1
|
Li X, Zhang S, Huang X, Lin D, Zhou J. Development of a CT-assessed adiposity nomogram for predicting outcome in localized ccRCC. Abdom Radiol (NY) 2024; 49:3485-3495. [PMID: 38842727 DOI: 10.1007/s00261-024-04403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE This study aimed to develop and validate a computed tomography-based nomogram assessing visceral and subcutaneous adiposity for predicting outcomes in localized clear cell renal cell carcinoma (ccRCC). METHODS A cohort of 364 patients with pathologically confirmed ccRCC participated in this retrospective study, with 254 patients assigned to the training set and 110 to the validation set (a 7:3 distribution ratio). The adipose score (AS) was generated using the least absolute shrinkage and selection operator Cox regression. Subsequently, a nomogram was constructed by integrating the clinical independent predictor with the AS to predict disease-free survival (DFS) in localized ccRCC after surgery. The performance of the nomogram was compared with the University of California, Los Angeles, Integrated Staging System (UISS), and the Stage, Size, Grade, and Necrosis (SSIGN) score. RESULTS In both the training and validation cohorts, the nomogram exhibited superior discrimination compared to SSIGN and UISS (C-index: 0.897 vs. 0.781 vs. 0.776 in the training cohort, and 0.752 vs. 0.596 vs. 0.686 in the validation cohort; 5 year AUC: 0.907 vs. 0.805 vs. 0.820 in the training cohort, and 0.832 vs. 0.577 vs. 0.726 in the validation cohort). Decision curve analysis (DCA) revealed a superior net benefit across a wider range of threshold probabilities for predicting 5 year DFS compared to UISS and SSIGN scores. CONCLUSIONS The developed prognostic nomogram demonstrated high accuracy and overall superior performance compared to existing prognostic models.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Shaoting Zhang
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiaolan Huang
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Dengqiang Lin
- Department of Urology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China.
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China.
- Department of Medical Imaging, Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, 361015, China.
- Department of Medical Imaging, Fujian Province Key Clinical Specialty for Medical Imaging, Xiamen, 361015, China.
- Department of Imaging Big Data and Artificial Intelligence, Xiamen Key Laboratory of Clinical Transformation of Imaging Big Data and Artificial Intelligence, Xiamen, 361015, China.
| |
Collapse
|
2
|
van der Linden IA, Roodenburg R, Nijhof SL, van der Ent CK, Venekamp RP, van der Laan SEI, Schipper HS. Early-Life Risk Factors for Carotid Intima-Media Thickness and Carotid Stiffness in Adolescence. JAMA Netw Open 2024; 7:e2434699. [PMID: 39302677 DOI: 10.1001/jamanetworkopen.2024.34699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Importance Atherogenesis starts during childhood, making childhood and adolescence an important window of opportunity to prevent atherosclerotic cardiovascular disease later in life. Objective To identify early-life risk factors for preclinical atherosclerosis in adolescence. Design, Setting, and Participants This cohort study is part of the ongoing Wheezing Illness Study in Leidsche Rijn (WHISTLER) prospective birth cohort study, which includes 3005 healthy newborns born between December 2001 and December 2012 in the Leidsche Rijn area of Utrecht, the Netherlands. Eligible participants included those from the WHISTLER cohort who visited the clinic between March 2019 and October 2020 for adolescent follow-up. This study's analyses were performed in January 2024. Exposures Early-life growth was assessed at birth to 6 months, 5 years, and 12 to 16 years. Abdominal ultrasonography determined abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depth. Blood pressure (BP) percentiles and body mass index (BMI) z scores were used. Main Outcomes and Measures Carotid ultrasonography was performed at age 12 to 16 years to assess carotid intima-media thickness (cIMT) and the distensibility coefficient (DC), established measures of preclinical atherosclerosis. Multivariable linear regression models were used to identify early-life risk factors for cIMT and DC in adolescence. Results In total, 232 adolescents (median [IQR] age, 14.9 [13.7-15.8] years; 121 female [52.2%]) were included. More postnatal weight gain (B = 12.34; 95% CI, 2.39 to 22.39), higher systolic BP at 5 years (B = 0.52; 95% CI, 0.02 to 1.01), more VAT at 5 years (B = 3.48; 95% CI, 1.55 to 5.40), and a larger change in VAT between 5 and 12 to 16 years (B = 3.13; 95% CI, 1.87 to 4.39) were associated with a higher cIMT in adolescence. A higher BMI (B = -2.70, 95% CI,-4.59 to -0.80) and VAT at 5 years (B = -0.56; 95% CI, -0.87 to -0.25), as well as a larger change in BMI between 5 and 12 to 16 years (B = -3.63; 95% CI, -5.66 to -1.60) were associated with a higher carotid stiffness in adolescence. On the contrary, a larger change in SAT between 5 and 12 to 16 years (B = 0.37; 95% CI, 0.16 to 0.58) was associated with a higher carotid DC in adolescence. Conclusions and Relevance In this cohort study of 232 participants, early-life growth parameters, and particularly abdominal VAT development, were associated with a higher cIMT and carotid stiffness in adolescence. These findings suggest that assessment of adipose tissue development during childhood can aid characterization of lifetime risk trajectories and tailoring of cardiovascular prevention and risk management strategies.
Collapse
Affiliation(s)
- Isabelle A van der Linden
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rozan Roodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sanne L Nijhof
- Department of Social Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roderick P Venekamp
- Julius Center for Health Sciences and Primary Care, Department of General Practice & Nursing Science, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sabine E I van der Laan
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Henk S Schipper
- Department of Pediatric Cardiology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Social Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Rivera-Esteban J, Muñoz-Martínez S, Higuera M, Sena E, Bermúdez-Ramos M, Bañares J, Martínez-Gomez M, Cusidó MS, Jiménez-Masip A, Francque SM, Tacke F, Minguez B, Pericàs JM. Phenotypes of Metabolic Dysfunction-Associated Steatotic Liver Disease-Associated Hepatocellular Carcinoma. Clin Gastroenterol Hepatol 2024; 22:1774-1789.e8. [PMID: 38604295 DOI: 10.1016/j.cgh.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Hepatocellular carcinoma (HCC) typically develops as a consequence of liver cirrhosis, but HCC epidemiology has evolved drastically in recent years. Metabolic dysfunction-associated steatotic liver disease (MASLD), including metabolic dysfunction-associated steatohepatitis, has emerged as the most common chronic liver disease worldwide and a leading cause of HCC. A substantial proportion of MASLD-associated HCC (MASLD-HCC) also can develop in patients without cirrhosis. The specific pathways that trigger carcinogenesis in this context are not elucidated completely, and recommendations for HCC surveillance in MASLD patients are challenging. In the era of precision medicine, it is critical to understand the processes that define the profiles of patients at increased risk of HCC in the MASLD setting, including cardiometabolic risk factors and the molecular targets that could be tackled effectively. Ideally, defining categories that encompass key pathophysiological features, associated with tailored diagnostic and treatment strategies, should facilitate the identification of specific MASLD-HCC phenotypes. In this review, we discuss MASLD-HCC, including its epidemiology and health care burden, the mechanistic data promoting MASLD, metabolic dysfunction-associated steatohepatitis, and MASLD-HCC. Its natural history, prognosis, and treatment are addressed specifically, as the role of metabolic phenotypes of MASLD-HCC as a potential strategy for risk stratification. The challenges in identifying high-risk patients and screening strategies also are discussed, as well as the potential approaches for MASLD-HCC prevention and treatment.
Collapse
Affiliation(s)
- Jesús Rivera-Esteban
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergio Muñoz-Martínez
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain
| | - Mónica Higuera
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - Elena Sena
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - María Bermúdez-Ramos
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Liver Unit, Department of Digestive Diseases, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Juan Bañares
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - María Martínez-Gomez
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - M Serra Cusidó
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - Alba Jiménez-Masip
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sven M Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Beatriz Minguez
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Madrid, Spain.
| | - Juan M Pericàs
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Madrid, Spain.
| |
Collapse
|
4
|
Jiao C, Liu W, Qiao Y, Qi S, Shen Y. A case report on Madelung's disease and comprehensive review of the literature. Orphanet J Rare Dis 2024; 19:302. [PMID: 39154182 PMCID: PMC11330121 DOI: 10.1186/s13023-024-03303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Madelung's disease (MD), alternatively referred to as benign symmetric lipomatosis, multiple symmetric lipomatosis, or Launois-Bensaude syndrome, is an uncommon benign disorder marked by symmetric proliferation of adipose tissue in the head, neck, and torso regions. CASE DESCRIPTION In this case, the patient was a female with the late middle-aged demographic, diagnosed with Type I MD. Notably, she exhibited no prior history of alcohol consumption, and there was no family history of MD. Subsequent to the clinical diagnosis, the patient underwent medical imaging assessments to delineate the surgical parameters. Post-surgery, she demonstrated a favorable recovery trajectory, marked by the absence of any surgical complications. RESULT The patient underwent successful surgical excision of the lipomatous mass. Postoperatively, she had an uneventful recovery with no complications and no recurrence observed during the follow-up period of seven months. CONCLUSION Timely diagnosis and early surgical intervention play a pivotal role in enhancing the quality of life for individuals with MD. Preoperative medical imaging examinations function as highly effective tools, contributing to heightened surgical safety and a decreased probability of encountering complications during the surgical procedure.
Collapse
Affiliation(s)
- Cheng Jiao
- Department of General surgery, Bethune International Peace Hospital, No. 398, Zhongshan West Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, China
| | - Wei Liu
- Department of General surgery, Bethune International Peace Hospital, No. 398, Zhongshan West Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, China.
| | - Yiming Qiao
- Department of General surgery, Bethune International Peace Hospital, No. 398, Zhongshan West Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, China
| | - Shuai Qi
- Department of General surgery, Bethune International Peace Hospital, No. 398, Zhongshan West Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, China
| | - Yifei Shen
- Department of General surgery, Bethune International Peace Hospital, No. 398, Zhongshan West Road, Qiaoxi District, Shijiazhuang, 050051, Hebei Province, China
| |
Collapse
|
5
|
Lempicki MD, Gray JA, Abuna G, Murata RM, Divanovic S, McNamara CA, Meher AK. BAFF neutralization impairs the autoantibody-mediated clearance of dead adipocytes and aggravates obesity-induced insulin resistance. Front Immunol 2024; 15:1436900. [PMID: 39185417 PMCID: PMC11341376 DOI: 10.3389/fimmu.2024.1436900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
B cell-activating factor (BAFF) is a critical TNF-family cytokine that regulates homeostasis and peripheral tolerance of B2 cells. BAFF overproduction promotes autoantibody generation and autoimmune diseases. During obesity, BAFF is predominantly produced by white adipose tissue (WAT), and IgG autoantibodies against adipocytes are identified in the WAT of obese humans. However, it remains to be determined if the autoantibodies formed during obesity affect WAT remodeling and systemic insulin resistance. Here, we show that IgG autoantibodies are generated in high-fat diet (HFD)-induced obese mice that bind to apoptotic adipocytes and promote their phagocytosis by macrophages. Next, using murine models of obesity in which the gonadal WAT undergoes remodeling, we found that BAFF neutralization depleted IgG autoantibodies, increased the number of dead adipocytes, and exacerbated WAT inflammation and insulin resistance. RNA sequencing of the stromal vascular fraction from the WAT revealed decreased expression of immunoglobulin light-chain and heavy-chain variable genes suggesting a decreased repertoire of B cells after BAFF neutralization. Further, the B cell activation and the phagocytosis pathways were impaired in the WAT of BAFF-neutralized mice. In vitro, plasma IgG fractions from BAFF-neutralized mice reduced the phagocytic clearance of apoptotic adipocytes. Altogether, our study suggests that IgG autoantibodies developed during obesity, at least in part, dampens exacerbated WAT inflammation and systemic insulin resistance.
