1
|
Chaker Z, Makarouni E, Doetsch F. The Organism as the Niche: Physiological States Crack the Code of Adult Neural Stem Cell Heterogeneity. Annu Rev Cell Dev Biol 2024; 40:381-406. [PMID: 38985883 DOI: 10.1146/annurev-cellbio-120320-040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neural stem cells (NSCs) persist in the adult mammalian brain and are able to give rise to new neurons and glia throughout life. The largest stem cell niche in the adult mouse brain is the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles. Adult NSCs in the V-SVZ coexist in quiescent and actively proliferating states, and they exhibit a regionalized molecular identity. The importance of such spatial diversity is just emerging, as depending on their position within the niche, adult NSCs give rise to distinct subtypes of olfactory bulb interneurons and different types of glia. However, the functional relevance of stem cell heterogeneity in the V-SVZ is still poorly understood. Here, we put into perspective findings highlighting the importance of adult NSC diversity for brain plasticity, and how the body signals to brain stem cells in different physiological states to regulate their behavior.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| | | | - Fiona Doetsch
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| |
Collapse
|
2
|
Sorrells SF. Which neurodevelopmental processes continue in humans after birth? Front Neurosci 2024; 18:1434508. [PMID: 39308952 PMCID: PMC11412957 DOI: 10.3389/fnins.2024.1434508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Once we are born, the number and location of nerve cells in most parts of the brain remain unchanged. These types of structural changes are therefore a significant form of flexibility for the neural circuits where they occur. In humans, the postnatal birth of neurons is limited; however, neurons do continue to migrate into some brain regions throughout infancy and even into adolescence. In human infants, multiple migratory pathways deliver interneurons to destinations across the frontal and temporal lobe cortex. Shorter-range migration of excitatory neurons also appears to continue during adolescence, particularly near the amygdala paralaminar nucleus, a region that follows a delayed trajectory of growth from infancy to adulthood. The significance of the timing for when different brain regions recruit new neurons through these methods is unknown; however, both processes of protracted migration and maturation are prominent in humans. Mechanisms like these that reconfigure neuronal circuits are a substrate for critical periods of plasticity and could contribute to distinctive circuit functionality in human brains.
Collapse
|
3
|
Sophronea T, Agrawal S, Kumari N, Mishra J, Walecha V, Luthra PM. A 2AR antagonists triggered the AMPK/m-TOR autophagic pathway to reverse the calcium-dependent cell damage in 6-OHDA induced model of PD. Neurochem Int 2024; 178:105793. [PMID: 38880232 DOI: 10.1016/j.neuint.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Calcium dyshomeostasis, oxidative stress, autophagy and apoptosis are the pathogenesis of selective dopaminergic neuronal loss in Parkinson's disease (PD). Earlier, we reported that A2A R modulates IP3-dependent intracellular Ca2+ signalling via PKA. Moreover, A2A R antagonist has been reported to reduce oxidative stress and apoptosis in PD models, however intracellular Ca2+ ([Ca2+]i) dependent autophagy regulation in the 6-OHDA model of PD has not been explored. In the present study, we investigated the A2A R antagonists mediated neuroprotective effects in 6-OHDA-induced primary midbrain neuronal (PMN) cells and unilateral lesioned rat model of PD. 6-OHDA-induced oxidative stress (ROS and superoxide) and [Ca2+]i was measured using Fluo4AM, DCFDA and DHE dye respectively. Furthermore, autophagy was assessed by Western blot of p-m-TOR/mTOR, p-AMPK/AMPK, LC3I/II, Beclin and β-actin. Apoptosis was measured by Annexin V-APC-PI detection and Western blot of Bcl2, Bax, caspase3 and β-actin. Dopamine levels were measured by Dopamine ELISA kit and Western blot of tyrosine hydroxylase. Our results suggest that 6-OHDA-induced PMN cell death occurred due to the interruption of [Ca2+]i homeostasis, accompanied by activation of autophagy and apoptosis. A2A R antagonists prevented 6-OHDA-induced neuronal cell death by decreasing [Ca2+]i overload and oxidative stress. In addition, we found that A2A R antagonists upregulated mTOR phosphorylation and downregulated AMPK phosphorylation thereby reducing autophagy and apoptosis both in 6-OHDA induced PMN cells and 6-OHDA unilateral lesioned rat model. In conclusion, A2A R antagonists alleviated 6-OHDA toxicity by modulating [Ca2+]i signalling to inhibit autophagy mediated by the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Tuithung Sophronea
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Saurabh Agrawal
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Namrata Kumari
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Jyoti Mishra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Vaishali Walecha
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Pratibha Mehta Luthra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
4
|
D'Egidio F, Castelli V, Lombardozzi G, Ammannito F, Cimini A, d'Angelo M. Therapeutic advances in neural regeneration for Huntington's disease. Neural Regen Res 2024; 19:1991-1997. [PMID: 38227527 DOI: 10.4103/1673-5374.390969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 01/17/2024] Open
Abstract
Huntington's disease is a neurodegenerative disease caused by the expansion mutation of a cytosine-adenine-guanine triplet in the exon 1 of the HTT gene which is responsible for the production of the huntingtin (Htt) protein. In physiological conditions, Htt is involved in many cellular processes such as cell signaling, transcriptional regulation, energy metabolism regulation, DNA maintenance, axonal trafficking, and antiapoptotic activity. When the genetic alteration is present, the production of a mutant version of Htt (mHtt) occurs, which is characterized by a plethora of pathogenic activities that, finally, lead to cell death. Among all the cells in which mHtt exerts its dangerous activity, the GABAergic Medium Spiny Neurons seem to be the most affected by the mHtt-induced excitotoxicity both in the cortex and in the striatum. However, as the neurodegeneration proceeds ahead the neuronal loss grows also in other brain areas such as the cerebellum, hypothalamus, thalamus, subthalamic nucleus, globus pallidus, and substantia nigra, determining the variety of symptoms that characterize Huntington's disease. From a clinical point of view, Huntington's disease is characterized by a wide spectrum of symptoms spanning from motor impairment to cognitive disorders and dementia. Huntington's disease shows a prevalence of around 3.92 cases every 100,000 worldwide and an incidence of 0.48 new cases every 100,000/year. To date, there is no available cure for Huntington's disease. Several treatments have been developed so far, aiming to reduce the severity of one or more symptoms to slow down the inexorable decline caused by the disease. In this context, the search for reliable strategies to target the different aspects of Huntington's disease become of the utmost interest. In recent years, a variety of studies demonstrated the detrimental role of neuronal loss in Huntington's disease condition highlighting how the replacement of lost cells would be a reasonable strategy to overcome the neurodegeneration. In this view, numerous have been the attempts in several preclinical models of Huntington's disease to evaluate the feasibility of invasive and non-invasive approaches. Thus, the aim of this review is to offer an overview of the most appealing approaches spanning from stem cell-based cell therapy to extracellular vesicles such as exosomes in light of promoting neurogenesis, discussing the results obtained so far, their limits and the future perspectives regarding the neural regeneration in the context of Huntington's disease.
Collapse
Affiliation(s)
- Francesco D'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Cho TH, Kim M, Kim SH, Lee JE, Kim SH, Kim HJ, Hong JE, Yeo IS, Yang HM. Reconsidering Neurogenetic Indication in the Human Brain: Broad Expression of Doublecortin Transcript in the Hippocampal and Cortical Cell Populations. Cells Tissues Organs 2024; 213:382-389. [PMID: 39191219 PMCID: PMC11446342 DOI: 10.1159/000540976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
INTRODUCTION Neurogenesis in the adult brain may play an important role in memory and cognition; however, knowledge of neurogenic markers in the human brain remains limited. We compared the single-nucleus transcriptome of the hippocampus with that of other cortical regions to identify hippocampus-specific neurogenic markers. METHODS We analyzed 26,189 nuclei from four human brains collected within 16 h of death. Clustering and annotation were performed to examine differential expression, gene ontology, and intercellular communication. DCX expression was validated by ddPCR. RESULTS Immature markers such as DCX, CALB2, NES, SOX2, PAX6, DPYSL3, and TUBB3 were expressed in both hippocampus and prefrontal cortex, with higher levels in the prefrontal cortex. ddPCR confirmed higher expression of DCX in the prefrontal cortex. DCX was involved in both neurogenesis and neuroprotection pathways. CONCLUSION Neurogenic markers are not definitive indicators of adult neurogenesis as their roles are more complex than previously understood.
Collapse
Affiliation(s)
- Tae-Hyeon Cho
- Department of Anatomy, College of Korean Medicine, Semyung University, Jecheon, Republic of Korea
- Translational Research Unit for Anatomy and Analgesia, Seoul, Republic of Korea
| | - Miri Kim
- Translational Research Unit for Anatomy and Analgesia, Seoul, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Shin Hyung Kim
- Translational Research Unit for Anatomy and Analgesia, Seoul, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju, Republic of Korea
| | - In-Seung Yeo
- Translational Research Unit for Anatomy and Analgesia, Seoul, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hun-Mu Yang
- Translational Research Unit for Anatomy and Analgesia, Seoul, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Surgical Anatomy Education Centre, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Althaus O, ter Jung N, Stahlke S, Theiss C, Herzog-Niescery J, Vogelsang H, Weber T, Gude P, Matschke V. Region-specific protective effects of monomethyl fumarate in cerebellar and hippocampal organotypic slice cultures following oxygen-glucose deprivation. PLoS One 2024; 19:e0308635. [PMID: 39110748 PMCID: PMC11305562 DOI: 10.1371/journal.pone.0308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
To date, apart from moderate hypothermia, there are almost no adequate interventions available for neuroprotection in cases of brain damage due to cardiac arrest. Affected persons often have severe limitations in their quality of life. The aim of this study was to investigate protective properties of the active compound of dimethyl fumarate, monomethyl fumarate (MMF), on distinct regions of the central nervous system after ischemic events. Dimethyl fumarate is an already established drug in neurology with known anti-inflammatory and antioxidant properties. In this study, we chose organotypic slice cultures of rat cerebellum and hippocampus as an ex vivo model. To simulate cardiac arrest and return of spontaneous circulation we performed oxygen-glucose-deprivation (OGD) followed by treatments with different concentrations of MMF (1-30 μM in cerebellum and 5-30 μM in hippocampus). Immunofluorescence staining with propidium iodide (PI) and 4',6-diamidine-2-phenylindole (DAPI) was performed to analyze PI/DAPI ratio after imaging with a spinning disc confocal microscope. In the statistical analysis, the relative cell death of the different groups was compared. In both, the cerebellum and hippocampus, the MMF-treated group showed a significantly lower PI/DAPI ratio compared to the non-treated group after OGD. Thus, we showed for the first time that both cerebellar and hippocampal slice cultures treated with MMF after OGD are significantly less affected by cell death.
