1
|
Qi Z, Liu J, Xu Y, Sun H, Qi X, Cong M, Zhang X, Yan Y, Liu T. Protective effects of phenylethanol glycosides from Cistanche tubulosa against ALD through modulating gut microbiota homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118925. [PMID: 39395767 DOI: 10.1016/j.jep.2024.118925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanche tubulosa (Schenk) Wight, a Chinese herbal medicine (Rou Cong Rong) with Xinjiang characteristics, was recorded in many medical books in ancient China and often used as a tonic medicine. Supported by the traditional Chinese medicine theory of "homology of liver and kidney," C. tubulosa (Schenk) Wight has many clinical applications in tonifying the kidney and protecting the liver. Modern pharmacological studies have also found that the protective effects of phenylethanol glycosides from C. tubulosa (Schenk) Wight (CPhGs) play an important role in ameliorating alcoholic liver injury. AIM OF THE STUDY We aimed to investigate whether CPhGs can enhance the therapeutic outcome of alcoholic liver disease (ALD) by targeting the "gut-liver axis," thus contributing to the knowledge of how Chinese herbs alleviate disease by influencing the gut microbiota. MATERIALS AND METHODS An ALD mouse model was established using the Lieber-DeCarli alcohol liquid diet, and the effects of CPhGs on the intestinal barrier and gut microbiota of ALD mice were investigated in a pseudo-sterile mouse model and fecal microbiota transplantation (FMT) mouse model. We fed female C57BL/6N mice with Lieber-DeCarli ethanol liquid diet, according to the NIAAA model. Animal experiment of long-term, ethanol diet intervention for 6W, and short-term for 11d. The FMT experiments were also performed. RESULTS CPhGs significantly improved ALD manifestations. ALD mice demonstrated significant gut microbiota dysbiosis and significantly abnormal proliferation of Allobaculum compared with the control diet group in long-term NIAAA mouse model (L-Pair). In mice that received the long-term intervention, the improvement in gut barrier function in the CPhGs-treated group was accompanied by a significant decrease in the abundance of Allobaculum and a significant increase in the abundance of Akkermansia. Furthermore, compared with the mouse were gavaged fecal microbiota from the long-term NIAAA mouse donors (FMT-EtOH), the number of goblet cells, abundance of Akkermansia, and the intestinal short-chain fatty acid concentrations were significantly increased in the mouse were gavaged fecal microbiota from high (700 mg/kg) doses of CPhGs orally in long-term NIAAA model donors (FMT-EtOH-H). Network analysis and species distribution results demonstrated that Akkermansia and Allobaculum were the genera with the highest abundances in the gut microbiota and that their interaction was related to propionic acid metabolism. CONCLUSIONS The results suggest that CPhGs exert a protective effect against ALD by modulating the abundance and composition of Akkermansia and Allobaculum in the intestine, maintaining the intestinal mucus balance, and safeguarding intestinal barrier integrity.
Collapse
Affiliation(s)
- Zhaoyao Qi
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Jincun Liu
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Yuanhui Xu
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Hongguang Sun
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Xinxin Qi
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Meili Cong
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Xinxuan Zhang
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Yuxin Yan
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Tao Liu
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| |
Collapse
|
2
|
Alharbi S, Aldubayan MA, Alhowail AH, Almogbel YS, Emara AM. Co-abuse of amphetamine and alcohol harms kidney and liver. Sci Rep 2024; 14:23400. [PMID: 39379507 PMCID: PMC11461853 DOI: 10.1038/s41598-024-74459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
The prevalence of alcohol use disorder was found 75% higher among amphetamine dependent patients. Alcohol and amphetamine alone have nephrotoxicity and hepatoxicity. But, the degree of risk with coabuse of alcohol and amphetamine is unknown. The objective of this study was to assess toxic effects of amphetamine-alcohol co-abuse on the liver and kidney. he present study was a cross-sectional study conducted et al. Amal Hospital for Mental Health, Qassim region, KSA and include one hundred participants. Seventy-five participants were patients hospitalized for the treatment of abuse, and twenty-five participants, were healthy voluntaries, have no history of abuse. An experienced psychiatrist conducted patient interviews and assessed the patients using the DSM-5 criteria. The data from healthy participants were considered as a control. The abuse group was paired with the control group by age and lifestyle. Participants were split into: Group I: Control group (n = 25); Group II: Amphetamine (AMP) abuser group (n = 25); Group III: Alcohol abuser group (n = 25) and Group IV: Combined drug abuser group (AMP and alcohol) (n = 25). The socio-demographic data was collected. Complete medical examination, Body Mass Index and samples of blood and urine were collected from all participants for analytical tests; determination of alcohol and AMP levels, kidney functions and liver functions. The mean BMI values in groups II, III, and IV showed no significant change from the control group. The serum level of albumin and alkaline phosphatase showed significant decrease in all abuser groups. While, alanine transaminase (ALT), Aspartate transaminase (AST) and osteopontin levels showed significant increase in all abuser groups. Fasting blood sugar values showed significant increase in alcohol abusers. On the other hand, it revealed no significant change in AMP and combined groups. The mean values of urea showed no significant change in AMP and alcohol abusers and significant increase in combined drug abuser group. The serum creatinine and all abuser groups showed significant increase in Cystatin C. The alteration in the most of studied biochemical parameters were more than two folds in combined group compared with that of AMP or alcohol groups. Study reveals synergistic liver and kidney toxicity. Amphetamine-alcohol co-abuse significantly heightens kidney and liver toxicity.
Collapse
Affiliation(s)
- Sharifah Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia
| | - Maha A Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia
| | - Ahmad H Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia
| | - Yasser S Almogbel
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ashraf M Emara
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia.
| |
Collapse
|
3
|
He YX, Liu MN, Wu H, Lan Q, Liu H, Mazhar M, Xue JY, Zhou X, Chen H, Li Z. Puerarin: a hepatoprotective drug from bench to bedside. Chin Med 2024; 19:139. [PMID: 39380120 PMCID: PMC11460048 DOI: 10.1186/s13020-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
Pueraria is a time-honored food and medicinal plant, which is widely used in China. Puerarin, the main component extracted from pueraria, has a variety of pharmacological characteristics. In recent years, puerarin has received increasing attention for its significant hepatoprotective effects, such as metabolic dysfunction-associated steatotic liver disease, alcohol-related liver disease, and hepatic carcinoma. This paper explores the pharmacological effects of puerarin on various liver diseases through multiple mechanisms, including inflammation factors, oxidative stress, lipid metabolism, apoptosis, and autophagy. Due to its restricted solubility, pharmacokinetic studies revealed that puerarin has a low bioavailability. However, combining puerarin with novel drug delivery systems can improve its bioavailability. Meanwhile, puerarin has very low toxicity and high safety, providing a solid foundation for its further. In addition, this paper discusses puerarin's clinical trials, highlighting its unique advantages. Given its excellent pharmacological effects, puerarin is expected to be a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Yi-Xiang He
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meng-Nan Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hao Wu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qi Lan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hao Liu
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Maryam Mazhar
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jin-Yi Xue
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xin Zhou
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui Chen
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Zhi Li
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Li J, Wang Y, Wu Z, Zhong M, Feng G, Liu Z, Zeng Y, Wei Z, Mueller S, He S, Ouyang G, Yuan G. Identification of diagnostic markers and molecular clusters of cuproptosis-related genes in alcohol-related liver disease based on machine learning and experimental validation. Heliyon 2024; 10:e37612. [PMID: 39315155 PMCID: PMC11417179 DOI: 10.1016/j.heliyon.2024.e37612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Background and aims Alcohol-related liver disease (ALD) is a worldwide burden. Cuproptosis has been shown to play a key role in the development of several diseases. However, the role and mechanisms of cuproptosis in ALD remain unclear. Methods The RNA-sequencing data of ALD liver samples were downloaded from the Gene Expression Omnibus (GEO) database. Bioinformatical analyses were performed using the R data package. We then identified key genes through multiple machine learning methods. Immunoinfiltration analyses were used to identify different immune cells in ALD patients and controls. The expression levels of key genes were further verified. Results We identified three key cuproptosis-related genes (CRGs) (DPYD, SLC31A1, and DBT) through an in-depth analysis of two GEO datasets, including 28 ALD samples and eight control samples. The area under the curve (AUC) value of these three genes combined in determining ALD was 1.0. In the external datasets, the three key genes had AUC values as high as 1.0 and 0.917, respectively. Nomogram, decision curve, and calibration curve analyses also confirmed these genes' ability to predict the diagnosis. These three key genes were found to be involved in multiple pathways associated with ALD progression. We confirmed the mRNA expression of these three key genes in mouse ALD liver samples. Regarding immune cell infiltration, the numbers of B cells, CD8 (+) T cells, NK cells, T-helper cells, and Th1 cells were significantly lower in ALD patient samples than in control liver samples. Single sample gene set enrichment analysis (ssGSEA) was then used to estimate the immune microenvironment of different CRG clusters and CRG-related gene clusters. In addition, we calculated CRG scores through principal component analysis (PCA) and selected Sankey plots to represent the correlation between CRG clusters, gene clusters, and CRG scores. Finally, the three key genes were confirmed in mouse ALD liver samples and liver cells treated with ethanol. Conclusions We first established a prognostic model for ALD based on 3 CRGs and robust prediction efficacy was confirmed. Our investigation contributes to a comprehensive understanding of the role of cuproptosis in ALD, presenting promising avenues for the exploration of therapeutic strategies.
Collapse
Affiliation(s)
- Jiangfa Li
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Yong Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Zhan Wu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Mingbei Zhong
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Gangping Feng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Zhipeng Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Zaiwa Wei
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Sebastian Mueller
- Center for Alcohol Research, University Hospital Heidelberg, Heidelberg, Germany
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| |
Collapse
|
5
|
Berköz M, Aslan A, Yunusoğlu O, Krośniak M, Francik R. Hepatoprotective potentials of Usnea longissima Ach. and Xanthoparmelia somloensis (Gyelnik) Hale extracts in ethanol-induced liver injury. Drug Chem Toxicol 2024:1-14. [PMID: 39322224 DOI: 10.1080/01480545.2024.2407867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
In our study, the antioxidant and anti-inflammatory effects of different lichen applications were investigated in rats using an experimental ethanol toxicity model. 48 rats were used in the study and they were divided into 6 groups with 8 rats in each group. These groups were: control, ethanol (2 g/kg), ethanol + Usnea longissima Ach. (200 mg/kg), ethanol + Usnea longissima Ach. (400 mg/kg), ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (100 mg/kg) and ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (200 mg/kg). The experimental work continued for 21 days. Lichen extracts and ethanol were administered by gavage to rats divided into groups. According to the experimental protocol, the experimental animals were sacrificed and their liver tissues were isolated. Biochemical parameters in serum, histological examinations, oxidative stress and inflammation parameters both at biochemical and molecular level in liver tissues were performed. Oxidative stress and inflammatory response were increased in the liver tissue of rats treated with ethanol for 21 days, and liver functions were impaired. It was found that U. longissima and X. somloensis extracts showed good antioxidant activity and conferred protective effects against ethanol-induced oxidative stress and inflammation. This could be attributed to the presence of secondary metabolites in the extract, which act as natural antioxidants and could be responsible for increasing the defence mechanisms against free radical production induced by ethanol administration.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ali Aslan
- Department of Pharmacology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Oruç Yunusoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
6
|
Kim SY, Oh KJ, Seo YR, Kim YW, Song PH, Song CH. Comparative Study on Hepatoprotective Effects of Traditional Herbs, Roots of Angelica gigas Nakai, Glycyrrhiza uralensis Fischer, Zizyphus jujuba Mill., and Fruits of Paeonia lactiflora Pall., on Ethanol-Induced Liver Injury in Mice. Antioxidants (Basel) 2024; 13:1137. [PMID: 39334796 PMCID: PMC11428478 DOI: 10.3390/antiox13091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Alcohol-associated liver disease (ALD) is a major cause of chronic liver disease, with few effective treatments besides alcohol abstinence. Angelicae Gigantis Radix (AG), Glycyrrhizae Radix et Rhizoma (GR), Paeoniae Radix (PR), and Zizyphi Fructus (ZF) are traditional herbs used to treat various ailments, including liver diseases. While several studies have reported the beneficial effects of GR on ALD, the effects of AG, PR, and ZF remain underexplored. Therefore, their efficacy and mechanisms against ALD were investigated using an alcohol-related liver injury model. The model was induced by ethanol gavage in C57BL/6J mice for 14 days, followed by oral administration of AG, GR, PR, and ZF one hour post-induction. The administration of these herbs reduced liver weight, and improved serum biomarkers of liver injury (ALT, AST, albumin). The herbs enhanced hepatic antioxidant capacity (GSH, SOD, catalase) and suppressed the production of proinflammatory cytokines (TNF-α, IL-1β) and apoptotic changes (caspase-3). The mechanisms of action involved lipid-lowering gene modulation through regulation of the cytochrome P450 2E1/Sirtuin 1/Nrf2 pathways. Histopathological and immunohistochemical analyses revealed that these herbs attenuated hepatocyte damage and steatosis via antioxidant, anti-inflammatory, and antiapoptotic effects. These findings suggest that traditional herbs, particularly AG, could be promising alternative therapies for treating ALD.
