1
|
Ge Q, Zeng Q, Li S, Ji S. Improving the washability of conductive textiles by constructing a dually crosslinked polyvinyl alcohol network with silver nanowires. NANOSCALE 2025. [PMID: 40237029 DOI: 10.1039/d5nr01022e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Conductive textiles, as an important platform for developing wearable electronic devices, often face challenges related to washing to remove dirt while retaining conductivity. It is still a great challenge to manufacture textiles with high conductivity, washability and uniformity in an efficient and economical way. Polyvinyl alcohol (PVA) containing numerous hydroxyl groups allowing easy modification and crosslinking is a promising candidate for conductive textile construction. Herein, a stable composite ink with PVA as the matrix and silver nanowires (AgNWs) as the conductive filler for screen printing on textile surfaces is proposed. The composite conductive network endows the fabric with the highest conductivity up to 2087 S cm-1 and a low percolation threshold of 0.025 mg cm-2 for AgNW mass loading. The printed conductive pattern shows high uniformity even for a line width as small as 500 μm on fabric. The resistance change of conductive textiles washed at 60 °C for 1 h is reduced from 500 000% to 40%, thanks to the cooperation of a physically and chemically dually crosslinked polymer network with a conductive AgNW network. The prepared outperforming conductive textiles and their potential for mass production of patterned fabric electrodes provide a basis for further development of smart fabrics and wearable electronics.
Collapse
Affiliation(s)
- Qianru Ge
- Auhui University, Hefei 230601, People's Republic of China
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Qingyang Zeng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Shuxin Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Shulin Ji
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| |
Collapse
|
2
|
Wen H, Si Y, Chen Z, Xin Y, Cao S, Chen C, Zu H, He D. GO-Enhanced MXene Sediment-Based Inks Achieve Remarkable Oxidation Resistance and High Conductivity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12731-12738. [PMID: 39950987 DOI: 10.1021/acsami.4c23060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
MXenes are emerging materials renowned for their exceptional conductivity, abundant functional groups, and excellent solution processability, making them highly promising as conductive-additive-free inks for flexible electronic devices. However, current preparation methods are hampered by low yields of MXene flakes so that substantial waste MXene sediments (MS) are generated. Here, we demonstrate a type of conductive ink with appropriate rheological properties, namely MG inks formulated using MS and graphene oxide (GO), for screen-printing frequency selective surface (FSS). GO facilitates interlayer interactions by covalently cross-linking with MXene flakes, resulting in a denser structure and significantly enhancing the conductivity of the best-performing MG-based ink to 849 S cm-1. Additionally, GO serves as a binder to considerably improve the rheological properties of MS, thus enabling high-quality printing on various substrates. The close stacking of MS and GO not only improves the oxidation resistance but also maintains conductivity above 97% even after 60 days. Furthermore, the MG-based FSS produced via straightforward screen printing demonstrates excellent performance and retains its functionality after 90 days of operation. This MS-based ink formulation represents a strategy of "turning trash into treasure" and highlights the potential of MS for the next generation of electronic devices.
Collapse
Affiliation(s)
- Haofan Wen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Yunfa Si
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Zibo Chen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Yitong Xin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Shaowen Cao
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Cheng Chen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Haoran Zu
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Daping He
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Orzari LO, Kalinke C, Silva-Neto HA, Rocha DS, Camargo J, Coltro WK, Janegitz BC. Screen-Printing vs Additive Manufacturing Approaches: Recent Aspects and Trends Involving the Fabrication of Electrochemical Sensors. Anal Chem 2025; 97:1482-1494. [PMID: 39817415 PMCID: PMC11780578 DOI: 10.1021/acs.analchem.4c05786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring. Modern designs have given rise to innovative manufacturing protocols, including screen and additive printing methods, for creating sophisticated 2D and 3D electrochemical devices. This perspective provides a comprehensive overview of the screen-printing and additive-printing protocols for constructing electrochemical devices. It is also informed that screen-printed sensors offer cost-effectiveness and ease of fabrication, although they may pose challenges due to the use of toxic volatile inks and limited design flexibility. On the other hand, additive manufacturing, especially the fused filament fabrication (or fused deposition modeling) strategies, allows for intricate three-dimensional sensor designs and rapid prototyping of customized equipment. However, the post-treatment processes and material selection can affect production costs. Despite their unique advantages and limitations, both printing techniques show promise for various applications, driving innovation in the field toward more advanced sensor designs. Finally, these advancements pave the way for improved sensor performance and expand possibilities for academic, environmental, and industrial applications. The future is full of exciting opportunities for state-of-the-art sensor technologies that will further improve our ability to detect and determine various substances in a wide range of environments as researchers continue to explore the many possibilities of electrochemical devices.
Collapse
Affiliation(s)
- Luiz O. Orzari
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
- Department
of Physics, Chemistry and Mathematics, Federal
University of São Carlos, 18052-780 Sorocaba, São Paulo, Brazil
| | - Cristiane Kalinke
- Institute
of Chemistry, University of Campinas, 13083-859 Campinas, São Paulo, Brazil
- Department
of Chemistry, Federal University of Parana, 81531-980 Curitiba, Paraná, Brazil
| | - Habdias A. Silva-Neto
- Department
of Chemistry, Federal University of Santa
Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Danielly S. Rocha
- Institute
of Chemistry, Federal University of Goiás, 74690-900 Goiânia, Goiás, Brazil
| | - Jéssica
R. Camargo
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
- Department
of Physics, Chemistry and Mathematics, Federal
University of São Carlos, 18052-780 Sorocaba, São Paulo, Brazil
| | - Wendell K.T. Coltro
- Institute
of Chemistry, Federal University of Goiás, 74690-900 Goiânia, Goiás, Brazil
- National
Institute of Bioanalytical Science and Technology, 13084-971 Campinas, São Paulo, Brazil
| | - Bruno C. Janegitz
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
| |
Collapse
|
4
|
Chaney LE, Hyun WJ, Khalaj M, Hui J, Hersam MC. Fully Printed, High-Temperature Micro-Supercapacitor Arrays Enabled by a Hexagonal Boron Nitride Ionogel Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305161. [PMID: 37540893 PMCID: PMC11681296 DOI: 10.1002/adma.202305161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Indexed: 08/06/2023]
Abstract
The proliferation and miniaturization of portable electronics require energy-storage devices that are simultaneously compact, flexible, and amenable to scalable manufacturing. In this work, mechanically flexible micro-supercapacitor arrays are demonstrated via sequential high-speed screen printing of conductive graphene electrodes and a high-temperature hexagonal boron nitride (hBN) ionogel electrolyte. By combining the superlative dielectric properties of 2D hBN with the high ionic conductivity of ionic liquids, the resulting hBN ionogel electrolyte enables micro-supercapacitors with exceptional areal capacitances that approach 1 mF cm-2. Unlike incumbent polymer-based electrolytes, the high-temperature stability of the hBN ionogel electrolyte implies that the printed micro-supercapacitors can be operated at unprecedentedly high temperatures up to 180 °C. These elevated operating temperatures result in increased power densities that make these printed micro-supercapacitors particularly promising for applications in harsh environments such as underground exploration, aviation, and electric vehicles. The combination of enhanced functionality in extreme conditions and high-speed production via scalable additive manufacturing significantly broadens the technological phase space for on-chip energy storage.
Collapse
Affiliation(s)
- Lindsay E. Chaney
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Woo Jin Hyun
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Materials Science and EngineeringGuangdong Technion–Israel Institute of TechnologyShantouGuangdong515063China
| | - Maryam Khalaj
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Janan Hui
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
| | - Mark C. Hersam
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
- Department of MedicineDepartment of Electrical and Computer EngineeringNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
5
|
Bril’ I, Voronin A, Fadeev Y, Pavlikov A, Govorun I, Podshivalov I, Parshin B, Makeev M, Mikhalev P, Afanasova K, Simunin M, Khartov S. Laser-Induced Silver Nanowires/Polymer Composites for Flexible Electronics and Electromagnetic Compatibility Application. Polymers (Basel) 2024; 16:3174. [PMID: 39599265 PMCID: PMC11598760 DOI: 10.3390/polym16223174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Nowadays, the Internet of Things (IOT), electronics, and neural interfaces are becoming an integral part of our life. These technologies place unprecedentedly high demands on materials in terms of their mechanical and electrical properties. There are several strategies for forming conductive layers in such composites, e.g., volume blending to achieve a percolation threshold, inkjet printing, lithography, and laser processing. The latter is a low-cost, environmentally friendly, scalable way to produce composites. In our work, we synthesized AgNW and characterized them using Ultraviolet-visible spectroscopy (UV-vis), Transmission electron microscopy (TEM), and Selective area electron diffraction (SAED). We found that our AgNW absorbed in the UV-vis range of 345 to 410 nm. This is due to the plasmon resonance phenomenon of AgNW. Then, we applied the dispersion of AgNW on the surface of the polymer substrate, dried them and we got the films of AgNW.. We irradiated these films with a 432 nm laser. As a result of the treatment, we observed two processes. The first one was the sintering and partial melting of nanowires under the influence of laser radiation, as a consequence of which, the sheet resistance dropped more than twice. The second was the melting of the polymer at the interface and the subsequent integration of AgNW into the substrate. This allowed us to improve the adhesion from 0-1 B to 5 B, and to obtain a composite capable of bending, with radius of 0.5 mm. We also evaluated the shielding efficiency of the obtained composites. The shielding efficiency for 500-600 nm thick porous film samples were 40 dB, and for 3.1-4.1 µm porous films the shielding efficiency was about 85-90 dB in a frequency range of 0.01-40 GHz. The data obtained by us are the basis for producing flexible electronic components based on AgNW/PET composite for various applications using laser processing methods.
Collapse
Affiliation(s)
- Il’ya Bril’
- Federal Research Center, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (A.V.); (Y.F.); (K.A.); (M.S.); (S.K.)
| | - Anton Voronin
- Federal Research Center, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (A.V.); (Y.F.); (K.A.); (M.S.); (S.K.)
- Department of Radio-Electronic Systems and Devices, Bauman Moscow State Technical University, 105005 Moscow, Russia; (B.P.); (M.M.); (P.M.)
- Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Yuri Fadeev
- Federal Research Center, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (A.V.); (Y.F.); (K.A.); (M.S.); (S.K.)
| | | | - Ilya Govorun
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia; (I.G.); (I.P.)
- Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia
| | - Ivan Podshivalov
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia; (I.G.); (I.P.)
| | - Bogdan Parshin
- Department of Radio-Electronic Systems and Devices, Bauman Moscow State Technical University, 105005 Moscow, Russia; (B.P.); (M.M.); (P.M.)
| | - Mstislav Makeev
- Department of Radio-Electronic Systems and Devices, Bauman Moscow State Technical University, 105005 Moscow, Russia; (B.P.); (M.M.); (P.M.)
| | - Pavel Mikhalev
- Department of Radio-Electronic Systems and Devices, Bauman Moscow State Technical University, 105005 Moscow, Russia; (B.P.); (M.M.); (P.M.)
| | - Kseniya Afanasova
- Federal Research Center, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (A.V.); (Y.F.); (K.A.); (M.S.); (S.K.)
- Institute of Space Technologies, FRC KSC SB RAS, 660037 Krasnoyarsk, Russia
| | - Mikhail Simunin
- Federal Research Center, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (A.V.); (Y.F.); (K.A.); (M.S.); (S.K.)
- Department of Radio-Electronic Systems and Devices, Bauman Moscow State Technical University, 105005 Moscow, Russia; (B.P.); (M.M.); (P.M.)
- Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Stanislav Khartov
- Federal Research Center, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (A.V.); (Y.F.); (K.A.); (M.S.); (S.K.)
| |
Collapse
|
6
|
Giousis T, Zygouri P, Karouta N, Spyrou K, Subrati M, Moschovas D, Stuart MCA, Hemmatpour H, Gournis DP, Rudolf P. Ex Situ Covalent Functionalization of Germanene via 1,3-Dipolar Cycloaddition: A Promising Approach for the Bandgap Engineering of Group-14 Xenes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403277. [PMID: 39046063 DOI: 10.1002/smll.202403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Group-14 Xenes beyond graphene such as silicene, germanene, and stanene have recently gained a lot of attention for their peculiar electronic properties, which can be tuned by covalent functionalization. Up until now, reported methods for the top-down synthesis of covalently functionalized silicene and germanene typically yield multilayered flakes with a minimum thickness of 100 nm. Herein, the ex situ covalent functionalization of germanene (fGe) is reported via 1,3-dipolar cycloaddition of the azomethine ylide generated by the decarboxylative condensation of 3,4-dihydroxybenzaldehyde and sarcosine. Amorphous few-layered sheets (average thickness of ≈6 nm) of dipolarophile germanene (GeX) are produced by thermal dehydrogenation of its fully saturated parent precursor, germanane (GeH). Spectroscopic evidence confirmed the emergence of the dipolarophilic sp2 domains due to the dehydrogenation of germanane, and their sp3 hybridization due to the covalent functionalization of germanene. Elemental mapping of the functionalized germanene revealed flakes with a very high abundance of carbon uniformly covering the germanium backbone. The 500 meV increase of the optical bandgap of germanene observed upon functionalization paves the way toward bandgap engineering of other group-14 Xenes, which could potentially be a major turning point in the fields of electronics, electrocatalysis, and photocatalysis.
Collapse
Affiliation(s)
- Theodosis Giousis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110, Greece
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, the Netherlands
| | - Panagiota Zygouri
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110, Greece
| | - Niki Karouta
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110, Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110, Greece
| | - Mohammed Subrati
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110, Greece
| | - Dimitrios Moschovas
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110, Greece
| | - Marc C A Stuart
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, the Netherlands
| | - Hamoon Hemmatpour
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, the Netherlands
| | - Dimitrios P Gournis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110, Greece
- School of Chemical and Environmental Engineering Technical University of Crete (TUC), Chania, Crete, 73100, Greece
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, the Netherlands
| |
Collapse
|
7
|
Funkenbusch WT, Silmore KS, Doyle PS. Shear annealing of a self-interacting sheet. SOFT MATTER 2024; 20:6952-6964. [PMID: 39169795 DOI: 10.1039/d4sm00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
2D materials such as graphene, graphene oxide, transition metal dichalcogenides, and 2D polymers have unique properties which allow them to be used in many applications from electronics to energy to biotechnology. Producing and applying these materials often involves solution processing. Previous computational studies have observed 2D sheets in shear and extensional flows, but have focused on steady flows, even though the dynamics of these materials might exhibit hysteresis. In this work, we study 2D sheets with short-ranged attractive interactions under time-varying shear. We show that, even with relatively simple protocols, the properties of sheet suspensions can be tuned.
Collapse
Affiliation(s)
- William T Funkenbusch
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames St, Cambridge, MA, 02139, USA.
| | - Kevin S Silmore
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames St, Cambridge, MA, 02139, USA.
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames St, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Jiang X, Yin J, Liu L, Wu K. Electrochemical detection of nitrofurazone using laser-engraved three-electrode graphene array. Anal Chim Acta 2024; 1317:342898. [PMID: 39030002 DOI: 10.1016/j.aca.2024.342898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Nitrofurazone (NFZ) is a widely-used antimicrobial agent in aquaculture. The NFZ residue can be transmitted to humans through the food chain, and cause adverse health effects including carcinogenesis and teratogenesis. Until now, a number of modified electrodes have been developed for NFZ detection, however, there are some issues that need to be improved. For example, the reported detection sensitivity is relatively low, the modification procedure is complicated, and conventional three-electrode system is used. Therefore, it is quite important to develop new NFZ detection method with higher sensitivity, simplicity and practicality. RESULTS Herein, a kind of integrated three-electrode array consisted with porous graphene is easily prepared through laser engraving of commercial polyimide tape. Five kinds of graphene arrays were prepared at different laser power percentage (i.e. 30 %, 40 %, 50 %, 60 % and 70 %). It is found that their structure, morphology, fluffiness and porosity show great difference, consequently affecting the electrochemical performance of graphene arrays such as conductivity, active area and electron transfer ability. The engraved graphene array at 50 % laser power percentage (LIG-50 array) is superior owing to uniform 3D structure, abundant pores and high stability. More importantly, LIG-50 array is more active for NFZ oxidation, and significantly enhances the detection sensitivity. The linear range of LIG-50 sensor is from 0.2 to 8 μM, and the detection limit is 0.035 μM, which is successfully used in fish meat samples. SIGNIFICANCE A sensitive, portable and practical electrochemical sensor has been successfully developed for NFZ using laser-engraved graphene array. The demonstration using fish meat samples manifests this new sensor has good accuracy and great potential in application. This study could provide a new possibility for the design and fabrication of other high-performance electrochemical sensor for various applications in the future.
Collapse
Affiliation(s)
- Xingyue Jiang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan, 430062, China; College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Jiaxi Yin
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lingbo Liu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Kangbing Wu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan, 430062, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
9
|
Lepak-Kuc S, Kądziela A, Staniszewska M, Janczak D, Jakubowska M, Bednarczyk E, Murawski T, Piłczyńska K, Żołek-Tryznowska Z. Sustainable, cytocompatible and flexible electronics on potato starch-based films. Sci Rep 2024; 14:18838. [PMID: 39138241 PMCID: PMC11322286 DOI: 10.1038/s41598-024-69478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Environmental concerns and climate protection are gaining increasing emphasis nowadays. A growing number of industries and scientific fields are involved in this trend. Sustainable electronics is an emerging research strand. Environmentally friendly and biodegradable or biobased raw materials can be used for the development of green flexible electronic devices, which may serve to reduce the pollution generated by plastics and electronics waste. In this work, we present cytocompatible, electrically conductive structures of nanocarbon water-soluble composites based on starch films. To accomplish this goal, potato starch-based films with glycerol as a plasticiser were developed along with a water-soluble vehicle for nanocarbon-based electroconductive pastes specifically dedicated to screen printing technology. Films were characterized by optical microscopy, scanning electron microscopy (SEM) mechanical properties and surface free energy.
Collapse
Affiliation(s)
- Sandra Lepak-Kuc
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland.
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822, Warsaw, Poland.
| | - Aleksandra Kądziela
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Daniel Janczak
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Małgorzata Jakubowska
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Ewa Bednarczyk
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
| | - Tomasz Murawski
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
| | - Katarzyna Piłczyńska
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
| | - Zuzanna Żołek-Tryznowska
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
| |
Collapse
|
10
|
Wang Y, Zhang X, Zhu Y, Li X, Shen Z. Planar Micro-Supercapacitors with High Power Density Screen-Printed by Aqueous Graphene Conductive Ink. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4021. [PMID: 39203199 PMCID: PMC11356036 DOI: 10.3390/ma17164021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024]
Abstract
Simple and scalable production of micro-supercapacitors (MSCs) is crucial to address the energy requirements of miniature electronics. Although significant advancements have been achieved in fabricating MSCs through solution-based printing techniques, the realization of high-performance MSCs remains a challenge. In this paper, graphene-based MSCs with a high power density were prepared through screen printing of aqueous conductive inks with appropriate rheological properties. High electrical conductivity (2.04 × 104 S∙m-1) and low equivalent series resistance (46.7 Ω) benefiting from the dense conductive network consisting of the mesoporous structure formed by graphene with carbon black dispersed as linkers, as well as the narrow finger width and interspace (200 µm) originating from the excellent printability, prompted the fully printed MSCs to deliver high capacitance (9.15 mF∙cm-2), energy density (1.30 µWh∙cm-2) and ultrahigh power density (89.9 mW∙cm-2). Notably, the resulting MSCs can effectively operate at scan rates up to 200 V∙s-1, which surpasses conventional supercapacitors by two orders of magnitude. In addition, the MSCs demonstrate excellent cycling stability (91.6% capacity retention and ~100% Coulombic efficiency after 10,000 cycles) and extraordinary mechanical properties (92.2% capacity retention after 5000 bending cycles), indicating their broad application prospects in flexible wearable/portable electronic systems.
Collapse
Affiliation(s)
- Youchang Wang
- Beijing Key Laboratory for Powder Technology Research and Development, Beihang University, Beijing 100191, China; (Y.W.); (Y.Z.); (X.L.); (Z.S.)
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiaojing Zhang
- Beijing Key Laboratory for Powder Technology Research and Development, Beihang University, Beijing 100191, China; (Y.W.); (Y.Z.); (X.L.); (Z.S.)
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Yuwei Zhu
- Beijing Key Laboratory for Powder Technology Research and Development, Beihang University, Beijing 100191, China; (Y.W.); (Y.Z.); (X.L.); (Z.S.)