Collapse
Affiliation(s)
- Oliver Althaus
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Nico ter Jung
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Herzog-Niescery
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Heike Vogelsang
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Thomas Weber
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Philipp Gude
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Chen L, Qi Q, Jiang X, Wu J, Li Y, Liu Z, Cai Y, Ran H, Zhang S, Zhang C, Wu H, Cao S, Mi L, Xiao D, Huang H, Jiang S, Wu J, Li B, Xie J, Qi J, Li F, Liang P, Han Q, Wu M, Zhou W, Wang C, Zhang W, Jiang X, Zhang K, Li H, Zhang X, Li A, Zhou T, Man J. Phosphocreatine Promotes Epigenetic Reprogramming to Facilitate Glioblastoma Growth Through Stabilizing BRD2. Cancer Discov 2024; 14:1547-1565. [PMID: 38563585 DOI: 10.1158/2159-8290.cd-23-1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Glioblastoma (GBM) exhibits profound metabolic plasticity for survival and therapeutic resistance, while the underlying mechanisms remain unclear. Here, we show that GBM stem cells reprogram the epigenetic landscape by producing substantial amounts of phosphocreatine (PCr). This production is attributed to the elevated transcription of brain-type creatine kinase, mediated by Zinc finger E-box binding homeobox 1. PCr inhibits the poly-ubiquitination of the chromatin regulator bromodomain containing protein 2 (BRD2) by outcompeting the E3 ubiquitin ligase SPOP for BRD2 binding. Pharmacological disruption of PCr biosynthesis by cyclocreatine (cCr) leads to BRD2 degradation and a decrease in its targets' transcription, which inhibits chromosome segregation and cell proliferation. Notably, cyclocreatine treatment significantly impedes tumor growth and sensitizes tumors to a BRD2 inhibitor in mouse GBM models without detectable side effects. These findings highlight that high production of PCr is a druggable metabolic feature of GBM and a promising therapeutic target for GBM treatment. Significance: Glioblastoma (GBM) exhibits an adaptable metabolism crucial for survival and therapy resistance. We demonstrate that GBM stem cells modify their epigenetics by producing phosphocreatine (PCr), which prevents bromodomain containing protein 2 (BRD2) degradation and promotes accurate chromosome segregation. Disrupting PCr biosynthesis impedes tumor growth and improves the efficacy of BRD2 inhibitors in mouse GBM models.
Collapse
Affiliation(s)
- Lishu Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Qinghui Qi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xiaoqing Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jin Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yuanyuan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Zhaodan Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yan Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Haowen Ran
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Songyang Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Cheng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Huiran Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Shuailiang Cao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Lanjuan Mi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Dake Xiao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Haohao Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Shuai Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Jiaqi Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Bohan Li
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Jiong Xie
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Ji Qi
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Fangye Li
- Department of Neurosurgery, First Medical Center of PLA General Hospital, Beijing, China
| | - Panpan Liang
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiuying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Wenchao Zhou
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenhui Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Weina Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Kun Zhang
- Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xuemin Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ailing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Jianghong Man
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| |
Collapse
|
8
|
Lee BH, Cevizci M, Lieblich SE, Ibrahim M, Wen Y, Eid RS, Lamers Y, Duarte-Guterman P, Galea LAM. Exploring the parity paradox: Differential effects on neuroplasticity and inflammation by APOEe4 genotype at middle age. Brain Behav Immun 2024; 120:54-70. [PMID: 38772427 DOI: 10.1016/j.bbi.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
Female sex and Apolipoprotein E (APOE) ε4 genotype are top non-modifiable risk factors for Alzheimer's disease (AD). Although female-unique experiences like parity (pregnancy and motherhood) have positive effects on neuroplasticity at middle age, previous pregnancy may also contribute to AD risk. To explore these seemingly paradoxical long-term effects of parity, we investigated the impact of parity with APOEε4 genotype by examining behavioural and neural biomarkers of brain health in middle-aged female rats. Our findings show that primiparous (parous one time) hAPOEε4 rats display increased use of a non-spatial cognitive strategy and exhibit decreased number and recruitment of new-born neurons in the ventral dentate gyrus of the hippocampus in response to spatial working memory retrieval. Furthermore, primiparity and hAPOEε4 genotype synergistically modulate inflammatory markers in the ventral hippocampus. Collectively, these findings demonstrate that previous parity in hAPOEε4 rats confers an added risk to present with reduced activity and engagement of the hippocampus as well as elevated pro-inflammatory signaling, and underscore the importance of considering female-specific factors and genotype in health research.
Collapse
Affiliation(s)
- Bonnie H Lee
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Melike Cevizci
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Muna Ibrahim
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Yanhua Wen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Rand S Eid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yvonne Lamers
- Food Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, ON, Canada.
| |
Collapse
|
9
|
Saibro-Girardi C, Scheibel IM, Santos L, Bittencourt RR, Fröhlich NT, Dos Reis Possa L, Moreira JCF, Gelain DP. Bexarotene drives the self-renewing proliferation of adult neural stem cells, promotes neuron-glial fate shift, and regulates late neuronal differentiation. J Neurochem 2024; 168:1527-1545. [PMID: 37984072 DOI: 10.1111/jnc.15998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.
Collapse
Affiliation(s)
- Carolina Saibro-Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ingrid Matsubara Scheibel
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Reykla Ramon Bittencourt
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Nicole Taís Fröhlich
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Luana Dos Reis Possa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Alonso M, Petit AC, Lledo PM. The impact of adult neurogenesis on affective functions: of mice and men. Mol Psychiatry 2024; 29:2527-2542. [PMID: 38499657 DOI: 10.1038/s41380-024-02504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
In most mammals, new neurons are not only produced during embryogenesis but also after birth. Soon after adult neurogenesis was discovered, the influence of recruiting new neurons on cognitive functions, especially on memory, was documented. Likewise, the late process of neuronal production also contributes to affective functions, but this outcome was recognized with more difficulty. This review covers hypes and hopes of discovering the influence of newly-generated neurons on brain circuits devoted to affective functions. If the possibility of integrating new neurons into the adult brain is a commonly accepted faculty in the realm of mammals, the reluctance is strong when it comes to translating this concept to humans. Compiling data suggest now that new neurons are derived not only from stem cells, but also from a population of neuroblasts displaying a protracted maturation and ready to be engaged in adult brain circuits, under specific signals. Here, we discuss the significance of recruiting new neurons in the adult brain circuits, specifically in the context of affective outcomes. We also discuss the fact that adult neurogenesis could be the ultimate cellular process that integrates elements from both the internal and external environment to adjust brain functions. While we must be critical and beware of the unreal promises that Science could generate sometimes, it is important to continue exploring the potential of neural recruitment in adult primates. Reporting adult neurogenesis in humankind contributes to a new vision of humans as mammals whose brain continues to develop throughout life. This peculiar faculty could one day become the target of treatment for mental health, cognitive disorders, and elderly-associated diseases. The vision of an adult brain which never stops integrating new neurons is a real game changer for designing new therapeutic interventions to treat mental disorders associated with substantial morbidity, mortality, and social costs.
Collapse
Affiliation(s)
- Mariana Alonso
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
| | - Anne-Cécile Petit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
- Pôle Hospitalo-Universitaire Psychiatrie Paris 15, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France.
| |
Collapse
|
11
|
Zhao R. Can exercise benefits be harnessed with drugs? A new way to combat neurodegenerative diseases by boosting neurogenesis. Transl Neurodegener 2024; 13:36. [PMID: 39049102 PMCID: PMC11271207 DOI: 10.1186/s40035-024-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN) is affected by multiple factors, such as enriched environment, exercise, ageing, and neurodegenerative disorders. Neurodegenerative disorders can impair AHN, leading to progressive neuronal loss and cognitive decline. Compelling evidence suggests that individuals engaged in regular exercise exhibit higher production of proteins that are essential for AHN and memory. Interestingly, specific molecules that mediate the effects of exercise have shown effectiveness in promoting AHN and cognition in different transgenic animal models. Despite these advancements, the precise mechanisms by which exercise mimetics induce AHN remain partially understood. Recently, some novel exercise molecules have been tested and the underlying mechanisms have been proposed, involving intercommunications between multiple organs such as muscle-brain crosstalk, liver-brain crosstalk, and gut-brain crosstalk. In this review, we will discuss the current evidence regarding the effects and potential mechanisms of exercise mimetics on AHN and cognition in various neurological disorders. Opportunities, challenges, and future directions in this research field are also discussed.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Garma LD, Harder L, Barba-Reyes JM, Marco Salas S, Díez-Salguero M, Nilsson M, Serrano-Pozo A, Hyman BT, Muñoz-Manchado AB. Interneuron diversity in the human dorsal striatum. Nat Commun 2024; 15:6164. [PMID: 39039043 PMCID: PMC11263574 DOI: 10.1038/s41467-024-50414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
Deciphering the striatal interneuron diversity is key to understanding the basal ganglia circuit and to untangling the complex neurological and psychiatric diseases affecting this brain structure. We performed snRNA-seq and spatial transcriptomics of postmortem human caudate nucleus and putamen samples to elucidate the diversity and abundance of interneuron populations and their inherent transcriptional structure in the human dorsal striatum. We propose a comprehensive taxonomy of striatal interneurons with eight main classes and fourteen subclasses, providing their full transcriptomic identity and spatial expression profile as well as additional quantitative FISH validation for specific populations. We have also delineated the correspondence of our taxonomy with previous standardized classifications and shown the main transcriptomic and class abundance differences between caudate nucleus and putamen. Notably, based on key functional genes such as ion channels and synaptic receptors, we found matching known mouse interneuron populations for the most abundant populations, the recently described PTHLH and TAC3 interneurons. Finally, we were able to integrate other published datasets with ours, supporting the generalizability of this harmonized taxonomy.