Collapse
Affiliation(s)
- Melissa D. Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jake A. Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Gabriel Abuna
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Ramiro M. Murata
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Senad Divanovic
- Department of Pediatrics University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Coleen A. McNamara
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
6
|
Giri S, Harmon C, Landier W, Chen Y, Wu J, Hageman L, Balas N, Francisco L, Bosworth A, Weisdorf DJ, Forman SJ, Armenian SH, Williams GR, Bhatia S. Body composition and late-occurring chronic health conditions after autologous stem cell transplantation for lymphoma. Cancer 2024; 130:2694-2702. [PMID: 38579107 DOI: 10.1002/cncr.35298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Autologous peripheral blood stem cell transplantation (aPBSCT) is the standard of care for adults with relapsed lymphoma, yet recipients remain at risk of developing chronic health conditions (CHCs). It was hypothesized that body composition measurements of skeletal muscle and fat are associated with late-onset CHCs and nonrelapse mortality after aPBSCT. METHODS Leveraging the Blood or Marrow Transplant Survivor Study, we examined association between pre-aPBSCT body composition and new-onset grade 3-5 CHCs among 187 adults with lymphoma treated with aPBSCT (2011-2014) surviving ≥2 years after aPBSCT. Using computed tomography scans at the L3 level, skeletal muscle mass (skeletal muscle area and skeletal muscle density [SMD]) and body fat (subcutaneous adipose tissue and visceral adipose tissue) were measured and quantified as sex-specific z-scores. Competing risk models were built to study the impact of body composition on incident grade 3 through 5 CHCs and nonrelapse mortality (NRM) adjusting for confounders. RESULTS The study cohort had a median age at aPBSCT of 57 years with 63% males, 77% non-Hispanic Whites and 81% with non-Hodgkin lymphoma. The 5-year cumulative incidence of grade 3 through 5 CHCs was 47% (95% Confidence Interval, CI, 38%-56%). Each SD increase in SMD was associated with 30% reduced risk of grade 3 through 5 CHCs (95% CI, 0.50-0.96). The 10-year cumulative incidence of NRM was 16% (95% CI, 10-22). No body composition measure was associated with NRM. CONCLUSIONS The association between SMD and grade 3 through 5 CHCs following aPBSCT could inform development of prognostic models to identify adults with lymphoma at greatest risk of morbidity following aPBSCT.
Collapse
Affiliation(s)
- Smith Giri
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Hematology & Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christian Harmon
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wendy Landier
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica Wu
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nora Balas
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Liton Francisco
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alysia Bosworth
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Daniel J Weisdorf
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Saro H Armenian
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Grant R Williams
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Hematology & Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Dolatshahi M, Commean PK, Rahmani F, Liu J, Lloyd L, Nguyen C, Hantler N, Ly M, Yu G, Ippolito JE, Sirlin C, Morris JC, Benzinger TL, Raji CA. Alzheimer Disease Pathology and Neurodegeneration in Midlife Obesity: A Pilot Study. Aging Dis 2024; 15:1843-1854. [PMID: 37548931 PMCID: PMC11272197 DOI: 10.14336/ad.2023.0707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Obesity and excess adiposity at midlife are risk factors for Alzheimer disease (AD). Visceral fat is known to be associated with insulin resistance and a pro-inflammatory state, the two mechanisms involved in AD pathology. We assessed the association of obesity, MRI-determined abdominal adipose tissue volumes, and insulin resistance with PET-determined amyloid and tau uptake in default mode network areas, and MRI-determined brain volume and cortical thickness in AD cortical signature in the cognitively normal midlife population. Thirty-two middle-aged (age: 51.27±6.12 years, 15 males, body mass index (BMI): 32.28±6.39 kg/m2) cognitively normal participants, underwent bloodwork, brain and abdominal MRI, and amyloid and tau PET scan. Visceral and subcutaneous adipose tissue (VAT, SAT) were semi-automatically segmented using VOXel Analysis Suite (Voxa). FreeSurfer was used to automatically segment brain regions using a probabilistic atlas. PET scans were acquired using [11C]PiB and AV-1451 tracers and were analyzed using PET unified pipeline. The association of brain volumes, cortical thicknesses, and PiB and AV-1451 standardized uptake value ratios (SUVRs) with BMI, VAT/SAT ratio, and insulin resistance were assessed using Spearman's partial correlation. VAT/SAT ratio was associated significantly with PiB SUVRs in the right precuneus cortex (p=0.034) overall, controlling for sex. This association was significant only in males (p=0.044), not females (p=0.166). Higher VAT/SAT ratio and PiB SUVRs in the right precuneus cortex were associated with lower cortical thickness in AD-signature areas predominantly including bilateral temporal cortices, parahippocampal, medial orbitofrontal, and cingulate cortices, with age and sex as covariates. Also, higher BMI and insulin resistance were associated with lower cortical thickness in bilateral temporal poles. In midlife cognitively normal adults, we demonstrated higher amyloid pathology in the right precuneus cortex in individuals with a higher VAT/SAT ratio, a marker of visceral obesity, along with a lower cortical thickness in AD-signature areas associated with higher visceral obesity, insulin resistance, and amyloid pathology.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Paul K Commean
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Jingxia Liu
- Washington University School of Medicine, Division of Public Health Sciences, Department of Surgery, St. Louis, Missouri, USA.
| | - LaKisha Lloyd
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Caitlyn Nguyen
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Nancy Hantler
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Maria Ly
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Gary Yu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Joseph E Ippolito
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Claude Sirlin
- Liver Imaging Group, Department of Radiology, University of California, San Diego, La Jolla, California, USA.
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA.
| | - Tammie L.S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA.
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA.
| | - Cyrus A Raji
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
8
|
Goto Y, Nagamine Y, Hanafusa M, Kawahara T, Nawa N, Tateishi U, Ueki Y, Miyamae S, Wakabayashi K, Nosaka N, Miyazaki Y, Tohda S, Fujiwara T. Association of excess visceral fat and severe illness in hospitalized COVID-19 patients in Japan: a retrospective cohort study. Int J Obes (Lond) 2024; 48:674-682. [PMID: 38233538 DOI: 10.1038/s41366-024-01464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND/OBJECTIVES Obesity, defined by body mass index (BMI), is a well-known risk factor for the severity of coronavirus disease 2019 (COVID-19). Adipose tissue distribution has also been implicated as an important factor in the body's response to infection, and excess visceral fat (VF), which is prevalent in Japanese, may contribute significantly to the severity. Therefore, this study aimed to evaluate the association of obesity and VF with COVID-19 severe illness in Japan. SUBJECTS/METHODS This retrospective cohort study involved 550 COVID-19 patients admitted to a tertiary care hospital with BMI and body composition data, including VF. The primary endpoint was severe illness, including death, due to COVID-19 during hospitalization. Logistic regression analysis was applied to examine the quartiles of BMI and VF on severe illness after adjusting for covariates such as age, sex, subcutaneous fat, paraspinal muscle radiodensity, and comorbidities affecting VF (COPD, cancer within 5 years, immunosuppressive agent use). RESULTS The median age was 56.0 years; 71.8% were males. During hospitalization, 82 (14.9%) experienced COVID-19 severe illness. In the multivariate logistic regression analysis, Q4 of BMI was not significantly associated with severe illness compared to Q1 of BMI (OR 1.03; 95% CI 0.37-2.86; p = 0.95). Conversely, Q3 and Q4 of VF showed a higher risk for severe illness compared to Q1 of VF (OR 2.68; 95% CI 1.01-7.11; p = 0.04, OR 3.66; 95% CI 1.30-10.26; p = 0.01, respectively). Stratified analysis by BMI and adjusted for covariates showed the positive association of VF with severe illness only in the BMI < 25 kg/m2 group. CONCLUSIONS High BMI was not an independent risk factor for COVID-19 severe illness in hospitalized patients in Japan, whereas excess VF significantly influenced severe illness, especially in patients with a BMI < 25 kg/m2.
Collapse
Affiliation(s)
- Yuki Goto
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
- Department of General Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuiko Nagamine
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Mariko Hanafusa
- Department of Tokyo Metropolitan Health Policy Advisement, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Kawahara
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobutoshi Nawa
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Ueki
- Department of Trauma and Acute Critical Care Medical Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Miyamae
- Disaster Medical Care Office, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Wakabayashi
- Department of Intensive Care Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuyuki Nosaka
- Department of Intensive Care Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuji Tohda
- Department of Clinical Laboratory, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeo Fujiwara
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
9
|
Alser M, Naja K, Elrayess MA. Mechanisms of body fat distribution and gluteal-femoral fat protection against metabolic disorders. Front Nutr 2024; 11:1368966. [PMID: 38590830 PMCID: PMC10999599 DOI: 10.3389/fnut.2024.1368966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity is a major health problem that affects millions of individuals, and it is associated with metabolic diseases including insulin resistance (IR), type 2 diabetes (T2D), and cardiovascular diseases (CVDs). However, Body fat distribution (BFD) rather than crude obesity is now considered as a more accurate factor associated with these diseases. The factors affecting BFD vary, from genetic background, epigenetic factors, ethnicity, aging, hormonal changes, to lifestyle and medication consumptions. The main goal of controlling BFD comes from the fact that fat accumulation in different depots has a different effect on the overall health and metabolic health of individuals. It is well established that fat storage in the abdominal visceral depot is associated with metabolic disorder occurrence, while gluteal-femoral subcutaneous fat depot seems to be protective against these diseases. In this paper, we will summarize the factors affecting fat distribution. Then, we will present evidence connecting gluteal-femoral fat depot with protection against metabolic disorders including IR, T2D, and CVDs. Finally, we will list the suggested mechanisms that lead to this protective effect. The abstract is visualized in Graphical Abstract.
Collapse
Affiliation(s)
- Maha Alser
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Ramanovic M, Novak M, Perhavec A, Jordan T, Popuri K, Kozjek NR. Influence of nutritional status and body composition on postoperative events and outcome in patients treated for primary localized retroperitoneal sarcoma. Radiol Oncol 2024; 58:110-123. [PMID: 38378038 PMCID: PMC10878779 DOI: 10.2478/raon-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/03/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Retroperitoneal sarcomas (RPS) are rare tumours of mesenchymal origin, commonly presented as a large tumour mass at time of diagnosis. We investigated the impact of body composition on outcome in patients operated on for primary localized RPS. PATIENTS AND METHODS We retrospectively analysed data for all patients operated on for primary RPS at our institution between 1999 and 2020. Preoperative skeletal muscle area (SMA), visceral and subcutaneous adipose tissue area (VAT and SAT) and muscle radiation attenuation (MRA) were calculated using computed tomography scans at the level of third lumbar vertebra. European Working Group on Sarcopenia in Older People (EWGSOP2) criteria were applied to define myopenia. Using maximum log-rank statistic method we determined the optimal cut-off values of body composition parameters. Myosteatosis was defined based on determined MRA cut-offs. RESULTS In total 58 patient were eligible for the study. With a median follow-up of 116 months, the estimated 5-year overall survival (OS) and local-recurrence free survival (LRFS) were 66.8% and 77.6%, respectively. Patients with myopenia had significantly lower 5-year OS compared to non-myopenic (p = 0.009). Skeletal muscle index and subcutaneous adipose tissue index predicted LRFS on univariate analysis (p = 0.052 and p = 0.039, respectively). In multivariate analysis high visceral-to-subcutaneous adipose tissue area ratio (VSR) independently predicted higher postoperative complication rate (89.2% vs. 10.8%, p = 0.008). Myosteatosis was associated with higher postoperative morbidity. CONCLUSIONS Myopenia affected survival, but not postoperative outcome in RPS. Visceral obesity, VSR (> 0.26) and myosteatosis were associated with higher postoperative morbidity. VSR was better prognostic factor than VAT in RPS.
