1
|
Andersen HH, Andersen MK, Bossow KA, Vestergaard AL, Bor P, Larsen A. High-dose vitamin D supplementation in pregnancy ameliorates obesity-induced increase in maternal IL-1β level without affecting obesity-induced increase in IL-6 and MCP. J Steroid Biochem Mol Biol 2025; 250:106742. [PMID: 40139536 DOI: 10.1016/j.jsbmb.2025.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Maternal and placental inflammatory activity is carefully regulated during pregnancy and changes in inflammatory status are associated with pregnancy complications and health deficits in the offspring including adverse effects on neurodevelopment. Overweight/obesity is associated with chronic inflammation, thereby contributing to adverse effects. Disturbingly, overweight and obesity are highly prevalent among pregnant women worldwide. Vitamin D (vitD) possess immunomodulatory effects and is believed to support healthy pregnancy. Endocrinological societies recommend empiric vitD supplementation in pregnancy but there is no consensus on the minimal supplementation dose METHODS: An adjacent study to GRAVIT-D (no. NCT04291313, ClinicalTrial.gov), a double-blinded randomized trial investigating the clinical benefits of increasing vitD supplementation in pregnancy from 400IU to 3600IU/day from gestational week 11-16 onwards. In a subgroup, (n = 156), multiplex ELISA targeting third-semester serum levels of IL-1β, IL-6, IL-10, TNFα, MCP-1, and IL-17A was performed. Inflammation signals were correlated with the vitD dose given, subsequently analysing the effect of vitD in relation to the pre-pregnancy body mass index (BMI) within each treatment arm comparing the inflammatory response in WHO-defined BMI groups, < 25, 25-30 and > 30 kg/m2. MAIN RESULTS High pre-pregnancy BMI was associated with increased IL6 and MCP1 in both the 400IU and the 3600 IU exposed group. IL1β levels increased with BMI if using a 400IU/day supplement. High dose vitD supplementation ameliorated BMI effects on IL1β. CONCLUSION AND PERSPECTIVES Increased vitD supplementation during pregnancy may ameliorate some overweight/obesity-induced inflammatory activity. Further studies are needed to determine the vitD need in pregnancies complicated by obesity and overweight.
Collapse
Affiliation(s)
- Helena H Andersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Aarhus 8000, Denmark.
| | - Matilde K Andersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Aarhus 8000, Denmark.
| | - Krista Agathe Bossow
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Aarhus 8000, Denmark.
| | - Anna Louise Vestergaard
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Aarhus 8000, Denmark; Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Blvd. 82, Aarhus 8200, Denmark; Department of Obstetrics & Gynecology, Randers Regional Hospital, Østervangsvej 54, Randers 8930, Denmark.
| | - Pinar Bor
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Blvd. 82, Aarhus 8200, Denmark; Department of Gynecology and Obstetrics, Aarhus University Hospital, Palle-Juul Jensens Blvd. 99, Aarhus 8200, Denmark.
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Aarhus 8000, Denmark.
| |
Collapse
|
2
|
Gao W. A hierarchical model of early brain functional network development. Trends Cogn Sci 2025:S1364-6613(25)00080-4. [PMID: 40335413 DOI: 10.1016/j.tics.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Functional brain networks emerge prenatally, grow interactively during the first years of life, and optimize both within-network topology and between-network interactions as individuals age. This review summarizes research that has characterized this process over the past two decades, and aims to link functional network growth with emerging behaviors, thereby developing a more holistic understanding of the developing brain and behavior from a functional network perspective. This synthesis suggests that the development of the brain's functional networks follows an overlapping hierarchy, progressing from primary sensory/motor to socioemotional-centered development and finally to higher-order cognitive/executive control networks. Risk-related alterations, resilience factors, treatment effects, and novel therapeutic opportunities are also discussed to encourage the consideration of future imaging-assisted methods for identifying risks and interventions.
Collapse
Affiliation(s)
- Wei Gao
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Velloso FJ, Zaritsky R, Houbeika RY, Rios N, Levison SW. Interleukin-6 produces behavioral deficits in pre-pubescent mice independent of neuroinflammation. Brain Behav Immun 2025; 126:275-288. [PMID: 39984136 DOI: 10.1016/j.bbi.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025] Open
Abstract
Maternal inflammation during pregnancy increases the offspring's risk of developing autism, ADHD, schizophrenia, and depression. Epidemiologic studies have demonstrated that maternal infections stimulate the production of interleukin-6 (IL-6), which can cross the placenta and fetal blood-brain barrier to alter brain development with functional and behavioral consequences. To model the effects of increased IL-6 between weeks 24-30 of human gestation, we injected male and female mice with 75 ng IL-6 twice daily, from P3 to P6. Our published studies have shown that this increases circulating IL-6 two-fold, alters post-pubescent ultrasonic vocalization patterns, reduces sociability, and increases self-grooming. However, most neurodevelopmental disorders in humans manifest in children as young as 2 years of age. Hence, a critical unexplored question is whether behavioral changes in immune activation models can be detected in pre-pubescent mice. Therefore, we evaluated early communication, sociability, and repetitive behaviors in pre-pubescent mice following the IL-6 treatment. A second open question is whether the cellular and behavioral changes are secondary to systemic or neuroinflammation. To address this question, we profiled 18 cytokines and chemokines in the circulation and CNS and evaluated eight immune cell types in P7 male and female brains following systemic IL-6 administration. We found an increase in ultrasonic vocalizations with simpler morphologies produced by the IL-6-injected male pups and a decrease in frequency in the female vocalizations upon removal from the nest at P7. The IL-6-treated male pups also socially interacted less when introduced to a novel mouse vs. controls as juveniles and spent almost twice as much time grooming themselves, a phenotype not present in the females. Tactile sensitivity was also increased, but only in the IL-6-treated female mice. The IL-6-treated mice had increased circulating IL-6 and IL-7 and reduced IL-13 at P7 that were no longer elevated at P14. There were no changes in brain levels of IL-6, IL-10, IL-13 or IL-17A mRNAs at P7. Altogether, these studies show that changes in the three core behavioral domains associated with several psychiatric disorders can be detected early in pre-pubescent mice following a transient developmental increase in IL-6. Yet, these behavioral alterations do not require neuroinflammation.
Collapse
Affiliation(s)
- Fernando Janczur Velloso
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Rebecca Zaritsky
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Rouba Y Houbeika
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Nicolas Rios
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Steven W Levison
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| |
Collapse
|
4
|
Wang T, Mohammadzadeh P, Jepsen JRM, Thorsen J, Rosenberg JB, Koldbæk Lemvigh C, Brustad N, Chen L, Ali M, Vinding R, Pedersen CET, Hernández-Lorca M, Fagerlund B, Glenthøj BY, Bilenberg N, Stokholm J, Bønnelykke K, Chawes B, Ebdrup BH. Maternal Inflammatory Proteins in Pregnancy and Neurodevelopmental Disorders at Age 10 Years. JAMA Psychiatry 2025; 82:514-525. [PMID: 40072459 PMCID: PMC11904801 DOI: 10.1001/jamapsychiatry.2025.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/23/2024] [Indexed: 03/15/2025]
Abstract
IMPORTANCE Maternal inflammation during pregnancy has been associated with an increased risk of neurodevelopmental disorders (NDDs), such as attention-deficit/hyperactivity disorder (ADHD) and autism, and cognitive deficits in early childhood. However, little is known about the contributions of a wider range of inflammatory proteins to this risk. OBJECTIVE To determine whether maternal inflammatory proteins during pregnancy are associated with the risk of NDDs and executive functions (EF) in middle childhood and to identify protein patterns associated with NDDs and EF. DESIGN, SETTING, AND PARTICIPANTS This was a 10-year follow-up cohort study of the Danish Copenhagen Prospective Studies on Asthma 2010 mother-child birth cohort, using plasma samples collected at week 24 in pregnancy, where 92 inflammatory proteins were assessed. NDDs and EF were assessed in the offspring at age 10 years, between January 2019 and December 2021. Mother-offspring dyads with available maternal prenatal inflammatory proteins during pregnancy and offspring NDD psychopathology data at follow-up were included. Data analyses took place between December 2023 and August 2024. EXPOSURES Levels of 92 inflammatory proteins from panel collected at week 24 during pregnancy. MAIN OUTCOMES AND MEASURES Categorical and dimensional psychopathology of NDDs (primary outcome) and EF (secondary outcome). RESULTS A total of 555 mothers (mean [SD] age, 32.4 [4.3] years) and their children (285 male [51%]) were included. The principal component analysis showed that higher levels of maternal inflammatory proteins depicted in principal component 1 were associated with a higher risk of any NDD (OR, 1.49; 95% CI, 1.15-1.94; P = .003), particularly autism (OR, 2.76; 95% CI, 1.45-5.63; P = .003) and ADHD with predominantly inattentive presentation (OR, 1.57; 95% CI, 1.05-2.39; P = .03). The single protein analysis showed that 18 of 92 proteins reached false discovery rate (FDR) 5% significance after adjustment. Vascular endothelial growth factor A, C-C motif chemokine ligand, CD5, interleukin 12B, fibroblast growth factor-23, and monocyte chemoattractant protein-1 emerged as top proteins associated with risk of NDDs. The sparse partial least squares approach identified 34 proteins associated with any NDD, and 39 with ADHD with predominantly inattentive presentation. There were no associations with EF after FDR correction. CONCLUSIONS AND RELEVANCE The maternal inflammatory proteome during pregnancy was associated with NDDs risks in offspring at age 10 years. Further research is warranted to elucidate the specific pathways involving these proteins during pregnancy that could be targeted with prevention strategies to reduce risk of NDDs in children.
Collapse
Affiliation(s)
- Tingting Wang
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Parisa Mohammadzadeh
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Jens Richardt Møllegaard Jepsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Julie Bøjstrup Rosenberg
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Cecilie Koldbæk Lemvigh
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Nicklas Brustad
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Liang Chen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mina Ali
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Vinding
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - María Hernández-Lorca
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y. Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Bilenberg
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H. Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Hill RA, Gibbons A, Suwakulsiri W, Taseska A, Darke H, Malhotra A, Yee H, Fahey M, Hunt RW, Lim I, Palmer K, Sundram S. Investigating the impact of severe maternal SARS-CoV-2 infection on infant DNA methylation and neurodevelopment. Mol Psychiatry 2025; 30:1976-1984. [PMID: 39478169 DOI: 10.1038/s41380-024-02808-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 04/24/2025]
Abstract
Maternal infections during pregnancy can increase the risk to offspring of developing a neurodevelopmental disorder. Given the global prevalence and severity of infection with Severe Acute Respiratory Syndrome related Coronavirus 2 (SARS-CoV-2), the objective of this study was to determine if in utero exposure to severe maternal SARS-CoV-2 infection alters infant neurodevelopmental outcomes at 12 months and to identify potential biological markers of adverse infant outcomes. Mother-infant dyads exposed to severe SARS-CoV-2 infection (requiring hospitalization) during pregnancy and age and sociodemographic matched control dyads were recruited from Monash Medical Centre, Australia in 2021/22 and prospectively assessed over 12 months. Maternal serum cytokine levels and Edinburgh Postnatal Depression Scale (EPDS) scores were assessed at birth. DNA methylation was assessed from infant buccal swabs at birth (Illumina EPIC BeadChip). Infant neurodevelopmental outcomes at 12 months were assessed using the Ages and Stages Questionnaire (ASQ-3). Mothers exposed to severe SARS-CoV-2 exhibited elevated serum IL-6 and IL-17A and higher EPDS scores than controls at birth. Infants exposed to severe SARS-CoV-2 in utero demonstrated over 3000 significant differentially methylated sites within their genomes compared to non-exposed (adjusted p-value < 0.05), including genes highly relevant to ASD and synaptic pathways. At 12 months, severe SARS-CoV-2 exposed infants scored lower on the ASQ-3 than non-exposed infants, and communication and problem-solving scores negatively correlated with maternal IL-6 levels at birth. DNA methylation changes therefore unveil potential mechanisms linking infection exposure to delayed neurodevelopment and maternal serum IL-6 levels may be a potential biomarker of child developmental delay. Mothers exposed to severe SARS-CoV-2 infections show elevated pro-inflammatory cytokines. Infants exposed in utero to severe SARS-CoV-2 infection show altered DNA methylation at birth and delayed development at 12 months of age. Created in Biorender.com.
Collapse
Affiliation(s)
- Rachel A Hill
- Department of Psychiatry, Monash University, Clayton, Vic, Australia.
| | - Andrew Gibbons
- Department of Psychiatry, Monash University, Clayton, Vic, Australia
| | | | - Angela Taseska
- Department of Psychiatry, Monash University, Clayton, Vic, Australia
| | - Hayley Darke
- Department of Psychiatry, Monash University, Clayton, Vic, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Clayton, Vic, Australia
- Monash Children's Hospital, Clayton, Vic, Australia
| | - Hnin Yee
- Department of Psychiatry, Monash University, Clayton, Vic, Australia
| | - Michael Fahey
- Department of Paediatrics, Monash University, Clayton, Vic, Australia
- Monash Children's Hospital, Clayton, Vic, Australia
| | - Rod W Hunt
- Department of Paediatrics, Monash University, Clayton, Vic, Australia
- Monash Children's Hospital, Clayton, Vic, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Vic, Australia
| | - Izaak Lim
- Department of Psychiatry, Monash University, Clayton, Vic, Australia
| | - Kirsten Palmer
- Monash Women's, Monash Health, Clayton, Vic, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Clayton, Vic, Australia.
- Mental Health Program, Monash Health, Clayton, Vic, Australia.
| |
Collapse
|
6
|
Uy JP, Parks KC, Tan AP, Fortier MV, Meaney M, Chong YS, Gluckman PD, Eriksson JG, Gotlib IH. Maternal Childhood Maltreatment, Development of Amygdala Volume, and Anxiety Symptoms in Offspring. J Am Acad Child Adolesc Psychiatry 2025:S0890-8567(25)00210-2. [PMID: 40250554 DOI: 10.1016/j.jaac.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/26/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE Exposure to maltreatment in childhood increases risk for mental health difficulties across generations, affecting the development of offspring. In particular, maternal exposure to childhood maltreatment can shape the neurobiological development of offspring, especially in brain regions implicated in emotional health. However, relevant studies are cross-sectional, limiting understanding of how maternal childhood maltreatment might affect offspring neurodevelopment. METHOD Using data from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) study, the authors investigated whether maternal report of childhood maltreatment was related to the development of offspring amygdala volume across 4 time points (ages 4.5-10.5 years; 1,143 scans from 430 children), how maltreatment-related alterations in amygdala volume development were related to anxiety symptoms in children at age 10.5 years (n = 267), and whether these associations differed by offspring sex. RESULTS Greater maternal childhood maltreatment was associated with larger amygdala volume in girls at ages 4.5 to 10.5 years, which, in turn, was associated with lower levels of anxiety symptoms at age 10.5 years in girls, but not in boys. Maternal childhood maltreatment was not associated with the development of amygdala volume in boys. CONCLUSION These findings support the formulation that maternal childhood maltreatment has a sex-differentiated effect on brain development and mental health outcomes of offspring. These results advance understanding of the effects of maternal childhood maltreatment on children's brain development and risk for psychopathology.