Collapse
Affiliation(s)
- Leonardo D Garma
- Karolinska Institutet, Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Lisbeth Harder
- Karolinska Institutet, Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Juan M Barba-Reyes
- Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). University of Cádiz, Cádiz, Spain
| | - Sergio Marco Salas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mónica Díez-Salguero
- Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). University of Cádiz, Cádiz, Spain
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital, Neurology Department, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Bradley T Hyman
- Massachusetts General Hospital, Neurology Department, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ana B Muñoz-Manchado
- Karolinska Institutet, Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden.
- Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). University of Cádiz, Cádiz, Spain.
| |
Collapse
|
13
|
Zhang L, Zetter MA, Hernández VS, Hernández-Pérez OR, Jáuregui-Huerta F, Krabichler Q, Grinevich V. Morphological Signatures of Neurogenesis and Neuronal Migration in Hypothalamic Vasopressinergic Magnocellular Nuclei of the Adult Rat. Int J Mol Sci 2024; 25:6988. [PMID: 39000096 PMCID: PMC11241681 DOI: 10.3390/ijms25136988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS's potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Mario A. Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Department of Medicine and Health, University of La Salle, Mexico City 14000, Mexico
| | - Vito S. Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Oscar R. Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Fernando Jáuregui-Huerta
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| |
Collapse
|
14
|
Barrett E, Ivey G, Cunningham A, Coffman G, Pemberton T, Lee C, Patra P, Day JB, Lee PHU, Shim JW. Reduced GLP-1R availability in the caudate nucleus with Alzheimer's disease. Front Aging Neurosci 2024; 16:1350239. [PMID: 38915346 PMCID: PMC11194438 DOI: 10.3389/fnagi.2024.1350239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) agonists reduce glycated hemoglobin in patients with type 2 diabetes. Mounting evidence indicates that the potential of GLP-1R agonists, mimicking a 30 amino acid ligand, GLP-1, extends to the treatment of neurodegenerative conditions, with a particular focus on Alzheimer's disease (AD). However, the mechanism that underlies regulation of GLP-1R availability in the brain with AD remains poorly understood. Here, using whole transcriptome RNA-Seq of the human postmortem caudate nucleus with AD and chronic hydrocephalus (CH) in the elderly, we found that GLP-1R and select mRNAs expressed in glucose dysmetabolism and dyslipidemia were significantly altered. Furthermore, we detected human RNA indicating a deficiency in doublecortin (DCX) levels and the presence of ferroptosis in the caudate nucleus impacted by AD. Using the genome data viewer, we assessed mutability of GLP-1R and 39 other genes by two factors associated with high mutation rates in chromosomes of four species. Surprisingly, we identified that nucleotide sizes of GLP-1R transcript exceptionally differed in all four species of humans, chimpanzees, rats, and mice by up to 6-fold. Taken together, the protein network database analysis suggests that reduced GLP-1R in the aged human brain is associated with glucose dysmetabolism, ferroptosis, and reduced DCX+ neurons, that may contribute to AD.
Collapse
Affiliation(s)
- Emma Barrett
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Gabrielle Ivey
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Adam Cunningham
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Gary Coffman
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Tyera Pemberton
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Chan Lee
- Department of Anesthesia, Indiana University Health Arnett Hospital, Lafayette, IN, United States
| | - Prabir Patra
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - James B. Day
- Department of Orthopedic Surgery, Cabell Huntington Hospital and Marshall University School of Medicine, Huntington, WV, United States
| | - Peter H. U. Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Joon W. Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| |
Collapse
|
15
|
Mourtzi T, Antoniou N, Dimitriou C, Gkaravelas P, Athanasopoulou G, Kostantzo PN, Stathi O, Theodorou E, Anesti M, Matsas R, Angelatou F, Kouroupi G, Kazanis I. Enhancement of endogenous midbrain neurogenesis by microneurotrophin BNN-20 after neural progenitor grafting in a mouse model of nigral degeneration. Neural Regen Res 2024; 19:1318-1324. [PMID: 37905881 PMCID: PMC11467940 DOI: 10.4103/1673-5374.385314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202406000-00036/inline-graphic1/v/2023-10-30T152229Z/r/image-tiff
We have previously shown the neuroprotective and pro-neurogenic activity of microneurotrophin BNN-20 in the substantia nigra of the “weaver” mouse, a model of progressive nigrostriatal degeneration. Here, we extended our investigation in two clinically-relevant ways. First, we assessed the effects of BNN-20 on human induced pluripotent stem cell-derived neural progenitor cells and neurons derived from healthy and parkinsonian donors. Second, we assessed if BNN-20 can boost the outcome of mouse neural progenitor cell intranigral transplantations in weaver mice, at late stages of degeneration. We found that BNN-20 has limited direct effects on cultured human induced pluripotent stem cell-derived neural progenitor cells, marginally enhancing their differentiation towards neurons and partially reversing the pathological phenotype of dopaminergic neurons generated from parkinsonian donors. In agreement, we found no effects of BNN-20 on the mouse neural progenitor cells grafted in the substantia nigra of weaver mice. However, the graft strongly induced an endogenous neurogenic response throughout the midbrain, which was significantly enhanced by the administration of microneurotrophin BNN-20. Our results provide straightforward evidence of the existence of an endogenous midbrain neurogenic system that can be specifically strengthened by BNN-20. Interestingly, the lack of major similar activity on cultured human induced pluripotent stem cell-derived neural progenitors and their progeny reveals the in vivo specificity of the aforementioned pro-neurogenic effect.
Collapse
Affiliation(s)
- Theodora Mourtzi
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Nasia Antoniou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Christina Dimitriou
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Panagiotis Gkaravelas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Athanasopoulou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiota Nti Kostantzo
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Olga Stathi
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Efthymia Theodorou
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Maria Anesti
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Fevronia Angelatou
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Ilias Kazanis
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
16
|
Ruscu M, Glavan D, Surugiu R, Doeppner TR, Hermann DM, Gresita A, Capitanescu B, Popa-Wagner A. Pharmacological and stem cell therapy of stroke in animal models: Do they accurately reflect the response of humans? Exp Neurol 2024; 376:114753. [PMID: 38490317 DOI: 10.1016/j.expneurol.2024.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Cerebrovascular diseases are the second leading cause of death worldwide. Despite significant research investment, the only available therapeutic options are mechanical thrombectomy and tissue plasminogen activator thrombolysis. None of the more than a thousand drugs tested on animal models have proven successful in human clinical trials. Several factors contribute to this poor translation of data from stroke-related animal models to human stroke patients. Firstly, our understanding of the molecular and cellular processes involved in recovering from an ischemic stroke is severely limited. Secondly, although the risk of stroke is particularly high among older patients with comorbidities, most drugs are tested on young, healthy animals in controlled laboratory conditions. Furthermore, in animal models, the tracking of post-stroke recovery typically spans only 3 to 28 days, with occasional extensions to 60 days, whereas human stroke recovery is a more extended and complex process. Thirdly, young animal models often exhibit a considerably higher rate of spontaneous recovery compared to humans following a stroke. Fourth, only a very limited number of animals are utilized for each condition, including control groups. Another contributing factor to the much smaller beneficial effects in humans is that positive outcomes from numerous animal studies are more readily accepted than results reported in human trials that do not show a clear benefit to the patient. Useful recommendations for conducting experiments in animal models, with increased chances of translatability to humans, have been issued by both the STEPS investigative team and the STAIR committee. However, largely, due to economic factors, these recommendations are largely ignored. Furthermore, one might attribute the overall failures in predicting and subsequently developing effective acute stroke therapies beyond thrombolysis to potential design deficiencies in clinical trials.
Collapse
Affiliation(s)
- Mihai Ruscu
- Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Roxana Surugiu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen 45147, Germany
| | - Andrei Gresita
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA
| | - Bogdan Capitanescu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| | - Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| |
Collapse
|
17
|
Becker J, Szele F. Cell migration into the damaged brain mediated by increased cell adhesion. EMBO Mol Med 2024; 16:1223-1225. [PMID: 38789598 PMCID: PMC11178874 DOI: 10.1038/s44321-024-00075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
F. Szele and J. Becker discuss a new mechanism of neuronal migration in healthy and injured brain and a promising therapeutic potential of a neuraminidase inhibitor for the treatment of brain injury as reported by K. Sawamoto and colleagues, in this issue of EMBO Mol Med .
Collapse
Affiliation(s)
- Jemima Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Francis Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
18
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2024:10.1007/s12035-024-04246-w. [PMID: 38816676 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
19
|
Navandar M, Vennin C, Lutz B, Gerber S. Long non-coding RNAs expression and regulation across different brain regions in primates. Sci Data 2024; 11:545. [PMID: 38806530 PMCID: PMC11133376 DOI: 10.1038/s41597-024-03380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Human and non-human primates have strikingly similar genomes, but they strongly differ in many brain-based processes (e.g., behaviour and cognition). While the functions of protein-coding genes have been extensively studied, rather little is known about the role of non-coding RNAs such as long non-coding RNAs (lncRNAs). Here, we predicted lncRNAs and analysed their expression pattern across different brain regions of human and non-human primates (chimpanzee, gorilla, and gibbon). Our analysis identified shared orthologous and non-orthologous lncRNAs, showing striking differences in the genomic features. Differential expression analysis of the shared orthologous lncRNAs from humans and chimpanzees revealed distinct expression patterns in subcortical regions (striatum, hippocampus) and neocortical areas while retaining a homogeneous expression in the cerebellum. Co-expression analysis of lncRNAs and protein-coding genes revealed massive proportions of co-expressed pairs in neocortical regions of humans compared to chimpanzees. Network analysis of co-expressed pairs revealed the distinctive role of the hub-acting orthologous lncRNAs in a region- and species-specific manner. Overall, our study provides novel insight into lncRNA driven gene regulatory landscape, neural regulation, brain evolution, and constitutes a resource for primate's brain lncRNAs.
