1
|
Kumar M, Mehan S, Kumar A, Sharma T, Khan Z, Tiwari A, Das Gupta G, Narula AS. Therapeutic efficacy of Genistein in activation of neuronal AC/cAMP/CREB/PKA and mitochondrial ETC-Complex pathways in experimental model of autism: Evidence from CSF, blood plasma and brain analysis. Brain Res 2024; 1846:149251. [PMID: 39384128 DOI: 10.1016/j.brainres.2024.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
Autism is a complex neurodevelopmental condition characterized by repetitive behaviors, impaired social communication, and various associated conditions such as depression and anxiety. Its multifactorial etiology includes genetic, environmental, dietary, and gastrointestinal contributions. Pathologically, Autism is linked to mitochondrial dysfunction, oxidative stress, neuroinflammation, and neurotransmitter imbalances involving GABA, glutamate, dopamine, and oxytocin. Propionic acid (PRPA) is a short-chain fatty acid produced by gut bacteria, influencing central nervous system functions. Elevated PRPA levels can exacerbate Autism-related symptoms by disrupting metabolic processes and crossing the blood-brain barrier. Our research investigates the neuroprotective potential of Genistein (GNT), an isoflavone compound with known benefits in neuropsychiatric and neurodegenerative disorders, through modulation of the AC/cAMP/CREB/PKA signaling pathway and mitochondrial ETC complex (I-IV) function. In silico analyses revealed GNT's high affinity for these targets. Subsequent in vitro and in vivo experiments using a PRPA-induced rat model of autism demonstrated that GNT (40 and 80 mg/kg., orally) significantly improves locomotion, neuromuscular coordination, and cognitive functions in PRPA-treated rodents. Behavioral assessments showed reduced immobility in the forced swim test, enhanced Morris water maze performance, and restored regular locomotor activity. On a molecular level, GNT restored levels of key signaling molecules (AC, cAMP, CREB, PKA) and mitochondrial complexes (I-V), disrupted by PRPA exposure. Additionally, GNT reduced neuroinflammation and apoptosis, normalized neurotransmitter levels, and improved the complete blood count profile. Histopathological analyses confirmed that GNT ameliorated PRPA-induced brain injuries, restored normal brain morphology, reduced demyelination, and promoted neurogenesis. The study supports GNT's potential in autism treatment by modulating neural pathways, reducing inflammation, and restoring neurotransmitter balance.
Collapse
Affiliation(s)
- Manjeet Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India; Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
2
|
Moreno RJ, Amara R, Ashwood P. Toward a better understanding of T cell dysregulation in autism: An integrative review. Brain Behav Immun 2024:S0889-1591(24)00649-4. [PMID: 39378971 DOI: 10.1016/j.bbi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system - the branch of the immune system conferring cellular immunity - may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.
Collapse
Affiliation(s)
- R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - R Amara
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
3
|
Saletin JM, Koopman-Verhoeff ME, Han G, Barker DH, Carskadon MA, Anders TF, Sheinkopf SJ. Sleep Problems and Autism Impairments in a Large Community Sample of Children and Adolescents. Child Psychiatry Hum Dev 2024; 55:1167-1175. [PMID: 36515855 DOI: 10.1007/s10578-022-01470-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Sleep problems are common in individuals with autism spectrum disorder (ASD). How sleep problems reflect specific ASD phenotypes is unclear. We studied whether sleep problems indexed functional impairment in a heterogeneous community sample of individuals with ASD. We analyzed 977 probands (233 females; age = 11.27 ± 4.13 years) from the Rhode Island Consortium for Autism Research and Treatment dataset, a unique public-private-academic collaboration involving all major points of service for families in Rhode Island. We found that individuals with a confirmed diagnosis of ASD were more likely to have sleep problems. However, across the whole sample and above and beyond a formal diagnosis, sleep problems were dimensionally associated with worse social impairment and poorer adaptive functioning. By using a large dataset reflective of the diversity of presentations in the community, this study underscores the importance of considering sleep problems in clinical practice to improve adaptive functioning in individuals with ASD.
Collapse
Affiliation(s)
- Jared M Saletin
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
- Emma Pendleton Bradley Hospital, East Providence, RI, USA.
- Sleep Research Laboratory, Emma Pendleton Bradley Hospital, Providence, RI, USA.
| | - M Elisabeth Koopman-Verhoeff
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Emma Pendleton Bradley Hospital, East Providence, RI, USA
- Sleep Research Laboratory, Emma Pendleton Bradley Hospital, Providence, RI, USA
| | - Gloria Han
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Department of Anesthesiology, Vanderbilt Medical Center, Nashville, TN, USA
| | - David H Barker
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- The Bradley Hasbro Children's Research Center, Providence, RI, USA
| | - Mary A Carskadon
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Emma Pendleton Bradley Hospital, East Providence, RI, USA
- Sleep Research Laboratory, Emma Pendleton Bradley Hospital, Providence, RI, USA
| | - Thomas F Anders
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Emma Pendleton Bradley Hospital, East Providence, RI, USA
| | - Stephen J Sheinkopf
- Brown Center for the Study of Children at Risk, Women & Infants Hospital, Providence, RI, USA
- Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Liao A, Zheng W, Wang S, Wang N, Li Y, Chen D, Wang Y. Sortilin is associated with progranulin deficiency and autism-like behaviors in valproic acid-induced autism rats. CNS Neurosci Ther 2024; 30:e70015. [PMID: 39218796 PMCID: PMC11366450 DOI: 10.1111/cns.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Neuroinflammation and microglial activation-related dendritic injury contribute to the pathogenesis of Autism Spectrum Disorder (ASD). Previous studies show that Progranulin (PGRN) is a growth factor associated with inflammation and synaptic development, but the role of PGRN in autism and the mechanisms underlying changes in PGRN expression remain unclear. AIMS To investigate the impact of PGRN in autism, we stereotactically injected recombinant PGRN into the hippocampus of ASD model rats. Additionally, we explored the possibility that sortilin may be the factor behind the alterations in PGRN by utilizing SORT1 knockdown. Ultimately, we aimed to identify potential targets for the treatment of autism. RESULTS PGRN could alleviate inflammatory responses, protect neuronal dendritic spines, and ameliorate autism-like behaviors. Meanwhile, elevated expression of sortilin and decreased levels of PGRN were observed in both ASD patients and rats. Enhanced sortilin levels facilitated PGRN internalization into lysosomes. Notably, suppressing SORT1 expression amplified PGRN levels, lessened microglial activation, and mitigated inflammation, thereby alleviating autism-like behaviors. CONCLUSION Collectively, our findings highlight elevated sortilin levels in ASD rat brains, exacerbating dendrite impairment by affecting PGRN expression. PGRN supplementation and SORT1 knockdown hold potential as therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Ailing Liao
- NHC Key Laboratory of Birth Defects and Reproductive HealthChongqing Population and Family Planning Science and Technology Research InstituteChongqingChina
| | - Wenxia Zheng
- Institute of Neuroscience, School of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | | | - Nashi Wang
- Library/ArchiveChongqing Medical UniversityChongqingChina
| | | | - Di Chen
- Institute of Neuroscience, School of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | - Yan Wang
- Institute of Neuroscience, School of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| |
Collapse
|
5
|
Zarimeidani F, Rahmati R, Mostafavi M, Darvishi M, Khodadadi S, Mohammadi M, Shamlou F, Bakhtiyari S, Alipourfard I. Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis? Inflammation 2024:10.1007/s10753-024-02061-y. [PMID: 39093342 DOI: 10.1007/s10753-024-02061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center (IDTMC), AJA University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Shamlou
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salar Bakhtiyari
- Feinberg Cardiovascular and Renal Research Institute, North Western University, Chicago. Illinois, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcin Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
6
|
Alwetaid MY, Almanaa TN, Bakheet SA, Ansari MA, Nadeem A, Attia SM, Hussein MH, Attia MSM, Ahmad SF. Aflatoxin B 1 exposure exacerbates chemokine receptor expression in the BTBR T + Itpr3 tf/J Mouse Model, unveiling insights into autism spectrum disorder: A focus on brain and spleen. Reprod Toxicol 2024; 126:108599. [PMID: 38679149 DOI: 10.1016/j.reprotox.2024.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant difficulties in social interaction, communication, and repeated stereotypic behaviour. Aflatoxin B1 (AFB1) is the most potent and well-known mycotoxin in various food sources. Despite its propensity to generate significant biochemical and structural changes in human and animal tissues, the influence of AFB1 on ASD has yet to be thoroughly studied. Mounting evidence indicates that chemokine receptors play a crucial function in the central nervous system and are implicated in developing several neuroinflammatory disorders. Chemokine receptors in individuals with ASD were elevated in the anterior cingulate gyrus astrocytes, cerebellum, and brain. METHODS The BTBR T+Itpr3tf/J (BTBR) mice are inbred strains that exhibit strong and consistently observed deficits in social interactions, characterized by excessive self-grooming and limited vocalization in social contexts. We examined the impact of AFB1 on CCR3-, CCR7-, CCR9-, CXCR3-, CXCR4-, and CXCR6-expressing I-A/I-E+ cells in the spleen of the BTBR mouse model of autism. We evaluated the mRNA levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 chemokine receptors in the brain. RESULTS The exposure to AFB1 in BTBR mice resulted in a significant rise in the number of I-A/I-E+CCR3+, I-A/I-E+CCR7+, I-A/I-E+CCR9+, I-A/I-E+CXCR3+, I-A/I-E+CXCR4+, and I-A/I-E+CXCR6+ cells. Furthermore, exposure to AFB1 increased mRNA expression levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 in the brain. CONCLUSIONS These findings highlight that AFB1 exposure increases the expression of chemokine receptors in BTBR mice, indicating the necessity for further research into AFB1's role in the development of ASD.
Collapse
Affiliation(s)
- Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
7
|
Hughes HK, Moreno RJ, Ashwood P. Innate Immune Dysfunction and Neuroinflammation in Autism Spectrum Disorder (ASD). FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:229-241. [PMID: 38680981 PMCID: PMC11046725 DOI: 10.1176/appi.focus.24022004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by communication and social behavior deficits. The presence of restricted and repetitive behaviors often accompanies these deficits, and these characteristics can range from mild to severe. The past several decades have seen a significant rise in the prevalence of ASD. The etiology of ASD remains unknown; however, genetic and environmental risk factors play a role. Multiple hypotheses converge to suggest that neuroinflammation, or at least the interaction between immune and neural systems, may be involved in the etiology of some ASD cases or groups. Repeated evidence of innate immune dysfunction has been seen in ASD, often associated with worsening behaviors. This evidence includes data from circulating myeloid cells and brain resident macrophages/microglia in both human and animal models. This comprehensive review presents recent findings of innate immune dysfunction in ASD, including aberrant innate cellular function, evidence of neuroinflammation, and microglia activation. Appeared originally in Brain Behav Immun 2023; 108:245-254.
