic sequencing. Taxonomic analysis identified dose-dependent increases in Lactobacillus species (i.e., Lactobacillus reuteri). Increased species were also associated with dose-dependent increases in bile salt hydrolase sequences, responsible for deconjugation reactions in secondary bile acid metabolism. Increased L. reuteri levels were further associated with mevalonate-dependent isopentenyl diphosphate (IPP) biosynthesis and o-succinylbenzoate synthase, a menaquinone biosynthesis associated gene. Analysis of the gut microbiomes from cirrhosis patients identified an increased abundance of genes from the mevalonate-dependent IPP biosynthesis as well as several other menaquinone biosynthesis genes, including o-succinylbenzoate synthase. These results extend the association of lactobacilli with the AhR/intestinal axis in NAFLD progression and highlight the similarities between TCDD-elicited phenotypes in mice to human NAFLD.
Collapse
Affiliation(s)
- Russell R. Fling
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy R. Zacharewski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
35
|
Mohamed El Esawy F, Ali Mohammed S, Nasar Zargon Nasar E, Hemdan Mostafa S, Elhabak DM. Environmental, inflammatory, and anti-inflammatory squad in acne vulgaris pathogenesis: AhR, IL-36, and IL-38. J Cosmet Dermatol 2021; 21:3038-3045. [PMID: 34679236 DOI: 10.1111/jocd.14542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acne vulgaris (AV) is an extraordinarily common skin condition. The high prevalence of AV is linked to the exposure factors, as environmental pollutants and climatic factors, occupational, psychosocial, and lifestyle factors. The AhR plays a critical part in environmental toxic action. The AhR expression and imbalance in the IL-36 & 38 expression may have a role in inflammation and AV pathogenesis. AIMS To detect possible links between environmental, inflammatory, and anti-inflammatory factors in AV pathogenesis through measuring AhR, IL-36, and IL-38 mRNA gene expression levels. PATIENTS AND METHODS Total of 100 subjects (70 AV patients and 30 apparently healthy control subjects) were tested for AhR, IL-36γ, and IL-38 mRNA levels by quantitative real-time PCR. RESULTS The median levels of AhR and IL-36 mRNA gene expression were considerably greater, while that of IL-38 was essentially lower in AV than healthy subjects (p < 0.001, 0.021 and 0.002, respectively). The AhR and IL-36 mRNA gene expression levels increased, while IL-38 decreased significantly with higher grades of severity (p < 0.001, 0.001, and <0.001, respectively). ROC curve showed that AhR mRNA gene expression level had the best AUC for diagnosis of AV, with better sensitivity and specificity than IL-36 and IL-38. CONCLUSIONS Higher levels of AhR, IL-36, and lower levels of IL-38 gene expression were significantly associated with AV patients and higher grades of severity. AhR had better diagnostic ability than IL-38 and IL-36.
Collapse
Affiliation(s)
| | - Shuzan Ali Mohammed
- Medical Biochemistry &Molecular Biology, Faculty of Medicine, Benha University, Egypt
| | - Ebtesam Nasar Zargon Nasar
- MBB Ch Faculty of Medicine, Sirte University, Libya.,Dermatology, Venereology and Andrology Department, Ibn Sina Hospital, Sirte, Libya
| | - Sara Hemdan Mostafa
- MBB Ch Faculty of Medicine, Benha University, Egypt.,Dermatology Department, Benha Children Hospital, Egypt
| | - Doaa M Elhabak
- Dermatology, Venereology and Andrology, Faculty of Medicine, Benha University, Egypt
| |
Collapse
|
36
|
Bock KW. Aryl hydrocarbon receptor (AHR) functions in infectious and sterile inflammation and NAD +-dependent metabolic adaptation. Arch Toxicol 2021; 95:3449-3458. [PMID: 34559251 PMCID: PMC8461142 DOI: 10.1007/s00204-021-03134-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/13/2023]
Abstract
Aryl hydrocarbon receptor (AHR) research has shifted from exploring dioxin toxicity to elucidation of various physiologic AHR functions. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to exert cellular stress-mediated sterile inflammatory responses in exposed human tissues but may be lethal in sensitive species. Inflammation can be thought of as the extreme end of a spectrum ranging from homeostasis to stress responses (sterile inflammation) and to defense against infection (infectious inflammation). Defense against bacterial infection by generation of reactive oxygen species has to be strictly controlled and may use up a considerable amount of energy. NAD+-mediated energy metabolism adapts to various inflammatory responses. As examples, the present commentary tries to integrate responses of AHR and NAD+-consuming enzymes (PARP7/TiPARP, CD38 and sirtuins) into infectious and stress-induced inflammatory responses, the latter exemplified by nonalcoholic fatty liver disease (NAFLD). TCDD toxicity models in sensitive species provide hints to molecular AHR targets of energy metabolism including gluconeogenesis and glycolysis. AHR research remains challenging and promising.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, 72074, Tübingen, Germany.
