1
|
Hensel RC, Di Vizio B, Materòn EM, Shimizu FM, Angelim MKSC, de Souza GF, Módena JLP, Moraes-Vieira PMM, de Azevedo RB, Litti L, Agnoli S, Casalini S, Oliveira ON. Enhanced performance of impedimetric immunosensors to detect SARS-CoV-2 with bare gold nanoparticles and graphene acetic acid. Talanta 2025; 281:126903. [PMID: 39326119 DOI: 10.1016/j.talanta.2024.126903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Immunosensors based on electrical impedance spectroscopy allow for label-free, real-time detection of biologically relevant molecules and pathogens, without requiring electro-active materials. Here, we investigate the influence of bare gold nanoparticles (AuNPs), synthesized via laser ablation in solution, on the performance of an impedimetric immunosensor for detecting severe acute respiratory syndrome coronavirus (SARS-CoV-2). Graphene acetic acid (GAA) was used in the active layer for immobilizing anti-SARS-CoV-2 antibodies, owing to its high density of carboxylic groups. Immunosensors incorporating AuNPs exhibited superior performance compared to those relying solely on GAA, achieving a limit of detection (LoD) of 3 x 10-20 g/mL to detect the Spike Receptor Binding Domain (RBD) protein of SARS-CoV-2 and of 2 PFU/mL for inactivated virus. Moreover, these immunosensors presented high selectivity against the H1N1 influenza virus. We anticipate that this platform will be versatile and applicable in the early diagnosis of various diseases and viral infections, thereby facilitating Point-of-Care testing.
Collapse
Affiliation(s)
- Rafael C Hensel
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil.
| | - Biagio Di Vizio
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Elsa M Materòn
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil; Sao Carlos Institute of Chemistry, University of Sao Paulo, São Carlos, Brazil
| | - Flávio M Shimizu
- Institute of Physics Gleb Wataghin, University of Campinas, Campinas, Brazil
| | - Monara Kaelle S C Angelim
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriela F de Souza
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology - University of Campinas, Campinas, Brazil
| | - José L P Módena
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology - University of Campinas, Campinas, Brazil
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Lucio Litti
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Stefano Casalini
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil.
| |
Collapse
|
2
|
Zhang Y, Zheng XT, Zhang X, Pan J, Thean AVY. Hybrid Integration of Wearable Devices for Physiological Monitoring. Chem Rev 2024; 124:10386-10434. [PMID: 39189683 DOI: 10.1021/acs.chemrev.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
3
|
Mielewczyk L, Galle L, Niese N, Grothe J, Kaskel S. Precursor-Derived Sensing Interdigitated Electrode Microstructures Based on Platinum and Nano Porous Carbon. ChemistryOpen 2024:e202400179. [PMID: 39158463 DOI: 10.1002/open.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
Interdigital electrodes were prepared using nanoimprint lithography and piezoelectric inkjet printing. These processes are simpler and more cost-effective than the industrially used electron beam lithography because of their purely mechanical process step. For the investigation of material dependence, platinum as well as carbon electrodes were fabricated. Afterwards electrodes with various line widths and spacings were tested for the application as a chemiresistive sensor for ferrocenyl-methanol and the influence of the gap-width and conductor cross-section on the sensitivity was investigated. The general suitability of the systems for the production of such structures could be confirmed. Structures with a limit of detection (LOD) down to 1.2 μM and 35.9 μM could be produced for carbon and platinum, respectively, as well as a response time of 3.6 s was achieved.
Collapse
Affiliation(s)
- Lukas Mielewczyk
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069, Dresden
| | - Lydia Galle
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069, Dresden
| | - Nick Niese
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069, Dresden
| | - Julia Grothe
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069, Dresden
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069, Dresden
| |
Collapse
|
4
|
Tekin YS, Kul SM, Sagdic O, Rodthongkum N, Geiss B, Ozer T. Optical biosensors for diagnosis of COVID-19: nanomaterial-enabled particle strategies for post pandemic era. Mikrochim Acta 2024; 191:320. [PMID: 38727849 PMCID: PMC11087243 DOI: 10.1007/s00604-024-06373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
The COVID-19 pandemic underlines the need for effective strategies for controlling virus spread and ensuring sensitive detection of SARS-CoV-2. This review presents the potential of nanomaterial-enabled optical biosensors for rapid and low-cost detection of SARS-CoV-2 biomarkers, demonstrating a comprehensive analysis including colorimetric, fluorescence, surface-enhanced Raman scattering, and surface plasmon resonance detection methods. Nanomaterials including metal-based nanomaterials, metal-organic frame-based nanoparticles, nanorods, nanoporous materials, nanoshell materials, and magnetic nanoparticles employed in the production of optical biosensors are presented in detail. This review also discusses the detection principles, fabrication methods, nanomaterial synthesis, and their applications for the detection of SARS-CoV-2 in four categories: antibody-based, antigen-based, nucleic acid-based, and aptamer-based biosensors. This critical review includes reports published in the literature between the years 2021 and 2024. In addition, the review offers critical insights into optical nanobiosensors for the diagnosis of COVID-19. The integration of artificial intelligence and machine learning technologies with optical nanomaterial-enabled biosensors is proposed to improve the efficiency of optical diagnostic systems for future pandemic scenarios.
Collapse
Affiliation(s)
- Yusuf Samil Tekin
- Department of Biomedical Engineering, Graduate Education Institute, Malatya Turgut Ozal University, 44210, Battalgazi, Malatya, Turkey
| | - Seyda Mihriban Kul
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Bangkok, 10330, Patumwan, Thailand
| | - Brian Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1019, USA.
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220, Istanbul, Turkey.
| |
Collapse
|
5
|
Jaradat H, Hryniewicz BM, Pašti IA, Valério TL, Al-Hamry A, Marchesi LF, Vidotti M, Kanoun O. Detection of H. pylori outer membrane protein (HopQ) biomarker using electrochemical impedimetric immunosensor with polypyrrole nanotubes and carbon nanotubes nanocomposite on screen-printed carbon electrode. Biosens Bioelectron 2024; 249:115937. [PMID: 38211465 DOI: 10.1016/j.bios.2023.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Helicobacter pylori (H. pylori) is classified as a class I carcinogen that colonizes the human gastrointestinal (GI) tract. The detection at low concentrations is crucial in combatting H. pylori. HopQ protein is located on H. pylori's outer membrane and is expressed at an early stage of contamination, which signifies it as an ideal biomarker. In this study, we presented the development of an electrochemical impedimetric immunosensor for the ultra-sensitive detection of HopQ at low concentrations. The sensor employed polypyrrole nanotubes (PPy-NTs) and carboxylated multi-walled carbon nanotubes (MWCNT-COOH) nanocomposite. PPy-NTs were chosen for their excellent conductivity, biocompatibility, and redox capabilities, simplifying sample preparation by eliminating the need to add redox probes upon measurement. MWCNT-COOH provided covalent binding sites for HopQ antibodies (HopQ-Ab) on the biosensor surface. Characterization of the biosensor was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and electrochemical impedance spectroscopy (EIS), complemented by numerical semiempirical quantum calculations. The results demonstrated a dynamic linear range of 5 pg/mL to 1.063 ng/mL and an excellent selectivity, with the possibility of excluding interference using EIS data, specifically charge transfer resistance and double-layer capacitance as multivariants for the calibration curve. Using two EIS components, the limit of detection is calculated to be 2.06 pg/mL. The biosensor was tested with a spiked drinking water sample and showed a signal recovery of 105.5% when detecting 300 pg/mL of HopQ. This novel H. pylori biosensor offers reliable, simple, portable, and rapid screening of the bacteria.