Collapse
Affiliation(s)
- H K Hughes
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA (all authors);The M.I.N.D. Institute, University of California at Davis, CA, USA (all authors)
| | - R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA (all authors);The M.I.N.D. Institute, University of California at Davis, CA, USA (all authors)
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA (all authors);The M.I.N.D. Institute, University of California at Davis, CA, USA (all authors)
| |
Collapse
|
8
|
Chang X, Zhang Y, Chen X, Li S, Mei H, Xiao H, Ma X, Liu Z, Li R. Gut microbiome and serum amino acid metabolome alterations in autism spectrum disorder. Sci Rep 2024; 14:4037. [PMID: 38369656 PMCID: PMC10874930 DOI: 10.1038/s41598-024-54717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Gut microbiota and their metabolic products might play important roles in regulating the pathogenesis of autism spectrum disorder (ASD). The purpose of this study was to characterize gut microbiota and serum amino acid metabolome profiles in children with ASD. A non-randomized controlled study was carried out to analyze the alterations in the intestinal microbiota and their metabolites in patients with ASD (n = 30) compared with neurotypical controls (NC) (n = 30) by metagenomic sequencing to define the gut microbiota community and liquid chromatography/mass spectrometry (LC/MS) analysis to characterize the metabolite profiles. Compared with children in the NC group, those in the ASD group showed lower richness, higher evenness, and an altered microbial community structure. At the class level, Deinococci and Holophagae were significantly lower in children with ASD compared with TD. At the phylum level, Deinococcus-Thermus was significantly lower in children with ASD compared with TD. In addition, the functional properties (such as galactose metabolism) displayed significant differences between the ASD and NC groups. Five dominant altered species were identified and analyzed (LDA score > 2.0, P < 0.05), including Subdoligranulum, Faecalibacterium_praushitzii, Faecalibacterium, Veillonellaceae, and Rumminococcaceae. The peptides/nickel transport system was the main metabolic pathway involved in the differential species in the ASD group. Decreased ornithine levels and elevated valine levels may increase the risk of ASD through a metabolic pathway known as the nickel transport system. The microbial metabolism in diverse environments was negatively correlated with phascolarctobacterium succinatutens. Our study provides novel insights into compositional and functional alterations in the gut microbiome and metabolite profiles in ASD and the underlying mechanisms between metabolite and ASD.
Collapse
Affiliation(s)
- Xuening Chang
- Department of Child Health Care, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Yuchen Zhang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xue Chen
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Shihan Li
- Department of Child Health Care, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Hong Mei
- Department of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Han Xiao
- Department of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| | - Xinyu Ma
- Department of Radiology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| | - Zhisheng Liu
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| | - Ruizhen Li
- Department of Child Health Care, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| |
Collapse
|
9
|
Tamayo JM, Osman HC, Schwartzer JJ, Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav Immun 2024; 116:218-228. [PMID: 38070621 DOI: 10.1016/j.bbi.2023.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA.
| |
Collapse
|
10
|
Shim S, Ha S, Choi J, Kwon HK, Cheon KA. Alterations in Plasma Cytokine Levels in Korean Children with Autism Spectrum Disorder. Yonsei Med J 2024; 65:70-77. [PMID: 38288647 PMCID: PMC10827638 DOI: 10.3349/ymj.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 02/01/2024] Open
Abstract
PURPOSE Numerous studies have supported the role of the immune dysfunction in the pathogenesis of autism spectrum disorder (ASD); however, to our knowledge, no study has been conducted on plasma cytokine levels in children with ASD in South Korea. In this study, we aimed to analyze the immunological characteristics of Korean children with ASD through plasma cytokine analysis. MATERIALS AND METHODS Blood samples were collected from 94 ASD children (mean age 7.1; 81 males and 13 females) and 48 typically developing children (TDC) (mean age 7.3; 30 males and 18 females). Plasma was isolated from 1 mL of blood by clarifying with centrifugation at 8000 rpm at 4℃ for 10 min. Cytokines in plasma were measured with LEGENDplex HU Th cytokine panel (BioLegend, 741028) and LEGENDplex HU cytokine panel 2 (BioLegend, 740102). RESULTS Among 25 cytokines, innate immune cytokine [interleukin (IL)-33] was significantly decreased in ASD children compared with TDC. In acute phase proteins, tumor necrosis factor α (TNF-α) was significantly increased, while IL-6, another inflammation marker, was decreased in ASD children compared with TDC. The cytokines from T cell subsets, including interferon (IFN)-γ, IL-5, IL-13, and IL-17f, were significantly decreased in ASD children compared to TDC. IL-10, a major anti-inflammatory cytokine, and IL-9, which modulates immune cell growth and proliferation, were also significantly decreased in ASD children compared to TDC. CONCLUSION We confirmed that Korean children with ASD showed altered immune function and unique cytokine expression patterns distinct from TDC.
Collapse
Affiliation(s)
- Songjoo Shim
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungji Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Juli Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Keun-Ah Cheon
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Child and Adolescent Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Gonçalves BP, Silva EDS, Luçardo JDC, Fernandes MP, Grokoski KC, Vaz JDS, Valle SC. Increased monocytes are associated with overweight in children and adolescents with autism spectrum disorder. NUTR HOSP 2023; 40:1136-1143. [PMID: 37154047 DOI: 10.20960/nh.04472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Introduction Objective: to investigate the monocyte count and its association with nutritional status in children and adolescents with autism spectrum disorder (ASD). Methods: a cross-sectional study carried out at a Neurodevelopmental Center in the south of Brazil, with 68 ASD patients aged 3 to 18 years. The number of monocytes (per mm3) was determined in blood samples. Nutritional status was defined as BMI-for-age according to WHO standards. The Children's Eating Behaviour Questionnaire and a standard questionnaire to collect sociodemographic and clinical characteristics were administered to caregivers. Comparisons between sociodemographic, clinical, and eating behavior variables were performed with parametric tests. Linear regression was used to test the association between nutritional status and monocyte count. Results: mean age was 8.6 ± 3.3 years, 79 % were males and 66 % were overweight. In the unadjusted regression overweight was associated with higher monocyte counts compared to those non-overweight (B: 64.0; 95 % CI, 13.9 to 114.1; β: 0.30, p = 0.01). This association remained significant after adjustment for the subscale of "emotional overeating" (B: 37.0; 95 % CI, 17.1 to 91.3; β: 0.29; p = 0.02). The variability in monocyte count attributed to overweight was 14 %. Conclusions: overweight is associated with a higher monocyte count in children and adolescents with ASD. Nutritional intervention to control overweight is essential to mitigate the negative impact on inflammatory activity and immune dysfunction in these patients.
Collapse
Affiliation(s)
| | - Eduarda de Souza Silva
- Programa de Pós-Graduação em Nutrição e Alimentos. Faculdade de Nutrição. Universidade Federal de Pelotas
| | - Josiane da Cunha Luçardo
- Programa de Pós-Graduação em Nutrição e Alimentos. Faculdade de Nutrição. Universidade Federal de Pelotas
| | - Mayra Pacheco Fernandes
- Programa de Pós-Graduação em Nutrição e Alimentos. Faculdade de Nutrição. Universidade Federal de Pelotas
| | | | - Juliana Dos Santos Vaz
- Programa de Pós-Graduação em Nutrição e Alimentos. Faculdade de Nutrição. Universidade Federal de Pelotas
| | - Sandra Costa Valle
- Programa de Pós-Graduação em Nutrição e Alimentos. Faculdade de Nutrição. Universidade Federal de Pelotas
| |
Collapse
|
12
|
Lesh TA, Iosif AM, Tanase C, Vlasova RM, Ryan AM, Bennett J, Hogrefe CE, Maddock RJ, Geschwind DH, Van de Water J, McAllister AK, Styner MA, Bauman MD, Carter CS. Extracellular free water elevations are associated with brain volume and maternal cytokine response in a longitudinal nonhuman primate maternal immune activation model. Mol Psychiatry 2023; 28:4185-4194. [PMID: 37582858 PMCID: PMC10867284 DOI: 10.1038/s41380-023-02213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Maternal infection has emerged as an important environmental risk factor for neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Animal model systems of maternal immune activation (MIA) suggest that the maternal immune response plays a significant role in the offspring's neurodevelopment and behavioral outcomes. Extracellular free water is a measure of freely diffusing water in the brain that may be associated with neuroinflammation and impacted by MIA. The present study evaluates the brain diffusion characteristics of male rhesus monkeys (Macaca mulatta) born to MIA-exposed dams (n = 14) treated with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the end of the first trimester (n = 10) or were untreated (n = 4). Offspring underwent diffusion MRI scans at 6, 12, 24, 36, and 45 months. Offspring born to MIA-exposed dams showed significantly increased extracellular free water in cingulate cortex gray matter starting as early as 6 months of age and persisting through 45 months. In addition, offspring gray matter free water in this region was significantly correlated with the magnitude of the maternal IL-6 response in the MIA-exposed dams. Significant correlations between brain volume and extracellular free water in the MIA-exposed offspring also indicate converging, multimodal evidence of the impact of MIA on brain development. These findings provide strong evidence for the construct validity of the nonhuman primate MIA model as a system of relevance for investigating the pathophysiology of human neurodevelopmental psychiatric disorders. Elevated free water in individuals exposed to immune activation in utero could represent an early marker of a perturbed or vulnerable neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Costin Tanase
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | | | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, CA, USA
- Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - A Kimberley McAllister
- MIND Institute, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
13
|
Sakkaki S, Cresto N, Chancel R, Jaulmes M, Zub E, Blaquière M, Sicard P, Maurice T, Ellero-Simatos S, Gamet-Payrastre L, Marchi N, Perroy J. Dual-Hit: Glyphosate exposure at NOAEL level negatively impacts birth and glia-behavioural measures in heterozygous shank3 mutants. ENVIRONMENT INTERNATIONAL 2023; 180:108201. [PMID: 37769447 DOI: 10.1016/j.envint.2023.108201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
The omnipresence of environmental contaminants represents a health danger with ramifications for adverse neurological trajectories. Here, we tested the dual-hit hypothesis that continuous exposure to non-observable adverse effect level (NOAEL) glyphosate from pre-natal to adulthood represents a risk factor for neurological-associated adaptations when in the presence of the heterozygote or homozygote mutation of the Shank3 synaptic gene. Ultrasound analysis of pregnant dams revealed patterns of pre-natal mortality with effects dependent on wild-type, Shank3ΔC/+, or Shank3ΔC/ΔC genotypes exposed to NOAEL glyphosate (GLY) compared to unexposed conditions. The postnatal survival rate was negatively impacted, specifically in Shank3ΔC/+ exposed to GLY. Next, the resulting six groups of pups were tracked into adulthood and analyzed for signs of neuroinflammation and neurological adaptions. Sholl's analysis revealed cortical microgliosis across groups exposed to GLY, with Shank3ΔC/+ mice presenting the most significant modifications. Brain tissues were devoid of astrocytosis, except for the perivascular compartment in the cortex in response to GLY. Distinct behavioral adaptations accompanied these cellular modifications, as locomotion and social preference were decreased in Shank3ΔC/+ mice exposed to GLY. Notably, GLY exposure from weaning did not elicit glial or neurological adaptations across groups, indicating the importance of pre-natal contaminant exposure. These results unveil the intersection between continuous pre-natal to adulthood environmental input and a pre-existing synaptic mutation. In an animal model, NOAEL GLY predominantly impacted Shank3ΔC/+ mice, compounding an otherwise mild phenotype compared to Shank3ΔC/ΔC. The possible relevance of these findings to neurodevelopmental risk is critically discussed, along with avenues for future research.