Collapse
Affiliation(s)
- So-Yeon Kim
- Research Center for Herbal Convergence on Liver Disease, Gyeongsan 38610, Republic of Korea
| | - Kyung-Jin Oh
- Department of Urology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Yu-Ri Seo
- Research Center for Herbal Convergence on Liver Disease, Gyeongsan 38610, Republic of Korea
| | - Young-Woo Kim
- Department of Herbal Prescription, School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Phil Hyun Song
- Department of Urology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Chang-Hyun Song
- Research Center for Herbal Convergence on Liver Disease, Gyeongsan 38610, Republic of Korea
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
7
|
Rangra S, Rana D, Prajapati A, Benival D, Dwivedi P, Mandoli A. Nutritional and microbiota-based therapeutic interventions for alcohol-associated liver disease: From pathogenesis to therapeutic insights. Life Sci 2024; 352:122852. [PMID: 38909682 DOI: 10.1016/j.lfs.2024.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Alcohol-associated liver disease (ALD) manifests as a consequence of prolonged and excessive alcohol consumption. This disease is closely associated with the interplay between gut health and liver function, which can lead to complex pathophysiological changes in the body. This review offers a comprehensive exploration of ALD's multifaceted nature, with a keen focus on its pathogenesis and the potential of nutritional and microbiota-based therapies. Insights derived from diverse case studies are utilized to shed light on how interventions can rebalance the gut microbiome and enhance liver function in ALD patients. Furthermore, the feasibility of liver transplantation and stem cell therapy as ultimate measures for ALD has been discussed, with acknowledgment of the inherent risks and challenges accompanying them. ALD's complexity underscores the necessity for a thorough understanding of its etiology and progression to devise effective treatments that mitigate its profound impact on an individual's health.
Collapse
Affiliation(s)
- Shagun Rangra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, India
| | - Arvee Prajapati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) - Jodhpur, 342005, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, India.
| |
Collapse
|
8
|
Hassanein EHM, Althagafy HS, Baraka MA, Amin H. Hepatoprotective effects of diosmin: a narrative review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03297-z. [PMID: 39167171 DOI: 10.1007/s00210-024-03297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Liver diseases represent a formidable global health threat. Hesperidin, a flavonoid found in citrus fruits, is the source of diosmin (DS). The in vivo and in vitro investigations of the pharmacological effects of DS reveal that it exhibits tremendous beneficial effects, such as fighting against inflammation, oxidative stress, and fibrosis. These effects have been noticed in various disease models, emphasizing the potential therapeutic value of DS in tackling diverse pathological conditions. Interestingly, DS has promising liver-defense capabilities against a range of hepatic illnesses, such as radiation-induced hepatic injury, liver ischemia/reperfusion injury, alcoholic hepatic disease, nonalcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC). Furthermore, DS demonstrates potential hepatoprotective effects against environmental toxins, such as heavy metals. DS activates PPAR-γ and Nrf2, leading to antioxidant effects that reduce oxidative stress. Moreover, DS suppresses NF-κB, NLRP3, MAPK activities, and cytokine production (TNF-α and IL-1β), resulting in inflammation suppression. These anti-inflammatory effects are attributed to the activation of PPAR-γ and Nrf2, which are NF-κB inhibitors. This review aims to comprehensively discuss the hepatoprotective capacity of DS, elucidating the underlying mechanisms and identifying several research avenues that warrant further exploration to ascertain the prospective clinical advantages of DS intake as a viable strategy for the treatment of hepatic illnesses.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Haitham Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
9
|
Yoo JJ, Lee DH, Kim SG, Jang JY, Kim YS, Kim LY. Impacts of smoking on alcoholic liver disease: a nationwide cohort study. Front Public Health 2024; 12:1427131. [PMID: 39171308 PMCID: PMC11335641 DOI: 10.3389/fpubh.2024.1427131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Objectives Smoking is a preventable risk factor for morbidity and mortality in patients with liver disease. This study aims to explore the additional risks of smoking in the development of alcoholic liver disease (ALD), cirrhosis, and hepatocellular carcinoma (HCC) in high-risk drinkers. Methods Data from the National Health Insurance Service, including claims and health check-up information spanning 2011 to 2017, were used. The overall alcohol consumption was calculated, and ALD was defined based on ICD-10 codes. High-risk drinking was defined as 7 or more drinks for men and 5 or more for women, twice weekly. Half of the high-risk drinkers were smokers, decreasing in men but stable at 20% for women. Results ALD prevalence was 0.97% in high-risk drinkers and 1.09% in high-risk drinkers who smoked, higher than 0.16% in social drinkers (p < 0.001). ALD incidence over 3-years was highest in high-risk drinkers who smoked (2.35%), followed by high-risk drinkers (2.03%) and social drinkers (0.35%) (p < 0.001). Cirrhosis and HCC followed similar patterns, with prevalence and incidence was highest in drinkers who smoked. 3-year mortality was 0.65% in high-risk drinkers who smoked, compared to 0.50% in high-risk drinkers and 0.24% in social drinkers (p < 0.001). Smoking increased the incidence of ALD, cirrhosis, and HCC by 1.32, 1.53, and 1.53 times, respectively (all p < 0.001). Gender-specific analysis revealed higher risk ratios (RR) for women in ALD, alcoholic cirrhosis, and HCC, particularly among high-risk drinkers who smoked. Women showed significantly increased RR in ALD (6.08 to 12.38) compared to men (4.18 to 4.40), and similar trends were observed for cirrhosis and HCC. Conclusion Smoking significantly heightens the risk of ALD, cirrhosis, and HCC, especially in women, among high-risk drinkers. This emphasizes the importance of smoking cessation, particularly for female patients with ALD.
Collapse
Affiliation(s)
- Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Jae Young Jang
- Department of Internal Medicine, Digestive Disease Center, Institute for Digestive Research, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Young Seok Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Log Young Kim
- Department of Big Data Strategy, National Health Insurance Service, Wonju, Republic of Korea
| |
Collapse
|
10
|
Thakurdesai A, Jha SK, Erinkitola I, Said A, Joshi T, Schwandt ML, Parajuli D, Singal AK, Kong M, Cave MC, Vatsalya V. The gut-immune-liver axis in patients with alcohol use disorder and clinically low serum zinc levels. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024. [PMID: 39095327 DOI: 10.1111/acer.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) with chronic and heavy alcohol consumption causes alcohol-associated liver disease (ALD). Early-stage ALD exhibits dyshomeostasis of zinc. We investigated the role of zinc deficiency in gut-barrier dysfunction, proinflammatory response, hepatocyte injury, and death, as well as potential sex differences in AUD patients. METHODS Thirty-nine male and female AUD patients were grouped by normal [≥71 μg/dL (Group 1, number (n) = 26)] and low [<71 μg/dL (Group 2, n = 13)] serum zinc levels. Demographics, alcohol intake markers [Lifetime Drinking History (LTDH), heavy drinking days in the past 90-days (HDD90), total drinks in the past 90-days (TD90), number of drinking days in the past 90-days (NDD90), average drinks per day in the past 90 days (AvgDPD90)] were collected. Blood samples were tested for complete blood count (CBC), comprehensive metabolic panel (CMP), coagulation markers, gut-barrier dysfunction markers, cytokines, and hepatocyte death markers. RESULTS Group 2 females exhibited lower LTDH than Group 2 males (p = 0.028), but higher recent drinking. Aspartate transaminase: alanine transaminase (AST:ALT) ratio was higher (p = 0.049) in Group 2 males compared to Group 1 males. Overall, Group 2 showed threefold higher interleukin 8 (IL-8) levels than Group 1 (p = 0.92); these were sevenfold higher in Group 2 females than Group 1 females. Group 2 females also had higher K18M65, but lower K18M30 than Group 1 females. Necrotic type of cell death (K18M65) was well-described only in Group 2 by the arrangement of lipopolysaccharide (LPS), soluble cluster of differentiation 14 (sCD14), and tumor necrosis factor alpha (TNF-α) (R2 = 0.633, p = 0.037). CONCLUSION Our findings demonstrated the role of the gut-immune-liver axis in describing hepatocyte injury and death in zinc-deficient AUD patients. These patients represented an arrangement of gut-barrier dysfunction and an exacerbated immune response. Shift in the cell-death mechanism from apoptosis in zinc-replete females to necrosis in zinc-deficient females suggests a subclinical to clinical transition of ALD associated with zinc status.
Collapse
Affiliation(s)
- Aishwarya Thakurdesai
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Clinical Laboratory for the Intervention Development of AUD and Organ-Severity, University of Louisville, Louisville, Kentucky, USA
| | - Suman K Jha
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Clinical Laboratory for the Intervention Development of AUD and Organ-Severity, University of Louisville, Louisville, Kentucky, USA
| | - Iyabo Erinkitola
- Clinical Laboratory for the Intervention Development of AUD and Organ-Severity, University of Louisville, Louisville, Kentucky, USA
| | - Aula Said
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Clinical Laboratory for the Intervention Development of AUD and Organ-Severity, University of Louisville, Louisville, Kentucky, USA
| | - Thwisha Joshi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Clinical Laboratory for the Intervention Development of AUD and Organ-Severity, University of Louisville, Louisville, Kentucky, USA
| | - Melanie L Schwandt
- National Institute on Alcohol Abuse and Alcoholism, NIAAA, NIH, Bethesda, Maryland, USA
| | - Dipendra Parajuli
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Ashwani K Singal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- VA Medical Center, Sioux Falls, South Dakota, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, School of Public Health, University of Louisville, Louisville, Kentucky, USA
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Vatsalya Vatsalya
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Clinical Laboratory for the Intervention Development of AUD and Organ-Severity, University of Louisville, Louisville, Kentucky, USA
- National Institute on Alcohol Abuse and Alcoholism, NIAAA, NIH, Bethesda, Maryland, USA
- Robley Rex VA Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Choi YJ, Kim Y, Hwang S. Role of Neutrophils in the Development of Steatotic Liver Disease. Semin Liver Dis 2024; 44:300-318. [PMID: 39117322 DOI: 10.1055/s-0044-1789207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review explores the biological aspects of neutrophils, their contributions to the development of steatotic liver disease, and their potential as therapeutic targets for the disease. Although alcohol-associated and metabolic dysfunction-associated liver diseases originate from distinct etiological factors, the two diseases frequently share excessive lipid accumulation as a common contributor to their pathogenesis, thereby classifying them as types of steatotic liver disease. Dysregulated lipid deposition in the liver induces hepatic injury, triggering the activation of the innate immunity, partially through neutrophil recruitment. Traditionally recognized for their role in microbial clearance, neutrophils have recently garnered attention for their involvement in sterile inflammation, a pivotal component of steatotic liver disease pathogenesis. In conclusion, technological innovations, including single-cell RNA sequencing, have gradually disclosed the existence of various neutrophil subsets; however, how the distinct subsets of neutrophil population contribute differentially to the development of steatotic liver disease remains unclear.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
12
|
Taha AM, Abouelmagd K, Nada SA, Mahmoud AM, Nguyen D, Sharma S, Elewa M. Impact of fecal microbiota transplantation in severe alcoholic hepatitis: A systematic review and meta-analysis. JGH Open 2024; 8:e70007. [PMID: 39161797 PMCID: PMC11331245 DOI: 10.1002/jgh3.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Background and Aim Severe alcoholic hepatitis (SAH) is a serious condition with few treatments. By modifying the gut-liver axis, fecal microbiota transplantation (FMT) was proposed as a treatment for SAH. The purpose of this meta-analysis was to evaluate the efficacy of FMT versus the standard of care (SOC) in improving SAH patient survival rates. Methods A thorough search of electronic databases was conducted till September 2023. The survival rates of SAH patients undergoing FMT versus SOC were compared. Using Review Manager 5.4, odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Results The meta-analysis consisted of six studies with a total of 371 patients with SAH. Patients who received FMT had significantly higher survival rates at 1 and 3 months compared to those who received SOC, with pooled OR of 2.91 (95% CI: 1.56-5.42, P = 0.0008) and 3.07 (95% CI: 1.81-5.20, P < 0.0001), respectively. However, the survival advantage disappeared after 6 months (OR: 2.96, 95% CI: 0.99-8.85, P = 0.05) and 1 year of follow-up (OR: 1.81, 95% CI: 0.44-7.46, P = 0.41). Conclusion This meta-analysis highlights the potential of FMT to significantly improve short-term survival rates in SAH patients. However, the survival benefit did not last 6-12 months. These findings call for additional research into the effectiveness of FMT over the long term, along with strategies for extending the survival benefit.
