1
|
Rerkyusuke S, Lerk-U-Suke S, Mektrirat R, Wiratsudakul A, Kanjampa P, Chaimongkol S, Phanmanee N, Visuddhangkoon M, Pattayawongdecha P, Piyapattanakon N, Krajaipan P, Sutamwirat P. Prevalence and Associated Risk Factors of Gastrointestinal Parasite Infections among Meat Goats in Khon Kaen Thailand. Vet Med Int 2024; 2024:3267028. [PMID: 39258161 PMCID: PMC11387081 DOI: 10.1155/2024/3267028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
This study investigated the epidemiology of gastrointestinal (GI) parasite infections among 42 meat goat herds in Khon Kaen, Northeast Thailand, based on 913 fecal samples. The predominant parasites identified in the herd were strongyle (100.0%, 42/42), Trichuris spp. (73.8%, 31/42), Eimeria spp. (66.7%, 28/42), Moniezia spp. (64.3%, 27/42), Strongyloides spp. (38.1%, 16/42), and Paramphistomum spp. (7.1%, 3/42). Coinfection with at least two GI parasites was observed in 90.4% of the herds. Molecular analysis confirmed Haemonchus contortus and Trichostrongylus spp. as the strongyle species. The study explored parasite prevalence among animals, finding significant correlations with season, sex, age, and breed. Notably, the wet season showed increased strongyle and Eimeria spp. infections. Female animals had higher odds of strongyle infection, while younger animals (less than 1 year) were more susceptible. Conversely, animals aged over 1 year were more likely to be positive for Trichuris spp., Moniezia spp., and Eimeria spp. infections. Female animals exhibited poor body condition scores (BCS) and anemia, as indicated by the FAMACHA score and packed cell volume (PCV) levels. Correlations between age, clinical signs, hematological parameters, biochemistry, and GI parasite burdens were investigated, revealing significant associations. These findings emphasize the need for tailored intervention strategies considering seasonal variations, age, and sex differences for effective GI parasite control in meat goats. Prioritizing animals exhibiting poor BCS and elevated FAMACHA score is imperative to mitigate the deleterious impacts of GI parasitic infections on health and productivity.
Collapse
Affiliation(s)
- Sarinya Rerkyusuke
- Division of Livestock Medicine Faculty of Veterinary Medicine Khon Kaen University, Khon Kaen 40002, Thailand
- KKU Research Program Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sawarin Lerk-U-Suke
- Department of Geographic Information Science School of Information and Communication Technology University of Phayao, Phayao 56000, Thailand
- Research Unit of Spatial Innovation Development School of Information and Communication Technology University of Phayao, Phayao 56000, Thailand
| | - Raktham Mektrirat
- Veterinary Academic Office Faculty of Veterinary Medicine Chiang Mai University, Muang, Chiang Mai 50100, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health Faculty of Veterinary Medicine Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals Faculty of Veterinary Science Mahidol University, Nakhon Pathom 73170, Thailand
| | - Prapan Kanjampa
- Laboratory Service and Laboratory Animal Unit Faculty of Veterinary Medicine Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saikam Chaimongkol
- Veterinary Diagnostic Laboratory Faculty of Veterinary Medicine Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nattaya Phanmanee
- Faculty of Veterinary Medicine Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | - Pitchapa Sutamwirat
- Faculty of Veterinary Medicine Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Krücken J, Ehnert P, Fiedler S, Horn F, Helm CS, Ramünke S, Bartmann T, Kahl A, Neubert A, Weiher W, Daher R, Terhalle W, Klabunde-Negatsch A, Steuber S, von Samson-Himmelstjerna G. Faecal egg count reduction tests and nemabiome analysis reveal high frequency of multi-resistant parasites on sheep farms in north-east Germany involving multiple strongyle parasite species. Int J Parasitol Drugs Drug Resist 2024; 25:100547. [PMID: 38733882 PMCID: PMC11097076 DOI: 10.1016/j.ijpddr.2024.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Anthelmintic resistance in sheep parasitic gastrointestinal nematodes is widespread and a severe health and economic issue but prevalence of resistance and involved parasite species are unknown in Germany. Here, the faecal egg count reduction test (FECRT) was performed on eight farms using fenbendazole, ivermectin and moxidectin and on four farms using only moxidectin. A questionnaire was used to obtain data on management practices to potentially identify risk factors for presence of resistance. All requirements of the recently revised WAAVP guideline for diagnosing anthelmintic resistance using the FECRT were applied. Nematode species composition in pre- and post-treatment samples was analysed with the nemabiome approach. Using the eggCounts statistic package, resistance against fenbendazole, ivermectin and moxidectin was found on 7/8, 8/8 and 8/12 farms, respectively. No formal risk factor analysis was conducted since resistance was present on most farms. Comparison with the bayescount R package results revealed substantial agreement between methods (Cohen's κ = 0.774). In contrast, interpretation of data comparing revised and original WAAVP guidelines resulted in moderate agreement (Cohen's κ = 0.444). The FECR for moxidectin was significantly higher than for ivermectin and fenbendazole. Nemabiome data identified 4 to 12 species in pre-treatment samples and treatments caused a small but significant decrease in species diversity (inverse Simpson index). Non-metric multidimensional scaling and k-means clustering were used to identify common patterns in pre- and post-treatment samples. However, post-treatment samples were scattered among the pre-treatment samples. Resistant parasite species differed between farms. In conclusion, the revised FECRT guideline allows robust detection of anthelmintic resistance. Resistance was widespread and involved multiple parasite species. Resistance against both drug classes on the same farm was common. Further studies including additional drugs (levamisole, monepantel, closantel) should combine sensitive FECRTs with nemabiome data to comprehensively characterise the anthelmintic susceptibility status of sheep nematodes in Germany.
Collapse
Affiliation(s)
- Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Paula Ehnert
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Fabian Horn
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Christina S Helm
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Tanja Bartmann
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Alexandra Kahl
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Ann Neubert
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Wiebke Weiher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Ricarda Daher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Werner Terhalle
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | | | - Stephan Steuber
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
De Jesús-Martínez X, Rivero-Pérez N, Zamilpa A, González-Cortazar M, Olivares-Pérez J, Zaragoza-Bastida A, Mendoza-de Gives P, Villa-Mancera A, Olmedo-Juárez A. In vitro ovicidal and larvicidal activity of a hydroalcoholic extract and its fractions from Cyrtocarpa procera fruits on Haemonchus contortus. Exp Parasitol 2024; 262:108777. [PMID: 38735520 DOI: 10.1016/j.exppara.2024.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
This study describes the in vitro anthelmintic effect of a hydroalcoholic extract (HA-E) and its fractions from Cyrtocarpa procera fruits against Haemonchus contortus eggs and infective larvae. The HA-E was subjected to bipartition using ethyl acetate, which resulted in an aqueous fraction (Aq-F) and an organic fraction (EtOAc-F). The HA-E and both fractions were tested using the egg hatching inhibition assay (EHIA) and the larval mortality test (LMT). Fractionation of the EtOAc-F was achieved using different chromatographic processes, i.e., open glass column and HPLC analysis. Fractionation of the EtOAc-F gave 18 subfractions (C1R1-C1R18), and those that showed the highest yields (C1R15, C1R16, C1R17 and C1R18) were subjected to anthelmintic assays. The HA-E and the EtOAc-F displayed 100% egg hatching inhibition at 3 and 1 mg/mL, respectively, whereas Aq-F exhibited 92.57% EHI at 3 mg/mL. All subfractions tested showed ovicidal effect. Regarding the larval mortality test, HA-E and EtOAc-F exhibited a larvicidal effect higher than 50% at 50 and 30 mg/mL, respectively. The subfractions that showed the highest larval mortality against H. contortus were C1R15 and C1R17, with larval mortalities of 53.57% and 60.23% at 10 mg/mL, respectively. Chemical analysis of these bioactive subfractions (C1R15 and C1R17) revealed the presence of gallic acid, protocatechuic acid, and ellagic acid. This study shows evidence about the ovicidal and larvicidal properties of C. procera fruits that could make these plant products to be considered as a natural potential anthelmintic agents for controlling haemonchosis in goats and sheep.
Collapse
Affiliation(s)
- Xochitl De Jesús-Martínez
- Instituto de Ciencias Agropecuarias, Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1, Ex-Hda. de Aquetzalpa, Tulancingo, C.P. 43600, Hidalgo, Mexico
| | - Nallely Rivero-Pérez
- Instituto de Ciencias Agropecuarias, Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1, Ex-Hda. de Aquetzalpa, Tulancingo, C.P. 43600, Hidalgo, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No.1 Col, Centro, CP 62790, Xochitepec, Morelos, Mexico
| | - Manases González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No.1 Col, Centro, CP 62790, Xochitepec, Morelos, Mexico.
| | - Jaime Olivares-Pérez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Ciudad Altamirano, Guerreo, Mexico
| | - Adrian Zaragoza-Bastida
- Instituto de Ciencias Agropecuarias, Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1, Ex-Hda. de Aquetzalpa, Tulancingo, C.P. 43600, Hidalgo, Mexico
| | - Pedro Mendoza-de Gives
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534/Col. Progreso, Jiutepec, C.P. 62550, Morelos, Mexico
| | - Abel Villa-Mancera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534/Col. Progreso, Jiutepec, C.P. 62550, Morelos, Mexico.
| |
Collapse
|
4
|
Vera B, Navajas EA, Peraza P, Carracelas B, Van Lier E, Ciappesoni G. Genomic Regions Associated with Resistance to Gastrointestinal Parasites in Australian Merino Sheep. Genes (Basel) 2024; 15:846. [PMID: 39062624 PMCID: PMC11276604 DOI: 10.3390/genes15070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this study was to identify genomic regions and genes associated with resistance to gastrointestinal nematodes in Australian Merino sheep in Uruguay, using the single-step GWAS methodology (ssGWAS), which is based on genomic estimated breeding values (GEBVs) obtained from a combination of pedigree, genomic, and phenotypic data. This methodology converts GEBVs into SNP effects. The analysis included 26,638 animals with fecal egg count (FEC) records obtained in two independent parasitic cycles (FEC1 and FEC2) and 1700 50K SNP genotypes. The comparison of genomic regions was based on genetic variances (gVar(%)) explained by non-overlapping regions of 20 SNPs. For FEC1 and FEC2, 18 and 22 genomic windows exceeded the significance threshold (gVar(%) ≥ 0.22%), respectively. The genomic regions with strong associations with FEC1 were located on chromosomes OAR 2, 6, 11, 21, and 25, and for FEC2 on OAR 5, 6, and 11. The proportion of genetic variance attributed to the top windows was 0.83% and 1.9% for FEC1 and FEC2, respectively. The 33 candidate genes shared between the two traits were subjected to enrichment analysis, revealing a marked enrichment in biological processes related to immune system functions. These results contribute to the understanding of the genetics underlying gastrointestinal parasite resistance and its implications for other productive and welfare traits in animal breeding programs.