Collapse
Affiliation(s)
- Sophie Sakkaki
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Noemie Cresto
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Raphaël Chancel
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Maé Jaulmes
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emma Zub
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marine Blaquière
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Pierre Sicard
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | | - Nicola Marchi
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
14
|
Gevezova M, Sbirkov Y, Sarafian V, Plaimas K, Suratanee A, Maes M. Autistic spectrum disorder (ASD) - Gene, molecular and pathway signatures linking systemic inflammation, mitochondrial dysfunction, transsynaptic signalling, and neurodevelopment. Brain Behav Immun Health 2023; 30:100646. [PMID: 37334258 PMCID: PMC10275703 DOI: 10.1016/j.bbih.2023.100646] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023] Open
Abstract
Background Despite advances in autism spectrum disorder (ASD) research and the vast genomic, transcriptomic, and proteomic data available, there are still controversies regarding the pathways and molecular signatures underlying the neurodevelopmental disorders leading to ASD. Purpose To delineate these underpinning signatures, we examined the two largest gene expression meta-analysis datasets obtained from the brain and peripheral blood mononuclear cells (PBMCs) of 1355 ASD patients and 1110 controls. Methods We performed network, enrichment, and annotation analyses using the differentially expressed genes, transcripts, and proteins identified in ASD patients. Results Transcription factor network analyses in up- and down-regulated genes in brain tissue and PBMCs in ASD showed eight main transcription factors, namely: BCL3, CEBPB, IRF1, IRF8, KAT2A, NELFE, RELA, and TRIM28. The upregulated gene networks in PBMCs of ASD patients are strongly associated with activated immune-inflammatory pathways, including interferon-α signaling, and cellular responses to DNA repair. Enrichment analyses of the upregulated CNS gene networks indicate involvement of immune-inflammatory pathways, cytokine production, Toll-Like Receptor signalling, with a major involvement of the PI3K-Akt pathway. Analyses of the downregulated CNS genes suggest electron transport chain dysfunctions at multiple levels. Network topological analyses revealed that the consequent aberrations in axonogenesis, neurogenesis, synaptic transmission, and regulation of transsynaptic signalling affect neurodevelopment with subsequent impairments in social behaviours and neurocognition. The results suggest a defense response against viral infection. Conclusions Peripheral activation of immune-inflammatory pathways, most likely induced by viral infections, may result in CNS neuroinflammation and mitochondrial dysfunction, leading to abnormalities in transsynaptic transmission, and brain neurodevelopment.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Michael Maes
- Research Institute at MU-Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
15
|
De Sales-Millán A, Aguirre-Garrido JF, González-Cervantes RM, Velázquez-Aragón JA. Microbiome-Gut-Mucosal-Immune-Brain Axis and Autism Spectrum Disorder (ASD): A Novel Proposal of the Role of the Gut Microbiome in ASD Aetiology. Behav Sci (Basel) 2023; 13:548. [PMID: 37503995 PMCID: PMC10376175 DOI: 10.3390/bs13070548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterised by deficits in social interaction and communication, as well as restricted and stereotyped interests. Due of the high prevalence of gastrointestinal disorders in individuals with ASD, researchers have investigated the gut microbiota as a potential contributor to its aetiology. The relationship between the microbiome, gut, and brain (microbiome-gut-brain axis) has been acknowledged as a key factor in modulating brain function and social behaviour, but its connection to the aetiology of ASD is not well understood. Recently, there has been increasing attention on the relationship between the immune system, gastrointestinal disorders and neurological issues in ASD, particularly in relation to the loss of specific species or a decrease in microbial diversity. It focuses on how gut microbiota dysbiosis can affect gut permeability, immune function and microbiota metabolites in ASD. However, a very complete study suggests that dysbiosis is a consequence of the disease and that it has practically no effect on autistic manifestations. This is a review of the relationship between the immune system, microbial diversity and the microbiome-gut-brain axis in the development of autistic symptoms severity and a proposal of a novel role of gut microbiome in ASD, where dysbiosis is a consequence of ASD-related behaviour and where dysbiosis in turn accentuates the autistic manifestations of the patients via the microbiome-gut-brain axis in a feedback circuit.
Collapse
Affiliation(s)
- Amapola De Sales-Millán
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - Rina María González-Cervantes
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | | |
Collapse
|
16
|
Inge Schytz Andersen-Civil A, Anjan Sawale R, Claude Vanwalleghem G. Zebrafish (Danio rerio) as a translational model for neuro-immune interactions in the enteric nervous system in autism spectrum disorders. Brain Behav Immun 2023:S0889-1591(23)00142-3. [PMID: 37301234 DOI: 10.1016/j.bbi.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Autism spectrum disorders (ASD) affect about 1% of the population and are strongly associated with gastrointestinal diseases creating shortcomings in quality of life. Multiple factors contribute to the development of ASD and although neurodevelopmental deficits are central, the pathogenesis of the condition is complex and the high prevalence of intestinal disorders is poorly understood. In agreement with the prominent research establishing clear bidirectional interactions between the gut and the brain, several studies have made it evident that such a relation also exists in ASD. Thus, dysregulation of the gut microbiota and gut barrier integrity may play an important role in ASD. However, only limited research has investigated how the enteric nervous system (ENS) and intestinal mucosal immune factors may impact on the development of ASD-related intestinal disorders. This review focuses on the mechanistic studies that elucidate the regulation and interactions between enteric immune cells, residing gut microbiota and the ENS in models of ASD. Especially the multifaceted properties and applicability of zebrafish (Danio rerio) for the study of ASD pathogenesis are assessed in comparison to studies conducted in rodent models and humans. Advances in molecular techniques and in vivo imaging, combined with genetic manipulation and generation of germ-free animals in a controlled environment, appear to make zebrafish an underestimated model of choice for the study of ASD. Finally, we establish the research gaps that remain to be explored to further our understanding of the complexity of ASD pathogenesis and associated mechanisms that may lead to intestinal disorders.
Collapse
Affiliation(s)
- Audrey Inge Schytz Andersen-Civil
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.
| | - Rajlakshmi Anjan Sawale
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Gilles Claude Vanwalleghem
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Barzegari A, Mahdirejei HA, Hanani M, Esmaeili MH, Salari AA. Adolescent swimming exercise following maternal valproic acid treatment improves cognition and reduces stress-related symptoms in offspring mice: Role of sex and brain cytokines. Physiol Behav 2023; 269:114264. [PMID: 37295664 DOI: 10.1016/j.physbeh.2023.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Valproic acid (VPA) treatment during pregnancy is a risk factor for developing autism spectrum disorder, cognitive deficits, and stress-related disorders in children. No effective therapeutic strategies are currently approved to treat or manage core symptoms of autism. Active lifestyles and physical activity are closely associated with health and quality of life during childhood and adulthood. This study aimed to evaluate whether swimming exercise during adolescence can prevent the development of cognitive dysfunction and stress-related disorders in prenatally VPA-exposed mice offspring. Pregnant mice received VPA, afterwards, offspring were subjected to swimming exercise. We assessed neurobehavioral performances and inflammatory cytokines (interleukin-(IL)6, tumor-necrosis-factor-(TNF)α, interferon-(IFN)γ, and IL-17A) in the hippocampus and prefrontal cortex of offspring. Prenatal VPA treatment increased anxiety-and anhedonia-like behavior and decreased social behavior in male and female offspring. Prenatal VPA exposure also increased behavioral despair and reduced working and recognition memory in male offspring. Although prenatal VPA increased hippocampal IL-6 and IFN-γ, and prefrontal IFN-γ and IL-17 in males, it only increased hippocampal TNF-α and IFN-γ in female offspring. Adolescent exercise made VPA-treated male and female offspring resistant to anxiety-and anhedonia-like behavior in adulthood, whereas it only made VPA-exposed male offspring resistant to behavioral despair, social and cognitive deficits in adulthood. Exercise reduced hippocampal IL-6, TNF-α, IFN-γ, and IL-17, and prefrontal IFN-γ and IL-17 in VPA-treated male offspring, whereas it reduced hippocampal TNF-α and IFN-γ in VPA-treated female offspring. This study suggests that adolescent exercise may prevents the development of stress-related symptoms, cognitive deficits, and neuroinflammation in prenatally VPA-exposed offspring mice.
Collapse
Affiliation(s)
- Ali Barzegari
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | | | - Masoumeh Hanani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kish International Campus, University of Tehran, Kish, Iran
| | | | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Bao XH, Chen BF, Liu J, Tan YH, Chen S, Zhang F, Lu HS, Li JC. Olink proteomics profiling platform reveals non-invasive inflammatory related protein biomarkers in autism spectrum disorder. Front Mol Neurosci 2023; 16:1185021. [PMID: 37293545 PMCID: PMC10244537 DOI: 10.3389/fnmol.2023.1185021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Background Owing to the lack of valid biomarkers, the diagnosis of autism spectrum disorder (ASD) diagnosis relies solely on the behavioral phenotypes of children. Several researchers have suggested an association between ASD and inflammation; however, the complex relationship between the two is unelucidated to date. Therefore, the current study aims to comprehensively identify novel circulating ASD inflammatory biomarkers. Methods Olink proteomics was applied to compare the plasma inflammation-related protein changes in a group of the healthy children (HC, n = 33) and another with ASD (n = 31). The areas under the receiver operating characteristic curves (AUCs) of the differentially expressed proteins (DEPs) were calculated. The functional analysis of the DEPs was performed using Gene Ontology and Kyoto Encyclopedia Genes and Genomes. Pearson correlation tests were used employed to analyze the correlation between the DEPs and clinical features. Results A total of 13 DEPs were significantly up-regulated in the ASD group compared with the HC group. The four proteins, namely, STAMBP, ST1A1, SIRT2, and MMP-10 demonstrated good diagnostic accuracy with the corresponding AUCs (95% confidence interval, CI) of 0.7218 (0.5946-0.8489), 0.7107 (0.5827-0.8387), 0.7016 (0.5713-0.8319), and 0.7006 (0.568-0.8332). Each panel of STAMBP and any other differential protein demonstrated a better classification performance [AUC values from 0.7147 (0.5858-0.8436, STAMBP/AXIN1) to 0.7681 (0.6496-0.8867, STAMBP/MMP-10)]. These DEP profiles were enriched in immune and inflammatory response pathways, including TNF and NOD-like receptor signaling pathways. The interaction between STAMBP and SIRT2 (R = 0.97, p = 8.52 × 10-39) was found to be the most significant. In addition, several DEPs related to clinical features in patients with ASD, particularly AXIN1 (R = 0.36, p = 0.006), SIRT2 (R = 0.34, p = 0.010) and STAMBP (R = 0.34, p = 0.010), were positively correlated with age and parity, indicating that older age and higher parity may be the inflammation-related clinical factors in ASD. Conclusion Inflammation plays a crucial role in ASD, and the up-regulated inflammatory proteins may serve as potential early diagnostic biomarkers for ASD.