Collapse
Affiliation(s)
| | - Khaled Abouelmagd
- Cardiology Department, Faculty of MedicineAl‐Azhar UniversityNew DamiettaEgypt
| | - Sarah A Nada
- Faculty of MedicineMenoufia UniversityMenoufiaEgypt
| | | | - Dang Nguyen
- Massachusetts General Hospital, Corrigan Minehan Heart CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Sadish Sharma
- Faculty of MedicineCollege of Medical SciencesBharatpurNepal
| | - Mandy Elewa
- Department of Pharmacy and Therapeutics, Faculty of PharmacyKuwait UniversityKuwait CityKuwait
| |
Collapse
|
13
|
Jaan A, Razzak IA, Chaudhary AJ, Farooq U, Khan AM, Sheikh LF, Dhawan A, Cryer B. Malnutrition Severity Predicts Clinical Outcomes in Alcoholic Hepatitis: Evidence from National Data. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024:1-7. [PMID: 39073449 DOI: 10.1080/27697061.2024.2383403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Alcoholic hepatitis (AH) represents a severe manifestation of alcoholic liver disease (ALD) associated with a wide severity spectrum. ALD is linked to nutritional deficiencies, with the gravity of malnutrition escalating as alcohol abuse and ALD progress. This study aims to delve into the impact of malnutrition on the clinical trajectory of AH. METHODS We identified adult patients admitted with AH using the National Readmission Database (NRD) 2016-2020. We further classified AH patients based on the severity of malnutrition. We compared the outcomes of AH hospitalizations using a multivariate regression model. RESULTS We included 82,367 AH patients, of whom 15,693 (19.00%) had malnutrition. 4,243 (5.15%) patients exhibited mild to moderate malnutrition, 5,862 (7.07%) patients had severe malnutrition, and 5,588 (6.78%) patients had unspecified severity of malnutrition. We found that adjusted in-hospital mortality due to AH was higher in patients with malnutrition, corresponding to the severity of malnutrition (adjusted odds ratio [aOR] 1.62 and 3.14 in mild-moderate malnutrition and severe malnutrition, respectively; p < .01). Additionally, patients with malnutrition had progressively elevated odds of septic shock, vasopressor requirement, mechanical ventilation, and intensive care unit (ICU) admission with escalating intensity of malnutrition. Liver-related complications, such as spontaneous bacterial peritonitis, coagulopathy, hepatorenal syndrome, and hepatic encephalopathy, were also found to have an increased likelihood in the presence of malnutrition. Furthermore, resource utilization showed a progressive increase with increasing severity of malnutrition. CONCLUSION Our findings indicate that malnutrition is a common comorbidity in AH patients, with varying degrees of severity, which correlates with higher mortality rates, emphasizing the critical role of nutritional status in the prognosis of AH. These findings underscore the importance of addressing and managing malnutrition in patients with AH, not only for its potential contribution to mortality but also because of its association with a spectrum of complications and increased healthcare resource utilization.
Collapse
Affiliation(s)
- Ali Jaan
- Department of Internal Medicine, Rochester General Hospital, NY, USA
| | - Iyiad Alabdul Razzak
- Department of Internal Medicine, St. Elizabeth's Medical Center, Tufts School of Medicine, Boston, MA, USA
| | | | - Umer Farooq
- Department of Gastroenterology, Saint Louis University, MO, USA
| | - Abdul Moiz Khan
- Department of Internal Medicine, Ayub Medical college, Pakistan
| | | | - Ashish Dhawan
- Department of Internal Medicine, Gian Sagar Medical College and Hospital, Punjab, India
| | - Byron Cryer
- Department of Gastroenterology, Baylor University Medical Center, Dallas, USA
| |
Collapse
|
14
|
Feng X, Huang N, Wu Y, Gao F, Chen X, Zhang C, Zhang B, Sun T. Alcoholic Liver Disease in China: A Disease Influenced by Complex Social Factors That Should Not Be Neglected. J Clin Transl Hepatol 2024; 12:677-684. [PMID: 38993514 PMCID: PMC11233974 DOI: 10.14218/jcth.2024.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
Alcoholic liver disease (ALD) encompasses liver damage caused by chronic, excessive alcohol consumption. It manifests initially as marked hepatocellular steatosis and can progress to steatohepatitis, liver fibrosis, and cirrhosis. With China's rapid economic growth, coupled with a complex social background and the influence of a deleterious wine culture, the number of patients with ALD in China has increased significantly; the disease has become a social and health problem that cannot be ignored. In this review, we briefly described the social factors affecting ALD in China and elaborated on differences between alcoholic and other liver diseases in terms of complications (e.g., cirrhosis, upper gastrointestinal bleeding, hepatic encephalopathy, hepatocellular carcinoma, addiction, and other extrahepatic diseases). We also emphasized that ALD was more dangerous and difficult to treat than other liver diseases due to its complications, and that precise and effective treatment measures were lacking. In addition, we considered new ideas and treatment methods that may be generated in the future.
Collapse
Affiliation(s)
- Xiaofeng Feng
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nafei Huang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuqin Wu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fei Gao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaomei Chen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chenyi Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bing Zhang
- Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Tao Sun
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Li L, Xu S, Wang W, Li X, Wang H, Yang Q, Wang C, Gu J, Luo H, Meng Q. Bruceine A alleviates alcoholic liver disease by inhibiting AIM2 inflammasome activation via activating FXR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155693. [PMID: 38763006 DOI: 10.1016/j.phymed.2024.155693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Alcoholic liver disease (ALD), a public health challenge worldwide caused by long-term persistent drinking, is life-threatening with minimal approved therapies. Hepatic steatosis accompanied by inflammation is an initial and inevitable stage in the complex progression of simple alcoholic liver injury to more severe liver diseases such as hepatitis, liver fibrosis, cirrhosis and liver cancer. PURPOSE We aimed to identify the therapeutic role of Bruceine A (BA) in ALD whilst attempting to explore whether its protective effects depend specifically on the farnesoid X receptor (FXR). METHODS Autodock was applied to detect the affinity between BA and FXR. Lieber-DeCarli liquid diet with 5 % ethanol (v/v) was adopted to establish the mouse ALD model. The lentivirus mediating FXR (LV-FXR) was injected into mice via the tail vein to establish FXR-overexpressed mice. FXR silencing or overexpression plasmids were transfected into AML-12 cells prior to ethanol stimulation. Quantitative real-time PCR, Western blotting and immunofluorescence assays were employed to determine the expression of related genes. We subjected liver sections to H&E and Oil Red O staining to evaluate the liver histological injury and the deposition of lipid droplets. RESULTS BA significantly reduced body weight and liver-to-body weight ratios as well as biochemical indexes in mice. Ethanol-induced liver damage and lipid accumulation could be alleviated by BA treatment. BA bound to FXR by two hydrogen bonds. There was a positive correlation between BA administration and FXR expression. BA inhibited the expression of lipid synthesis genes and enhanced the expression of lipid metabolism genes by activating FXR, thus alleviating steatosis in ALD. Moreover, BA exerted an ameliorative effect against inflammation by inhibiting the activation of absent in melanoma 2 (AIM2) inflammasome by activating FXR. FXR overexpression possessed the ability to counter the accumulation of lipid and the activation of AIM2 inflammasome caused by ethanol. FXR deficiency exacerbated ethanol-induced liver steatosis and inflammation. The hepatoprotective effect of BA could be disrupted by FXR antagonist guggulsterone (GS) in vivo and FXR siRNA in vitro. CONCLUSION BA alleviated alcoholic liver disease by inhibiting AIM2 inflammasome activation through an FXR-dependent mechanism. This study may potentially represent a new therapeutic approach for ALD.
Collapse
Affiliation(s)
- Lin Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Shuai Xu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Wenyu Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xia Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Haotian Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qi Yang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
16
|
Liu D, Yang K, Li T, Tang T, Wang Y, Wang W, Li J, Zhou P, Wang X, Zhao C, Guo D, Xie Y, Cheng J, Wang M, Sun J, Zhang X. The protective effects of aqueous extract of Schisandra sphenanthera against alcoholic liver disease partly through the PI3K-AKT-IKK signaling pathway. Heliyon 2024; 10:e34214. [PMID: 39091943 PMCID: PMC11292531 DOI: 10.1016/j.heliyon.2024.e34214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Purpose This study aimed to investigated the key chemical components and the effect of the aqueous extract of Schisandra sphenanthera (SSAE) on alcoholic liver disease (ALD) and the related molecular mechanism. Methods This study employed UPLC-Q-TOF-MS/MS to identify the chemical compositions in SSAE. ALD rat model was established through oral administration of white spirit. Transcriptome sequencing, weighted gene co-expression network construction analysis (WGCNA), and network pharmacology were used to predict key compositions and pathways targeted by SSAE for the treatment of ALD. Enzyme-linked immunosorbent assay (ELISA), biochemical kits, hematoxylin-eosin (HE) staining, Western blotting (WB) analysis, and immunohistochemical analysis were used to validate the mechanism of action of SSAE in treating ALD. Results Active ingredients such as schisandrin A, schisandrol A, and schisandrol B were found to regulate the PI3K/AKT/IKK signaling pathway. Compared to the model group, the SSAE group demonstrated significant improvements in cellular solidification and tissue inflammation in the liver tissues of ALD model rats. Additionally, SSAE regulated the levels of a spartate aminotransferase (AST), alanine aminotransferase (ALT), alcohol dehydrogenase (ADH), and aldehyde Dehydrogenase (ALDH) in serum (P < 0.05); Western blotting and immunohistochemical analyses showed that the expression levels of phosphorylated PI3K, AKT, IKK, NFκB, and FOXO1 proteins were significantly reduced in liver tissues (P < 0.05), whereas the expression level of Bcl-2 proteins was significantly increased (P < 0.05). Conclusion The active components of SSAE were schisandrin A, schisandrol A, and schisandrol B, which regulated the phosphorylation levels of PI3K, AKT, IKK, and NFκB and the expression of FOXO1 protein and upregulated the expression of Bcl-2 protein in the liver tissues of ALD rats. These findings indicate that SSAE acts against ALD partly through the PI3K-AKT-IKK signaling pathway. This study provided a reference for future research and treatment of ALD and the development of novel natural hepatoprotective drugs.
Collapse
Affiliation(s)
- Ding Liu
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Kai Yang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Taotao Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Yujiao Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Wenfei Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jia Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Peijie Zhou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Xuan Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Chongbo Zhao
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Yundong Xie
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jiangxue Cheng
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Mei Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
- Key Laboratory of Modern Chinese Medicine Preparation, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| |
Collapse
|
17
|
Ramkumar D, Marty A, Ramkumar J, Rosencranz H, Vedantham R, Goldman M, Meyer E, Steinmetz J, Weckle A, Bloedorn K, Rosier C. Food for thought: Making the case for food produced via regenerative agriculture in the battle against non-communicable chronic diseases (NCDs). One Health 2024; 18:100734. [PMID: 38711478 PMCID: PMC11070632 DOI: 10.1016/j.onehlt.2024.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Non-communicable diseases (NCDs) pose a global health challenge, leading to substantial morbidity, mortality, and economic strain. Our review underscores the escalating incidence of NCDs worldwide and highlights the potential of regenerative agriculture (RA) products in mitigating these diseases. We also explore the efficacy of dietary interventions in NCD management and prevention, emphasizing the superiority of plant-based diets over those high in processed foods and red meat. Examining the role of the gut microbiome in various diseases, including liver disorders, allergies, metabolic syndrome, inflammatory bowel disease, and colon cancer, we find compelling evidence implicating its influence on disease development. Notably, dietary modifications can positively affect the gut microbiome, fostering a symbiotic relationship with the host and making this a critical strategy in disease prevention and treatment. Investigating agricultural practices, we identify parallels between soil/plant and human microbiome studies, suggesting a crucial link between soil health, plant- and animal-derived food quality, and human well-being. Conventional/Industrial agriculture (IA) practices, characterized in part by use of chemical inputs, have adverse effects on soil microbiome diversity, food quality, and ecosystems. In contrast, RA prioritizes soil health through natural processes, and includes avoiding synthetic inputs, crop rotation, and integrating livestock. Emerging evidence suggests that food from RA systems surpasses IA-produced food in quality and nutritional value. Recognizing the interconnection between human, plant, and soil microbiomes, promoting RA-produced foods emerges as a strategy to improve human health and environmental sustainability. By mitigating climate change impacts through carbon sequestration and water cycling, RA offers dual benefits for human and planetary health and well-being. Emphasizing the pivotal role of diet and agricultural practices in combating NCDs and addressing environmental concerns, the adoption of regional RA systems becomes imperative. Increasing RA integration into local food systems can enhance food quality, availability, and affordability while safeguarding human health and the planet's future.