Collapse
Affiliation(s)
- Brenda Vera
- Sistema Ganadero Extensivo, INIA Las Brujas, Canelones 90200, Uruguay; (B.V.); (E.A.N.); (P.P.); (B.C.)
| | - Elly A. Navajas
- Sistema Ganadero Extensivo, INIA Las Brujas, Canelones 90200, Uruguay; (B.V.); (E.A.N.); (P.P.); (B.C.)
| | - Pablo Peraza
- Sistema Ganadero Extensivo, INIA Las Brujas, Canelones 90200, Uruguay; (B.V.); (E.A.N.); (P.P.); (B.C.)
| | - Beatriz Carracelas
- Sistema Ganadero Extensivo, INIA Las Brujas, Canelones 90200, Uruguay; (B.V.); (E.A.N.); (P.P.); (B.C.)
| | - Elize Van Lier
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Avda. Garzón 780, Montevideo 12900, Uruguay;
- Estación Experimental Facultad de Agronomía Salto, Salto 50000, Uruguay
| | - Gabriel Ciappesoni
- Sistema Ganadero Extensivo, INIA Las Brujas, Canelones 90200, Uruguay; (B.V.); (E.A.N.); (P.P.); (B.C.)
| |
Collapse
|
5
|
Ilík V, Schwarz EM, Nosková E, Pafčo B. Hookworm genomics: dusk or dawn? Trends Parasitol 2024; 40:452-465. [PMID: 38677925 DOI: 10.1016/j.pt.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Hookworms are parasites, closely related to the model nematode Caenorhabditis elegans, that are a major economic and health burden worldwide. Primarily three hookworm species (Necator americanus, Ancylostoma duodenale, and Ancylostoma ceylanicum) infect humans. Another 100 hookworm species from 19 genera infect primates, ruminants, and carnivores. Genetic data exist for only seven of these species. Genome sequences are available from only four of these species in two genera, leaving 96 others (particularly those parasitizing wildlife) without any genomic data. The most recent hookworm genomes were published 5 years ago, leaving the field in a dusk. However, assembling genomes from single hookworms may bring a new dawn. Here we summarize advances, challenges, and opportunities for studying these neglected but important parasitic nematodes.
Collapse
Affiliation(s)
- Vladislav Ilík
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eva Nosková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
6
|
Wangboon C, Martviset P, Jamklang M, Chumkiew S, Penkhrue W, Rangdist S, Jirojwong R, Phadungsil W, Chantree P, Grams R, Krenc D, Piyatadsananon P, Geadkaew-Krenc A. Microscopic and molecular epidemiology of gastrointestinal nematodes in dairy and beef cattle in Pak Chong district, Nakhon Ratchasima province, Thailand. Vet World 2024; 17:1035-1043. [PMID: 38911081 PMCID: PMC11188888 DOI: 10.14202/vetworld.2024.1035-1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/18/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Gastrointestinal (GI) nematode infection remains an important problem in livestock, particularly cattle. The infection may lead to serious health complications and affect animal products. The objective of this study was to investigate GI nematode infection and its associated risk factors in dairy and beef cattle farmed in Pak Chong District of Nakhon Ratchasima Province, northeast Thailand. Materials and Methods Fecal specimens were collected from 101 dairy cattle and 100 beef cattle. Formalin-ethyl acetate concentration techniques were used to process the samples and the samples were observed under a light microscope. Samples were subjected to molecular identification of specific genera using conventional polymerase chain reaction and DNA sequencing. Results The overall prevalence of GI nematode infection was 33.3%. The strongyle nematode was the most significant GI nematode in this area with a prevalence of 28.4%. The prevalence of strongyle nematodes was 58.0% in beef cattle and only 7.9% in dairy cattle. Trichuris spp. was another nematode found in both types of cattle with an overall prevalence of 5.0% with 9.0% in beef cattle and 1.0% in dairy cattle. The results of the epidemiological study indicate that the age of cattle, food, water sources, farming system, and housing floor are the most important risk factors. Among the strongyle nematodes, Ostertagia spp. was the most prevalent (82.0%), followed by Haemonchus spp. (62.3%) and Trichostrongylus spp. (8.2%), respectively. Conclusion Infection with GI nematodes still exists in this area, particularly in beef cattle. Our reported data may benefit local parasitic control policies in the future.
Collapse
Affiliation(s)
- Chompunoot Wangboon
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Mantana Jamklang
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Chumkiew
- School of Biology, Institute of Science, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Watsana Penkhrue
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Sainamthip Rangdist
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Ruttiroj Jirojwong
- Department of Livestock Development, Bureau of Veterinary Biologics, Pak Chong, Nakhon Ratchasima, 30130, Thailand
| | - Wansika Phadungsil
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Dawid Krenc
- Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pantip Piyatadsananon
- School of Geoinformatics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Amornrat Geadkaew-Krenc
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
7
|
Zazay J, Bhat BA, Tak H, Lone AN. Gastrointestinal parasites of the wild ungulates (Mammalia: Cetartiodactyla) in the Hemis National Park, Ladakh, India. J Parasit Dis 2024; 48:134-140. [PMID: 38440757 PMCID: PMC10908697 DOI: 10.1007/s12639-024-01652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
We evaluated the gastrointestinal parasitic prevalence and intensity of wild ungulates in the Hemis National Park of Ladakh by examining their fresh faecal samples. A total of 327 fresh faecal samples from three wild ungulates, blue sheep Pseudois nayaur (n = 127), Ladakh urial Ovis vignei vignei (n = 110), and Himalayan ibex Ibex siberica (n = 90) were collected between June 2021 and May 2022. The techniques of flotation and sedimentation were used to find parasite eggs and oocysts from the faecal samples. Out of 327 samples examined, 165 samples were infected with gastrointestinal parasites making an overall prevalence of 50.45%. Seven parasitic taxa, including one protozoan (Eimeria spp.), five nematodes (Nematodirus spp., Strongyloides spp., Haemonchus sp., Trichuris sp., and Trichostrongylus spp.), and one cestode (Monezia spp.), were found during the current investigation. Mixed infection was reported in 36 (11%) of the total examined samples. The prevalence of gastrointestinal parasites was found to be highest in blue sheep (55.11%), followed by Ladakh urial (49.09%) and Himalayan ibex (45.55%). The highest prevalence was recorded in the summer (64.42%), and the lowest in the winter (33.82%). A significant difference in parasitic prevalence was observed across seasons in each of the three wild ungulate hosts. However, there was no significant difference in the prevalence of parasites between these hosts.
Collapse
Affiliation(s)
- Jigmet Zazay
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar, 190006 India
| | - Bilal A. Bhat
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar, 190006 India
| | - Hidayatullah Tak
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar, 190006 India
| | - Arif Nabi Lone
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar, 190006 India
| |
Collapse
|
8
|
Mohamed SAA, Dyab AK, Raya-Álvarez E, Abdel-Aziz FM, Osman F, Gareh A, Farag AMM, Salman D, El-Khadragy MF, Bravo-Barriga D, Agil A, Elmahallawy EK. Molecular identification of Haemonchus contortus in sheep from Upper Egypt. Front Vet Sci 2024; 10:1327424. [PMID: 38410120 PMCID: PMC10894989 DOI: 10.3389/fvets.2023.1327424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 02/28/2024] Open
Abstract
Introduction Haemonchus spp. are considered the most important strongylid nematodes with a worldwide distribution. The parasite's blood-sucking nature can lead to severe anemia in infected animals. Despite its widespread impact, there is a dearth of comprehensive data on morphological and molecular identification methods for Haemonchus spp. in sheep from Upper Egypt. To address this gap, our current study aimed to assess the prevalence of Haemonchus spp. in 400 sheep fecal samples. Methods We employed microscopic examination and molecular techniques, using polymerase chain reaction (PCR) targeting the 18S gene for precise identification. Additionally, the potential risk factors associated with the infection by the parasite in sheep were explored. Results The study pointed out that 33.00% (132 of 400) of the examined sheep were infected with Haemonchus spp. Sheep age and seasonal variability were found to be significant factors (p < 0.05) associated with the infection. Notably, sheep under 2 years old exhibited a higher risk, with an infection rate of 43.75% (84 out of 192), than their older counterparts. Furthermore, all reported infections were exclusively observed during the cold season, constituting 58.93% (132 out of 224) of cases. By contrast, no statistically significant association (p > 0.05) was found between the sex of the examined sheep and the occurrence of haemonchosis. Employing molecular methods, we isolated and identified the parasite through PCR analysis of cultured larvae, which were then subsequently confirmed as Haemonchus contortus via phylogenetic analysis. Discussion The study concluded that there was a relatively high occurrence of H. contortus among sheep from Upper Egypt. We recommend the implementation of stringent and effective control measures to combat the infection and safeguard livestock health.