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiaolu Li
- Beijing Key Laboratory for Powder Technology Research and Development, Beihang University, Beijing 100191, China; (Y.W.); (Y.Z.); (X.L.); (Z.S.)
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhigang Shen
- Beijing Key Laboratory for Powder Technology Research and Development, Beihang University, Beijing 100191, China; (Y.W.); (Y.Z.); (X.L.); (Z.S.)
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
11
|
Kammarchedu V, Asgharian H, Zhou K, Soltan Khamsi P, Ebrahimi A. Recent advances in graphene-based electroanalytical devices for healthcare applications. NANOSCALE 2024; 16:12857-12882. [PMID: 38888429 PMCID: PMC11238565 DOI: 10.1039/d3nr06137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Graphene, with its outstanding mechanical, electrical, and biocompatible properties, stands out as an emerging nanomaterial for healthcare applications, especially in building electroanalytical biodevices. With the rising prevalence of chronic diseases and infectious diseases, such as the COVID-19 pandemic, the demand for point-of-care testing and remote patient monitoring has never been greater. Owing to their portability, ease of manufacturing, scalability, and rapid and sensitive response, electroanalytical devices excel in these settings for improved healthcare accessibility, especially in resource-limited settings. The development of different synthesis methods yielding large-scale graphene and its derivatives with controllable properties, compatible with device manufacturing - from lithography to various printing methods - and tunable electrical, chemical, and electrochemical properties make it an attractive candidate for electroanalytical devices. This review article sheds light on how graphene-based devices can be transformative in addressing pressing healthcare needs, ranging from the fundamental understanding of biology in in vivo and ex vivo studies to early disease detection and management using in vitro assays and wearable devices. In particular, the article provides a special focus on (i) synthesis and functionalization techniques, emphasizing their suitability for scalable integration into devices, (ii) various transduction methods to design diverse electroanalytical device architectures, (iii) a myriad of applications using devices based on graphene, its derivatives, and hybrids with other nanomaterials, and (iv) emerging technologies at the intersection of device engineering and advanced data analytics. Finally, some of the major hurdles that graphene biodevices face for translation into clinical applications are discussed.
Collapse
Affiliation(s)
- Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Heshmat Asgharian
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Keren Zhou
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Pouya Soltan Khamsi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
12
|
van Hazendonk L, Khalil ZJ, van Grondelle W, Wijkhuijs LEA, Schreur-Piet I, Debije MG, Friedrich H. Hot Fingers: Individually Addressable Graphene-Heater Actuated Liquid Crystal Grippers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32739-32747. [PMID: 38869014 PMCID: PMC11212024 DOI: 10.1021/acsami.4c06130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Liquid crystal-based actuators are receiving increased attention for their applications in wearables and biomedical or surgical devices, with selective actuation of individual parts/fingers still being in its infancy. This work presents the design and realization of two gripper devices with four individually addressable liquid-crystal network (LCN) actuators thermally driven via printed graphene-based heating elements. The resistive heat causes the all-organic actuator to bend due to anisotropic volume expansions of the splay-aligned sample. A heat transfer model that includes all relevant interfaces is presented and verified via thermal imaging, which provides good estimates of dimensions, power production, and resistance required to reach the desired temperature for actuation while maintaining safe electrical potentials. The LCN films displace up to 11 mm with a bending force of 1.10 mN upon application of 0-15 V potentials. The robustness of the LCN finger is confirmed by repetitive on/off switching for 500 cycles. Actuators are assembled into two prototypes able to grip and lift objects of small weights (70-100 mg) and perform complex actions by individually controlling one of the device's fingers to grip an additional object. Selective actuation of parts in soft robotic devices will enable more complex motions and actions to be performed.
Collapse
Affiliation(s)
- Laura
S. van Hazendonk
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Zafeiris J. Khalil
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Wilko van Grondelle
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Levina E. A. Wijkhuijs
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Ingeborg Schreur-Piet
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Center
for Multiscale Electron Microscopy, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Michael G. Debije
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Stimuli-responsive
Functional Materials and Devices (SFD), Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Heiner Friedrich
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Center
for Multiscale Electron Microscopy, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
13
|
Salaoru I, Morris D, Ware E, Nama Manjunatha K. Influence of Surface Chemical and Topographical Properties on Morphology, Wettability and Surface Coverage of Inkjet-Printed Graphene-Based Materials. MICROMACHINES 2024; 15:681. [PMID: 38930651 PMCID: PMC11206063 DOI: 10.3390/mi15060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
The inkjet printing of water-based graphene and graphene oxide inks on five substrates, two rigid (silicon and glass) and three flexible (cellulose, indium tin oxide-coated polyethylene terephthalate (ITO-PET) and ceramic coated paper (PEL paper)), is reported in this work. The physical properties of the inks, the chemical/topographical properties of selected substrates, and the inkjet printing (IJP) of the graphene-based materials, including the optimisation of the printing parameters together with the morphological characterisation of the printed layers, are investigated and described in this article. Furthermore, the impact of both the chemical and topographical properties of the substrates and the physical properties of graphene-based inks on the morphology, wettability and surface coverage of the inkjet-printed graphene patterns is studied and discussed in detail.
Collapse
Affiliation(s)
- Iulia Salaoru
- Emerging Technologies Research Centre, School of Engineering and Sustainable Development, Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK; (D.M.); (K.N.M.)
| | - Dave Morris
- Emerging Technologies Research Centre, School of Engineering and Sustainable Development, Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK; (D.M.); (K.N.M.)
| | - Ecaterina Ware
- Department of Materials, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
| | - Krishna Nama Manjunatha
- Emerging Technologies Research Centre, School of Engineering and Sustainable Development, Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK; (D.M.); (K.N.M.)
| |
Collapse
|
14
|
Belessi V, Koutsioukis A, Giasafaki D, Philippakopoulou T, Panagiotopoulou V, Mitzithra C, Kripotou S, Manolis G, Steriotis T, Charalambopoulou G, Georgakilas V. One-Pot Synthesis of Functionalised rGO/AgNPs Hybrids as Pigments for Highly Conductive Printing Inks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:859. [PMID: 38786815 PMCID: PMC11123983 DOI: 10.3390/nano14100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
This work provides a method for the development of conductive water-based printing inks for gravure, flexography and screen-printing incorporating commercial resins that are already used in the printing industry. The development of the respective conductive materials/pigments is based on the simultaneous (in one step) reduction of silver salts and graphene oxide in the presence of 2,5-diaminobenzenesulfonic acid that is used for the first time as the common in-situ reducing agent for these two reactions. The presence of aminophenylsulfonic derivatives is essential for the reduction procedure and in parallel leads to the enrichment of the graphene surface with aminophenylsulfonic groups that provide a high hydrophilicity to the final materials/pigments.
Collapse
Affiliation(s)
- Vassiliki Belessi
- Department of Graphic Design and Visual Communication, Graphic Arts Technology Study Direction, University of West Attica, Egaleo, 12243 Athens, Greece;
- Laboratory of Electronic Devices and Materials, Department of Electrical and Electronic Engineering, University of West Attica, Egaleo, 12244 Athens, Greece;
| | | | - Dimitra Giasafaki
- National Centre for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (D.G.); (C.M.); (G.M.); (G.C.)
| | - Theodora Philippakopoulou
- Department of Graphic Design and Visual Communication, Graphic Arts Technology Study Direction, University of West Attica, Egaleo, 12243 Athens, Greece;
| | | | - Christina Mitzithra
- National Centre for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (D.G.); (C.M.); (G.M.); (G.C.)
| | - Sotiria Kripotou
- Laboratory of Electronic Devices and Materials, Department of Electrical and Electronic Engineering, University of West Attica, Egaleo, 12244 Athens, Greece;
| | - Georgios Manolis
- National Centre for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (D.G.); (C.M.); (G.M.); (G.C.)
| | - Theodore Steriotis
- National Centre for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (D.G.); (C.M.); (G.M.); (G.C.)
| | - Georgia Charalambopoulou
- National Centre for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (D.G.); (C.M.); (G.M.); (G.C.)
| | | |
Collapse
|
15
|
Najafi M, Forestier E, Safarpour M, Ceseracciu L, Zych A, Bagheri A, Bertolacci L, Athanassiou A, Bayer I. Biodegradable polylactic acid emulsion ink based on carbon nanotubes and silver for printed pressure sensors. Sci Rep 2024; 14:10988. [PMID: 38744852 PMCID: PMC11094035 DOI: 10.1038/s41598-024-60315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Investigating biodegradable and biocompatible materials for electronic applications can lead to tangible outcomes such as developing green-electronic devices and reducing the amount of e-waste. The proposed emulsion-based conducting ink formulation takes into consideration circular economy and green principles throughout the entire process, from the selection of materials to the production process. The ink is formulated using the biopolymer polylactic acid dissolved in a sustainable solvent mixed with water, along with conductive carbon nanotubes (CNTs) and silver flakes as fillers. Hybrid conductive fillers can lower the percolation threshold of the ink and the production costs, while maintaining excellent electrical properties. The coating formed after the deposition of the ink, undergoes isothermal treatment at different temperatures and durations to improve its adhesion and electrical properties. The coating's performance was evaluated by creating an eight-finger interdigitated sensor using a Voltera PCB printer. The sensor demonstrates exceptional performance when exposed to various loading and unloading pressures within the 0.2-500.0 kPa range. The results show a consistent correlation between the change in electrical resistance and the stress caused by the applied load. The ink is biodegradable in marine environments, which helps avoiding its accumulation in the ecosystem over time.