Collapse
Affiliation(s)
- Davendra Ramkumar
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Aileen Marty
- Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Japhia Ramkumar
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Holly Rosencranz
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Radhika Vedantham
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Modan Goldman
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Erin Meyer
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| | - Jasia Steinmetz
- University of Wisconsin – Stevens Point 202 College of Professional Studies, Stevens Point, WI 54481-3897, USA
| | - Amy Weckle
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Kelly Bloedorn
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| | - Carl Rosier
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| |
Collapse
|
18
|
Calzadilla N, Zilberstein N, Hanscom M, Al Rashdan HT, Chacra W, Gill RK, Alrefai WA. Serum metabolomic analysis in cirrhotic alcohol-associated liver disease patients identified differentially altered microbial metabolites and novel potential biomarkers for disease severity. Dig Liver Dis 2024; 56:923-931. [PMID: 37923598 PMCID: PMC11061266 DOI: 10.1016/j.dld.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/10/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Alcohol-Associated Liver Disease (ALD) is a leading cause of liver mortality. Mechanisms responsible for severe ALD and the roles of gut microbiota are not fully understood. Multi-omics tools have enabled a better understanding of metabolic alterations and can aid in identifying metabolites as biomarkers for severe ALD. AIMS Examine differences between cirrhotic and non-cirrhotic ALD, investigate microbial contributions to such changes, and identify potential diagnostic and prognostic metabolites for severe ALD. METHODS Untargeted metabolomics were performed on the serum of 11 non-cirrhotic and 11 cirrhotic ALD patients. Data were analyzed using MetOrigin and Metaboanalyst to identify enriched pathways. RESULTS Increased methylated nucleotides, gamma-glutamyl amino acids, bile acids, and specific metabolites kynurenine and campesterol were increased in ALD cirrhosis, whereas branched-chain amino acids, serotonin, and xanthurenate were decreased. Microbial contributions included increases in the short-chain fatty acid indolebutyrate and methionine sulfoxide in ALD cirrhosis. The analysis also identified the potential for serum levels of 3-ureidopropionate, cis-3,3-methyleneheptanoylglycine, retinol, and valine to be used as biomarkers for clinical assessment of alcohol-associated cirrhosis. CONCLUSION We have identified a set of metabolites that are differentially altered in cirrhotic compared to non-cirrhotic ALD that can potentially be used as biomarkers for the severity of the disease.
Collapse
Affiliation(s)
- Nathan Calzadilla
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Netanel Zilberstein
- Division of Gastroenterology & Hepatology, Rush University, Chicago, IL, United States
| | - Mark Hanscom
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Haya T Al Rashdan
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL, United States
| | - Wadih Chacra
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL, United States
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL, United States
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States.
| |
Collapse
|
19
|
Kadam I, Trasino SE, Korsmo H, Lucas J, Pinkas M, Jiang X. Prenatal Choline Supplementation Improves Glucose Tolerance and Reduces Liver Fat Accumulation in Mouse Offspring Exposed to Ethanol during the Prenatal and Postnatal Periods. Nutrients 2024; 16:1264. [PMID: 38732511 PMCID: PMC11085373 DOI: 10.3390/nu16091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Prenatal alcohol exposure (AE) affects cognitive development. However, it is unclear whether prenatal AE influences the metabolic health of offspring and whether postnatal AE exacerbates metabolic deterioration resulting from prenatal AE. Choline is a semi-essential nutrient that has been demonstrated to mitigate the cognitive impairment of prenatal AE. This study investigated how maternal choline supplementation (CS) may modify the metabolic health of offspring with prenatal and postnatal AE (AE/AE). C57BL/6J female mice were fed either a Lieber-DeCarli diet with 1.4% ethanol between embryonic day (E) 9.5 and E17.5 or a control diet. Choline was supplemented with 4 × concentrations versus the control throughout pregnancy. At postnatal week 7, offspring mice were exposed to 1.4% ethanol for females and 3.9% ethanol for males for 4 weeks. AE/AE increased hepatic triglyceride accumulation in male offspring only, which was normalized by prenatal CS. Prenatal CS also improved glucose tolerance compared to AE/AE animals. AE/AE suppressed hepatic gene expression of peroxisome proliferator activated receptor alpha (Ppara) and low-density lipoprotein receptor (Ldlr), which regulate fatty acid catabolism and cholesterol reuptake, respectively, in male offspring. However, these changes were not rectified by prenatal CS. In conclusion, AE/AE led to an increased risk of steatosis and was partially prevented by prenatal CS in male mice.
Collapse
Affiliation(s)
- Isma’il Kadam
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA; (I.K.); (H.K.)
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA; (J.L.); (M.P.)
| | - Steven E. Trasino
- Nutrition Program, School of Urban Public Health, Hunter College, City University of New York, New York, NY 10065, USA
| | - Hunter Korsmo
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA; (I.K.); (H.K.)
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA; (J.L.); (M.P.)
| | - Jessica Lucas
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA; (J.L.); (M.P.)
| | - Myriam Pinkas
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA; (J.L.); (M.P.)
| | - Xinyin Jiang
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA; (I.K.); (H.K.)
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA; (J.L.); (M.P.)
| |
Collapse
|
20
|
Xia N, Ding Z, Dong M, Li S, Liu J, Xue H, Wang Z, Lu J, Chen X. Protective Effects of Lycium ruthenicum Murray against Acute Alcoholic Liver Disease in Mice via the Nrf2/HO-1/NF-κB Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:497. [PMID: 38675458 PMCID: PMC11054480 DOI: 10.3390/ph17040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Acute alcoholic liver disease (ALD) resulting from short-term heavy alcohol consumption has become a global health concern. Moreover, anthocyanins have attracted much attention for their ability to prevent oxidation and inflammation. The present work evaluates the protective effects of Lycium ruthenicum Murray (LRM) against ALD and explores the possible underlying mechanism involved. The total anthocyanin content in LRM was 43.64 ± 9.28 Pt g/100 g dry weight. Mice were orally administered 50, 125, or 375 mg LRM/kg body weight (BW) for 21 days. On days 18-21, mice were orally administered 15 mL of ethanol/kg BW. Markers of liver damage, oxidative stress, and inflammation were examined. Furthermore, the modulatory effect of LRM on Nrf2/HO-1/NF-κB pathway molecules was evaluated through quantitative reverse transcription polymerase chain reaction (RT‒qPCR) and immunohistochemistry analyses. The difference between the groups indicated that LRM improved liver histopathology and the liver index, decreased aspartate transaminase, alanine transaminase, malondialdehyde, reactive oxygen species, IL-6, TNF-α, and IL-1β expression, but elevated superoxide dismutase, catalase, and glutathione-s-transferase levels. Moreover, LRM upregulated Nrf2 and Ho-1 but downregulated Nf-κb and Tnf-α genes at the transcript level. In summary, LRM alleviated ethanol-induced ALD in mice by reducing oxidative damage and associated inflammatory responses. LRM protects against ALD by reducing damage factors and enhancing defense factors, especially via the Nrf2/HO-1/NF-κB pathway. Thus, LRM has application potential in ALD prophylaxis and treatment.
Collapse
Affiliation(s)
- Niantong Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Zimian Ding
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Mingran Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Shuyang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Hongwei Xue
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Juan Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Xi Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| |
Collapse
|
21
|
Folk A, Mouhaffel R, Grewal H, Noh S, Le Cam E, Liu F, Ho S, Loveland M, Sainbayar E, Pham HN, Ferreira JP, Ibrahim R. United States-Mexico Border Disparities in Alcoholic Liver Disease Mortality: A Cross-Sectional Analysis 1999-2020. J Clin Gastroenterol 2024:00004836-990000000-00283. [PMID: 38597414 DOI: 10.1097/mcg.0000000000002007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND US-Mexico (US-MX) border regions are impacted by socioeconomic disadvantages. Alcohol use disorder remains widely prevalent in US-MX border regions, which may increase the risk of alcoholic liver disease (ALD). GOALS We aimed to characterize ALD mortality trends in border regions compared to non-border regions from 1999 to 2020 in the United States (US). METHODS We performed a cross-sectional analysis using the CDC repository. We queried death certificates to find ALD-related deaths from 1999 to 2020, which included demographic information such as gender, race/ethnicity, and area of residence. We estimated age-adjusted mortality rates (AAMR) per 100,000 population and compared the AAMRs across border and non-border regions. We also explored yearly mortality shifts using log-linear regression models and calculated the average annual percentage change (AAPC) using the Monte Carlo permutation test. RESULTS In all, 11,779 ALD-related deaths were identified in border regions (AAMR 7.29) compared with 361,523 in non-border regions (AAMR 5.03). Border male (AAMR 11.21) and female (AAMR 3.77) populations were higher compared with non-border male (AAMR 7.42) and female (2.85) populations, respectively. Border non-Hispanic populations (AAMR 7.53) had higher mortality compared with non-border non-Hispanic populations (4.79), while both populations experienced increasing mortality shifts (AAPC +1.7, P<0.001 and +3.1, P<0.001, respectively). Border metropolitan (AAMR 7.35) and non-metropolitan (AAMR 6.76) regions had higher mortality rates compared with non-border metropolitan (AAMR 4.96) and non-metropolitan (AAMR 5.44) regions. CONCLUSIONS Mortality related to ALD was higher in border regions compared with non-border regions. Border regions face significant health disparities when comparing ALD-related mortality.
Collapse
Affiliation(s)
- Akira Folk
- Department of Medicine, University of Arizona-Tucson, Tucson
| | - Rama Mouhaffel
- Department of Medicine, University of Arizona-Tucson, Tucson
| | - Harneet Grewal
- Department of Medicine, Abrazo Health Network, Glendale, AZ
| | - Sangkyu Noh
- Department of Medicine, University of Arizona-Tucson, Tucson
| | - Elise Le Cam
- Department of Medicine, University of Arizona-Tucson, Tucson
| | - Franklin Liu
- Department of Medicine, University of Arizona-Tucson, Tucson
| | - Sabrina Ho
- Department of Medicine, University of Arizona-Tucson, Tucson
| | | | | | - Hoang Nhat Pham
- Department of Medicine, University of Arizona-Tucson, Tucson
| | | | - Ramzi Ibrahim
- Department of Medicine, University of Arizona-Tucson, Tucson
| |
Collapse
|
22
|
He YX, Liu MN, Wang YY, Wu H, Wei M, Xue JY, Zou Y, Zhou X, Chen H, Li Z. Hovenia dulcis: a Chinese medicine that plays an essential role in alcohol-associated liver disease. Front Pharmacol 2024; 15:1337633. [PMID: 38650630 PMCID: PMC11033337 DOI: 10.3389/fphar.2024.1337633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Globally, alcohol-associated liver disease (ALD) has become an increased burden for society. Disulfirams, Benzodiazepines (BZDs), and corticosteroids are commonly used to treat ALD. However, the occurrence of side effects such as hepatotoxicity and dependence, impedes the achievement of desirable and optimal therapeutic efficacy. Therefore, there is an urgent need for more effective and safer treatments. Hovenia dulcis is an herbal medicine promoting alcohol removal clearance, lipid-lowering, anti-inflammatory, and hepatoprotective properties. Hovenia dulcis has a variety of chemical components such as dihydromyricetin, quercetin and beta-sitosterol, which can affect ALD through multiple pathways, including ethanol metabolism, immune response, hepatic fibrosis, oxidative stress, autophagy, lipid metabolism, and intestinal barrier, suggesting its promising role in the treatment of ALD. Thus, this work aims to comprehensively review the chemical composition of Hovenia dulcis and the molecular mechanisms involved in the process of ALD treatment.