Collapse
Affiliation(s)
- Sara Abdel-Aal Mohamed
- Department of Parasitology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Kamal Dyab
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Enrique Raya-Álvarez
- Rheumatology Department, Hospital Universitario San Cecilio, Av. de la Investigación, Granada, Spain
| | | | - Fathy Osman
- Department of Parasitology, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Alshimaa M M Farag
- Department of Internal Medicine and Infectious Diseases Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Salman
- Department of Animal Medicine, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Manal F El-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Daniel Bravo-Barriga
- Departamento de Sanidad Animal, Grupo de Investigación en Salud Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Ahmad Agil
- Department of Pharmacology, Biohealth Institute Granada (IBs Granada) and Neuroscience Institute, School of Medicine, University of Granada, Granada, Spain
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Salud Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
9
|
Cain JL, Gianechini LS, Vetter AL, Davis SM, Britton LN, Myka JL, Slusarewicz P. Rapid, automated quantification of Haemonchus contortus ova in sheep faecal samples. Int J Parasitol 2024; 54:47-53. [PMID: 37586585 DOI: 10.1016/j.ijpara.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
Haemonchus contortus is one of the most pathogenic nematodes affecting small ruminants globally and is responsible for large economic losses in the sheep and goat industry. Anthelmintic resistance is rampant in this parasite and thus parasite control programs must account for drug efficacy on individual farms and, sometimes, whether H. contortus is the most prevalent trichostrongylid. Historically, coproculture has been the main way to determine the prevalence of H. contortus in faecal samples due to the inability to morphologically differentiate between trichostrongylid egg types, but this process requires a skilled technician and takes multiple days to complete. Fluoresceinated peanut agglutinin (PNA) has been shown to specifically bind H. contortus and thus differentiate eggs based on whether they fluoresce, but this method has not been widely adopted. The ParasightTM System (PS) fluorescently stains helminth eggs in order to identify and quantify them, and the H. contortus PNA staining method was therefore adapted to this platform using methodology requiring only 20 min to obtain results. In this study, 74 fecal samples were collected from sheep and analyzed for PNA-stained H. contortus, using both PS and manual fluorescence microscopy. The percentage of H. contortus was determined based on standard total strongylid counts with PS or brightfield microscopy. Additionally, 15 samples were processed for coproculture with larval identification, and analyzed with both manual and automated PNA methods. All methods were compared using the coefficient of determination (R2) and the Lin's concordance correlation coefficient (ρc). ParasightTM and manual PNA percent H. contortus results were highly correlated with R2 = 0.8436 and ρc = 0.9100 for all 74 fecal samples. Coproculture versus PS percent H. contortus were also highly correlated with R2 = 0.8245 and ρc = 0.8605. Overall, this system provides a rapid and convenient method for determining the percentage of H. contortus in sheep and goat fecal samples without requiring specialized training.
Collapse
Affiliation(s)
- Jennifer L Cain
- Parasight(TM) System, Inc, 1532 N Limestone, Lexington, KY 40505, USA.
| | - Leonor Sicalo Gianechini
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602, USA
| | - Abigail L Vetter
- Parasight(TM) System, Inc, 1532 N Limestone, Lexington, KY 40505, USA; M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Rd, Lexington, KY 40506, USA
| | - Sarah M Davis
- Parasight(TM) System, Inc, 1532 N Limestone, Lexington, KY 40505, USA; M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Rd, Lexington, KY 40506, USA
| | - Leah N Britton
- Parasight(TM) System, Inc, 1532 N Limestone, Lexington, KY 40505, USA; M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Rd, Lexington, KY 40506, USA
| | - Jennifer L Myka
- Free Radical Ranch, 15299 Parkers Grove Rd., Morning View, KY 41063, USA
| | - Paul Slusarewicz
- Parasight(TM) System, Inc, 1532 N Limestone, Lexington, KY 40505, USA; M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Rd, Lexington, KY 40506, USA
| |
Collapse
|
10
|
Becerril-Gil MMN, Estrada-Flores JG, González-Cortazar M, Zamilpa A, Endara-Agramont ÁR, Mendoza-de Gives P, López-Arellano ME, Olmedo-Juárez A. Bioactive compounds from the parasitic plant Arceuthobium vaginatum inhibit Haemonchus contortus egg hatching. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 33:e013223. [PMID: 38126572 PMCID: PMC10878698 DOI: 10.1590/s1984-29612024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
The aim of this study was to assess the in vitro ovicidal activity of an ethyl acetate extract from Arceuthobium vaginatum (EtOAc-E) and their subfractions (AvR5-AvR14) against Haemonchus contortus using the egg hatching inhibition (EHI) test. The EtOAc-E and subfractions were tested at 0.12-2.00 and at 0.015-2.0 mg/mL, respectively. Distilled water and methanol (2%) were used as negative controls and Thiabendazole (0.10 mg/mL) as a positive control. Treatments with a dependent effect on concentration were subjected to regression analysis to determine the effective concentrations (EC50 and EC90). The major secondary compounds present in the extract and subfractions were identified by high performance liquid chromatography (HPLC). The EtOAc-E and AvR9 exhibited the best ovicidal effect recording 97.5 and 100% of EHI at 0.25 mg/mL, respectively. The EtOAc-E and AvR9 displayed an EC50= 0.12 and 0.08 mg/mL, respectively. The HPLC analysis in the EtOAc-E and bioactive fractions indicated the presence of a polyphenol, glycosylated flavanones, quercetin glucoside, cinnamates, coumarin, cinnamic acid derivative, ferulic acid, coumarate, naringenin, protocatechuic acid and naringin. Results demonstrated that A. vaginatum extract and fraction is able to inhibit the egg hatch process of H. contortus and could be a viable option for the control of small ruminant haemonchosis.
Collapse
Affiliation(s)
| | | | - Manases González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, México
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, México
| | - Ángel Rolando Endara-Agramont
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - Pedro Mendoza-de Gives
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad – CENID SAI-INIFAP, Jiutepec, Morelos, México
| | - María Eugenia López-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad – CENID SAI-INIFAP, Jiutepec, Morelos, México
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad – CENID SAI-INIFAP, Jiutepec, Morelos, México
| |
Collapse
|
11
|
Ng'etich AI, Amoah ID, Bux F, Kumari S. Anthelmintic resistance in soil-transmitted helminths: One-Health considerations. Parasitol Res 2023; 123:62. [PMID: 38114766 PMCID: PMC10730643 DOI: 10.1007/s00436-023-08088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
The One-Health approach recognizes the intricate connection between human, animal, and environmental health, and that cooperative effort from various professionals provides comprehensive awareness and potential solutions for issues relating to the health of people, animals, and the environment. This approach has increasingly gained appeal as the standard strategy for tackling emerging infectious diseases, most of which are zoonoses. Treatment with anthelmintics (AHs) without a doubt minimizes the severe consequences of soil-transmitted helminths (STHs); however, evidence of anthelmintic resistance (AR) development to different helminths of practically every animal species and the distinct groups of AHs is overwhelming globally. In this regard, the correlation between the application of anthelmintic drugs in both human and animal populations and the consequent development of anthelmintic resistance in STHs within the context of a One-Health framework is explored. This review provides an overview of the major human and animal STHs, treatment of the STHs, AR development and drug-related factors contributing towards AR, One-Health and STHs, and an outline of some One-Health strategies that may be used in combating AR.
Collapse
Affiliation(s)
- Annette Imali Ng'etich
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
| | - Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa.
| |
Collapse
|
12
|
Cai W, Cheng C, Feng Q, Ma Y, Hua E, Jiang S, Hou Z, Liu D, Yang A, Cheng D, Xu J, Tao J. Prevalence and risk factors associated with gastrointestinal parasites in goats ( Capra hircus) and sheep ( Ovis aries) from three provinces of China. Front Microbiol 2023; 14:1287835. [PMID: 38098673 PMCID: PMC10719946 DOI: 10.3389/fmicb.2023.1287835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Gastrointestinal (GI) parasites in small ruminants, especially goats and sheep, have caused significant socio-economic and public health challenges worldwide. The aim of the present study was to investigate the diversity and prevalence of GI parasites in goats and sheep in Jiangsu, Shaanxi and Hunan provinces of China, and to assess whether the age of animals, sampling season and feeding mode influence the distribution and infection of GI parasites. A total of 1,081 fecal samples collected from goats (n = 835) and sheep (n = 246) were detected by saturated saline flotation technique and nylon sifter elutriation and sieving method for eggs/oocysts, respectively. Based on the morphological observation of eggs and oocysts, one tapeworm, five nematodes, three trematodes and nineteen coccidia were identified, of which seven helminths belong to zoonotic parasites. The infection rate of parasites was 83.4% (902/1081) in total samples, 91.6% (765/835) in goats, and 55.7% (137/246) in sheep. The infection rate of coccidia was 71.0% (767/1081), and that of helminths was 56.2% (607/1081). The dominant species was E. alijeri (67.3%, 562/835) in goats, E. parva (30.1%, 74/246) in sheep. The highest prevalent helminths were Trichostrongylidae spp. in goats (58.3%, 487/835), and Moniezia spp. in sheep (22.76%, 56/246). Of 902 positive samples, 825 (91.5%, 825/902) contained multiple (2-10) parasites. The feeding mode, sampling season and regions were relevant risk factors which have significant influence on the occurrence of GI parasites in goats and sheep. The risk coefficient of parasite infection in autumn was 2.49 times higher than spring (Odds ratio = 2.49, 95% CI = 1.51-4.09, p < 0.001). Compared to raising on the high beds, the goats and sheep raising on the ground had the higher risk of parasite infection (OR = 3.91, 95% CI = 2.07-7.40, p < 0.001). The risk coefficient of parasite infection in Shaanxi and Hunan was 3.78 and 1.25 times higher than that in Jiangsu (OR = 3.78, 95% CI = 2.01-7.12, p < 0.001; OR = 1.25, 95% CI = 1.21-1.29, p < 0.001). These data are significant for the development of prevention strategies to minimise economic losses from small ruminant production and to reduce the risk of water and food infecting humans as vectors of zoonotic parasitic diseases.