Collapse
Affiliation(s)
- Manuel Ramanovic
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Novak
- Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Andraz Perhavec
- Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Jordan
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department for Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Karteek Popuri
- Department of Computer Science, Memorial University of Newfoundland, Newfundland, Canada
| | - Nada Rotovnik Kozjek
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Clinical Nutrition, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Bahadoran Z, Mirmiran P, Ghasemi A. Adipose organ dysfunction and type 2 diabetes: Role of nitric oxide. Biochem Pharmacol 2024; 221:116043. [PMID: 38325496 DOI: 10.1016/j.bcp.2024.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Adipose organ, historically known as specialized lipid-handling tissue serving as the long-term fat depot, is now appreciated as the largest endocrine organ composed of two main compartments, i.e., subcutaneous and visceral adipose tissue (AT), madding up white and beige/brown adipocytes. Adipose organ dysfunction manifested as maldistribution of the compartments, hypertrophic, hypoxic, inflamed, and insulin-resistant AT, contributes to the development of type 2 diabetes (T2D). Here, we highlight the role of nitric oxide (NO·) in AT (dys)function in relation to developing T2D. The key aspects determining lipid and glucose homeostasis in AT depend on the physiological levels of the NO· produced via endothelial NO· synthases (eNOS). In addition to decreased NO· bioavailability (via decreased expression/activity of eNOS or scavenging NO·), excessive NO· produced by inducible NOS (iNOS) in response to hypoxia and AT inflammation may be a critical interfering factor diverting NO· signaling to the formation of reactive oxygen and nitrogen species, resulting in AT and whole-body metabolic dysfunction. Pharmacological approaches boosting AT-NO· availability at physiological levels (by increasing NO· production and its stability), as well as suppression of iNOS-NO· synthesis, are potential candidates for developing NO·-based therapeutics in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat Rev Gastroenterol Hepatol 2024; 21:164-183. [PMID: 38066102 DOI: 10.1038/s41575-023-00867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 03/02/2024]
Abstract
Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
13
|
Eisinger K, Girke P, Buechler C, Krautbauer S. Adipose tissue depot specific expression and regulation of fibrosis-related genes and proteins in experimental obesity. Mamm Genome 2024; 35:13-30. [PMID: 37884762 PMCID: PMC10884164 DOI: 10.1007/s00335-023-10022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Transforming growth factor beta (Tgfb) is a well-studied pro-fibrotic cytokine, which upregulates cellular communication network factor 2 (Ccn2), collagen, and actin alpha 2, smooth muscle (Acta2) expression. Obesity induces adipose tissue fibrosis, which contributes to metabolic diseases. This work aimed to analyze the expression of Tgfb, Ccn2, collagen1a1 (Col1a1), Acta2 and BMP and activin membrane-bound inhibitor (Bambi), which is a negative regulator of Tgfb signaling, in different adipose tissue depots of mice fed a standard chow, mice fed a high fat diet (HFD) and ob/ob mice. Principally, these genes were low expressed in brown adipose tissues and this difference was less evident for the ob/ob mice. Ccn2 and Bambi protein as well as mRNA expression, and collagen1a1 mRNA were not induced in the adipose tissues upon HFD feeding whereas Tgfb and Acta2 mRNA increased in the white fat depots. Immunoblot analysis showed that Acta2 protein was higher in subcutaneous and perirenal fat of these mice. In the ob/ob mice, Ccn2 mRNA and Ccn2 protein were upregulated in the fat depots. Here, Tgfb, Acta2 and Col1a1 mRNA levels and serum Tgfb protein were increased. Acta2 protein was, however, not higher in subcutaneous and perirenal fat of these mice. Col6a1 mRNA was shown before to be higher in obese fat tissues. Current analysis proved the Col6a1 protein was induced in subcutaneous fat of HFD fed mice. Notably, Col6a1 was reduced in perirenal fat of ob/ob mice in comparison to the respective controls. 3T3-L1 cells express Ccn2 and Bambi protein, whose levels were not changed by fatty acids, leptin, lipopolysaccharide, tumor necrosis factor and interleukin-6. All of these factors led to higher Tgfb in 3T3-L1 adipocyte media but did not increase its mRNA levels. Free fatty acids induced necrosis whereas apoptosis did not occur in any of the in vitro incubations excluding cell death as a main reason for higher Tgfb in cell media. In summary, Tgfb mRNA is consistently induced in white fat tissues in obesity but this is not paralleled by a clear increase of its target genes. Moreover, discrepancies between mRNA and protein expression of Acta2 were observed. Adipocytes seemingly do not contribute to higher Tgfb mRNA levels in obesity. These cells release more Tgfb protein when challenged with obesity-related metabolites connecting metabolic dysfunction and fibrosis.
Collapse
Affiliation(s)
- Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Philipp Girke
- Department of Genetics, University of Regensburg, 93040, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| |
Collapse
|
14
|
Dewal RS, Yang FT, Baer LA, Vidal P, Hernandez-Saavedra D, Seculov NP, Ghosh A, Noé F, Togliatti O, Hughes L, DeBari MK, West MD, Soroko R, Sternberg H, Malik NN, Puchulu-Campanella E, Wang H, Yan P, Wolfrum C, Abbott RD, Stanford KI. Transplantation of committed pre-adipocytes from brown adipose tissue improves whole-body glucose homeostasis. iScience 2024; 27:108927. [PMID: 38327776 PMCID: PMC10847743 DOI: 10.1016/j.isci.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Obesity and its co-morbidities including type 2 diabetes are increasing at epidemic rates in the U.S. and worldwide. Brown adipose tissue (BAT) is a potential therapeutic to combat obesity and type 2 diabetes. Increasing BAT mass by transplantation improves metabolic health in rodents, but its clinical translation remains a challenge. Here, we investigated if transplantation of 2-4 million differentiated brown pre-adipocytes from mouse BAT stromal fraction (SVF) or human pluripotent stem cells (hPSCs) could improve metabolic health. Transplantation of differentiated brown pre-adipocytes, termed "committed pre-adipocytes" from BAT SVF from mice or derived from hPSCs improves glucose homeostasis and insulin sensitivity in recipient mice under conditions of diet-induced obesity, and this improvement is mediated through the collaborative actions of the liver transcriptome, tissue AKT signaling, and FGF21. These data demonstrate that transplantation of a small number of brown adipocytes has significant long-term translational and therapeutic potential to improve glucose metabolism.
Collapse
Affiliation(s)
- Revati S. Dewal
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Felix T. Yang
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lisa A. Baer
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pablo Vidal
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Diego Hernandez-Saavedra
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nickolai P. Seculov
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Adhideb Ghosh
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Falko Noé
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Olivia Togliatti
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lexis Hughes
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Megan K. DeBari
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael D. West
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Richard Soroko
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Hal Sternberg
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Nafees N. Malik
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Estella Puchulu-Campanella
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Huabao Wang
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kristin I. Stanford
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Wang S, Xiao Y, An X, Luo L, Gong K, Yu D. A comprehensive review of the literature on CD10: its function, clinical application, and prospects. Front Pharmacol 2024; 15:1336310. [PMID: 38389922 PMCID: PMC10881666 DOI: 10.3389/fphar.2024.1336310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
CD10, a zinc-dependent metalloprotease found on the cell surface, plays a pivotal role in an array of physiological and pathological processes including cardiovascular regulation, immune function, fetal development, pain response, oncogenesis, and aging. Recognized as a biomarker for hematopoietic and tissue stem cells, CD10 has garnered attention for its prognostic potential in the progression of leukemia and various solid tumors. Recent studies underscore its regulatory significance and therapeutic promise in combating Alzheimer's disease (AD), and it is noted for its protective role in preventing heart failure (HF), obesity, and type-2 diabetes. Furthermore, CD10/substance P interaction has also been shown to contribute to the pain signaling regulation and immunomodulation in diseases such as complex regional pain syndrome (CRPS) and osteoarthritis (OA). The emergence of COVID-19 has sparked interest in CD10's involvement in the disease's pathogenesis. Given its association with multiple disease states, CD10 is a prime therapeutic target; inhibitors targeting CD10 are now being advanced as therapeutic agents. This review compiles recent and earlier literature on CD10, elucidating its physicochemical attributes, tissue-specific expression, and molecular functions. Furthermore, it details the association of CD10 with various diseases and the clinical advancements of its inhibitors, providing a comprehensive overview of its growing significance in medical research.
Collapse
Affiliation(s)
- Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Higuchi S, Matsumoto H, Masaki R, Hirano T, Fuse S, Tanisawa H, Masuda T, Mochizuki Y, Maruta K, Kondo S, Omoto T, Aoki A, Shinke T. Potential confounders of the obesity paradox in older patients following transcatheter aortic valve replacement. Eur Geriatr Med 2024; 15:179-187. [PMID: 37660344 DOI: 10.1007/s41999-023-00855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE A higher body mass index (BMI) is associated with lower mortality in older patients following transcatheter aortic valve replacement (TAVR) for severe aortic valve stenosis. The current study aimed to investigate potential confounders of association between BMI and prognosis. METHODS The retrospective single-center study included consecutive patients following TAVR and excluded those in whom subcutaneous fat accumulation (SFA), visceral fat accumulation (VFA), and major psoas muscle (MPM) volume were not assessed by computed tomography. Cachexia was defined as a combination of BMI < 20 kg/m2 and any biochemical abnormalities. RESULTS After 2 patients were excluded, 234 (age, 86 ± 5 years; male, 77 [33%]; BMI, 22.4 ± 3.8 kg/m2; SFA, 109 (54-156) cm2; VFA, 71 (35-115) cm2; MPM, 202 (161-267) cm3; cachexia, 49 [21%]) were evaluated. SFA and VFA were strongly correlated with BMI (ρ = 0.734 and ρ = 0.712, respectively), whereas MPM was weakly correlated (ρ = 0.346). Two-year all-cause mortality was observed in 31 patients (13%). Higher BMI was associated with lower mortality (adjusted hazard ratio [aHR], 0.86; 95% confidence interval [CI], 0.77-0.95). A similar result was observed in the multivariate model including SFA (aHR in an increase of 20 cm2, 0.87; 95% CI, 0.77-0.98) instead of BMI, whereas VFA was not significant. Cachexia was a worse predictor (aHR, 2.51; 95% CI 1.11-5.65). CONCLUSIONS Association of higher BMI with lower mortality may be confounded by SFA in older patients following TAVR. Cachexia might reflect higher mortality in patients with lower BMI.
Collapse
Affiliation(s)
- Satoshi Higuchi
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Hidenari Matsumoto
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Ryota Masaki
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Takaho Hirano
- Department of Radiological Technology, Showa University Hospital, Tokyo, Japan
| | - Shiori Fuse
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Hiroki Tanisawa
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Tomoaki Masuda
- Division of Cardiovascular Surgery, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Yasuhide Mochizuki
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kazuto Maruta
- Division of Cardiovascular Surgery, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Seita Kondo
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Tadashi Omoto
- Division of Cardiovascular Surgery, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Atsushi Aoki
- Division of Cardiovascular Surgery, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Toshiro Shinke
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
17
|
Zhao Y, Yue R. Aging adipose tissue, insulin resistance, and type 2 diabetes. Biogerontology 2024; 25:53-69. [PMID: 37725294 DOI: 10.1007/s10522-023-10067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
With the increase of population aging, the prevalence of type 2 diabetes (T2D) is also rising. Aging affects the tissues and organs of the whole body, which is the result of various physiological and pathological processes. Adipose tissue has a high degree of plasticity and changes with aging. Aging changes the distribution of adipose tissue, affects adipogenesis, browning characteristics, inflammatory status and adipokine secretion, and increases lipotoxicity. These age-dependent changes in adipose tissue are an important cause of insulin resistance and T2D. Understanding adipose tissue changes can help promote healthy aging process. This review summarizes changes in adipose tissue ascribable to aging, with a focus on the role of aging adipose tissue in insulin resistance and T2D.
Collapse
Affiliation(s)
- Yixuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
18
|
Nameni G, Jazayeri S, Salehi M, Esrafili A, Hajebi A, Motevalian SA. Association between visceral adiposity and generalized anxiety disorder (GAD). BMC Psychol 2024; 12:49. [PMID: 38273394 PMCID: PMC10811950 DOI: 10.1186/s40359-024-01542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Due to an increased rate of inflammation in generalized anxiety disorder (GAD), insight into the mediating factors in the onset and recurrence of the inflammatory response can help to achieve novel treatments for alleviating the risk of GAD. In the current study, we aimed to evaluate the possible relationship between visceral adipose tissue (VAT) as an important intermediary in inflammation pathways and GAD in participants of the Employees' Health Cohort Study of Iran (EHCSIR). METHOD We analyzed the data from 3889 included participants aged > 18 years in the EHCSIR study, which were collected from 2017 to 2020. Lifetime and 12-month GAD were assessed using the Composite International Diagnostic Interview (CIDI-2.1) questionnaire. The adjusted prevalence ratio was computed to evaluate the association between GAD and visceral adiposity index (VAI), GAD and visceral fat area (VFA), GAD and body mass index (BMI) and ultimately GAD and waist circumference (WC) in males and females using STATA software. RESULTS Log-binomial analysis showed a higher prevalence ratio of 12-month GAD associated with VFA in women [PR: 1.42, CI: 1.07-1.87, P: 0.015]. The prevalence of lifetime GAD was higher in obese women (BM1 > 30) [PR: 2.35, CI: 1.07-5.13, P:0.03] than in women with normal BMI. Women with higher VAI were also significantly more likely to suffer lifetime GAD [PR: 1.25, CI: 1.05]. 1.48, P:0.01]. In males, the prevalence of lifetime diagnosed GAD per 1 standard deviation increase in VFA was 0.65 [CI: 0.46-0.91, P: 0.01]. CONCLUSION Visceral adiposity as a positive agent was associated with GAD prevalence in women. The presence of GAD symptoms showed no relationship to VFA in men.
Collapse
Affiliation(s)
- Ghazaleh Nameni
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences , Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences , Tehran, Iran.
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Hajebi
- Research Center for Addiction & Risky Behaviors (ReCARB), Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Motevalian
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Knuth CM, Barayan D, Lee JH, Auger C, de Brito Monteiro L, Ricciuti Z, Metko D, Wells L, Sung HK, Screaton RA, Jeschke MG. Subcutaneous white adipose tissue independently regulates burn-induced hypermetabolism via immune-adipose crosstalk. Cell Rep 2024; 43:113584. [PMID: 38117653 PMCID: PMC10845122 DOI: 10.1016/j.celrep.2023.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
Severe burns induce a chronic hypermetabolic state that persists well past wound closure, indicating that additional internal mechanisms must be involved. Adipose tissue is suggested to be a central regulator in perpetuating hypermetabolism, although this has not been directly tested. Here, we show that thermogenic adipose tissues are activated in parallel to increases in hypermetabolism independent of cold stress. Using an adipose tissue transplantation model, we discover that burn-derived subcutaneous white adipose tissue alone is sufficient to invoke a hypermetabolic response in a healthy recipient mouse. Concomitantly, transplantation of healthy adipose tissue alleviates metabolic dysfunction in a burn recipient. We further show that the nicotinic acetylcholine receptor signaling pathway may mediate an immune-adipose crosstalk to regulate adipose tissue remodeling post-injury. Targeting this pathway could lead to innovative therapeutic interventions to counteract hypermetabolic pathologies.