Collapse
Affiliation(s)
- Maedeh Najafi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Emilie Forestier
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- iCub Tech, Istituto Italiano di Tecnologia, Via S. Quirico 9d, 16163, Genoa, Italy
| | - Milad Safarpour
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Luca Ceseracciu
- Materials Characterization, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Arkadiusz Zych
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Ahmad Bagheri
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Laura Bertolacci
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | | | - Ilker Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| |
Collapse
|
16
|
Sun N, Han Y, Huang W, Xu M, Wang J, An X, Lin J, Huang W. A Holistic Review of C = C Crosslinkable Conjugated Molecules in Solution-Processed Organic Electronics: Insights into Stability, Processibility, and Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309779. [PMID: 38237201 DOI: 10.1002/adma.202309779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Solution-processable organic conjugated molecules (OCMs) consist of a series of aromatic units linked by σ-bonds, which present a relatively freedom intramolecular motion and intermolecular re-arrangement under external stimulation. The cross-linked strategy provides an effective platform to obtain OCMs network, which allows for outstanding optoelectronic, excellent physicochemical properties, and substantial improvement in device fabrication. An unsaturated double carbon-carbon bond (C = C) is universal segment to construct crosslinkable OCMs. In this review, the authors will set C = C cross-linkable units as an example to summarize the development of cross-linkable OCMs for solution-processable optoelectronic applications. First, this review provides a comprehensive overview of the distinctive chemical, physical, and optoelectronic properties arising from the cross-linking strategies employed in OCMs. Second, the methods for probing the C = C cross-linking reaction are also emphasized based on the perturbations of chemical structure and physicochemical property. Third, a series of model C = C cross-linkable units, including styrene, trifluoroethylene, and unsaturated acid ester, are further discussed to design and prepare novel OCMs. Furthermore, a concise overview of the optoelectronic applications associated with this approach is presented, including light-emitting diodes (LEDs), solar cells (SCs), and field-effect transistors (FETs). Lastly, the authors offer a concluding perspective and outlook for the improvement of OCMs and their optoelectronic application via the cross-linking strategy.
Collapse
Affiliation(s)
- Ning Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wenxin Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
17
|
Campos-Arias L, Peřinka N, Lau YC, Castro N, Pereira N, Correia VMG, Costa P, Vilas-Vilela JL, Lanceros-Mendez S. Improving Definition of Screen-Printed Functional Materials for Sensing Application. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:2152-2160. [PMID: 38680726 PMCID: PMC11044814 DOI: 10.1021/acsaelm.3c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
Screen printing is one of the most used techniques for developing printed electronics. It stands out for its simplicity, scalability, and effectivity. Specifically, the manufacturing of hybrid integrated circuits has promoted the development of the technique, and the photovoltaic industry has enhanced the printing process by developing high-performance metallization pastes and high-end screens. In recent years, fine lines of 50 μm or smaller are about to be adopted in mass production, and screen printing has to compete with digital printing techniques such as inkjet printing, which can reach narrower lines. In this sense, this work is focused on testing the printing resolution of a high-performance stainless-steel screen with commercial conductive inks and functional lab-made inks based on reduced graphene oxide using an interdigitated structure. We achieved electrically conductive functional patterns with a minimum printing resolution of 40 μm for all inks.
Collapse
Affiliation(s)
- Lia Campos-Arias
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Nikola Peřinka
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Yin Cheung Lau
- Faculty
of Science and Engineering, Swansea University, SA1 8EN Swansea, U.K.
| | - Nelson Castro
- International
Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Physics
Centre of Minho and Porto, Universities (CF-UM-UP) and LaPMET - Laboratory
of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Nelson Pereira
- Physics
Centre of Minho and Porto, Universities (CF-UM-UP) and LaPMET - Laboratory
of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Vitor Manuel Gomes Correia
- Centre
for MicroElectroMechanics Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto, Universities (CF-UM-UP) and LaPMET - Laboratory
of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - José Luis Vilas-Vilela
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Grupo de
Química Macromolecular (LABQUIMAC) Dpto. Química-Física,
Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Bizkaia 48940, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
18
|
Zhou K, Ding R, Ma X, Lin Y. Printable and flexible integrated sensing systems for wireless healthcare. NANOSCALE 2024; 16:7264-7286. [PMID: 38470428 DOI: 10.1039/d3nr06099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The rapid development of wearable sensing devices and artificial intelligence has enabled portable and wireless tracking of human health, fulfilling the promise of digitalized healthcare applications. To achieve versatile design and integration of multi-functional modules including sensors and data transmission units onto various flexible platforms, printable technologies emerged as some of the most promising strategies. This review first introduces the commonly utilized printing technologies, followed by discussion of the printable ink formulations and flexible substrates to ensure reliable device fabrication and system integration. The advances of printable sensors for body status monitoring are then discussed. Moreover, the integration of wireless data transmission via printable approaches is also presented. Finally, the challenges in achieving printable sensing devices and wireless integrated systems with competitive performances are considered, so as to realize their practical applications for personalized healthcare.
Collapse
Affiliation(s)
- Kemeng Zhou
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ruochen Ding
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiaohao Ma
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
19
|
Yang M, Zuo S, Hu X. Metal Ion-induced Gelation of High-concentration Graphite-like Crystalline Nanosheet Aqueous Suspensions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303310. [PMID: 37415522 DOI: 10.1002/smll.202303310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 07/08/2023]
Abstract
The stability and transformation of nanomaterial aqueous suspensions are essential for their applications. Preparation of high-concentration carbon nanomaterials suspensions remains challenging due to their nonpolar nature. Herein, 200 mg mL-1 carbon nanomaterial aqueous suspensions are achieved by using graphite-like crystalline nanosheets (GCNs) with high hydrophilicity. Furthermore, these high-concentration GCN aqueous suspensions spontaneously transform into gels when induced by mono-, di-, and trivalent metal salt electrolytes at room temperature. Theoretical calculation of potential energy by DLVO theory reveals that the gelatinized GCNs is a new and metastable state between two usual forms of solution and coagulation. It is shown that the gelation of GCNs is due to the preferential orientation of nanosheets in an edge-edge arrangement, which differs from the case of solution and coagulation. High-temperature treatment of GCN gels produces metal/carbon materials with pore structures. This work provides a promising opportunity to create various metal/carbon functional materials.
Collapse
Affiliation(s)
- Mengmei Yang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Songlin Zuo
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Xin Hu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
20
|
Franco M, Motealleh A, Costa CM, Perinka N, Ribeiro C, Tubio CR, Carabineiro SA, Costa P, Lanceros-Méndez S. Environmentally Friendlier Printable Conductive and Piezoresistive Sensing Materials Compatible with Conformable Electronics. ACS APPLIED POLYMER MATERIALS 2023; 5:7144-7154. [PMID: 37705715 PMCID: PMC10496113 DOI: 10.1021/acsapm.3c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023]
Abstract
Flexible and conformable conductive composites have been developed using different polymers, including water-based polyvinylpyrrolidone (PVP), chemical-resistant polyvinylidene fluoride (PVDF), and elastomeric styrene-ethylene-butylene-styrene (SEBS) reinforced with nitrogen-doped reduced graphene oxide with suitable viscosity in composites for printable solutions with functional properties. Manufactured by screen-printing using low-toxicity solvents, leading to more environmentally friendly conductive materials, the materials present an enormous step toward functional devices. The materials were enhanced in terms of filler/binder ratio, achieving screen-printed films with a sheet resistance lower than Rsq < 100 Ω/sq. The materials are biocompatible and support bending deformations up to 10 mm with piezoresistive performance for the different polymers up to 100 bending cycles. The piezoresistive performance of the SEBS binder is greater than double that the other composites, with a gauge factor near 4. Thermoforming was applied to all materials, with the PVP-based ones showing the lowest electrical resistance after the bending process. These conductive materials open a path for developing sustainable and functional devices for printable and conformable electronics.
Collapse
Affiliation(s)
- Miguel Franco
- Center
of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustaninability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Carlos M. Costa
- Center
of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustaninability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nikola Perinka
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Clarisse Ribeiro
- Center
of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET -
Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Carmen R Tubio
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | | | - Pedro Costa
- Center
of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites (IPC), University
of Minho, 4800-058 Guimarães, Portugal
| | - Senentxu Lanceros-Méndez
- Center
of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- LaPMET -
Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
21
|
Lisboa TP, Couto da Silva G, Oliveira RS, Veríssimo de Oliveira WB, Cunha de Souza C, Costa Matos MA, Matos RC. Electrochemical monitoring of levofloxacin using a silver nanoparticle-modified disposable device based on a lab-made conductive ink. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2262-2269. [PMID: 37129413 DOI: 10.1039/d3ay00499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The emergence of bacteria genetically resistant to first- and second-generation fluoroquinolones has resulted in increased consumption of levofloxacin (LEV) in human and veterinary medicine. In this regard, the development of low cost and good sensitivity electrochemical devices has been highly required. Thus, in this work, we propose the development of a disposable electrochemical device (DED) using a lab-made conductive ink based on graphite powder and nail polish immobilized on a rigid polyvinyl chloride support (transparent sheet). Additionally, a simple and quick protocol for the electrodeposition of silver nanoparticles was used in order to improve the electroanalytical performance of the sensor (2.75-fold). A differential pulse voltammetry (DPV) method was optimized and the sensor was applied for LEV monitoring in pharmaceutical formulation samples, synthetic urine and simulated body fluid. The method showed a wide linear working range ranging from 0.5 to 50 μmol L-1 and a detection limit of 68.3 nmol L-1. Furthermore, the precision was adequate (RSD < 4.7%), while the accuracy was evaluated through spiked samples with percent recovery ranging from 93 to 103%. The sensor was also shown to be selective for LEV against other electroactive antibiotic species, thus demonstrating suitable characteristics for electroanalytical applications.
Collapse
Affiliation(s)
- Thalles Pedrosa Lisboa
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | - Gabriela Couto da Silva
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | - Raylla Santos Oliveira
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | | | - Cassiano Cunha de Souza
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | | | - Renato Camargo Matos
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| |
Collapse
|
22
|
Wang Z, Liu L, Zhang Y, Huang Y, Liu J, Zhang X, Liu X, Teng H, Zhang X, Zhang J, Yang H. A Review of Graphene-Based Materials/Polymer Composite Aerogels. Polymers (Basel) 2023; 15:polym15081888. [PMID: 37112034 PMCID: PMC10146249 DOI: 10.3390/polym15081888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The fabrication of composite materials is an effective way to improve the performance of a single material and expand its application range. In recent years, graphene-based materials/polymer composite aerogels have become a hot research field for preparing high-performance composites due to their special synergistic effects in mechanical and functional properties. In this paper, the preparation methods, structures, interactions, properties, and applications of graphene-based materials/polymer composite aerogels are discussed, and their development trend is projected. This paper aims to arouse extensive research interests in multidisciplinary fields and provide guidance for the rational design of advanced aerogel materials, which could then encourage efforts to use these new kinds of advanced materials in basic research and commercial applications.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Libao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yiwei Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yi Huang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jia Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xu Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xu Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Huaibao Teng
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiaofang Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Hongsheng Yang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
23
|
Słoma M. 3D printed electronics with nanomaterials. NANOSCALE 2023; 15:5623-5648. [PMID: 36880539 DOI: 10.1039/d2nr06771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A large variety of printing, deposition and writing techniques have been incorporated to fabricate electronic devices in the last decades. This approach, printed electronics, has gained great interest in research and practical applications and is successfully fuelling the growth in materials science and technology. On the other hand, a new player is emerging, additive manufacturing, called 3D printing, introducing a new capability to create geometrically complex constructs with low cost and minimal material waste. Having such tremendous technology in our hands, it was just a matter of time to combine advances of printed electronics technology for the fabrication of unique 3D structural electronics. Nanomaterial patterning with additive manufacturing techniques can enable harnessing their nanoscale properties and the fabrication of active structures with unique electrical, mechanical, optical, thermal, magnetic and biological properties. In this paper, we will briefly review the properties of selected nanomaterials suitable for electronic applications and look closer at the current achievements in the synergistic integration of nanomaterials with additive manufacturing technologies to fabricate 3D printed structural electronics. The focus is fixed strictly on techniques allowing as much as possible fabrication of spatial 3D objects, or at least conformal ones on 3D printed substrates, while only selected techniques are adaptable for 3D printing of electronics. Advances in the fabrication of conductive paths and circuits, passive components, antennas, active and photonic components, energy devices, microelectromechanical systems and sensors are presented. Finally, perspectives for development with new nanomaterials, multimaterial and hybrid techniques, bioelectronics, integration with discrete components and 4D-printing are briefly discussed.