Collapse
Affiliation(s)
- Yi-Xiang He
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Meng-Nan Liu
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang-Yang Wang
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Wu
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mei Wei
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jin-Yi Xue
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Zou
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Zhou
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Chen
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhi Li
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
23
|
Du H, Yu H, Zhou M, Hui Q, Hou Y, Jiang Y. The effect of STAT1, miR-99b, and MAP2K1 in alcoholic liver disease (ALD) mouse model and hepatocyte. Aging (Albany NY) 2024; 16:4224-4235. [PMID: 38431286 PMCID: PMC10968706 DOI: 10.18632/aging.205579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Alcoholic liver disease (ALD) serves as the leading cause of chronic liver diseases-related morbidity and mortality, which threatens the life of millions of patients in the world. However, the molecular mechanisms underlying ALD progression remain unclear. Here, we applied microarray analysis and experimental approaches to identify miRNAs and related regulatory signaling that associated with ALD. Microarray analysis identified that the expression of miR-99b was elevated in the ALD mouse model. The AML-12 cells were treated with EtOH and the expression of miR-99b was enhanced in the cells. The expression of miR-99b was positively correlated with ALT levels in the ALD mice. The microarray analysis identified the abnormally expressed mRNAs in ALD mice and the overlap analysis was performed with based on the differently expressed mRNAs and the transcriptional factors of miR-99b, in which STAT1 was identified. The elevated expression of STAT1 was validated in ALD mice. Meanwhile, the treatment of EtOH induced the expression of STAT1 in the AML-12 cells. The expression of STAT1 was positively correlated with ALT levels in the ALD mice. The positive correlation of STAT1 and miR-99b expression was identified in bioinformatics analysis and ALD mice. The expression of miR-99b and pri-miR-99b was promoted by the overexpression of STAT1 in AML-12 cells. ChIP analysis confirmed the enrichment of STAT1 on miR-99b promoter in AML-12 cells. Next, we found that the expression of mitogen-activated protein kinase kinase 1 (MAP2K1) was negatively associated with miR-99b. The expression of MAP2K1 was downregulated in ALD mice. Consistently, the expression of MAP2K1 was reduced by the treatment of EtOH in AML-12 cells. The expression of MAP2K1 was negative correlated with ALT levels in the ALD mice. We identified the binding site of MAP2K1 and miR-99b. Meanwhile, the treatment of miR-99b mimic repressed the luciferase activity of MAP2K1 in AML-12 cells. The expression of MAP2K1 was suppressed by miR-99b in the cells. We observed that the expression of MAP2K1 was inhibited by the overexpression of STAT1 in AML-12 cells. Meanwhile, the apoptosis of AML-12 cells was induced by the treatment of EtOH, while miR-99b mimic promoted but the overexpression of MAP2K1 attenuated the effect of EtOH in the cells. In conclusion, we identified the correlation and effect of STAT1, miR-99b, and MAP2K1 in ALD mouse model and hepatocyte. STAT1, miR-99b, and MAP2K1 may serve as potential therapeutic target of ALD.
Collapse
Affiliation(s)
- Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100015, China
| | - Hao Yu
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Meiyue Zhou
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Quan Hui
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100015, China
| | - Yixin Hou
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Yuyong Jiang
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| |
Collapse
|
24
|
Xia T, Yu J, Chen Y, Chang X, Meng M. Phosphoglycerate mutase 5 aggravates alcoholic liver disease through disrupting VDAC-1-dependent mitochondrial integrity. Int J Med Sci 2024; 21:755-764. [PMID: 38464835 PMCID: PMC10920835 DOI: 10.7150/ijms.93171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Alcoholic liver disease (ALD) poses a substantial global health challenge, with its pathogenesis deeply rooted in mitochondrial dysfunction. Our study explores the pivotal roles of Phosphoglycerate mutase family member 5 (Pgam5) and Voltage-Dependent Anion Channel 1 (VDAC1) in the progression of ALD, providing novel insights into their interplay and impact on mitochondrial integrity. We demonstrate that Pgam5 silencing preserves hepatocyte viability and attenuates ethanol-induced apoptosis, underscoring its detrimental role in exacerbating hepatocyte dysfunction. Pgam5's influence extends to the regulation of VDAC1 oligomerization, a key process in mitochondrial permeability transition pore (mPTP) opening, mitochondrial swelling, and apoptosis initiation. Notably, the inhibition of VDAC1 oligomerization through Pgam5 silencing or pharmacological intervention (VBIT-12) significantly preserves mitochondrial function, evident in the maintenance of mitochondrial membrane potential and reduced reactive oxygen species (ROS) production. In vivo experiments using hepatocyte-specific Pgam5 knockout (Pgam5hKO) and control mice reveal that Pgam5 deficiency mitigates ethanol-induced liver histopathology, inflammation, lipid peroxidation, and metabolic disorder, further supporting its role in ALD progression. Our findings highlight the critical involvement of Pgam5 and VDAC1 in mitochondrial dysfunction in ALD, suggesting potential therapeutic targets. While promising, these findings necessitate further research, including human studies, to validate their clinical applicability and explore broader implications in liver diseases. Overall, our study provides a significant advancement in understanding ALD pathophysiology, paving the way for novel therapeutic strategies targeting mitochondrial pathways in ALD.
Collapse
Affiliation(s)
- Tian Xia
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese PLA, Beijing, China
| | - Jiachi Yu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese PLA, Beijing, China
| | - Ye Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Miao Meng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
25
|
Maheshwari S, Gu CN, Caserta MP, Kezer CA, Shah VH, Torbenson MS, Menias CO, Fidler JL, Venkatesh SK. Imaging of Alcohol-Associated Liver Disease. AJR Am J Roentgenol 2024; 222:e2329917. [PMID: 37729554 DOI: 10.2214/ajr.23.29917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Alcohol-associated liver disease (ALD) continues to be a global health concern, responsible for a significant number of deaths worldwide. Although most individuals who consume alcohol do not develop ALD, heavy drinkers and binge drinkers are at increased risk. Unfortunately, ALD is often undetected until it reaches advanced stages, frequently associated with portal hypertension and hepatocellular carcinoma (HCC). ALD is now the leading indication for liver transplant. The incidence of alcohol-associated hepatitis (AH) surged during the COVID-19 pandemic. Early diagnosis of ALD is therefore important in patient management and determination of prognosis, as abstinence can halt disease progression. The spectrum of ALD includes steatosis, steatohepatitis, and cirrhosis, with steatosis the most common manifestation. Diagnostic techniques including ultrasound, CT, and MRI provide useful information for identifying ALD and excluding other causes of liver dysfunction. Heterogeneous steatosis and transient perfusion changes on CT and MRI in the clinical setting of alcohol-use disorder are diagnostic of severe AH. Elastography techniques are useful for assessing fibrosis and monitoring treatment response. These various imaging modalities are also useful in HCC surveillance and diagnosis. This review discusses the imaging modalities currently used in the evaluation of ALD, highlighting their strengths, limitations, and clinical applications.
Collapse
Affiliation(s)
- Sharad Maheshwari
- Department of Radiology, Kokilaben Dhirubhai Ambani Hospital, Mumbai, India
| | - Chris N Gu
- Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Melanie P Caserta
- Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Jacksonville, FL
| | - Camille A Kezer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Vijay H Shah
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN
| | - Christine O Menias
- Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, AZ
| | - Jeff L Fidler
- Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Sudhakar K Venkatesh
- Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| |
Collapse
|
26
|
Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Xia C, Xia J, Wu J. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Front Immunol 2023; 14:1314123. [PMID: 38155961 PMCID: PMC10754533 DOI: 10.3389/fimmu.2023.1314123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.
Collapse
Affiliation(s)
- Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
27
|
Fang X, Cao J, Tao Z, Yang Z, Dai Y, Zhao L. Hydroxytyrosol attenuates ethanol-induced liver injury by ameliorating steatosis, oxidative stress and hepatic inflammation by interfering STAT3/iNOS pathway. Redox Rep 2023; 28:2187564. [PMID: 36932927 PMCID: PMC10026757 DOI: 10.1080/13510002.2023.2187564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Objective: Hydroxytyrosol (HT) is a polyphenol with a wide range of biological activities. Excessive drinking can lead to oxidative stress and inflammation in the liver, which usually develop into alcohol liver disease (ALD). At present, there is no specific drug to treat ALD. In this paper, the protection effect of HT on ALD and the underline mechanism were studied.Methods: HepG2 cells were exposed to ethanol in vitro and C57BL/6J mice were fed with a Lieber-DeCarli ethanol liquid diet in vivo.Results: triglyceride (TG) level in serum and the expression of fatty acid synthase (FASN) were reduced significantly by the treatment with HT The acetaldehyde dehydrogenase (ALDH) activity was increased, the serum level of malondialdehyde (MDA) was decreased, catalase (CAT) and glutathione (GSH) were increased, suggesting that HT may reduce its oxidative damage to the body by promoting alcohol metabolism. Furthermore, according to the mRNA levels of tnf-α, il-6 and il-1β, HT inhibited ethanol-induced inflammation significantly. The anti-inflammatory mechanism of HT may be related to suppress the STAT3/iNOS pathway.Dissussion: Our study showed that HT could ameliorate ethanol-induced hepatic steatosis, oxidative stress and inflammation and provide a new candidate for the prevention and treatment of ALD.
Collapse
Key Words
- ADH, alcohol dehydrogenase
- ALD, alcohol liver disease
- ALDH, acetaldehyde dehydrogenase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CAT, catalase
- COX2, cyclo-oxygen-ase2
- CYP2E1, cytochrome P450 2E1
- DMSO, Dimethyl sulfoxide
- DPPH, 2,2-Diphenyl-1-picrylhydrazyl
- FASN, fatty acid synthase
- GSH, glutathione
- HT, hydroxytyrosol
- HepG2
- Hepatic steatosis
- Hydroxytyrosol
- LDL, low density lipoprotein
- LPS, lipopolysaccharides
- Liver injury
- MDA, malondialdehyde
- NO, nitric oxide
- PPAR-γ, peroxisome proliferators-activated receptor
- ROS, reactive oxygen species
- SREBP-1c, sterol regulatory element-binding protein-1c
- STAT3, signal transducer and activator of transcription 3
- STAT3/iNOS pathway
- TC, total cholesterol
- TG, triglyceride
- alcoholic liver disease
- anti-inflammation
- anti-oxidation
- iNOS, inducible nitric oxide Synthas
Collapse
Affiliation(s)
- Xianying Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jiamin Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhi Tao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhiqing Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuan Dai
- Yanghe Distillery Co. Ltd, Suqian, People's Republic of China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Subramaniyan V, Lubau NSA, Mukerjee N, Kumarasamy V. Alcohol-induced liver injury in signalling pathways and curcumin's therapeutic potential. Toxicol Rep 2023; 11:355-367. [PMID: 37868808 PMCID: PMC10585641 DOI: 10.1016/j.toxrep.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Confronting the profound public health concern of alcohol-induced liver damage calls for inventive therapeutic measures. The social, economic, and clinical ramifications are extensive and demand a comprehensive understanding. This thorough examination uncovers the complex relationship between alcohol intake and liver damage, with a special emphasis on the pivotal roles of the Toll-like receptor 4 (TLR4)/NF-κB p65 and CYP2E1/ROS/Nrf2 signalling networks. Different alcohol consumption patterns, determined by a myriad of factors, have significant implications for liver health, leading to a spectrum of adverse effects. The TLR4/NF-κB p65 pathway, a principal regulator of inflammation and immune responses, significantly contributes to various disease states when its balance is disrupted. Notably, the TLR4/MD-2-TNF-α pathway has been linked to non-alcohol related liver disease, while NF-κB activation is associated with alcohol-induced liver disease (ALD). The p65 subunit of NF-κB, primarily responsible for the release of inflammatory cytokines, hastens the progression of ALD. Breakthrough insights suggest that curcumin, a robust antioxidant and anti-inflammatory compound sourced from turmeric, effectively disrupts the TLR4/NF-κB p65 pathway. This heralds a new approach to managing alcohol-induced liver damage. Initial clinical trials support curcumin's therapeutic potential, highlighting its ability to substantially reduce liver enzyme levels. The narrative surrounding alcohol-related liver injury is gradually becoming more intricate, intertwining complex signalling networks such as TLR4/NF-κB p65 and CYP2E1/ROS/Nrf2. The protective role of curcumin against alcohol-related liver damage marks the dawn of new treatment possibilities. However, the full realisation of this promising therapeutic potential necessitates rigorous future research to definitively understand these complex mechanisms and establish curcumin's effectiveness and safety in managing alcohol-related liver disorders.
Collapse
Affiliation(s)
- Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Natasha Sura Anak Lubau
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary Collage, Kolkata, West Bengal 700118, India
- Department of Health Sciences, Novel Global Community and Educational Foundation, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Li D, Ding L, Yan Y, Xing Y, Xu J, Qin L. Lactoferrin Alleviates Ethanol-Induced Injury via Promoting Nrf2 Nuclear Translocation in BRL-3A Rat Liver Cells. Int J Mol Sci 2023; 24:16848. [PMID: 38069169 PMCID: PMC10706351 DOI: 10.3390/ijms242316848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Our previous animal studies found that the preventive effects of lactoferrin (Lf) on alcoholic liver injury (ALI) are associated with nuclear factor E2-related factor 2 (Nrf2). To further explore the causality, experiments were performed using rat normal liver BRL-3A cells. Lf treatment reduced ethanol-induced death and apoptosis; meanwhile, Lf treatment alleviated excessive LDH release. These findings confirmed the protection of Lf against ethanol-induced injury in BRL-3A cells. Mechanistically, Lf treatment reversed the reduction in nuclear Nrf2 induced by ethanol without affecting the cytoplasmic Nrf2 level, which led to antioxidant enzyme activity restoration. However, the blocking of Nrf2 nuclear translocation by ML385 eliminated the protective effects of Lf. In a conclusion, Lf protects BRL-3A cells from ethanol-induced injury via promoting Nrf2 nuclear translocation.