Collapse
Affiliation(s)
- Mohit Navandar
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Constance Vennin
- Leibniz Institute for Resilience Research, 55122, Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Beat Lutz
- Leibniz Institute for Resilience Research, 55122, Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
20
|
Simard S, Matosin N, Mechawar N. Adult Hippocampal Neurogenesis in the Human Brain: Updates, Challenges, and Perspectives. Neuroscientist 2024:10738584241252581. [PMID: 38757781 DOI: 10.1177/10738584241252581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The existence of neurogenesis in the adult human hippocampus has been under considerable debate within the past three decades due to the diverging conclusions originating mostly from immunohistochemistry studies. While some of these reports conclude that hippocampal neurogenesis in humans occurs throughout physiologic aging, others indicate that this phenomenon ends by early childhood. More recently, some groups have adopted next-generation sequencing technologies to characterize with more acuity the extent of this phenomenon in humans. Here, we review the current state of research on adult hippocampal neurogenesis in the human brain with an emphasis on the challenges and limitations of using immunohistochemistry and next-generation sequencing technologies for its study.
Collapse
Affiliation(s)
- Sophie Simard
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| |
Collapse
|
21
|
Liampas A, Tseriotis VS, Artemiadis A, Zis P, Argyropoulou C, Grigoriadis N, Hadjigeorgiou GM, Vavougyios G. Adult Neoneurogenesis and Oligodendrogenesis in Multiple Sclerosis: A Systematic Review of Human and Animal Studies. Brain Connect 2024; 14:209-225. [PMID: 38534961 DOI: 10.1089/brain.2023.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Introduction: The subventricular zone promotes remyelination through activation differentiation of oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) into mature oligodendrocytes and thus in the adult brain. In multiple sclerosis (MS) this regenerative capability is halted resulting in neurodegeneration. We aimed to systematically search and synthesize evidence on mechanisms and phenomena associated with subventricular zone (SVZ) dysfunction in MS. Materials and Methods: Our systematic review was reported according to the PRISMA-ScR statement. MEDLINE, SCOPUS, ProQuest, and Google Scholar were searched using the terms "subventricular zone" and "multiple sclerosis," including English-written in vivo and postmortem studies. Results: Twenty studies were included. Thirteen studies on models of experimental autoimmune encephalomyelitis (EAE) reported among others strong stathmin immunoreactivity in the SVZ of EAE models, the role of MOG immunization in neurogenesis impairment, the effect of parenchymal OPCs and NSCs in myelin repair, and the importance of ependymal cells (E1/E2) and ciliated B1 cells in SVZ stem cell signaling. CXCR4 signaling and transcriptional profiles of SVZ microglia, Gli1 pathway, and galactin-3 were also explored. Studies in humans demonstrated microstructural SVZ damage in progressive MS and the persistence of black holes near the SVZ, whereas postmortem confirmed the generation of polysialic acid-neural cell adhesion molecule and NG2-positive progenitors through SVZ activation, SVZ stathmin immunoreactivity, Shh pathway, and Gal-3 upregulation. Discussion: Oligodendrogenesis defects translate to reduced remyelination, a hallmark of MS that determines its end-phenotype and disease course. Conclusion: The role of inflammation and subsequent SVZ microenvironment disruption is evident in MS pathology.
Collapse
Affiliation(s)
- Andreas Liampas
- Department of Neurology, Nicosia General Hospital, Nicosia, Cyprus
| | | | | | | | | | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - George Vavougyios
- Medical School, University of Cyprus, Nicosia, Cyprus
- University of Thessaly School of Health Sciences, Thessaloniki, Greece
| |
Collapse
|
22
|
Chung C, Yang X, Hevner RF, Kennedy K, Vong KI, Liu Y, Patel A, Nedunuri R, Barton ST, Noel G, Barrows C, Stanley V, Mittal S, Breuss MW, Schlachetzki JCM, Kingsmore SF, Gleeson JG. Cell-type-resolved mosaicism reveals clonal dynamics of the human forebrain. Nature 2024; 629:384-392. [PMID: 38600385 PMCID: PMC11194162 DOI: 10.1038/s41586-024-07292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.
Collapse
Affiliation(s)
- Changuk Chung
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Robert F Hevner
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pathology, UC San Diego School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Keng Ioi Vong
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Yang Liu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Arzoo Patel
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Rahul Nedunuri
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Scott T Barton
- Division of Medical Education, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Geoffroy Noel
- Division of Anatomy, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chelsea Barrows
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Valentina Stanley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Swapnil Mittal
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Martin W Breuss
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johannes C M Schlachetzki
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.
| |
Collapse
|
23
|
Foster M, Dwibhashyam S, Patel D, Gupta K, Matz OC, Billings BK, Bitterman K, Bertelson M, Tang CY, Mars RB, Raghanti MA, Hof PR, Sherwood CC, Manger PR, Spocter MA. Comparative anatomy of the caudate nucleus in canids and felids: Associations with brain size, curvature, cross-sectional properties, and behavioral ecology. J Comp Neurol 2024; 532:e25618. [PMID: 38686628 DOI: 10.1002/cne.25618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus. The sample consisted of MRI scan data obtained from six canid species (Canis lupus lupus, Canis latrans, Chrysocyon brachyurus, Lycaon pictus, Vulpes vulpes, Vulpes zerda), two canid subspecies (Canis lupus familiaris, Canis lupus dingo), as well as three felids (Panthera tigris, Panthera uncia, Felis silvestris catus). Results revealed marked conservation in the scaling and shape attributes of the caudate nucleus across species, with only slight deviations. We hypothesize that observed differences in caudate nucleus size and structure for the domestic canids are reflective of enhanced cognitive and emotional pathways that possibly emerged during domestication.
Collapse
Affiliation(s)
- Michael Foster
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Sai Dwibhashyam
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Devan Patel
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Kanika Gupta
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Olivia C Matz
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Kathleen Bitterman
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Mads Bertelson
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Cheuk Y Tang
- Departments of Radiology and Psychiatry, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
- College of Veterinary Medicine, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
24
|
Zhao J, Liu S, Xiang X, Zhu X. Versatile strategies for adult neurogenesis: avenues to repair the injured brain. Neural Regen Res 2024; 19:774-780. [PMID: 37843211 PMCID: PMC10664121 DOI: 10.4103/1673-5374.382224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 10/17/2023] Open
Abstract
Brain injuries due to trauma or stroke are major causes of adult death and disability. Unfortunately, few interventions are effective for post-injury repair of brain tissue. After a long debate on whether endogenous neurogenesis actually happens in the adult human brain, there is now substantial evidence to support its occurrence. Although neurogenesis is usually significantly stimulated by injury, the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient. Alternatively, exogenous stem cell transplantation has shown promising results in animal models, but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use. Recently, a high focus was placed on glia-to-neuron conversion under single-factor regulation. Despite some inspiring results, the validity of this strategy is still controversial. In this review, we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury. We also discuss their advantages and drawbacks, as to provide a comprehensive account of their potentials for further studies.
Collapse
Affiliation(s)
- Junyi Zhao
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Siyu Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xianyuan Xiang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong Province, China
| |
Collapse
|
25
|
Pushchina EV, Kapustyanov IA, Kluka GG. Adult Neurogenesis of Teleost Fish Determines High Neuronal Plasticity and Regeneration. Int J Mol Sci 2024; 25:3658. [PMID: 38612470 PMCID: PMC11012045 DOI: 10.3390/ijms25073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
Studying the properties of neural stem progenitor cells (NSPCs) in a fish model will provide new information about the organization of neurogenic niches containing embryonic and adult neural stem cells, reflecting their development, origin cell lines and proliferative dynamics. Currently, the molecular signatures of these populations in homeostasis and repair in the vertebrate forebrain are being intensively studied. Outside the telencephalon, the regenerative plasticity of NSPCs and their biological significance have not yet been practically studied. The impressive capacity of juvenile salmon to regenerate brain suggests that most NSPCs are likely multipotent, as they are capable of replacing virtually all cell lineages lost during injury, including neuroepithelial cells, radial glia, oligodendrocytes, and neurons. However, the unique regenerative profile of individual cell phenotypes in the diverse niches of brain stem cells remains unclear. Various types of neuronal precursors, as previously shown, are contained in sufficient numbers in different parts of the brain in juvenile Pacific salmon. This review article aims to provide an update on NSPCs in the brain of common models of zebrafish and other fish species, including Pacific salmon, and the involvement of these cells in homeostatic brain growth as well as reparative processes during the postraumatic period. Additionally, new data are presented on the participation of astrocytic glia in the functioning of neural circuits and animal behavior. Thus, from a molecular aspect, zebrafish radial glia cells are seen to be similar to mammalian astrocytes, and can therefore also be referred to as astroglia. However, a question exists as to if zebrafish astroglia cells interact functionally with neurons, in a similar way to their mammalian counterparts. Future studies of this fish will complement those on rodents and provide important information about the cellular and physiological processes underlying astroglial function that modulate neural activity and behavior in animals.