Collapse
Affiliation(s)
- Carly M Knuth
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Dalia Barayan
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Dea Metko
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Lisa Wells
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert A Screaton
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON L8L 2X2, Canada; Hamilton General Hospital, Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
20
|
Borboa-Olivares H, Estrada-Gutierrez G, Martinez-Portilla RJ, Espino-y-Sosa S, Flores-Pliego A, Espejel-Nuñez A, Camacho-Arroyo I, Solis-Paredes JM, Villafan-Bernal JR, Torres-Torres J. Impact of Protease Inhibitor-Based Highly Active Antiretroviral Therapy on Fetal Subcutaneous Fat Tissue in HIV-Pregnant Women in a Middle-Income Country. Viruses 2023; 16:10. [PMID: 38275945 PMCID: PMC10818469 DOI: 10.3390/v16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND HIV infection continues to be a global public health challenge, affecting approximately 1.7 million reproductive-aged women. Protease inhibitor-based highly active antiretroviral therapy (PI-HAART) has significantly reduced the risk of vertical transmission of HIV from mother to child. Nevertheless, concerns linger regarding the long-term effects, particularly on body composition, notably subcutaneous fat tissue (SFT). Although HIV-associated lipodystrophy syndrome (LS) has been well documented in adults and older children, its impact on fetuses exposed to PI-HAART remains underexplored. This study aims to evaluate SFT in the fetuses of HIV-pregnant women exposed to PI-HAART, assessing the potential clinical implications. METHODS We conducted a comparative study between HIV-pregnant women receiving PI-HAART and an HIV-negative control group. Fetometry measurements were obtained via 3D ultrasound. SFT in the fetal arm and thigh segments was assessed. Data were analyzed using lineal multivariate regression and receiver-operating characteristics (ROC)-curve analysis. RESULTS Fetuses exposed to PI-HAART exhibited a significant reduction in subcutaneous fat, particularly in the proximal third-middle union of the femur (coefficient: -2.588, p = 0.042). This reduction was correlated with lower newborn serum glucose levels (65.7 vs. 56.1, p = 0.007; coefficient: -1.277, p = 0.045). CONCLUSIONS Our study sheds light on the connection between PI-HAART, fetal subcutaneous fat, and neonatal health. These findings might reveal the long-lasting effects of PI-HAART on newborns and children's well-being. Our results emphasize the need for a more balanced approach to managing pregnant women with HIV in developing countries and open new venues for research on the impact of intrauterine PI-HAART exposure on energy metabolism and fetal programming.
Collapse
Affiliation(s)
- Hector Borboa-Olivares
- Community Interventions Research Branch, Instituto Nacional de Perinatología, Mexico City 11000, Mexico
| | | | - Raigam Jafet Martinez-Portilla
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico (S.E.-y.-S.); (J.M.S.-P.)
| | - Salvador Espino-y-Sosa
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico (S.E.-y.-S.); (J.M.S.-P.)
| | - Arturo Flores-Pliego
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (A.F.-P.); (A.E.-N.)
| | - Aurora Espejel-Nuñez
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (A.F.-P.); (A.E.-N.)
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Juan Mario Solis-Paredes
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico (S.E.-y.-S.); (J.M.S.-P.)
| | - Jose Rafael Villafan-Bernal
- Laboratory of Immunogenomics and Metabolic Diseases, Instituto Nacional de Medicina Genomica, Mexico City 14610, Mexico;
| | - Johnatan Torres-Torres
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico (S.E.-y.-S.); (J.M.S.-P.)
| |
Collapse
|
21
|
Narimatsu Y, Kato M, Iwakoshi-Ukena E, Moriwaki S, Ogasawara A, Furumitsu M, Ukena K. Neurosecretory Protein GM-Expressing Neurons Participate in Lipid Storage and Inflammation in Newly Developed Cre Driver Male Mice. Biomedicines 2023; 11:3230. [PMID: 38137451 PMCID: PMC10740756 DOI: 10.3390/biomedicines11123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity induces inflammation in the hypothalamus and adipose tissue, resulting in metabolic disorders. A novel hypothalamic neuropeptide, neurosecretory protein GM (NPGM), was previously identified in the hypothalamus of vertebrates. While NPGM plays an important role in lipid metabolism in chicks, its metabolic regulatory effects in mammals remain unclear. In this study, a novel Cre driver line, NPGM-Cre, was generated for cell-specific manipulation. Cre-dependent overexpression of Npgm led to fat accumulation without increased food consumption in male NPGM-Cre mice. Chemogenetic activation of NPGM neurons in the hypothalamus acutely promoted feeding behavior and chronically resulted in a transient increase in body mass gain. Furthermore, the ablated NPGM neurons exhibited a tendency to be glucose intolerant, with infiltration of proinflammatory macrophages into the adipose tissue. These results suggest that NPGM neurons may regulate lipid storage and inflammatory responses, thereby maintaining glucose homeostasis.
Collapse
Affiliation(s)
- Yuki Narimatsu
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan (E.I.-U.); (S.M.)
| | | | | | | | | | | | - Kazuyoshi Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan (E.I.-U.); (S.M.)
| |
Collapse
|
22
|
Wang Z, Li Y, Wu L, Guo Y, Yang G, Li X, Shi X. Rosiglitazone-induced PPARγ activation promotes intramuscular adipocyte adipogenesis of pig. Anim Biotechnol 2023; 34:3708-3717. [PMID: 37149785 DOI: 10.1080/10495398.2023.2206872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Intramuscular fat (IMF) positively influences various aspects of meat quality, while the subcutaneous fat (SF) has negative effect on carcass characteristics and fattening efficiency. Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation, herein, through bioinformatic screen for the potential regulators of adipogenesis from two independent microarray datasets, we identified that PPARγ is a potentially regulator between porcine IMF and SF adipogenesis. Then we treated subcutaneous preadipocytes (SA) and intramuscular preadipocytes (IMA) of pig with RSG (1 µmol/L), and we found that RSG treatment promoted the differentiation of IMA via differentially activating PPARγ transcriptional activity. Besides, RSG treatment promoted apoptosis and lipolysis of SA. Meanwhile, by the treatment of conditioned medium, we excluded the possibility of indirect regulation of RSG from myocyte to adipocyte and proposed that AMPK may mediate the RSG-induced differential activation of PPARγ. Collectively, the RSG treatment promotes IMA adipogenesis, and advances SA lipolysis, this effect may be associated with AMPK-mediated PPARγ differential activation. Our data indicates that targeting PPARγ might be an effective strategy to promote intramuscular fat deposition while reduce subcutaneous fat mass of pig.
Collapse
Affiliation(s)
- Zhaolu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Youlei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Lingling Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Yuan Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| |
Collapse
|
23
|
Lee H, Chung HS, Kim YJ, Choi MK, Roh YK, Yu JM, Oh CM, Kim J, Moon S. Association between body composition and the risk of mortality in the obese population in the United States. Front Endocrinol (Lausanne) 2023; 14:1257902. [PMID: 38089609 PMCID: PMC10711108 DOI: 10.3389/fendo.2023.1257902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Background Recent studies have presented the concept of the obesity paradox, suggesting that individuals with obesity have a lower risk of death than those without obesity. This paradox may arise because body mass index (BMI) alone is insufficient to understand body composition accurately. This study investigated the relationship between fat and muscle mass and the risk of mortality in individuals with overweight/obesity. Methods We used data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2006 and 2011 to 2018, which were linked to mortality information obtained from the National Death Index. Multiple Cox regression analyses were performed to estimate mortality risk. Subgroup analysis was conducted using propensity score-matched (PSM) data for age, sex, and race/ethnicity. Results This study included 16,555 participants who were overweight/obese (BMI≥25 kg/m2). An increase in appendicular skeletal muscle mass index was associated with a lower mortality risk (hazard ratio [HR]: 0.856; 95% confidence interval [CI]: 0.802-0.915). This finding was consistent with the subgroup analysis of the PSM data. Contrastingly, a high fat mass index was associated with an increased risk of mortality. Sarcopenic overweight/obesity was significantly associated with high mortality compared to obesity without sarcopenia (HR: 1.612, 95%CI: 1.328-1.957). This elevated risk was significant in both age- and sex-based subgroups. This finding was consistent with the subgroup analysis using PSM data. Conclusion In contrast to the obesity paradox, a simple increase in BMI does not protect against mortality. Instead, low body fat and high muscle mass reduce mortality risk.
Collapse
Affiliation(s)
- Heeso Lee
- Department of Family Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hye Soo Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Yoon Jung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Min Kyu Choi
- Department of Family Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Yong Kyun Roh
- Department of Family Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jae Myung Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Joon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Shinje Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
24
|
Wu T, Yang-Huang J, Vernooij MW, Rodriguez-Ayllon M, Jaddoe VWV, Raat H, Klein S, Oei EHG. Physical activity, screen time and body composition in 13-year-old adolescents: The Generation R Study. Pediatr Obes 2023; 18:e13076. [PMID: 37699652 DOI: 10.1111/ijpo.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Body composition between prepubertal children and adolescents varies, and it is unclear how physical activity and sedentary behaviour affect adolescent body composition. OBJECTIVES This study aimed to examine the associations of physical activity and screen time with overall and specific fat depots in the general adolescent population. METHODS In a population-based prospective cohort study, among 3258 adolescents aged 13 years, physical activity and screen time were assessed via self-report questionnaires. Body mass index, dual-energy X-ray absorptiometry-based measures (i.e. fat mass and lean body mass) and magnetic resonance imaging-based measures (i.e. abdominal subcutaneous and visceral fat mass) were obtained. RESULTS After adjusting for social-demographic and growth-related factors, each additional hour of daily physical activity was associated with lower fat mass, abdominal visceral fat mass and higher lean body mass (all p < 0.05). However, these associations were not observed in the longitudinal analyses. Each additional hour of daily screen time was associated with higher body mass index, fat mass, abdominal subcutaneous and visceral fat mass (all p < 0.05), which were consistent with the longitudinal analyses. CONCLUSION Adolescents with higher physical activity and lower screen time had lower levels of adiposity both at the general and visceral levels.
Collapse
Affiliation(s)
- Tong Wu
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Junwen Yang-Huang
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Public Health, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - María Rodriguez-Ayllon
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hein Raat
- Department of Public Health, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Stefan Klein
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Wu S, Tan J, Zhang H, Hou DX, He J. Tissue-specific mechanisms of fat metabolism that focus on insulin actions. J Adv Res 2023; 53:187-198. [PMID: 36539077 PMCID: PMC10658304 DOI: 10.1016/j.jare.2022.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The accumulation of ectopic fats is related to metabolic syndromes with insulin resistance, which is considered as the first hit in obesity-related diseases. However, systematic understanding of the occurrence of ectopic fats is limited, since organisms are capable of orchestrating complicated intracellular signaling pathways to ensure that the correct nutritional components reach the tissues where they are needed. Interestingly, tissue-specific mechanisms lead to different consequences of fat metabolism with different insulin sensitivities. AIM OF REVIEW To summarize the mechanisms of fat deposition in different tissues including adipose tissue, subcutis, liver, muscle and intestines, in an attempt to elucidate interactive mechanisms involving insulin actions and establish a potential reference for the rational uptake of fat. KEY SCIENTIFIC CONCEPTS OF REVIEW Tissue-specific fat metabolism serves as a trigger for developing abnormal fat metabolism or as a compensatory agent for regulating normal fat metabolism. Outcomes of de novo lipogenesis and adipogenesis differ in the subcutaneous adipose tissue (SAT), liver and muscle, with the participation of insulin actions. Overload of lipid metabolic capability results in SAT fat expansion, and ectopic fat accumulation implicates impaired lipo-/adipogenesis in SAT. Regulating insulin actions may be a key measure on fat deposition and metabolism in individuals.