Collapse
Affiliation(s)
- Deming Li
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.L.); (L.D.); (Y.Y.); (Y.X.)
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Li Ding
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.L.); (L.D.); (Y.Y.); (Y.X.)
| | - Yilin Yan
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.L.); (L.D.); (Y.Y.); (Y.X.)
| | - Yifei Xing
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.L.); (L.D.); (Y.Y.); (Y.X.)
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Liqiang Qin
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.L.); (L.D.); (Y.Y.); (Y.X.)
| |
Collapse
|
30
|
Li D, Huang Z, Xu X, Li Y. Promising derivatives of rutaecarpine with diverse pharmacological activities. Front Chem 2023; 11:1199799. [PMID: 38025082 PMCID: PMC10646507 DOI: 10.3389/fchem.2023.1199799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Rutaecarpine (RUT) is a natural pentacyclic indolopyridoquinazolinone alkaloid first isolated from one of the most famous traditional Chinese herbs, Evodia rutaecarpa, which is used for treating a variety of ailments, including headaches, gastrointestinal disorders, postpartum hemorrhage, amenorrhea, difficult menstruation, and other diseases. Accumulating pharmacological studies showed that RUT possesses a wide range of pharmacological effects through different mechanisms. However, its poor physicochemical properties and moderate biological activities have hampered its clinical application. In this regard, the modification of RUT aimed at seeking its derivatives with better physicochemical properties and more potency has been extensively studied. These derivatives exhibit diverse pharmacological activities, including anti-inflammatory, anti-atherogenic, anti-Alzheimer's disease, antitumor, and antifungal activities via a variety of mechanisms, such as inhibiting cyclooxygenase-2 (COX-2), acetylcholine (AChE), phosphodiesterase 4B (PDE4B), phosphodiesterase 5 (PDE5), or topoisomerases (Topos). From this perspective, this paper provides a comprehensive description of RUT derivatives by focusing on their diverse biological activities. This review aims to give an insight into the biological activities of RUT derivatives and encourage further exploration of RUT.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaojun Xu
- Department of Party and Government Office, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
31
|
Wang M, Jiang Y, Wang S, Fu L, Liang Z, Zhang Y, Huang X, Li X, Feng M, Long D. Yak milk protects against alcohol-induced liver injury in rats. Food Funct 2023; 14:9857-9871. [PMID: 37853817 DOI: 10.1039/d3fo03675h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The protective effects of yak milk (YM) against chronic alcoholic liver injury in rats were investigated in this study. Histologic and biochemical analyses demonstrated that YM consumption ameliorates alcohol-induced liver injury by increasing the liver antioxidant enzyme activity and reducing inflammation. Furthermore, microbiome and metabolomic analyses exploring YM's impact on gut microbiota and metabolism found that YM administration regulates gut microbiota composition. Specifically, there was a decrease in the relative abundance of Helicobacter, Streptococcus, Peptococcus and Tyzzerella, along with an increase in Turisibacter and Intestinimonas. Moreover, Pearson analysis indicated positive correlations between Peptococcus and Tyzzerella with ALT and AST levels, while showing a negative correlation with ADH levels. Furthermore, differential metabolite analysis of fecal samples from the YM group identified significant increases in the taurine (2-Aminoethanesulfonic acid), hypotaurine (2-Aminoethanesulfonic Acid) and isethionic acid levels. Finally, KEGG topology analysis highlighted taurine and hypotaurine metabolism as the primary pathways influenced by YM intervention. Therefore, these findings collectively suggest that YM may protect alcohol-exposed rats against liver injury by modulating oxidative stress, inflammatory response, gut microbiota disorder, and metabolic regulation.
Collapse
Affiliation(s)
- Man Wang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Yanshi Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Siying Wang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Lin Fu
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Zujin Liang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Xin Li
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Meiying Feng
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China.
| |
Collapse
|
32
|
Huang Y, Wang Y, Chase RC, Yang L. Incidence and risk factors of graft-versus-host disease after liver transplantation: A national study 2010-2020. Hepatol Commun 2023; 7:e0271. [PMID: 37756119 PMCID: PMC10531268 DOI: 10.1097/hc9.0000000000000271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Graft-versus-host disease (GVHD) is a common complication of hematopoietic cell transplantation, and its incidence is low in liver transplantation (LT). Estimating the incidence of GVHD after LT is challenging due to the paucity of available data from the United Network for Organ Sharing. This is the first national analysis of the incidence and risk factors of GVHD after LT. METHODS This retrospective cohort study used the National Readmission Database to calculate the incidence rate of GVHD within 1 year of LT using survival analysis. The predictors of GVHD were identified using univariate and multivariate Cox regression analyses. RESULTS From 2010 to 2020, of 88,433 LTs, 383 cases of GVHD occurred within 1 year after LT, resulting in an incidence rate of 1.0% (95% CI: 0.8%-1.3%). We observed no statistically significant change in the incidence of GVHD after LT from 2010 to 2020 (beta-coefficient, -0.07%; 95% CI: -0.17% to 0.04%, p = 0.188). Interestingly, alcohol-associated liver disease was associated with a lower risk of GVHD (adjusted HR, 0.57; 95% CI: 0.36-0.91, p = 0.018), whereas a higher risk was found to be related to a secondary diagnosis of COVID-19 on index admission. CONCLUSION Our study found that the incidence rate of GVHD within 1 year of LT in the United States was 1.0% and remained stable from 2010 to 2020. The predictors associated with GVHD include alcohol-associated liver disease and COVID-19. Our study provides valuable insights into the incidence, risk factors, and outcomes of GVHD after LT.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yichen Wang
- Mercy Internal Medicine Service, Trinity Health of New England, Springfield, Massachusetts, USA
| | | | - Liu Yang
- Division of Hepatology and Liver Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
33
|
Zhang B, Niu L, Huang X. Lonicera Caerulea Juice Alleviates Alcoholic Liver Disease by Regulating Intestinal Flora and the FXR-FGF15 Signaling Pathway. Nutrients 2023; 15:4025. [PMID: 37764808 PMCID: PMC10534805 DOI: 10.3390/nu15184025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Alcoholic liver disease (ALD) is a growing public health issue with high financial, social, and medical costs. Lonicera caerulea, which is rich in polyphenolic compounds, has been shown to exert anti-oxidative and anti-inflammatory effects. This study aimed to explore the effects and mechanisms of concentrated Lonicera caerulea juice (LCJ) on ALD in mice. ALD was established in mice via gradient alcohol feeding for 30 days. The mice in the experimental group were given LCJ by gavage. The reduction of aspartate transaminase (AST) and alanine transaminase (ALT) in the serum of mice indicated that LCJ has a liver-protective effect. LCJ improved the expression of AMPK, PPARα, and CPT1b in ALD mice to reduce the liver lipid content. Additionally, LCJ increased the expression of farnesoid X receptor (FXR), fibroblast growth factor 15 (FGF15), and fibroblast growth factor receptor 4 (FGFR4), which lowers the expression of cytochrome P450 7A1 (CYP7A1) and lessens bile acid deposition in the liver. In mice, LCJ improved the intestinal barrier by upregulating the expression of mucins and tight junction proteins in the small intestine. Moreover, it accelerated the restoration of microbial homeostasis in both the large and small intestines and increased short-chain fatty acids in the cecum. In conclusion, LCJ alleviates ALD by reducing liver and serum lipid accumulation and modulating the FXR-FGF15 signaling pathway mediated by gut microbes.
Collapse
|
34
|
Chavda V, Zajac KK, Gunn JL, Balar P, Khadela A, Vaghela D, Soni S, Ashby CR, Tiwari AK. Ethnic differences in hepatocellular carcinoma prevalence and therapeutic outcomes. Cancer Rep (Hoboken) 2023; 6 Suppl 1:e1821. [PMID: 37344125 PMCID: PMC10440848 DOI: 10.1002/cnr2.1821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The incidence of HCC is affected by genetic and non-genetic factors. Genetically, mutations in the genes, tumor protein P53 (TP53), catenin beta 1 (CTNNB1), AT-rich interaction domain 1A (ARIC1A), cyclin dependent kinase inhibitor 2A (CDKN2A), mannose 6-phosphate (M6P), smooth muscle action against decapentaplegic (SMAD2), retinoblastoma gene (RB1), cyclin D, antigen presenting cells (APC), AXIN1, and E-cadherin, have been shown to contribute to the occurrence of HCC. Non-genetic factors, including alcohol consumption, exposure to aflatoxin, age, gender, presence of hepatitis B (HBV), hepatitis C (HCV), and non-alcoholic fatty liver disease (NAFLD), increase the risk of HCC. RECENT FINDINGS The severity of the disease and its occurrence vary based on geographical location. Furthermore, men and minorities have been shown to be disproportionately affected by HCC, compared with women and non-minorities. Ethnicity has been reported to significantly affect tumorigenesis and clinical outcomes in patients diagnosed with HCC. Generally, differences in gene expression and/or the presence of comorbid medical diseases affect or influence the progression of HCC. Non-Caucasian HCC patients are significantly more likely to have poorer survival outcomes, compared to their Caucasian counterparts. Finally, there are a number of factors that contribute to the success rate of treatments for HCC. CONCLUSION Assessment and treatment of HCC must be consistent using evidence-based guidelines and standardized outcomes, as well as international clinical practice guidelines for global consensus. Standardizing the assessment approach and method will enable comparison and improvement of liver cancer research through collaboration between researchers, healthcare providers, and advocacy groups. In this review, we will focus on discussing epidemiological factors that result in deviations and changes in treatment approaches for HCC.
Collapse
Affiliation(s)
- Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL M College of PharmacyAhmedabadIndia
| | - Kelsee K. Zajac
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoOhioUSA
| | - Jenna Lynn Gunn
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoOhioUSA
| | - Pankti Balar
- Pharmacy SectionL M College of PharmacyAhmedabadIndia
| | - Avinash Khadela
- Department of PharmacologyL M College of PharmacyAhmedabadIndia
| | - Dixa Vaghela
- Pharmacy SectionL M College of PharmacyAhmedabadIndia
| | - Shruti Soni
- PharmD SectionL M College of PharmacyAhmedabadIndia
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of PharmacySt. John's UniversityNew YorkNew YorkUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoOhioUSA
- Department of Cancer Biology, College of Medicine and Life SciencesUniversity of ToledoToledoOhioUSA
| |
Collapse
|
35
|
Gao Y, Zhang P, Wei Y, Ye C, Mao D, Xia D, Luo Y. Porphyromonas gingivalis exacerbates alcoholic liver disease by altering gut microbiota composition and host immune response in mice. J Clin Periodontol 2023; 50:1253-1263. [PMID: 37381658 DOI: 10.1111/jcpe.13833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 04/14/2023] [Accepted: 05/13/2023] [Indexed: 06/30/2023]
Abstract
AIM Porphyromonas gingivalis (P. gingivalis), a major periodontal pathogen, increases the risk of systemic diseases. P. gingivalis infection is closely associated with alcoholic liver disease (ALD), but the underlying mechanism remains unclear. We aimed to investigate the role of P. gingivalis in the pathogenesis of ALD. MATERIALS AND METHODS An ALD mouse model was established using a Lieber-DeCarli liquid diet, and C57BL/6 mice were treated with P. gingivalis to detect the pathological indicators of ALD. RESULTS Oral administration of P. gingivalis exacerbated alcohol-induced alterations in the gut microbiota, leading to gut barrier dysfunction and inflammatory response and disruption of the T-helper 17 cell/T-regulatory cell ratio in the colon of ALD mice. Furthermore, P. gingivalis worsened liver inflammation in ALD mice by increasing the protein expression of toll-like receptor 4 (TLR4) and p65, increasing the mRNA expression of interleukins-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) and up-regulating the transforming growth factor-beta 1 (TGF-β1) and galectin-3 (Gal-3) production. CONCLUSIONS These results indicate that P. gingivalis accelerates the pathogenesis of ALD via the oral-gut-liver axis, necessitating a new treatment strategy for patients with ALD complicated by periodontitis.