Collapse
Affiliation(s)
- Marcin Słoma
- Micro- and Nanotechnology Division, Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 8 Sw. A Boboli St., 02-525 Warsaw, Poland.
| |
Collapse
|
24
|
Tian Q, She Y, Zhu Y, Dai D, Shi M, Chu W, Cai T, Tsai HS, Li H, Jiang N, Fu L, Xia H, Lin CT, Ye C. Highly Sensitive and Selective Dopamine Determination in Real Samples Using Au Nanoparticles Decorated Marimo-like Graphene Microbead-Based Electrochemical Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052870. [PMID: 36905070 PMCID: PMC10007331 DOI: 10.3390/s23052870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 05/05/2023]
Abstract
A sensitive and selective electrochemical dopamine (DA) sensor has been developed using gold nanoparticles decorated marimo-like graphene (Au NP/MG) as a modifier of the glassy carbon electrode (GCE). Marimo-like graphene (MG) was prepared by partial exfoliation on the mesocarbon microbeads (MCMB) through molten KOH intercalation. Characterization via transmission electron microscopy confirmed that the surface of MG is composed of multi-layer graphene nanowalls. The graphene nanowalls structure of MG provided abundant surface area and electroactive sites. Electrochemical properties of Au NP/MG/GCE electrode were investigated by cyclic voltammetry and differential pulse voltammetry techniques. The electrode exhibited high electrochemical activity towards DA oxidation. The oxidation peak current increased linearly in proportion to the DA concentration in a range from 0.02 to 10 μM with a detection limit of 0.016 μM. The detection selectivity was carried out with the presence of 20 μM uric acid in goat serum real samples. This study demonstrated a promising method to fabricate DA sensor-based on MCMB derivatives as electrochemical modifiers.
Collapse
Affiliation(s)
- Qichen Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yangguang Zhu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Dan Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Mingjiao Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Wubo Chu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Cai
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Hsu-Sheng Tsai
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - He Li
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Nan Jiang
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hongyan Xia
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (H.X.); (C.-T.L.); (C.Y.)
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Correspondence: (H.X.); (C.-T.L.); (C.Y.)
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Correspondence: (H.X.); (C.-T.L.); (C.Y.)
| |
Collapse
|
25
|
Adenine derived reactive dispersant and the enhancement of graphene based composites. J Colloid Interface Sci 2023; 640:91-99. [PMID: 36842421 DOI: 10.1016/j.jcis.2023.02.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
HYPOTHESIS Homogeneous dispersion of graphene is the precondition for constructing high performance graphene based composites. However, most of the current dispersants reported in literature still suffer excess usage to reach a desired graphene concentration. Residual of dispersant in composite may seriously affect its properties. Hence, it is expected to obtain effective dispersant with high reactivity to diminish its adverse impacts on graphene composites. EXPERIMENTS A highly reactive graphene dispersant (DSiA) was synthesized by grafting silanol groups (Si-OH) onto adenine. Molecular structure and the performance of the dispersant were systematically characterized. Composites were fabricated by direct writing of the graphene dispersion on various substrates, and their features were evaluated by resistance, solvent erosion and tensile testing. FINDINGS Graphene concentration can reach up to 6 mg mL-1 in the presents of DSiA at the weight ratio of 1:1 (DSiA: graphene). DSiA also exhibited good performance for stabilizing multi-walled carbon nanotubes (MWCNTs). Moreover, the dispersant is highly reactive. The graphene based composites showed good mechanical strength and excellent solvent resistance. Overall, the new dispersant provides an ideal choice to uniformly disperse graphene and suitable for fabricating high performance nanocarbon based composites.
Collapse
|
26
|
Coupled GO–MWCNT Composite Ink for Enhanced Dispersibility and Synthesis of Screen-Printing Electrodes. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
27
|
Ng KL, Maciejewska BM, Qin L, Johnston C, Barrio J, Titirici MM, Tzanakis I, Eskin DG, Porfyrakis K, Mi J, Grobert N. Direct Evidence of the Exfoliation Efficiency and Graphene Dispersibility of Green Solvents toward Sustainable Graphene Production. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:58-66. [PMID: 36643002 PMCID: PMC9832534 DOI: 10.1021/acssuschemeng.2c03594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/22/2022] [Indexed: 05/12/2023]
Abstract
Achieving a sustainable production of pristine high-quality graphene and other layered materials at a low cost is one of the bottlenecks that needs to be overcome for reaching 2D material applications at a large scale. Liquid phase exfoliation in conjunction with N-methyl-2-pyrrolidone (NMP) is recognized as the most efficient method for both the exfoliation and dispersion of graphene. Unfortunately, NMP is neither sustainable nor suitable for up-scaling production due to its adverse impact on the environment. Here, we show the real potential of green solvents by revealing the independent contributions of their exfoliation efficiency and graphene dispersibility to the graphene yield. By experimentally separating these two factors, we demonstrate that the exfoliation efficiency of a given solvent is independent of its dispersibility. Our studies revealed that isopropanol can be used to exfoliate graphite as efficiently as NMP. Our finding is corroborated by the matching ratio between the polar and dispersive energies of graphite and that of the solvent surface tension. This direct evidence of exfoliation efficiency and dispersibility of solvents paves the way to developing a deeper understanding of the real potential of sustainable graphene manufacturing at a large scale.
Collapse
Affiliation(s)
- Kai Ling Ng
- Department
of Materials, University of Oxford, Parks Road, OxfordOX1 3 PH, U.K.
| | | | - Ling Qin
- Department
of Engineering, University of Hull, Cottingham Road, HullHU6 7RX, U.K.
| | - Colin Johnston
- Department
of Materials, University of Oxford, Parks Road, OxfordOX1 3 PH, U.K.
| | - Jesus Barrio
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, LondonSW7 2AZ, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, LondonSW7 2AZ, U.K.
| | - Iakovos Tzanakis
- School
of Engineering, Computing and Mathematics, Oxford Brookes University, College Cl, Wheatley, OxfordOX33 1HX, U.K.
| | - Dmitry G Eskin
- Brunel
Centre for Advanced Solidification Technology, Brunel University London, Kingston Lane, UxbridgeUB8 3PH, U.K.
| | - Kyriakos Porfyrakis
- Faculty of
Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, KentME4 4TB, U.K.
| | - Jiawei Mi
- Department
of Engineering, University of Hull, Cottingham Road, HullHU6 7RX, U.K.
| | - Nicole Grobert
- Department
of Materials, University of Oxford, Parks Road, OxfordOX1 3 PH, U.K.
- Williams
Advanced Engineering, Grove, OxfordshireOX12
0DQ, U.K.
| |
Collapse
|
28
|
Production of Graphene Stably Dispersible in Ethanol by Microwave Reaction. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graphene is a 2D carbon material with peculiar features such as high electrical conductivity, high thermal conductivity, mechanical stability, and a high ratio between surface and thickness. Applications are continuously growing, and the possibility of dispersing graphene in low-boiling green solvents could reduce its global environmental impact. Pristine graphene can be dispersed in high concentration only in polar aprotic solvents that usually have high boiling points and high toxicity. For this reason, the oxidized form of graphene is always used, as it is easier to disperse and to subsequently reduce to reduced graphene oxide. However, compared to pristine graphene, reduced graphene oxide has more defects and has inferior properties respect to graphene. In this work, the polymerization of (diethyl maleate derivate) on graphene obtained by sonication was performed in a microwave reactor. The obtained material has good stability in ethanol even after a long period of time, therefore, it can be used to deposit graphene by mass production of inks or by casting and easy removal of the solvent. The thermal annealing by heating at 300–400 °C in inert atmosphere allows the removal of the polymer to obtain pristine graphene with a low number of defects.
Collapse
|
29
|
Li L, Yu X, Lin Z, Cai Z, Cao Y, Kong W, Xiang Z, Gu Z, Xing X, Duan X, Song Y. Interface Capture Effect Printing Atomic-Thick 2D Semiconductor Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207392. [PMID: 36128664 DOI: 10.1002/adma.202207392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/17/2022] [Indexed: 06/15/2023]
Abstract
2D semiconductor crystals offer the opportunity to further extend Moore's law to the atomic scale. For practical and low-cost electronic applications, directly printing devices on substrates is advantageous compared to conventional microfabrication techniques that utilize expensive photolithography, etching, and vacuum-metallization processes. However, the currently printed 2D transistors are plagued by unsatisfactory electrical performance, thick semiconductor layers, and low device density. Herein, a facile and scalable 2D semiconductor printing strategy is demonstrated utilizing the interface capture effect and hyperdispersed 2D nanosheet ink to fabricate high-quality and atomic-thick semiconductor thin-film arrays without additional surfactants. Printed robust thin-film transistors using 2D semiconductors (e.g., MoS2 ) and 2D conductive electrodes (e.g., graphene) exhibit high electrical performance, including a carrier mobility of up to 6.7 cm2 V-1 s-1 and an on/off ratio of 2 × 106 at 25 °C. As a proof of concept, 2D transistors are printed with a density of ≈47 000 devices per square centimeter. In addition, this method can be applied to many other 2D materials, such as NbSe2 , Bi2 Se3 , and black phosphorus, for printing diverse high-quality thin films. Thus, the strategy of printable 2D thin-film transistors provides a scalable pathway for the facile manufacturing of high-performance electronics at an affordable cost.