Collapse
Affiliation(s)
- Xiao-Hong Bao
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Bao-Fu Chen
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Jun Liu
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Yu-Hua Tan
- Department of Children Rehabilitation, Shaoguan Maternal and Child Health Hospital, Shaoguan, China
| | - Shu Chen
- Department of Children Rehabilitation, Shaoguan Maternal and Child Health Hospital, Shaoguan, China
| | - Fan Zhang
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Hong-Sheng Lu
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Ji-Cheng Li
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institute of Cell Biology, Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
19
|
Carbonell AU, Freire-Cobo C, Deyneko IV, Dobariya S, Erdjument-Bromage H, Clipperton-Allen AE, Page DT, Neubert TA, Jordan BA. Comparing synaptic proteomes across five mouse models for autism reveals converging molecular similarities including deficits in oxidative phosphorylation and Rho GTPase signaling. Front Aging Neurosci 2023; 15:1152562. [PMID: 37255534 PMCID: PMC10225639 DOI: 10.3389/fnagi.2023.1152562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes. Comparative analyses of mouse models for Fragile X syndrome (Fmr1 knockout), cortical dysplasia focal epilepsy syndrome (Cntnap2 knockout), PTEN hamartoma tumor syndrome (Pten haploinsufficiency), ANKS1B syndrome (Anks1b haploinsufficiency), and idiopathic autism (BTBR+) revealed several common altered cellular and molecular pathways at the synapse, including changes in oxidative phosphorylation, and Rho family small GTPase signaling. Functional validation of one of these aberrant pathways, Rac1 signaling, confirms that the ANKS1B model displays altered Rac1 activity counter to that observed in other models, as predicted by the bioinformatic analyses. Overall similarity analyses reveal clusters of synaptic profiles, which may form the basis for molecular subtypes that explain genetic heterogeneity in ASD despite a common clinical diagnosis. Our results suggest that ASD-linked susceptibility genes ultimately converge on common signaling pathways regulating synaptic function and propose that these points of convergence are key to understanding the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Abigail U. Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carmen Freire-Cobo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ilana V. Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Saunil Dobariya
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Amy E. Clipperton-Allen
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Thomas A. Neubert
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
20
|
Identification of subgroups of children in the Australian Autism Biobank using latent class analysis. Child Adolesc Psychiatry Ment Health 2023; 17:27. [PMID: 36805686 PMCID: PMC9940381 DOI: 10.1186/s13034-023-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The identification of reproducible subtypes within autistic populations is a priority research area in the context of neurodevelopment, to pave the way for identification of biomarkers and targeted treatment recommendations. Few previous studies have considered medical comorbidity alongside behavioural, cognitive, and psychiatric data in subgrouping analyses. This study sought to determine whether differing behavioural, cognitive, medical, and psychiatric profiles could be used to distinguish subgroups of children on the autism spectrum in the Australian Autism Biobank (AAB). METHODS Latent profile analysis was used to identify subgroups of children on the autism spectrum within the AAB (n = 1151), utilising data on social communication profiles and restricted, repetitive, and stereotyped behaviours (RRBs), in addition to their cognitive, medical, and psychiatric profiles. RESULTS Our study identified four subgroups of children on the autism spectrum with differing profiles of autism traits and associated comorbidities. Two subgroups had more severe clinical and cognitive phenotype, suggesting higher support needs. For the 'Higher Support Needs with Prominent Language and Cognitive Challenges' subgroup, social communication, language and cognitive challenges were prominent, with prominent sensory seeking behaviours. The 'Higher Support Needs with Prominent Medical and Psychiatric and Comorbidity' subgroup had the highest mean scores of challenges relating to social communication and RRBs, with the highest probability of medical and psychiatric comorbidity, and cognitive scores similar to the overall group mean. Individuals within the 'Moderate Support Needs with Emotional Challenges' subgroup, had moderate mean scores of core traits of autism, and the highest probability of depression and/or suicidality. A fourth subgroup contained individuals with fewer challenges across domains (the 'Fewer Support Needs Group'). LIMITATIONS Data utilised to identify subgroups within this study was cross-sectional as longitudinal data was not available. CONCLUSIONS Our findings support the holistic appraisal of support needs for children on the autism spectrum, with assessment of the impact of co-occurring medical and psychiatric conditions in addition to core autism traits, adaptive functioning, and cognitive functioning. Replication of our analysis in other cohorts of children on the autism spectrum is warranted, to assess whether the subgroup structure we identified is applicable in a broader context beyond our specific dataset.
Collapse
|
21
|
Ashwood P. Preliminary Findings of Elevated Inflammatory Plasma Cytokines in Children with Autism Who Have Co-Morbid Gastrointestinal Symptoms. Biomedicines 2023; 11:436. [PMID: 36830973 PMCID: PMC9952966 DOI: 10.3390/biomedicines11020436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder (AU) is present in approximately 2% of the population and is often associated with co-morbidities that can impact quality of life. One of the most common co-morbidities in autism is the presence of gastrointestinal (GI) symptoms consisting of irregular bowel habits such as constipation, diarrhea, or alternating bowel habit. Evidence of immune infiltration and immune activation has been shown in the ileum and colon of children with AU with GI symptoms. Moreover, immune dysfunction is a contributing factor in many GI diseases, and we hypothesize that it would be more apparent in children with AU that exhibit GI symptoms than those who do not present with GI symptoms. The aim of this preliminary study was to determine whether there are altered cytokine levels in plasma in children with AU with GI symptoms compared with children with AU without GI symptoms, typically developing (TD) children with GI symptoms and TD children without GI symptoms, from the same population-based cohort. Plasma cytokine levels were assessed by multiplex assays. No differences in plasma cytokines were observed in TD controls with or without GI symptoms; however, many innate (IL-1α, TNFα, GM-CSF, IFNα) and adaptive cytokines (IL-4, IL-13, IL-12p70) were increased in AU children with GI symptoms compared with children with AU with no GI symptoms. The mucosal relevant cytokine IL-15 was increased in AU with GI symptoms compared with all groups. In contrast, the regulatory cytokine IL-10, was reduced in AU with GI symptoms and may suggest an imbalance in pro-inflammatory/regulatory signals. These data suggest that children with AU and GI symptoms have an imbalance in their immune response that is evident in their circulating plasma cytokine levels. A finding that could point to potential therapeutic and/or monitoring strategies for GI issues in AU.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, School of Medicine, MIND Institute, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
22
|
Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav Immun 2023; 108:245-254. [PMID: 36494048 DOI: 10.1016/j.bbi.2022.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by communication and social behavior deficits. The presence of restricted and repetitive behaviors often accompanies these deficits, and these characteristics can range from mild to severe. The past several decades have seen a significant rise in the prevalence of ASD. The etiology of ASD remains unknown; however, genetic and environmental risk factors play a role. Multiple hypotheses converge to suggest that neuroinflammation, or at least the interaction between immune and neural systems, may be involved in the etiology of some ASD cases or groups. Repeated evidence of innate immune dysfunction has been seen in ASD, often associated with worsening behaviors. This evidence includes data from circulating myeloid cells and brain resident macrophages/microglia in both human and animal models. This comprehensive review presents recent findings of innate immune dysfunction in ASD, including aberrant innate cellular function, evidence of neuroinflammation, and microglia activation.
Collapse
|
23
|
Breach MR, Lenz KM. Sex Differences in Neurodevelopmental Disorders: A Key Role for the Immune System. Curr Top Behav Neurosci 2023; 62:165-206. [PMID: 35435643 PMCID: PMC10286778 DOI: 10.1007/7854_2022_308] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sex differences are prominent defining features of neurodevelopmental disorders. Understanding the sex biases in these disorders can shed light on mechanisms leading to relative risk and resilience for the disorders, as well as more broadly advance our understanding of how sex differences may relate to brain development. The prevalence of neurodevelopmental disorders is increasing, and the two most common neurodevelopmental disorders, Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) exhibit male-biases in prevalence rates and sex differences in symptomology. While the causes of neurodevelopmental disorders and their sex differences remain to be fully understood, increasing evidence suggests that the immune system plays a critical role in shaping development. In this chapter we discuss sex differences in prevalence and symptomology of ASD and ADHD, review sexual differentiation and immune regulation of neurodevelopment, and discuss findings from human and rodent studies of immune dysregulation and perinatal immune perturbation as they relate to potential mechanisms underlying neurodevelopmental disorders. This chapter will give an overview of how understanding sex differences in neuroimmune function in the context of neurodevelopmental disorders could lend insight into their etiologies and better treatment strategies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
CXCR2 antagonist SB332235 mitigates deficits in social behavior and dysregulation of Th1/Th22 and T regulatory cell-related transcription factor signaling in male BTBR T+ Itpr3tf/J mouse model of autism. Pharmacol Biochem Behav 2022; 217:173408. [DOI: 10.1016/j.pbb.2022.173408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
|
25
|
Alkhaldi NK, Alghamdi WK, Alharbi MH, Almutairi AS, Alghamdi FT. The Association Between Oral Helicobacter pylori and Gastric Complications: A Comprehensive Review. Cureus 2022; 14:e24703. [PMID: 35663643 PMCID: PMC9162906 DOI: 10.7759/cureus.24703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) is linked to chronic gastritis, duodenal or gastric ulcers, and gastric cancer (GC). Because the oral cavity is the first component of the gastrointestinal tract (GIT) and the entrance point for H. pylori, it has been proposed as a possible reservoir of H. pylori. As a result, a putative oral-oral transmission pathway of H. pylori poses the possibility of whether personal contact, such as kissing or sharing a meal, might trigger H. pylori transmission. As a result, several investigations have been done on this issue using various approaches for detecting H. pylori in oral and stomach samples. Furthermore, the relationship between H. pylori and gastrointestinal disorders has yet to be studied. The evidence for the association between H. pylori and gastric diseases and their complications is still a controversial subject due to the existing literature in this review. The goal of this comprehensive review was to collect all available published articles and critically evaluate existing investigations looking into the relationship between oral H. pylori contamination and the danger of gastric complications. Few studies indicated an association between H. pylori and gastric diseases. Furthermore, more longitudinal randomized clinical studies to further investigate the association between H. pylori and gastric diseases are warranted.
Collapse
Affiliation(s)
- Njoud K Alkhaldi
- General Medicine and Surgery, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, SAU
| | - Waad K Alghamdi
- General Medicine and Surgery, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, SAU
| | - Maryam H Alharbi
- General Medicine and Surgery, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, SAU
| | - Albandri S Almutairi
- General Medicine and Surgery, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, SAU
| | - Faisal T Alghamdi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
26
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
27
|
Tian J, Gao X, Yang L. Repetitive Restricted Behaviors in Autism Spectrum Disorder: From Mechanism to Development of Therapeutics. Front Neurosci 2022; 16:780407. [PMID: 35310097 PMCID: PMC8924045 DOI: 10.3389/fnins.2022.780407] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/09/2022] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social communication, social interaction, and repetitive restricted behaviors (RRBs). It is usually detected in early childhood. RRBs are behavioral patterns characterized by repetition, inflexibility, invariance, inappropriateness, and frequent lack of obvious function or specific purpose. To date, the classification of RRBs is contentious. Understanding the potential mechanisms of RRBs in children with ASD, such as neural connectivity disorders and abnormal immune functions, will contribute to finding new therapeutic targets. Although behavioral intervention remains the most effective and safe strategy for RRBs treatment, some promising drugs and new treatment options (e.g., supplementary and cell therapy) have shown positive effects on RRBs in recent studies. In this review, we summarize the latest advances of RRBs from mechanistic to therapeutic approaches and propose potential future directions in research on RRBs.