| |
Collapse
|
37
|
Dabravolski SA, Nikiforov NG, Starodubova AV, Popkova TV, Orekhov AN. The Role of Mitochondria-Derived Peptides in Cardiovascular Diseases and Their Potential as Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22168770. [PMID: 34445477 PMCID: PMC8396025 DOI: 10.3390/ijms22168770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria-derived peptides (MDPs) are small peptides hidden in the mitochondrial DNA, maintaining mitochondrial function and protecting cells under different stresses. Currently, three types of MDPs have been identified: Humanin, MOTS-c and SHLP1-6. MDPs have demonstrated anti-apoptotic and anti-inflammatory activities, reactive oxygen species and oxidative stress-protecting properties both in vitro and in vivo. Recent research suggests that MDPs have a significant cardioprotective role, affecting CVDs (cardiovascular diseases) development and progression. CVDs are the leading cause of death globally; this term combines disorders of the blood vessels and heart. In this review, we focus on the recent progress in understanding the relationships between MDPs and the main cardiovascular risk factors (atherosclerosis, insulin resistance, hyperlipidaemia and ageing). We also will discuss the therapeutic application of MDPs, modified and synthetic MDPs, and their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| |
Collapse
|
38
|
Szychowski KA, Skóra B, Mańdziuk M. Tris (2,3-Dibromopropyl) Isocyanurate (TDBP-TAZTO or TBC) Shows Different Toxicity Depending on the Degree of Differentiation of the Human Neuroblastoma (SH-SY5Y) Cell Line. Neurotox Res 2021; 39:1575-1588. [PMID: 34342853 PMCID: PMC8429403 DOI: 10.1007/s12640-021-00399-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Tris (2,3-dibromopropyl) isocyanurate (TDBP-TAZTO or TBC) is a heterocyclic hexabromated flame retardant. It is widely used during the production of many synthetic compounds. High concentrations of TDBP-TAZTO were found in river water, surface sediments, soil, earthworms, and carp tissues. Moreover, it has been shown that this compound can cross the blood–brain barrier and accumulate in the gut and brain of carp. The aryl hydrocarbon receptor (AhR) has been characterized as a multifunctional intracellular sensor and receptor. AhR is an activator of cytochrome P450 1A1 and 1A2, which metabolize various toxic compounds. The aim of the study was to explain how/whether TDBP-TAZTO increases the expression and/or activity of the CYP1A1 enzyme and the AhR and TUBB3 expression during SH-SY5Y cell differentiation. SH-SY5Y cells were differentiated for 7 and 14 days using retinoic acid. Cell viability, ethoxyresorufin-O-deethylase (EROD) activity, and mRNA expression of CYP1A1, AhR, and TUBB3 were assessed. Our experiment showed that, during the differentiation process, the ability of TDBP-TAZTO to induce EROD activity in SH-SY5Y cells subsequently decreased, which may have been an effect of cell differentiation into neurons. Moreover, the results suggest that TDBP-TAZTO can affect the differentiation process. Since no CYP2B6 mRNA expression was detected, the CAR receptor may not be involved in the TDBP-TAZTO mechanism of action. However, more research is needed in this field to elucidate this mechanism precisely.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Marzena Mańdziuk
- Department of Physiotherapy, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
39
|
Phillips-Farfán B, Gómez-Chávez F, Medina-Torres EA, Vargas-Villavicencio JA, Carvajal-Aguilera K, Camacho L. Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. Int J Mol Sci 2021; 22:ijms22158162. [PMID: 34360926 PMCID: PMC8348731 DOI: 10.3390/ijms22158162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The microbiota regulates immunological development during early human life, with long-term effects on health and disease. Microbial products include short-chain fatty acids (SCFAs), formyl peptides (FPs), polysaccharide A (PSA), polyamines (PAs), sphingolipids (SLPs) and aryl hydrocarbon receptor (AhR) ligands. Anti-inflammatory SCFAs are produced by Actinobacteria, Bacteroidetes, Firmicutes, Spirochaetes and Verrucomicrobia by undigested-carbohydrate fermentation. Thus, fiber amount and type determine their occurrence. FPs bind receptors from the pattern recognition family, those from commensal bacteria induce a different response than those from pathogens. PSA is a capsular polysaccharide from B. fragilis stimulating immunoregulatory protein expression, promoting IL-2, STAT1 and STAT4 gene expression, affecting cytokine production and response modulation. PAs interact with neonatal immunity, contribute to gut maturation, modulate the gut–brain axis and regulate host immunity. SLPs are composed of a sphingoid attached to a fatty acid. Prokaryotic SLPs are mostly found in anaerobes. SLPs are involved in proliferation, apoptosis and immune regulation as signaling molecules. The AhR is a transcription factor regulating development, reproduction and metabolism. AhR binds many ligands due to its promiscuous binding site. It participates in immune tolerance, involving lymphocytes and antigen-presenting cells during early development in exposed humans.