Collapse
Affiliation(s)
- Lihong Li
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Xiaoxia Yu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Zhaoyang Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhenren Cai
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Yawei Cao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Wei Kong
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Zhongyuan Xiang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Zhengkun Gu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanlin Song
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
| |
Collapse
|
30
|
Pepłowski A, Budny F, Jarczewska M, Lepak-Kuc S, Dybowska-Sarapuk Ł, Baraniecki D, Walter P, Malinowska E, Jakubowska M. Self-Assembling Graphene Layers for Electrochemical Sensors Printed in a Single Screen-Printing Process. SENSORS (BASEL, SWITZERLAND) 2022; 22:8836. [PMID: 36433435 PMCID: PMC9692624 DOI: 10.3390/s22228836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
This article reports findings on screen-printed electrodes employed in microfluidic diagnostic devices. The research described includes developing a series of graphene- and other carbon form-based printing pastes compared to their rheological parameters, such as viscosity in static and shear-thinning conditions, yield stress, and shear rate required for thinning. In addition, the morphology, electrical conductivity, and electrochemical properties of the electrodes, printed with the examined pastes, were investigated. Correlation analysis was performed between all measured parameters for six electrode materials, yielding highly significant (p-value between 0.002 and 0.017) correlations between electron transfer resistance (Ret), redox peak separation, and static viscosity and thinning shear-rate threshold. The observed more electrochemically accessible surface was explained according to the fluid mechanics of heterophase suspensions. Under changing shear stress, the agglomeration enhanced by the graphene nanoplatelets' interparticle affinity led to phase separation. Less viscous pastes were thinned to a lesser degree, allowing non-permanent clusters to de-agglomerate. Thus, the breaking of temporary agglomerates yielded an unblocked electrode surface. Since the mechanism of phase ordering through agglomeration and de-agglomeration is affected by the pastes' rheology and stress during the printing process and requires no further treatment, it can be appropriately labeled as a self-assembling electrode material.
Collapse
Affiliation(s)
- Andrzej Pepłowski
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| | - Filip Budny
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Marta Jarczewska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego, 00-664 Warsaw, Poland
| | - Sandra Lepak-Kuc
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Łucja Dybowska-Sarapuk
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Dominik Baraniecki
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Piotr Walter
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| | - Elżbieta Malinowska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego, 00-664 Warsaw, Poland
- Division of Medical Diagnostics, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| | - Małgorzata Jakubowska
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| |
Collapse
|
31
|
Ersu G, Kuriakose S, Goldie SJ, Al-Enizi AM, Nafady A, Munuera C, Backes C, Island JO, Castellanos-Gomez A. Improving the conductivity of graphite-based films by rapid laser annealing. NANOSCALE ADVANCES 2022; 4:4724-4729. [PMID: 36545390 PMCID: PMC9642606 DOI: 10.1039/d2na00557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 06/17/2023]
Abstract
We present a method to anneal devices based on graphite films on paper and polycarbonate substrates. The devices are created using four different methods: spray-on films, graphite pencil-drawn films, liquid-phase exfoliated graphite films, and graphite powder abrasion-applied films. We characterize the optical properties of the films before and after laser annealing and report the two-terminal resistance of the devices for increased laser power density. We find the greatest improvement (16× reduction) in the resistance of spray-on film devices starting from 25.0 kΩ and reaching 1.6 kΩ at the highest annealing power densities. These improvements are attributed to local laser ablation of binders, stabilizers, and solvent residues left in the film after fabrication. This work highlights the utility of focused laser annealing for spray-on, drawn, printed, and abrasion fabricated films on substrates sensitive to heat/thermal treatments.
Collapse
Affiliation(s)
- Gulsum Ersu
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Sruthi Kuriakose
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Stuart J Goldie
- Physical Chemistry of Nanomaterials, University of Kassel Germany
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Carmen Munuera
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Claudia Backes
- Physical Chemistry of Nanomaterials, University of Kassel Germany
| | - Joshua O Island
- Department of Physics and Astronomy, University of Nevada Las Vegas Las Vegas NV 89154 USA
| | - Andres Castellanos-Gomez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| |
Collapse
|
32
|
Deng Z, Li L, Tang P, Jiao C, Yu ZZ, Koo CM, Zhang HB. Controllable Surface-Grafted MXene Inks for Electromagnetic Wave Modulation and Infrared Anti-Counterfeiting Applications. ACS NANO 2022; 16:16976-16986. [PMID: 36197991 DOI: 10.1021/acsnano.2c07084] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional transition metal carbide/nitride (MXene) conductive inks are promising for scalable production of printable electronics, electromagnetic devices, and multifunctional coatings. However, the susceptible oxidation and poor rheological property seriously impede the printability of MXene inks and the exploration of functional devices. Here, we proposed a controllable surface grafting strategy for MXene flakes (p-MXene) with prepolymerized polydopamine macromolecules to protect against water and oxygen, enrich surface chemistry, and significantly optimize the rheological properties of the inks. The obtained p-MXene inks can adapt to screen-printing and other high-viscosity processing techniques, facilitating the development of patterned electromagnetic films and coatings. Interestingly, the printed MXene polarizer can freely switch and quantitatively control microwave transmission, giving an inspiring means for smart microwave modulation beyond the commonly reported shielding function. Moreover, the introduction of polydopamine nanoshell enables the infrared emissivity of MXene coating to be adjusted to a large extent, which can produce infrared anti-counterfeiting patterns in a thermal imager. Therefore, multifunctional antioxidant p-MXene inks will greatly extend the potential applications for the next-generation printable electronics and devices.
Collapse
Affiliation(s)
- Zhiming Deng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lulu Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pingping Tang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenyang Jiao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chong Min Koo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419 Republic of Korea
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
33
|
van Hazendonk L, Pinto AM, Arapov K, Pillai N, Beurskens MRC, Teunissen JP, Sneck A, Smolander M, Rentrop CHA, Bouten PCP, Friedrich H. Printed Stretchable Graphene Conductors for Wearable Technology. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8031-8042. [PMID: 36117880 PMCID: PMC9477090 DOI: 10.1021/acs.chemmater.2c02007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Skin-compatible printed stretchable conductors that combine a low gauge factor with a high durability over many strain cycles are still a great challenge. Here, a graphene nanoplatelet-based colloidal ink utilizing a skin-compatible thermoplastic polyurethane (TPU) binder with adjustable rheology is developed. Stretchable conductors that remain conductive even under 100% strain and demonstrate high fatigue resistance to cyclic strains of 20-50% are realized via printing on TPU. The sheet resistances of these conductors after drying at 120 °C are as low as 34 Ω □-1 mil-1. Furthermore, photonic annealing at several energy levels is used to decrease the sheet resistance to <10 Ω □-1 mil-1, with stretchability and fatigue resistance being preserved and tunable. The high conductivity, stretchability, and cyclic stability of printed tracks having excellent feature definition in combination with scalable ink production and adjustable rheology bring the high-volume manufacturing of stretchable wearables into scope.
Collapse
Affiliation(s)
- Laura
S. van Hazendonk
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Artur M. Pinto
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- LEPABE, Faculdade
de Engenharia, Universidade do Porto, 4200-180 Porto, Portugal
| | - Kirill Arapov
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Nikhil Pillai
- Pulseforge, 400 Parker Drive, Suite 1110, Austin, Texas 78728, United States
| | - Michiel R. C. Beurskens
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | | | - Asko Sneck
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | - Maria Smolander
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | | | - Piet C. P. Bouten
- Holst
Centre - TNO, High Tech
Campus 31, 5656AE Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
34
|
Johnson ZT, Jared N, Peterson JK, Li J, Smith EA, Walper SA, Hooe SL, Breger JC, Medintz IL, Gomes C, Claussen JC. Enzymatic Laser-Induced Graphene Biosensor for Electrochemical Sensing of the Herbicide Glyphosate. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2200057. [PMID: 36176938 PMCID: PMC9463521 DOI: 10.1002/gch2.202200057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is a globally applied herbicide yet it has been relatively undetectable in-field samples outside of gold-standard techniques. Its presumed nontoxicity toward humans has been contested by the International Agency for Research on Cancer, while it has been detected in farmers' urine, surface waters and crop residues. Rapid, on-site detection of glyphosate is hindered by lack of field-deployable and easy-to-use sensors that circumvent sample transportation to limited laboratories that possess the equipment needed for detection. Herein, the flavoenzyme, glycine oxidase, immobilized on platinum-decorated laser-induced graphene (LIG) is used for selective detection of glyphosate as it is a substrate for GlyOx. The LIG platform provides a scaffold for enzyme attachment while maintaining the electronic and surface properties of graphene. The sensor exhibits a linear range of 10-260 µ m, detection limit of 3.03 µ m, and sensitivity of 0.991 nA µ m -1. The sensor shows minimal interference from the commonly used herbicides and insecticides: atrazine, 2,4-dichlorophenoxyacetic acid, dicamba, parathion-methyl, paraoxon-methyl, malathion, chlorpyrifos, thiamethoxam, clothianidin, and imidacloprid. Sensor function is further tested in complex river water and crop residue fluids, which validate this platform as a scalable, direct-write, and selective method of glyphosate detection for herbicide mapping and food analysis.