Collapse
Affiliation(s)
- Evgeniya Vladislavovna Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (I.A.K.); (G.G.K.)
| | | | | |
Collapse
|
26
|
Valcárcel-Hernández V, Mayerl S, Guadaño-Ferraz A, Remaud S. Thyroid hormone action in adult neurogliogenic niches: the known and unknown. Front Endocrinol (Lausanne) 2024; 15:1347802. [PMID: 38516412 PMCID: PMC10954857 DOI: 10.3389/fendo.2024.1347802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Over the last decades, thyroid hormones (THs) signaling has been established as a key signaling cue for the proper maintenance of brain functions in adult mammals, including humans. One of the most fascinating roles of THs in the mature mammalian brain is their ability to regulate adult neurogliogenic processes. In this respect, THs control the generation of new neuronal and glial progenitors from neural stem cells (NSCs) as well as their final differentiation and maturation programs. In this review, we summarize current knowledge on the cellular organization of adult rodent neurogliogenic niches encompassing well-established niches in the subventricular zone (SVZ) lining the lateral ventricles, the hippocampal subgranular zone (SGZ), and the hypothalamus, but also less characterized niches in the striatum and the cerebral cortex. We then discuss critical questions regarding how THs availability is regulated in the respective niches in rodents and larger mammals as well as how modulating THs availability in those niches interferes with lineage decision and progression at the molecular, cellular, and functional levels. Based on those alterations, we explore the novel therapeutic avenues aiming at harnessing THs regulatory influences on neurogliogenic output to stimulate repair processes by influencing the generation of either new neurons (i.e. Alzheimer's, Parkinson's diseases), oligodendrocytes (multiple sclerosis) or both (stroke). Finally, we point out future challenges, which will shape research in this exciting field in the upcoming years.
Collapse
Affiliation(s)
- Victor Valcárcel-Hernández
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ana Guadaño-Ferraz
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
27
|
Puvogel S, Alsema A, North HF, Webster MJ, Weickert CS, Eggen BJL. Single-Nucleus RNA-Seq Characterizes the Cell Types Along the Neuronal Lineage in the Adult Human Subependymal Zone and Reveals Reduced Oligodendrocyte Progenitor Abundance with Age. eNeuro 2024; 11:ENEURO.0246-23.2024. [PMID: 38351133 PMCID: PMC10913050 DOI: 10.1523/eneuro.0246-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
The subependymal zone (SEZ), also known as the subventricular zone (SVZ), constitutes a neurogenic niche that persists during postnatal life. In humans, the neurogenic potential of the SEZ declines after the first year of life. However, studies discovering markers of stem and progenitor cells highlight the neurogenic capacity of progenitors in the adult human SEZ, with increased neurogenic activity occurring under pathological conditions. In the present study, the complete cellular niche of the adult human SEZ was characterized by single-nucleus RNA sequencing, and compared between four youth (age 16-22) and four middle-aged adults (age 44-53). We identified 11 cellular clusters including clusters expressing marker genes for neural stem cells (NSCs), neuroblasts, immature neurons, and oligodendrocyte progenitor cells. The relative abundance of NSC and neuroblast clusters did not differ between the two age groups, indicating that the pool of SEZ NSCs does not decline in this age range. The relative abundance of oligodendrocyte progenitors and microglia decreased in middle-age, indicating that the cellular composition of human SEZ is remodeled between youth and adulthood. The expression of genes related to nervous system development was higher across different cell types, including NSCs, in youth as compared with middle-age. These transcriptional changes suggest ongoing central nervous system plasticity in the SEZ in youth, which declined in middle-age.
Collapse
Affiliation(s)
- Sofía Puvogel
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen 9700 AD, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Astrid Alsema
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen 9700 AD, The Netherlands
| | - Hayley F North
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Rockville 20850, Maryland
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York 13201
| | - Bart J L Eggen
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen 9700 AD, The Netherlands
| |
Collapse
|
28
|
Martí-Clúa J. 5-Bromo-2'-deoxyuridine labeling: historical perspectives, factors influencing the detection, toxicity, and its implications in the neurogenesis. Neural Regen Res 2024; 19:302-308. [PMID: 37488882 PMCID: PMC10503596 DOI: 10.4103/1673-5374.379038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 07/26/2023] Open
Abstract
The halopyrimidine 5-bromo-2'-deoxyuridine (BrdU) is an exogenous marker of DNA synthesis. Since the introduction of monoclonal antibodies against BrdU, an increasing number of methodologies have been used for the immunodetection of this synthesized bromine-tagged base analogue into replicating DNA. BrdU labeling is widely used for identifying neuron precursors and following their fate during the embryonic, perinatal, and adult neurogenesis in a variety of vertebrate species including birds, reptiles, and mammals. Due to BrdU toxicity, its incorporation into replicating DNA presents adverse consequences on the generation, survival, and settled patterns of cells. This may lead to false results and misinterpretation in the identification of proliferative neuroblasts. In this review, I will indicate the detrimental effects of this nucleoside during the development of the central nervous system, as well as the reliability of BrdU labeling to detect proliferating neuroblasts. Moreover, it will show factors influencing BrdU immunodetection and the contribution of this nucleoside to the study of prenatal, perinatal, and adult neurogenesis. Human adult neurogenesis will also be discussed. It is my hope that this review serves as a reference for those researchers who focused on detecting cells that are in the synthetic phase of the cell cycle.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología. Departament de Biologia Cel·lular, de Fisiologia i d’Immunologia. Facultad de Biociencias. Institut de Neurociències. Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
29
|
Passarelli JP, Nimjee SM, Townsend KL. Stroke and Neurogenesis: Bridging Clinical Observations to New Mechanistic Insights from Animal Models. Transl Stroke Res 2024; 15:53-68. [PMID: 36462099 DOI: 10.1007/s12975-022-01109-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
Stroke was the 2nd leading cause of death and a major cause of morbidity. Unfortunately, there are limited means to promote neurological recovery post-stroke, but research has unearthed potential targets for therapies to encourage post-stroke neurogenesis and neuroplasticity. The occurrence of neurogenesis in adult mammalian brains, including humans, was not widely accepted until the 1990s. Now, adult neurogenesis has been extensively studied in human and mouse neurogenic brain niches, of which the subventricular zone of the lateral ventricles and subgranular zone of the dentate gyrus are best studied. Numerous other niches are under investigation for neurogenic potential. This review offers a basic overview to stroke in the clinical setting, a focused summary of recent and foundational research literature on cortical neurogenesis and post-stroke brain plasticity, and insights regarding how the meninges and choroid plexus have emerged as key players in neurogenesis and neuroplasticity in the context of focal cerebral ischemia disrupting the anterior circulation. The choroid plexus and meninges are vital as they are integral sites for neuroimmune interactions, glymphatic perfusion, and niche signaling pertinent to neural stem cells and neurogenesis. Modulating neuroimmune interactions with a focus on astrocyte activity, potentially through manipulation of the choroid plexus and meningeal niches, may reduce the exacerbation of stroke by inflammatory mediators and create an environment conducive to neurorecovery. Furthermore, addressing impaired glymphatic perfusion after ischemic stroke likely supports a neurogenic environment by clearing out inflammatory mediators, neurotoxic metabolites, and other accumulated waste. The meninges and choroid plexus also contribute more directly to promoting neurogenesis: the meninges are thought to harbor neural stem cells and are a niche amenable to neural stem/progenitor cell migration. Additionally, the choroid plexus has secretory functions that directly influences stem cells through signaling mechanisms and growth factor actions. More research to better understand the functions of the meninges and choroid plexus may lead to novel approaches for stimulating neuronal recovery after ischemic stroke.
Collapse
Affiliation(s)
| | - Shahid M Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Cao S, Yihao W, Qi T, Xiong A, Liu P, Chen Y, Zeng H, Yu F, Weng J. Combination of stem cells and nerve guide conduit for the treatment of peripheral nerve injury: A meta-analysis. Muscle Nerve 2024; 69:227-238. [PMID: 38063327 DOI: 10.1002/mus.28018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION/AIMS Many small-sized, single-center preclinical studies have investigated the benefits of introducing stem cells into the interior of nerve conduit. The aims of this meta-analysis are to review and contrast the effects of various types of stem cells in in vivo models used to reconstruct peripheral nerve injuries (PNIs) and to assess the reliability and stability of the available evidence. METHODS A systematic search was conducted using Cochrane Library, Embase, PubMed, and Web of Science to identify studies conducted from January 1, 2000, to September 21, 2022, and investigate stem cell therapy in peripheral nerve reconstruction animal models. Studies that met the relevant criteria were deemed eligible for this meta-analysis. RESULTS Fifty-five preclinical studies with a total of 1234 animals were incorporated. Stem cells demonstrated a positive impact on peripheral nerve regeneration at different follow-up times in the forest plots of five outcome indicators: compound muscle action potential (CMAP) amplitude, latency, muscle mass ratio, nerve conduction velocity, and sciatic functional index (SFI). In most comparisons, stem cell groups showed substantial differences compared with the control groups. The superior performance of adipose-derived stem cells (ADSCs) in terms of SFI, CMAP amplitude, and latency (p < .001) was identified. DISCUSSION The findings consistently demonstrated a favorable outcome in the reconstruction process when utilizing different groups of stem cells, as opposed to control groups where stem cells were not employed.