Collapse
Affiliation(s)
- Yuting Gao
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Peng Zhang
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Yiming Wei
- School of Medicine, Nankai University, Tianjin, China
| | - Chaolin Ye
- School of Medicine, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China
| | - Dasheng Xia
- Department of Cardiology, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yi Luo
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
36
|
Asakawa M, Takagi N, Hamada D, Yamasaki Y, Katsuta H. Efficacy of 3 months of additional pioglitazone treatment in type 2 diabetes patients with alcoholic fatty liver disease. Diabetol Int 2023; 14:243-251. [PMID: 37397908 PMCID: PMC10307745 DOI: 10.1007/s13340-023-00619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Pioglitazone ameliorates liver dysfunction in type 2 diabetes (T2D) patients with non-alcoholic fatty liver disease (NAFLD); however, its efficacy in T2D patients with alcoholic fatty liver disease (AFLD) is unclear. Here, we conducted a retrospective single-center trial investigating whether pioglitazone ameliorates liver dysfunction in T2D patients with AFLD. T2D patients (n = 100) receiving 3 months of additional pioglitazone were divided into those with or without fatty liver (FL), and those with FL were further classified into AFLD (n = 21) and NAFLD (n = 57) groups. The effects of pioglitazone were compared across groups using medical record data on body weight changes; HbA1c, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transpeptidase (γ-GTP) levels; and fibrosis-4 (FIB-4) index. The pioglitazone dose (mean dose: 10.6 ± 4.6 mg/day) did not affect weight gain but significantly decreased the HbA1c level in patients with or without FL (P < 0.01 and P < 0.05, respectively). The decrease in HbA1c level was significantly more pronounced in patients with FL than in those without FL (P < 0.05). In patients with FL, the HbA1c, AST, ALT, and γ-GTP levels significantly decreased after pioglitazone treatment than before (P < 0.01). The AST and ALT levels, but not the γ-GTP level, and the FIB-4 index significantly decreased after pioglitazone addition in the AFLD group, similar to that in the NAFLD group (P < 0.05 and P < 0.01, respectively). Similar effects were observed following low-dose pioglitazone treatment (≤ 7.5 mg/day) (P < 0.05) in T2D patients with AFLD and NAFLD. These results suggest that pioglitazone may be also an effective treatment option for T2D patients with AFLD.
Collapse
Affiliation(s)
- Masahiro Asakawa
- Department of Endocrinology and Metabolism, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo, Japan
| | - Noriko Takagi
- Department of Endocrinology and Metabolism, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo, Japan
| | - Daisuke Hamada
- Department of Endocrinology and Metabolism, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo, Japan
| | - Yuko Yamasaki
- Department of Endocrinology and Metabolism, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo, Japan
| | - Hidenori Katsuta
- Department of Endocrinology and Metabolism, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
37
|
Tan Y, Zhang F, Fan X, Lu S, Liu Y, Wu Z, Huang Z, Wu C, Cheng G, Li B, Huang J, Stalin A, Zhou W, Wu J. Exploring the effect of Yinzhihuang granules on alcoholic liver disease based on pharmacodynamics, network pharmacology and molecular docking. Chin Med 2023; 18:52. [PMID: 37165407 PMCID: PMC10173499 DOI: 10.1186/s13020-023-00759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Yinzhihuang granules (YZHG) is a commonly used Chinese patent medicine for the treatment of liver disease. However, the mechanism of YZHG in alcoholic liver disease (ALD) is still unclear. METHODS This study combined liquid chromatography-mass spectrometry technology, pharmacodynamics, network pharmacology and molecular docking methods to evaluate the potential mechanism of YZHG in the treatment of ALD. RESULTS A total of 25 compounds including 4-hydroxyacetophenone, scoparone, geniposide, quercetin, baicalin, baicalein, chlorogenic acid and caffeic acid in YZHG were identified by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The pharmacodynamic investigations indicated that YZHG could improve liver function and the degree of liver tissue lesions, and reduce liver inflammation and oxidative stress in ALD mice. Network pharmacology analysis showed that YZHG treated ALD mainly by regulating inflammation-related signaling pathways such as the PI3K-Akt signaling pathway. The results of the PPI network and molecular docking showed that the targets of SRC, HSP90AA1, STAT3, EGFR and AKT1 could be the key targets of YZHG in the treatment of ALD. CONCLUSION This study explored the potential compounds, potential targets and signaling pathways of YZHG in the treatment of ALD, which is helpful to clarify the efficacy and mechanism of YZHG and provide new insights for the clinical application of YZHG.
Collapse
Affiliation(s)
- Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fanqin Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotian Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Bing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jiaqi Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| | - Wei Zhou
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
38
|
Yoo JJ, Park MY, Kim SG. Acute kidney injury in patients with acute-on-chronic liver failure: clinical significance and management. Kidney Res Clin Pract 2023; 42:286-297. [PMID: 37313610 DOI: 10.23876/j.krcp.22.264] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 06/15/2023] Open
Abstract
Acute-on-chronic-liver failure (ACLF) refers to a phenomenon in which patients with chronic liver disease develop multiple organ failure due to acute exacerbation of underlying liver disease. More than 10 definitions of ACLF are extant around the world, and there is lack of consensus on whether extrahepatic organ failure is a main component or a consequence of ACLF. Asian and European consortiums have their own definitions of ACLF. The Asian Pacific Association for the Study of the Liver ACLF Research Consortium does not consider kidney failure as a diagnostic criterion for ACLF. Meanwhile, the European Association for the Study of the Liver Chronic Liver Failure and the North American Consortium for the Study of End-stage Liver Disease do consider kidney failure as an important factor in diagnosing and assessing the severity of ACLF. When kidney failure occurs in ACLF patients, treatment varies depending on the presence and stage of acute kidney injury (AKI). In general, the diagnosis of AKI in cirrhotic patients is based on the International Club of Ascites criteria: an increase of 0.3 mg/dL or more within 48 hours or a serum creatinine increase of 50% or more within one week. This study underscores the importance of kidney failure or AKI in patients with ACLF by reviewing its pathophysiology, prevention methods, and treatment approaches.
Collapse
Affiliation(s)
- Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| | - Moo Yong Park
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| | - Sang Gyune Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| |
Collapse
|
39
|
Hikisz P, Jacenik D. Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases. Int J Mol Sci 2023; 24:6579. [PMID: 37047550 PMCID: PMC10095194 DOI: 10.3390/ijms24076579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
40
|
Zhao T, Wang H, Liu Z, Liu Y, Li B, Huang X. Recent Perspective of Lactobacillus in Reducing Oxidative Stress to Prevent Disease. Antioxidants (Basel) 2023; 12:antiox12030769. [PMID: 36979017 PMCID: PMC10044891 DOI: 10.3390/antiox12030769] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
During oxidative stress, an important factor in the development of many diseases, cellular oxidative and antioxidant activities are imbalanced due to various internal and external factors such as inflammation or diet. The administration of probiotic Lactobacillus strains has been shown to confer a range of antibacterial, anti-inflammatory, antioxidant, and immunomodulatory effects in the host. This review focuses on the potential role of oxidative stress in inflammatory bowel diseases (IBD), cancer, and liver-related diseases in the context of preventive and therapeutic effects associated with Lactobacillus. This article reviews studies in cell lines and animal models as well as some clinical population reports that suggest that Lactobacillus could alleviate basic symptoms and related abnormal indicators of IBD, cancers, and liver damage, and covers evidence supporting a role for the Nrf2, NF-κB, and MAPK signaling pathways in the effects of Lactobacillus in alleviating inflammation, oxidative stress, aberrant cell proliferation, and apoptosis. This review also discusses the unmet needs and future directions in probiotic Lactobacillus research including more extensive mechanistic analyses and more clinical trials for Lactobacillus-based treatments.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Haoran Wang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yang Liu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| |
Collapse
|
41
|
Martinez-Castillo M, Altamirano-Mendoza I, Sánchez-Valle S, García-Islas L, Sánchez-Barragán M, Hernández-Santillán M, Hernández-Barragán A, Pérez-Hernández J, Higuera-de la Tijera F, Gutierrez-Reyes G. Immune dysregulation and pathophysiology of alcohol consumption and alcoholic liver disease. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2023; 88:136-154. [PMID: 36973122 DOI: 10.1016/j.rgmxen.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/13/2023] [Indexed: 03/28/2023] Open
Abstract
Alcoholic liver disease (ALD) is a clinical-pathologic entity caused by the chronic excessive consumption of alcohol. The disease includes a broad spectrum of anomalies at the cellular and tissual level that can cause acute-on-chronic (alcoholic hepatitis) or chronic (fibrosis, cirrhosis, hepatocellular cancer) injury, having a great impact on morbidity and mortality worldwide. Alcohol is metabolized mainly in the liver. During alcohol metabolism, toxic metabolites, such as acetaldehyde and oxygen reactive species, are produced. At the intestinal level, alcohol consumption can cause dysbiosis and alter intestinal permeability, promoting the translocation of bacterial products and causing the production of inflammatory cytokines in the liver, perpetuating local inflammation during the progression of ALD. Different study groups have reported systemic inflammatory response disturbances, but reports containing a compendium of the cytokines and cells involved in the pathophysiology of the disease, from the early stages, are difficult to find. In the present review article, the role of the inflammatory mediators involved in ALD progression are described, from risky patterns of alcohol consumption to advanced stages of the disease, with the aim of understanding the involvement of immune dysregulation in the pathophysiology of ALD.
Collapse
|
42
|
Combined carvacrol and cilostazol ameliorate ethanol-induced liver fibrosis in rats: Possible role of SIRT1/Nrf2/HO-1 pathway. Int Immunopharmacol 2023; 116:109750. [PMID: 36709594 DOI: 10.1016/j.intimp.2023.109750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023]
Abstract
Carvacrol is a natural phenolic monoterpenoid, and cilostazol is a selective phosphodiesterase-3 inhibitor with antioxidant, anti-inflammatory and antiapoptotic effects. This experiment aimed to explore the hepatoprotective effects of carvacrol and cilostazol alone and in combination against alcoholic liver fibrosis (ALF), and the underlying mechanisms, using silymarin as a reference anti-fibrotic product. ALF was induced by oral administration of ethanol (1 ml/100 g/day) thrice per week. Silymarin (100 mg/kg), carvacrol (70 mg/kg), cilostazol (50 mg/kg), or carvacrol + cilostazol combination were administered daily and concurrently with ethanol for six weeks. Hepatic changes were evaluated by quantifying serum biomarkers of liver injury, hepatic MDA, GSH and NOx as oxidative stress markers, interleukin (IL)-10 as an anti-inflammatory cytokine, 4-hydroxyproline (4-HYP) as a collagen synthesis indicator, transforming growth factor (TGF)-β1 as a profibrogenic cytokine, α-smooth muscle actin (α-SMA) as a marker of hepatic stellate cells (HSCs) activation, histopathological (necroinflammation and fibrosis) scores and hepatic sirtuin-1 (SIRT1), nuclear factor-erythroid 2-related factor 2 (Nrf2), and hemeoxygenase-1 (HO-1) mRNA levels. Our results showed that carvacrol, cilostazol, and their combination significantly ameliorated ethanol-induced hepatic fibrosis manifested as improving hepatic functions and histopathological features, attenuating α-SMA immunostaining, reducing TGF-β1 and 4-HYP levels, suppressing oxidativeinjury and elevating IL-10 contents. Such effects were accompanied by upregulating SIRT1, Nrf2 and HO-1 genes. This work disclosed for the first time the hepatoprotective effect of carvacrol against ALF and, to a greater extent, with carvacrol + cilostazol combination that could be partially accredited to SIRT1/Nrf2/HO-1 pathway with consequent antioxidant, anti-inflammatory, and anti-fibrotic features.
Collapse
|
43
|
Cao L, Wu D, Qin L, Tan D, Fan Q, Jia X, Yang M, Zhou T, Feng C, Lu Y, He Y. Single-Cell RNA Transcriptome Profiling of Liver Cells of Short-Term Alcoholic Liver Injury in Mice. Int J Mol Sci 2023; 24:ijms24054344. [PMID: 36901774 PMCID: PMC10002329 DOI: 10.3390/ijms24054344] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Alcoholic liver disease (ALD) is currently considered a global healthcare problem with limited pharmacological treatment options. There are abundant cell types in the liver, such as hepatocytes, endothelial cells, Kupffer cells and so on, but little is known about which kind of liver cells play the most important role in the process of ALD. To obtain a cellular resolution of alcoholic liver injury pathogenesis, 51,619 liver single-cell transcriptomes (scRNA-seq) with different alcohol consumption durations were investigated, 12 liver cell types were identified, and the cellular and molecular mechanisms of the alcoholic liver injury were revealed. We found that more aberrantly differential expressed genes (DEGs) were present in hepatocytes, endothelial cells, and Kupffer cells than in other cell types in alcoholic treatment mice. Alcohol promoted the pathological processes of liver injury; the specific mechanisms involved: lipid metabolism, oxidative stress, hypoxia, complementation and anticoagulation, and hepatocyte energy metabolism on hepatocytes; NO production, immune regulation, epithelial and cell migration on endothelial cells; antigen presentation and energy metabolism on Kupffer cells, based on the GO analysis. In addition, our results showed that some transcription factors (TFs) are activated in alcohol-treated mice. In conclusion, our study improves the understanding of liver cell heterogeneity in alcohol-fed mice at the single-cell level. It has potential value for understanding key molecular mechanisms and improving current prevention and treatment strategies for short-term alcoholic liver injury.