Collapse
Affiliation(s)
| | - Nathan Jared
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - John K. Peterson
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Jingzhe Li
- Department of ChemistryIowa State UniversityAmesIA50011USA
- The Ames LaboratoryU.S. Department of EnergyAmesIA50011USA
| | - Emily A. Smith
- Department of ChemistryIowa State UniversityAmesIA50011USA
- The Ames LaboratoryU.S. Department of EnergyAmesIA50011USA
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Shelby L. Hooe
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
- National Research CouncilWashington, DC20001USA
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Carmen Gomes
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | | |
Collapse
|
35
|
Rapid and efficient testing of the toxicity of graphene-related materials in primary human lung cells. Sci Rep 2022; 12:7664. [PMID: 35538131 PMCID: PMC9088729 DOI: 10.1038/s41598-022-11840-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Graphene and its derivative materials are manufactured by numerous companies and research laboratories, during which processes they can come into contact with their handlers' physiological barriers—for instance, their respiratory system. Despite their potential toxicity, these materials have even been used in face masks to prevent COVID-19 transmission. The increasingly widespread use of these materials requires the design and implementation of appropriate, versatile, and accurate toxicological screening methods to guarantee their safety. Murine models are adequate, though limited when exploring different doses and lengths of exposure—as this increases the number of animals required, contrary to the Three R's principle in animal experimentation. This article proposes an in vitro model using primary, non-transformed normal human bronchial epithelial (NHBE) cells as an alternative to the most widely used model to date, the human lung tumor cell line A549. The model has been tested with three graphene derivatives—graphene oxide (GO), few-layer graphene (FLG), and small FLG (sFLG). We observed a cytotoxic effect (necrosis and apoptosis) at early (6- and 24-h) exposures, which intensified after seven days of contact between cells and the graphene-related materials (GRMs)—with cell death reaching 90% after a 5 µg/mL dose. A549 cells are more resistant to necrosis and apoptosis, yielding values less than half of NHBE cells at low concentrations of GRMs (between 0.05 and 5 µg/mL). Indeed, GRM-induced cell death in NHBE cells is comparable to that induced by toxic compounds such as diesel exhaust particles on the same cell line. We propose NHBE as a suitable model to test GRM-induced toxicity, allowing refinement of the dose concentrations and exposure timings for better-designed in vivo mouse assays.
Collapse
|
36
|
Additive Manufacturing of Bulk Thermoelectric Architectures: A Review. ENERGIES 2022. [DOI: 10.3390/en15093121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Additive manufacturing offers several opportunities for thermoelectric energy harvesting systems. This new manufacturing approach enables customized leg geometries, minimized thermal boundary resistances, less retooling, reduced thermoelectric material waste, and strong potential to manipulate microstructure for higher values of figure of merit. Although additive manufacturing has been used to fabricate thin thermoelectric films, there has been comparatively limited demonstrations of additive manufacturing for bulk thermoelectric structures. This review provides insights about the current progress of bulk thermoelectric material and device additive manufacturing. Each additive manufacturing technique used to produce bulk thermoelectric structures is discussed in detail along with future directions and challenges.
Collapse
|
37
|
Fakhari A, Fernandes C, Galindo-Rosales FJ. Mapping the Volume Transfer of Graphene-Based Inks with the Gravure Printing Process: Influence of Rheology and Printing Parameters. MATERIALS 2022; 15:ma15072580. [PMID: 35407913 PMCID: PMC8999982 DOI: 10.3390/ma15072580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023]
Abstract
It is a common practice to add rheology modifiers to functional inks, such as graphene inks, to optimize the rheological properties so that they can be printed with a certain printing technique. This practice may lead to inks formulations with poorer electrical, optical, and mechanical performance upon its application, which are of paramount importance in printed electronics. In this study, we demonstrate for three different commercial graphene-based inks that it is possible to control the amount of ink transferred to the flat surface by tweaking printing parameters, such as the velocity and the length scale of the gravure cell, without modifying the rheology of the ink. Finally, the results are summarized in printing maps based on dimensionless numbers, namely, the capillary and Reynolds numbers.
Collapse
Affiliation(s)
- Ahmad Fakhari
- Transport Phenomena Research Center (CEFT), Mechanical Engineering Department, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal;
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Célio Fernandes
- LASI-Associate Laboratory of Intelligent Systems, Institute for Polymers and Composites, Polymer Engineering Department, School of Engineering of the University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal;
| | - Francisco José Galindo-Rosales
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Transport Phenomena Research Center (CEFT), Chemical Engineering Department, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
38
|
Camargo JR, Silva TA, Rivas GA, Janegitz BC. Novel eco-friendly water-based conductive ink for the preparation of disposable screen-printed electrodes for sensing and biosensing applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Tafoya RR, Gallegos MA, Downing JR, Gamba L, Kaehr B, Coker EN, Hersam MC, Secor EB. Morphology and electrical properties of high-speed flexography-printed graphene. Mikrochim Acta 2022; 189:123. [DOI: 10.1007/s00604-022-05232-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
40
|
Claypole A, Claypole J, Bezodis N, Kilduff L, Gethin D, Claypole T. Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments. MATERIALS 2022; 15:ma15020573. [PMID: 35057291 PMCID: PMC8779039 DOI: 10.3390/ma15020573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
The ability to maintain body temperature has been shown to bring about improvements in sporting performance. However, current solutions are limited with regards to flexibility, heating uniformity and robustness. An innovative screen-printed Nanocarbon heater is demonstrated which is robust to bending, folding, tensile extensions of up to 20% and machine washing. This combination of ink and substrate enables the heated garments to safely flex without impeding the wearer. It is capable of producing uniform heating over a 15 × 4 cm area using a conductive ink based on a blend of Graphite Nanoplatelets and Carbon Black. This can be attributed to the low roughness of the conductive carbon coating, the uniform distribution and good interconnection of the carbon particles. The heaters have a low thermal inertia, producing a rapid temperature response at low voltages, reaching equilibrium temperatures within 120 s of being switched on. The heaters reached the 40 °C required for wearable heating applications within 20 s at 12 Volts. Screen printing was demonstrated to be an effective method of controlling the printed layer thickness with good interlayer adhesion and contact for multiple printed layers. This can be used to regulate their electrical properties and hence adjust the heater performance.
Collapse
Affiliation(s)
- Andrew Claypole
- Welsh Centre for Printing and Coating, College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN, UK; (A.C.); (J.C.); (D.G.)
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea SA1 8EN, UK; (N.B.); (L.K.)
| | - James Claypole
- Welsh Centre for Printing and Coating, College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN, UK; (A.C.); (J.C.); (D.G.)
| | - Neil Bezodis
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea SA1 8EN, UK; (N.B.); (L.K.)
- Welsh Institute of Performance Science (WIPS), Swansea University, Swansea SA1 8EN, UK
| | - Liam Kilduff
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea SA1 8EN, UK; (N.B.); (L.K.)
- Welsh Institute of Performance Science (WIPS), Swansea University, Swansea SA1 8EN, UK
| | - David Gethin
- Welsh Centre for Printing and Coating, College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN, UK; (A.C.); (J.C.); (D.G.)
| | - Tim Claypole
- Welsh Centre for Printing and Coating, College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN, UK; (A.C.); (J.C.); (D.G.)
- Correspondence:
| |
Collapse
|
41
|
Hassan K, Tung TT, Yap PL, Rastin H, Stanley N, Nine MJ, Losic D. Fractal Design for Advancing the Performance of Chemoresistive Sensors. ACS Sens 2021; 6:3685-3695. [PMID: 34644058 DOI: 10.1021/acssensors.1c01449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rapid advancement of internet of things (IoT)-enabled applications along with connected automation in sensing technologies is the heart of future intelligent systems. The probable applications have significant implications, from chemical process monitoring to agriculture, mining, space, wearable electronics, industrial manufacturing, smart cities, and point-of-care (PoC) diagnostics. Advancing sensor performance such as sensitivity to detect trace amounts (ppb-ppm) of analytes (gas/VOCs), selectivity, portability, and low cost is critical for many of these applications. These advancements are mainly achieved by selecting and optimizing sensing materials by their surface functionalization and/or structural optimization to achieve favorable transport characteristics or chemical binding/reaction sites. Surprisingly, the sensor geometry, shapes, and patterns were not considered as critical parameters, and most of these sensors were designed by following simple planar and interdigitated electrode geometry. In this study, we introduce a new bioinspired fractal approach to design chemoresistive sensors with fractal geometry, which grasp the architecture of fern leaves represented by the geometric group of space-filling curves of fractal patterns. These fractal sensors were printed by an extrusion process on a flexible substrate (PET) using specially formulated graphene ink as a sensing material, which provided significant enhancement of the active surface area to volume ratio and allowed high-resolution fractal patterning along with a reduced current transportation path. To demonstrate the advantages and influence of fractal geometry on sensor performance, here, three different kinds of sensors were fabricated based on different fractal geometrics (Sierpinski, Peano, and Hilbert), and the sensing performance was explored toward different VOC analytes (e.g., ethanol, methanol, and acetone). Among all these fractal-designed sensors including interdigitate sensors, the Hilbert-designed printed sensor shows enhanced sensing properties in terms of fast response time (6 s for 30 ppm), response value (14%), enhanced detection range (5-100 ppm), high selectivity, and low interference to humidity (up to RH 80%) for ethanol at room temperature (20 °C). Moreover, a significant improvement of this sensor performance was observed by applying the mechanical deformation (positive bending) technique. The practical application of this sensor was successfully demonstrated by monitoring food spoilage using a commercial box of strawberries as a model. Based on these presented results, this biofractal biomimetic VOC sensor is demonstrated for a prospective application in food monitoring.
Collapse
Affiliation(s)
- Kamrul Hassan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Hadi Rastin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Nathan Stanley
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Md. Julker Nine
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
42
|
Hsia T, Wan J, Fan B, Thang SH. Bifunctional RAFT Agent Directed Preparation of Polymer/Graphene Oxide Composites. Macromol Rapid Commun 2021; 42:e2100460. [PMID: 34505728 DOI: 10.1002/marc.202100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Polymer/graphene oxide (GO) composites, which combine the physical properties of GO and the processability of polymers, are of increasing interest in a variety of applications ranging from conductive foams, sensors, to bioelectronics. However, the preparation of these composites through physical blending demands the polymers with functional groups that interact strongly with the GO. Here the design and synthesis of a new bifunctional reversible addition-fragmentation chain transfer (RAFT) agent are demonstrated, which allows the synthesis of polymers with predetermined molecular weights and low dispersibilities (Ð), while having functionalities at both polymer termini that allow strong binding to GO. To access polymers with diverse thermal and mechanical properties, acrylonitrile-styrene-acrylate (ASA) copolymers with different types of acrylates, both short and long side chains, are synthesized under the control of the bifunctional RAFT agent. Furthermore, the strong binding between GO and the synthesized polymers is verified and explored to prepare polymer/GO composites with diverse tensile strengths and conductivity in the range of semiconductors. Overall, this novel RAFT agent is expected to expand the utility of polymer/GO composites by providing well-defined polymers with tunable properties and strong binding with GO.