Collapse
Affiliation(s)
| | | | - Ai Peng Tan
- Institute for Human Development and Potential, Agency for Science, Technology and Research, Singapore City, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore; National University Hospital, Singapore City, Singapore
| | - Marielle V Fortier
- Institute for Human Development and Potential, Agency for Science, Technology and Research, Singapore City, Singapore; K.K. Women's and Children's Hospital, Singapore City, Singapore; Duke-NUS Medical School, Singapore City, Singapore
| | | | - Yap Seng Chong
- Institute for Human Development and Potential, Agency for Science, Technology and Research, Singapore City, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Peter D Gluckman
- Institute for Human Development and Potential, Agency for Science, Technology and Research, Singapore City, Singapore; University of Auckland, Grafton, Auckland, New Zealand
| | - Johan G Eriksson
- Institute for Human Development and Potential, Agency for Science, Technology and Research, Singapore City, Singapore
| | | |
Collapse
|
7
|
Mohammadzadeh P, Jepsen JRM, Lemvigh CK, Rosenberg JB, Hernández-Lorca M, Sevelsted A, Vinding R, Vahman N, Horner D, Sørensen ME, Aagaard K, Pedersen CET, Brix S, Fagerlund B, Schoos AMM, Stokholm J, Chawes B, Pantelis C, Glenthøj BY, Bønnelykke K, Ebdrup BH. Maternal interleukin 6 in pregnancy is associated with everyday, but not test-based executive functioning in 10-year-old children. Psychol Med 2025; 55:e112. [PMID: 40211088 DOI: 10.1017/s0033291725000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
BACKGROUND Elevated maternal interleukin 6 (IL-6) during pregnancy has been associated with adverse fetal brain development and neurodevelopmental disorders, which often involve executive functioning (EF) impairments. However, the association between maternal IL-6 levels during pregnancy and EF remains largely unexplored. METHODS The COPSYCH study is based on the prospective COPSAC2010 birth cohort of 700 mother-child pairs, recruited during pregnancy. The children's executive functioning was assessed at age 10 using: (i) the Behavior Rating Inventory of Executive Function, Second Edition (BRIEF-2) parental questionnaire, and (ii) a comprehensive neuropsychological test battery. Maternal blood levels of IL-6 and hs-CRP were measured at gestational week 24. Associations between IL-6 (main analysis) and hs-CRP (secondary analysis) and EF in children at age 10 were investigated with regression models with extensive confounder adjustment. RESULTS Six hundred and four children (86% of the cohort) completed the 10-year follow-up. Higher maternal IL-6 levels were significantly associated with less efficient parental-rated executive functioning in the children: BRIEF-2 Global Executive Composite score (p = 0.003), Behavior Regulation Index (p = 0.005), Emotion Regulation Index (p=0.04), and Cognitive Regulation Index (p=0.007). Interaction analysis with sex was significant (p-value=0.01) and exploratory analyses showed that IL-6 associations to BRIEF-2 were solely driven by boys. Associations between IL-6 and neuropsychological tests, as well as associations between hs-CRP and EF outcomes, were non-significant. CONCLUSION IL-6 during pregnancy was associated with less efficient everyday EF in children at age 10. If replicated, preventive strategies targeting inflammation in pregnancy may ameliorate adverse cognitive outcomes in offspring.
Collapse
Affiliation(s)
- Parisa Mohammadzadeh
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens Richardt Møllegaard Jepsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Julie B Rosenberg
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - María Hernández-Lorca
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Astrid Sevelsted
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Rebecca Vinding
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Nilo Vahman
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - David Horner
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Mikkel E Sørensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Kristina Aagaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Casper-Emil T Pedersen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie M Schoos
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Roychoudhury S, Tang S, Hasan SU, Fonseca K, Lodha A, Alshaikh B, Alawad E, Yusuf K. Season of conception and neurodevelopmental outcomes in singleton preterm infants less than 29 weeks gestation. Front Pediatr 2025; 13:1492429. [PMID: 40212063 PMCID: PMC11983454 DOI: 10.3389/fped.2025.1492429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/27/2025] [Indexed: 04/13/2025] Open
Abstract
Background Environmental factors vary with the seasons and affect fetal development. Our objective was to assess the impact of the season of conception on neurodevelopmental outcomes at 18-21 months corrected age in singleton infants <29 weeks' gestation. Methods A retrospective cohort study of infants born between 2006 and 2015 at a tertiary-level neonatal intensive care unit was conducted. The conception date was calculated as the date of birth minus gestational age plus 14 days, and the conception dates were then divided into winter and non-winter months. The primary outcomes were a composite score of <85 in any of the cognitive, language, or motor components of the Bayley Scales of Infant and Toddler Development, 3rd edition (Bayley-III), at 18-21 months corrected gestational age, and scores of <85 in the individual components. Multivariate logistic regression was used to assess confounders. Results Of the 493 eligible infants, 162 (32.8%) were conceived in winter. There was no difference in the adjusted odds ratios (aORs) of any Bayley-III cognitive, language, or motor composite scores of <85 between the two groups. The aORs of cognitive and language scores <85 in the winter group were significantly higher [2.78, 95% confidence interval (CI) 1.37-5.65 and 1.97, 95% CI 1.07-3.62, respectively]. Conclusion Singleton infants <29 weeks' gestation conceived in winter months have worse cognitive and language outcomes. Our results need validation in other and larger cohorts.
Collapse
Affiliation(s)
| | | | - Shabih U. Hasan
- Department of Pediatrics, Section of Neonatology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kevin Fonseca
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary and Alberta Precision Laboratories, Calgary, AB, Canada
| | - Abhay Lodha
- Department of Pediatrics, Section of Neonatology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Belal Alshaikh
- Department of Pediatrics, Section of Neonatology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Essa Alawad
- Department of Pediatrics, Section of Neonatology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kamran Yusuf
- Department of Pediatrics, Section of Neonatology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Borrego-Ruiz A, Borrego JJ. Involvement of virus infections and antiviral agents in schizophrenia. Psychol Med 2025; 55:e73. [PMID: 40059820 PMCID: PMC12055031 DOI: 10.1017/s0033291725000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Schizophrenia is a chronic and complex mental disorder resulting from interactions between cumulative and synergistic genetic and environmental factors. Viral infection during the prenatal stage constitutes one of the most relevant risk factors for the development of schizophrenia later in adulthood. METHODS A narrative review was conducted to explore the link between viral infections and schizophrenia, as well as the neuropsychiatric effects of antiviral drugs, particularly in the context of this specific mental condition. Literature searches were performed using the PubMed, Scopus, and Web of Science databases. RESULTS Several viral infections, such as herpesviruses, influenza virus, Borna disease virus, and coronaviruses, can directly or indirectly disrupt normal fetal brain development by modifying gene expression in the maternal immune system, thereby contributing to the pathophysiological symptoms of schizophrenia. In addition, neuropsychiatric effects caused by antiviral drugs are frequent and represent significant adverse outcomes for viral treatment. CONCLUSIONS Epidemiological evidence suggests a potential relationship between viruses and schizophrenia. Increases in inflammatory cytokine levels and changes in the expression of key genes observed in several viral infections may constitute potential links between these viral infections and schizophrenia. Furthermore, antivirals may affect the central nervous system, although for most drugs, their mechanisms of action are still unclear, and a strong relationship between antivirals and schizophrenia has not yet been established.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
10
|
Gonzalez MB, Andreas E, Winstanley YE, Connaughton HS, Loring KE, Shoubridge C, Robker RL. Maternal aging reduces female fecundity and alters offspring phenotype in a sex-specific manner. Reprod Fertil Dev 2025; 37:RD24164. [PMID: 40048313 DOI: 10.1071/rd24164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/15/2025] [Indexed: 05/13/2025] Open
Abstract
Context The age of childbearing in women has increased, with more babies born to women over 30years old than to those in their 20s. However, increasing maternal age is associated with a range of pregnancy and perinatal complications, such as reduced chance of conception, and higher risk of miscarriage or fetal death. Further, epidemiological studies indicate that advanced maternal age is also linked to a higher incidence of metabolic and neurodevelopmental disorders in offspring, such as Type 1 diabetes and autism spectrum disorder (ASD). Aims Mature female mice recapitulate many of the fertility characteristics seen in older women, such as reduced egg number and quality, providing a robust experimental model. This study examined fertility and offspring phenotypes in female mice at the onset of reproductive aging. Methods Firstly, fecundity in mice was measured from 3 to 18months of age. Secondly, reproductive outcomes in aged female mice (12months old) were compared to those of young females (3months of age). Growth of the offspring was assessed, as well as metabolism, behaviour, and immune function in adulthood. Key results Female aging reduced pregnancy rate, litter size and pup survival to weaning. Maternal age did not affect adult offspring immune function; however, female offspring had higher body weights, and male littermates presented dysregulated glucose tolerance and hyperactivity. Conclusions Maternal age affects offspring survival and health in a sex-specific manner. Implications These findings expand our understanding of maternal programming of offspring health, particularly the effects of increased age at pregnancy.
Collapse
Affiliation(s)
- Macarena B Gonzalez
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eryk Andreas
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Yasmyn E Winstanley
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Haley S Connaughton
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Karagh E Loring
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Cheryl Shoubridge
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Suleri A, Rommel AS, Dmitrichenko O, Muetzel RL, Cecil CAM, de Witte L, Bergink V. The association between maternal immune activation and brain structure and function in human offspring: a systematic review. Mol Psychiatry 2025; 30:722-735. [PMID: 39342040 PMCID: PMC11750624 DOI: 10.1038/s41380-024-02760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Maternal immune activation (MIA) during pregnancy, as a result of infectious or inflammatory stimuli, has gained increasing attention for its potential role in adverse child neurodevelopment, with studies focusing on associations in children born preterm. This systematic review summarizes research on the link between several types of prenatal MIA and subsequent child structural and/or functional brain development outcomes. We identified 111 neuroimaging studies in five MIA areas: inflammatory biomarkers (n = 13), chorioamnionitis (n = 18), other types of infections (n = 18), human immunodeficiency virus (HIV) (n = 42), and Zika virus (n = 20). Overall, there was large heterogeneity in the type of MIA exposure examined and in study methodology. Most studies had a prospective single cohort design and mainly focused on potential effects on the brain up to one year after birth. The median sample size was 53 participants. Severe infections, i.e., HIV and Zika virus, were associated with various types of cerebral lesions (e.g., microcephaly, atrophy, or periventricular leukomalacia) that were consistently identified across studies. For less severe infections and chronic inflammation, findings were generally inconsistent and mostly included deviations in white matter structure/function. Current findings have been mainly observed in the infants' brain, presenting an opportunity for future studies to investigate whether these associations persist throughout development. Additionally, the inconsistent findings, encompassing both regions of interest and null results, call into question whether prenatal exposure to less severe infections and chronic inflammation exerts a small effect or no effect on child brain development.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga Dmitrichenko
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lot de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Radboud UMC, Nijmegen, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Suleri A, White T, de Witte L, Gigase F, Cecil CA, Jaddoe VW, Breen M, Hillegers MH, Muetzel RL, Bergink V. Maternal Immune Activation and Child Brain Development: A Longitudinal Population-Based Multimodal Neuroimaging Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:222-235. [PMID: 39491788 PMCID: PMC11805671 DOI: 10.1016/j.bpsc.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Maternal immune activation (MIA) has been hypothesized to have an adverse effect on child neurodevelopment, but only a few neuroimaging studies have been performed to date, mostly in neonates. In this population-based cohort study, we investigated the association between MIA and multiple neuroimaging modalities depicting brain development from childhood to adolescence. METHODS We used data of mother-child pairs from the Generation R Study. To define our exposure, we measured interleukin (IL) 1β, IL-6, IL-17a, IL-23, interferon gamma, and C-reactive protein at 2 time points during pregnancy. Because levels of these 5 cytokines were highly correlated, we were able to compute a cytokine index. We used multiple brain imaging modalities as outcomes, including global and regional measures of brain morphology (structural magnetic resonance imaging, volume; n = 3295), white matter microstructure (diffusion magnetic resonance imaging, fractional anisotropy and mean diffusivity; n = 3267), and functional connectivity (functional magnetic resonance imaging, graph theory measures, and network-level connectivity; n = 2914) in the children at ages 10 and 14 years. We performed mixed effects models using child's age as a continuous time variable. RESULTS We found no significant effect of time on any neuroimaging outcomes in children over time, and there was no time × MIA interaction. These associations were similar for the cytokine index, C-reactive protein, and individual cytokines. We observed no evidence for differential effects of timing of prenatal MIA or child sex after multiple testing correction. CONCLUSIONS In this longitudinal population-based study, we found no evidence for an association between MIA and child brain development in the general population. Our findings differ from previous research in neonates that have shown structural and functional brain abnormalities after MIA.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, The Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Lot de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Frederieke Gigase
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, The Netherlands
| | - Charlotte A.M. Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent W.V. Jaddoe
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michael Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Manon H.J. Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, The Netherlands
| | - Ryan L. Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Hill RA. Maternal immune activation and adverse infant outcomes: Who is most at risk and how do we identify them? Brain Behav Immun 2025; 124:363-364. [PMID: 39675645 DOI: 10.1016/j.bbi.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Affiliation(s)
- Rachel A Hill
- Department of Psychiatry, Monash University, Clayton, VIC, Australia
| |
Collapse
|
14
|
Mattei D, Guneykaya D, Ugursu B, Buonfiglioli A. From womb to world: The interplay between maternal immune activation, neuroglia, and neurodevelopment. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:269-285. [PMID: 40148048 DOI: 10.1016/b978-0-443-19102-2.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
This chapter introduces and discusses maternal immune activation (MIA) as a contributing factor in increasing the risk of neurodevelopmental disorders, particularly in relation to its interactions with neuroglia. Here we first provide an overview of the neuroglia-astroglia, oligodendroglia, microglia, and radial glial cells-and their important role during early brain development and in adulthood. We then present and discuss MIA, followed by a critical overview of inflammatory molecules and temporal stages associated to maternal inflammation during pregnancy. We provide an overview of animal and human models used to mimic and study MIA. Furthermore, we review the possible interaction between MIA and neuroglia, focusing on the current advances in both modeling and therapeutics. Additionally, we discuss and provide preliminary and interesting insights into the most recent pandemic, COVID-19, and how the infection may be associated to MIA and increased risk for neurodevelopmental disorders. Finally, we provide a critical overview of challenges and future opportunities to study how MIA may contribute to higher risk of developing neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniele Mattei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
| | - Dilansu Guneykaya
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bilge Ugursu
- Department of Psychoneuroimmunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
15
|
Bishop CL, Lean RE, Smyser TA, Smyser CD, Rogers CE. Adverse Childhood Experiences and Socioemotional Outcomes of Children Born Very Preterm. J Pediatr 2025; 276:114377. [PMID: 39442792 PMCID: PMC11851865 DOI: 10.1016/j.jpeds.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE To examine whether adverse childhood experiences (ACEs) confer risk for socioemotional problems in children born very preterm (VPT). STUDY DESIGN As part of a longitudinal study, 96 infants born VPT at 23-30 weeks of gestation were recruited from a level III neonatal intensive care unit and underwent follow-up at ages 2 and 5 years. Eighty-three full-term (FT) (37-41 weeks gestation) children were recruited from an adjoining obstetric service and the local community. ACEs were assessed with the Child Life Events Scale at age 2 and Preschool Age Psychiatric Assessment at age 5. At age 5, internalizing, externalizing, and attention deficit hyperactivity disorder (ADHD) symptoms were assessed with the Child Behavior Checklist and Conner's Rating Scale-Revised, respectively. Covariates including socioeconomic disadvantage, maternal distress, and parent ADHD symptoms were assessed at the 2- and/or 5-year follow-up. Mediation and moderation analysis, accounting for family clustering, examined associations between birth group, ACEs, and socioemotional outcomes. RESULTS After covariate adjustment, children born VPT experienced more ACEs (P < .001), particularly medical ACEs (P < .01), and had worse ADHD and internalizing outcomes (P < .05) than full-term children. ACEs mediated the association between birth group and ADHD outcomes (95% CI, 0.11-4.08). There was no evidence of mediation for internalizing outcomes. Higher parent ADHD symptoms (P < .001) and maternal distress (P < .05) were associated with poorer internalizing outcomes. CONCLUSIONS Screening for childhood ACEs should be embedded in the follow-up care of children born VPT and their families. Strategies to screen for and address parent psychosocial functioning may be important to support children's socioemotional development.