Collapse
Affiliation(s)
- Hussamaldeen Jaradat
- Professorship of Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126, Chemnitz, Germany.
| | - Bruna M Hryniewicz
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-980, PR, Brazil.
| | - Igor A Pašti
- University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia.
| | - Tatiana L Valério
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-980, PR, Brazil.
| | - Ammar Al-Hamry
- Professorship of Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126, Chemnitz, Germany.
| | - Luís F Marchesi
- Grupo de Estudos em Espectroscopia de Impedância Eletroquímica (GEIS), Universidade Tecnológica Federal Do Paraná, Rua Dr. Washington Subtil Chueire, 330 - Jd. Carvalho, CEP 84017-220, Ponta Grossa, PR, Brazil.
| | - Marcio Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-980, PR, Brazil.
| | - Olfa Kanoun
- Professorship of Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126, Chemnitz, Germany.
| |
Collapse
|
6
|
Panicker LR, Kummari S, Keerthanaa MR, Rao Bommi J, Koteshwara Reddy K, Yugender Goud K. Trends and challenges in electroanalytical biosensing methodologies for infectious viral diseases. Bioelectrochemistry 2024; 156:108594. [PMID: 37984310 DOI: 10.1016/j.bioelechem.2023.108594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Viral pandemic diseases have disruptive global consequences leading to millions of deaths and a severe impact on the global economy. Inadequate preventative protocols have led to an overwhelming demand for intensive care leading to uncontrollable burdens and even breakdown of healthcare sectors across many countries. The rapid detection of viral disease helps in the understanding of the relevant intricacies, helping to tackle infection with improved guidelines. Portable biosensor devices offer promising solutions by facilitating on-site detection of viral pathogens. This review summarizes the latest innovative strategies reported using electroanalytical methods for the screening of viral antigens. The structural components of viruses and their categories are presented followed by the various recognition elements and transduction techniques involved in biosensors. Core sections focus on biosensors reported for viral genomic detection(DNA and RNA) and antigenic capsid protein. Strategies for addressing the challenges of electroanalytical biosensing of viral components are also presented. The advantages, and disadvantages of biorecognition elements and nanozymes for the detection of viral disease are highlighted. Such technical insights will help researchers working in chemistry, and biochemistry as well as clinicians working in medical diagnostics.
Collapse
Affiliation(s)
- Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | - Shekher Kummari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | - M R Keerthanaa
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | | | - K Koteshwara Reddy
- School of Material Science and Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - K Yugender Goud
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
| |
Collapse
|
7
|
Bachour Junior B, Batistuti Sawazaki MR, Mulato M. Electrochemical capacitive dengue aptasensor using NS1 in undiluted human serum. Mikrochim Acta 2024; 191:72. [PMID: 38170245 DOI: 10.1007/s00604-023-06141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Non-structural 1 (NS1) is a protein biomarker that can be found in blood in the early stages of dengue and related infections (Zika and Chikungunya). This study aims to develop a biosensor to selectively quantify NS1 using DNA aptamer co-immobilized on gold electrodes with 6-(ferrocenyl)hexanethiol (FCH) using electrochemical capacitive spectroscopy. This technique uses a redox probe (FCH) immobilized on the self-assembled monolayer to convert impedance into capacitance information. The developed platform was blocked with bovine serum albumin before NS1 exposure and the ratio between aptamers and FCH was optimized. The aptasensor was tested using commercial NS1 serotype 4 in phosphate-buffered saline and commercial undiluted human serum. Using the optimum applied potential provides high sensitivity (3 and 4 nF per decade) and low limit of detection (30.9 and 41.8 fg/mL) with a large linear range (10 pg to 1 µg/mL and 10 pg to 100 ng/mL, respectively). Both results exhibit a residual standard deviation value < 1%. The results suggested that this aptasensor was capable of detecting NS1 in the clinical range and can be applied to any other specific aptamer with FCH, opening the path for label-free miniaturized point-of-care devices with high sensitivity and specificity.
Collapse
Affiliation(s)
- Bassam Bachour Junior
- Department of Physics, Faculty of Philosophy, Science and Letter at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Marina Ribeiro Batistuti Sawazaki
- Department of Physics, Faculty of Philosophy, Science and Letter at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
| | - Marcelo Mulato
- Department of Physics, Faculty of Philosophy, Science and Letter at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| |
Collapse
|
8
|
K Sekar P, M Liang X, Jin Y, Zhou X, Hu M, Wu Y, Gao D. Comprehensive multiparameter evaluation of platelet function using a highly sensitive membrane capacitance sensor. Biosens Bioelectron 2023; 228:115192. [PMID: 36924685 DOI: 10.1016/j.bios.2023.115192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
An accurate and comprehensive assessment of platelet function is essential for managing patients who receive antiplatelet therapies or require platelet transfusion either for treating active bleeding or for prophylaxis. Platelets contribute to clotting by undergoing a series of highly regulated functional responses including adhesion, spreading, granular secretion, aggregation, and cytoskeletal contraction. However, current platelet function assays evaluate only partial aspects of this intricate process and often under non-physiological testing conditions. Herein, we describe the development of a new approach to measure multiple key platelet function-related parameters, in a more physiologically relevant ex vivo semi-rigid microenvironment using a membrane capacitance sensor (MCS). MCS response to clotting provided three sensing parameters with sensitivities towards platelet counts, stimulation strengths, and activation pathways. Live confocal fluorescent imaging of stimulated platelets on MCS suggests that the presented system can readily and accurately convert the dynamics of cytoskeletal reorganization into analyzable electrical signals. Together, this new completely electrical sensing platform can be a promising diagnostic venue to recognize the impairment of primary hemostatic functions, evaluate the efficacy of therapeutic interventions, and gain further insights into the mechanisms of platelets in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Praveen K Sekar
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Xin M Liang
- Wellman Center for Photomedicine, Division of Hematology and Oncology, Division of Endocrinology, Massachusetts General Hospital, VA Boston Healthcare System, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye Jin
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Xiaoming Zhou
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Yanyun Wu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
9
|
Pedersen T, Fojan P, Pedersen AKN, Magnusson NE, Gurevich L. Amperometric Biosensor for Quantitative Measurement Using Sandwich Immunoassays. BIOSENSORS 2023; 13:bios13050519. [PMID: 37232880 DOI: 10.3390/bios13050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
State-of-the-art clinical detection methods typically involve standard immunoassay methods, requiring specialized equipment and trained personnel. This impedes their use in the Point-of-Care (PoC) environment, where ease of operation, portability, and cost efficiency are prioritized. Small, robust electrochemical biosensors provide a means with which to analyze biomarkers in biological fluids in PoC environments. Optimized sensing surfaces, immobilization strategies, and efficient reporter systems are key to improving biosensor detection systems. The signal transduction and general performance of electrochemical sensors are determined by surface properties that link the sensing element to the biological sample. We analyzed the surface characteristics of screen-printed and thin-film electrodes using scanning electron microscopy and atomic force microscopy. An enzyme-linked immunosorbent assay (ELISA) was adapted for use in an electrochemical sensor. The robustness and reproducibility of the developed electrochemical immunosensor were investigated by detecting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in urine. The sensor showed a detection limit of 1 ng/mL, a linear range of 3.5-80 ng/mL, and a CV% of 8%. The results demonstrate that the developed platform technology is suitable for immunoassay-based sensors on either screen-printed or thin-film gold electrodes.
Collapse
Affiliation(s)
- Thor Pedersen
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220 Aalborg, Denmark
- Biostrip APS, Lindevangsvej 10, 8240 Risskov, Denmark
| | - Peter Fojan
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220 Aalborg, Denmark
| | - Anne Kathrine Nissen Pedersen
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark
| | - Nils E Magnusson
- Biostrip APS, Lindevangsvej 10, 8240 Risskov, Denmark
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark
| | - Leonid Gurevich
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220 Aalborg, Denmark
| |
Collapse
|
10
|
Patel R, Vinchurkar M, Mohin Shaikh A, Patkar R, Adami A, Giacomozzi F, Ramesh R, Pramanick B, Lorenzelli L, Shojaei Baghini M. Part I: Non-faradaic electrochemical impedance-based DNA biosensor for detecting phytopathogen - Ralstonia solanacearum. Bioelectrochemistry 2023; 150:108370. [PMID: 36630871 DOI: 10.1016/j.bioelechem.2023.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Herein, we report for the first time the development of a label-free, non-faradaic, and highly sensitive DNA-based impedimetric sensor using micro-sized gold interdigitated electrodes (IDE) to detect a soil-borne agricultural pathogen Ralstonia solanacearum. A universal 30 oligomer single-stranded DNA (ssDNA) probe lpxC4 having specificity towards R. solanacearum is successfully immobilized on the surface of IDE along with mercaptohexanol. The electrochemical stability of the developed sensor surface is determined using open circuit potential measurements. The DNA probe immobilization protocol is validated using the changes configured on the surface of IDE by contact angle and ATR-FTIR analysis. The DNA target hybridization is detected using non-faradaic electrochemical impedance spectroscopy measurement with an ultra-low sample volume of 10 µL. The non-faradaic approach is verified by studying redox behavior using cyclic voltammetry. We investigate the hybridization of the surface-immobilized label-free probe with the complementary DNA targets obtained from infected eggplant saplings and cross-reactive studies with mismatched DNA strands. Our impedimetric sensor can detect target concentrations as low as 0.1 ng/µL. This standardization and detection of DNA hybridization serves as part I of the work and paves the way for further study in the detection of pathogenic field samples.