Collapse
Affiliation(s)
| | | | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| |
Collapse
|
28
|
Zhang H, Feng Y, Xie X, Song T, Yang G, Su Q, Li T, Li S, Wu C, You F, Liu Y, Yang H. Engineered Mesenchymal Stem Cells as a Biotherapy Platform for Targeted Photodynamic Immunotherapy of Breast Cancer. Adv Healthc Mater 2022; 11:e2101375. [PMID: 34981675 DOI: 10.1002/adhm.202101375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/12/2021] [Indexed: 01/10/2023]
Abstract
Interleukin-12 (IL12) is a pleiotropic cytokine with promising prospects for cancer immunotherapy. Though IL12 gene-based therapy can overcome the fatal hurdle of severe systemic toxicity, targeted delivery and tumor-located expression of IL12 gene remain the challenging issues yet to be solved. Photo-immunotherapy emerging as a novel and precise therapeutic strategy, which elaborately combines immune-activating agents with light-triggered photosensitizers for potentiated anticancer efficacy. Herein, an engineered stem cell-based biotherapy platform (MB/IL12-MSCs) incorporating immune gene plasmid IL12 (pIL12) and photosensitizer methylene blue (MB) is developed to realize tumor-homing delivery of therapeutic agents and photo-immunotherapy efficacy enhancement. The biotherapy platform retained tumor-tropic migration and penetration functions, which improved the intratumoral distribution of therapeutic agents, thereby promoting photodynamic effects and reinforcing immune responses. Importantly, MB/IL12-MSCs restricted the expression and distribution of IL12 at tumor site, which minimized potential toxicity while eliciting sufficient anticancer immunity. In noteworthy, activation of immunity induced by MB/IL12-MSCs established long-term systemic immunologic memory to prevent tumor relapse. The MB/IL12-MSCs outperform their monotherapy counterparts in breast tumor models, and the growth of tumor significantly arrested as well as re-challenging abscopal tumor growth slowdown. Collectively, this work reveals that MSCs-based strategy may advance more efficient, durable, and safer cancer photo-immunotherapy.
Collapse
Affiliation(s)
- Hanxi Zhang
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Yi Feng
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Xiaoxue Xie
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Ting Song
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Geng Yang
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Qingqing Su
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Tingting Li
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Shun Li
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Chunhui Wu
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine No. 39 Shi‐er‐qiao Road Chengdu Sichuan 610072 P. R. China
| | - Yiyao Liu
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine No. 39 Shi‐er‐qiao Road Chengdu Sichuan 610072 P. R. China
| | - Hong Yang
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| |
Collapse
|
29
|
Increased Monocyte Production of IL-6 after Toll-like Receptor Activation in Children with Autism Spectrum Disorder (ASD) Is Associated with Repetitive and Restricted Behaviors. Brain Sci 2022; 12:brainsci12020220. [PMID: 35203983 PMCID: PMC8870658 DOI: 10.3390/brainsci12020220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) has starkly increased, instigating research into risk factors for ASD. This research has identified immune risk factors for ASD, along with evidence of immune dysfunction and excess inflammation frequently experienced by autistic individuals. Increased innate inflammatory cytokines, including interleukin (IL)-6, are seen repeatedly in ASD; however, the origin of excess IL-6 in ASD has not been identified. Here we explore specific responses of circulating monocytes from autistic children. We isolated CD14+ monocytes from whole blood and stimulated them for 24 h under three conditions: media alone, lipoteichoic acid to activate TLR2, and lipopolysaccharide to activate TLR4. We then measured secreted cytokine concentrations in cellular supernatant using a human multiplex bead immunoassay. We found that after TLR4 activation, CD14+ monocytes from autistic children produce increased IL-6 compared to monocytes from children with typical development. IL-6 concentration also correlated with worsening restrictive and repetitive behaviors. These findings suggest dysfunctional activation of myeloid cells, and may indicate that other cells of this lineage, including macrophages, and microglia in the brain, might have a similar dysfunction. Further research on myeloid cells in ASD is warranted.
Collapse
|
30
|
Topal Z, Tufan AE, Karadag M, Gokcen C, Akkaya C, Sarp AS, Bahsi I, Kilinc M. Evaluation of peripheral inflammatory markers, serum B12, folate, ferritin levels and clinical correlations in children with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Nord J Psychiatry 2022; 76:150-157. [PMID: 34232109 DOI: 10.1080/08039488.2021.1946712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM The aim of the current study is to compare serum B12, folate, and ferritin levels and peripheral inflammatory indicators between children with Autism Spectrum Disorders (ASD), Attention Deficit Hyperactivity Disorder (ADHD), and healthy controls (HC) and to evaluate the correlation of those with symptoms. MATERIALS AND METHODS A total of 203 children were evaluated (ASD = 72; ADHD = 61; HC = 70). Diagnoses of ASD and ADHD were ascertained according to Schedule for Affective Disorders and Schizophrenia for School-Age Children - Present and Lifetime Version (K-SADS-PL). Control group was chosen among the healthy children who applied to general pediatrics outpatient clinic. Gilliam Autism Rating Scale-2 is used to assess autistic symptoms and Atilla Turgay DSM-IV Based Child and Adolescent Behavior Disorders Screening and Rating Scale is used for ADHD symptoms. RESULTS Neutrophil levels (p = 0.014) and neutrophil/lymphocyte ratio (NLR) (p = 0.016) were higher in the ADHD and ASD groups compared to HC. Neutrophil values explained 70.1% of the variance across groups while NLR explained a further 29.9% of the variance. NLR significantly correlated with social interaction problems in ASD (r = 0.26, p = 0.04). There were no significant differences between groups in terms of vitamin B12, folate and ferritin levels. CONCLUSION Our results may support involvement of inflammation in the underlying pathophysiology of neurodevelopmental disorders. However, these parameters should be analyzed in a wider population to clarify the effect on the etiology and symptomatology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zehra Topal
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ali Evren Tufan
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Mehmet Karadag
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Cem Gokcen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Canan Akkaya
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ayse Sevde Sarp
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ilhan Bahsi
- Department of Anatomy, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Metin Kilinc
- Department of Pediatrics, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
31
|
Nordahl CW, Andrews DS, Dwyer P, Waizbard-Bartov E, Restrepo B, Lee JK, Heath B, Saron C, Rivera SM, Solomon M, Ashwood P, Amaral DG. The Autism Phenome Project: Toward Identifying Clinically Meaningful Subgroups of Autism. Front Neurosci 2022; 15:786220. [PMID: 35110990 PMCID: PMC8801875 DOI: 10.3389/fnins.2021.786220] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
One of the most universally accepted facts about autism is that it is heterogenous. Individuals diagnosed with autism spectrum disorder have a wide range of behavioral presentations and a variety of co-occurring medical and mental health conditions. The identification of more homogenous subgroups is likely to lead to a better understanding of etiologies as well as more targeted interventions and treatments. In 2006, we initiated the UC Davis MIND Institute Autism Phenome Project (APP) with the overarching goal of identifying clinically meaningful subtypes of autism. This ongoing longitudinal multidisciplinary study now includes over 400 children and involves comprehensive medical, behavioral, and neuroimaging assessments from early childhood through adolescence (2-19 years of age). We have employed several strategies to identify sub-populations within autistic individuals: subgrouping by neural, biological, behavioral or clinical characteristics as well as by developmental trajectories. In this Mini Review, we summarize findings to date from the APP cohort and describe progress made toward identifying meaningful subgroups of autism.
Collapse
Affiliation(s)
- Christine Wu Nordahl
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Derek Sayre Andrews
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Patrick Dwyer
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Einat Waizbard-Bartov
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Bibiana Restrepo
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Joshua K. Lee
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Brianna Heath
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Clifford Saron
- MIND Institute, University of California, Davis, Davis, CA, United States
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Susan M. Rivera
- MIND Institute, University of California, Davis, Davis, CA, United States
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Marjorie Solomon
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Paul Ashwood
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - David G. Amaral
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Moreno R, Ashwood P. The Issue of Monocyte Activation in ASD: Troubles with Translation. JOURNAL OF CELLULAR IMMUNOLOGY 2022; 4:167-170. [PMID: 36688057 PMCID: PMC9853954 DOI: 10.33696/immunology.4.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) prevalence has increased year on year for the past two decades and currently affects 1 in 44 individuals in the US. An increasing number of studies have pointed to increased immune activation as both an etiological agent and also involved in the ongoing pathological process of ASD. Both adaptive and innate immune responses have been implicated. Evidence of innate dysregulation has so far included increased production of innate inflammatory cytokines, increased cell numbers, and altered activation in monocytes in the blood and microglia in the brain. Suggesting an orchestrated innate immune response may be involved in ASD. Hughes et al. (2022) recently assessed transcriptome differences that could underlie altered activation of monocytes using next-generation bulk-RNA sequencing on isolated CD14+ monocytes at baseline and after activation with different Toll-like receptor agonists. Circulating CD14+ monocyte from children with autistic disorder (AD) and children diagnosed with perverse developmental disorder not otherwise specified (PDD-NOS) were found to differ in a number of activation pathways after gene enrichment analysis compared to typically developing children. There was an overall upregulation in translational machinery in both neurodevelopmental disorder groups, whereas typically developing children were downregulated, indicating an issue with monocyte activation. Several identified differentially expressed genes in monocytes were also identified as ASD at-risk genes, according to the Simons Foundation Autism Research Initiative (SFARI), and genes involved in inflammatory bowel diseases. This work implicates altered monocyte activation with a lack of regulation as a potential mechanistic issue in ASD. Future work is warranted to evaluate how monocyte regulatory mechanisms differ in ASD individuals.
Collapse
Affiliation(s)
- R.J. Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA,M.I.N.D. Institute, University of California at Davis, CA, USA
| | - P. Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA,M.I.N.D. Institute, University of California at Davis, CA, USA,Correspondence should be addressed to Paul Ashwood,
| |
Collapse
|
33
|
Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 2022; 13:1006612. [PMID: 36339838 PMCID: PMC9626859 DOI: 10.3389/fpsyt.2022.1006612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by communication and social interaction deficits, and by restricted interests and stereotyped, repetitive behavior patterns. ASD has a strong genetic component and a complex architecture characterized by the interplay of rare and common genetic variants. Recently, increasing evidence suggest a significant contribution of immune system dysregulation in ASD. The present paper reviews the latest updates regarding the altered immune landscape of this complex disorder highlighting areas with potential for biomarkers discovery as well as personalization of therapeutic approaches. Cross-talk between the central nervous system and immune system has long been envisaged and recent evidence brings insights into the pathways connecting the brain to the immune system. Disturbance of cytokine levels plays an important role in the establishment of a neuroinflammatory milieu in ASD. Several other immune molecules involved in antigen presentation and inflammatory cellular phenotypes are also at play in ASD. Maternal immune activation, the presence of brain-reactive antibodies and autoimmunity are other potential prenatal and postnatal contributors to ASD pathophysiology. The molecular players involved in oxidative-stress response and mitochondrial system function, are discussed as contributors to the pro-inflammatory pattern. The gastrointestinal inflammation pathways proposed to play a role in ASD are also discussed. Moreover, the body of evidence regarding some of the genetic factors linked to the immune system dysregulation is reviewed and discussed. Last, but not least, the epigenetic traits and their interactions with the immune system are reviewed as an expanding field in ASD research. Understanding the immune-mediated pathways that influence brain development and function, metabolism, and intestinal homeostasis, may lead to the identification of robust diagnostic or predictive biomarkers for ASD individuals. Thus, novel therapeutic approaches could be developed, ultimately aiming to improve their quality of life.