Collapse
Affiliation(s)
- Callie L Bishop
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO.
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Christopher D Smyser
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; Department of Radiology, Washington University School of Medicine, St. Louis, MO; Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
Niskanen A, Barron A, Azaryah H, Kerkelä M, Pulli E, Tuulari JJ, Lukkarinen M, Karlsson L, Muetzel RL, Campoy C, Catena A, Tiemeier H, Khandaker GM, Karlsson H, Veijola J, Björnholm L. Sex-specific associations between maternal prenatal inflammation and offspring cortical morphology in youth: A harmonised study across four birth cohorts. Brain Behav Immun 2025; 123:1081-1090. [PMID: 39505051 DOI: 10.1016/j.bbi.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/29/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024] Open
Abstract
Maternal immune activation (MIA) during pregnancy is implicated in offspring psychiatric disorders. However, it is unknown to what extent MIA affects neurodevelopment, particularly cerebrocortical anatomy, in the general population, and whether effects differ by sex. The current study used vertex-wise statistics to examine the association between maternal prenatal CRP, an archetypal systemic inflammatory marker, and offspring cortical thickness, surface area, and volume, in 2635 mother-child dyads (5.4-26.5 years) from three population-based cohorts, and one clinical cohort enriched for presence of inflammation markers. Maternal CRP within a normal physiological range (<10 mg/L) exhibited sex-specific quadratic associations with cortical morphological measures in 2 regions in males and 1 region in females at childhood. Elevated (>10 mg/L) CRP was associated with regional cortical morphology in females and in a pooled sample of sexes. Overall, MIA is associated with cortical development in a regional and sex-specific manner in studies spanning childhood to adulthood.
Collapse
Affiliation(s)
- Anni Niskanen
- Research Unit of Clinical Medicine, Department of Psychiatry, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Aaron Barron
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Department of Clinical Medicine, Psychiatry, University of Turku and Turku University Hospital, Turku, Finland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Hatim Azaryah
- Department of Pediatrics, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Pediatric Research, School of Medicine, University of Granada, Granada, Spain; Instituto Biosanitario de Granada (Ibs-Granada), Granada, Spain
| | - Martta Kerkelä
- Research Unit of Clinical Medicine, Department of Psychiatry, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Elmo Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Department of Clinical Medicine, Psychiatry, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Turku Collegium for Science, Medicine and Technology (TCSMT), University of Turku, Turku, Finland
| | - Minna Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; The Department of Pediatrics and Adolescent Medicine, University of Turku, and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Clinical Medicine, Unit of Public Health, University of Turku, Finland; Department of Child Psychiatry, Turku University Hospital, Finland
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, Netherlands (the); Department of Radiology and Nuclear Medicine, Erasmus University Medical Center,Netherlands (the)
| | - Cristina Campoy
- Department of Pediatrics, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Pediatric Research, School of Medicine, University of Granada, Granada, Spain; Instituto Biosanitario de Granada (Ibs-Granada), Granada, Spain; CIBERESP, Spanish Research Network on Epidemiology and Public Health, ISCIII, Madrid, Spain
| | - Andrés Catena
- Department of Experimental Psychology, School of Psychology, University of Granada, Granada, Spain; Mind, Brain & Behaviour Centre (CIMCYC), University of Granada, Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, Netherlands (the); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Golam M Khandaker
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Bristol Medical School, University of Bristol, Bristol, UK; National Institute of Health and Care Research Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK; Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Department of Clinical Medicine, Psychiatry, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha Veijola
- Research Unit of Clinical Medicine, Department of Psychiatry, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Lassi Björnholm
- Research Unit of Clinical Medicine, Department of Psychiatry, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
17
|
Guma E, Chakravarty MM. Immune Alterations in the Intrauterine Environment Shape Offspring Brain Development in a Sex-Specific Manner. Biol Psychiatry 2025; 97:12-27. [PMID: 38679357 PMCID: PMC11511788 DOI: 10.1016/j.biopsych.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Exposure to immune dysregulation in utero or in early life has been shown to increase risk for neuropsychiatric illness. The sources of inflammation can be varied, including acute exposures due to maternal infection or acute stress, or persistent exposures due to chronic stress, obesity, malnutrition, or autoimmune diseases. These exposures may cause subtle alteration in brain development, structure, and function that can become progressively magnified across the lifespan, potentially increasing the likelihood of developing a neuropsychiatric conditions. There is some evidence that males are more susceptible to early-life inflammatory challenges than females. In this review, we discuss the various sources of in utero or early-life immune alteration and the known effects on fetal development with a sex-specific lens. To do so, we leveraged neuroimaging, behavioral, cellular, and neurochemical findings. Gaining clarity about how the intrauterine environment affects offspring development is critically important for informing preventive and early intervention measures that may buffer against the effects of these early-life risk factors.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Lee AC, Cherkerzian S, Tofail F, Folger LV, Ahmed S, Rahman S, Chowdhury NH, Khanam R, Olson I, Oken E, Fichorova R, Nelson CA, Baqui AH, Inder T. Perinatal inflammation, fetal growth restriction, and long-term neurodevelopmental impairment in Bangladesh. Pediatr Res 2024; 96:1777-1787. [PMID: 38589559 PMCID: PMC11959561 DOI: 10.1038/s41390-024-03101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND There are limited data on the impact of perinatal inflammation on child neurodevelopment in low-middle income countries and among growth-restricted infants. METHODS Population-based, prospective birth cohort study of 288 infants from July 2016-March 2017 in Sylhet, Bangladesh. Umbilical cord blood was analyzed for interleukin(IL)-1α, IL-1β, IL-6, IL-8, and C-reactive protein(CRP). Child neurodevelopment was assessed at 24 months with Bayley-III Scales of Infant Development. We determined associations between cord blood inflammation and neurodevelopmental outcomes, controlling for potential confounders. RESULTS 248/288 (86%) live born infants were followed until 24 months, among whom 8.9% were preterm and 45.0% small-for-gestational-age(SGA) at birth. Among all infants, elevated concentrations (>75%) of CRP and IL-6 at birth were associated with increased odds of fine motor delay at 24 months; elevated CRP was also associated with lower receptive communication z-scores. Among SGA infants, elevated IL-1α was associated with cognitive delay, IL-8 with language delay, CRP with lower receptive communication z-scores, and IL-1β with lower expressive communication and motor z-scores. CONCLUSIONS In rural Bangladesh, perinatal inflammation was associated with impaired neurodevelopment at 24 months. The associations were strongest among SGA infants and noted across several biomarkers and domains, supporting the neurobiological role of inflammation in adverse fetal development, particularly in the setting of fetal growth restriction. IMPACT Cord blood inflammation was associated with fine motor and language delays at 24 months of age in a community-based cohort in rural Bangladesh. 23.4 million infants are born small-for-gestational-age (SGA) globally each year. Among SGA infants, the associations between cord blood inflammation and adverse outcomes were strong and consistent across several biomarkers and neurodevelopmental domains (cognitive, motor, language), supporting the neurobiological impact of inflammation prominent in growth-restricted infants. Prenatal interventions to prevent intrauterine growth restriction are needed in low- and middle-income countries and may also result in long-term benefits on child development.
Collapse
Affiliation(s)
- Anne Cc Lee
- Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Sara Cherkerzian
- Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Fahmida Tofail
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, 1212, Bangladesh
| | - Lian V Folger
- Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | | | - Sayedur Rahman
- Projahnmo Research Foundation, Banani, Dhaka, 1213, Bangladesh
| | | | - Rasheda Khanam
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Ingrid Olson
- Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Emily Oken
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Raina Fichorova
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Charles A Nelson
- Harvard Medical School, Boston, MA, 02115, USA
- Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Graduate School of Education, Boston, MA, 02138, USA
| | - Abdullah H Baqui
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Terrie Inder
- Center for Neonatal Research, Children's Hospital of Orange County, Orange, CA, 92868, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
19
|
Menu I, Ji L, Trentacosta CJ, Jacques SM, Qureshi F, Thomason ME. Prenatal chronic inflammation and children's executive function development. Child Neuropsychol 2024:1-19. [PMID: 39600214 DOI: 10.1080/09297049.2024.2434215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Fetal inflammation, typically measured indirectly through prenatal maternal cytokine markers, has been shown to impact early childhood executive functions (EFs), which are central to later cognitive and life outcomes. Here, we assessed the impact of prenatal inflammation on EF developmental trajectories using direct placenta histopathology measures in 131 mothers who predominantly self-identified as Black (90.8% Black; 0.8% Asian American, 1.5% biracial, 0.8% Latinx, 3.1% White, 3.1% Missing). We found that placental measures of inflammation were associated with limited gain in EF development from 3 to 5 years old. In follow up analyses, we addressed whether screening questionnaires in infancy might aid in classification of infants as higher risk for subsequent EF problems. We found that parent responses to the Ages & Stages Questionnaire and the Infant/Toddler Sensory Profile at 12 months predict the development of EF abilities in children exposed to chronic inflammation. These findings open promising opportunities for early screening of children at risk for poor executive functioning in children exposed to prenatal inflammation.
Collapse
Affiliation(s)
- Iris Menu
- Department of Child & Adolescent Psychiatry, NYU Langone Health, New York, NY, USA
| | - Lanxin Ji
- Department of Child & Adolescent Psychiatry, NYU Langone Health, New York, NY, USA
| | | | - Suzanne M Jacques
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Faisal Qureshi
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Moriah E Thomason
- Department of Child & Adolescent Psychiatry, NYU Langone Health, New York, NY, USA
- Department of Population Health, NYU Langone Health, New York, NY, USA
- Neuroscience Institute, NYU Langone Health, New York, NY, USA
| |
Collapse
|
20
|
Couch ACM, Brown AM, Raimundo C, Solomon S, Taylor M, Sichlinger L, Matuleviciute R, Srivastava DP, Vernon AC. Transcriptional and cellular response of hiPSC-derived microglia-neural progenitor co-cultures exposed to IL-6. Brain Behav Immun 2024; 122:27-43. [PMID: 39098436 DOI: 10.1016/j.bbi.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Elevated interleukin (IL-)6 levels during prenatal development have been linked to increased risk for neurodevelopmental disorders (NDD) in the offspring, but the mechanism remains unclear. Human-induced pluripotent stem cell (hiPSC) models offer a valuable tool to study the effects of IL-6 on features relevant for human neurodevelopment in vitro. We previously reported that hiPSC-derived microglia-like cells (MGLs) respond to IL-6, but neural progenitor cells (NPCs) in monoculture do not. Therefore, we investigated whether co-culturing hiPSC-derived MGLs with NPCs would trigger a cellular response to IL-6 stimulation via secreted factors from the MGLs. Using N=4 donor lines without psychiatric diagnosis, we first confirmed that NPCs can respond to IL-6 through trans-signalling when recombinant IL-6Ra is present, and that this response is dose-dependent. MGLs secreted soluble IL-6R, but at lower levels than found in vivo and below that needed to activate trans-signalling in NPCs. Whilst transcriptomic and secretome analysis confirmed that MGLs undergo substantial transcriptomic changes after IL-6 exposure and subsequently secrete a cytokine milieu, NPCs in co-culture with MGLs exhibited a minimal transcriptional response. Furthermore, there were no significant cell fate-acquisition changes when differentiated into post-mitotic cultures, nor alterations in synaptic densities in mature neurons. These findings highlight the need to investigate if trans-IL-6 signalling to NPCs is a relevant disease mechanism linking prenatal IL-6 exposure to increased risk for psychiatric disorders. Moreover, our findings underscore the importance of establishing more complex in vitro human models with diverse cell types, which may show cell-specific responses to microglia-released cytokines to fully understand how IL-6 exposure may influence human neurodevelopment.