Collapse
Affiliation(s)
- Rhea Patel
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Madhuri Vinchurkar
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Aatha Mohin Shaikh
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rajul Patkar
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Andrea Adami
- Center for Sensors & Devices, Fondazione Bruno Kessler (FBK), Trento, Italy
| | - Flavio Giacomozzi
- Center for Sensors & Devices, Fondazione Bruno Kessler (FBK), Trento, Italy
| | - Raman Ramesh
- Plant Pathology, ICAR - Central Coastal Agricultural Research Institute, Old Goa, Goa 403402, India
| | - Bidhan Pramanick
- School of Electrical Sciences and Centre of Excellence in Particulates Colloids and Interfaces, Indian Institute of Technology Goa, Goa 403401, India
| | - Leandro Lorenzelli
- Center for Sensors & Devices, Fondazione Bruno Kessler (FBK), Trento, Italy
| | - Maryam Shojaei Baghini
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Sampaio I, Takeuti NNK, Gusson B, Machado TR, Zucolotto V. Capacitive immunosensor for COVID-19 diagnosis. MICROELECTRONIC ENGINEERING 2023; 267:111912. [PMID: 36406866 PMCID: PMC9643278 DOI: 10.1016/j.mee.2022.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 has spread worldwide and early detection has been the key to controlling its propagation and preventing severe cases. However, diagnostic devices must be developed using different strategies to avoid a shortage of supplies needed for tests' fabrication caused by their large demand in pandemic situations. Furthermore, some tropical and subtropical countries are also facing epidemics of Dengue and Zika, viruses with similar symptoms in early stages and cross-reactivity in serological tests. Herein, we reported a qualitative immunosensor based on capacitive detection of spike proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. The sensor device exhibited a good signal-to-noise ratio (SNR) at 1 kHz frequency, with an absolute value of capacitance variation significantly smaller for Dengue and Zika NS1 proteins (|ΔC| = 1.5 ± 1.0 nF and 1.8 ± 1.0 nF, respectively) than for the spike protein (|ΔC| = 7.0 ± 1.8 nF). Under the optimized conditions, the established biosensor is able to indicate that the sample contains target proteins when |ΔC| > 3.8 nF, as determined by the cut-off value (CO). This immunosensor was developed using interdigitated electrodes which require a measurement system with a simple electrical circuit that can be miniaturized to enable point-of-care detection, offering an alternative for COVID-19 diagnosis, especially in areas where there is also a co-incidence of Zika and Dengue.
Collapse
Affiliation(s)
- Isabella Sampaio
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo CP 369, 13560-970 São Carlos, SP, Brazil
| | - Nayla Naomi Kusimoto Takeuti
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo CP 369, 13560-970 São Carlos, SP, Brazil
| | - Beatriz Gusson
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo CP 369, 13560-970 São Carlos, SP, Brazil
| | - Thales Rafael Machado
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo CP 369, 13560-970 São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo CP 369, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
12
|
Robin P, Gerber-Lemaire S. Design and Preparation of Sensing Surfaces for Capacitive Biodetection. BIOSENSORS 2022; 13:17. [PMID: 36671852 PMCID: PMC9856139 DOI: 10.3390/bios13010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Despite their high sensitivity and their suitability for miniaturization, biosensors are still limited for clinical applications due to the lack of reproducibility and specificity of their detection performance. The design and preparation of sensing surfaces are suspected to be a cause of these limitations. Here, we first present an updated overview of the current state of use of capacitive biosensors in a medical context. Then, we summarize the encountered strategies for the fabrication of capacitive biosensing surfaces. Finally, we describe the characteristics which govern the performance of the sensing surfaces, along with recent developments that were suggested to overcome their main current limitations.
Collapse
|
13
|
Fakhr MH, Beshchasna N, Balakin S, Carrasco IL, Heitbrink A, Göhler F, Rösch N, Opitz J. Cleaning of LTCC, PEN, and PCB Au electrodes towards reliable electrochemical measurements. Sci Rep 2022; 12:20431. [PMID: 36443326 PMCID: PMC9705539 DOI: 10.1038/s41598-022-23395-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Surface cleaning of the working electrode has a key role in improved electrochemical and physicochemical properties of the biosensors. Herein, chemical oxidation in piranha, chemical cleaning in potassium hydroxide-hydrogen peroxide, combined (electro-) chemical alkaline treatment, and potential cycling in sulfuric acid were applied to gold finish electrode surfaces deposited onto three different substrates; low temperature co-fired ceramics (LTCC), polyethylene naphthalate (PEN), and polyimide (PI), using three different deposition technologies; screen printing, inkjet printing, and electroplating (printed circuit board technology, PCB) accordingly. The effects of the (electro-) chemical treatments on the gold content and electrochemical responses of LTCC, PEN, and PCB applicable for aptamer-based sensors are discussed. In order to assess the gold surface and to compare the efficiency of the respective cleaning procedures; cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were employed. LTCC sensors electrochemically cycled in sulfuric acid resulted in the most gold content on the electrode surface, the lowest peak potential difference, and the highest charge transfer ability. While, for PEN, the highest elemental gold and the lowest peak-to-peak separation were achieved by a combined (electro-) chemical alkaline treatment. Gold content and electrochemical characteristics on the PCB surface with extremely thin gold layer could be slightly optimized with the chemical cleaning in KOH + H2O2. The proposed cleaning procedures might be generally applied to various kinds of Au electrodes fabricated with the same conditions comparable with those are introduced in this study.
Collapse
Affiliation(s)
- Mahan Hosseinzadeh Fakhr
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.6810.f0000 0001 2294 5505Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Natalia Beshchasna
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany
| | - Sascha Balakin
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany
| | - Ivan Lopez Carrasco
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.4488.00000 0001 2111 7257Max Bergmann Center of Biomaterials (MBC), Technical University of Dresden, 01069 Dresden, Germany
| | - Alexander Heitbrink
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.4488.00000 0001 2111 7257Max Bergmann Center of Biomaterials (MBC), Technical University of Dresden, 01069 Dresden, Germany ,InnoME GmbH, 32339 Espelkamp, Germany
| | - Fabian Göhler
- grid.6810.f0000 0001 2294 5505Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Niels Rösch
- grid.6810.f0000 0001 2294 5505Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Joerg Opitz
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.4488.00000 0001 2111 7257Max Bergmann Center of Biomaterials (MBC), Technical University of Dresden, 01069 Dresden, Germany
| |
Collapse
|
14
|
Panahi Z, Ren T, Halpern JM. Nanostructured Cyclodextrin-Mediated Surface for Capacitive Determination of Cortisol in Multiple Biofluids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42374-42387. [PMID: 35918826 PMCID: PMC9504479 DOI: 10.1021/acsami.2c07701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The aim of this work is to develop a reusable polypropylene glycol (PPG):β-cyclodextrin (βCD) biosensor for cortisol detection. To achieve the most stable support for βCD, we developed two PPG surfaces. The first surface is based on a gold surface modified with SAM of 3-mercaptopropionic acid (3MPA), and the second surface is based on a glassy carbon surface grafted with 4-carboxyphenyl diazonium salt. We characterized both surfaces by EIS, XPS, and ATR-FTIR and evaluated the stability and reusability of each surface. We found the GC-carboxyphenyl-PPG:βCD is stable for at least 1 month. We have also demonstrated the reusability of the surface up to 10 times. In detecting cortisol, we used a nonfaradaic electrochemical impedance capacitive model to interpret the surface confirmation changes. We achieved sensitive detection of cortisol in PBS buffer, urine, and saliva with limit of detection of 2.13, 1.29, and 1.33 nM, respectively.