Collapse
Affiliation(s)
- Siyang Cao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Wei Yihao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Yingqi Chen
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
31
|
Kozlenkov A, Vadukapuram R, Zhou P, Fam P, Wegner M, Dracheva S. Novel method of isolating nuclei of human oligodendrocyte precursor cells reveals substantial developmental changes in gene expression and H3K27ac histone modification. Glia 2024; 72:69-89. [PMID: 37712493 PMCID: PMC10697634 DOI: 10.1002/glia.24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) generate differentiated mature oligodendrocytes (MOs) during development. In adult brain, OPCs replenish MOs in adaptive plasticity, neurodegenerative disorders, and after trauma. The ability of OPCs to differentiate to MOs decreases with age and is compromised in disease. Here we explored the cell specific and age-dependent differences in gene expression and H3K27ac histone mark in these two cell types. H3K27ac is indicative of active promoters and enhancers. We developed a novel flow-cytometry-based approach to isolate OPC and MO nuclei from human postmortem brain and profiled gene expression and H3K27ac in adult and infant OPCs and MOs genome-wide. In adult brain, we detected extensive H3K27ac differences between the two cell types with high concordance between gene expression and epigenetic changes. Notably, the expression of genes that distinguish MOs from OPCs appears to be under a strong regulatory control by the H3K27ac modification in MOs but not in OPCs. Comparison of gene expression and H3K27ac between infants and adults uncovered numerous developmental changes in each cell type, which were linked to several biological processes, including cell proliferation and glutamate signaling. A striking example was a subset of histone genes that were highly active in infant samples but fully lost activity in adult brain. Our findings demonstrate a considerable rearrangement of the H3K27ac landscape that occurs during the differentiation of OPCs to MOs and during postnatal development of these cell types, which aligned with changes in gene expression. The uncovered regulatory changes justify further in-depth epigenetic studies of OPCs and MOs in development and disease.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramu Vadukapuram
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ping Zhou
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Fam
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stella Dracheva
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Šimončičová E, Henderson Pekarik K, Vecchiarelli HA, Lauro C, Maggi L, Tremblay MÈ. Adult Neurogenesis, Learning and Memory. ADVANCES IN NEUROBIOLOGY 2024; 37:221-242. [PMID: 39207695 DOI: 10.1007/978-3-031-55529-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neural plasticity can be defined as the ability of neural circuits to be shaped by external and internal factors. It provides the brain with a capacity for functional and morphological remodelling, with many lines of evidence indicating that these changes are vital for learning and memory formation. The basis of this brain plasticity resides in activity- and experience-driven modifications of synaptic strength, including synaptic formation, elimination or weakening, as well as of modulation of neuronal population, which drive the structural reorganization of neural networks. Recent evidence indicates that brain-resident glial cells actively participate in these processes, suggesting that mechanisms underlying plasticity in the brain are multifaceted. Establishing the 'tripartite' synapse, the role of astrocytes in modulating synaptic transmission in response to neuronal activity was recognized first. Further redefinition of the synapse as 'quad-partite' followed to acknowledge the contribution of microglia which were revealed to affect numerous brain functions via dynamic interactions with synapses, acting as 'synaptic sensors' that respond to neuronal activity and neurotransmitter release, as well as crosstalk with astrocytes. Early studies identified microglial ability to dynamically survey their local brain environment and established their integral role in the active interfacing of environmental stimuli (both internal and external), with brain plasticity and remodelling. Following the introduction to neurogenesis, this chapter details the role that microglia play in regulating neurogenesis in adulthood, specifically as it relates to learning and memory, as well as factors involved in modulation of microglia. Further, a microglial perspective is introduced for the context of environmental enrichment impact on neurogenesis, learning and memory across states of stress, ageing, disease and injury.
Collapse
Affiliation(s)
- Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | | | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
33
|
Liu Y, Tan J, Miao Y, Zhang Q. Neurogenesis, A Potential Target for Intermittent Hypoxia Leading to Cognitive Decline. Curr Stem Cell Res Ther 2024; 19:63-70. [PMID: 37005547 DOI: 10.2174/1574888x18666230330083206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 04/04/2023]
Abstract
As a sleep breathing disorder, characterized by intermittent hypoxia (IH) and Obstructive sleep apnea (OSA), is believed to decrease the cognitive function of patients. Many factors are thought to be responsible for cognitive decline in OSA patients. Neurogenesis, a process by which neural stem cells (NSCs) differentiate into new neurons in the brain, is a major determinant affecting cognitive function. However, there is no clear relationship between IH or OSA and neurogenesis. In recent years, increasing numbers of studies on IH and neurogenesis are documented. Therefore, this review summarizes the effects of IH on neurogenesis; then discusses the influencing factors that may cause these effects and the potential signaling pathways that may exist. Finally, based on this impact, we discuss potential methods and future directions for improving cognition.
Collapse
Affiliation(s)
- Yuxing Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Yuyang Miao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
34
|
Chang WL, Hen R. Adult Neurogenesis, Context Encoding, and Pattern Separation: A Pathway for Treating Overgeneralization. ADVANCES IN NEUROBIOLOGY 2024; 38:163-193. [PMID: 39008016 DOI: 10.1007/978-3-031-62983-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In mammals, the subgranular zone of the dentate gyrus is one of two brain regions (with the subventricular zone of the olfactory bulb) that continues to generate new neurons throughout adulthood, a phenomenon known as adult hippocampal neurogenesis (AHN) (Eriksson et al., Nat Med 4:1313-1317, 1998; García-Verdugo et al., J Neurobiol 36:234-248, 1998). The integration of these new neurons into the dentate gyrus (DG) has implications for memory encoding, with unique firing and wiring properties of immature neurons that affect how the hippocampal network encodes and stores attributes of memory. In this chapter, we will describe the process of AHN and properties of adult-born cells as they integrate into the hippocampal circuit and mature. Then, we will discuss some methodological considerations before we review evidence for the role of AHN in two major processes supporting memory that are performed by the DG. First, we will discuss encoding of contextual information for episodic memories and how this is facilitated by AHN. Second, will discuss pattern separation, a major role of the DG that reduces interference for the formation of new memories. Finally, we will review clinical and translational considerations, suggesting that stimulation of AHN may help decrease overgeneralization-a common endophenotype of mood, anxiety, trauma-related, and age-related disorders.
Collapse
Affiliation(s)
- Wei-Li Chang
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Rene Hen
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA.
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
35
|
Belge JB, Mulders P, Van Diermen L, Sienaert P, Sabbe B, Abbott CC, Tendolkar I, Schrijvers D, van Eijndhoven P. Reviewing the neurobiology of electroconvulsive therapy on a micro- meso- and macro-level. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110809. [PMID: 37331685 DOI: 10.1016/j.pnpbp.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) remains the one of the most effective of biological antidepressant interventions. However, the exact neurobiological mechanisms underlying the efficacy of ECT remain unclear. A gap in the literature is the lack of multimodal research that attempts to integrate findings at different biological levels of analysis METHODS: We searched the PubMed database for relevant studies. We review biological studies of ECT in depression on a micro- (molecular), meso- (structural) and macro- (network) level. RESULTS ECT impacts both peripheral and central inflammatory processes, triggers neuroplastic mechanisms and modulates large scale neural network connectivity. CONCLUSIONS Integrating this vast body of existing evidence, we are tempted to speculate that ECT may have neuroplastic effects resulting in the modulation of connectivity between and among specific large-scale networks that are altered in depression. These effects could be mediated by the immunomodulatory properties of the treatment. A better understanding of the complex interactions between the micro-, meso- and macro- level might further specify the mechanisms of action of ECT.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Linda Van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Andreas Vesaliuslaan 39, Zoersel 2980, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Leuvensesteenweg 517, Kortenberg 3010, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
36
|
Riley VA, Shankar V, Holmberg JC, Sokolov AM, Neckles VN, Williams K, Lyman R, Mackay TF, Feliciano DM. Tsc2 coordinates neuroprogenitor differentiation. iScience 2023; 26:108442. [PMID: 38107199 PMCID: PMC10724693 DOI: 10.1016/j.isci.2023.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem cells (NSCs) of the ventricular-subventricular zone (V-SVZ) generate numerous cell types. The uncoupling of mRNA transcript availability and translation occurs during the progression from stem to differentiated states. The mTORC1 kinase pathway acutely controls proteins that regulate mRNA translation. Inhibiting mTORC1 during differentiation is hypothesized to be critical for brain development since somatic mutations of mTORC1 regulators perturb brain architecture. Inactivating mutations of TSC1 or TSC2 genes cause tuberous sclerosis complex (TSC). TSC patients have growths near the striatum and ventricles. Here, it is demonstrated that V-SVZ NSC Tsc2 inactivation causes striatal hamartomas. Tsc2 removal altered translation factors, translatomes, and translational efficiency. Single nuclei RNA sequencing following in vivo loss of Tsc2 revealed changes in NSC activation states. The inability to decouple mRNA transcript availability and translation delayed differentiation leading to the retention of immature phenotypes in hamartomas. Taken together, Tsc2 is required for translational repression and differentiation.
Collapse
Affiliation(s)
- Victoria A. Riley
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Vijay Shankar
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | | | - Aidan M. Sokolov
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - Kaitlyn Williams
- Clemson University Genomics and Bioinformatics Facility (CUGBF), Clemson University, Clemson, SC, USA
| | - Rachel Lyman
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Trudy F.C. Mackay
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| |
Collapse
|
37
|
Fiorito AM, Fakra E, Sescousse G, Ibrahim EC, Rey R. Molecular mapping of a core transcriptional signature of microglia-specific genes in schizophrenia. Transl Psychiatry 2023; 13:386. [PMID: 38092734 PMCID: PMC10719376 DOI: 10.1038/s41398-023-02677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Besides playing a central role in neuroinflammation, microglia regulate synaptic development and is involved in plasticity. Converging lines of evidence suggest that these different processes play a critical role in schizophrenia. Furthermore, previous studies reported altered transcription of microglia genes in schizophrenia, while microglia itself seems to be involved in the etiopathology of the disease. However, the regional specificity of these brain transcriptional abnormalities remains unclear. Moreover, it is unknown whether brain and peripheral expression of microglia genes are related. Thus, we investigated the expression of a pre-registered list of 10 genes from a core signature of human microglia both at brain and peripheral levels. We included 9 independent Gene Expression Omnibus datasets (764 samples obtained from 266 individuals with schizophrenia and 237 healthy controls) from 8 different brain regions and 3 peripheral tissues. We report evidence of a widespread transcriptional alteration of microglia genes both in brain tissues (we observed a decreased expression in the cerebellum, associative striatum, hippocampus, and parietal cortex of individuals with schizophrenia compared with healthy controls) and whole blood (characterized by a mixed altered expression pattern). Our results suggest that brain underexpression of microglia genes may represent a candidate transcriptional signature for schizophrenia. Moreover, the dual brain-whole blood transcriptional alterations of microglia/macrophage genes identified support the model of schizophrenia as a whole-body disorder and lend weight to the use of blood samples as a potential source of biological peripheral biomarkers.
Collapse
Affiliation(s)
- Anna M Fiorito
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - Eric Fakra
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France
| | - Romain Rey
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France.