Collapse
Affiliation(s)
- Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (F.G.-C.); (J.A.V.-V.)
- Cátedras CONACyT-Instituto Nacional de Pediatría, México City 04530, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | | | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Luz Camacho
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
- Correspondence:
| |
Collapse
|
40
|
Tanaka M, Tóth F, Polyák H, Szabó Á, Mándi Y, Vécsei L. Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021; 9:734. [PMID: 34202246 PMCID: PMC8301407 DOI: 10.3390/biomedicines9070734] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
The tryptophan (TRP)-kynurenine (KYN) metabolic pathway is a main player of TRP metabolism through which more than 95% of TRP is catabolized. The pathway is activated by acute and chronic immune responses leading to a wide range of illnesses including cancer, immune diseases, neurodegenerative diseases and psychiatric disorders. The presence of positive feedback loops facilitates amplifying the immune responses vice versa. The TRP-KYN pathway synthesizes multifarious metabolites including oxidants, antioxidants, neurotoxins, neuroprotectants and immunomodulators. The immunomodulators are known to facilitate the immune system towards a tolerogenic state, resulting in chronic low-grade inflammation (LGI) that is commonly present in obesity, poor nutrition, exposer to chemicals or allergens, prodromal stage of various illnesses and chronic diseases. KYN, kynurenic acid, xanthurenic acid and cinnabarinic acid are aryl hydrocarbon receptor ligands that serve as immunomodulators. Furthermore, TRP-KYN pathway enzymes are known to be activated by the stress hormone cortisol and inflammatory cytokines, and genotypic variants were observed to contribute to inflammation and thus various diseases. The tryptophan 2,3-dioxygenase, the indoleamine 2,3-dioxygenases and the kynurenine-3-monooxygenase are main enzymes in the pathway. This review article discusses the TRP-KYN pathway with special emphasis on its interaction with the immune system and the tolerogenic shift towards chronic LGI and overviews the major symptoms, pro- and anti-inflammatory cytokines and toxic and protective KYNs to explore the linkage between chronic LGI, KYNs, and major psychiatric disorders, including depressive disorder, bipolar disorder, substance use disorder, post-traumatic stress disorder, schizophrenia and autism spectrum disorder.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE—Neuroscience Research Group, H-6725 Szeged, Hungary; (M.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| | - Fanni Tóth
- MTA-SZTE—Neuroscience Research Group, H-6725 Szeged, Hungary; (M.T.); (F.T.)
| | - Helga Polyák
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| | - Ágnes Szabó
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| | - Yvette Mándi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | - László Vécsei
- MTA-SZTE—Neuroscience Research Group, H-6725 Szeged, Hungary; (M.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| |
Collapse
|
41
|
Bock KW. Aryl hydrocarbon receptor (AHR), integrating energy metabolism and microbial or obesity-mediated inflammation. Biochem Pharmacol 2020; 184:114346. [PMID: 33227291 DOI: 10.1016/j.bcp.2020.114346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Aryl hydrocarbon receptor (AHR) has been characterized as multifunctional sensor, integrator and ligand-activated transcription factor of the bHLH/PAS family. Regulation of inflammatory diseases and energy metabolism are among the putative functions of AHR. Challenges in AHR research include marked species differences, and cell, tissue and context dependence of AHR functions. The commentary is focused on AHR's role in the integration between energy expenditure and microbial and non-infectious inflammation, the latter exemplified by obesity-mediated nonalcoholic fatty liver disease. One of the mechanisms controlling energy-consuming inflammation is represented by a signalsome that is involved in retinoic acid-triggered neutrophil differentiation and regulation of the NADPH oxidase complex (NOX). Established signalsome components are AHR, CD38, multiple protein kinases and adaptors. To prevent chronic inflammatory diseases, the complex interplay between a range of inflammatory responses and energy expenditure must be precisely regulated. Surviving an infection requires both pathogen clearance and tissue protection from inflammatory damage. Defenses are energy-consuming anabolic programs. Therefore, anti-inflammatory, catabolic tolerance programs by metabolic reprogramming of macrophages have evolved. Therapeutic options of AHR agonists to reduce chronic inflammatory diseases are discussed.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|