Collapse
Affiliation(s)
- Zahra Panahi
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Tianyu Ren
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Jeffrey Mark Halpern
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
15
|
Ghosh A, Gopinath SC, Firdous SM, Ramanathan S. Early detection of viral DNA in breast cancer using fingered aluminium interdigitated electrode modified by Streptavidin-biotin tetravalent complex. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Wasiewska LA, Diaz FG, Shao H, Burgess CM, Duffy G, O'Riordan A. Highly sensitive electrochemical sensor for the detection of Shiga toxin-producing E. coli (STEC) using interdigitated micro-electrodes selectively modified with a chitosan-gold nanocomposite. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Yap SHK, Pan J, Linh DV, Zhang X, Wang X, Teo WZ, Zamburg E, Tham CK, Yew WS, Poh CL, Thean AVY. Engineered Nucleotide Chemicapacitive Microsensor Array Augmented with Physics-Guided Machine Learning for High-Throughput Screening of Cannabidiol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107659. [PMID: 35521934 DOI: 10.1002/smll.202107659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The recent legalization of cannabidiol (CBD) to treat neurological conditions such as epilepsy has sparked rising interest across global pharmaceuticals and synthetic biology industries to engineer microbes for sustainable synthetic production of medicinal CBD. Since the process involves screening large amounts of samples, the main challenge is often associated with the conventional screening platform that is time consuming, and laborious with high operating costs. Here, a portable, high-throughput Aptamer-based BioSenSing System (ABS3 ) is introduced for label-free, low-cost, fully automated, and highly accurate CBD concentrations' classification in a complex biological environment. The ABS3 comprises an array of interdigitated microelectrode sensors, each functionalized with different engineered aptamers. To further empower the functionality of the ABS3 , unique electrochemical features from each sensor are synergized using physics-guided multidimensional analysis. The capabilities of this ABS3 are demonstrated by achieving excellent CBD concentrations' classification with a high prediction accuracy of 99.98% and a fast testing time of 22 µs per testing sample using the optimized random forest (RF) model. It is foreseen that this approach will be the key to the realistic transformation from fundamental research to system miniaturization for diagnostics of disease biomarkers and drug development in the field of chemical/bioanalytics.
Collapse
Affiliation(s)
- Stephanie Hui Kit Yap
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Dao Viet Linh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Xinghua Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Wei Zhe Teo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Chen-Khong Tham
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Wen Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
18
|
Georgas A, Lampas E, Houhoula DP, Skoufias A, Patsilinakos S, Tsafaridis I, Patrinos GP, Adamopoulos N, Ferraro A, Hristoforou E. ACE2-based capacitance sensor for rapid native SARS-CoV-2 detection in biological fluids and its correlation with real-time PCR. Biosens Bioelectron 2022; 202:114021. [PMID: 35092924 PMCID: PMC8776344 DOI: 10.1016/j.bios.2022.114021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
The spread of the SARS-CoV-2 and its increasing threat to human health worldwide have necessitated the development of new technological tools to combat the virus. Particular emphasis is given to the development of diagnostic methods that monitor the spread of the virus rapidly and effectively. In this study, we report the development and testing of an antibody-free biosensor, based on the immobilization of ACE2 protein on the surface of gold interdigitated electrode. When the sensor was used in laboratory conditions for targeting the virus' structural spike protein, it showed a limit of detection [LOD] of 750 pg/μL/mm2. Thereafter, the response of the sensor to swab and saliva samples from hospitalized patients was examined. The virus presence in the samples was confirmed by electrical effective capacitance measurements executed on the biosensor, and correlated with real-time PCR results. We verified that the biosensor can distinguish samples that are positive for the virus from those that are negative in a total of 7 positive and 16 negative samples. In addition, the biosensor can be used for semi-quantitative measurement, since its measurements are divided into 3 areas, the negative samples, the weakly positive and the positive samples. Reproducibility of the experiments was demonstrated with at least 3 replicates and stability was tested by keeping the sensor standby for 7 days at 4 °C before repeating the experiment. This work presents a biosensor that can be used as a fast-screening test at point of care detection of SARS-CoV-2 since it needs less than 2 min to provide results and is of simple operation.
Collapse
Affiliation(s)
- A Georgas
- National Technical University of Athens, Zografou Campus 9, Iroon Polytechniou str Zografou, 15780, Greece.
| | - E Lampas
- Konstantopoulio General Hospital, Agias Olgas 3-5, Nea Ionia, 142 33, Greece
| | - D P Houhoula
- University of West Attica, Agiou Spyridonos 28, Egaleo, 122 43, Greece
| | - A Skoufias
- National Technical University of Athens, Zografou Campus 9, Iroon Polytechniou str Zografou, 15780, Greece
| | - S Patsilinakos
- Konstantopoulio General Hospital, Agias Olgas 3-5, Nea Ionia, 142 33, Greece
| | - I Tsafaridis
- Katharsis Technologies Inc., 1200-1075, West Georgia Street, Vancouver, BC, Canada
| | - G P Patrinos
- University of Patras, University Campus, 26504, Rio, Greece
| | | | - A Ferraro
- National Technical University of Athens, Zografou Campus 9, Iroon Polytechniou str Zografou, 15780, Greece
| | - E Hristoforou
- National Technical University of Athens, Zografou Campus 9, Iroon Polytechniou str Zografou, 15780, Greece
| |
Collapse
|
19
|
Zhang L, Jiang H, Zhu Z, Liu J, Li B. Integrating CRISPR/Cas within isothermal amplification for point-of-Care Assay of nucleic acid. Talanta 2022; 243:123388. [DOI: 10.1016/j.talanta.2022.123388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
|
20
|
Zhang M, Li Z, Jia Y, Wang F, Tian J, Zhang C, Han T, Xing R, Ye W, Wang C. Observing Mesoscopic Nucleic Acid Capacitance Effect and Mismatch Impact via Graphene Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105890. [PMID: 35072345 DOI: 10.1002/smll.202105890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/05/2021] [Indexed: 06/14/2023]
Abstract
This work reports a molecular-scale capacitance effect of the double helical nucleic acid duplex structure for the first time. By quantitatively conducting large sample measurements of the electrostatic field effect using a type of high-accuracy graphene transistor biosensor, an unusual charge-transport behavior is observed in which the end-immobilized nucleic acid duplexes can store a part of ionization electrons like molecular capacitors, other than electric conductors. To elucidate this discovery, a cascaded capacitive network model is proposed as a novel equivalent circuit of nucleic acid duplexes, expanding the point-charge approximation model, by which the partial charge-transport observation is reasonably attributed to an electron-redistribution behavior within the capacitive network. Furthermore, it is experimentally confirmed that base-pair mismatches hinder the charge transport in double helical duplexes, and lead to directly identifiable alterations in electrostatic field effects. The bioelectronic principle of mismatch impact is also self-consistently explained by the newly proposed capacitive network model. The mesoscopic nucleic acid capacitance effect may enable a new kind of label-free nucleic acid analysis tool based on electronic transistor devices. The in situ and real-time nucleic acid detections for virus biomarkers, somatic mutations, and genome editing off-target may thus be predictable.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Zhibo Li
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Yuan Jia
- Industrialization Center of Micro & Nano ICs and Devices Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118, China
| | - Fuquan Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Jinpeng Tian
- Industrialization Center of Micro & Nano ICs and Devices Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118, China
| | - Cuiping Zhang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Tingting Han
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| | - Ruiqing Xing
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| | - Weixiang Ye
- Department of Physics, School of Science, Hainan University, Haikou, 570228, China
- Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province, School of Science, Hainan University, Haikou, 570228, China
| | - Cheng Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
21
|
Broza YY, Haick H. Biodiagnostics in an era of global pandemics-From biosensing materials to data management. VIEW 2022; 3:20200164. [PMID: 34766159 PMCID: PMC8441813 DOI: 10.1002/viw.20200164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
The novel corona virus SARS-CoV-2 (COVID-19) has exposed the world to challenges never before seen in fast diagnostics, monitoring, and prevention of the outbreak. As a result, different approaches for fast diagnostic and screening are made and yet to find the ideal way. The current mini-review provides and examines evidence-based innovative and rapid chemical sensing and related biodiagnostic solutions to deal with infectious disease and related pandemic emergencies, which could offer the best possible care for the general population and improve the approachability of the pandemic information, insights, and surrounding contexts. The review discusses how integration of sensing devices with big data analysis, artificial Intelligence or machine learning, and clinical decision support system, could improve the accuracy of the recorded patterns of the disease conditions within an ocean of information. At the end, the mini-review provides a prospective on the requirements to improve our coping of the pandemic-related biodiagnostics as well as future opportunities.