Collapse
Affiliation(s)
- Amalie C M Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| | - Amelia M Brown
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Catarina Raimundo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shiden Solomon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Morgan Taylor
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Laura Sichlinger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
21
|
Spann MN, Bansal R, Aydin E, Pollatou A, Alleyne K, Bennett M, Sawardekar S, Delapenha K, Cheng B, Lee S, Monk C, Peterson BS. Maternal prenatal immune activation associated with brain tissue microstructure and metabolite concentrations in newborn infants. Brain Behav Immun 2024; 122:279-286. [PMID: 39163912 PMCID: PMC11551918 DOI: 10.1016/j.bbi.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Few human studies have assessed the association of prenatal maternal immune activation (MIA) with measures of brain development and psychiatric risk in newborn offspring. Our goal was to identify the effects of MIA during the 2nd and 3rd trimesters of pregnancy on newborn measures of brain metabolite concentrations, tissue microstructure, and motor development. This was a prospective longitudinal cohort study conducted with nulliparous pregnant women who were aged 14 to 19 years and recruited in their 2nd trimester, as well as their children who were followed through 14 months of age. MIA was indexed by maternal interleukin-6 (IL-6) and C-reactive protein (CRP) in both trimesters of pregnancy. Primary outcomes included: (1) newborn brain metabolite concentrations as ratios to creatine (N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr) measured using Magnetic Resonance Spectroscopy; (2) newborn fractional anisotropy and mean diffusivity, measured using Diffusion Tensor Imaging; and (3) indices of motor development, assessed prenatally and postnatally at ages 4- and 14-months. Maternal IL-6 and CRP levels associated significantly with both metabolites in the putamen, thalamus, insula, and the internal capsule. Maternal IL-6 associated significantly with fractional anisotropy in the putamen, caudate, thalamus, insula, and precuneus, and with mean diffusivity in the inferior parietal and middle temporal gyrus. CRP associated significantly with fractional anisotropy in the thalamus, insula, and putamen. Significant associations were found in common regions across imaging modalities, though the direction of associations differed by immune marker. In addition, both maternal IL-6 and CRP (in both trimesters) prenatally associated significantly with offspring motor development at 4- and 14-months of age. The left thalamus mediated effects of IL-6 on postnatal motor development. These findings demonstrate that levels of MIA in mid- to late pregnancy in a generally healthy sample associate with tissue characteristics in newborn brain regions that primarily support motor integration and coordination, as well as behavioral regulation. Those brain effects may contribute to differences in motor development.
Collapse
Affiliation(s)
- Marisa N Spann
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; New York State Psychiatric Institute, New York, NY, United States.
| | - Ravi Bansal
- Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ezra Aydin
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Angeliki Pollatou
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Kiarra Alleyne
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Margaret Bennett
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Kayla Delapenha
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Bin Cheng
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Seonjoo Lee
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; New York State Psychiatric Institute, New York, NY, United States
| | - Catherine Monk
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; New York State Psychiatric Institute, New York, NY, United States
| | - Bradley S Peterson
- Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
22
|
Lautarescu A, Bonthrone AF, Bos B, Barratt B, Counsell SJ. Advances in fetal and neonatal neuroimaging and everyday exposures. Pediatr Res 2024; 96:1404-1416. [PMID: 38877283 PMCID: PMC11624138 DOI: 10.1038/s41390-024-03294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
The complex, tightly regulated process of prenatal brain development may be adversely affected by "everyday exposures" such as stress and environmental pollutants. Researchers are only just beginning to understand the neural sequelae of such exposures, with advances in fetal and neonatal neuroimaging elucidating structural, microstructural, and functional correlates in the developing brain. This narrative review discusses the wide-ranging literature investigating the influence of parental stress on fetal and neonatal brain development as well as emerging literature assessing the impact of exposure to environmental toxicants such as lead and air pollution. These 'everyday exposures' can co-occur with other stressors such as social and financial deprivation, and therefore we include a brief discussion of neuroimaging studies assessing the effect of social disadvantage. Increased exposure to prenatal stressors is associated with alterations in the brain structure, microstructure and function, with some evidence these associations are moderated by factors such as infant sex. However, most studies examine only single exposures and the literature on the relationship between in utero exposure to pollutants and fetal or neonatal brain development is sparse. Large cohort studies are required that include evaluation of multiple co-occurring exposures in order to fully characterize their impact on early brain development. IMPACT: Increased prenatal exposure to parental stress and is associated with altered functional, macro and microstructural fetal and neonatal brain development. Exposure to air pollution and lead may also alter brain development in the fetal and neonatal period. Further research is needed to investigate the effect of multiple co-occurring exposures, including stress, environmental toxicants, and socioeconomic deprivation on early brain development.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra F Bonthrone
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ben Barratt
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Serena J Counsell
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
23
|
Prentice RE, Hunt RW, Spittle AJ, Ditchfield M, Chen J, Burns M, Flanagan EK, Wright E, Ross AL, Goldberg R, Bell SJ. Well controlled maternal inflammatory bowel disease does not increase the risk of abnormal neurocognitive outcome screening in offspring. Brain Behav Immun Health 2024; 40:100827. [PMID: 39149622 PMCID: PMC11326492 DOI: 10.1016/j.bbih.2024.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024] Open
Abstract
Background Exposure to maternal inflammation is associated with an increased risk of neurocognitive and developmental disorders in offspring. Early diagnosis and intervention improves childhood motor and cognitive functioning. Neonatal cerebral MRI and remote app-based generalised movement assessments (GMAs) are both predictive of adverse neurocognitive outcomes but have only been used in infants at significantly increased risk for these outcomes, rather than following in utero exposure to maternal inflammatory disorders. Methods Pregnant women with inflammatory bowel disease were assessed clinically and biochemically in each trimester of pregnancy in this single centre prospective study. Neonatal cerebral MRIs were performed at 6-12 weeks post-corrected term. Two GMA videos were filmed using the 'BabyMoves' app from 12 to 16 weeks of age. MRIs and GMAs were assessed by a blinded highly qualified practitioner using validated scoring systems. Results 40/53 of invited maternal-infant dyads were recruited. C-reactive protein was elevated antenatally in less than 13%. 5/37 neonatal MRIs had incidental or obstetric trauma related gross anatomical abnormalities, with none abnormal on validated gross abnormality scoring. 3/35 GMAs were abnormal, with one GMA abnormality being clinically significant. Of those with abnormal GMAs, 2/3 were in exposed to severely active IBD in-utero. Conclusion Neonatal cerebral MRI and GMA for neurocognitive screening is feasible in the setting of maternal inflammatory bowel disease, where the risk of cerebral palsy is poorly defined and thus burdensome screening interventions are less appealing to parents. Larger studies are required to stratify adverse neurocognitive outcome risk in infants born to women with maternal inflammatory disorders, but these data are reassuring for women with IBD in remission antenatally.
Collapse
Affiliation(s)
- Ralley E Prentice
- Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Rod W Hunt
- Department of Neonatal Medicine, Monash Health, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Cerebral Palsy Alliance, Australia
| | - Alicia J Spittle
- Department of Physiotherapy, University of Melbourne, Melbourne, VIC, Australia
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Michael Ditchfield
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Department of Medical Imaging, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Jeff Chen
- Department of Medical Imaging, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Megan Burns
- Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
| | - Emma K Flanagan
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Emily Wright
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Alyson L Ross
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Rimma Goldberg
- Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Sally J Bell
- Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
van Dijk MT, Talati A, Barrios PG, Crandall AJ, Lugo-Candelas C. Prenatal depression outcomes in the next generation: A critical review of recent DOHaD studies and recommendations for future research. Semin Perinatol 2024; 48:151948. [PMID: 39043475 DOI: 10.1016/j.semperi.2024.151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Prenatal depression, a common pregnancy-related risk with a prevalence of 10-20 %, may affect in utero development and socioemotional and neurodevelopmental outcomes in the next generation. Although there is a growing body of work that suggests prenatal depression has an independent and long-lasting effect on offspring outcomes, important questions remain, and findings often do not converge. The present review examines work carried out in the last decade, with an emphasis on studies focusing on mechanisms and leveraging innovative technologies and study designs to fill in gaps in research. Overall, the past decade of research continues to suggest that prenatal depression increases risk for offspring socioemotional problems and may alter early brain development by affecting maternal-fetal physiology during pregnancy. However, important limitations remain; lack of diversity in study samples, inconsistent consideration of potential confounders (e.g., genetics, postnatal depression, parenting), and restriction of examination to narrow time windows and single exposures. On the other hand, exciting work has begun uncovering potential mechanisms underlying transmission, including alterations in mitochondria functioning, epigenetics, and the prenatal microbiome. We review the evidence to date, identify limitations, and suggest strategies for the next decade of research to detect mechanisms as well as sources of plasticity and resilience to ensure this work translates into meaningful, actionable science that improves the lives of families.
Collapse
Affiliation(s)
- M T van Dijk
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | - A Talati
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | | | - A J Crandall
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | - C Lugo-Candelas
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States.
| |
Collapse
|
25
|
Orr C, Kelty E, Belinelo P, Fisher C, Glauert AR, O’Donnell M, Preen DB. Exposure to family and domestic violence in the prenatal period is associated with an increased risk of hospitalization for bronchiolitis in children under 2 years. J Public Health (Oxf) 2024; 46:e448-e457. [PMID: 38925867 PMCID: PMC11358643 DOI: 10.1093/pubmed/fdae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/07/2023] [Accepted: 11/10/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Existing research has acknowledged a correlation between stress in pregnancy and poorer respiratory health in offspring. However, research focusing on stress caused by family and domestic violence in the prenatal period is missing. METHODS A retrospective cohort study included children born 1987-2010 who were identified as being exposed to FDV in the prenatal period (n = 1477) from two sources: WA Police Information Management System and WA Hospital Morbidity Data Collection (HMDC) and a non-exposed comparison group (n = 41 996). Hospitalization for bronchiolitis was identified in HMDC. Cox regression was used to estimate the adjusted and unadjusted hazard ratio and 95% confidence interval for bronchiolitis hospitalizations contact. RESULTS Children exposed to FDV had a 70% (HR 1.70, 95% CI: 1.49-1.94) increased risk of hospitalization for bronchiolitis than non-exposed counterparts by age two. Children exposed to FDV had a longer average hospital stay for bronchiolitis than non-exposed children (4.0 days vs. 3.8 days, P < 0.001). CONCLUSIONS Prenatal exposure to FDV is associated with bronchiolitis hospitalization in children <2 years. Along with other risk factors, clinicians should give consideration to maternal stress factors, including experiencing FDV as a potential contributor to bronchiolitis.
Collapse
Affiliation(s)
- Carol Orr
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Erin Kelty
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Patricia Belinelo
- The School of Medicine, University of Notre Dame, Fremantle, Western Australia 6160, Australia
| | - Colleen Fisher
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - A Rebecca Glauert
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Melissa O’Donnell
- Australian Centre for Child Protection, The University of South Australia, Adelaide, South Australia 5000, Australia
| | - David B Preen
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
26
|
Hanson KL, Greiner DM, Schumann CM, Semendeferi K. Inhibitory Systems in Brain Evolution: Pathways of Vulnerability in Neurodevelopmental Disorders. BRAIN, BEHAVIOR AND EVOLUTION 2024; 100:29-48. [PMID: 39137740 PMCID: PMC11822052 DOI: 10.1159/000540865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND The evolution of the primate brain has been characterized by the reorganization of key structures and circuits underlying derived specializations in sensory systems, as well as social behavior and cognition. Among these, expansion and elaboration of the prefrontal cortex has been accompanied by alterations to the connectivity and organization of subcortical structures, including the striatum and amygdala, underlying advanced aspects of executive function, inhibitory behavioral control, and socioemotional cognition seen in our lineages. At the cellular level, the primate brain has further seen an increase in the diversity and number of inhibitory GABAergic interneurons. A prevailing hypothesis holds that disruptions in the balance of excitatory to inhibitory activity in the brain underlies the pathophysiology of many neurodevelopmental and psychiatric disorders. SUMMARY This review highlights the evolution of inhibitory brain systems and circuits and suggests that recent evolutionary modifications to GABAergic circuitry may provide the substrate for vulnerability to aberrant neurodevelopment. We further discuss how modifications to primate and human social organization and life history may shape brain development in ways that contribute to neurodivergence and the origins of neurodevelopmental disorders. KEY MESSAGES Many brain systems have seen functional reorganization in the mammalian, primate, and human brain. Alterations to inhibitory circuitry in frontostriatal and frontoamygdalar systems support changes in social behavior and cognition. Increased complexity of inhibitory systems may underlie vulnerabilities to neurodevelopmental and psychiatric disorders, including autism and schizophrenia. Changes observed in Williams syndrome may further elucidate the mechanisms by which alterations in inhibitory systems lead to changes in behavior and cognition. Developmental processes, including altered neuroimmune function and age-related vulnerability of inhibitory cells and synapses, may lead to worsening symptomatology in neurodevelopmental and psychiatric disorders. BACKGROUND The evolution of the primate brain has been characterized by the reorganization of key structures and circuits underlying derived specializations in sensory systems, as well as social behavior and cognition. Among these, expansion and elaboration of the prefrontal cortex has been accompanied by alterations to the connectivity and organization of subcortical structures, including the striatum and amygdala, underlying advanced aspects of executive function, inhibitory behavioral control, and socioemotional cognition seen in our lineages. At the cellular level, the primate brain has further seen an increase in the diversity and number of inhibitory GABAergic interneurons. A prevailing hypothesis holds that disruptions in the balance of excitatory to inhibitory activity in the brain underlies the pathophysiology of many neurodevelopmental and psychiatric disorders. SUMMARY This review highlights the evolution of inhibitory brain systems and circuits and suggests that recent evolutionary modifications to GABAergic circuitry may provide the substrate for vulnerability to aberrant neurodevelopment. We further discuss how modifications to primate and human social organization and life history may shape brain development in ways that contribute to neurodivergence and the origins of neurodevelopmental disorders. KEY MESSAGES Many brain systems have seen functional reorganization in the mammalian, primate, and human brain. Alterations to inhibitory circuitry in frontostriatal and frontoamygdalar systems support changes in social behavior and cognition. Increased complexity of inhibitory systems may underlie vulnerabilities to neurodevelopmental and psychiatric disorders, including autism and schizophrenia. Changes observed in Williams syndrome may further elucidate the mechanisms by which alterations in inhibitory systems lead to changes in behavior and cognition. Developmental processes, including altered neuroimmune function and age-related vulnerability of inhibitory cells and synapses, may lead to worsening symptomatology in neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Kari L. Hanson
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
| | - Demi M.Z. Greiner
- Department of Anthropology, University of California San Diego, La Jolla, CA, USA
| | - Cynthia M. Schumann
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
| | - Katerina Semendeferi
- Department of Anthropology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Camacho-Morales A, Cárdenas-Tueme M. Prenatal Programming of Monocyte Chemotactic Protein-1 Signaling in Autism Susceptibility. Mol Neurobiol 2024; 61:6119-6134. [PMID: 38277116 DOI: 10.1007/s12035-024-03940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that involves functional and structural defects in selective central nervous system (CNS) regions, harming the individual capability to process and respond to external stimuli, including impaired verbal and non-verbal communications. Etiological causes of ASD have not been fully clarified; however, prenatal activation of the innate immune system by external stimuli might infiltrate peripheral immune cells into the fetal CNS and activate cytokine secretion by microglia and astrocytes. For instance, genomic and postmortem histological analysis has identified proinflammatory gene signatures, microglia-related expressed genes, and neuroinflammatory markers in the brain during ASD diagnosis. Active neuroinflammation might also occur during the developmental stage, promoting the establishment of a defective brain connectome and increasing susceptibility to ASD after birth. While still under investigation, we tested the hypothesis whether the monocyte chemoattractant protein-1 (MCP-1) signaling is prenatally programmed to favor peripheral immune cell infiltration and activate microglia into the fetal CNS, setting susceptibility to autism-like behavior. In this review, we will comprehensively provide the current understanding of the prenatal activation of MCP-1 signaling by external stimuli during the developmental stage as a new selective node to promote neuroinflammation, brain structural alterations, and behavioral defects associated to ASD diagnosis.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- College of Medicine, Department of Biochemistry, Universidad Autónoma de Nuevo Leon, Monterrey, NL, Mexico.
- Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Monterrey, NL, Mexico.
| | - Marcela Cárdenas-Tueme
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud and The Institute for Obesity Research, 64710, Monterrey, Mexico
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, Mexico
| |
Collapse
|
28
|
Mercado L, Rose S, Escalona-Vargas D, Dajani N, Siegel ER, Preissl H, Eswaran H. Correlating maternal and cord-blood inflammatory markers and BDNF with human fetal brain activity recorded by magnetoencephalography: An exploratory study. Brain Behav Immun Health 2024; 39:100804. [PMID: 38979093 PMCID: PMC11228641 DOI: 10.1016/j.bbih.2024.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Background During gestation, the brain development of the fetus is affected by many biological markers, where inflammatory processes and neurotrophic factors have been of particular interest in the past decade. Aim This exploratory study is the first attempt to explore the relationships between biomarker levels in maternal and cord-blood samples and human fetal brain activity measured with non-invasive fetal magnetoencephalography (fMEG). Method Twenty-three women were enrolled in this study for collection of maternal serum and fMEG tracings immediately prior to their scheduled cesarean delivery. Twelve of these women had a preexisting diabetic condition. At the time of delivery, umbilical cord blood was also collected. Biomarker levels from both maternal and cord blood were measured and subsequently analyzed for correlations with fetal brain activity in four frequency bands extracted from fMEG power spectral densities. Results Relative power in the delta, alpha, and beta frequency bands exhibited moderate-sized correlations with maternal BDNF and cord-blood CRP levels before and after adjusting for confounding diabetic status. These correlations were negative for the delta band, and positive for the alpha and beta bands. Maternal CRP and cord-blood BDNF and IL-6 exhibited negligible correlations with relative power in all four bands. Diabetes did not appear to be a strong confounding factor affecting the studied biomarkers. Conclusions Maternal BDNF levels and cord-blood CRP levels appear to have a direct correlation to fetal brain activity. Our findings indicate the potential use of these biomarkers in conjunction with fetal brain electrophysiology to track fetal neurodevelopment.
Collapse
Affiliation(s)
- Luis Mercado
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Diana Escalona-Vargas
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Nafisa Dajani
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Hari Eswaran
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
29
|
Suleri A, Gaiser C, Cecil CAM, Dijkzeul A, Neumann A, Labrecque JA, White T, Bergink V, Muetzel RL. Examining longitudinal associations between prenatal exposure to infections and child brain morphology. Brain Behav Immun 2024; 119:965-977. [PMID: 38750701 PMCID: PMC7616133 DOI: 10.1016/j.bbi.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Maternal infection during pregnancy has been identified as a prenatal risk factor for the later development of psychopathology in exposed offspring. Neuroimaging data collected during childhood has suggested a link between prenatal exposure to maternal infection and child brain structure and function, potentially offering a neurobiological explanation for the emergence of psychopathology. Additionally, preclinical studies utilizing repeated measures of neuroimaging data suggest that effects of prenatal maternal infection on the offspring's brain may normalize over time (i.e., catch-up growth). However, it remains unclear whether exposure to prenatal maternal infection in humans is related to long-term differential neurodevelopmental trajectories. Hence, this study aimed to investigate the association between prenatal exposure to infections on child brain development over time using repeated measures MRI data. METHODS We leveraged data from a population-based cohort, Generation R, in which we examined prospectively assessed self-reported infections at each trimester of pregnancy (N = 2,155). We further used three neuroimaging assessments (at mean ages 8, 10 and 14) to obtain cortical and subcortical measures of the offspring's brain morphology with MRI. Hereafter, we applied linear mixed-effects models, adjusting for several confounding factors, to estimate the association of prenatal maternal infection with child brain development over time. RESULTS We found that prenatal exposure to infection in the third trimester was associated with a slower decrease in volumes of the pars orbitalis, rostral anterior cingulate and superior frontal gyrus, and a faster increase in the middle temporal gyrus. In the temporal pole we observed a divergent pattern, specifically showing an increase in volume in offspring exposed to more infections compared to a decrease in volume in offspring exposed to fewer infections. We further observed associations in other frontal and temporal lobe structures after exposure to infections in any trimester, though these did not survive multiple testing correction. CONCLUSIONS Our results suggest that prenatal exposure to infections in the third trimester may be associated with slower age-related growth in the regions: pars orbitalis, rostral anterior cingulate and superior frontal gyrus, and faster age-related growth in the middle temporal gyrus across childhood, suggesting a potential sensitive period. Our results might be interpreted as an extension of longitudinal findings from preclinical studies, indicating that children exposed to prenatal infections could exhibit catch-up growth. However, given the lack of differences in brain volume between various infection groups at baseline, there may instead be either a longitudinal deviation or a subtle temporal deviation. Subsequent well-powered studies that extend into the period of full brain development (∼25 years) are needed to confirm whether the observed phenomenon is indeed catch-up growth, a longitudinal deviation, or a subtle temporal deviation.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Carolin Gaiser
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Annet Dijkzeul
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeremy A Labrecque
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
30
|
Wu Y, De Asis-Cruz J, Limperopoulos C. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy. Mol Psychiatry 2024; 29:2223-2240. [PMID: 38418579 PMCID: PMC11408260 DOI: 10.1038/s41380-024-02449-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
In-utero exposure to maternal psychological distress is increasingly linked with disrupted fetal and neonatal brain development and long-term neurobehavioral dysfunction in children and adults. Elevated maternal psychological distress is associated with changes in fetal brain structure and function, including reduced hippocampal and cerebellar volumes, increased cerebral cortical gyrification and sulcal depth, decreased brain metabolites (e.g., choline and creatine levels), and disrupted functional connectivity. After birth, reduced cerebral and cerebellar gray matter volumes, increased cerebral cortical gyrification, altered amygdala and hippocampal volumes, and disturbed brain microstructure and functional connectivity have been reported in the offspring months or even years after exposure to maternal distress during pregnancy. Additionally, adverse child neurodevelopment outcomes such as cognitive, language, learning, memory, social-emotional problems, and neuropsychiatric dysfunction are being increasingly reported after prenatal exposure to maternal distress. The mechanisms by which prenatal maternal psychological distress influences early brain development include but are not limited to impaired placental function, disrupted fetal epigenetic regulation, altered microbiome and inflammation, dysregulated hypothalamic pituitary adrenal axis, altered distribution of the fetal cardiac output to the brain, and disrupted maternal sleep and appetite. This review will appraise the available literature on the brain structural and functional outcomes and neurodevelopmental outcomes in the offspring of pregnant women experiencing elevated psychological distress. In addition, it will also provide an overview of the mechanistic underpinnings of brain development changes in stress response and discuss current treatments for elevated maternal psychological distress, including pharmacotherapy (e.g., selective serotonin reuptake inhibitors) and non-pharmacotherapy (e.g., cognitive-behavior therapy). Finally, it will end with a consideration of future directions in the field.
Collapse
Affiliation(s)
- Yao Wu
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA
| | | | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA.
- Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, 20010, USA.
| |
Collapse
|
31
|
Yu X, Qiang W, Gong K, Cao Y, Yan S, Gao G, Tao F, Zhu B. No role of the third-trimester inflammatory factors in the association of gestational diabetes mellitus with postpartum cardiometabolic indicators. BMC Pregnancy Childbirth 2024; 24:361. [PMID: 38750471 PMCID: PMC11095010 DOI: 10.1186/s12884-024-06563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The influence of gestational diabetes mellitus (GDM) on postpartum cardiometabolic indicators is primarily restricted to glucose and lipid metabolism, however the indicators for liver and kidney function have been rarely explored, and the role of the third-trimester inflammatory factors in these associations has never been investigated. METHODS Based on the Ma'anshan birth cohort (MABC), women with or without GDM history were selected and invited to participate in a 6-year postpartum follow-up. The fasting blood samples were collected to measure 16 comprehensive metabolic indicators during a 6-year postpartum follow-up: fasting plasma glucose (FPG), glycosylated hemoglobin (HbA1c), triglycerides (TG), total cholesterol (TC), uric acid (UA), blood urea nitrogen (BUN), serum creatinine (SCR), etc. Seven inflammatory factors, including TNF-α, IFN-γ, IL-1β, IL-6, IL-10, IL-12p70, and IL-17 A, were measured with serum samples collected during the third trimester of pregnancy. Linear regression models were used to analyze the associations between GDM and 6-year postpartum metabolic indicators, GDM and third-trimester inflammatory factors, and the third-trimester inflammatory factors and 6-year postpartum metabolic indicators. Mediating and moderating effect analyses were further performed to explore if the third-trimester inflammatory factors mediate or modify the association between GDM and postpartum cardiometabolic indicators. RESULTS From July 2021 to August 2022, 307 participants have been followed up, with 99 women with a prior GDM history. Compared with those without GDM, individuals with a prior history of GDM had significantly elevated levels of FPG (β = 0.40, 95% CI: 0.18 to 0.62, PFDR < 0.001), HbA1c (β = 0.22, 95% CI: 0.09 to 0.34, PFDR = 0.009), TyG (β = 0.22, 95% CI: 0.07 to 0.37, PFDR = 0.024) at 6 years postpartum, and the association between GDM and SCR (β = 2.43, 95% CI: 0.02 to 4.85, PFDR = 0.144) reached nominal significance level. GDM history was associated with a decreased level of third-trimester IL-17 A (β = -0.58, 95% CI: -0.99 to -0.18, PFDR = 0.035). No significant association between third-trimester inflammatory factors and 6-year postpartum metabolic indicators was observed. And no mediating or moderating effect of third-trimester inflammatory factors was observed in those associations. CONCLUSION A prior history of GDM was significantly associated with elevated FPG, HbA1c, and TyG in women at 6 years postpartum, whereas third-trimester inflammatory factors had no role in mediating or moderating these associations.
Collapse
Affiliation(s)
- Xiayan Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Wenjing Qiang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Kexin Gong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yidan Cao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan, 243011, China
| | - Guopeng Gao
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan, 243011, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Beibei Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
32
|
Antoniou MC, Quansah DY, Gilbert L, Arhab A, Schenk S, Lacroix A, Stuijfzand B, Horsch A, Puder JJ. Association between maternal and fetal inflammatory biomarkers and offspring weight and BMI during the first year of life in pregnancies with GDM: MySweetheart study. Front Endocrinol (Lausanne) 2024; 15:1333755. [PMID: 38800487 PMCID: PMC11116579 DOI: 10.3389/fendo.2024.1333755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Background Gestational Diabetes Mellitus (GDM) is frequently associated with chronic, low-grade inflammation. Whether this environment affects offspring anthropometry during early childhood remains to be elucidated. The aim of this study was to investigate the associations between maternal and fetal (cord blood-umbilical artery) inflammatory biomarkers and offspring weight and BMI up to 1 year in pregnancies with GDM. Methods In this prospective secondary analysis of the MySweetheart study, we included 193 women with GDM and their offspring. Maternal and fetal (N=39) predictors included serum levels of inflammatory biomarkers including CRP, IL-6, and TNF-α at 24-32 weeks of gestational age (GA) and in the cord blood. Offspring outcomes were small and large for gestational age (SGA, LGA), sex- and age-adjusted weight, and BMI at birth and at 1 year. Univariate and multivariate regression models were performed. Associations were adjusted for maternal pre-pregnancy BMI, age, and ethnicity. Results Mean maternal age was 33.6 ± 4.8 years, and pre-pregnancy BMI 25.9 ± 5.6 kg/m2. Their mean gestational age at the 1st GDM visit was 29 ± 2.4 weeks. Gestational age at delivery was 39.7 ± 1.1 weeks, with a mean birthweight of 3.4 ± 0.46 kg; 11.8% of offspring were LGA and 10.8% were SGA. At 1 year of age, mean offspring weight was 9.8 ± 1.2 kg and BMI z-score 0.23 ± 1.1 kg/m2. In the models including only maternal predictors, TNF-α at 24-32 weeks of GA was positively associated with SGA and inversely with offspring weight and BMI at birth and at 1 year (p ≤0.034). In the models including only fetal predictors and the combined model, CRP was inversely associated with BMI at 1 year (p ≤0.020). Conclusions In women with GDM, maternal and fetal inflammatory biomarkers distinctively influenced offspring anthropometry during the first year of life, independent of maternal age, prepregnancy BMI and ethnicity. These results suggest that low-grade inflammation during pregnancy may affect the developing offspring by leading to a decrease in weight and BMI and may have implications for future personalized follow-up of women with GDM and their offspring.