- Centre Hospitalier Le Vinatier, Bron, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
38
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
39
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
40
|
Chung C, Yang X, Hevner RF, Kennedy K, Vong KI, Liu Y, Patel A, Nedunuri R, Barton ST, Barrows C, Stanley V, Mittal S, Breuss MW, Schlachetzki JCM, Gleeson JG. Cell-type-resolved somatic mosaicism reveals clonal dynamics of the human forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563814. [PMID: 37961480 PMCID: PMC10634852 DOI: 10.1101/2023.10.24.563814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Debate remains around anatomic origins of specific brain cell subtypes and lineage relationships within the human forebrain. Thus, direct observation in the mature human brain is critical for a complete understanding of the structural organization and cellular origins. Here, we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific Mosaic Variant Barcode Analysis. From four hemispheres from two different human neurotypical donors, we identified 287 and 780 mosaic variants (MVs), respectively that were used to deconvolve clonal dynamics. Clonal spread and allelic fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted compared with resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome-transcriptome analysis at both a cell-type-specific and single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of MVs across 17 locations within one parietal lobe reveals restrictions of clonal spread in the anterior-posterior axis precedes that of the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus cell-type resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.
Collapse
Affiliation(s)
- Changuk Chung
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Robert F. Hevner
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
- Department of Pathology, UC San Diego School of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | | | - Keng Ioi Vong
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Yang Liu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Arzoo Patel
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Rahul Nedunuri
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Scott T. Barton
- Division of Medical Education, School of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Chelsea Barrows
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Valentina Stanley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Swapnil Mittal
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Martin W. Breuss
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Aurora, CO, 80045, USA
| | | | - Joseph G. Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| |
Collapse
|
41
|
Williamson MR, Le SP, Franzen RL, Donlan NA, Rosow JL, Nicot-Cartsonis MS, Cervantes A, Deneen B, Dunn AK, Jones TA, Drew MR. Subventricular zone cytogenesis provides trophic support for neural repair in a mouse model of stroke. Nat Commun 2023; 14:6341. [PMID: 37816732 PMCID: PMC10564905 DOI: 10.1038/s41467-023-42138-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Stroke enhances proliferation of neural precursor cells within the subventricular zone (SVZ) and induces ectopic migration of newborn cells towards the site of injury. Here, we characterize the identity of cells arising from the SVZ after stroke and uncover a mechanism through which they facilitate neural repair and functional recovery. With genetic lineage tracing, we show that SVZ-derived cells that migrate towards cortical photothrombotic stroke in mice are predominantly undifferentiated precursors. We find that ablation of neural precursor cells or conditional knockout of VEGF impairs neuronal and vascular reparative responses and worsens recovery. Replacement of VEGF is sufficient to induce neural repair and recovery. We also provide evidence that CXCL12 from peri-infarct vasculature signals to CXCR4-expressing cells arising from the SVZ to direct their ectopic migration. These results support a model in which vasculature surrounding the site of injury attracts cells from the SVZ, and these cells subsequently provide trophic support that drives neural repair and recovery.
Collapse
Affiliation(s)
- Michael R Williamson
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
| | - Stephanie P Le
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Ronald L Franzen
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nicole A Donlan
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Jill L Rosow
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | - Alexis Cervantes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience and Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience and Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Andrew K Dunn
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Theresa A Jones
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Michael R Drew
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
42
|
Roeder SS, Bonnin EA, Wu TD, Guerquin-Kern JL, Jabari S, Brandner S, Eyüpoglu IY, Gollwitzer S, Hamer HM, Gerner ST, Doeppner TR, Rummel C, Englund E, Heimke-Brinck R, Borst T, Daniel C, Amann K, Schlötzer-Schrehardt U, Tonchev AB, Roessler K, Schwab S, Bergmann O, Rizzoli SO, Huttner HB. Tracking cell turnover in human brain using 15N-thymidine imaging mass spectrometry. Front Neurosci 2023; 17:1274607. [PMID: 37869505 PMCID: PMC10585107 DOI: 10.3389/fnins.2023.1274607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Microcephaly is often caused by an impairment of the generation of neurons in the brain, a process referred to as neurogenesis. While most neurogenesis in mammals occurs during brain development, it thought to continue to take place through adulthood in selected regions of the mammalian brain, notably the hippocampus. However, the generality of neurogenesis in the adult brain has been controversial. While studies in mice and rats have provided compelling evidence for neurogenesis occurring in the adult rodent hippocampus, the lack of applicability in humans of key methods to demonstrate neurogenesis has led to an intense debate about the existence and, in particular, the magnitude of neurogenesis in the adult human brain. Here, we demonstrate the applicability of a powerful method to address this debate, that is, the in vivo labeling of adult human patients with 15N-thymidine, a non-hazardous form of thymidine, an approach without any clinical harm or ethical concerns. 15N-thymidine incorporation into newly synthesized DNA of specific cells was quantified at the single-cell level with subcellular resolution by Multiple-isotype imaging mass spectrometry (MIMS) of brain tissue resected for medical reasons. Two adult human patients, a glioblastoma patient and a patient with drug-refractory right temporal lobe epilepsy, were infused for 24 h with 15N-thymidine. Detection of 15N-positive leukocyte nuclei in blood samples from these patients confirmed previous findings by others and demonstrated the appropriateness of this approach to search for the generation of new cells in the adult human brain. 15N-positive neural cells were easily identified in the glioblastoma tissue sample, and the range of the 15N signal suggested that cells that underwent S-phase fully or partially during the 24 h in vivo labeling period, as well as cells generated therefrom, were detected. In contrast, within the hippocampus tissue resected from the epilepsy patient, none of the 2,000 dentate gyrus neurons analyzed was positive for 15N-thymidine uptake, consistent with the notion that the rate of neurogenesis in the adult human hippocampus is rather low. Of note, the likelihood of detecting neurogenesis was reduced because of (i) the low number of cells analyzed, (ii) the fact that hippocampal tissue was explored that may have had reduced neurogenesis due to epilepsy, and (iii) the labeling period of 24 h which may have been too short to capture quiescent neural stem cells. Yet, overall, our approach to enrich NeuN-labeled neuronal nuclei by FACS prior to MIMS analysis provides a promising strategy to quantify even low rates of neurogenesis in the adult human hippocampus after in vivo15N-thymidine infusion. From a general point of view and regarding future perspectives, the in vivo labeling of humans with 15N-thymidine followed by MIMS analysis of brain tissue constitutes a novel approach to study mitotically active cells and their progeny in the brain, and thus allows a broad spectrum of studies of brain physiology and pathology, including microcephaly.
Collapse
Affiliation(s)
- Sebastian S Roeder
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Elisa A Bonnin
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Excellence Cluster Multiscale Bioimaging, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Ting-Di Wu
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UAR2016, Inserm US-43, Multimodal Imaging Center, Paris, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UAR2016, Inserm US-43, Multimodal Imaging Center, Paris, France
| | - Samir Jabari
- Department of Neuropathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Brandner
- Department of Neurosurgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ilker Y Eyüpoglu
- Department of Neurosurgery, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany
| | | | - Hajo M Hamer
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan T Gerner
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Neurology, Justus Liebig University, Gießen, Germany
| | | | - Christoph Rummel
- Department of Veterinary Physiology and Biochemistry, Justus Liebig University, Gießen, Germany
| | - Elisabet Englund
- Department of Clinical Sciences, University of Lund, Lund, Sweden
| | | | - Tobias Borst
- Pharmacy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anton B Tonchev
- Department of Anatomy and Cell Biology and Stem Cell Biology Research Institute, Medical University Varna, Varna, Bulgaria
| | - Karl Roessler
- Department of Neurosurgery, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Neurosurgery, University of Vienna, Vienna, Austria
| | - Stefan Schwab
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Olaf Bergmann
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Institute of Pharmacology and Toxicology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Excellence Cluster Multiscale Bioimaging, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Neurology, Justus Liebig University, Gießen, Germany
| |
Collapse
|
43
|
Ferrari Bardile C, Radulescu CI, Pouladi MA. Oligodendrocyte pathology in Huntington's disease: from mechanisms to therapeutics. Trends Mol Med 2023; 29:802-816. [PMID: 37591764 DOI: 10.1016/j.molmed.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes (OLGs), highly specialized glial cells that wrap axons with myelin sheaths, are critical for brain development and function. There is new recognition of the role of OLGs in the pathogenesis of neurodegenerative diseases (NDDs), including Huntington's disease (HD), a prototypic NDD caused by a polyglutamine tract expansion in huntingtin (HTT), which results in gain- and loss-of-function effects. Clinically, HD is characterized by a constellation of motor, cognitive, and psychiatric disturbances. White matter (WM) structures, representing myelin-rich regions of the brain, are profoundly affected in HD, and recent findings reveal oligodendroglia dysfunction as an early pathological event. Here, we focus on mechanisms that underlie oligodendroglial deficits and dysmyelination in the progression of the disease, highlighting the pathogenic contributions of mutant HTT (mHTT). We also discuss potential therapeutic implications involving these molecular pathways.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carola I Radulescu
- UK Dementia Research Institute, Imperial College London, London, W12 0NN, UK
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
44
|
Li J, Jaiswal MK, Chien JF, Kozlenkov A, Jung J, Zhou P, Gardashli M, Pregent LJ, Engelberg-Cook E, Dickson DW, Belzil VV, Mukamel EA, Dracheva S. Divergent single cell transcriptome and epigenome alterations in ALS and FTD patients with C9orf72 mutation. Nat Commun 2023; 14:5714. [PMID: 37714849 PMCID: PMC10504300 DOI: 10.1038/s41467-023-41033-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
A repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we investigate single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem motor and frontal cortices from C9-ALS, C9-FTD, and control donors. C9-ALS donors present pervasive alterations of gene expression with concordant changes in chromatin accessibility and histone modifications. The greatest alterations occur in upper and deep layer excitatory neurons, as well as in astrocytes. In neurons, the changes imply an increase in proteostasis, metabolism, and protein expression pathways, alongside a decrease in neuronal function. In astrocytes, the alterations suggest activation and structural remodeling. Conversely, C9-FTD donors have fewer high-quality neuronal nuclei in the frontal cortex and numerous gene expression changes in glial cells. These findings highlight a context-dependent molecular disruption in C9-ALS and C9-FTD, indicating unique effects across cell types, brain regions, and diseases.