Collapse
Affiliation(s)
- Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
22
|
Ultra-Sensitive Immuno-Sensing Platform Based on Gold-Coated Interdigitated Electrodes for the Detection of Parathion. SURFACES 2022. [DOI: 10.3390/surfaces5010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Pesticides are unavoidable in agriculture to protect crops from pests and insects. Organophosphates (OPs) are a class of pesticides that are more harmful because of the irreversible inhibition reaction with acetylcholinesterase enzyme, thereby posing serious health hazards in human beings. In the present work, a sensitive and selective immuno-sensing platform is developed using gold inter-digitized electrodes (Au-IDEs) as substrates, integrated with a microfluidic platform having the microfluidic well capacity of 10 µL. Au-IDE having digit width of 10 µm and gap length of 5 µm was used in this study. The surface morphological analysis by field-effect scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) revealed the direct information regarding the modification of Au-IDEs with anti-parathion (Anti-PT) antibodies. In SEM analysis, it was seen that the Au-IDE surface was smooth in contrast to the Anti-PT modified surface, which is supported by the AFM studies showing the surface roughness of ~2.02 nm for Au-IDE surface and ~15.86 nm for Anti-PT modified surface. Further, Fourier transform infra-red (FTIR) spectroscopic analysis confirms the immobilization of Anti-PT by the bond vibrations upon the successive modification of Au-IDE with –OH groups, amine groups after modifying with APTES, and the amide bond formation after incubation in Anti-PT antibody. Electrochemical impedance spectroscopy (EIS) was carried out for the electrochemical characterization and for testing the sensing performances of the fabricated electrode. The developed immuno-sensor provided a linear range of detection from 0.5 pg/L–1 µg/L, with a limit of detection (LoD) of 0.66 ng/L and sensitivity of 4.1 MΩ/ngL−1/cm2. The sensor response was also examined with real samples (pomegranate juice) with good accuracy, exhibiting a shelf life of 25 days. The miniaturized sensing platform, along with its better sensing performance, has huge potential to be integrated into portable electronics, leading to suitable field applications of pesticide screening devices.
Collapse
|
23
|
Sensitive Electrochemical Detection of Phosphorylated-Tau Threonine 231 in Human Serum Using Interdigitated Wave-Shaped Electrode. Biomedicines 2021; 10:biomedicines10010010. [PMID: 35052691 PMCID: PMC8773253 DOI: 10.3390/biomedicines10010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
The development of an electrochemical biosensor for the detection of phosphorylated-tau threonine 231 (p-tau231), a biomarker of Alzheimer’s disease (AD), has yet to be achieved. Therefore, in this study, we developed a simple, small size, cheap, and sensitive electrochemical biosensor based on an interdigitated wave-shaped electrode via an activated self-assembled monolayer to preserve a specific anti–p-tau231 antibody (IWE/SAM/EDC-NHS/anti–p-tau231). Detection of p-tau231 in human serum (HS) using the biosensor was undertaken using electrochemical impedance spectroscopy (EIS). The change in charge-transfer resistance (Rct) in the EIS analysis of the biosensor indicated the detection of p-tau231 in HS within a wide linear range of detection (10−4–101 ng mL−1), and a low limit of detection (140 pg mL−1). This lower limit is less than the detection level of p-tau231 in cerebrospinal fluid (CSF) (700 pg mL−1) of AD patients and the level of CSF p-tau231 of patients with mild cognitive impairment (501 pg mL−1), demonstrating the possibility of using the biosensor in detection of p-tau231 at early stage AD. A high binding affinity and low dissociation constant (Kd) between anti–p-tau231 and p-tau231 in HS was demonstrated by using a biosensor and Kd was 7.6 pM, demonstrating the high specific detection of p-tau231 by the biosensor. The good selectivity of the biosensor for the detection of p-tau231 with differential analytes was also examined in this study.
Collapse
|
24
|
Chung S, Bode L, Hall DA. Point-of-care human milk testing for maternal secretor status. Anal Bioanal Chem 2021; 414:3187-3196. [PMID: 34741182 PMCID: PMC8956550 DOI: 10.1007/s00216-021-03697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
We present an electrochemical impedimetric-based biosensor for monitoring the variation in human milk oligosaccharide (HMO) composition. 2′-Fucosyllactose (2’FL) is an HMO associated with infant growth, cognitive development, and protection from infectious diarrhea, one of the major causes of infant death worldwide. Due to genetic variation, the milk of some women (non-secretors) contains no or very little 2′FL with potential implications for infant health and development. However, there is currently no technology to analyze the presence and concentration of HMOs in human milk at the point-of-care (POC). The lack of such technology represents a major impediment to advancing human milk research and improving maternal-infant health. Towards this unmet need, we report an impedimetric assay for HMOs with an α-1,2 linkage, the most abundant of which is 2′FL. The sensor uses a lectin for affinity, specifically Ulex europaeusagglutininI (UEA), with electrochemical readout. In spiked studies, the sensor exhibited a high degree of linearity (R2 = 0.991) over 0.5 to 3.0 μM with a 330-nM detection limit. The sensor performance was clinically validated using banked human milk samples and correctly identified all secretor vs. non-secretor samples. Furthermore, despite the short 35-min assay time and low sample volume (25 μL), the assay was highly correlated with HPLC measurements. This bedside human milk testing assay enables POC, “sample-to-answer” quantitative HMO measurement, and will be a valuable tool to assess milk composition.
Collapse
Affiliation(s)
- Saeromi Chung
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lars Bode
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA, 92093, USA
| | - Drew A Hall
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
25
|
Zhang YY, Guillon FX, Griveau S, Bedioui F, Lazerges M, Slim C. Evolution of nucleic acids biosensors detection limit III. Anal Bioanal Chem 2021; 414:943-968. [PMID: 34668044 DOI: 10.1007/s00216-021-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
This review is an update of two previous ones focusing on the limit of detection of electrochemical nucleic acid biosensors allowing direct detection of nucleic acid target (miRNA, mRNA, DNA) after hybridization event. A classification founded on the nature of the electrochemical transduction pathway is established. It provides an overall picture of the detection limit evolution of the various sensor architectures developed during the last three decades and a critical report of recent strategies.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - François-Xavier Guillon
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| | - Mathieu Lazerges
- Faculté de Pharmacie de Paris, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Cyrine Slim
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| |
Collapse
|
26
|
Monteil S, Casson AJ, Jones ST. Electronic and electrochemical viral detection for point-of-care use: A systematic review. PLoS One 2021; 16:e0258002. [PMID: 34591907 PMCID: PMC8483417 DOI: 10.1371/journal.pone.0258002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Detecting viruses, which have significant impact on health and the economy, is essential for controlling and combating viral infections. In recent years there has been a focus towards simpler and faster detection methods, specifically through the use of electronic-based detection at the point-of-care. Point-of-care sensors play a particularly important role in the detection of viruses. Tests can be performed in the field or in resource limited regions in a simple manner and short time frame, allowing for rapid treatment. Electronic based detection allows for speed and quantitative detection not otherwise possible at the point-of-care. Such approaches are largely based upon voltammetry, electrochemical impedance spectroscopy, field effect transistors, and similar electrical techniques. Here, we systematically review electronic and electrochemical point-of-care sensors for the detection of human viral pathogens. Using the reported limits of detection and assay times we compare approaches both by detection method and by the target analyte of interest. Compared to recent scoping and narrative reviews, this systematic review which follows established best practice for evidence synthesis adds substantial new evidence on 1) performance and 2) limitations, needed for sensor uptake in the clinical arena. 104 relevant studies were identified by conducting a search of current literature using 7 databases, only including original research articles detecting human viruses and reporting a limit of detection. Detection units were converted to nanomolars where possible in order to compare performance across devices. This approach allows us to identify field effect transistors as having the fastest median response time, and as being the most sensitive, some achieving single-molecule detection. In general, we found that antigens are the quickest targets to detect. We also observe however, that reports are highly variable in their chosen metrics of interest. We suggest that this lack of systematisation across studies may be a major bottleneck in sensor development and translation. Where appropriate, we use the findings of the systematic review to give recommendations for best reporting practice.