Collapse
Affiliation(s)
- Weimin Cai
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Cheng Cheng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Qianqian Feng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yifei Ma
- Rudong Animal Disease Control Center, Nantong, China
| | - Enyu Hua
- Changshu Animal Disease Control Center, Suzhou, China
| | - Shimin Jiang
- Zhangjiajie Yongding District Animal Husbandry and Fishery Affairs Center, Zhangjiajie, China
| | - Zhaofeng Hou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dandan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Anlong Yang
- Yangzhou Municipal Bureau of Agriculture and Rural Affairs, Yangzhou, China
| | - Darong Cheng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinjun Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jianping Tao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Yan X, He S, Liu Y, Han B, Zhang N, Deng H, Wang Y, Liu M. Molecular identification and phylogenetic analysis of gastrointestinal nematodes in different populations of Kazakh sheep. Exp Parasitol 2023; 254:108625. [PMID: 37769836 DOI: 10.1016/j.exppara.2023.108625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/26/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Gastrointestinal nematode (GIN) infection in sheep has been recognized globally as a major problem challenging animal health and production. The objective of this study is to use a molecular diagnosis of the prevalence for gastrointestinal nematode (GIN) dominant species of Kazakh sheep and its hybrid (Kazakh × Texel). The internal transcribed spacer 2 (ITS-2) sequences of ribosomal DNA (rDNA) were used as the target sequence. In the study, three dominant species of nematodes, namely Haemonchus contortus, Trichostrongylus spp., and Teladorsagia (Ostertagia) circumcincta from the Kazakh sheep and the F1 and F2 generations of Texel × Kazakh sheep hybrids were subjected to molecular identification and phylogenetic analysis. The fecal and single larva genomic DNA were extracted and amplified by PCR using specific primers to determine the infection rate of the three nematode species. In addition, the PCR products were sequenced and analyzed using bioinformatics methods to construct a phylogenetic tree. The results showed that all the three species had their ITS-2 specific amplified. According to the sequence homology analysis of PCR products, the results showed a high homology (above 98.5% homology) with H. contortus, Trichostrongylus spp., T. circumcincta ITS-2 sequences in GenBank. Phylogenetic analysis showed that the ITS-2 sequences of the three species were on the same branch as the ITS-2 sequences of the same species in NCBI. And on different branches from those of the ITS-2 sequences of different families, genera and species. Sequences carried out on three species from different samples showed a close relationship and little genetic difference in phylogenetic tree. The infection rates based on fecal DNA were 35.59, 25.55, and 11.24% for H. contortus, Trichostrongylus spp., and T. circumcincta, respectively. While the infection rates based on larva DNA, were 24.07, 18.89, and 13.26% for H. contortus, Trichostrongylus spp., and T. circumcincta, respectively. The seasonal prevalence of the three dominant species in spring was significantly higher than that in autumn and winter. And there was no significant difference between Kazakh, F1 and F2 sheep considering the infection rate of the studied three species of nematodes. This study provides valuable molecular approaches for epidemiological surveillance and for assisting in the control of Nematodirus infection in sheep.
Collapse
Affiliation(s)
- Xiaofei Yan
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Sangang He
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Key Laboratory of Genetic Breeding and Reproduction of Herbivorous Livestock of Ministry of Agriculture, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi, Xinjiang Province, China
| | - Yiyong Liu
- Animal Husbandry, Terminus of Ili Kazakh Autonomous Prefecture, Yining, Xinjiang Province, China
| | - Bing Han
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Key Laboratory of Genetic Breeding and Reproduction of Herbivorous Livestock of Ministry of Agriculture, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi, Xinjiang Province, China
| | - Ning Zhang
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Key Laboratory of Genetic Breeding and Reproduction of Herbivorous Livestock of Ministry of Agriculture, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi, Xinjiang Province, China
| | - Haifeng Deng
- Zhaosu Horse Farm, Ili Kazakh Autonomous Prefecture, Zhaosu, Xinjiang Province, China
| | - Yuqi Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Mingjun Liu
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Key Laboratory of Genetic Breeding and Reproduction of Herbivorous Livestock of Ministry of Agriculture, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi, Xinjiang Province, China.
| |
Collapse
|
14
|
Hussein HA, Abdi SM, Ahad AA, Mohamed A. Gastrointestinal nematodiasis of goats in Somali pastoral areas, Ethiopia. Parasite Epidemiol Control 2023; 23:e00324. [PMID: 37701882 PMCID: PMC10493581 DOI: 10.1016/j.parepi.2023.e00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/12/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023] Open
Abstract
Livestock, mainly goats, are crucial for animal protein, household income, economic security, and wealth creation in the pastoral areas of eastern Ethiopia. However, gastrointestinal parasitosis poses a substantial challenge in this sector. A cross-sectional study was conducted in the Gursum district of the Somali region, Ethiopia, to investigate the prevalence and intensity of gastrointestinal nematodes in goats and their associated risk factors. A total of 384 goat fecal samples were collected and examined using flotation and McMaster egg counting techniques for GIT nematodes. Coprological cultures have also been conducted for nematode identification. Fecal samples showed an overall parasite prevalence of 54.17%, with identified nematodes including Haemonchus (24%), Strongyloides (10.4%), Trichostrongles (6.5%), Nematodirus (6%), Oesophagostomum (5.5%) and Trichuris (1.87%). Older and poor body condition animals had higher chances of hosting nematodes than younger (OR = 0.245; CI = 0.144-0.417) and good body condition animals (OR = 0.069; CI = 0.030-0.157), according to multivariate logistic regression analysis. Quantitative examination of eggs revealed light 75(36.06%), moderate 99(47.60%), and heavy infection (n = 34, 16.35%). Analysis of the different study variables indicated that the age and body condition of the animals and the season of the year had a statistically significant association with the prevalence of GIT nematode infections (P-value <0.05). The high prevalence and intensity of GIT nematodiasis in goats from the study area warrants immediate attention and the implementation of strategic control and prevention measures.
Collapse
Affiliation(s)
- Hassan Abdi Hussein
- College of Veterinary Medicine, Jigjiga University, P.O Box, 1020, Jigjiga, Ethiopia
| | - Shaban Mohamed Abdi
- College of Veterinary Medicine, Jigjiga University, P.O Box, 1020, Jigjiga, Ethiopia
| | - Abdullahi Adan Ahad
- College of Veterinary Medicine, Jigjiga University, P.O Box, 1020, Jigjiga, Ethiopia
| | - Abdifetah Mohamed
- College of Veterinary Medicine, Jigjiga University, P.O Box, 1020, Jigjiga, Ethiopia
| |
Collapse
|
15
|
Vasilatis DM, Christopher MM. Re-examining poikilocytosis in goats: prevalence, type and association with age and disease. Front Vet Sci 2023; 10:1234233. [PMID: 37662982 PMCID: PMC10470038 DOI: 10.3389/fvets.2023.1234233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Domestic goats (Capra aegagrus hircus) are a food, fiber and companion animal. Abnormal erythrocyte shapes (poikilocytes) are considered normal in young goats, but their association with disease is not well described. Likewise, there is little information on the significance of poikilocytosis in adult goats. Objective The objective of this study was to investigate the prevalence, severity and type of poikilocytosis in young and adult goats and its association with age, sex, breed, laboratory results, and underlying disease. Methods We retrospectively examined clinical and laboratory data from 1254 goats presented at the University of California-Davis Veterinary Medical Teaching Hospital from 1997 to 2019. We analyzed 313 blood smears from goats with moderate or marked (MOD-MKD) poikilocytosis on initial blood smear evaluation. Number and type of poikilocytes per 1000 red blood cells (RBCs) were enumerated. Laboratory values and primary disease categories were compared with the severity and type of poikilocytosis. Results Kids (<6 mos) and juveniles (>6 mos to <1 year) had a higher prevalence of MOD-MKD poikilocytosis (95/210, 45.2% kids; 27/59, 45.8% juveniles) than adult goats (≥1 year; 190/982, 19.3%) (p < 0.001). Kids had a higher percentage of elliptocytes, dacryocytes, and schistocytes and a lower percentage of polygonal and spiculated RBCs than juvenile and adult goats (p < 0.001). Of goats with MOD-MKD (vs NONE-SLIGHT) poikilocytosis, kids had lower HGB and MCH, and higher RDW (p ≤ 0.02); juveniles and adult goats had lower HCT, MCV, MCH, and albumin concentration (p ≤ 0.01), and all age groups had lower total CO2 concentration and higher PLT counts (p < 0.03). Adult goats with MOD-MKD poikilocytosis also had higher BUN:Cr ratios (p = 0.005). Gastrointestinal parasitism, Johne's disease, diarrhea/enteritis, lice, hepatic disease and renal disease (but not urolithiasis) were significantly associated with MOD-MKD poikilocytosis (p < 0.001). Goats with hepatic and renal disease had a higher prevalence and percentage of spiculated cells (p = 0.001). Goats with Johne's disease had a higher prevalence of polygonal cells (93.3%) and dacryocytes (66.7%) than other diseases, and elliptocytes predominated in a higher proportion (36.0%) of adult goats with GI parasitism vs other diseases (p < 0.05). Conclusion These findings suggest that iron deficiency is an important pathophysiologic mechanism of poikilocytosis in juvenile and adult goats, and possibly in kids, whether due to iron-restricted erythropoiesis, chronic hemorrhage, functional iron deficiency, or a combination of these mechanisms. Further investigation into the detection and monitoring of iron deficiency and the value of poikilocytosis as a diagnostic marker of iron status in goats is warranted.