Collapse
Affiliation(s)
- Shusong Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Jijun Tan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - De-Xing Hou
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
26
|
Massa MG, Scott RL, Cara AL, Cortes LR, Vander PB, Sandoval NP, Park JW, Ali SL, Velez LM, Wang HB, Ati SS, Tesfaye B, Reue K, van Veen JE, Seldin MM, Correa SM. Feeding neurons integrate metabolic and reproductive states in mice. iScience 2023; 26:107918. [PMID: 37817932 PMCID: PMC10561062 DOI: 10.1016/j.isci.2023.107918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Balance between metabolic and reproductive processes is important for survival, particularly in mammals that gestate their young. How the nervous system coordinates this balance is an active area of study. Herein, we demonstrate that somatostatin (SST) neurons of the tuberal hypothalamus alter feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of SST neurons increased food intake across sexes, ablation decreased food intake only in female mice during proestrus. This ablation effect was only apparent in animals with low body mass. Fat transplantation and bioinformatics analysis of SST neuronal transcriptomes revealed white adipose as a key modulator of these effects. These studies indicate that SST hypothalamic neurons integrate metabolic and reproductive cues by responding to varying levels of circulating estrogens to modulate feeding differentially based on energy stores. Thus, gonadal steroid modulation of neuronal circuits can be context dependent and gated by metabolic status.
Collapse
Affiliation(s)
- Megan G. Massa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
- Neuroscience Interdepartmental Doctoral Program, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel L. Scott
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Alexandra L. Cara
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Laura R. Cortes
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Paul B. Vander
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Norma P. Sandoval
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Jae W. Park
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Sahara L. Ali
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Leandro M. Velez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Huei-Bin Wang
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Shomik S. Ati
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Bethlehem Tesfaye
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - J. Edward van Veen
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, School of Medicine, University of California – Irvine, Irvine, CA 92697, USA
| | - Stephanie M. Correa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Liao T, Gan M, Lei Y, Wang Y, Chen L, Shen L, Zhu L. Dynamic changes in the transcriptome of tRNA-derived small RNAs related with fat metabolism. Sci Data 2023; 10:703. [PMID: 37838754 PMCID: PMC10576826 DOI: 10.1038/s41597-023-02624-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
The prevalence of obesity and overweight is steadily rising, posing a significant global challenge for humanity. The fundamental cause of obesity and overweight lies in the abnormal accumulation of adipose tissue. While numerous regulatory factors related to fat deposition have been identified in previous studies, a considerable number of regulatory mechanisms remain unknown. tRNA-derived small RNAs (tsRNAs), a novel class of non-coding RNAs, have emerged as significant regulators in various biological processes. In this study, we obtained small RNA sequencing data from subcutaneous white adipose tissue and omental white adipose tissue of lean and obese pigs. In addition, we similarly obtained tsRNAs profiles from scapular brown adipose tissue (BAT), inguinal white adipose tissue (iWAT) and epigonadal white adipose tissue (eWAT) of normal mice. Finally, we successfully identified a large number of expressed tsRNAs in each tissue type and identified tsRNAs conserved in different adipose tissues of pigs and mice. These datasets will be a valuable resource for elucidating the epigenetic mechanisms of fat deposition.
Collapse
Affiliation(s)
- Tianci Liao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhang Lei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
28
|
Shi S, Yi H, Zheng Y, Zhao Y, Yu D. Adipose distribution patterns as prognostic factors in patients with HCC: A systematic review and meta-analysis. Eur J Radiol 2023; 167:111025. [PMID: 37634440 DOI: 10.1016/j.ejrad.2023.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
PURPOSES The present meta-analysis aimed at identifying potential prognostic indicators associated with adipose distribution patterns for predicting the survival outcomes of patients diagnosed with hepatocellular carcinoma (HCC). METHODS A systematic retrieve was performed to identify studies investigating the association of adipose distribution patterns and the prognosis of HCC from the inception of PubMed, Embase, Cochrane Library, and Web of Science databases to May 25, 2023. The Newcastle-Ottawa scale was applied to assess the quality of included studies. The hazard ratios (HRs) and 95 % confidence intervals (CIs) of adipose distribution parameters of visceral, subcutaneous, and intermuscular adipose tissue were extracted. Univariate and multivariable meta-analyses were performed by Stata 12.0 to evaluate the relationship between these factors and overall survival (OS) and recurrence-free survival (RFS). RESULTS A total of 31 studies, comprising 7021 patients, including 2456 patients with HCV and 1466 patients with HBV were included. The pooled results indicated that only high visceral to subcutaneous adipose area ratio (VSR) (univariate analysis of OS: HR = 1.42, 95 % CI = 1.28-1.58, P < 0.001; multivariate analysis of OS: HR = 1.45, 95 % CI = 1.27-1.65, P < 0.001; univariate analysis of RFS: HR = 1.30, 95 % CI = 1.08-1.56, P = 0.006; multivariate analysis of RFS: HR = 1.36, 95 % CI = 1.10-1.67, P = 0.004) was both related to worse OS and RFS, with no significant heterogeneity observed. CONCLUSION Pretreatment VSR, as the sole parameter among adipose distribution-related factors exhibiting independent and stable associations with OS and RFS in patients with HCC, may hold promise as a potential prognostic factor for HCC.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Haiyan Yi
- Department of Radiology, Qixia City People's Hospital, Yantai, Shandong 265300, China
| | - Yi Zheng
- Department of Radiology, Rushan Hospital of Traditional Chinese Medicine, Weihai, Shandong 264200, China
| | - Yuxuan Zhao
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
29
|
Milhem F, Komarnytsky S. Progression to Obesity: Variations in Patterns of Metabolic Fluxes, Fat Accumulation, and Gastrointestinal Responses. Metabolites 2023; 13:1016. [PMID: 37755296 PMCID: PMC10535155 DOI: 10.3390/metabo13091016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Obesity is a multifactorial disorder that is remarkably heterogeneous. It presents itself in a variety of phenotypes that can be metabolically unhealthy or healthy, associate with no or multiple metabolic risk factors, gain extreme body weight (super-responders), as well as resist obesity despite the obesogenic environment (non-responders). Progression to obesity is ultimately linked to the overall net energy balance and activity of different metabolic fluxes. This is particularly evident from variations in fatty acids oxidation, metabolic fluxes through the pyruvate-phosphoenolpyruvate-oxaloacetate node, and extracellular accumulation of Krebs cycle metabolites, such as citrate. Patterns of fat accumulation with a focus on visceral and ectopic adipose tissue, microbiome composition, and the immune status of the gastrointestinal tract have emerged as the most promising targets that allow personalization of obesity and warrant further investigations into the critical issue of a wider and long-term weight control. Advances in understanding the biochemistry mechanisms underlying the heterogenous obesity phenotypes are critical to the development of targeted strategies to maintain healthy weight.
Collapse
Affiliation(s)
- Fadia Milhem
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
- Department of Nutrition, University of Petra, 317 Airport Road, Amman 11196, Jordan
| | - Slavko Komarnytsky
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
30
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
31
|
Zhang WN, Zhu H, Ma ZW, Yu J, Yang Y, Lu XB, Lv YF, Wang XD. Subcutaneous adipose tissue alteration in aging process associated with thyroid hormone signaling. BMC Med Genomics 2023; 16:202. [PMID: 37626392 PMCID: PMC10463827 DOI: 10.1186/s12920-023-01641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Functional changes in subcutaneous adipose tissue (SAT) occur earlier in the aging process and play an important role in the occurrence and development of age-related metabolic diseases. The mechanism of this phenomenon is still unclear, and the change in adipose tissue with age is poorly understood. METHODS We used transcriptome sequencing (RNA seq) to screen differentially expressed genes at the mRNA level, and analyzed the functional characteristics of the differential genes through GO and KEGG analysis in human SAT of all ages. In order to clarify the specific mechanism of the functional change, we analyzed the chromatin accessibility in the promoter region in the same SAT used in the RNA seq by the assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) and obtained the functional genes in SAT changed with age. To verify these changes, we enlarged our sample content of human SAT. The primary mice adipocytes were extracted and stimulated by thyroid hormone of different concentration to construct an animal model, and the expression of the genes were determined through real-time Polymerase Chain Reaction(RT-PCR). The oxygen consumption test and immunofluorescence staining were used to determine the mitochondrial function of SAT. RESULTS RNA-seq showed characteristic gene expression of young and old human SAT, in which 331 genes were up-regulated and 349 genes were down-regulated. ATAC-seq, RNA-seq, combined with the mouse prediction model, determined the functional changed characteristics of seven genes. All these genes expressed differently in SAT of different ages, in which, NCF1, NLRP3, DUOX1 showed positive correlation with age; The expression of IFI30, P2RX1, P2RX6, PRODH, however, decreased with age. And all these genes showed dose dependent alternations under treatment of triiodothyroxine in mice SAT. The oxygen consumption rate revealed significant changes of the mitochondrial function and ROS accumulation in human SAT of different ages. CONCLUSION In elderly individuals, the function, in addition to distribution, of SAT undergoes significant changes, primarily in mitochondria, which may be due to insensitivity to thyroid hormone signaling. These results identified seven novel genes regulated by thyroid hormone, exhibiting significant changes in SAT of different age, and are probably related to the dysfunction of the aged SAT due to the mitochondrial damage and ROS accumulation.
Collapse
Affiliation(s)
- Wen-Na Zhang
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Hao Zhu
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Zhen-Wu Ma
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing Yu
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yun Yang
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xuan-Bei Lu
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yi-Fan Lv
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Xiao-Dong Wang
- Division of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
32
|
Navaneeth G, Hiremath R, Poojary SR, Kini DV, Chittaragi KB. Computed tomographic abdominal fat volume estimation - a handy tool to predict the risk of metabolic syndrome. Pol J Radiol 2023; 88:e379-e388. [PMID: 37701173 PMCID: PMC10493863 DOI: 10.5114/pjr.2023.131010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/30/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose Abdominal obesity plays a significant role in the development of metabolic syndrome, with individual metabolic risk profiles for visceral and subcutaneous adipose tissues. This study aimed to calculate and correlate the subcutaneous, visceral, and total fat compartment volume in metabolic and non-metabolic syndrome patients. Material and methods This was a cross-sectional study conducted on 112 patients categorized into Group A (with metabolic syndrome) and Group B (without metabolic syndrome). They were subjected to computed tomography (CT) study of the abdomen using a 128-slice MDCT scanner. Body mass index (BMI), visceral fat volume (VFV), subcutaneous fat volume (SFV), and total fat volume (TFV) were calculated and correlated with biochemical evidence of metabolic syndrome. Results The mean age of patients in Group A was 60.91 ± 12.23 years as compared to Group B, which was 50.12 ± 16.30 years. Overall, a male predominance was observed, i.e. 69 cases (61.6%). BMI was proven to be an inaccurate risk predictor. However, mean VFV, SFV, and TFV was statistically higher in patients with metabolic syndrome (p = 0.001), with visceral fat volume predicting a higher risk in females (p = 0.026). Conclusions Abdominal CT is a commonly performed yet unexplored tool for the risk assessment of metabolic syndrome. Through the results obtained in this study, we have proven the need for calculating SFV, VFV, and TFV as predictors of metabolic syndrome in comparison to the conventional practice of BMI assessment. The radiologist can thus work with the clinician to effectively detect and treat this health condition.
Collapse
|
33
|
Risk Factors of Non-alcoholic Fatty Liver Disease in the Iranian Adult Population: A Systematic Review and Meta-analysis. HEPATITIS MONTHLY 2023. [DOI: 10.5812/hepatmon-131523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Context: Non-alcoholic fatty liver disease (NAFLD) is progressing considerably worldwide. Identifying the risk factors of NAFLD is a critical step in preventing its progression. Methods: In November 2022, two independent researchers studied seven databases, including PubMed, ISI/WoS, ProQuest, Scopus, SID, Magiran, and Google Scholar, and reference list of relevant articles, searching studies that assessed NAFLD risk factors in the Iranian adult population. Heterogeneity between studies was assessed by Cochran’s test and its composition using I2 statistics. A random-effects model was used when heterogeneity was observed; otherwise, a fixed-effects model was applied. Egger’s regression test and Trim-and-Fill analysis were used to assess publication bias. Comprehensive Meta-analysis software (version 3) was used for the analyses of the present study. Results: The results of this study showed significant associations between NAFLD with age [n = 15, odds ratio (OR) = 2.12, 95% CI: 1.79 - 2.51], body mass index (n = 46, OR = 5.00, 95% CI: 3.34 - 7.49), waist circumference (n = 20, OR = 6.37, 95% CI: 3.25 - 12.48), waist-to-hip ratio (n = 17, OR = 4.72, 95% CI: 3.93 - 5.66), total cholesterol (n = 39, OR = 1.80, 95% CI: 1.52 - 2.13), high-density lipoprotein (n = 37, OR = 0.53, 95% CI: 0.44 - 0.65), low-density lipoprotein (n = 31, OR = 1.68, 95% CI: 1.38 - 2.05), triglyceride (n = 31, OR = 3.21, 95% CI: 2.67 - 3.87), alanine aminotransferase (n = 26, OR = 4.06, 95% CI: 2.94 - 5.62), aspartate aminotransferase (n = 27, OR = 2.16, 95% CI: 1.50 - 3.12), hypertension (n = 13, OR = 2.53, 95% CI: 2.32 - 2.77), systolic blood pressure (n = 13, OR = 1.83, 95% CI: 1.53 - 2.18), diastolic blood pressure (n = 14, OR = 1.80, 95% CI: 1.48 - 2.20), fasting blood sugar (n = 31,OR = 2.91, 95% CI: 2.11- 4.01), homeostatic model assessment for insulin resistance (n = 5, OR = 1.92, 95% CI: 1.48 - 2.59), diabetes mellitus (n = 15, OR = 3.04, 95% CI: 2.46 - 3.75), metabolic syndrome (n = 10, OR = 3.56, 95% CI: 2.79 - 4.55), and physical activity (n = 11, OR = 0.32, 95% CI: 0.24 - 0.43) (P < 0.05). Conclusions: In conclusion, several factors are significantly associated with NAFLD. However, anthropometric indices had the strongest relationship with NAFLD in the Iranian adult population.