Collapse
Affiliation(s)
- Solen Monteil
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Henry Royce Institute, Manchester, United Kingdom
| | - Alexander J. Casson
- The Henry Royce Institute, Manchester, United Kingdom
- Department of Electrical and Electronic Engineering, School of Engineering, University of Manchester, Manchester, United Kingdom
| | - Samuel T. Jones
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Henry Royce Institute, Manchester, United Kingdom
| |
Collapse
|
27
|
Sharma PK, Kim ES, Mishra S, Ganbold E, Seong RS, Kaushik AK, Kim NY. Ultrasensitive and Reusable Graphene Oxide-Modified Double-Interdigitated Capacitive (DIDC) Sensing Chip for Detecting SARS-CoV-2. ACS Sens 2021; 6:3468-3476. [PMID: 34478270 DOI: 10.1021/acssensors.1c01437] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This research reveals the promising functionalization of graphene oxide (GrO)-glazed double-interdigitated capacitive (DIDC) biosensing platform to detect severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike (S1) proteins with enhanced selectivity and rapid response. The DIDC bioactive surface consisting of Pt/Ti featured SiO2 substrate was fabricated using GrO/EDC-NHS/anti-SARS-CoV-2 antibodies (Abs) which is having layer-by-layer interface self-assembly chemistry method. This electroactive immune-sensing platform exhibits reproducibility and sensitivity with reference to the S1 protein of SARS-CoV-2. The outcomes of analytical studies confirm that GrO provided a desired engineered surface for Abs immobilization and amplified capacitance to achieve a wide detection range (1.0 mg/mL to 1.0 fg/mL), low limit of detection (1 fg/mL) within 3 s of response time, good linearity (18.56 nF/g), and a high sensitivity of 1.0 fg/mL. Importantly, the unique biochip was selective against blood-borne antigens and standby for 10 days at 5 °C. Our developed DIDC-based SARS-CoV-2 biosensor is suitable for point-of-care (POC) diagnostic applications due to portability and scaling-up ability. In addition, this sensing platform can be modified for the early diagnosis of severe viral infections using real samples.
Collapse
Affiliation(s)
- Parshant Kumar Sharma
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| | - Eun-Seong Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| | - Sachin Mishra
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| | - Enkhzaya Ganbold
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| | - Ryun-Sang Seong
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Nam-Young Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
- NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea
| |
Collapse
|
28
|
Dudala S, Srikanth S, Dubey SK, Javed A, Goel S. Rapid Inkjet-Printed Miniaturized Interdigitated Electrodes for Electrochemical Sensing of Nitrite and Taste Stimuli. MICROMACHINES 2021; 12:mi12091037. [PMID: 34577681 PMCID: PMC8470320 DOI: 10.3390/mi12091037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/04/2022]
Abstract
This paper reports on single step and rapid fabrication of interdigitated electrodes (IDEs) using an inkjet printing-based approach. A commercial inkjet-printed circuit board (PCB) printer was used to fabricate the IDEs on a glass substrate. The inkjet printer was optimized for printing IDEs on a glass substrate using a carbon ink with a specified viscosity. Electrochemical impedance spectroscopy in the frequency range of 1 Hz to 1 MHz was employed for chemical sensing applications using an electrochemical workstation. The IDE sensors demonstrated good nitrite quantification abilities, detecting a low concentration of 1 ppm. Taste simulating chemicals were used to experimentally analyze the ability of the developed sensor to detect and quantify tastes as perceived by humans. The performance of the inkjet-printed IDE sensor was compared with that of the IDEs fabricated using maskless direct laser writing (DLW)-based photolithography. The DLW–photolithography-based fabrication approach produces IDE sensors with excellent geometric tolerances and better sensing performance. However, inkjet printing provides IDE sensors at a fraction of the cost and time. The inkjet printing-based IDE sensor, fabricated in under 2 min and costing less than USD 0.3, can be adapted as a suitable IDE sensor with rapid and scalable fabrication process capabilities.
Collapse
Affiliation(s)
- Sohan Dudala
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India; (S.D.); (S.S.); (S.K.D.); (A.J.)
| | - Sangam Srikanth
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India; (S.D.); (S.S.); (S.K.D.); (A.J.)
- Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Satish Kumar Dubey
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India; (S.D.); (S.S.); (S.K.D.); (A.J.)
- Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Arshad Javed
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India; (S.D.); (S.S.); (S.K.D.); (A.J.)
- Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India; (S.D.); (S.S.); (S.K.D.); (A.J.)
- Correspondence:
| |
Collapse
|
29
|
Parmin NA, Hashim U, Gopinath SCB, Nadzirah S, Salimi MN, Voon CH, Uda MNA, Uda MNA, Rozi SKM, Rejali Z, Afzan A, Azan MIA, Yaakub ARW, Hamzah AA, Dee CF. Potentials of MicroRNA in Early Detection of Ovarian Cancer by Analytical Electrical Biosensors. Crit Rev Anal Chem 2021; 52:1511-1523. [PMID: 34092138 DOI: 10.1080/10408347.2021.1890543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The importance of nanotechnology in medical applications especially with biomedical sensing devices is undoubted. Several medical diagnostics have been developed by taking the advantage of nanomaterials, especially with electrical biosensors. Biosensors have been predominantly used for the quantification of different clinical biomarkers toward detection, screening, and follow-up the treatment. At present, ovarian cancer is one of the severe complications that cannot be identified until it becomes most dangerous as the advanced stage. Based on the American Cancer Society, 20% of cases involved in the detection of ovarian cancer are diagnosed at an early stage and 80% diagnosed at the later stages. The patient just has a common digestive problem and stomach ache as early symptoms and people used to ignore these symptoms. Micro ribonucleic acid (miRNA) is classified as small non-coding RNAs, their expressions change due to the association of cancer development and progression. This article reviews and discusses on the currently available strategies for the early detection of ovarian cancers using miRNA as a biomarker associated with electrical biosensors. A unique miRNA-based biomarker detections are specially highlighted with biosensor platforms to diagnose ovarian cancer.
Collapse
Affiliation(s)
- N A Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Sh Nadzirah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - M N Salimi
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - C H Voon
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - M N A Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - M N Afnan Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Siti Khalijah Mahmad Rozi
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Zulida Rejali
- Department of Obstetrics and Gynaecology (O&G), Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
| | - Amilia Afzan
- Department of Obstetrics and Gynaecology (O&G), Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
| | - Mohammad Isa Ahmad Azan
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Ahmad Radi Wan Yaakub
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Chang Fu Dee
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
30
|
Tong J, Doumbia A, Turner ML, Casiraghi C. Real-time monitoring of crystallization from solution by using an interdigitated array electrode sensor. NANOSCALE HORIZONS 2021; 6:468-473. [PMID: 33908438 PMCID: PMC8168339 DOI: 10.1039/d0nh00685h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Monitoring crystallization events in real-time is challenging but crucial for understanding the molecular dynamics associated with nucleation and crystal growth, some of nature's most ubiquitous phenomena. Recent observations have suggested that the traditional nucleation model, which describes the nucleus having already the final crystal structure, may not be valid. It appears that the molecular assembly can range during nucleation from crystalline to partially ordered to totally amorphous phases, and can change its structure during the crystallization process. Therefore, it is of critical importance to develop methods that are able to provide real-time monitoring of the molecular interactions with high temporal resolution. Here, we demonstrate that a simple and scalable approach based on interdigitated electrode array sensors (IESs) is able to provide insights on the dynamics of the crystallization process with a temporal resolution of 15 ms.
Collapse
Affiliation(s)
- Jincheng Tong
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Amadou Doumbia
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Michael L Turner
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
31
|
Chen C, Gopinath SCB, Anbu P. Longitudinal Zeolite-Iron Oxide Nanocomposite Deposited Capacitance Biosensor for Interleukin-3 in Sepsis Detection. NANOSCALE RESEARCH LETTERS 2021; 16:68. [PMID: 33900481 PMCID: PMC8076396 DOI: 10.1186/s11671-021-03527-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Sepsis is an extreme condition involving a physical response to severe microbial infection and causes fatal and life-threatening issues. Sepsis generates during the chemicals release with the immune system into the bloodstream for fighting against an infection, which causes the inflammation and leads to the medical emergency. A complexed longitudinal zeolite and iron oxide nanocomposite was extracted from coal mine fly ash and utilized to improve the surface characteristics of the capacitance biosensor to identify sepsis attacks. Anti-interleukin-3 (anti-IL-3) antibody was attached to the zeolite- and iron oxide-complexed capacitance electrode surface through an amine linker to interact with the sepsis biomarker IL-3. The morphological and chemical components of the nanocomplex were investigated by FESEM, FETEM, and EDX analyses. At approximately 30 nm, the longitudinal zeolite and iron oxide nanocomposite aided in attaining the limit of IL-3 detection of 3 pg/mL on the linear curve, with a regression coefficient (R2) of 0.9673 [y = 1.638x - 1.1847]. A lower detection limit was achieved in the dose-dependent range (3-100 pg/mL) due to the higher amount of antibody immobilization on the sensing surface due to the nanomaterials and the improved surface current. Furthermore, control experiments with relevant biomolecules did not show capacitance changes, and spiked IL-3 in human serum increased capacitance, indicating the specific and selective detection of IL-3. This study identifies and quantifies IL-3 via potentially useful methods and helps in diagnosing sepsis attack.