Collapse
Affiliation(s)
- Demitria M. Vasilatis
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Mary M. Christopher
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Guo F, Slos D, Du H, Li K, Li H, Qing X. Transcriptomics of Cruznema velatum (Nematoda: Rhabditidae) with a redescription of the species. J Helminthol 2023; 97:e57. [PMID: 37470247 DOI: 10.1017/s0022149x23000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Cruznema velatum isolated from soil in a chestnut orchard located at Guangdong province, China, is redescribed with morphology, molecular barcoding sequences, and transcriptome data. The morphological comparison for C. velatum and six other valid species is provided. Phylogeny analysis suggests genus Cruznema is monophyletic. The species is amphimix, can be cultured with Escherichia coli in 7-9 days from egg to egg-laying adult, and has a lifespan of 11 to 14 days at 20°C. The transcription data generated 45,366 unigenes; 29.9%, 31.3%, 24.8%, and 18.6% of unigenes were annotated in KOG, SwissProt, GO, and KEGG, respectively. Further gene function analysis demonstrated that C. velatum share the same riboflavin, lipoic acid, and vitamin B6 metabolic pathways with Caenorhabditis elegans and Pristionchus pacificus.
Collapse
Affiliation(s)
- F Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - D Slos
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke9820, Belgium
| | - H Du
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - K Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi830052, China
| | - H Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
- College of Agriculture, Xinjiang Agricultural University, Urumqi830052, China
| | - X Qing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
17
|
Frota GA, Santos VOD, Rodrigues JFV, Oliveira BR, Albuquerque LB, Vasconcelos FRCD, Silva AC, Teixeira M, Brito ESD, Santos JMLD, Vieira LDS, Monteiro JP. Biological activity of cinnamaldehyde, citronellal, geraniol and anacardic acid on Haemonchus contortus isolates susceptible and resistant to synthetic anthelmintics. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e006023. [PMID: 37341288 DOI: 10.1590/s1984-29612023027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 06/22/2023]
Abstract
Parasitism by gastrointestinal nematodes is a challenge for small ruminant farming worldwide. It causes productive and economic losses, especially due to parasite resistance to conventional anthelmintics. Natural compounds with antiparasitic activity are a potential alternative for controlling these parasites especially when considering the widespread occurrence of anthelmintic resistance. Our objective was to evaluate the activity of anacardic acid, geraniol, cinnamaldehyde and citronellal on Haemonchus contortus isolates with different levels of anthelmintic resistance profiles. These compounds were tested using egg hatch assays (EHAs), larval development tests (LDTs) as well as LDTs on mini-fecal cultures, on the Haemonchus contortus isolates Kokstad (KOK-resistant to all anthelmintics), Inbred-Strain-Edinburgh (ISE-susceptible to all anthelmintics) and Echevarria (ECH-susceptible to all anthelmintics). Effective concentrations to inhibit 50% (EC50) and 95% (EC95) of egg hatching and larval development were calculated. Results for EHA and LDT for all tested compounds, considering EC50 and EC95 values, showed low variation among the studied isolates with most RF values below 2x. All studied compounds showed efficacy against egg hatching and larval development of H. contortus isolates regardless of anthelmintic resistance profiles. The compounds with the smallest EC50 and EC95 values were cinnamaldehyde and anacardic acid making them promising candidates for future in vivo studies.
Collapse
Affiliation(s)
- Gracielle Araújo Frota
- Programa de Pós-graduação em Zootecnia, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
| | | | | | | | | | | | | | - Marcel Teixeira
- Programa de Pós-graduação em Zootecnia, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
- Programa de Pós-graduação em Microbiologia, Parasitologia e Patologia, Universidade Federal do Paraná - UFPR, Curitiba, PR, Brasil
- Embrapa Caprinos e Ovinos, Sobral, CE, Brasil
| | | | | | | | - Jomar Patricio Monteiro
- Programa de Pós-graduação em Zootecnia, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
- Centro Universitário Inta - UNINTA, Sobral, CE, Brasil
- Embrapa Caprinos e Ovinos, Sobral, CE, Brasil
| |
Collapse
|
18
|
Khangembam R, Vass N, Morrison A, Melville LA, Antonopoulos A, Czeglédi L. Preliminary results of the recombinase polymerase amplification technique for the detection of Haemonchus contortus from Hungarian field samples. Vet Parasitol 2023; 320:109974. [PMID: 37354888 DOI: 10.1016/j.vetpar.2023.109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Haemonchus contortus is a parasitic nematode of small ruminants responsible for significant economic losses and animal health concerns globally. Detection of gastrointestinal nematode (GIN) infection in veterinary practice typically relies on microscopy-based methods such as the faecal egg count and morphological identification of larval culture. However, mixed co-infections are common and species-specific identification is typically time-consuming and expertise-intensive. Compounded by increasing anthelmintic resistance, there is an urgent need to implement the molecular diagnosis of GIN in the livestock industry, preferably in field settings. Advances in isothermal amplification techniques including recombinase polymerase amplification (RPA) assays could improve this. Yet, constraints in RPA kit availability and amplicon detection systems limit the use of this technology in point of care settings. In this study, we present an early-stage, proof-of-concept demonstration of RPA targeting the internal transcribed spacer (ITS2) region of H. contortus. Having tested against eight closely related nematodes and also against five farm isolates in Eastern Hungary, preliminary results derived from a comparative analysis of 3 primer sets showed the assay detects H. contortus DNA and has a limit of detection of 10-5 ng/μl. We also tested an end-result naked eye detection system using various DNA binding dyes, of which EvaGreen® dye was successful for a qualitative RPA detection that could be adaptable at farm sites.
Collapse
Affiliation(s)
- Rojesh Khangembam
- Doctoral School of Animal Science, Faculty of Agricultural and Environmental Management, University of Debrecen, Böszörményi ut. 138, Debrecen 4032, Hungary; Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Environmental Management, University of Debrecen, Böszörményi ut. 138, Debrecen 4032, Hungary.
| | - Nóra Vass
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Environmental Management, University of Debrecen, Böszörményi ut. 138, Debrecen 4032, Hungary
| | - Alison Morrison
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, UK
| | - Lynsey A Melville
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, UK
| | - Alistair Antonopoulos
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, Scotland, UK; Kreavet, Kruibeke, Belgium.
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Environmental Management, University of Debrecen, Böszörményi ut. 138, Debrecen 4032, Hungary
| |
Collapse
|
19
|
Bricarello PA, Longo C, da Rocha RA, Hötzel MJ. Understanding Animal-Plant-Parasite Interactions to Improve the Management of Gastrointestinal Nematodes in Grazing Ruminants. Pathogens 2023; 12:pathogens12040531. [PMID: 37111417 PMCID: PMC10145647 DOI: 10.3390/pathogens12040531] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Grazing systems have great potential to promote animal welfare by allowing animals to express natural behaviours, but they also present risks to the animals. Diseases caused by gastrointestinal nematodes are some of the most important causes of poor ruminant health and welfare in grazing systems and cause important economic losses. Reduced growth, health, reproduction and fitness, and negative affective states that indicate suffering are some of the negative effects on welfare in animals infected by gastrointestinal nematode parasitism. Conventional forms of control are based on anthelmintics, but their growing inefficiency due to resistance to many drugs, their potential for contamination of soil and products, and negative public opinion indicate an urgency to seek alternatives. We can learn to deal with these challenges by observing biological aspects of the parasite and the host’s behaviour to develop managements that have a multidimensional view that vary in time and space. Improving animal welfare in the context of the parasitic challenge in grazing systems should be seen as a priority to ensure the sustainability of livestock production. Among the measures to control gastrointestinal nematodes and increase animal welfare in grazing systems are the management and decontamination of pastures, offering multispecies pastures, and grazing strategies such as co-grazing with other species that have different grazing behaviours, rotational grazing with short grazing periods, and improved nutrition. Genetic selection to improve herd or flock parasite resistance to gastrointestinal nematode infection may also be incorporated into a holistic control plan, aiming at a substantial reduction in the use of anthelmintics and endectocides to make grazing systems more sustainable.
Collapse
|
20
|
An in vitro rumen incubation method to study exsheathment kinetics of Haemonchus contortus third-stage infective larvae. Parasitol Res 2023; 122:833-845. [PMID: 36670313 DOI: 10.1007/s00436-023-07780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
This study developed and evaluated an in vitro rumen incubation (IVRI) method to describe the exsheathment kinetics of Haemonchus contortus third-stage infective larvae (L3) in ruminal liquor (RL). The specific objectives were (i) to standardize the IVRI method to facilitate the contact between L3 and RL as well as the larval recovery, and (ii) to apply the IVRI method to describe the exsheathment kinetics of H. contortus and to select the best fitting nonlinear model. Incubation devices containing H. contortus larvae were incubated according to the IVRI technique in cattle RL or PBS. The incubation conditions included RL mixed with a nitrogen-rich media, maintained at 39 °C, with pH = 7.0, vented with CO2 and manual agitation. The larvae were recovered after 0, 1, 3, 6, 9, 12, and 24 h. The exsheathed and ensheathed larvae were counted to estimate the exsheathment (%) in RL or PBS. Exsheathment in RL was analyzed with nonlinear regression models: Exponential, Gompertz, Logistic, Log-Logistic, and Weibull. The models' fit was compared to select the one that best described the exsheathment kinetics. The exsheathment in RL reached 6.52%, 20.65%, 58.22%, 69.24%, 73.08%, and 77.20% in 1, 3, 6, 9, 12, and 24 h, respectively. Although the Gompertz, Weibull, and Logistic models were adequate to describe the observed exsheathment, the Log-Logistic model had the best fit. The IVRI method using bovine RL represents a suitable tool for the study of the in vitro exsheathment kinetics of H. contortus L3.