Collapse
|
34
|
Sarcopenia negatively affects postoperative short-term outcomes of patients with non-cirrhosis liver cancer. BMC Cancer 2023; 23:212. [PMID: 36879265 PMCID: PMC9987146 DOI: 10.1186/s12885-023-10643-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Literature review have shown that sarcopenia substantially alters the postoperative outcomes after liver resection for malignant tumors. However, these retrospective studies do not distinguish cirrhotic and non-cirrhotic liver cancer patients, nor combine the assessment of muscle strength in addition to muscle mass. The purpose of this study is to study the relationship between sarcopenia and short-term outcomes after hepatectomy in patients with non-cirrhotic liver cancer. METHODS From December 2020 to October 2021, 431 consecutive inpatients were prospectively enrolled in this study. Muscle strength and mass were assessed by handgrip strength and the skeletal muscle index (SMI) on preoperative computed tomographic scans, respectively. Based on the SMI and the handgrip strength, patients were divided into four groups: group A (low muscle mass and strength), group B (low muscle mass and normal muscle strength), group C (low muscle strength and normal muscle mass), and group D (normal muscle mass and strength). The main outcome was major complications and the secondary outcome was 90-d Readmission rate. RESULTS After strictly exclusion, 171 non-cirrhosis patients (median age, 59.00 [IQR, 50.00-67.00] years; 72 females [42.1%]) were selected in the final analysis. Patients in group A had a statistically significantly higher incidence of major postoperative complications (Clavien-Dindo classification ≥ III) (26.1%, p = 0.032), blood transfusion rate (65.2%, p < 0.001), 90-day readmission rate (21.7%, p = 0.037) and hospitalization expenses (60,842.00 [IQR, 35,563.10-87,575.30], p < 0.001) than other groups. Sarcopenia (hazard ratio, 4.21; 95% CI, 1.44-9.48; p = 0.025) and open approach (hazard ratio, 2.56; 95% CI, 1.01-6.49; p = 0.004) were independent risk factors associated with major postoperative complications. CONCLUSIONS Sarcopenia is closely related to poor short-term postoperative outcomes in non-cirrhosis liver cancer patients and the assessment that combines muscle strength and muscle mass can simply and comprehensively identify it. TRIAL REGISTRATION ClinicalTrials.gov identifiers NCT04637048 . (19/11/2020).
Collapse
|
35
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
36
|
Lee JH, Hwang S, Jee B, Kim JH, Lee J, Chung JH, Song W, Sung HH, Jeon HG, Jeong BC, Seo SI, Jeon SS, Lee HM, Park SH, Kwon GY, Kang M. Fat Loss in Patients with Metastatic Clear Cell Renal Cell Carcinoma Treated with Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:ijms24043994. [PMID: 36835404 PMCID: PMC9967473 DOI: 10.3390/ijms24043994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The purpose of this study was to determine the prognostic impact of fat loss after immune checkpoint inhibitor (ICI) treatment in patients with metastatic clear cell renal cell carcinoma (ccRCC). Data from 60 patients treated with ICI therapy for metastatic ccRCC were retrospectively analyzed. Changes in cross-sectional areas of subcutaneous fat (SF) between the pre-treatment and post-treatment abdominal computed tomography (CT) images were expressed as percentages and were divided by the interval between the CT scans to calculate ΔSF (%/month). SF loss was defined as ΔSF < -5%/month. Survival analyses for overall survival (OS) and progression-free survival (PFS) were performed. Patients with SF loss had shorter OS (median, 9.5 months vs. not reached; p < 0.001) and PFS (median, 2.6 months vs. 33.5 months; p < 0.001) than patients without SF loss. ΔSF was independently associated with OS (adjusted hazard ratio (HR), 1.49; 95% confidence interval (CI), 1.07-2.07; p = 0.020) and PFS (adjusted HR, 1.57; 95% CI, 1.17-2.12; p = 0.003), with a 5%/month decrease in SF increasing the risk of death and progression by 49% and 57%, respectively. In conclusion, Loss of SF after treatment initiation is a significant and independent poor prognostic factor for OS and PFS in patients with metastatic ccRCC who receive ICI therapy.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Soohyun Hwang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - ByulA Jee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jae-Hun Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jihwan Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jae Hoon Chung
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Wan Song
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Hyun Hwan Sung
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Hwang Gyun Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Byong Chang Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Seong Il Seo
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Seong Soo Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Hyun Moo Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Ghee Young Kwon
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Correspondence: ; Tel.: +82-2-3410-1138; Fax: +82-2-3410-6992
| |
Collapse
|
37
|
Chang CS, Yu SS, Ho LC, Chao SH, Chou TY, Shao AN, Kao LZ, Chang CY, Chen YH, Wu MS, Tsai PJ, Maeda N, Tsai YS. Inguinal Fat Compensates Whole Body Metabolic Functionality in Partially Lipodystrophic Mice with Reduced PPARγ Expression. Int J Mol Sci 2023; 24:3904. [PMID: 36835312 PMCID: PMC9966317 DOI: 10.3390/ijms24043904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) gene mutations in humans and mice lead to whole-body insulin resistance and partial lipodystrophy. It is unclear whether preserved fat depots in partial lipodystrophy are beneficial for whole-body metabolic homeostasis. We analyzed the insulin response and expression of metabolic genes in the preserved fat depots of PpargC/- mice, a familial partial lipodystrophy type 3 (FPLD3) mouse model resulting from a 75% decrease in Pparg transcripts. Perigonadal fat of PpargC/- mice in the basal state showed dramatic decreases in adipose tissue mass and insulin sensitivity, whereas inguinal fat showed compensatory increases. Preservation of inguinal fat metabolic ability and flexibility was reflected by the normal expression of metabolic genes in the basal or fasting/refeeding states. The high nutrient load further increased insulin sensitivity in inguinal fat, but the expression of metabolic genes became dysregulated. Inguinal fat removal resulted in further impairment of whole-body insulin sensitivity in PpargC/- mice. Conversely, the compensatory increase in insulin sensitivity of the inguinal fat in PpargC/- mice diminished as activation of PPARγ by its agonists restored insulin sensitivity and metabolic ability of perigonadal fat. Together, we demonstrated that inguinal fat of PpargC/- mice plays a compensatory role in combating perigonadal fat abnormalities.
Collapse
Affiliation(s)
- Cherng-Shyang Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shang-Shiuan Yu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Chun Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
- Division of General Medicine, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Shu-Hsin Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ting-Yu Chou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ai-Ning Shao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ling-Zhen Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yu Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Hsin Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ming-Shan Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
38
|
Scheidl TB, Brightwell AL, Easson SH, Thompson JA. Maternal obesity and programming of metabolic syndrome in the offspring: searching for mechanisms in the adipocyte progenitor pool. BMC Med 2023; 21:50. [PMID: 36782211 PMCID: PMC9924890 DOI: 10.1186/s12916-023-02730-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND It is now understood that it is the quality rather than the absolute amount of adipose tissue that confers risk for obesity-associated disease. Adipose-derived stem cells give rise to adipocytes during the developmental establishment of adipose depots. In adult depots, a reservoir of progenitors serves to replace adipocytes that have reached their lifespan and for recruitment to increase lipid buffering capacity under conditions of positive energy balance. MAIN: The adipose tissue expandability hypothesis posits that a failure in de novo differentiation of adipocytes limits lipid storage capacity and leads to spillover of lipids into the circulation, precipitating the onset of obesity-associated disease. Since adipose progenitors are specified to their fate during late fetal life, perturbations in the intrauterine environment may influence the rapid expansion of adipose depots that occurs in childhood or progenitor function in established adult depots. Neonates born to mothers with obesity or diabetes during pregnancy tend to have excessive adiposity at birth and are at increased risk for childhood adiposity and cardiometabolic disease. CONCLUSION In this narrative review, we synthesize current knowledge in the fields of obesity and developmental biology together with literature from the field of the developmental origins of health and disease (DOHaD) to put forth the hypothesis that the intrauterine milieu of pregnancies complicated by maternal metabolic disease disturbs adipogenesis in the fetus, thereby accelerating the trajectory of adipose expansion in early postnatal life and predisposing to impaired adipose plasticity.
Collapse
Affiliation(s)
- Taylor B. Scheidl
- Cumming School of Medicine, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Libin Cardiovascular Institute, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Amy L. Brightwell
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Sarah H. Easson
- Cumming School of Medicine, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Jennifer A. Thompson
- Cumming School of Medicine, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Libin Cardiovascular Institute, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
39
|
Lee E, Korf H, Vidal-Puig A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J Hepatol 2023; 78:1048-1062. [PMID: 36740049 DOI: 10.1016/j.jhep.2023.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Alongside the liver, white adipose tissue (WAT) is critical in regulating systemic energy homeostasis. Although each organ has its specialised functions, they must work coordinately to regulate whole-body metabolism. Adipose tissues and the liver are relatively resilient and can adapt to an energy surplus by facilitating triglyceride (TG) storage up to a certain threshold level without significant metabolic disturbances. However, lipid storage in WAT beyond a "personalised" adiposity threshold becomes dysfunctional, leading to metabolic inflexibility, progressive inflammation, and aberrant adipokine secretion. Moreover, the failure of adipose tissue to store and mobilise lipids results in systemic knock-on lipid overload, particularly in the liver. Factors contributing to hepatic lipid overload include lipids released from WAT, dietary fat intake, and enhanced de novo lipogenesis. In contrast, extrahepatic mechanisms counteracting toxic hepatic lipid overload entail coordinated compensation through oxidation of surplus fatty acids in brown adipose tissue and storage of fatty acids as TGs in WAT. Failure of these integrated homeostatic mechanisms leads to quantitative increases and qualitative alterations to the lipidome of the liver. Initially, hepatocytes preferentially accumulate TG species leading to a relatively "benign" non-alcoholic fatty liver. However, with time, inflammatory responses ensue, progressing into more severe conditions such as non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma, in some individuals (often without an early prognostic clue). Herein, we highlight the pathogenic importance of obesity-induced "adipose tissue failure", resulting in decreased adipose tissue functionality (i.e. fat storage capacity and metabolic flexibility), in the development and progression of NAFL/NASH.
Collapse
Affiliation(s)
- Eunyoung Lee
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Centro de Innvestigacion Principe Felipe, Valencia, Spain; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| |
Collapse
|
40
|
Dong K, Wei G, Sun H, Gu D, Liu J, Wang L. Metabolic crosstalk between thermogenic adipocyte and cancer cell: Dysfunction and therapeutics. Curr Opin Pharmacol 2023; 68:102322. [PMID: 36502545 DOI: 10.1016/j.coph.2022.102322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
As one of the largest endocrine organs with a wide distribution in organisms, adipose tissue secretes multiple adipokines, cytokines, metabolites, and exosomes to promote tumour development. Elaborating the crosstalk between cancer cells and adipocytes provides a tissue-level perspective of cancer progression, which reflects the heterogeneity and complexity of human tumours. Three main types of adipose tissues, white, brown, and beige adipose tissue, have been described. Thermogenic capacity is a prominent characteristic of brown and beige adipocytes. Most studies so far mainly focus on the contribution of white adipocytes to the tumour microenvironment. However, the role of thermogenic adipose tissue in malignant cancer behaviour has been largely overlooked. Recently, emerging evidence suggests that beige/brown adipocytes play a key role in the development and progression of various cancers. This review focuses on the bidirectional communication between tumour cells and thermogenic adipocytes and the therapeutic strategies to disrupt this interaction.