Collapse
Affiliation(s)
- Maria-Christina Antoniou
- Unit of Pediatric Endocrinology and Diabetology, Pediatric Service, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Dan Yedu Quansah
- Obstetric Service, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Leah Gilbert
- Obstetric Service, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Penrith, NSW, Australia
| | - Amar Arhab
- Obstetric Service, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Sybille Schenk
- Obstetric Service, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Alain Lacroix
- Obstetric Service, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Higher Education and Research in Healthcare (IUFRS), University of Lausanne, Lausanne, Switzerland
| | - Bobby Stuijfzand
- Obstetric Service, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Antje Horsch
- Institute of Higher Education and Research in Healthcare (IUFRS), University of Lausanne, Lausanne, Switzerland
- Neonatology Service, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Jardena Jacqueline Puder
- Obstetric Service, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
33
|
Lipner E, Mac Giollabhui N, Breen EC, Cohn BA, Krigbaum NY, Cirillo PM, Olino TM, Alloy LB, Ellman LM. Sex-Specific Pathways From Prenatal Maternal Inflammation to Adolescent Depressive Symptoms. JAMA Psychiatry 2024; 81:498-505. [PMID: 38324324 PMCID: PMC10851141 DOI: 10.1001/jamapsychiatry.2023.5458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 02/08/2024]
Abstract
Importance Prenatal maternal inflammation has been associated with major depressive disorder in offspring in adulthood as well as with internalizing and externalizing symptoms in childhood; however, the association between prenatal inflammation and offspring depression in adolescence has yet to be examined. Objective To determine whether maternal levels of inflammatory biomarkers during pregnancy are associated with depressive symptomatology in adolescent-aged offspring and to examine how gestational timing, offspring sex, and childhood psychiatric symptoms impact these associations. Design, Setting, and Participants This was an observational study of a population-based birth cohort from the Child Health and Development Studies (CHDS), which recruited almost all mothers receiving obstetric care from the Kaiser Foundation Health Plan (KFHP) in Alameda County, California, between June 1959 and September 1966. Pregnancy data and blood sera were collected from mothers, and offspring psychiatric symptom data were collected in childhood (ages 9-11 years) and adolescence (ages 15-17 years). Mother-offspring dyads with available maternal prenatal inflammatory biomarkers during first and/or second trimesters and offspring depressive symptom data at adolescent follow-up were included. Data analyses took place between March 2020 and June 2023. Exposures Levels of inflammatory biomarkers (interleukin 6 [IL-6], IL-8, IL-1 receptor antagonist [IL-1RA], and soluble tumor necrosis factor receptor-II) assayed from maternal sera in the first and second trimesters of pregnancy. Main Outcomes and Measures Self-reported depressive symptoms at adolescent follow-up. Results A total of 674 mothers (mean [SD] age, 28.1 [5.9] years) and their offspring (350 male and 325 female) were included in this study. Higher second trimester IL-6 was significantly associated with greater depressive symptoms in offspring during adolescence (b, 0.57; SE, 0.26); P = .03). Moderated mediation analyses showed that childhood externalizing symptoms significantly mediated the association between first trimester IL-6 and adolescent depressive symptoms in male offspring (b, 0.18; 95% CI, 0.02-0.47), while childhood internalizing symptoms mediated the association between second trimester IL-1RA and adolescent depressive symptoms in female offspring (b, 0.80; 95% CI, 0.19-1.75). Conclusions and Relevance In this study, prenatal maternal inflammation was associated with depressive symptoms in adolescent-aged offspring. The findings of the study suggest that pathways to adolescent depressive symptomatology from prenatal risk factors may differ based on both the timing of exposure to prenatal inflammation and offspring sex.
Collapse
Affiliation(s)
- Emily Lipner
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania
| | - Naoise Mac Giollabhui
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania
- Department of Psychiatry, Massachusetts General Hospital, Boston
| | - Elizabeth C. Breen
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Nickilou Y. Krigbaum
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Piera M. Cirillo
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Thomas M. Olino
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania
| | - Lauren B. Alloy
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania
| | - Lauren M. Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Lee Y, McDonald E, Gundogan F, Barry CV, Tallo V, Colt S, Friedman JF. Early-life matters: The role of fetal adrenal steroids in the relationship between cytokines within the placental circulation and cognitive development among infants in the Philippines. Brain Behav Immun 2024; 118:510-520. [PMID: 38431237 DOI: 10.1016/j.bbi.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Prenatal exposure to inflammation is related to the risk for cognitive impairment in offspring. However, mechanisms underlying the link between inflammatory cytokines at the maternal-fetal interface and human cognitive development are largely unknown. This study addressed this research gap by examining whether i) cytokines within the placenta are associated with different domains of neurocognitive development during infancy, and ii) if DHEA-S in cord blood mediates these associations. We also explored the role of early-life socioeconomic status (SES) in moderating the effect of fetal adrenal steroids on cognitive development in low- and middle-income country contexts. A cohort of 242 mother-infant dyads in Leyte, the Philippines participated in the study and all of them were followed from early pregnancy until 12-months. Concentrations of pro- and anti-inflammatory cytokines in the placenta, and DHEA-S in cord blood collected at delivery were evaluated. The multifactorial aspects of the infant's cognitive functioning were assessed based on the Bayley Scales of Infant Development, third edition (BSID-III). We used Structural Equation Modelling (SEM) with an orthogonal rotation to examine associated paths among latent variables of pro- and anti-inflammatory cytokines in the placenta, fetal neuroendocrine factors, and cognitive development. Pathway analyses showed that both pro- and anti-inflammatory cytokines in the placenta were indirectly related to cognitive (p < 0.05) and language developmental outcomes (p < 0.1) via DHEA-S in cord blood among the low SES group. Yet, we found no statistically significant indirect effect of pro- or anti-inflammatory cytokines on neurocognitive development among the high SES sub-sample. This study extends our understanding of how early-life socioeconomic conditions modify biological pathways underlying the relationship between prenatal factors and postpartum cognitive development.
Collapse
Affiliation(s)
- Yeonjin Lee
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States; Department of Sociology, Kookmin University, Seoul, South Korea.
| | - Emily McDonald
- Center for International Health Research, Rhode Island Hospital, Providence, RI, United States; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Fusun Gundogan
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Christopher V Barry
- Center for International Health Research, Rhode Island Hospital, Providence, RI, United States; Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Veronica Tallo
- Research Institute for Tropical Medicine, Manila, Philippines
| | - Susannah Colt
- Center for International Health Research, Rhode Island Hospital, Providence, RI, United States; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Jennifer F Friedman
- Center for International Health Research, Rhode Island Hospital, Providence, RI, United States; Warren Alpert Medical School of Brown University, Providence, RI, United States; Department of Epidemiology, Brown University, Providence, RI, United States; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
35
|
Nielsen TC, Nassar N, Shand AW, Jones HF, Han VX, Patel S, Guastella AJ, Dale RC, Lain SJ. Association between cumulative maternal exposures related to inflammation and child attention-deficit/hyperactivity disorder: A cohort study. Paediatr Perinat Epidemiol 2024; 38:241-250. [PMID: 38009577 DOI: 10.1111/ppe.13022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Preclinical studies suggest synergistic effects of maternal inflammatory exposures on offspring neurodevelopment, but human studies have been limited. OBJECTIVES To examine the cumulative association and potential interactions between seven maternal exposures related to inflammation and child attention-deficit/hyperactivity disorder (ADHD). METHODS We conducted a population-based cohort study of children born from July 2001 to December 2011 in New South Wales, Australia, and followed up until December 2014. Seven maternal exposures were identified from birth data and hospital admissions during pregnancy: autoimmune disease, asthma, hospitalization for infection, mood or anxiety disorder, smoking, hypertension, and diabetes. Child ADHD was identified from stimulant prescription records. Multivariable Cox regression assessed the association between individual and cumulative exposures and ADHD and potential interaction between exposures, controlling for potential confounders. RESULTS The cohort included 908,770 children, one-third (281,724) with one or more maternal exposures. ADHD was identified in 16,297 children (incidence 3.5 per 1000 person-years) with median age of 7 (interquartile range 2) years at first treatment. Each exposure was independently associated with ADHD, and risk increased with additional exposures: one exposure (hazard ratio (HR) 1.59, 95% confidence interval (CI) 1.54, 1.65), two exposures (HR 2.25, 95% CI 2.13, 2.37), and three or more exposures (HR 3.28, 95% CI 2.95, 3.64). Positive interaction was found between smoking and infection. The largest effect size was found for cumulative exposure of asthma, infection, mood or anxiety disorder, and smoking (HR 6.12, 95% CI 3.47, 10.70). CONCLUSIONS This study identifies cumulative effects of multiple maternal exposures related to inflammation on ADHD, most potentially preventable or modifiable. Future studies should incorporate biomarkers of maternal inflammation and consider gene-environment interactions.
Collapse
Affiliation(s)
- Timothy C Nielsen
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Natasha Nassar
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Antonia W Shand
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Royal Hospital for Women, Randwick, New South Wales, Australia
| | - Hannah F Jones
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Starship Children's Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Velda X Han
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore City, Singapore
| | - Shrujna Patel
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Adam J Guastella
- Children's Hospital Westmead Clinical School, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Russell C Dale
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Samantha J Lain
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Wylie AC, Short SJ, Fry RC, Mills-Koonce WR, Propper CB. Maternal prenatal lead levels and neonatal brain volumes: Testing moderations by maternal depressive symptoms and family income. Neurotoxicol Teratol 2024; 102:107322. [PMID: 38244816 PMCID: PMC10990786 DOI: 10.1016/j.ntt.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
There is considerable evidence that prenatal lead exposure is detrimental to child cognitive and socio-emotional development. Further evidence suggests that the effects of prenatal lead on developmental outcomes may be conditional upon exposure to social stressors, such as maternal depression and low socioeconomic status. However, no studies have examined associations between these co-occurring stressors during pregnancy and neonatal brain volumes. Leveraging a sample of 101 mother-infant dyads followed beginning in mid-pregnancy, we examined the main effects of prenatal urinary lead levels on neonatal lateralized brain volumes (left and right hippocampus, amygdala, cerebellum, frontal lobes) and total gray matter. We additionally tested for moderations between lead and depressive symptoms and between lead and family income relative to the federal poverty level (FPL) on the same neurodevelopmental outcomes. Analyses of main effects indicated that prenatal lead was significantly (ps < 0.05) associated with reduced right and left amygdala volumes (βs = -0.23- -0.20). The testing and probing of cross-product interaction terms using simple slopes indicated that the negative effect of lead on the left amygdala was conditional upon mothers having low depressive symptoms or high income relative to the FPL. We interpret the results in the context of trajectories of prenatal and postnatal brain development and susceptibility to low levels of prenatal lead in the context of other social stressors.
Collapse
Affiliation(s)
- Amanda C Wylie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, United States.
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, United States; Center for Healthy Minds, University of Wisconsin-Madison, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States
| | - W Roger Mills-Koonce
- School of Education, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cathi B Propper
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, United States; School of Nursing, University of North Carolina at Chapel Hill, United States
| |
Collapse
|
37
|
Ortiz-Whittingham LR, Zhan L, Ortiz-Chaparro EN, Baumer Y, Zenk S, Lamar M, Powell-Wiley TM. Neighborhood Perceptions Are Associated With Intrinsic Amygdala Activity and Resting-State Connectivity With Salience Network Nodes Among Older Adults. Psychosom Med 2024; 86:116-123. [PMID: 38150567 PMCID: PMC10922456 DOI: 10.1097/psy.0000000000001272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Neighborhood perceptions are associated with physical and mental health outcomes; however, the biological associates of this relationship remain to be fully understood. Here, we evaluate the relationship between neighborhood perceptions and amygdala activity and connectivity with salience network (i.e., insula, anterior cingulate, thalamus) nodes. METHODS Forty-eight older adults (mean age = 68 [7] years, 52% female, 47% non-Hispanic Black, 2% Hispanic) without dementia or depression completed the Perceptions of Neighborhood Environment Scale. Lower scores indicated less favorable perceptions of aesthetic quality, walking environment, availability of healthy food, safety, violence (i.e., more perceived violence), social cohesion, and participation in activities with neighbors. Participants separately underwent resting-state functional magnetic resonance imaging. RESULTS Less favorable perceived safety ( β = -0.33, pFDR = .04) and participation in activities with neighbors ( β = -0.35, pFDR = .02) were associated with higher left amygdala activity, independent of covariates including psychosocial factors. Less favorable safety perceptions were also associated with enhanced left amygdala functional connectivity with the bilateral insular cortices and the left anterior insula ( β = -0.34, pFDR = .04). Less favorable perceived social cohesion was associated with enhanced left amygdala functional connectivity with the right thalamus ( β = -0.42, pFDR = .04), and less favorable perceptions about healthy food availability were associated with enhanced left amygdala functional connectivity with the bilateral anterior insula (right: β = -0.39, pFDR = .04; left: β = -0.42, pFDR = .02) and anterior cingulate gyrus ( β = -0.37, pFDR = .04). CONCLUSIONS Taken together, our findings document relationships between select neighborhood perceptions and amygdala activity as well as connectivity with salience network nodes; if confirmed, targeted community-level interventions and existing community strengths may promote brain-behavior relationships.
Collapse
Affiliation(s)
- Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Erika N. Ortiz-Chaparro
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Shannon Zenk
- National Institute of Nursing Research (NINR), National Institutes of Health, Bethesda, MD, United States
- Intramural Research Program, National Institute on Minority Health and Health Disparities (NIMHD), National Institutes of Health, Bethesda, MD, United States
| | - Melissa Lamar
- Rush Alzheimer’s Disease Center and the Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
- Intramural Research Program, National Institute on Minority Health and Health Disparities (NIMHD), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
38
|
Vaghef-Mehrabani E, Bell RC, Field CJ, Jarman M, Evanchuk JL, Letourneau N, Dewey D, Giesbrecht GF. Maternal pre-pregnancy weight status and gestational weight gain in association with child behavior: The mediating role of prenatal systemic inflammation. Clin Nutr ESPEN 2024; 59:249-256. [PMID: 38220383 DOI: 10.1016/j.clnesp.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND AIMS Maternal pre-pregnancy obesity and excessive gestational weight gain (EGWG) may predispose children to behavioral problems through increased prenatal inflammation. We investigated the association between maternal body mass index (BMI) and gestational weight gain (GWG), and child behavioral problems (primary aim), and the mediating role of prenatal inflammation (secondary aim). METHODS We used self-reported pre-pregnancy BMI and estimated-GWG data (N = 1137) from a longitudinal cohort study. Maternal serum C-reactive protein (CRP) was measured in the 3rd-trimester. Parent-reported Child Behavior Checklist (CBCL) was used to assess child internalizing and externalizing behaviors at 3-years-of-age. We used analysis of covariance (ANCOVA), multiple linear regression, and mediation analyses for data analysis. RESULTS Maternal obesity (F = 21.98, df 3836), EGWG (F = 6.53, df 2764), and their combination (F = 18.51, df 3764) were associated with the 3rd trimester CRP, but not child behavior in the whole sample. Maternal underweight was associated with withdrawal problems in all children (β = 0.56, 95%CI, 0.11,1.00) and aggressive behaviors in female children (β = 2.59, 95%CI, 0.28,4.91). Obesity had a significant association with externalizing behaviors in female children after controlling for maternal CRP (β = 3.72, 95%CI, 0.12,7.32). Both inadequate and EGWG were associated with somatic complaints in male children (β = 0.50, 95%CI, 0.05,0.95; β = 0.36, 95%CI, 0.01,0.71, respectively). Combined obesity/EGWG was associated with externalizing (β = 6.12, 95%CI, 0.53,11.70) and aggressive (β = 4.23, 95%CI, 0.90,7.56) behaviors in female children. We found no significant effects through CRP. CONCLUSIONS Maternal pre-pregnancy BMI and GWG showed sex-specific associations with child behavioral problems. Prenatal CRP, although increased in obesity and EGWG, did not mediate these associations.