Collapse
|
21
|
Hou B, Hai Y, Buyin B, Hasi S. Research progress and limitation analysis of RNA interference in Haemonchus contortus in China. Front Vet Sci 2023; 10:1079676. [PMID: 36908509 PMCID: PMC9998686 DOI: 10.3389/fvets.2023.1079676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Haemonchus contortus is a highly pathogenic and economically important parasitic nematode that affects small ruminants worldwide. While omics studies hold great promise, there are fewer research tools available for analyzing subsequent gene function studies. RNA interference (RNAi) technology offers a solution to this problem, as it especially allows for the knockout or shutting off of the expression of specific genes. As a result, RNAi technology has been widely used to explore gene function and disease treatment research. In this study, we reviewed the latest advancements in RNAi research on Haemonchus contortus in China, with the aim of providing a reference for the identification of key genes involved in growth and development, anthelmintic resistance, diagnostic markers, and diagnostic drug targets for the treatment of Haemonchus contortus.
Collapse
Affiliation(s)
- Bin Hou
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ying Hai
- Wushen Animal Disease Prevention and Control Center, Ordos, China
| | - Buhe Buyin
- Wushen Animal Disease Prevention and Control Center, Ordos, China
| | - Surong Hasi
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
22
|
TONI NAD, GIRGIS JRA, HUSSEIN AW, THAGFAN FA, ABDEL-GABER R, ALI SE, MAREY AM, AL-NAJJAR MAA, ALKHUDHAYRI A, DKHIL MA. In vitro role of biosynthesized nanosilver from Allium sativum against helminths. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.123622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
23
|
Pérez-Anzúrez G, Olmedo-Juárez A, von-Son de Fernex E, Alonso-Díaz MÁ, Delgado-Núñez EJ, López-Arellano ME, González-Cortázar M, Zamilpa A, Ocampo-Gutierrez AY, Paz-Silva A, Mendoza-de Gives P. Arthrobotrys musiformis (Orbiliales) Kills Haemonchus contortus Infective Larvae (Trichostronylidae) through Its Predatory Activity and Its Fungal Culture Filtrates. Pathogens 2022; 11:1068. [PMID: 36297125 PMCID: PMC9609027 DOI: 10.3390/pathogens11101068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Haemonchus contortus (Hc) is a parasite affecting small ruminants worldwide. Arthrobotrys musiformis (Am) is a nematode-trapping fungi that captures, destroys and feeds on nematodes. This study assessed the predatory activity (PA) and nematocidal activity (NA) of liquid culture filtrates (LCF) of Am against Hc infective larvae (L3), and additionally, the mycochemical profile (MP) was performed. Fungal identification was achieved by traditional and molecular procedures. The PA of Am against HcL3 was performed in water agar plates. Means of non-predated larvae were recorded and compared with a control group without fungi. LCF/HcL3 interaction was performed using micro-tittering plates. Two media, Czapek−Dox broth (CDB) and sweet potato dextrose broth (SPDB) and three concentrations, were assessed. Lectures were performed after 48 h interaction. The means of alive and dead larvae were recorded and compared with proper negative controls. The PA assessment revealed 71.54% larval reduction (p < 0.01). The highest NA of LCF was found in CDB: 93.42, 73.02 and 51.61%, at 100, 50 and 25 mg/mL, respectively (p < 0.05). Alkaloids and saponins were identified in both media; meanwhile, coumarins were only identified in CDB. The NA was only found in CDB, but not in SPDB. Coumarins could be responsible for the NA.
Collapse
Affiliation(s)
- Gustavo Pérez-Anzúrez
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos, Jiutepec CP 62550, Mexico
- Production Sciences and Animal Health, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Coyoacán CP 04510, Mexico
| | - Agustín Olmedo-Juárez
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos, Jiutepec CP 62550, Mexico
| | - Elke von-Son de Fernex
- Tropical Livestock Center, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Martínez de la Torre CP 93600, Mexico
| | - Miguel Ángel Alonso-Díaz
- Tropical Livestock Center, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Martínez de la Torre CP 93600, Mexico
| | - Edgar Jesús Delgado-Núñez
- Faculty of Agricultural, Livestock and Environmental Sciences, Autonomous University of the State of Guerrero, Iguala de la Independencia CP 40040, Mexico
| | - María Eugenia López-Arellano
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos, Jiutepec CP 62550, Mexico
| | - Manasés González-Cortázar
- South Biomedical Research Center, Social Security Mexican Institute (CIBIS-IMSS), Xochitepec CP 62790, Mexico
| | - Alejandro Zamilpa
- South Biomedical Research Center, Social Security Mexican Institute (CIBIS-IMSS), Xochitepec CP 62790, Mexico
| | - Ana Yuridia Ocampo-Gutierrez
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos, Jiutepec CP 62550, Mexico
| | - Adolfo Paz-Silva
- Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, 27142 Lugo, Spain
| | - Pedro Mendoza-de Gives
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos, Jiutepec CP 62550, Mexico
| |
Collapse
|
24
|
Rinaldi L, Krücken J, Martinez-Valladares M, Pepe P, Maurelli MP, de Queiroz C, Castilla Gómez de Agüero V, Wang T, Cringoli G, Charlier J, Gilleard JS, von Samson-Himmelstjerna G. Advances in diagnosis of gastrointestinal nematodes in livestock and companion animals. ADVANCES IN PARASITOLOGY 2022; 118:85-176. [PMID: 36088084 DOI: 10.1016/bs.apar.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diagnosis of gastrointestinal nematodes in livestock and companion animals has been neglected for years and there has been an historical underinvestment in the development and improvement of diagnostic tools, undermining the undoubted utility of surveillance and control programmes. However, a new impetus by the scientific community and the quickening pace of technological innovations, are promoting a renaissance of interest in developing diagnostic capacity for nematode infections in veterinary parasitology. A cross-cutting priority for diagnostic tools is the development of pen-side tests and associated decision support tools that rapidly inform on the levels of infection and morbidity. This includes development of scalable, parasite detection using artificial intelligence for automated counting of parasitic elements and research towards establishing biomarkers using innovative molecular and proteomic methods. The aim of this review is to assess the state-of-the-art in the diagnosis of helminth infections in livestock and companion animals and presents the current advances of diagnostic methods for intestinal parasites harnessing (i) automated methods for copromicroscopy based on artificial intelligence, (ii) immunodiagnosis, and (iii) molecular- and proteome-based approaches. Regardless of the method used, multiple factors need to be considered before diagnostics test results can be interpreted in terms of control decisions. Guidelines on how to apply diagnostics and how to interpret test results in different animal species are increasingly requested and some were recently made available in veterinary parasitology for the different domestic species.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - J Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - P Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - M P Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - C de Queiroz
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada; Faculty of Veterinary Medicine, St Georges University, Grenada
| | - V Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - T Wang
- Kreavet, Kruibeke, Belgium
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | | | - J S Gilleard
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Baudinette E, O’Handley R, Trengove C. Anthelmintic Resistance of Gastrointestinal Nematodes in Goats: A Systematic Review and Meta-Analysis. Vet Parasitol 2022; 312:109809. [DOI: 10.1016/j.vetpar.2022.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022]
|
26
|
Novel compound shows in vivo anthelmintic activity in gerbils and sheep infected by Haemonchus contortus. Sci Rep 2022; 12:13004. [PMID: 35906366 PMCID: PMC9338094 DOI: 10.1038/s41598-022-17112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
The control of gastrointestinal nematodes in livestock is becoming increasingly difficult due to the limited number of available drugs and the rapid development of anthelmintic resistance. Therefore, it is imperative to develop new anthelmintics that are effective against nematodes. Under this context, we tested the potential toxicity of three compounds in mice and their potential anthelmintic efficacy in Mongolian gerbils infected with Haemonchus contortus. The compounds were selected from previous in vitro experiments: two diamine (AAD-1 and AAD-2) and one benzimidazole (2aBZ) derivatives. 2aBZ was also selected to test its efficacy in sheep. In Mongolian gerbils, the benzimidazole reduced the percentage of pre-adults present in the stomach of gerbils by 95% at a dose of 200 mg/kg. In sheep, there was a 99% reduction in the number of eggs shed in faeces after 7 days at a dose of 120 mg/kg and a 95% reduction in the number of worm adults present in the abomasum. In conclusion, 2aBZ could be considered a promising candidate for the treatment of helminth infections in small ruminants.
Collapse
|
27
|
Mendoza-de Gives P. Soil-Borne Nematodes: Impact in Agriculture and Livestock and Sustainable Strategies of Prevention and Control with Special Reference to the Use of Nematode Natural Enemies. Pathogens 2022; 11:pathogens11060640. [PMID: 35745494 PMCID: PMC9229181 DOI: 10.3390/pathogens11060640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Soil-borne parasitic nematodes cause severe deterioration in the health of crops and supply animals, leading to enormous economic losses in the agriculture and livestock industry worldwide. The traditional strategy to control these parasites has been based on chemically synthesised compounds with parasiticidal activity, e.g., pesticides and anthelmintic drugs, which have shown a negative impact on the environment. These compounds affect the soil’s beneficial microbiota and can also remain as toxic residues in agricultural crops, e.g., fruits and legumes, and in the case of animal products for human consumption, toxic residues can remain in milk, meat, and sub-products derived from the livestock industry. Other alternatives of control with much less negative environmental impact have been studied, and new strategies of control based on the use of natural nematode enemies have been proposed from a sustainable perspective. In this review, a general view of the problem caused by parasitic nematodes affecting the agriculture and livestock industry, traditional methods of control, and new strategies of control based on eco-friendly alternatives are briefly described, with a special focus on a group of natural nematode antagonists that have been recently explored with promising results against plagues of importance for agricultural and livestock production systems.