Collapse
Affiliation(s)
- Kai Dong
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Gang Wei
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Honglin Sun
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Di Gu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Junli Liu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
41
|
Zhu M, Li H, Yin Y, Ding M, Philips CA, Romeiro FG, Qi X. U-shaped relationship between subcutaneous adipose tissue index and mortality in liver cirrhosis. J Cachexia Sarcopenia Muscle 2023; 14:508-516. [PMID: 36577511 PMCID: PMC9891908 DOI: 10.1002/jcsm.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/03/2022] [Accepted: 11/29/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Subcutaneous and visceral adipose tissues are important body components, but their effects on the mortality in patients with liver cirrhosis remain controversial based on the current evidence. METHODS We retrospectively identified 372 eligible patients in whom subcutaneous adipose tissue index (SATI) and visceral adipose tissue index (VATI) could be measured by computed tomography images at the third lumbar vertebra. The association of SATI and VATI with the risk of death was evaluated on a continuous scale with restricted cubic spline curves based on Cox proportional hazards models. Cumulative probability of mortality was estimated by Nelson-Aalen cumulative risk curve analyses. Independent predictors of death were evaluated by competing risk analyses after adjusting for age, sex, and model for end-stage liver disease score. RESULTS Majority of patients were male (69.4%) with a mean age of 55.40 ± 10.68 years. SATI had a U-shaped association with mortality (P for non-linearity <0.001). Cutoff values of SATI were 19.7 and 51.8 cm2 /m2 at the points where hazard ratios were just <1.2. SATI was categorized as low (<19.7 cm2 /m2 ), moderate (19.7-51.8 cm2 /m2 ), and high (>51.8 cm2 /m2 ) level. There was no significant difference in the cumulative probability of mortality between low versus moderate SATI groups (Gray's test, P = 0.052) and high versus moderate SATI groups (Gray's test, P = 0.054). Competing risk analyses demonstrated that low SATI could increase the mortality compared with moderate SATI (subdistribution hazard ratio [sHR] = 1.66, 95% confidence interval [CI]: 0.992-2.78, P = 0.054) and was an independent predictor of death (sHR = 1.86, 95% CI: 1.059-3.28, P = 0.031). Competing risk analyses also demonstrated that high SATI could significantly increase the mortality compared with moderate SATI (sHR = 1.6, 95% CI: 1-2.54, P = 0.049), and was an independent predictor of death (sHR = 2.007, 95% CI: 1.195-3.37, P = 0.0085). VATI had an irregularly shaped association with mortality (P for non-linearity <0.001). Cutoff values of VATI were 9.8 and 40.2 cm2 /m2 at the points where hazard ratios were just <1.2. VATI was categorized as low (<9.8 cm2 /m2 ), moderate (9.8-40.2 cm2 /m2 ), and high (>40.2 cm2 /m2 ) level. There was no significant difference in the cumulative probability of mortality between low versus moderate VATI groups (Gray's test, P = 0.381) and high versus moderate VATI groups (Gray's test, P = 0.787). Competing risk analyses demonstrated that neither low (sHR = 1.27, 95% CI: 0.599-2.7, P = 0.53) nor high VATI (sHR = 0.848, 95% CI: 0.539-1.34, P = 0.48) was an independent predictor of death compared with moderate VATI. CONCLUSIONS Both excessive deficiency and accumulation of subcutaneous adipose tissues negatively influence the outcomes of cirrhotic patients.
Collapse
Affiliation(s)
- Menghua Zhu
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, China.,Postgraduate College, Jinzhou Medical University, Jinzhou, China
| | - Hongyu Li
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, China.,Postgraduate College, Jinzhou Medical University, Jinzhou, China.,Postgraduate College, China Medical University, Shenyang, China
| | - Yue Yin
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, China.,Postgraduate College, China Medical University, Shenyang, China
| | - Min Ding
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, China.,Postgraduate College, China Medical University, Shenyang, China
| | - Cyriac Abby Philips
- Department of Clinical and Translational Hepatology, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | | | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, China.,Postgraduate College, Jinzhou Medical University, Jinzhou, China.,Postgraduate College, China Medical University, Shenyang, China
| |
Collapse
|
42
|
Bogard G, Barthelemy J, Hantute-Ghesquier A, Sencio V, Brito-Rodrigues P, Séron K, Robil C, Flourens A, Pinet F, Eberlé D, Trottein F, Duterque-Coquillaud M, Wolowczuk I. SARS-CoV-2 infection induces persistent adipose tissue damage in aged golden Syrian hamsters. Cell Death Dis 2023; 14:75. [PMID: 36725844 PMCID: PMC9891765 DOI: 10.1038/s41419-023-05574-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
Coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)) is primarily a respiratory illness. However, various extrapulmonary manifestations have been reported in patients with severe forms of COVID-19. Notably, SARS-CoV-2 was shown to directly trigger white adipose tissue (WAT) dysfunction, which in turn drives insulin resistance, dyslipidemia, and other adverse outcomes in patients with COVID-19. Although advanced age is the greatest risk factor for COVID-19 severity, published data on the impact of SARS-CoV-2 infection on WAT in aged individuals are scarce. Here, we characterized the response of subcutaneous and visceral WAT depots to SARS-CoV-2 infection in young adult and aged golden hamsters. In both age groups, infection was associated with a decrease in adipocyte size in the two WAT depots; this effect was partly due to changes in tissue's lipid metabolism and persisted for longer in aged hamsters than in young-adult hamsters. In contrast, only the subcutaneous WAT depot contained crown-like structures (CLSs) in which dead adipocytes were surrounded by SARS-CoV-2-infected macrophages, some of them forming syncytial multinucleated cells. Importantly, older age predisposed to a unique manifestation of viral disease in the subcutaneous WAT depot during SARS-CoV-2 infection; the persistence of very large CLSs was indicative of an age-associated defect in the clearance of dead adipocytes by macrophages. Moreover, we uncovered age-related differences in plasma lipid profiles during SARS-CoV-2 infection. These data suggest that the WAT's abnormal response to SARS-CoV-2 infection may contribute to the greater severity of COVID-19 observed in elderly patients.
Collapse
Affiliation(s)
- Gemma Bogard
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Johanna Barthelemy
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Aline Hantute-Ghesquier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Valentin Sencio
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Patricia Brito-Rodrigues
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Karin Séron
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Cyril Robil
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Anne Flourens
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Florence Pinet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Delphine Eberlé
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - François Trottein
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Martine Duterque-Coquillaud
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Isabelle Wolowczuk
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France.
| |
Collapse
|
43
|
Massa MG, Scott RL, Cara AL, Cortes LR, Sandoval NP, Park JW, Ali S, Velez LM, Tesfaye B, Reue K, van Veen JE, Seldin M, Correa SM. Feeding Neurons Integrate Metabolic and Reproductive States in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525595. [PMID: 36747631 PMCID: PMC9900829 DOI: 10.1101/2023.01.25.525595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Trade-offs between metabolic and reproductive processes are important for survival, particularly in mammals that gestate their young. Puberty and reproduction, as energetically taxing life stages, are often gated by metabolic availability in animals with ovaries. How the nervous system coordinates these trade-offs is an active area of study. We identify somatostatin neurons of the tuberal nucleus (TNSST) as a node of the feeding circuit that alters feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of TNSST neurons increased food intake across sexes, selective ablation decreased food intake only in female mice during proestrus. Interestingly, this ablation effect was only apparent in animals with a low body mass. Fat transplantation and bioinformatics analysis of TNSST neuronal transcriptomes revealed white adipose as a key modulator of the effects of TNSST neurons on food intake. Together, these studies point to a mechanism whereby TNSST hypothalamic neurons modulate feeding by responding to varying levels of circulating estrogens differentially based on energy stores. This research provides insight into how neural circuits integrate reproductive and metabolic signals, and illustrates how gonadal steroid modulation of neuronal circuits can be context-dependent and gated by metabolic status.
Collapse
Affiliation(s)
- Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Rachel L Scott
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Alexandra L Cara
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Laura R Cortes
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Norma P Sandoval
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Jae W Park
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Sahara Ali
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Leandro M Velez
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA
| | - Bethlehem Tesfaye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Marcus Seldin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| |
Collapse
|
44
|
Chen W, Meng F, Zeng X, Cao X, Bu G, Du X, Yu G, Kong F, Li Y, Gan T, Han X. Mechanic Insight into the Distinct and Common Roles of Ovariectomy Versus Adrenalectomy on Adipose Tissue Remodeling in Female Mice. Int J Mol Sci 2023; 24:ijms24032308. [PMID: 36768630 PMCID: PMC9916485 DOI: 10.3390/ijms24032308] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Dysfunctions of the ovaries and adrenal glands are both evidenced to cause aberrant adipose tissue (AT) remodeling and resultant metabolic disorders, but their distinct and common roles are poorly understood. In this study, through biochemical, histological and RNA-seq analyses, we comprehensively explored the mechanisms underpinning subcutaneous (SAT) and visceral adipose tissue (VAT) remodeling, in response to ovariectomy (OVX) versus adrenalectomy (ADX) in female mice. OVX promoted adipocyte differentiation and fat accumulation in both SAT and VAT, by potentiating the Pparg signaling, while ADX universally prevented the cell proliferation and extracellular matrix organization in both SAT and VAT, likely by inactivating the Nr3c1 signaling, thus causing lipoatrophy in females. ADX, but not OVX, exerted great effects on the intrinsic difference between SAT and VAT. Specifically, ADX reversed a large cluster of genes differentially expressed between SAT and VAT, by activating 12 key transcription factors, and thereby caused senescent cell accumulation, massive B cell infiltration and the development of selective inflammatory response in SAT. Commonly, both OVX and ADX enhance circadian rhythmicity in VAT, and impair cell proliferation, neurogenesis, tissue morphogenesis, as well as extracellular matrix organization in SAT, thus causing dysfunction of adipose tissues and concomitant metabolic disorders.
Collapse
|
45
|
Higuchi S, Orban M, Adamo M, Giannini C, Melica B, Karam N, Praz F, Kalbacher D, Lubos E, Stolz L, Braun D, Näbauer M, Wild M, Doldi P, Neuss M, Butter C, Kassar M, Ruf T, Petrescu A, Schofer N, Pfister R, Iliadis C, Unterhuber M, Thiele H, Baldus S, von Bardeleben RS, Massberg S, Windecker S, Lurz P, Petronio AS, Metra M, Hausleiter J. Sex-specific impact of anthropometric parameters on outcomes after transcatheter edge-to-edge repair for secondary mitral regurgitation. Int J Cardiol 2023; 371:312-318. [PMID: 36115443 DOI: 10.1016/j.ijcard.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/05/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Body surface area (BSA) has been reported to be the stronger predictor for prognosis than body mass index in heart failure (HF) patients. The sex-specific association of BSA with mortality has been unclear. METHODS EuroSMR, a European multicenter registry, included patients who underwent edge-to-edge repair (TEER) for secondary mitral regurgitation (SMR). The outcome was two-year all-cause mortality. RESULTS The present cohort included 1594 HF patients (age, 74 ± 10 years; male, 66%). Association of calculated BSA with two-year all-cause mortality was evaluated. Patients were classified into three BSA groups: the lowest 10% (S), the highest 10% (L), and intermediate between S and L (M). Mean BSA was 1.87 ± 0.21 m2 (male, 1.94 ± 0.18 m2; female, 1.73 ± 0.18 m2). The association of BSA with the endpoint in females showed a U-shaped curve, indicating worse prognosis for both S and L. The association in males followed a linear regression, demonstrating better prognosis for L. Hazard ratio (HR) of L to S in males was 0.43 (95% confidence interval [CI], 0.25-0.74; p = 0.002), whereas HR of L to M in females was 1.76 (95% CI, 1.11-2.78; p = 0.016) (p for interaction = 0.003). CONCLUSIONS Sex-specific association patterns demonstrate the complex influence of anthropomorphic factors in HF patients scheduled for TEER. Further investigation beyond simple evaluation of weight and height is needed for better comprehension of the obesity paradox and better prediction of the results of transcatheter therapy in HF patients.