Collapse
Affiliation(s)
- Alina Erbescu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| | | | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| |
Collapse
|
34
|
Liu W, Li L, Xia X, Zhou X, Du Y, Yin Z, Wang J. Integration of Urine Proteomic and Metabolomic Profiling Reveals Novel Insights Into Neuroinflammation in Autism Spectrum Disorder. Front Psychiatry 2022; 13:780747. [PMID: 35615451 PMCID: PMC9124902 DOI: 10.3389/fpsyt.2022.780747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders whose etiology and pathogenesis are not fully understood. To gain insight into the molecular basis of ASD, we performed comparative integrated proteomic and metabolomic analyses of urine samples from children diagnosed with ASD and healthy children. All 160 samples underwent proteomics analysis and 60 were analyzed by liquid chromatography-mass spectrometry to obtain metabolite profiles. We identified 77 differentially expressed proteins (DEPs; 21 downregulated and 56 upregulated) and 277 differentially expressed metabolites; 31 of the DEPs including glutathione, leukocyte antigens, glycoproteins, neural adhesion factors, and immunoglobulins, have been implicated in neuroinflammation. The proteomic analysis also revealed 8 signaling pathways that were significantly dysregulated in ASD patients; 3 of these (transendothelial leukocyte migration, antigen processing and presentation, and graft vs. host disease) were associated with the neuroimmune response. The metabolism of tryptophan, which is also related to the neuroimmune response, has been found to play a potential role in ASD. Integrated proteome and metabolome analysis showed that 6 signaling pathways were significantly enriched in ASD patients, 3 of which were correlated with impaired neuroinflammation (glutathione metabolism, metabolism of xenobiotics by cytochrome P450 and transendothelial migration of leukocyte). We also found a correlation between prostaglandin (PG) E2 levels and the inflammatory response in ASD. These results underscore the prominent role of the neuroimmune response in ASD and provide potential biomarkers that can be used for diagnosis or as targets for early intervention.
Collapse
Affiliation(s)
- Wenlong Liu
- Department of Child Development and Behavior, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Liming Li
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Xiaochun Xia
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Xulan Zhou
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Yukai Du
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoqing Yin
- Division of Neonatology, The People's Hospital of Dehong Autonomous Prefecture, Mangshi, China
| | - Juan Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| |
Collapse
|
35
|
Li YQ, Sun YH, Liang YP, Zhou F, Yang J, Jin SL. Effect of probiotics combined with applied behavior analysis in the treatment of children with autism spectrum disorder: a prospective randomized controlled trial. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1103-1110. [PMID: 34753541 PMCID: PMC8580031 DOI: 10.7499/j.issn.1008-8830.2108085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To study the effect of probiotics combined with applied behavior analysis (ABA) in the treatment of children with autism spectrum disorder (ASD). METHODS A total of 41 children with ASD who attended the Affiliated Hospital of Jiangsu University from May 2019 to December 2020 were enrolled and randomly divided into an observation group with 21 children and a control group with 20 children. The children in the observation group were given oral probiotics combined with ABA intervention, while those in the control group were given ABA intervention alone. The treatment outcomes were compared between the two groups. Autism Treatment Evaluation Checklist (ATEC) was used to evaluate the severity of behavioral symptoms in both groups before intervention and at 3 months after intervention. The fecal samples were collected to analyze the difference in intestinal flora between the two groups based on 16s rRNA high-throughput sequencing. RESULTS Before intervention, there was no significant difference in the ATEC score between the observation and control groups (P>0.05). At 3 months after intervention, both groups had a significant reduction in the ATEC score, and the observation group had a significantly lower ATEC score than the control group (P<0.05). Before intervention, there was no significant difference in the composition of intestinal flora between the observation and control groups. At 3 months after intervention, there was a significant difference in the composition of intestinal flora between the observation and control groups. Compared with the control group, the observation group had significantly higher relative abundances of Bifidobacterium, Lactobacillus, Coprobacillus, Ruminococcus, Prevotella, and Blautia (P<0.05) and significantly lower relative abundances of Shigella and Clostridium (P<0.05). CONCLUSIONS Probiotics may improve the effect of conventional ABA intervention in children with ASD by regulating intestinal flora.
Collapse
Affiliation(s)
- Yu-Qin Li
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China (yqli1314@163. com)
| | - Ying-Hong Sun
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China (yqli1314@163. com)
| | | | - Fan Zhou
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China (yqli1314@163. com)
| | - Jie Yang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China (yqli1314@163. com)
| | - Sheng-Li Jin
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China (yqli1314@163. com)
| |
Collapse
|
36
|
Gut microbiome linked to pancreatitis. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Gill PS, Clothier JL, Veerapandiyan A, Dweep H, Porter-Gill PA, Schaefer GB. Molecular Dysregulation in Autism Spectrum Disorder. J Pers Med 2021; 11:848. [PMID: 34575625 PMCID: PMC8466026 DOI: 10.3390/jpm11090848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Autism Spectrum Disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders with a strong heritable genetic component. At present, ASD is diagnosed solely by behavioral criteria. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD, where rare mutations and s common variants contribute to its susceptibility. Moreover, studies show rare de novo variants, copy number variation and single nucleotide polymorphisms (SNPs) also impact neurodevelopment signaling. Exploration of rare and common variants involved in common dysregulated pathways can provide new diagnostic and therapeutic strategies for ASD. Contributions of current innovative molecular strategies to understand etiology of ASD will be explored which are focused on whole exome sequencing (WES), whole genome sequencing (WGS), microRNA, long non-coding RNAs and CRISPR/Cas9 models. Some promising areas of pharmacogenomic and endophenotype directed therapies as novel personalized treatment and prevention will be discussed.
Collapse
Affiliation(s)
- Pritmohinder S. Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA;
| | - Jeffery L. Clothier
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Aravindhan Veerapandiyan
- Pediatric Neurology, Arkansas Children’s Hospital, 1 Children’s Way, Little Rock, AR 72202, USA;
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA;
| | | | - G. Bradley Schaefer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Genetics and Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Hospital NW, Springdale, AR 72762, USA
| |
Collapse
|
38
|
Arenella M, Cadby G, De Witte W, Jones RM, Whitehouse AJ, Moses EK, Fornito A, Bellgrove MA, Hawi Z, Johnson B, Tiego J, Buitelaar JK, Kiemeney LA, Poelmans G, Bralten J. Potential role for immune-related genes in autism spectrum disorders: Evidence from genome-wide association meta-analysis of autistic traits. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 26:361-372. [PMID: 34344231 PMCID: PMC8814945 DOI: 10.1177/13623613211019547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The clinical heterogeneity of autism spectrum disorders majorly challenges their genetic study. Autism spectrum disorders symptoms occur in milder forms in the general population, as autistic-like traits, and share genetic factors with autism spectrum disorders. Here, we investigate the genetics of individual autistic-like traits to improve our understanding of autism spectrum disorders. We meta-analysed four population-based genome-wide association studies investigating four autistic-like traits – ‘attention-to-detail’, ‘imagination’, ‘rigidity’ and ‘social-skills’ (n = 4600). Using autism spectrum disorder summary statistics from the Psychiatric Genomic Consortium (N = 46,350), we applied polygenic risk score analyses to understand the genetic relationship between autism spectrum disorders and autistic-like traits. Using MAGMA, we performed gene-based and gene co-expression network analyses to delineate involved genes and pathways. We identified two novel genome-wide significant loci – rs6125844 and rs3731197 – associated with ‘attention-to-detail’. We demonstrated shared genetic aetiology between autism spectrum disorders and ‘rigidity’. Analysing top variants and genes, we demonstrated a role of the immune-related genes RNF114, CDKN2A, KAZN, SPATA2 and ZNF816A in autistic-like traits. Brain-based genetic expression analyses further linked autistic-like traits to genes involved in immune functioning, and neuronal and synaptic signalling. Overall, our findings highlight the potential of the autistic-like trait–based approach to address the challenges of genetic research in autism spectrum disorders. We provide novel insights showing a potential role of the immune system in specific autism spectrum disorder dimensions.
Collapse
Affiliation(s)
- Martina Arenella
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,Radboud University Medical Center, The Netherlands
| | - Gemma Cadby
- The University of Western Australia, Australia
| | | | | | | | - Eric K Moses
- The University of Western Australia, Australia.,University of Tasmania, Australia
| | - Alex Fornito
- Turner Institute of Brain and Mental Health, Australia.,Monash University, Australia
| | - Mark A Bellgrove
- Turner Institute of Brain and Mental Health, Australia.,Monash University, Australia
| | - Ziarih Hawi
- Turner Institute of Brain and Mental Health, Australia.,Monash University, Australia
| | - Beth Johnson
- Turner Institute of Brain and Mental Health, Australia.,Monash University, Australia
| | - Jeggan Tiego
- Turner Institute of Brain and Mental Health, Australia.,Monash University, Australia
| | - Jan K Buitelaar
- Radboud University Medical Center, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, The Netherlands.,Karakter Child and Adolescent Psychiatry University Centre, The Netherlands
| | | | | | - Janita Bralten
- Radboud University Medical Center, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, The Netherlands
| |
Collapse
|
39
|
Singh H, Singh A, Khan AA, Gupta V. Immune mediating molecules and pathogenesis of COVID-19-associated neurological disease. Microb Pathog 2021; 158:105023. [PMID: 34090983 PMCID: PMC8177310 DOI: 10.1016/j.micpath.2021.105023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/30/2021] [Accepted: 05/30/2021] [Indexed: 01/08/2023]
Abstract
Background Long period of SARS-CoV-2 infection has been associated with psychiatric and cognitive disorders in adolescents and children. SARS-CoV-2 remains dormant in the CNS leading to neurological complications. The wide expression of ACE2 in the brain raises concern for its involvement in SARS-CoV-2 infection. Though, the mechanistic insights about blood-brain barriers (BBB) crossing by SARS-CoV-2 and further brain infection are still not clear. Moreover, the mechanism behind dormant SARS-CoV-2 infections leading to chronic neurological disorders needs to be unveiled. There is an urgent need to find out the risk factor involved in COVID-19-associated neurological disease. Therefore, the role of immune-associated genes in the pathogenesis of COVID-19 associated neurological diseases is presented which could contribute to finding associated genetic risk factors. Method The search utilizing multiple databases, specifically, EMBASE, PubMed (Medline), and Google Scholar was performed. Moreover, the literature survey on the involvement of COVID-19, neuropathogenesis, and its consequences was done. Description Persistent inflammatory stimuli may promote the progression of neurodegenerative diseases. An increased expression level of cytokine, chemokine, and decreased expression level of immune cells has been associated with the COVID-19 patient. Cytokine storm was observed in severe COVID-19 patients. The nature of SARS-CoV-2 infection can be neuroinflammatory. Genes of immune response could be associated with neurodegenerative diseases. Conclusion The present review will provide a useful framework and help in understanding COVID-19-associated neuropathogenesis. Experimental studies on immune-associated genes in COVID-19 patients with neurological manifestations could be helpful to establish its neuropathogenesis.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India.