Collapse
Affiliation(s)
- Pedro Mendoza-de Gives
- National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), Laboratory of Helminthology, National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos 62550, Mexico
| |
Collapse
|
28
|
In Vitro Anthelmintic Activity of Sea Buckthorn (Hippophae rhamnoides) Berry Juice against Gastrointestinal Nematodes of Small Ruminants. BIOLOGY 2022; 11:biology11060825. [PMID: 35741346 PMCID: PMC9219796 DOI: 10.3390/biology11060825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
Abstract
Gastrointestinal nematodes are one of the major threats in small ruminant breeding. Their control is difficult due to the development of anthelmintic resistance, and the search for new molecules endowed with anthelmintic activity (AH) is considered a priority. In this context, we evaluated the in vitro AH activity of two commercial sea buckthorn (Hippophae rhamnoides) berry juices, namely SBT and SBF. The in vitro evaluation was based on the egg-hatch test and larval exsheathment assay at different concentrations. Data were statistically analysed, and the EC50 was calculated. Chemical analyses were performed to evaluate the total polyphenol content of the juices and chemical profile of the most represented compounds. The role of the polyphenolic fraction in the anthelmintic activity of the juices was also assessed. At the highest concentrations, the activity of SBT was high in both tests and comparable to that observed in the thiabendazole-treated positive controls, while SBF showed a lower efficacy. Glycosylated isorhamnetin and quercetin were the most represented polyphenolic compounds in both juices. In conclusion, both H. rhamnoides berry juices tested in this study showed interesting anthelmintic properties in vitro.
Collapse
|
29
|
Positivity Rate Investigation and Anthelmintic Resistance Analysis of Gastrointestinal Nematodes in Sheep and Cattle in Ordos, China. Animals (Basel) 2022; 12:ani12070891. [PMID: 35405881 PMCID: PMC8997026 DOI: 10.3390/ani12070891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary In order to understand the positivity rates of gastrointestinal nematodes in cattle and sheep in Ordos, and the effects of different pasture types on the distribution of gastrointestinal nematodes, we conducted an epidemiological investigation and analysis in four banner districts of Ordos. The results showed that the positive rates of sheep and cattle were 38.84% and 4.48%, respectively. The anthelmintic resistance analysis revealed that the nematode population in the area was severely resistant to ivermectin and albendazole, and resistance to levamisole, nitroxynil and closantel was suspected. Abstract Gastrointestinal nematodes (GINs), such as Trichostrongylidae, are important pathogens in small ruminants, causing significant losses in these livestock species. Despite their veterinary importance, GINs have not been studied in certain regions of the world. Therefore, much of their epidemiology and economic impact on production remain unknown. In the present study, a systematic epidemiological survey based on the modified McMaster technique was conducted to investigate the type and infection of GINs in sheep and cattle. In 9622 fecal samples from 491 sampling sites in the four main banner districts of Ordos, the prevalence of GIN infection was found to be 38.84% and 4.48% in sheep and cattle, respectively. At the same time, the effects of four pasture types on the distribution of GINs were analyzed. This study also found severe resistance to ivermectin and albendazole in GINs and suspected anthelmintic resistance in nitroxynil, levamisole and closantel. We report the type and infection of GINs in Ordos, with the aim to help the prevention and control of GINs. Based on the results of the questionnaire survey and GIN resistance test, we found several reasons for the anthelmintic resistance of GINs, consequently providing new ideas for controlling the occurrence of anthelmintic resistance.
Collapse
|
30
|
da Silva Felix RC, Barbosa TN, Marques HP, de Oliveira Rebouças CK, da Silveira Pereira JC, Batista JIL, de Paiva Soares KM, da Silva MDC, Bezerra ACDS. In vitro nematocidal activity of Punica granatum L. against gastrointestinal helminths in goats. J Parasit Dis 2022; 46:236-242. [PMID: 35299932 PMCID: PMC8901839 DOI: 10.1007/s12639-021-01439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/07/2021] [Indexed: 01/18/2023] Open
Abstract
The objective of this study was to evaluate the in vitro ovicidal activity, phytochemistry, and toxicity of a saline extract obtained from peel of Punica granatum L fruits. The ovicidal activity was evaluated by the hatching inhibition of eggs recovered from fecal samples of naturally infected goats; the phytochemical analysis was carried out using the fruit peel; and the toxicity was tested on Artemia salina, using saline extract. The results showed that the ovicidal effect of the tested extract was 99% (25 mg mL-1), 99% (12.5 mg mL-1), 98% (6.25 mg mL-1), and 95% (3.12 mg mL-1), higher than that of the control drug, thiabendazole (83%). The phytochemical analysis showed presence of phenols, anthraquinones, and condensed and hydrolysable tannins in the fruit extract. The toxicity test of the extract of P. granatum showed an LC50 of 6.19 mg mL-1, which indicates a safe use for a concentration of 3.12 mg mL-1, since it was the tested concentration that was below the reliable LC50. The saline extract from peels of P. granatum has ovicidal activity, important secondary metabolites, and absence of toxicity at the lowest concentration tested. However, in vivo tests in experimental models are recommended before performing experiments in ruminants.
Collapse
Affiliation(s)
- Renata Cristinne da Silva Felix
- grid.412393.e0000 0004 0644 0007Programa de Pós-Graduação em Ambiente, Tecnologia e Sociedade, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| | - Tallyson Nogueira Barbosa
- grid.412393.e0000 0004 0644 0007Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| | | | | | | | - João Inácio Lopes Batista
- grid.412393.e0000 0004 0644 0007Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| | - Karoline Mikaelle de Paiva Soares
- grid.412393.e0000 0004 0644 0007Laboratório de Biotecnologia de Alimentos, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| | - Michele Dalvina Correia da Silva
- grid.412393.e0000 0004 0644 0007Laboratório de Biotecnologia Molecular, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| | - Ana Carla Diógenes Suassuna Bezerra
- grid.412393.e0000 0004 0644 0007Laboratório de Biotecnologia Aplicada à Doenças Infecto-Parasitárias, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| |
Collapse
|
31
|
Štrbac F, Bosco A, Maurelli MP, Ratajac R, Stojanović D, Simin N, Orčić D, Pušić I, Krnjajić S, Sotiraki S, Saralli G, Cringoli G, Rinaldi L. Anthelmintic Properties of Essential Oils to Control Gastrointestinal Nematodes in Sheep-In Vitro and In Vivo Studies. Vet Sci 2022; 9:vetsci9020093. [PMID: 35202346 PMCID: PMC8880401 DOI: 10.3390/vetsci9020093] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Herbal products such as essential oils may play a promising role in the treatment of infections caused by gastrointestinal nematodes (GINs). The aim of this study was to evaluate the in vitro potential of 11 essential oils (EOs) and one binary combination of isolated EO compounds, as well as the in vivo anthelmintic efficacy of two EO formulations. Four GIN genera were identified in the coproculture examination: Haemonchus, Trichostrongylus, Teladorsagia and Chabertia. The in vitro egg hatch test (EHT) was performed at six different concentrations (50, 12.5, 3.125, 0.781, 0.195 and 0.049 mg/mL) for each EO, whereas in the in vivo faecal egg count reduction test (FECRT), each EO sample was diluted in sunflower oil and orally administrated at a dose of 100 mg/kg to the different group of animals. In the EHT, the EOs of Origanum vulgare, Foeniculum vulgare, Satureja montana, Satureja hortensis and two types of Thymus vulgaris were the most effective. The dominant compounds of these EOs were carvacrol, thymol, anethol, p-cymene and γ-terpinene, indicating their importance for the anthelmintic activity. In the FECRT, both T. vulgaris EO type 1 and linalool:estragole combination show an anthelmintic potential with a mean effect on FECR of approximately 25%. The results suggest the possible role of tested EOs as anthelmintic agents in sheep farms, although further in vivo tests are needed.
Collapse
Affiliation(s)
- Filip Štrbac
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21102 Novi Sad, Serbia;
- Correspondence: ; Tel.: +381-613181091
| | - Antonio Bosco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Via Federico Delpino 1, 80137 Naples, Italy; (A.B.); (M.P.M.); (G.C.); (L.R.)
| | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Via Federico Delpino 1, 80137 Naples, Italy; (A.B.); (M.P.M.); (G.C.); (L.R.)
| | - Radomir Ratajac
- Scientific Veterinary Institute Novi Sad, Rumenački put 20, 21113 Novi Sad, Serbia; (R.R.); (I.P.)
| | - Dragica Stojanović
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21102 Novi Sad, Serbia;
| | - Nataša Simin
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia; (N.S.); (D.O.)
| | - Dejan Orčić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia; (N.S.); (D.O.)
| | - Ivan Pušić
- Scientific Veterinary Institute Novi Sad, Rumenački put 20, 21113 Novi Sad, Serbia; (R.R.); (I.P.)
| | - Slobodan Krnjajić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia;
| | - Smaragda Sotiraki
- Veterinary Research Institute, National Agricultural Research Foundation, NAGREF Campus, 57001 Thessaloniki, Greece;
| | - Giorgio Saralli
- Experimental Zooprophylactic Institute of Lazio and Tuscany M. Aleandri, Via Appia Nuova, 00178 Rome, Italy;
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Via Federico Delpino 1, 80137 Naples, Italy; (A.B.); (M.P.M.); (G.C.); (L.R.)