Collapse
Affiliation(s)
- Elnaz Vaghef-Mehrabani
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Megan Jarman
- School of Psychology, College of Health and Life Sciences, Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | - Jenna L Evanchuk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | - Deborah Dewey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Psychology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
39
|
Rasmussen JM, Wang Y, Graham AM, Fair DA, Posner J, O'Connor TG, Simhan HN, Yen E, Madan N, Entringer S, Wadhwa PD, Buss C, program collaborators for Environmental influences on Child Health Outcomes. Segmenting hypothalamic subunits in human newborn magnetic resonance imaging data. Hum Brain Mapp 2024; 45:e26582. [PMID: 38339904 PMCID: PMC10826633 DOI: 10.1002/hbm.26582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 02/12/2024] Open
Abstract
Preclinical evidence suggests that inter-individual variation in the structure of the hypothalamus at birth is associated with variation in the intrauterine environment, with downstream implications for future disease susceptibility. However, scientific advancement in humans is limited by a lack of validated methods for the automatic segmentation of the newborn hypothalamus. N = 215 healthy full-term infants with paired T1-/T2-weighted MR images across four sites were considered for primary analyses (mean postmenstrual age = 44.3 ± 3.5 weeks, nmale /nfemale = 110/106). The outputs of FreeSurfer's hypothalamic subunit segmentation tools designed for adults (segFS) were compared against those of a novel registration-based pipeline developed here (segATLAS) and against manually edited segmentations (segMAN) as reference. Comparisons were made using Dice Similarity Coefficients (DSCs) and through expected associations with postmenstrual age at scan. In addition, we aimed to demonstrate the validity of the segATLAS pipeline by testing for the stability of inter-individual variation in hypothalamic volume across the first year of life (n = 41 longitudinal datasets available). SegFS and segATLAS segmentations demonstrated a wide spread in agreement (mean DSC = 0.65 ± 0.14 SD; range = {0.03-0.80}). SegATLAS volumes were more highly correlated with postmenstrual age at scan than segFS volumes (n = 215 infants; RsegATLAS 2 = 65% vs. RsegFS 2 = 40%), and segATLAS volumes demonstrated a higher degree of agreement with segMAN reference segmentations at the whole hypothalamus (segATLAS DSC = 0.89 ± 0.06 SD; segFS DSC = 0.68 ± 0.14 SD) and subunit levels (segATLAS DSC = 0.80 ± 0.16 SD; segFS DSC = 0.40 ± 0.26 SD). In addition, segATLAS (but not segFS) volumes demonstrated stability from near birth to ~1 years age (n = 41; R2 = 25%; p < 10-3 ). These findings highlight segATLAS as a valid and publicly available (https://github.com/jerodras/neonate_hypothalamus_seg) pipeline for the segmentation of hypothalamic subunits using human newborn MRI up to 3 months of age collected at resolutions on the order of 1 mm isotropic. Because the hypothalamus is traditionally understudied due to a lack of high-quality segmentation tools during the early life period, and because the hypothalamus is of high biological relevance to human growth and development, this tool may stimulate developmental and clinical research by providing new insight into the unique role of the hypothalamus and its subunits in shaping trajectories of early life health and disease.
Collapse
Affiliation(s)
- Jerod M. Rasmussen
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Yun Wang
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Alice M. Graham
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Damien A. Fair
- Masonic Institute for the Developing BrainUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jonathan Posner
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Thomas G. O'Connor
- Departments of Psychiatry, Psychology, Neuroscience and Obstetrics and GynecologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Hyagriv N. Simhan
- Department of Obstetrics and GynecologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Elizabeth Yen
- Department of PediatricsTufts Medical CenterBostonMassachusettsUSA
| | - Neel Madan
- Department of RadiologyTufts Medical CenterBostonMassachusettsUSA
| | - Sonja Entringer
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Medical PsychologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Pathik D. Wadhwa
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Obstetrics and GynecologyUniversity of CaliforniaIrvineCaliforniaUSA
- Department of EpidemiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Claudia Buss
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Medical PsychologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | | |
Collapse
|
40
|
Mulc D, Smilović D, Krsnik Ž, Junaković-Munjas A, Kopić J, Kostović I, Šimić G, Vukšić M. Fetal development of the human amygdala. J Comp Neurol 2024; 532:e25580. [PMID: 38289194 DOI: 10.1002/cne.25580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/03/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024]
Abstract
The intricate development of the human amygdala involves a complex interplay of diverse processes, varying in speed and duration. In humans, transient cytoarchitectural structures deliquesce, leading to the formation of functionally distinct nuclei as a result of multiple interdependent developmental events. This study compares the amygdala's cytoarchitectural development in conjunction with specific antibody reactivity for neuronal, glial, neuropil, and radial glial fibers, synaptic, extracellular matrix, and myelin components in 39 fetal human brains. We recognized that the early fetal period, as a continuation of the embryonic period, is still dominated by relatively uniform histogenetic processes. The typical appearance of ovoid cell clusters in the lateral nucleus during midfetal period is most likely associated with the cell migration and axonal growth processes in the developing human brain. Notably, synaptic markers are firstly detected in the corticomedial group of nuclei, while immunoreactivity for the panaxonal neurofilament marker SMI 312 is found dorsally. The late fetal period is characterized by a protracted migration process evidenced by the presence of doublecortin and SOX-2 immunoreactivity ventrally, in the prospective paralaminar nucleus, reinforced by vimentin immunoreactivity in the last remaining radial glial fibers. Nearing the term period, SMI 99 immunoreactivity indicates that perinatal myelination becomes prominent primarily along major axonal pathways, laying the foundation for more pronounced functional maturation. This study comprehensively elucidates the rate and sequence of maturational events in the amygdala, highlighting the key role of prenatal development in its behavioral, autonomic, and endocrine regulation, with subsequent implications for both normal functioning and psychiatric disorders.
Collapse
Affiliation(s)
- Damir Mulc
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
- Psychiatric Hospital Vrapče, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dinko Smilović
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Alisa Junaković-Munjas
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Goran Šimić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Mario Vukšić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
41
|
Suleri A, White T, Blok E, Cecil CAM, Reiss I, Jaddoe VWV, Gigase FAJ, Hillegers MHJ, de Witte L, Bergink V, Rommel AS. The Association Between Prenatal Infection and Adolescent Behavior: Investigating Multiple Prenatal, Perinatal, and Childhood Second Hits. J Am Acad Child Adolesc Psychiatry 2023; 62:1340-1350. [PMID: 37400063 PMCID: PMC10981534 DOI: 10.1016/j.jaac.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Exposure to infections during pregnancy may be a potential risk factor for later psychopathology, but large-scale epidemiological studies investigating associations between prenatal infection and long-term offspring behavioral problems in the general population are scarce. In our study, we aimed to investigate the following: (1) the association between prenatal infection and adolescent behavior, (2) putative underlying pathways (mediation), and (3) "second hits" interacting with prenatal infection to increase the risk of adolescent behavior problems (moderation). METHOD Our study was embedded in a prospective Dutch pregnancy cohort (Generation R; n = 2,213 mother-child dyads). We constructed a comprehensive prenatal infection score comprising common infections for each trimester of pregnancy. At age 13 to 16 years, we assessed total, internalizing, and externalizing problems, and autistic traits using the Child Behavioral Checklist and the Social Responsiveness Scale, respectively. We investigated maternal lifestyle and nutrition, perinatal factors (placental health and delivery outcomes), and child health (lifestyle, traumatic events, infections) as mediators and moderators. RESULTS We observed associations of prenatal infection with adolescent total behavioral, internalizing, and externalizing problems. The association between prenatal infection and internalizing problems was moderated by higher levels of maternal psychopathology, alcohol and tobacco use, and a higher number of traumatic childhood events. We found no association between prenatal infection and autistic traits. Yet, children exposed to prenatal infections and maternal substance use, and/or traumatic childhood events, had a higher risk of autistic traits in adolescence. CONCLUSION Prenatal infection may be a risk factor for later psychiatric problems as well as a disease primer making individuals susceptible to other hits later in life. STUDY PREREGISTRATION INFORMATION Prenatal maternal infection and adverse neurodevelopment: a structural equation modelling approach to downstream environmental hits; https://osf.io/cp85a; cp85a. DIVERSITY & INCLUSION STATEMENT We worked to ensure race, ethnic, and/or other types of diversity in the recruitment of human participants. We worked to ensure that the study questionnaires were prepared in an inclusive way. We worked to ensure sex and gender balance in the recruitment of human participants.
Collapse
Affiliation(s)
- Anna Suleri
- Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Tonya White
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elisabet Blok
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Irwin Reiss
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - F A J Gigase
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Lot de Witte
- Erasmus University Medical Center, Rotterdam, the Netherlands; Icahn School of Medicine at Mount Sinai, New York
| | - Veerle Bergink
- Erasmus University Medical Center, Rotterdam, the Netherlands; Icahn School of Medicine at Mount Sinai, New York
| | | |
Collapse
|
42
|
Lean RE. Editorial: Maternal Inflammation During Pregnancy: A Modifiable Pathway Toward Improving Offspring Socioemotional Outcomes in Childhood and Adolescence. J Am Acad Child Adolesc Psychiatry 2023; 62:1310-1312. [PMID: 37433428 DOI: 10.1016/j.jaac.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
Childhood psychopathology is a well-established predictor of poor adult life-course outcomes including lower rates of educational attainment and reduced family income, with a total economic loss of $2.1 trillion in the United States.1 Given this high level of individual and societal burden, much effort has been devoted to identifying the modifiable risk factors that confer risk for psychiatric disorders during early childhood. Indeed, numerous aspects of early life adversity, such as socioeconomic disadvantage, stressful/traumatic life events, and disrupted parent-child relationships, demonstrate strong associations with socioemotional problems and psychiatric disorders into adolescence.2 However, the underlying biological mechanisms that also contribute to this risk trajectory remain less well understood. One proposed biological mechanism that is rapidly gaining momentum in the field of developmental psychopathology concerns excessive immune system activation and/or proinflammatory responses in the origins of health and disease.3 Of particular interest is the prenatal period, representing a window of vulnerability in which prenatal exposures prepare or program the fetus for the expected postnatal environment.3-5 More specifically, fetal programming posits that the effects of maternal adversity during pregnancy are, at least in part, transmitted to the fetus via multiple related pathways including chronic maternal inflammation and/or overactivation of the hypothalamic-pituitary-adrenal axis, resulting in aberrant maternal-fetal immune/glucocorticoid systems and downstream epigenetic alterations in the developing fetus. Together, these factors work to increase the susceptibility of offspring to adversity in the postnatal environment and, in turn, enhance risk for psychiatric disorders.3-6 However, much of the existing literature is based on preclinical animal models with comparatively fewer clinical studies.3 As such, there remains a paucity of large, prospectively designed clinical studies examining maternal proinflammatory conditions during pregnancy in relation to psychopathology in offspring. As part of the landmark National Institutes of Health-funded ECHO (Environmental influences on Child Health Outcomes) consortium, the study by Frazier et al.7 represents one of the largest investigations linking perinatal maternal proinflammatory conditions with co-occurring psychiatric symptoms in children and adolescents.
Collapse
Affiliation(s)
- Rachel E Lean
- Washington University School of Medicine, St. Louis.
| |
Collapse
|
43
|
Chang Y, Li W, Shen Y, Li S, Chen X. Association between interleukin-6 and preterm birth: a meta-analysis. Ann Med 2023; 55:2284384. [PMID: 38010798 PMCID: PMC10836263 DOI: 10.1080/07853890.2023.2284384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Interleukin (IL)-6 is a pro-inflammatory cytokine that plays an important role in preterm birth (PTB), Several meta-analyses investigated the association between IL-6 and PTB, but definitive conclusion has not yet been achieved. This updated meta-analysis aimed to ascertain the association between IL-6 and PTB by examining IL-6 levels in both normal birth and PTB groups. MATERIAL AND METHODS Prospective cohort studies were retrieved in PubMed, Embase, and the Cochrane library from their inception until 18 February 2020. The primary outcome was the association between IL-6 and PTB, and secondary outcomes were the association between IL-6 and spontaneous PTB. RESULTS Nine studies involving 1904 patients were included. Overall, IL-6 from different sample types (maternal blood, amniotic fluid and cervicovaginal fluid) was associated with PTB (standard mean difference [SMD]: 0.86, 95% confidence interval [CI]: 0.32 to 1.39, p < 0.001). Furthermore, the association was significant for IL-6 only in amniotic fluid (SMD: 1.87, 95%CI: 0.82 to 2.93, p < 0.001) and cervicovaginal fluid (SMD: 0.46, 95%CI: 0.09 to 0.84, p = 0.022), but not significant in maternal blood (SMD: -0.11, 95%CI: -0.57 to 0.34, p = 0.623). In addition, IL-6 was also associated with spontaneous PTB (SMD: 1.57, 95% CI: 0.18 to 2.95, p < 0.001). CONCLUSIONS Based on the available evidence, IL-6 in amniotic fluid and cervicovaginal fluid might be useful for predicting preterm birth.