| | - Amita Singh
- District Women Hospital, Prayagraj, UP, 211003, India
| | - Abdul Arif Khan
- Department of Microbiology, ICMR-National AIDS Research Institute, Pune, India
| | - Vivek Gupta
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, 282001, India
| |
Collapse
|
40
|
Zürcher NR, Loggia ML, Mullett JE, Tseng C, Bhanot A, Richey L, Hightower BG, Wu C, Parmar AJ, Butterfield RI, Dubois JM, Chonde DB, Izquierdo-Garcia D, Wey HY, Catana C, Hadjikhani N, McDougle CJ, Hooker JM. [ 11C]PBR28 MR-PET imaging reveals lower regional brain expression of translocator protein (TSPO) in young adult males with autism spectrum disorder. Mol Psychiatry 2021; 26:1659-1669. [PMID: 32076115 PMCID: PMC8159742 DOI: 10.1038/s41380-020-0682-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/12/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
Mechanisms of neuroimmune and mitochondrial dysfunction have been repeatedly implicated in autism spectrum disorder (ASD). To examine these mechanisms in ASD individuals, we measured the in vivo expression of the 18 kDa translocator protein (TSPO), an activated glial marker expressed on mitochondrial membranes. Participants underwent scanning on a simultaneous magnetic resonance-positron emission tomography (MR-PET) scanner with the second-generation TSPO radiotracer [11C]PBR28. By comparing TSPO in 15 young adult males with ASD with 18 age- and sex-matched controls, we showed that individuals with ASD exhibited lower regional TSPO expression in several brain regions, including the bilateral insular cortex, bilateral precuneus/posterior cingulate cortex, and bilateral temporal, angular, and supramarginal gyri, which have previously been implicated in autism in functional MR imaging studies. No brain region exhibited higher regional TSPO expression in the ASD group compared with the control group. A subset of participants underwent a second MR-PET scan after a median interscan interval of 3.6 months, and we determined that TSPO expression over this period of time was stable and replicable. Furthermore, voxelwise analysis confirmed lower regional TSPO expression in ASD at this later time point. Lower TSPO expression in ASD could reflect abnormalities in neuroimmune processes or mitochondrial dysfunction.
Collapse
Affiliation(s)
- N R Zürcher
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - M L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - J E Mullett
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - C Tseng
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - A Bhanot
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - L Richey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - B G Hightower
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - C Wu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - A J Parmar
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - R I Butterfield
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - J M Dubois
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - D B Chonde
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - D Izquierdo-Garcia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - H Y Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - C Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - N Hadjikhani
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gillberg Neuropsychiatry Center, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - C J McDougle
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - J M Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Agelink van Rentergem JA, Deserno MK, Geurts HM. Validation strategies for subtypes in psychiatry: A systematic review of research on autism spectrum disorder. Clin Psychol Rev 2021; 87:102033. [PMID: 33962352 DOI: 10.1016/j.cpr.2021.102033] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/14/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
Heterogeneity within autism spectrum disorder (ASD) is recognized as a challenge to both biological and psychological research, as well as clinical practice. To reduce unexplained heterogeneity, subtyping techniques are often used to establish more homogeneous subtypes based on metrics of similarity and dissimilarity between people. We review the ASD literature to create a systematic overview of the subtyping procedures and subtype validation techniques that are used in this field. We conducted a systematic review of 156 articles (2001-June 2020) that subtyped participants (range N of studies = 17-20,658), of which some or all had an ASD diagnosis. We found a large diversity in (parametric and non-parametric) methods and (biological, psychological, demographic) variables used to establish subtypes. The majority of studies validated their subtype results using variables that were measured concurrently, but were not included in the subtyping procedure. Other investigations into subtypes' validity were rarer. In order to advance clinical research and the theoretical and clinical usefulness of identified subtypes, we propose a structured approach and present the SUbtyping VAlidation Checklist (SUVAC), a checklist for validating subtyping results.
Collapse
Affiliation(s)
- Joost A Agelink van Rentergem
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands.
| | - Marie K Deserno
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands
| | - Hilde M Geurts
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands; Dr. Leo Kannerhuis, the Netherlands
| |
Collapse
|
42
|
Godfrey D, Stone RT, Lee M, Chitnis T, Santoro JD. Triad of hypovitaminosis A, hyperostosis, and optic neuropathy in males with autism spectrum disorders. Nutr Neurosci 2021; 25:1697-1703. [PMID: 33666531 DOI: 10.1080/1028415x.2021.1892252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Persons with autism spectrum disorder (ASD) can have restrictive diets due to stereotyped behaviors. These restrictive diets can manifest with nutritional deficiencies, such as Vitamin A deficiency. The most frequent manifestation of hypovitaminosis A is vision loss secondary to xerophthalmia. Here the authors report six cases of males with a clinical triad of hypovitaminosis A, cranial hyperostosis, and optic neuropathy. METHODS A retrospective case series of six males (ages 5-17 years old) with ASD who presented with several weeks of vision loss and nyctalopia were reviewed. RESULTS All six subjects were found to have a barely detectable Vitamin A level (<10 mcg/dL). Three of the six cases had elevated protein (45.9-74.0 mg/dL) in their CSF. MRI imaging demonstrated mild T2 enhancement of bilateral optic nerve sheaths and CT showed diffuse skull hypertrophy. Upon further history collection, all subjects had a very limited food repertoire with major nutritional deficiencies. Subjects were prescribed high doses of vitamin A and most were noted to have improved vision at follow-up, and all had resolution of imaging abnormalities on repeat scans. No common genetic variant was identified in patients with expanded genetic sequencing. CONCLUSIONS We present a clinical triad of hypovitaminosis A, cranial hyperostosis, and optic neuropathy in six males with ASD. Skull abnormalities and xeropthalmia likely contributed to the development of vision loss.
Collapse
Affiliation(s)
- Deena Godfrey
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Robert T Stone
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Marcus Lee
- Department of Pediatric Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tanuja Chitnis
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonathan D Santoro
- Children's Hospital of Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Dysregulation of Ki-67 Expression in T Cells of Children with Autism Spectrum Disorder. CHILDREN-BASEL 2021; 8:children8020116. [PMID: 33562037 PMCID: PMC7915849 DOI: 10.3390/children8020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral abnormalities such as impairments in social function and deficits in communication. The etiology of autism is unknown in most cases, but many studies have pointed towards the immune system as a causative agent in autism. Specific studies implicated lymphocytes, natural killer (NK) cells, monocytes, cytokines, and specific transcription factors in the development of ASD. The protein Ki-67 is n expressed in the proliferating cells and is used as a tool in several disorders. Ki-67 plays a crucial role in many neurological diseases. However, Ki-67 role in ASD is not fully understood. In this study, we investigated the possible role of Ki-67 expression in autistic children. We compared Ki-67 production in CD3+, CD4+, CD8+, CXCR4+, CXCR7+, CD45R+, HLA-DR+, GATA3+, Helios+, and FOXP3+ peripheral blood mononuclear cells (PBMCs) in autistic children to typically developing (TD) controls using immunofluorescence staining. We also determined Ki-67 mRNA levels in PBMCs using RT–PCR. The results revealed that autistic children had significantly increased numbers of CD3+Ki-67+, CD4+Ki-67+, CD8+Ki-67+, CXCR4+Ki-67+, CXCR7+Ki-67+, CD45R+Ki-67+, HLA-DR+Ki-67+, CXCR4+GATA3+, GATA3+Ki-67+ cells and decreased Helios+Ki-67+ and FOXP3+Ki-67+ cells compared with TD controls. In addition, the autistic children showed upregulation of Ki-67 mRNA levels compared with TD controls. Further studies need to be carried out to assess the exact role of Ki-67 and its therapeutic potential in ASD.
Collapse
|
44
|
A pro-inflammatory phenotype is associated with behavioural traits in children with Prader-Willi syndrome. Eur Child Adolesc Psychiatry 2021; 30:899-908. [PMID: 32495042 PMCID: PMC8140962 DOI: 10.1007/s00787-020-01568-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Several lines of evidence indicate that immune-inflammatory alterations are widely observed in various mental disorders. Genetic syndromes with high risk of psychiatric disorders may constitute a model for studies investigating this phenomenon. One of such genetically determined neurodevelopmental disorders is the Prader-Willi syndrome (PWS). Therefore, we aimed to profile a broad panel of immune-inflammatory markers in patients with PWS, taking into account co-morbid psychopathology. Participants were 20 children with PWS, and 20 healthy children matched for age, sex and body mass index. Behavioural symptoms and co-occurring psychopathological symptoms were assessed using the Child Behaviour Checklist (CBCL). We found significantly elevated levels of interleukin (IL)-1β and IL-13 in patients with PWS. There were significant positive correlations between the levels of IL-1β and scores of the following externalizing and internalizing CBCL domains: withdrawn/depressed, social problems, thought problems, attention problems, delinquent and aggressive behaviour in PWS children. Moreover, higher levels of IL-13 were associated with more severe psychopathology in terms of social and attention problems as well as delinquent and aggressive behaviour. Our findings imply that subclinical inflammation, observed as elevated IL-1β and IL-13 levels, appears only in PWS patients and is correlated to several psychopathological symptoms.
Collapse
|
45
|
Sotgiu S, Manca S, Gagliano A, Minutolo A, Melis MC, Pisuttu G, Scoppola C, Bolognesi E, Clerici M, Guerini FR, Carta A. Immune regulation of neurodevelopment at the mother-foetus interface: the case of autism. Clin Transl Immunology 2020; 9:e1211. [PMID: 33209302 PMCID: PMC7662086 DOI: 10.1002/cti2.1211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by deficits in social communication and stereotypical behaviours. ASD’s aetiology remains mostly unclear, because of a complex interaction between genetic and environmental factors. Recently, a strong consensus has developed around ASD’s immune‐mediated pathophysiology, which is the subject of this review. For many years, neuroimmunological studies tried to understand ASD as a prototypical antibody‐ or cell‐mediated disease. Other findings indicated the importance of autoimmune mechanisms such as familial and individual autoimmunity, adaptive immune abnormalities and the influence of infections during gestation. However, recent studies have challenged the idea that autism may be a classical autoimmune disease. Modern neurodevelopmental immunology shows the double‐edged nature of many immune effectors, which can be either beneficial or detrimental depending on tissue homeostasis, stressors, neurodevelopmental stage, inherited and de novo gene mutations and other variables. Nowadays, mother–child interactions in the prenatal environment appear to be crucial for the occurrence of ASD. Studies of animal maternal–foetal immune interaction are being fruitfully carried out using different combinations of type and timing of infection, of maternal immune response and foetal vulnerability and of resilience factors to hostile events. The derailed neuroimmune crosstalk through the placenta initiates and maintains a chronic foetal neuroglial activation, eventually causing the alteration of neurogenesis, migration, synapse formation and pruning. The importance of pregnancy can also allow early immune interventions, which can significantly reduce the increasing risk of ASD and its heavy social burden.