Collapse
Affiliation(s)
- Ligang Cao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Qingjie Fan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xiaohuan Jia
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Mengting Yang
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Tingting Zhou
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Chengcheng Feng
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Yanliu Lu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Correspondence:
| |
Collapse
|
44
|
Ren A, He W, Rao J, Ye D, Cheng P, Jian Q, Fu Z, Zhang X, Deng R, Gao Y, Ma Y. Dysregulation of innate cell types in the hepatic immune microenvironment of alcoholic liver cirrhosis. Front Immunol 2023; 14:1034356. [PMID: 36845083 PMCID: PMC9947838 DOI: 10.3389/fimmu.2023.1034356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The risk of alcoholic cirrhosis increases in a dose- and time-dependent manner with alcohol consumption and ethanol metabolism in the liver. Currently, no effective antifibrotic therapies are available. We aimed to obtain a better understanding of the cellular and molecular mechanisms involved in the pathogenesis of liver cirrhosis. Methods We performed single-cell RNA-sequencing to analyze immune cells from the liver tissue and peripheral blood form patients with alcoholic cirrhosis and healthy controls to profile the transcriptomes of more than 100,000 single human cells and yield molecular definitions for non-parenchymal cell types. In addition, we performed single-cell RNA-sequencing analysis to reveal the immune microenvironment related to alcoholic liver cirrhosis. Hematoxylin and eosin, Immunofluorescence staining and Flow cytometric analysis were employed to study the difference between tissues and cells with or without alcoholic cirrhosis. Results We identified a fibrosis-associated M1 subpopulation of macrophages that expands in liver fibrosis, differentiates from circulating monocytes, and is pro-fibrogenic. We also define mucosal-associated invariant T (MAIT) cells that expand in alcoholic cirrhosis and are topographically restricted to the fibrotic niche. Multilineage modeling of ligand and receptor interactions between the fibrosis-associated macrophages, MAIT, and NK cells revealed the intra-fibrotic activity of several pro-fibrogenic pathways, including responses to cytokines and antigen processing and presentation, natural killer cell-mediated cytotoxicity, cell adhesion molecules, Th1/Th2/Th17 cell differentiation, IL-17 signaling pathway, and Toll-like receptor signaling pathway. Discussion Our work dissects unanticipated aspects of the cellular and molecular basis of human organ alcoholic fibrosis at the single-cell level and provides a conceptual framework for the discovery of rational therapeutic targets in liver alcoholic cirrhosis.
Collapse
Affiliation(s)
- Ao Ren
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjing He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiawei Rao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongmei Ye
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pengrui Cheng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Jian
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongli Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuzhi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ronghai Deng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Guo R, Chen L, Zhu J, Li J, Ding Q, Chang K, Han Q, Li S. Monounsaturated fatty acid-enriched olive oil exacerbates chronic alcohol-induced hepatic steatosis and liver injury in C57BL/6J mice. Food Funct 2023; 14:1573-1583. [PMID: 36655918 DOI: 10.1039/d2fo03323b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dietary oil composition determines the pathological processes of alcoholic fatty liver disease (AFLD). Oil rich in saturated fatty acids protects, whereas oil rich in polyunsaturated fatty acids aggravates the alcohol-induced liver injury. However, limited studies have been conducted to address how monounsaturated fatty acids (MUFAs) enriched oil controls the pathological development of AFLD. Therefore, this study was designed to evaluate the effect of MUFA-enriched extra virgin olive oil (OO) on AFLD. Twenty C57BL/6J mice were randomly allocated into four groups and fed modified Lieber-DeCarli liquid diets containing isocaloric maltose dextrin a non-alcohol or alcohol with corn oil and OO for four weeks. Dietary OO significantly exacerbated alcohol-induced liver dysfunction, evidenced by histological examinations and disturbed biochemical parameters. Dietary OO with alcohol decreased hormone-sensitive lipase (HSL), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), and carnitine palmitoyltransferase-Iα (CPT1α) expression, and increased sterol regulatory element-binding protein-1c (SREBP-1c), diacylglycerol acyltransferase-2 (DGAT2), and very low-density lipoprotein receptor (VLDLR) expression in the liver. It also promoted the expression of hepatic interleukin-6 (IL-6) and hepatic tumour necrosis factor-alpha (TNF-α) at the transcriptional level. Additionally, adipose tissue lipolysis partially had an etiologic effect on alcohol-induced hepatic steatosis under OO pretreatment. In conclusion, MUFA-enriched OO exacerbated liver dysfunction in vivo. OO should be cautiously considered as a unique dietary oil source for individuals with AFLD.
Collapse
Affiliation(s)
- Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jinyan Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jiaomei Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Qingchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| |
Collapse
|
46
|
Alcohol-Related Liver Disease Including New Developments. Clin Liver Dis 2023; 27:157-172. [PMID: 36400463 DOI: 10.1016/j.cld.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The prevalence of alcohol consumption, alcohol use disorder (AUD), and alcohol-related liver disease (ALD) has exponentially increased over the last several years and rates continue to increase. Significant alcohol use can cause progression from steatosis in the liver to inflammation, fibrosis, and eventually cirrhosis. Additional risk factors for the progression of ALD disease include gender, race, and genetic predisposition. As such, it is essential for clinicians to understand and implement screening tools for early diagnosis of both AUD and ALD and be aware of emerging novel treatment options.
Collapse
|
47
|
Neonatal Orally Administered Zingerone Attenuates Alcohol-Induced Fatty Liver Disease in Experimental Rat Models. Metabolites 2023; 13:metabo13020167. [PMID: 36837786 PMCID: PMC9966972 DOI: 10.3390/metabo13020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Alcohol intake at different developmental stages can lead to the development of alcohol-induced fatty liver disease (AFLD). Zingerone (ZO) possess hepato-protective properties; thus, when administered neonatally, it could render protection against AFLD. This study aimed to evaluate the potential long-term protective effect of ZO against the development of AFLD. One hundred and twenty-three 10-day-old Sprague-Dawley rat pups (60 males; 63 females) were randomly assigned to four groups and orally administered the following treatment regimens daily during the pre-weaning period from postnatal day (PND) 12-21: group 1-nutritive milk (NM), group 2-NM +1 g/kg ethanol (Eth), group 3-NM + 40 mg/kg ZO, group 4-NM + Eth +ZO. From PND 46-100, each group from the neonatal stage was divided into two; subgroup I had tap water and subgroup II had ethanol solution as drinking fluid, respectively, for eight weeks. Mean daily ethanol intake, which ranged from 10 to 14.5 g/kg body mass/day, resulted in significant CYP2E1 elevation (p < 0.05). Both late single hit and double hit with alcohol increased liver fat content, caused hepatic macrosteatosis, dysregulated mRNA expression of SREBP1c and PPAR-α in male and female rats (p < 0.05). However, neonatal orally administered ZO protected against liver lipid accretion and SREBP1c upregulation in male rats only and attenuated the alcohol-induced hepatic PPAR-α downregulation and macrosteatosis in both sexes. This data suggests that neonatal orally administered zingerone can be a potential prophylactic agent against the development of AFLD.
Collapse
|
48
|
Crotty K, Anton P, Coleman LG, Morris NL, Lewis SA, Samuelson DR, McMahan RH, Hartmann P, Kim A, Ratna A, Mandrekar P, Wyatt TA, Choudhry MA, Kovacs EJ, McCullough R, Yeligar SM. A critical review of recent knowledge of alcohol's effects on the immunological response in different tissues. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:36-44. [PMID: 36446606 PMCID: PMC9974783 DOI: 10.1111/acer.14979] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Alcohol misuse contributes to the dysregulation of immune responses and multiorgan dysfunction across various tissues, which are associated with higher risk of morbidity and mortality in people with alcohol use disorders. Organ-specific immune cells, including microglia in the brain, alveolar macrophages in the lungs, and Kupffer cells in the liver, play vital functions in host immune defense through tissue repair and maintenance of homeostasis. However, binge drinking and chronic alcohol misuse impair these immune cells' abilities to regulate inflammatory signaling and metabolism, thus contributing to multiorgan dysfunction. Further complicating these delicate systems, immune cell dysfunction associated with alcohol misuse is exacerbated by aging and gut barrier leakage. This critical review describes recent advances in elucidating the potential mechanisms by which alcohol misuse leads to derangements in host immunity and highlights current gaps in knowledge that may be the focus of future investigations.
Collapse
Affiliation(s)
- Kathryn Crotty
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Paige Anton
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
- Alcohol Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Leon G Coleman
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Niya L Morris
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Sloan A Lewis
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rachel H McMahan
- Alcohol Research Program, University of Colorado Denver, Aurora, Colorado, USA
- Department of Surgery, University of Colorado, Aurora, Colorado, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Adam Kim
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anuradha Ratna
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Todd A Wyatt
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Mashkoor A Choudhry
- Alcohol Research Program, Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| | - Elizabeth J Kovacs
- Alcohol Research Program, University of Colorado Denver, Aurora, Colorado, USA
- Department of Surgery, University of Colorado, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs (VA) Medical Center, Aurora, Colorado, USA
| | - Rebecca McCullough
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
- Alcohol Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Samantha M Yeligar
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| |
Collapse
|
49
|
Adekunle AD, Adejumo A, Singal AK. Therapeutic targets in alcohol-associated liver disease: progress and challenges. Therap Adv Gastroenterol 2023; 16:17562848231170946. [PMID: 37187673 PMCID: PMC10176580 DOI: 10.1177/17562848231170946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is a complex disease with rapidly increasing prevalence. Although there are promising therapeutic targets on the horizon, none of the newer targets is currently close to an Food and Drug Administration approval. Strategies are needed to overcome challenges in study designs and conducting clinical trials and provide impetus to the field of drug development in the landscape of ALD and alcoholic hepatitis. Management of ALD is complex and should include therapies to achieve and maintain alcohol abstinence, preferably delivered by a multidisciplinary team. Although associated with clear mortality benefit in select patients, the use of early liver transplantation still requires refinement to create uniformity in selection protocols across transplant centers. There is also a need for reliable noninvasive biomarkers for prognostication. Last but not the least, strategies are urgently needed to implement integrated multidisciplinary care models for treating the dual pathology of alcohol use disorder and of liver disease for improving the long-term outcomes of patients with ALD.
Collapse
Affiliation(s)
- Ayooluwatomiwa Deborah Adekunle
- Department of Internal Medicine, St. Luke’s
Hospital, Chesterfield, Missouri, USA
- Division of Hepatology, University of
Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Transplant Hepatology, University
of South Dakota Sanford Medical School, Sioux Falls, SD
| | - Adeyinka Adejumo
- Department of Internal Medicine, St. Luke’s
Hospital, Chesterfield, Missouri, USA
- Division of Hepatology, University of
Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Transplant Hepatology, University
of South Dakota Sanford Medical School, Sioux Falls, SD
| | | |
Collapse
|
50
|
Xia GQ, Fang Q, Cai JN, Li ZX, Zhang FZ, Lv XW. P2X7 Receptor in Alcoholic Steatohepatitis and Alcoholic Liver Fibrosis. J Clin Transl Hepatol 2022; 10:1205-1212. [PMID: 36381094 PMCID: PMC9634783 DOI: 10.14218/jcth.2022.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alcoholic liver disease is one of the most common chronic liver diseases in the world. It is a liver disease caused by prolonged heavy drinking and its main clinical features are nausea, vomiting, enlargement of the liver, and jaundice. Recent studies suggest that Kupffer cell-mediated inflammatory response is a core driver in the development of alcoholic steatohepatitis and alcoholic liver fibrosis. As a danger signal, extracellular ATP activates the assembly of NLPR3 inflammasome by acting on purine P2X7 receptor, the activated NLRP3 inflammasome prompts ASC to cleave pro-cCaspase-1 into active caspase-1in KCs. Active caspase-1 promotes the conversion of pro-IL-1β to IL-1β, which further enhances the inflammatory response. Here, we briefly review the role of the P2X7R-NLRP3 inflammasome axis in the pathogenesis of alcoholic liver disease and the evolution of alcoholic steatohepatitis and alcoholic liver fibrosis. Regulation of the inflammasome axis of P2X7R-NLRP3 may be a new approach for the treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Guo-Qing Xia
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Qian Fang
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jun-Nan Cai
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Zi-Xuan Li
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Feng-Zhi Zhang
- Wannan Medical College, Yijishan Hospital, Affiliated Hospital 1, Wuhu, Anhui, China
| | - Xiong-Wen Lv
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Correspondence to: Xiong-Wen Lv, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui 230032, China. ORCID: https://orcid.org/0000-0003-2354-0168. Tel: +86-13515519961, Fax: +86-551-63633742, E-mail:
| |
Collapse
|