Collapse
Affiliation(s)
- Satoshi Higuchi
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
| | - Mathias Orban
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Munich Heart Alliance, Partner Site German Center for Cardiovascular Disease (DZHK), Munich, Germany
| | - Marianna Adamo
- Cardiac Catheterization Laboratory and Cardiology, ASST Spedali Civili and Department of medical and surgical specialties, radiological sciences and public health, University of Brescia, Brescia, Italy
| | - Cristina Giannini
- Cardiac Catheterization Laboratory, Cardiothoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Bruno Melica
- Cardiology Department, Centro Hospitalar Vila Nova de Gaia e Espinho, Portugal
| | - Nicole Karam
- Paris University, PARCC, INSERM, F-75015, European Hospital Georges Pompidou, Paris, France
| | - Fabien Praz
- Universitätsklinik für Kardiologie, Inselspital Bern, Switzerland
| | - Daniel Kalbacher
- Universitäres Herz- und Gefäßzentrum Hamburg, Klinik für Kardiologie, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Edith Lubos
- Universitäres Herz- und Gefäßzentrum Hamburg, Klinik für Kardiologie, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Lukas Stolz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
| | - Daniel Braun
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Munich Heart Alliance, Partner Site German Center for Cardiovascular Disease (DZHK), Munich, Germany
| | - Michael Näbauer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
| | - Mirjam Wild
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Universitätsklinik für Kardiologie, Inselspital Bern, Switzerland
| | - Philipp Doldi
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Munich Heart Alliance, Partner Site German Center for Cardiovascular Disease (DZHK), Munich, Germany
| | - Michael Neuss
- Herzzentrum Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Bernau, Germany
| | - Christian Butter
- Herzzentrum Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Bernau, Germany
| | - Mohammad Kassar
- Universitätsklinik für Kardiologie, Inselspital Bern, Switzerland
| | - Tobias Ruf
- Zentrum für Kardiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | - Aniela Petrescu
- Zentrum für Kardiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | - Niklas Schofer
- Universitäres Herz- und Gefäßzentrum Hamburg, Klinik für Kardiologie, Germany
| | - Roman Pfister
- Department III of Internal Medicine, Heart Center, University of Cologne, Cologne, Germany
| | - Christos Iliadis
- Department III of Internal Medicine, Heart Center, University of Cologne, Cologne, Germany
| | - Matthias Unterhuber
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Stephan Baldus
- Department III of Internal Medicine, Heart Center, University of Cologne, Cologne, Germany
| | | | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Munich Heart Alliance, Partner Site German Center for Cardiovascular Disease (DZHK), Munich, Germany
| | | | - Philipp Lurz
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Anna Sonia Petronio
- Cardiac Catheterization Laboratory, Cardiothoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Marco Metra
- Cardiac Catheterization Laboratory and Cardiology, ASST Spedali Civili and Department of medical and surgical specialties, radiological sciences and public health, University of Brescia, Brescia, Italy
| | - Jörg Hausleiter
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Munich Heart Alliance, Partner Site German Center for Cardiovascular Disease (DZHK), Munich, Germany.
| |
Collapse
|
46
|
Bushman T, Lin TY, Chen X. Depot-Dependent Impact of Time-Restricted Feeding on Adipose Tissue Metabolism in High Fat Diet-Induced Obese Male Mice. Nutrients 2023; 15:nu15010238. [PMID: 36615895 PMCID: PMC9823673 DOI: 10.3390/nu15010238] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Time-restricted feeding (TRF) is known to be an effective strategy for weight loss and metabolic health. TRF's effect on metabolism is complex and likely acts on various pathways within multiple tissues. Adipose tissue plays a key role in systemic homeostasis of glucose and lipid metabolism. Adipose tissue dysregulation has been causally associated with metabolic disorders in obesity. However, it is largely unknown how TRF impacts metabolic pathways such as lipolysis, lipogenesis, and thermogenesis within different in adipose tissue depots in obesity. To determine this, we conducted a 10-week TRF regimen in male mice, previously on a long-term high fat diet (HFD) and subjected the mice to TRF of a HFD for 10 h per day or ad libitum. The TRF regimen showed reduction in weight gain. TRF restored HFD-induced impairment of adipogenesis and increased lipid storage in white adipose tissues. TRF also showed a depot-dependent effect in lipid metabolism and restored ATP-consuming futile cycle of lipogenesis and lipolysis that is impaired by HFD within epididymal adipose tissue, but not inguinal fat depot. We demonstrate that TRF may be a beneficial option as a dietary and lifestyle intervention in lowering bodyweight and improving adipose tissue metabolism.
Collapse
|
47
|
Hueso L, Marques P, Morant B, Gonzalez-Navarro H, Ortega J, Real JT, Sanz MJ, Piqueras L. CCL17 and CCL22 chemokines are upregulated in human obesity and play a role in vascular dysfunction. Front Endocrinol (Lausanne) 2023; 14:1154158. [PMID: 37124725 PMCID: PMC10130371 DOI: 10.3389/fendo.2023.1154158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background/Aims Chemokines are known to play critical roles mediating inflammation in many pathophysiological processes. The aim of this study was to investigate the role of chemokine receptor CCR4 and its ligands CCL17 and CCL22 in human morbid obesity. Methods Circulating levels of CCL17 and CCL22 were measured in 60 morbidly obese patients (mean age, 45 ± 1 years; body mass index/BMI, 44 ± 1 kg/m2) who had undergone bariatric bypass surgery, and 20 control subjects. Paired subcutaneous (SCAT) and visceral adipose tissue (VCAT) from patients were analysed to measure expression of CCR4 and its ligands by RT-PCR, western blot and immunohistochemical analysis. The effects of CCR4 neutralization ex vivo on leukocyte-endothelial cells were also evaluated. Results Compared with controls, morbidly obese patients presented higher circulating levels of CCL17 (p=0.029) and CCL22 (p<0.001) and this increase was positively correlated with BMI (p=0.013 and p=0.0016), and HOMA-IR Index (p=0.042 and p< 0.001). Upregulation of CCR4, CCL17 and CCL22 expression was detected in VCAT in comparison with SCAT (p<0.05). Using the parallel-plate flow chamber model, blockade of endothelial CCR4 function with the neutralizing antibody anti-CCR4 in morbidly obese patients significantly reduced leucocyte adhesiveness to dysfunctional endothelium, a key event in atherogenesis. Additionally, CCL17 and CCL22 increased activation of the ERK1/2 mitogen-activated protein kinase signalling pathway in human aortic endothelial cells, which was significantly reduced by CCR4 inhibition (p=0.016 and p<0.05). Conclusion Based on these findings, pharmacological modulation of the CCR4 axis could represent a new therapeutic approach to prevent adipose tissue dysfunction in obesity.
Collapse
Affiliation(s)
- Luisa Hueso
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | | | - Brenda Morant
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Herminia Gonzalez-Navarro
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Biochemistry, University of Valencia, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquin Ortega
- Surgery Service, University Clinic Hospital of Valencia, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
| | - José T. Real
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
- *Correspondence: Laura Piqueras, ; María J Sanz, ; José T. Real,
| | - María J Sanz
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Pharmacology, University of Valencia, Valencia, Spain
- *Correspondence: Laura Piqueras, ; María J Sanz, ; José T. Real,
| | - Laura Piqueras
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Pharmacology, University of Valencia, Valencia, Spain
- *Correspondence: Laura Piqueras, ; María J Sanz, ; José T. Real,
| |
Collapse
|
48
|
Ding J, Chen X, Shi Z, Bai K, Shi S. Association of Metabolically Healthy Obesity and Risk of Cardiovascular Disease Among Adults in China: A Retrospective Cohort Study. Diabetes Metab Syndr Obes 2023; 16:151-159. [PMID: 36760599 PMCID: PMC9869897 DOI: 10.2147/dmso.s397243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Previous studies have shown that metabolically healthy obesity (MHO) and changes in its status are connected to an increased incidence of cardiovascular disease (CVD). Yet, fewer studies have been conducted in China, especially for the middle-aged and elderly population, a high-risk group. The purpose of the study was to investigate the association between metabolic health status and CVD events. PATIENTS AND METHODS A total of 46,055 participants were categorized into 6 subgroups with different metabolic states according to the existence of metabolic syndrome and body mass index (BMI). The changes in obesity and metabolic health status were defined from baseline to follow-up outcomes with a combination of overweight and obesity. Cox proportional hazards models estimated the association of CVD events and each BMI-metabolic groups. RESULTS MHO and metabolic abnormality normal weight (MANW) subjects had a higher HR of CVD, 1.62 (95% CI, 1.36-1.92) and 1.24 (95% CI, 1.07-1.44), respectively, than their metabolically healthy normal weight (MHNW) counterparts. Then, more than 50% and 30% of the metabolically healthy overweight or obesity (MHOO) populations maintained their status and converted to a metabolically unhealthy state, respectively. Stable MANW, MHOO and metabolically abnormal obesity (MAO) were associated with a higher risk for CVD, 1.68 (95% CI, 1.37-2.05),1.26 (95% CI, 1.08-1.47) and 1.65 (95% CI, 1.45-1.88), respectively, than stable MHNW. CONCLUSION Despite being of normal weight, MANW status is in fact a risk factor for CVD, as well as MHO, especially for the Chinese middle-aged and elderly population. Furthermore, metabolic health is a transient state for partial middle-aged and elderly Chinese individuals, and MAO has the highest risk of CVD, including coronary heart disease (CHD) and stroke.
Collapse
Affiliation(s)
- Jiacheng Ding
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Xuejiao Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhan Shi
- Department of Pharmacy, Zhengzhou People’s Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Kaizhi Bai
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Songhe Shi
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Correspondence: Songhe Shi, Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, Henan Province, People’s Republic of China, Tel + 86 371 18037108985, Email
| |
Collapse
|
49
|
Davis S, Hocking S, Watt MJ, Gunton JE. Metabolic effects of lipectomy and of adipose tissue transplantation. Obesity (Silver Spring) 2023; 31:7-19. [PMID: 36479639 PMCID: PMC10946570 DOI: 10.1002/oby.23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The goal of this study was to review the metabolic effects of fat transplantation. METHODS Fat (adipose tissue [AT]) transplantation has been performed extensively for many years in the cosmetic reconstruction industry. However, not all fats are equal. White, brown, and beige AT differ in energy storage and use. Brown and beige AT consume glucose and lipids for thermogenesis and, theoretically, may provide greater metabolic benefit in transplantation. Here, the authors review the metabolic effects of AT transplantation. RESULTS Removal of subcutaneous human AT does not have beneficial metabolic effects. Most studies find no benefit from visceral AT transplantation and some studies report harmful effects. In contrast, transplantation of inguinal or subcutaneous AT in mice has positive effects. Brown AT transplant studies have variable results depending on the model but most show benefit. CONCLUSIONS Many technical improvements have optimized fat grafting and transplantation in cosmetic surgery. Transplantation of subcutaneous AT has the potential for significant metabolic benefits, although there are few studies in humans or using human AT. Brown AT transplantation is beneficial but not readily feasible in humans thus ex vivo "beiging" may be a useful strategy. AT transplantation may provide clinical benefits in metabolic disorders, especially in the setting of lipodystrophy.
Collapse
Affiliation(s)
- Sarah Davis
- Centre for Diabetes, Obesity and Endocrinology ResearchThe Westmead Institute for Medical Research, The University of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Samantha Hocking
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Matthew J. Watt
- Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jenny E. Gunton
- Centre for Diabetes, Obesity and Endocrinology ResearchThe Westmead Institute for Medical Research, The University of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Diabetes and EndocrinologyWestmead HospitalSydneyNew South WalesAustralia
| |
Collapse
|
50
|
Liu Y, Zhong X, Lin S, Xu H, Liang X, Wang Y, Xu J, Wang K, Guo X, Wang J, Yu M, Li C, Xie C. Limosilactobacillus reuteri and caffeoylquinic acid synergistically promote adipose browning and ameliorate obesity-associated disorders. MICROBIOME 2022; 10:226. [PMID: 36517893 PMCID: PMC9753294 DOI: 10.1186/s40168-022-01430-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE High intake of caffeoylquinic acid (CQA)-rich dietary supplements, such as green coffee bean extracts, offers health-promoting effects on maintaining metabolic homeostasis. Similar to many active herbal ingredients with high pharmacological activities but low bioavailability, CQA has been reported as a promising thermogenic agent with anti-obesity properties, which contrasts with its poor oral absorption. Intestinal tract is the first site of CQA exposure and gut microbes might react quickly to CQA. Thus, it is of interest to explore the role of gut microbiome and microbial metabolites in the beneficial effects of CQA on obesity-related disorders. RESULTS Oral CQA supplementation effectively enhanced energy expenditure by activating browning of adipose and thus ameliorated obesity-related metabolic dysfunctions in high fat diet-induced obese (DIO) mice. Here, 16S rRNA gene amplicon sequencing revealed that CQA treatment remodeled the gut microbiota to promote its anti-obesity actions, as confirmed by antibiotic treatment and fecal microbiota transplantation. CQA enriched the gut commensal species Limosilactobacillus reuteri (L. reuteri) and stimulated the production of short-chain fatty acids, especially propionate. Mono-colonization of L. reuteri or low-dose CQA treatment did not reduce adiposity in DIO mice, while their combination elicited an enhanced thermogenic response, indicating the synergistic effects of CQA and L. reuteri on obesity. Exogenous propionate supplementation mimicked the anti-obesity effects of CQA alone or when combined with L. reuteri, which was ablated by the monocarboxylate transporter (MCT) inhibitor 7ACC1 or MCT1 disruption in inguinal white adipose tissues to block propionate transport. CONCLUSIONS Our data demonstrate a functional axis among L. reuteri, propionate, and beige fat tissue in the anti-obesity action of CQA through the regulation of thermogenesis. These findings provide mechanistic insights into the therapeutic use of herbal ingredients with poor bioavailability via their interaction with the gut microbiota. Video Abstract.
Collapse
Affiliation(s)
- Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Xianchun Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Suqin Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Hualing Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xinyu Liang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yibin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jingyi Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Minjun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Cuina Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|