Collapse
Affiliation(s)
- Stefano Sotgiu
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | - Salvatorica Manca
- Unità Operativa di Neuropsichiatria Infanzia e Adolescenza (UONPIA) ASSL Sassari Sassari Italy
| | - Antonella Gagliano
- Child & Adolescent Neuropsychiatry Unit Department of Biomedical Sciences University of Cagliari Cagliari Italy
| | - Alessandra Minutolo
- Child & Adolescent Neuropsychiatry Unit Department of Biomedical Sciences University of Cagliari Cagliari Italy
| | - Maria Clotilde Melis
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | - Giulia Pisuttu
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | - Chiara Scoppola
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi - ONLUS Milan Italy.,Department of Pathophysiology and Transplantation University of Milano Milan Italy
| | | | - Alessandra Carta
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| |
Collapse
|
46
|
Patel S, Dale RC, Rose D, Heath B, Nordahl CW, Rogers S, Guastella AJ, Ashwood P. Maternal immune conditions are increased in males with autism spectrum disorders and are associated with behavioural and emotional but not cognitive co-morbidity. Transl Psychiatry 2020; 10:286. [PMID: 32796821 PMCID: PMC7429839 DOI: 10.1038/s41398-020-00976-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Epidemiological and animal research shows that maternal immune activation increases the risk of autism spectrum disorders (ASD) in offspring. Emerging evidence suggests that maternal immune conditions may play a role in the phenotypic expression of neurodevelopmental difficulties in children with ASD and this may be moderated by offspring sex. This study aimed to investigate whether maternal immune conditions were associated with increased severity of adverse neurodevelopmental outcomes in children with ASD. Maternal immune conditions were examined as predictors of ASD severity, behavioural and emotional well-being, and cognitive functioning in a cohort of 363 children with ASD (n = 363; 252 males, 111 females; median age 3.07 [interquartile range 2.64-3.36 years]). We also explored whether these outcomes varied between male and female children. Results showed that maternal asthma was the most common immune condition reported in mothers of children with ASD. A history of maternal immune conditions (p = 0.009) was more common in male children with ASD, compared to female children. Maternal immune conditions were associated with increased behavioural and emotional problems in male and female children. By contrast, maternal immune conditions were not associated with decreased cognitive function. The findings demonstrate that MIA may influence the expression of symptoms in children with ASD and outcomes may vary between males and females.
Collapse
Affiliation(s)
- Shrujna Patel
- grid.1013.30000 0004 1936 834XAutism Clinic for Translational Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia
| | - Russell C. Dale
- grid.1013.30000 0004 1936 834XKids Neuroscience Centre, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Westmead, NSW Australia
| | - Destanie Rose
- grid.27860.3b0000 0004 1936 9684Department of Medical Microbiology and Immunology and MIND Institute, UC Davis, Davis, CA USA
| | - Brianna Heath
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Christine W. Nordahl
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Sally Rogers
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Adam J. Guastella
- grid.1013.30000 0004 1936 834XAutism Clinic for Translational Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology and MIND Institute, UC Davis, Davis, CA, USA.
| |
Collapse
|
47
|
De Simone R, Butera A, Armida M, Pezzola A, Boirivant M, Potenza RL, Ricceri L. Beneficial Effects of Fingolimod on Social Interaction, CNS and Peripheral Immune Response in the BTBR Mouse Model of Autism. Neuroscience 2020; 435:22-32. [PMID: 32229233 DOI: 10.1016/j.neuroscience.2020.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders characterized by social communication deficits and repetitive/stereotyped behaviours. We evaluated the effects of a chronic treatment with the immunomodulator drug Fingolimod (FTY720 - a non-selective Sphingosine 1-Phosphate Receptor ligand) in an ASD model, the BTBR T+tf/J (BTBR) mouse strain. In adult BTBR males, chronic FTY720 treatment (4 weeks) increased social and vocal response during a male-female interaction and hippocampal expression of BDNF and Neuregulin 1, two trophic factors reduced in BTBR when compared to control C57 mice. FTY720 also re-established the expression of IL-1β and MnSOD in the hippocampus, whereas it did not modify IL-6 mRNA content. In addition to its central effect, FTY720 modulated the activation state of peripheral macrophages in the BTBR model, both in basal conditions and after stimulation with an immune challenge. Furthermore, IL-6 mRNA colonic content of BTBR mice, reduced when compared with C57 mice, was normalized by chronic treatment with FTY720. Our study, while indicating FTY720 as a tool to attenuate relevant alterations of the BTBR neurobehavioural phenotype, emphasizes the importance of gut mucosal immune evaluation as an additional target that deserve to be investigated in preclinical studies of anti-inflammatory therapeutic approaches in ASD.
Collapse
Affiliation(s)
- Roberta De Simone
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia Butera
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Armida
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Pezzola
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Boirivant
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Luisa Potenza
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Ricceri
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
48
|
Transcriptome signatures from discordant sibling pairs reveal changes in peripheral blood immune cell composition in Autism Spectrum Disorder. Transl Psychiatry 2020; 10:106. [PMID: 32291385 PMCID: PMC7156413 DOI: 10.1038/s41398-020-0778-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Notwithstanding several research efforts in the past years, robust and replicable molecular signatures for autism spectrum disorders from peripheral blood remain elusive. The available literature on blood transcriptome in ASD suggests that through accurate experimental design it is possible to extract important information on the disease pathophysiology at the peripheral level. Here we exploit the availability of a resource for molecular biomarkers in ASD, the Italian Autism Network (ITAN) collection, for the investigation of transcriptomic signatures in ASD based on a discordant sibling pair design. Whole blood samples from 75 discordant sibling pairs selected from the ITAN network where submitted to RNASeq analysis and data analyzed by complementary approaches. Overall, differences in gene expression between affected and unaffected siblings were small. In order to assess the contribution of differences in the relative proportion of blood cells between discordant siblings, we have applied two different cell deconvolution algorithms, showing that the observed molecular signatures mainly reflect changes in peripheral blood immune cell composition, in particular NK cells. The results obtained by the cell deconvolution approach are supported by the analysis performed by WGCNA. Our report describes the largest differential gene expression profiling in peripheral blood of ASD subjects and controls conducted by RNASeq. The observed signatures are consistent with the hypothesis of immune alterations in autism and an increased risk of developing autism in subjects exposed to prenatal infections or stress. Our study also points to a potential role of NMUR1, HMGB3, and PTPRN2 in ASD.
Collapse
|
49
|
Rose DR, Yang H, Careaga M, Angkustsiri K, Van de Water J, Ashwood P. T cell populations in children with autism spectrum disorder and co-morbid gastrointestinal symptoms. Brain Behav Immun Health 2020; 2:100042. [PMID: 34589832 PMCID: PMC8474588 DOI: 10.1016/j.bbih.2020.100042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 01/09/2023] Open
Abstract
Children with ASD are more likely to experience gastrointestinal (GI) symptoms than typically-developed children. Numerous studies have reported immune abnormalities and inflammatory profiles in the majority of individuals with ASD. Immune dysfunction is often hypothesized as a driving factor in many GI diseases and it has been suggested that it is more apparent in children with ASD that exhibit GI symptoms. In this study we sought to characterize peripheral T cell subsets in children with and without GI symptoms, compared to healthy typically-developing children. Peripheral blood mononuclear cells were isolated from participants, who were categorized into three groups: children with ASD who experience GI symptoms (n = 14), children with ASD who do not experience GI symptoms (n = 10) and typically-developing children who do not experience GI symptoms (n = 15). In order to be included in the GI group, GI symptoms such as diarrhea, constipation, and/or pain while defecating, had to be present in the child regularly for the past 6 months; likewise, in order to be placed in the no GI groups, bowel movements could not include the above symptoms present throughout development. Cells were assessed for surface markers and intracellular cytokines to identify T cell populations. Children with ASD and GI symptoms displayed elevated TH17 populations (0.757% ± 0.313% compared to 0.297% ± 0.197), while children with ASD who did not experience GI symptoms showed increased frequency of TH2 populations (2.02% ± 1.08% compared to 1.01% ± 0.58%). Both ASD groups showed evidence of reduced gut homing regulatory T cell populations compared to typically developing children (ASDGI:1.93% ± 0.75% and ASDNoGI:1.85% ± 0.89 compared to 2.93% ± 1.16%). Children with ASD may have deficits in immune regulation that lead to differential inflammatory T cell subsets that could be linked to associated co-morbidities.
Collapse
Affiliation(s)
- Destanie R. Rose
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
| | - Houa Yang
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
| | - Kathy Angkustsiri
- MIND Institute, University of California Davis, Davis, CA, USA
- Department of Pediatrics, University of California Davis, CA, USA
- Children’s Center for Environmental Health, University of California Davis, CA, USA
| | - Judy Van de Water
- MIND Institute, University of California Davis, Davis, CA, USA
- Children’s Center for Environmental Health, University of California Davis, CA, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
- Public Health Sciences, University of California Davis, CA, USA
| |
Collapse
|
50
|
Prosperi M, Guiducci L, Peroni DG, Narducci C, Gaggini M, Calderoni S, Tancredi R, Morales MA, Gastaldelli A, Muratori F, Santocchi E. Inflammatory Biomarkers are Correlated with Some Forms of Regressive Autism Spectrum Disorder. Brain Sci 2019; 9:brainsci9120366. [PMID: 31835709 PMCID: PMC6955787 DOI: 10.3390/brainsci9120366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Several studies have tried to investigate the role of inflammatory biomarkers in Autism Spectrum Disorder (ASD), and their correlations with clinical phenotypes. Despite the growing research in this topic, existing data are mostly contradictory. Methods: Eighty-five ASD preschoolers were assessed for developmental level, adaptive functioning, gastrointestinal (GI), socio-communicative and psychopathological symptoms. Plasma levels of leptin, resistin, plasminogen activator inhibitor-1 (PAI-1), macrophage chemoattractant protein-1 (CCL2), tumor necrosis factor-alfa (TNF-α), and interleukin-6 (IL-6) were correlated with clinical scores and were compared among different ASD subgroups according to the presence or absence of: (i) GI symptoms, (ii) regressive onset of autism. Results: Proinflammatory cytokines (TNF-α, IL-6 and CCL2) were lower than those reported in previous studies in children with systemic inflammatory conditions. GI symptoms were not correlated with levels of inflammatory biomarkers except for resistin that was lower in ASD-GI children (p = 0.032). Resistin and PAI-1 levels were significantly higher in the group with “regression plus a developmental delay” onset (Reg+DD group) compared to groups without regression or with regression without a developmental delay (p < 0.01 for all). Conclusions: Our results did not highlight the presence of any systemic inflammatory state in ASD subjects neither disentangling children with/without GI symptoms. The Reg + DD group significantly differed from others in some plasmatic values, but these differences failed to discriminate the subgroups as possible distinct ASD endo-phenotypes.
Collapse
Affiliation(s)
- Margherita Prosperi
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (M.P.); (S.C.); (R.T.); (F.M.); (E.S.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Letizia Guiducci
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (L.G.); (M.G.); (M.A.M.)
| | - Diego G. Peroni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Chiara Narducci
- Child and Adolescent Neuropsychiatry Unit, Department of Biomedical Science, University of Cagliari & “Antonio Cao” Paediatric Hospital, “G. Brotzu” Hospital trust, 09124 Cagliari, Italy;
| | - Melania Gaggini
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (L.G.); (M.G.); (M.A.M.)
| | - Sara Calderoni
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (M.P.); (S.C.); (R.T.); (F.M.); (E.S.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Raffaella Tancredi
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (M.P.); (S.C.); (R.T.); (F.M.); (E.S.)
| | - Maria Aurora Morales
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (L.G.); (M.G.); (M.A.M.)
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (L.G.); (M.G.); (M.A.M.)
- Correspondence: ; Tel.: +39-0503-152-679
| | - Filippo Muratori
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (M.P.); (S.C.); (R.T.); (F.M.); (E.S.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Elisa Santocchi
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (M.P.); (S.C.); (R.T.); (F.M.); (E.S.)
| |
Collapse
|