Collapse
Affiliation(s)
- Junhao Li
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US
| | - Manoj K Jaiswal
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jo-Fan Chien
- Department of Physics, University of California San Diego, La Jolla, CA, 92037, US
| | - Alexey Kozlenkov
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jinyoung Jung
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Ping Zhou
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | | | - Luc J Pregent
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US.
| | - Stella Dracheva
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US.
- Research & Development and VISN2 MIREC, James J, Peters VA Medical Center, Bronx, NY, 10468, US.
| |
Collapse
|
45
|
Bazarek SF, Thaqi M, King P, Mehta AR, Patel R, Briggs CA, Reisenbigler E, Yousey JE, Miller EA, Stutzmann GE, Marr RA, Peterson DA. Engineered neurogenesis in naïve adult rat cortex by Ngn2-mediated neuronal reprogramming of resident oligodendrocyte progenitor cells. Front Neurosci 2023; 17:1237176. [PMID: 37662111 PMCID: PMC10471311 DOI: 10.3389/fnins.2023.1237176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Adult tissue stem cells contribute to tissue homeostasis and repair but the long-lived neurons in the human adult cerebral cortex are not replaced, despite evidence for a limited regenerative response. However, the adult cortex contains a population of proliferating oligodendrocyte progenitor cells (OPCs). We examined the capacity of rat cortical OPCs to be re-specified to a neuronal lineage both in vitro and in vivo. Expressing the developmental transcription factor Neurogenin2 (Ngn2) in OPCs isolated from adult rat cortex resulted in their expression of early neuronal lineage markers and genes while downregulating expression of OPC markers and genes. Ngn2 induced progression through a neuronal lineage to express mature neuronal markers and functional activity as glutamatergic neurons. In vivo retroviral gene delivery of Ngn2 to naive adult rat cortex ensured restricted targeting to proliferating OPCs. Ngn2 expression in OPCs resulted in their lineage re-specification and transition through an immature neuronal morphology into mature pyramidal cortical neurons with spiny dendrites, axons, synaptic contacts, and subtype specification matching local cytoarchitecture. Lineage re-specification of rat cortical OPCs occurred without prior injury, demonstrating these glial progenitor cells need not be put into a reactive state to achieve lineage reprogramming. These results show it may be feasible to precisely engineer additional neurons directly in adult cerebral cortex for experimental study or potentially for therapeutic use to modify dysfunctional or damaged circuitry.
Collapse
Affiliation(s)
- Stanley F. Bazarek
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Mentor Thaqi
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Patrick King
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Amol R. Mehta
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Ronil Patel
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Clark A. Briggs
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Emily Reisenbigler
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Jonathon E. Yousey
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Elis A. Miller
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Grace E. Stutzmann
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Robert A. Marr
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Daniel A. Peterson
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
46
|
Plesa AM, Shadpour M, Boyden E, Church GM. Transcriptomic reprogramming for neuronal age reversal. Hum Genet 2023; 142:1293-1302. [PMID: 37004545 PMCID: PMC10066999 DOI: 10.1007/s00439-023-02529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 04/04/2023]
Abstract
Aging is a progressive multifaceted functional decline of a biological system. Chronic age-related conditions such as neurodegenerative diseases are leading causes of death worldwide, and they are becoming a pressing problem for our society. To address this global challenge, there is a need for novel, safe, and effective rejuvenation therapies aimed at reversing age-related phenotypes and improving human health. With gene expression being a key determinant of cell identity and function, and in light of recent studies reporting rejuvenation effects through genetic perturbations, we propose an age reversal strategy focused on reprogramming the cell transcriptome to a youthful state. To this end, we suggest using transcriptomic data from primary human cells to predict rejuvenation targets and develop high-throughput aging assays, which can be used in large perturbation screens. We propose neural cells as particularly relevant targets for rejuvenation due to substantial impact of neurodegeneration on human frailty. Of all cell types in the brain, we argue that glutamatergic neurons, neuronal stem cells, and oligodendrocytes represent the most impactful and tractable targets. Lastly, we provide experimental designs for anti-aging reprogramming screens that will likely enable the development of neuronal age reversal therapies, which hold promise for dramatically improving human health.
Collapse
Affiliation(s)
- Alexandru M. Plesa
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Michael Shadpour
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
- Department of Biological Engineering, MIT, Cambridge, MA USA
| | - Ed Boyden
- Department of Biological Engineering, MIT, Cambridge, MA USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| |
Collapse
|
47
|
Higuchi Y, Arakawa H. Serotonergic mediation of the brain-wide neurogenesis: Region-dependent and receptor-type specific roles on neurogenic cellular transformation. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100102. [PMID: 37638344 PMCID: PMC10458724 DOI: 10.1016/j.crneur.2023.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 08/29/2023] Open
Abstract
Brain serotonin (5-hydroxytryptamine, 5-HT) is a key molecule for the mediation of depression-related brain states, but the neural mechanisms underlying 5-HT mediation need further investigation. A possible mechanism of the therapeutic antidepressant effects is neurogenic cell production, as stimulated by 5-HT signaling. Neurogenesis, the proliferation of neural stem cells (NSCs), and cell differentiation and maturation occur across brain regions, particularly the hippocampal dentate gyrus and the subventricular zone, throughout one's lifespan. 5-HT plays a major role in the mediation of neurogenic processes, which in turn leads to the therapeutic effect on depression-related states. In this review article, we aim to identify how the neuronal 5-HT system mediates the process of neurogenesis, including cell proliferation, cell-type differentiation and maturation. First, we will provide an overview of the neurogenic cell transformation that occurs in brain regions containing or lacking NSCs. Second, we will review brain region-specific mechanisms of 5-HT-mediated neurogenesis by comparing regions localized to NSCs, i.e., the hippocampus and subventricular zone, with those not containing NSCs. Highlighting these 5-HT mechanisms that mediate neurogenic cell production processes in a brain-region-specific manner would provide unique insights into the role of 5-HT in neurogenesis and its associated effects on depression.
Collapse
Affiliation(s)
- Yuki Higuchi
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroyuki Arakawa
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
48
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
49
|
Blasco-Chamarro L, Fariñas I. Fine-tuned rest: unveiling the regulatory landscape of adult quiescent neural stem cells. Neuroscience 2023:S0306-4522(23)00298-1. [PMID: 37437796 DOI: 10.1016/j.neuroscience.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Cell quiescence is an essential mechanism that allows cells to temporarily halt proliferation while preserving the potential to resume it at a later time. The molecular mechanisms underlying cell quiescence are complex and involve the regulation of various signaling pathways, transcription factors and epigenetic modifications. The importance of unveiling the mechanisms regulating the quiescent state is undeniable, as its long-term maintenance is key to sustain tissue homeostasis throughout life. Neural stem cells (NSCs) are maintained in the subependymal zone (SEZ) niche of adult mammalian brains mostly as long-lasting quiescent cells, owing to multiple intrinsic and extrinsic cues that actively regulate this state. Differently from other non-proliferative states, quiescence is a reversible and tightly regulated condition that can re-activate to support the formation of new neurons throughout adult lifespan. Decoding its regulatory mechanisms in homeostasis and unveiling how it is modulated in the context of the aged brain or during tumorigenesis, could bring us closer to the development of new potential strategies to intervene in adult neurogenesis with therapeutic purposes. Starting with a general conceptualization of the quiescent state in different stem cell niches, we here review what we have learned about NSC quiescence in the SEZ, encompassing the experimental strategies used for its study, to end up discussing the modulation of quiescence in the context of a physiology or pathological NSC dysregulation.
Collapse
Affiliation(s)
- Laura Blasco-Chamarro
- Biomedical Research Network on Neurodegenerative Diseases (CIBERNED); Department of Cell Biology; Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, Spain
| | - Isabel Fariñas
- Biomedical Research Network on Neurodegenerative Diseases (CIBERNED); Department of Cell Biology; Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, Spain.
| |
Collapse
|
50
|
Arancibia-Opazo S, Contreras-Riquelme JS, Sánchez M, Cisternas-Olmedo M, Vidal RL, Martin AJM, Sáez MA. Transcriptional and Histone Acetylation Changes Associated with CRE Elements Expose Key Factors Governing the Regulatory Circuit in the Early Stage of Huntington's Disease Models. Int J Mol Sci 2023; 24:10848. [PMID: 37446028 DOI: 10.3390/ijms241310848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Huntington's disease (HD) is a disorder caused by an abnormal expansion of trinucleotide CAG repeats within the huntingtin (Htt) gene. Under normal conditions, the CREB Binding Protein interacts with CREB elements and acetylates Lysine 27 of Histone 3 to direct the expression of several genes. However, mutant Htt causes depletion of CBP, which in turn induces altered histone acetylation patterns and transcriptional deregulation. Here, we have studied a differential expression analysis and H3K27ac variation in 4- and 6-week-old R6/2 mice as a model of juvenile HD. The analysis of differential gene expression and acetylation levels were integrated into Gene Regulatory Networks revealing key regulators involved in the altered transcription cascade. Our results show changes in acetylation and gene expression levels that are related to impaired neuronal development, and key regulators clearly defined in 6-week-old mice are proposed to drive the downstream regulatory cascade in HD. Here, we describe the first approach to determine the relationship among epigenetic changes in the early stages of HD. We determined the existence of changes in pre-symptomatic stages of HD as a starting point for early onset indicators of the progression of this disease.
Collapse
Affiliation(s)
- Sandra Arancibia-Opazo
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago 8580745, Chile
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Universidad San Sebastián, Santiago 8580704, Chile
| | - J Sebastián Contreras-Riquelme
- Plant Genome Regulation Lab, Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Mario Sánchez
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Marisol Cisternas-Olmedo
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380455, Chile
- Center for Geroscience, Brain Health, and Metabolism, Santiago 8380453, Chile
| | - René L Vidal
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380455, Chile
- Center for Geroscience, Brain Health, and Metabolism, Santiago 8380453, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Universidad San Sebastián, Santiago 8580704, Chile
- Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 7500000, Chile
| | - Mauricio A Sáez
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Centro de Oncología de Precisión, Facultad de Medicina Universidad Mayor, Santiago 7560908, Chile
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile
| |
Collapse
|