Collapse
Affiliation(s)
- Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics Gynecology, Tianjin, China
- Nankai University, Tianjin, China
| | - Wen Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics Gynecology, Tianjin, China
- Nankai University, Tianjin, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics Gynecology, Tianjin, China
- Nankai University, Tianjin, China
| | - Shanshan Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics Gynecology, Tianjin, China
- Nankai University, Tianjin, China
| | - Xu Chen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics Gynecology, Tianjin, China
- Nankai University, Tianjin, China
| |
Collapse
|
44
|
Zhou J, Tong J, Ru X, Teng Y, Geng M, Yan S, Tao F, Huang K. Placental inflammatory cytokines mRNA expression and preschool children's cognitive performance: a birth cohort study in China. BMC Med 2023; 21:449. [PMID: 37981714 PMCID: PMC10658981 DOI: 10.1186/s12916-023-03173-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND The immunologic milieu at the maternal-fetal interface has profound effects on propelling the development of the fetal brain. However, accessible epidemiological studies concerning the association between placental inflammatory cytokines and the intellectual development of offspring in humans are limited. Therefore, we explored the possible link between mRNA expression of inflammatory cytokines in placenta and preschoolers' cognitive performance. METHODS Study subjects were obtained from the Ma'anshan birth cohort (MABC). Placental samples were collected after delivery, and real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to measure the mRNA expression levels of IL-8, IL-1β, IL-6, TNF-α, CRP, IFN-γ, IL-10, and IL-4. Children's intellectual development was assessed at preschool age by using the Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV). Multiple linear regression and restricted cubic spline models were used for statistical analysis. RESULTS A total of 1665 pairs of mother and child were included in the analysis. After adjusting for confounders and after correction for multiple comparisons, we observed that mRNA expression of IL-8 (β = - 0.53; 95% CI, - 0.92 to - 0.15), IL-6 (β = - 0.58; 95% CI, - 0.97 to - 0.19), TNF-α (β = - 0.37; 95% CI, - 0.71 to - 0.02), and IFN-γ (β = - 0.31; 95% CI, - 0.61 to - 0.03) in the placenta was negatively associated with preschoolers' full scale intelligence quotient (FSIQ). Both higher IL-8 and IL-6 were associated with lower children's low fluid reasoning index (FRI), and higher IFN-γ was associated with lower children's working memory index (WMI). After further adjusting for confounders and children's age at cognitive testing, the integrated index of six pro-inflammatory cytokines (index 2) was found to be significantly and negatively correlated with both the FSIQ and each sub-dimension (verbal comprehension index (VCI), visual spatial index (VSI), FRI, WMI, processing speed index (PSI)). Sex-stratified analyses showed that the association of IL-8, IFN-γ, and index 2 with children's cognitive development was mainly concentrated in boys. CONCLUSIONS Evidence of an association between low cognitive performance and high expression of placental inflammatory cytokines (IL-8, IL-6, TNF-α, and IFN-γ) was found, highlighting the potential importance of intrauterine placental immune status in dissecting offspring cognitive development.
Collapse
Affiliation(s)
- Jixing Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Xue Ru
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Yuzhu Teng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Menglong Geng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Shuangqin Yan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Maternal and Child Health Care Center of Ma'anshan, No 24 Jiashan Road, Ma'anshan 243011, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China.
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Anhui Province, China.
| |
Collapse
|
45
|
Ravi S, Catalina Camacho M, Fleming B, Scudder MR, Humphreys KL. Concurrent and prospective associations between infant frontoparietal and default mode network connectivity and negative affectivity. Biol Psychol 2023; 184:108717. [PMID: 37924936 PMCID: PMC10762930 DOI: 10.1016/j.biopsycho.2023.108717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Emotion dysregulation is linked to differences in frontoparietal (FPN) and default mode (DMN) brain network functioning. These differences may be identifiable early in development. Temperamental negative affectivity has been identified as a precursor to later emotion dysregulation, though the underlying neurodevelopmental mechanism is unknown. The present study explores concurrent and prospective associations between FPN and DMN connectivity in infants and measures of negative affectivity. 72 infants underwent 5.03-13.28 min of resting state fMRI during natural sleep (M±SD age=4.90 ± 0.84 weeks; 54% male; usable data=9.92 ± 2.15 min). FPN and DMN intra- and internetwork connectivity were computed using adult network assignments. Crying was obtained from both parent-report and day-long audio recordings. Temperamental negative affectivity was obtained from a parent-report questionnaire. In this preregistered study, based on analyses conducted with a subset of this data (N = 32), we hypothesized that greater functional connectivity within and between FPN and DMN would be associated with greater negative affectivity. In the full sample we did not find support for these hypotheses. Instead, greater DMN intranetwork connectivity at age one month was associated with lower concurrent parent-reported crying and temperamental negative affectivity at age six months (ßs>-0.35, ps<.025), but not crying at age six months. DMN intranetwork connectivity was also negatively associated with internalizing symptoms at age eighteen-months (ß=-0.58, p = .012). FPN intra- and internetwork connectivity was not associated with negative affectivity measures after accounting for covariates. This work furthers a neurodevelopmental model of emotion dysregulation by suggesting that infant functional connectivity at rest is associated with later emotional functioning.
Collapse
Affiliation(s)
- Sanjana Ravi
- Vanderbilt University, 230 Appleton Place, #552, Nashville, TN 37204, USA.
| | - M Catalina Camacho
- Washington University in St. Louis, One Brookings Drive, Campus Box 1125, St. Louis, MO 63130, USA
| | - Brooke Fleming
- Vanderbilt University, 230 Appleton Place, #552, Nashville, TN 37204, USA
| | - Michael R Scudder
- Vanderbilt University, 230 Appleton Place, #552, Nashville, TN 37204, USA
| | | |
Collapse
|
46
|
Suleri A, Cecil C, Rommel AS, Hillegers M, White T, de Witte LD, Muetzel RL, Bergink V. Long-term effects of prenatal infection on the human brain: a prospective multimodal neuroimaging study. Transl Psychiatry 2023; 13:306. [PMID: 37789021 PMCID: PMC10547711 DOI: 10.1038/s41398-023-02597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
There is convincing evidence from rodent studies suggesting that prenatal infections affect the offspring's brain, but evidence in humans is limited. Here, we assessed the occurrence of common infections during each trimester of pregnancy and examined associations with brain outcomes in adolescent offspring. Our study was embedded in the Generation R Study, a large-scale sociodemographically diverse prospective birth cohort. We included 1094 mother-child dyads and investigated brain morphology (structural MRI), white matter microstructure (DTI), and functional connectivity (functional MRI), as outcomes at the age of 14. We focused on both global and focal regions. To define prenatal infections, we composed a score based on the number and type of infections during each trimester of pregnancy. Models were adjusted for several confounders. We found that prenatal infection was negatively associated with cerebral white matter volume (B = -0.069, 95% CI -0.123 to -0.015, p = 0.011), and we found an association between higher prenatal infection scores and smaller volumes of several frontotemporal regions of the brain. After multiple testing correction, we only observed an association between prenatal infections and the caudal anterior cingulate volume (B = -0.104, 95% CI -0.164 to -0.045, p < 0.001). We did not observe effects of prenatal infection on other measures of adolescent brain morphology, white matter microstructure, or functional connectivity, which is reassuring. Our results show potential regions of interest in the brain for future studies; data on the effect of severe prenatal infections on the offspring's brain in humans are needed.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Charlotte Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Marr MC, Graham AM, Feczko E, Nolvi S, Thomas E, Sturgeon D, Schifsky E, Rasmussen JM, Gilmore JH, Styner M, Entringer S, Wadhwa PD, Korja R, Karlsson H, Karlsson L, Buss C, Fair DA. Maternal Perinatal Stress Trajectories and Negative Affect and Amygdala Development in Offspring. Am J Psychiatry 2023; 180:766-777. [PMID: 37670606 PMCID: PMC11646109 DOI: 10.1176/appi.ajp.21111176] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
OBJECTIVE Maternal psychological stress during pregnancy is a common risk factor for psychiatric disorders in offspring, but little is known about how heterogeneity of stress trajectories during pregnancy affect brain systems and behavioral phenotypes in infancy. This study was designed to address this gap in knowledge. METHODS Maternal anxiety, stress, and depression were assessed at multiple time points during pregnancy in two independent low-risk mother-infant cohorts (N=115 and N=2,156). Trajectories in maternal stress levels in relation to infant negative affect were examined in both cohorts. Neonatal amygdala resting-state functional connectivity MRI was examined in a subset of one cohort (N=60) to explore the potential relationship between maternal stress trajectories and brain systems in infants relevant to negative affect. RESULTS Four distinct trajectory clusters, characterized by changing patterns of stress over time, and two magnitude clusters, characterized by severity of stress, were identified in the original mother-infant cohort (N=115). The magnitude clusters were not associated with infant outcomes. The trajectory characterized by increasing stress in late pregnancy was associated with blunted development of infant negative affect. This relationship was replicated in the second, larger cohort (N=2,156). In addition, the trajectories that included increasing or peak maternal stress in late pregnancy were related to stronger neonatal amygdala functional connectivity to the anterior insula and the ventromedial prefrontal cortex in the exploratory analysis. CONCLUSIONS The trajectory of maternal stress appears to be important for offspring brain and behavioral development. Understanding heterogeneity in trajectories of maternal stress and their influence on infant brain and behavioral development is critical to developing targeted interventions.
Collapse
Affiliation(s)
- Mollie C Marr
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Alice M Graham
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Eric Feczko
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Saara Nolvi
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Elina Thomas
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Darrick Sturgeon
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Emma Schifsky
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Jerod M Rasmussen
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - John H Gilmore
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Martin Styner
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Sonja Entringer
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Pathik D Wadhwa
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Riikka Korja
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Hasse Karlsson
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Linnea Karlsson
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Claudia Buss
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Damien A Fair
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| |
Collapse
|
48
|
Grünebaum A, McLeod-Sordjan R, Pollet S, Moreno J, Bornstein E, Lewis D, Katz A, Warman A, Dudenhausen J, Chervenak F. Anger: an underappreciated destructive force in healthcare. J Perinat Med 2023; 51:850-860. [PMID: 37183729 DOI: 10.1515/jpm-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023]
Abstract
Anger is an emotional state that occurs when unexpected things happen to or around oneself and is "an emotional state that varies in intensity from mild irritation to intense fury and rage." It is defined as "a strong feeling of displeasure and usually of antagonism," an emotion characterized by tension and hostility arising from frustration, real or imagined injury by another, or perceived injustice. It can manifest itself in behaviors designed to remove the object of the anger (e.g., determined action) or behaviors designed merely to express the emotion. For the Roman philosopher Seneca anger is not an uncontrollable, impulsive, or instinctive reaction. It is, rather, the cognitive assent that such initial reactions to the offending action or words are in fact unjustified. It is, rather, the cognitive assent that such initial reactions to the offending action or words are in fact unjustified. It seems that the year 2022 was a year when many Americans were plainly angry. "Why is everyone so angry?" the New York Times asked in the article "The Year We Lost It." We believe that Seneca is correct in that anger is unacceptable. Anger is a negative emotion that must be controlled, and Seneca provides us with the tools to avoid and destroy anger. Health care professionals will be more effective, content, and happier if they learn more about Seneca's writings about anger and implement his wisdom on anger from over 2000 years ago.
Collapse
Affiliation(s)
- Amos Grünebaum
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Renee McLeod-Sordjan
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Susan Pollet
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - John Moreno
- University of Pennsylvania, Philadelphia, PA, USA
| | - Eran Bornstein
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Dawnette Lewis
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Adi Katz
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Ashley Warman
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Joachim Dudenhausen
- Humboldt-Universitaet zu Berlin/Charite, Campus Rudolf-Virchow-Klinikum, Berlin, DE, Germany
| | - Frank Chervenak
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| |
Collapse
|
49
|
Tan Y, Taibl KR, Dunlop AL, Barr DB, Panuwet P, Yakimavets V, Kannan K, Corwin EJ, Ryan PB, Eatman JA, Liang D, Eick SM. Association between a Mixture of Per- and Polyfluoroalkyl Substances (PFAS) and Inflammatory Biomarkers in the Atlanta African American Maternal-Child Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13419-13428. [PMID: 37649345 PMCID: PMC10900195 DOI: 10.1021/acs.est.3c04688] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been identified as environmental contributors to adverse birth outcomes. One potential mechanistic pathway could be through PFAS-related inflammation and cytokine production. Here, we examined associations between a PFAS mixture and inflammatory biomarkers during early and late pregnancy from participants enrolled in the Atlanta African American Maternal-Child Cohort (N = 425). Serum concentrations of multiple PFAS were detected in >90% samples at 8-14 weeks gestation. Serum concentrations of interferon-γ (IFN-γ), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) were measured at up to two time points (8-14 weeks and 24-30 weeks gestation). The effect of the PFAS mixture on each inflammatory biomarker was examined using quantile g-computation, Bayesian kernel machine regression (BKMR), Bayesian Weighted Sums (BWS), and weighted quantile sum (WQS) regression. Across all models, the PFAS mixture was associated with increased IFN-γ, IL-10, and TNF-α at both time points, with the strongest effects being observed at 24-30 weeks. Using quantile g-computation, increasing concentrations of a PFAS mixture were associated with a 29% (95% confidence interval = 18.0%, 40.7%) increase in TNF-α at 24-30 weeks. Similarly, using BWS, the PFAS mixture was associated with increased TNF-α at 24-30 weeks (summed effect = 0.29, 95% highest posterior density = 0.17, 0.41). The PFAS mixture was also positively associated with TNF-α at 24-30 weeks using BKMR [75th vs 50th percentile: 17.1% (95% credible interval = 7.7%, 27.4%)]. Meanwhile, PFOS was consistently the main drivers of overall mixture effect across four methods. Our findings indicated an increase in prenatal PFAS exposure is associated with an increase in multiple pro-inflammatory cytokines, potentially contributing to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Kaitlin R. Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, 10016, NY, USA
| | | | - P. Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Jasmin A. Eatman
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
50
|
Park H, Park NY, Koh A. Scarring the early-life microbiome: its potential life-long effects on human health and diseases. BMB Rep 2023; 56:469-481. [PMID: 37605613 PMCID: PMC10547969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
The gut microbiome is widely recognized as a dynamic organ with a profound influence on human physiology and pathology. Extensive epidemiological and longitudinal cohort studies have provided compelling evidence that disruptions in the early-life microbiome can have long-lasting health implications. Various factors before, during, and after birth contribute to shaping the composition and function of the neonatal and infant microbiome. While these alterations can be partially restored over time, metabolic phenotypes may persist, necessitating research to identify the critical period for early intervention to achieve phenotypic recovery beyond microbiome composition. In this review, we provide current understanding of changes in the gut microbiota throughout life and the various factors affecting these changes. Specifically, we highlight the profound impact of early-life gut microbiota disruption on the development of diseases later in life and discuss perspectives on efforts to recover from such disruptions. [BMB Reports 2023; 56(9): 469-481].
Collapse
Affiliation(s)
- Hyunji Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Na-Young Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
| |
Collapse
|