Collapse
Affiliation(s)
- Tina Hsia
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Jing Wan
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
43
|
Esteban-Arranz A, Pérez-Cadenas M, Muñoz-Andrés V, Guerrero-Ruiz A. Evaluation of graphenic and graphitic materials on the adsorption of Triton X-100 from aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117161. [PMID: 33901979 DOI: 10.1016/j.envpol.2021.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/03/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Presently, graphenic nanomaterials are being studied as candidates for wastewater pollutant removal. In this study, two graphite oxides produced from natural graphite with different grain sizes (325 and 10 mesh), their respective reduced graphene oxides and one reduced graphene oxide with nitrogen functional groups were synthesized and tested to remove a surfactant model substrate, Triton X-100, from an aqueous solution. Kinetic experiments were carried out and adjusted to pseudo-first order equation, pseudo-second order equation, Elovich, Chain-Clayton and intra-particle diffusion models. Reduced graphene oxides displayed an instantaneous adsorption due to their accessible and hydrophobic surfaces, while graphite oxides hindered the TX100 adsorption rate due to their highly superficial oxygen content. Results from the adsorption isotherms showed that the Sips model perfectly described the TX100 adsorption behavior of these materials. Higher adsorption capacities were developed with reduced graphene oxides, being maximum for the material produced from the lower graphite grain size (qe = 3.55·10-6 mol/m2), which could be explained by a higher surface area (600 m2/g), a lower amount of superficial oxygen (O/C = 0.04) and a more defected structure (ID/IG = 0.85). Additionally, three commercial high surface area graphites in the range of 100-500 m2/g were evaluated for comparison purposes. In this case, better adsorption results were obtained with a more graphitic material, HSAG100 (qe = 1.72·10-6 mol/m2). However, the best experimental results of this study were obtained using synthesized graphenic materials.
Collapse
Affiliation(s)
- Adrián Esteban-Arranz
- Department of Inorganic and Technical Chemistry, National University of Distance Education (UNED), Senda Del Rey 9, 28040, Madrid, Spain.
| | - María Pérez-Cadenas
- Department of Inorganic and Technical Chemistry, National University of Distance Education (UNED), Senda Del Rey 9, 28040, Madrid, Spain.
| | - Vicenta Muñoz-Andrés
- Department of Inorganic and Technical Chemistry, National University of Distance Education (UNED), Senda Del Rey 9, 28040, Madrid, Spain.
| | - Antonio Guerrero-Ruiz
- Department of Inorganic and Technical Chemistry, National University of Distance Education (UNED), Senda Del Rey 9, 28040, Madrid, Spain.
| |
Collapse
|
44
|
Surfactant-assisted water-based graphene conductive inks for flexible electronic applications. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Screen Printing Carbon Nanotubes Textiles Antennas for Smart Wearables. SENSORS 2021; 21:s21144934. [PMID: 34300678 PMCID: PMC8309715 DOI: 10.3390/s21144934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023]
Abstract
Electronic textiles have become a dynamic research field in recent decades, attracting attention to smart wearables to develop and integrate electronic devices onto clothing. Combining traditional screen-printing techniques with novel nanocarbon-based inks offers seamless integration of flexible and conformal antenna patterns onto fabric substrates with a minimum weight penalty and haptic disruption. In this study, two different fabric-based antenna designs called PICA and LOOP were fabricated through a scalable screen-printing process by tuning the conductive ink formulations accompanied by cellulose nanocrystals. The printing process was controlled and monitored by revealing the relationship between the textiles' nature and conducting nano-ink. The fabric prototypes were tested in dynamic environments mimicking complex real-life situations, such as being in proximity to a human body, and being affected by wrinkling, bending, and fabric care such as washing or ironing. Both computational and experimental on-and-off-body antenna gain results acknowledged the potential of tunable material systems complimenting traditional printing techniques for smart sensing technology as a plausible pathway for future wearables.
Collapse
|
46
|
State-of-the-art of 3D printing technology of alginate-based hydrogels-An emerging technique for industrial applications. Adv Colloid Interface Sci 2021; 293:102436. [PMID: 34023568 DOI: 10.1016/j.cis.2021.102436] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Recently, three-dimensional (3D) printing (also known as additive manufacturing) has received unprecedented consideration in various fields owing to many advantages compared to conventional manufacturing equipment such as reduced fabrication time, one-step production, and the ability for rapid prototyping. This promising technology, as the next manufacturing revolution and universal industrial method, allows the user to fabricate desired 3D objects using a layer-by-layer deposition of material and a 3D printer. Alginate, a versatile polysaccharide derived from seaweed, is popularly used for this advanced bio-fabrication technique due to its printability, biodegradability, biocompatibility, excellent availability, low degree of toxicity, being a relatively inexpensive, rapid gelation in the presence of Ca2+ divalent, and having fascinating chemical structure. In recent years, 3D printed alginate-based hydrogels have been prepared and used in various fields including tissue engineering, water treatment, food, electronics, and so forth. Due to the prominent role of 3D printed alginate-based materials in diverse fields. So, this review will focus and highlight the latest and most up-to-date achievements in the field of 3D printed alginate-based materials in biomedical, food, water treatment, and electronics.
Collapse
|
47
|
Cao C, Yang T, Chen G. Hibiscus Leachate Dye-Based Low-Cost and Flexible Dye-Sensitized Solar Cell Prepared by Screen Printing. MATERIALS 2021; 14:ma14112748. [PMID: 34067489 PMCID: PMC8196975 DOI: 10.3390/ma14112748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
Although the price of dye-sensitized solar cells is lower than other solar cells, they still contain some high-cost materials, such as transparent conductive substrates, dyes (ruthenium dyes, organic dyes, etc.), and platinum counter electrodes. To solve this problem, a dye-sensitized solar cell based on hibiscus leaching solution and carbon black–silver electrodes was prepared by screen printing. The prepared low-cost dye-sensitized solar cells were flexible. The open-circuit voltage (Voc) of the obtained dye-sensitized solar cell is 0.65 V, the current density (Jsc) is 90 μA/cm², and the fill factor (FF) is 0.241.
Collapse
Affiliation(s)
- Congjun Cao
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (C.C.); (T.Y.)
| | - Tianning Yang
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (C.C.); (T.Y.)
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-(020)-2223-6485
| |
Collapse
|
48
|
Camargo JR, Orzari LO, Araújo DAG, de Oliveira PR, Kalinke C, Rocha DP, Luiz dos Santos A, Takeuchi RM, Munoz RAA, Bonacin JA, Janegitz BC. Development of conductive inks for electrochemical sensors and biosensors. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Abdolmaleki H, Kidmose P, Agarwala S. Droplet-Based Techniques for Printing of Functional Inks for Flexible Physical Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006792. [PMID: 33772919 DOI: 10.1002/adma.202006792] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/06/2020] [Indexed: 05/16/2023]
Abstract
Printed electronics (PE) is an emerging technology that uses functional inks to print electrical components and circuits on variety of substrates. This technology has opened up new possibilities to fabricate flexible, bendable, and form-fitting devices at low-cost and fast speed. There are different printing technologies in use, among which droplet-based techniques are of great interest as they provide the possibility of printing computer-controlled design patterns with high resolution, and greater production flexibility. Nanomaterial inks form the heart of this technology, enabling different functionalities. To this end, intensive research has been carried out on formulating inks with conductive, semiconductive, magnetic, piezoresistive, and piezoelectric properties. Here, a detailed landscape view on different droplet-based printing technologies (inkjet, aerosol jet, and electrohydrodynamic jet) is provided, with comprehensive discussion on their working principals. This is followed by a detailed research overview of different functional inks (metal, carbon, polymer, and ceramic). Different sintering methods and common substrates being used in printed electronics are also discussed, followed by an in-depth review of different physical sensors fabricated by droplet-based techniques. Finally, the challenges facing the field are considered and a perspective on possible ways to overcome them is provided.
Collapse
Affiliation(s)
- Hamed Abdolmaleki
- Department of Engineering, Aarhus University, Finlandsgade 22, Aarhus, 8200, Denmark
| | - Preben Kidmose
- Department of Engineering, Aarhus University, Finlandsgade 22, Aarhus, 8200, Denmark
| | - Shweta Agarwala
- Department of Engineering, Aarhus University, Finlandsgade 22, Aarhus, 8200, Denmark
| |
Collapse
|
50
|
Claypole A, Claypole J, Kilduff L, Gethin D, Claypole T. Stretchable Carbon and Silver Inks for Wearable Applications. NANOMATERIALS 2021; 11:nano11051200. [PMID: 34062804 PMCID: PMC8147316 DOI: 10.3390/nano11051200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
For wearable electronic devices to be fully integrated into garments, without restricting or impeding movement, requires flexible and stretchable inks and coatings, which must have consistent performance and recover from mechanical strain. Combining Carbon Black (CB) and ammonia plasma functionalized Graphite Nanoplatelets (GNPs) in a Thermoplastic Polyurethane (TPU) resin created a conductive ink that could stretch to substrate failure (>300% nominal strain) and cyclic strains of up to 100% while maintaining an electrical network. This highly stretchable, conductive screen-printable ink was developed using relatively low-cost carbon materials and scalable processes making it a candidate for future wearable developments. The electromechanical performance of the carbon ink for wearable technology is compared to a screen-printable silver as a control. After initial plastic deformation and the alignment of the nano carbons in the matrix, the electrical performance was consistent under cycling to 100% nominal strain. Although the GNP flakes are pulled further apart a consistent, but less conductive path remains through the CB/TPU matrix. In contrast to the nano carbon ink, a more conductive ink made using silver flakes lost conductivity at 166% nominal strain falling short of the substrate failure strain. This was attributed to the failure of direct contact between the silver flakes.
Collapse
Affiliation(s)
- Andrew Claypole
- Welsh Centre for Printing and Coating, Bay Campus, Swansea University, Swansea SA1 8EN, UK; (A.C.); (J.C.); (D.G.)
- Applied Sports, Technology, Exercise and Medicine, Bay Campus, Swansea University, Swansea SA1 8EN, UK;
| | - James Claypole
- Welsh Centre for Printing and Coating, Bay Campus, Swansea University, Swansea SA1 8EN, UK; (A.C.); (J.C.); (D.G.)
| | - Liam Kilduff
- Applied Sports, Technology, Exercise and Medicine, Bay Campus, Swansea University, Swansea SA1 8EN, UK;
| | - David Gethin
- Welsh Centre for Printing and Coating, Bay Campus, Swansea University, Swansea SA1 8EN, UK; (A.C.); (J.C.); (D.G.)
| | - Tim Claypole
- Welsh Centre for Printing and Coating, Bay Campus, Swansea University, Swansea SA1 8EN, UK; (A.C.); (J.C.); (D.G.)
- Correspondence: ; Tel.: +44-7946592128
| |
Collapse
|