Collapse
Affiliation(s)
- Chao Chen
- Department of Intensive Care Units, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450000, Henan, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia.
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Periasamy Anbu
- Department of Biological Engineering, College of Engineering, Inha University, Incheon, 402-751, Republic of Korea
| |
Collapse
|
32
|
Chen L, Xie W, Luo Y, Ding X, Fu B, Gopinath SCB, Xiong Y. Sensitive silica-alumina modified capacitive non-Faradaic glucose sensor for gestational diabetes. Biotechnol Appl Biochem 2021; 69:840-847. [PMID: 33786878 DOI: 10.1002/bab.2155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023]
Abstract
A highly sensitive silica-alumina (Si-Al)-modified capacitive non-Faradaic glucose biosensor was introduced to monitor gestational diabetes. Glucose oxidase (GOx) was attached to the Si-Al electrode surface as the probe through amine-modification followed by glutaraldehyde premixed GOx as aldehyde-amine chemistry. This Si-Al (∼50 nm) modified electrode surface has increased the current flow upon binding of GOx with glucose. Capacitance values were increased by increasing the glucose concentrations. A mean capacitance value was plotted and the detection limit was found as 0.03 mg/mL with the regression coefficient value, R² = 0.9782 [y = 0.8391x + 1.338] on the linear range between 0.03 and 1 mg/mL. Further, a biofouling experiment with fructose and galactose did not increase the capacitance, indicating the specific glucose detection. This Si-Al-modified capacitance sensor detects a lower level of glucose presence and helps in monitoring gestational diabetes.
Collapse
Affiliation(s)
- Lizhen Chen
- Department of Obstetrics and Gynecology, Jingdezhen First People's Hospital, Jingdezhen, Jiangxi Province, China
| | - Wenyang Xie
- Department of Gynecological Oncology, Jiujiang Maternal and Child Health Hospital, Jiujiang, Jiangxi Province, China
| | - Yao Luo
- Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xiaolan Ding
- Department of Gynecology of Traditional Chinese Medicine, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, Shandong, China
| | - Bing Fu
- Nanchang University, Nanchang City, Jiangxi Province, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Yuanhuan Xiong
- Department of Gynecology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi Province, China
| |
Collapse
|
33
|
Hwang C, Park N, Kim ES, Kim M, Kim SD, Park S, Kim NY, Kim JH. Ultra-fast and recyclable DNA biosensor for point-of-care detection of SARS-CoV-2 (COVID-19). Biosens Bioelectron 2021; 185:113177. [PMID: 33915435 PMCID: PMC7987504 DOI: 10.1016/j.bios.2021.113177] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/17/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022]
Abstract
Rapid diagnosis and case isolation are pivotal to controlling the current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, a label-free DNA capacitive biosensor for the detection of SARS-CoV-2 that demonstrates real-time, low-cost, and high-throughput screening of nucleic acid samples is presented. Our novel biosensor composed of the interdigitated platinum/titanium electrodes on the glass substrate can detect the hybridization of analyte DNA with probe DNA. The hybridization signals of specific DNA sequences were verified through exhaustive physicochemical analytical techniques such as Fourier transform infrared (FT-IR) spectrometry, contact-angle analysis, and capacitance-frequency measurements. For a single-step hybridized reaction, the fabricated kit exhibited significant sensitivity (capacitance change, ΔC = ~2 nF) in detecting the conserved region of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) gene with high sensitivity of 0.843 nF/nM. In addition to capacitive measurements, this selective detection was confirmed by the fluorescence image and intensity from a SARS-CoV-2 gene labeled with a fluorescent dye. We also demonstrated that the kits are recyclable by surface ozone treatment using UV irradiation. Thus, these kits could potentially be applied to various types of label-free DNA, thereby acting as rapid, cost-effective biosensors for several diseases.
Collapse
Affiliation(s)
- Chuljin Hwang
- College of Pharmacy, Ajou University, Suwon 16499, South Korea
| | - Nakkyun Park
- College of Pharmacy, Ajou University, Suwon 16499, South Korea
| | - Eun Seong Kim
- Electronic Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Miran Kim
- Ajou University School of Medicine, Suwon 16499, South Korea
| | - Su Dong Kim
- Graduate School of Clinical Pharmacy and Pharmaceutics, Ajou University, Suwon,16499, South Korea
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, South Korea.
| | - Nam Young Kim
- Electronic Engineering, Kwangwoon University, Seoul 01897, South Korea; Graduate School of Clinical Pharmacy and Pharmaceutics, Ajou University, Suwon,16499, South Korea.
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, Suwon 16499, South Korea; Graduate School of Clinical Pharmacy and Pharmaceutics, Ajou University, Suwon,16499, South Korea.
| |
Collapse
|
34
|
Alam MA, Hasan MR, Anzar N, Suleman S, Narang J. Diagnostic approaches for the rapid detection of Zika virus–A review. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens Bioelectron 2021; 178:113011. [PMID: 33517232 DOI: 10.1016/j.bios.2021.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
We review the challenges and opportunities for biosensor research in North America aimed to accelerate translational research. We call for platform approaches based on: i) tools that can support interoperability between food, environment and agriculture, ii) open-source tools for analytics, iii) algorithms used for data and information arbitrage, and iv) use-inspired sensor design. We summarize select mobile devices and phone-based biosensors that couple analytical systems with biosensors for improving decision support. Over 100 biosensors developed by labs in North America were analyzed, including lab-based and portable devices. The results of this literature review show that nearly one quarter of the manuscripts focused on fundamental platform development or material characterization. Among the biosensors analyzed for food (post-harvest) or environmental applications, most devices were based on optical transduction (whether a lab assay or portable device). Most biosensors for agricultural applications were based on electrochemical transduction and few utilized a mobile platform. Presently, the FEAST of biosensors has produced a wealth of opportunity but faces a famine of actionable information without a platform for analytics.
Collapse
|
36
|
Rashed MZ, Kopechek JA, Priddy MC, Hamorsky KT, Palmer KE, Mittal N, Valdez J, Flynn J, Williams SJ. Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance-based detector. Biosens Bioelectron 2021; 171:112709. [PMID: 33075724 PMCID: PMC7539830 DOI: 10.1016/j.bios.2020.112709] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023]
Abstract
Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was classified as a pandemic by the World Health Organization and has caused over 550,000 deaths worldwide as of July 2020. Accurate and scalable point-of-care devices would increase screening, diagnosis, and monitoring of COVID-19 patients. Here, we demonstrate rapid label-free electrochemical detection of SARS-CoV-2 antibodies using a commercially available impedance sensing platform. A 16-well plate containing sensing electrodes was pre-coated with receptor binding domain (RBD) of SARS-CoV-2 spike protein, and subsequently tested with samples of anti-SARS-CoV-2 monoclonal antibody CR3022 (0.1 μg/ml, 1.0 μg/ml, 10 μg/ml). Subsequent blinded testing was performed on six serum specimens taken from COVID-19 and non-COVID-19 patients (1:100 dilution factor). The platform was able to differentiate spikes in impedance measurements from a negative control (1% milk solution) for all CR3022 samples. Further, successful differentiation and detection of all positive clinical samples from negative control was achieved. Measured impedance values were consistent when compared to standard ELISA test results showing a strong correlation between them (R2=0.9). Detection occurs in less than five minutes and the well-based platform provides a simplified and familiar testing interface that can be readily adaptable for use in clinical settings.
Collapse
Affiliation(s)
- Mohamed Z Rashed
- Department of Mechanical Engineering, University of Louisville, 200 Sackett Hall, Louisville, KY 40208, USA.
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, KY 40208, USA
| | - Mariah C Priddy
- Department of Bioengineering, University of Louisville, Louisville, KY 40208, USA
| | - Krystal T Hamorsky
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40208, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40208, USA
| | - Nikhil Mittal
- ACEA Biosciences, Agilent Technologies Inc., San Diego, CA 92121, USA
| | - Joseph Valdez
- ACEA Biosciences, Agilent Technologies Inc., San Diego, CA 92121, USA
| | - Joseph Flynn
- Norton Healthcare, Inc, Louisville, KY 40202, USA
| | - Stuart J Williams
- Department of Mechanical Engineering, University of Louisville, 200 Sackett Hall, Louisville, KY 40208, USA.
| |
Collapse
|
37
|
Claudel J, Ngo TT, Kourtiche D, Nadi M. Interdigitated Sensor Optimization for Blood Sample Analysis. BIOSENSORS 2020; 10:bios10120208. [PMID: 33339437 PMCID: PMC7767057 DOI: 10.3390/bios10120208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
Interdigitated (ITD) sensors are specially adapted for the bioimpedance analysis (BIA) of low-volume (microliter scale) biological samples. Impedance spectroscopy is a fast method involving simple and easy biological sample preparation. The geometry of an ITD sensor makes it easier to deposit a sample at the microscopic scale of the electrodes. At this scale, the electrode size induces an increase in the double-layer effect, which may completely limit interesting bandwidths in the impedance measurements. This work focuses on ITD sensor frequency band optimization via an original study of the impact of the metalization ratio α. An electrical sensor model was studied to determine the best α ratio. A ratio of 0.6 was able to improve the low-frequency cutoff by a factor of up to 2.5. This theoretical approach was confirmed by measurements of blood samples with three sensors. The optimized sensor was able to extract the intrinsic electrical properties of blood in the frequency band of interest.
Collapse
|
38
|
Latest developments in non-faradic impedimetric biosensors: Towards clinical applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
3D nanoporous hybrid nanoflower for enhanced non-faradaic redox-free electrochemical impedimetric biodetermination. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Mo Y, Rughoobur G, Nambiar AMK, Zhang K, Jensen KF. A Multifunctional Microfluidic Platform for High‐Throughput Experimentation of Electroorganic Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yiming Mo
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Girish Rughoobur
- Electrical Engineering and Computer Science Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Anirudh M. K. Nambiar
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Kara Zhang
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Klavs F. Jensen
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
41
|
Mo Y, Rughoobur G, Nambiar AMK, Zhang K, Jensen KF. A Multifunctional Microfluidic Platform for High‐Throughput Experimentation of Electroorganic Chemistry. Angew Chem Int Ed Engl 2020; 59:20890-20894. [DOI: 10.1002/anie.202009819] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Yiming Mo
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Girish Rughoobur
- Electrical Engineering and Computer Science Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Anirudh M. K. Nambiar
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Kara Zhang
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Klavs F. Jensen
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
42
|
DNA/RNA Electrochemical Biosensing Devices a Future Replacement of PCR Methods for a Fast Epidemic Containment. SENSORS 2020; 20:s20164648. [PMID: 32824787 PMCID: PMC7472328 DOI: 10.3390/s20164648] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022]
Abstract
Pandemics require a fast and immediate response to contain potential infectious carriers. In the recent 2020 Covid-19 worldwide pandemic, authorities all around the world have failed to identify potential carriers and contain it on time. Hence, a rapid and very sensitive testing method is required. Current diagnostic tools, reverse transcription PCR (RT-PCR) and real-time PCR (qPCR), have its pitfalls for quick pandemic containment such as the requirement for specialized professionals and instrumentation. Versatile electrochemical DNA/RNA sensors are a promising technological alternative for PCR based diagnosis. In an electrochemical DNA sensor, a nucleic acid hybridization event is converted into a quantifiable electrochemical signal. A critical challenge of electrochemical DNA sensors is sensitive detection of a low copy number of DNA/RNA in samples such as is the case for early onset of a disease. Signal amplification approaches are an important tool to overcome this sensitivity issue. In this review, the authors discuss the most recent signal amplification strategies employed in the electrochemical DNA/RNA diagnosis of pathogens.
Collapse
|
43
|
Ozer T, Geiss BJ, Henry CS. Review-Chemical and Biological Sensors for Viral Detection. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:037523. [PMID: 32287357 PMCID: PMC7106559 DOI: 10.1149/2.0232003jes] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/25/2019] [Indexed: 05/19/2023]
Abstract
Infectious diseases commonly occur in contaminated water, food, and bodily fluids and spread rapidly, resulting in death of humans and animals worldwide. Among infectious agents, viruses pose a serious threat to public health and global economy because they are often difficult to detect and their infections are hard to treat. Since it is crucial to develop rapid, accurate, cost-effective, and in-situ methods for early detection viruses, a variety of sensors have been reported so far. This review provides an overview of the recent developments in electrochemical sensors and biosensors for detecting viruses and use of these sensors on environmental, clinical and food monitoring. Electrochemical biosensors for determining viruses are divided into four main groups including nucleic acid-based, antibody-based, aptamer-based and antigen-based electrochemical biosensors. Finally, the drawbacks and advantages of each type of sensors are identified and discussed.
Collapse
Affiliation(s)
- Tugba Ozer
- Department of Chemistry, Colorado State University, USA
- Yildiz Technical University, Faculty of Chemistry-Metallurgy, Department of Bioengineering, Istanbul, Turkey
| | - Brian J Geiss
- Department of Microbiology, Immunology & Pathology, Colorado State University, USA
- School of Biomedical Engineering, Colorado State University, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, USA
- School of Biomedical Engineering, Colorado State University, USA
| |
Collapse
|
44
|
Ultrasensitive and label-free biosensor for the detection of Plasmodium falciparum histidine-rich protein II in saliva. Sci Rep 2019; 9:17495. [PMID: 31767887 PMCID: PMC6877566 DOI: 10.1038/s41598-019-53852-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/06/2019] [Indexed: 11/08/2022] Open
Abstract
Malaria elimination is a global public health priority. To fulfil the demands of elimination diagnostics, we have developed an interdigitated electrode sensor platform targeting the Plasmodium falciparum Histidine Rich Protein 2 (PfHRP2) protein in saliva samples. A protocol for frequency-specific PfHRP2 detection in phosphate buffered saline was developed, yielding a sensitivity of 2.5 pg/mL based on change in impedance magnitude of the sensor. This protocol was adapted and optimized for use in saliva with a sensitivity of 25 pg/mL based on change in resistance. Further validation demonstrated detection in saliva spiked with PfHRP2 from clinical isolates in 8 of 11 samples. With a turnaround time of ~2 hours, the label-free platform based on impedance sensors has the potential for miniaturization into a point-of-care diagnostic device for malaria elimination.
Collapse
|
45
|
Ngoc Le HT, Park J, Chinnadayyala SR, Cho S. Sensitive electrochemical detection of amyloid beta peptide in human serum using an interdigitated chain-shaped electrode. Biosens Bioelectron 2019; 144:111694. [DOI: 10.1016/j.bios.2019.111694] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023]
|
46
|
Lai CY, Weng JH, Shih WL, Chen LC, Chou CF, Wei PK. Diffusion impedance modeling for interdigitated array electrodes by conformal mapping and cylindrical finite length approximation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Ti3C2 MXene nanosheet-based capacitance immunoassay with tyramine-enzyme repeats to detect prostate-specific antigen on interdigitated micro-comb electrode. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Li D, Batchelor-McAuley C, Chen L, Compton RG. Band Electrodes in Sensing Applications: Response Characteristics and Band Fabrication Methods. ACS Sens 2019; 4:2250-2266. [PMID: 31407573 DOI: 10.1021/acssensors.9b01172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This Review surveys the fabrication methods reported for both single microband electrodes and microband electrode arrays and their uses in sensing applications. A theoretical section on band electrodes provides background information on the structure of band electrodes, their diffusional profiles, and the types of voltammetric behavior observed. A short section summarizes the currently available commercial microband electrodes. A section describing recent (10 years) sensing applications using band electrode is also presented.
Collapse
Affiliation(s)
- Danlei Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Lifu Chen
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
49
|
Kustanovich K, Yantchev V, Doosti BA, Gözen I, Jesorka A. A microfluidics-integrated impedance/surface acoustic resonance tandem sensor. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
50
|
Steinmetz M, Lima D, Viana AG, Fujiwara ST, Pessôa CA, Etto RM, Wohnrath K. A sensitive label-free impedimetric DNA biosensor based on silsesquioxane-functionalized gold nanoparticles for Zika Virus detection. Biosens Bioelectron 2019; 141:111351. [DOI: 10.1016/j.bios.2019.111351] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
|