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Via Federico Delpino 1, 80137 Naples, Italy; (A.B.); (M.P.M.); (G.C.); (L.R.)
| |
Collapse
|
32
|
Tesfaye T. Prevalence, species composition, and associated risk factors of small ruminant gastrointestinal nematodes in South Omo zone, South-western Ethiopia. J Adv Vet Anim Res 2022; 8:597-605. [PMID: 35106299 PMCID: PMC8757667 DOI: 10.5455/javar.2021.h550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: This study was conducted to generate data on the prevalence, species composition, and factors associated with small ruminant nematode infection in the South Omo zone, in South-western Ethiopia. Material and Methods: A cross-sectional study through fecal nematode parasite examination was conducted. Simple floatation test and coproculture, followed by Baermann technique, were used for nematode egg and third-stage larvae (L3) separation and identification. The McMaster method was used to calculate the egg per gram of feces (EPG). Results: From a total of 242 sheep and goats examined, 72.34% were infested with single or mixed nematode parasites. District, “Kebele”, species, body condition score, and age were significantly (p < 0.05) associated with nematode infestation. Simple logistic regression analysis indicated that nematode infestation in Bena-Tsemay district (78.33%) was significantly (p < 0.05) higher by a factor of 0.54 (OR 95% CI: 0.30–0.96) than Hamer district (66.39%). Among the species, caprine (79.43%) was significantly (p < 0.05) infested than ovine (62.37%) by a factor of 0.45 (OR 95% CI: 0.25–0.81). Moreover, infestation on poor (79.12%) and medium (70.96%) body conditioned animals was higher by a factor of 2.94 (OR 95% CI: 1.41–6.26) and 1.76 (OR 95% CI: 0.88–3.53) than on good body conditioned animals (63.79%). Likewise, infestation in age groups of 1–3 years (78.66%) and >3 years (84.40%) was significantly (p < 0.05) higher by a factor of 4.83 (OR 95% CI: 2.31–10.46) and 8.23 (OR 95% CI: 3.98–17.75) than younger age groups (41.37%), respectively. A moderate parasitic burden was observed on 52.90% of gastrointestinal nematodes (GIN)-infested animals with significantly (p < 0.05) higher EPG in females than males. Furthermore, mixed infestation of Trichostrongylus axei and Eimeria (6.19%), Haemonchus contortus and Eimeria (5.78%), and Trichostrongylus vitrines and Eimeria (5.78%) were dominantly identified. On the contrary, T. axei (15.70%), Eimeria (8.67%), H. contortus (7.43%), and Trichostrongylus colubriformis (7.02%) were dominant single infestations. Conclusion: The current study revealed the highest prevalence of GIN in the study area, which needs strategic control, needs to enhance community awareness toward GIN control and prevention, and to implement further investigation into anthelminthic efficacy to solve the problem.
Collapse
Affiliation(s)
- Tegegn Tesfaye
- Southern Agricultural Research Institute, Jinka Agricultural Research Center, Livestock Research Directorate, Jinka, Ethiopia
| |
Collapse
|
33
|
Comprehensive diagnosis of parasites in sheep kept under different zootechnical management in a region temperate in Mexico. Vet Res Commun 2022; 46:397-404. [PMID: 35043382 DOI: 10.1007/s11259-021-09863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Parasites cause losses in animal production. Parasite infection in ruminants has been estimated to be a major problem causing more than 3 billion USD per year, from which 60% corresponds to the sheep industry. Treatment is based on the use of synthetic anthelmintics; however, repeated application or under dosage have resulted in the selection of nematodes resistant to anthelmintics. The objective of the present work was to perform a diagnosis of gastrointestinal parasites in sheep kept under different zootechnical management. Ninety female sheep were used, most of them pregnant. Sampling was performed monthly from December 2015 to June 2016 (flock 5 until April). Fecal samples were collected from the rectum; the McMaster technique was performed, morphological characteristics were observed, oocysts and eggs were counted per gram of feces (opg and epg), frequency and intensity were obtained. Faecal culture was performed for feces that had a positive result, infective larvae were obtained and taxonomically identified. At the end of the study, a dewormer (fenbendazole) was administered and its effect was measured. The frequency of gastrointestinal parasites was 100%. The highest opg was 3,600 (flock 3, March, 2016), the epg for cestodes was 2800 (flock 1, January, 2016) and for gastrointestinal nematodes (GIN) was 25,000 (flock 1, May, 2016); the intensity was variable and it was increased by peripartum. Protists (Eimeria spp), cestodes (Moniezia) and nematodes (Haemonchus, Trichostrongylus, Cooperia, Chabertia ovina. Teladorsagia, Oesophagostomum, Nematodirus and Trichuris ovis) were identified. No previous diagnosis is performed in flocks, and sometimes dewormers are administered, even though resistance to ivermectin and benzimidazole is suspected. Flock management, its feeding system and its conditions were determinant for the observed results; therefore, it is necessary to count with a diagnosis that provides information about the parasitic population and its dynamic, in order to carry out a selective and comprehensive control that has an impact on the animal, human and environmental health.
Collapse
|
34
|
Hosseinnezhad H, Sharifdini M, Ashrafi K, Atrkar Roushan Z, Mirjalali H, Rahmati B. Trichostrongyloid nematodes in ruminants of northern Iran: prevalence and molecular analysis. BMC Vet Res 2021; 17:371. [PMID: 34863161 PMCID: PMC8642945 DOI: 10.1186/s12917-021-03086-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND This study was carried out to investigate the prevalence and analyze the molecular characteristics based on the internal transcribed spacer (ITS) 2 region of the ribosomal RNA (RNA) gene of trichostrongylid nematodes in different ruminants from Guilan province, northern of Iran. METHODS The gastrointestinal tracts of 144 ruminants including 72 cattle, 59 sheep, and 13 goats were collected from an abattoir in Guilan province during July to September 2018. After isolation the helminths, male specimens were identified based on morphological parameters. PCR and partial sequencing of the ITS2 fragment were conducted. After phylogenetic analysis, the intraspecific and interspecific differences were calculated. RESULTS The prevalence of total infections with the nematodes was 38.9, 74.6 and 84.6% among cattle, sheep and goats, respectively. Eleven species of trichostrongylid nematodes including Haemonchus contortus, Marshallagia marshalli, Trichostrongylus axei, T. colubriformis, T. vitrinus, Ostertagia trifurcata, Teladorsagia circumcincta, Marshallagia occidentalis, O. lyrata, O. ostertagi, and Cooperia punctate were recovered from the ruminants. The most prevalent trichostrongyloid nematodes in cattle, sheep and goats were O. ostertagi (26.4%), M. marshalli (64.4%) and T. circumcincta (69.2%), respectively. Phylogenetic tree was discriminative for Trichostrongylidae family, while phylogenetic analysis of the ITS2 gene represented low variations and no species identification of Haemonchidae and Cooperiidae families. CONCLUSIONS This study suggests the high prevalence and species diversity of trichostrongyloid nematodes in different ruminants, indicating the importance of implement antiparasitic strategies in north regions of Iran. As well, this study showed that the ITS2 fragment is not a discriminative marker for Haemonchidae and Cooperiidae families, and investigation of other genetic markers such as mitochondrial genes would be more valuable for better understanding of their phylogenetic relationships.
Collapse
Affiliation(s)
- Hedayat Hosseinnezhad
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Keyhan Ashrafi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Atrkar Roushan
- Department of Biostatistics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Rahmati
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
35
|
Shi H, Huang X, Chen X, Yang Y, Wu F, Yao C, Ma G, Du A. Haemonchus contortus Transthyretin-Like Protein TTR-31 Plays Roles in Post-Embryonic Larval Development and Potentially Apoptosis of Germ Cells. Front Cell Dev Biol 2021; 9:753667. [PMID: 34805162 PMCID: PMC8595280 DOI: 10.3389/fcell.2021.753667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 01/25/2023] Open
Abstract
Transthyretin (TTR)-like proteins play multi-function roles in nematode and are important component of excretory/secretory product in Haemonchus contortus. In this study, we functionally characterised a secretory transthyretin-like protein in the barber's pole worm H. contortus. A full-length of transthyretin-like protein-coding gene (Hc-ttr-31) was identified in this parasitic nematode, representing a counterpart of Ce-ttr-31 in Caenorhabditis elegans. High transcriptional levels of Hc-ttr-31 were detected in the egg and early larval stages of H. contortus, with the lowest level measured in the adult stage, indicating a decreased transcriptional pattern of this gene during nematode development. Localisation analysis indicated a secretion of TTR-31 from the intestine to the gonad, suggesting additional roles of Hc-ttr-31 in nematode reproduction. Expression of Hc-ttr-31 and Ce-ttr-31 in C. elegans did not show marked influence on the nematode development and reproduction, whereas Hc-ttr-31 RNA interference-mediated gene knockdown of Ce-ttr-31 shortened the lifespan, decreased the brood size, slowed the pumping rate and inhibited the growth of treated worms. Particularly, gene knockdown of Hc-ttr-31 in C. elegans was linked to activated apoptosis signalling pathway, increased general reactive oxygen species (ROS) level, apoptotic germ cells and facultative vivipary phenotype, as well as suppressed germ cell removal signalling pathways. Taken together, Hc-ttr-31 appears to play roles in regulating post-embryonic larval development, and potentially in protecting gonad from oxidative stress and mediating engulfment of apoptotic germ cells. A better knowledge of these aspects should contribute to a better understanding of the developmental biology of H. contortus and a discovery of potential targets against this and related parasitic worms.
Collapse
Affiliation(s)
- Hengzhi Shi
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xiaocui Huang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Survival of the nematophagous fungus Duddingtonia flagrans to in vitro segments of sheep gastrointestinal tract. Exp Parasitol 2021; 231:108172. [PMID: 34774533 DOI: 10.1016/j.exppara.2021.108172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/08/2021] [Accepted: 10/31/2021] [Indexed: 11/22/2022]
Abstract
The nematophagous fungus Duddingtonia flagrans is used in integrated management of gastrointestinal nematodes in ruminants. The chlamydospores of the fungus, orally administered, pass through the segments of the ruminant digestive tract and, in the feces, capture the nematodes preventing their migration to grasslands. The drastic conditions of the gastrointestinal segments can negatively affect the fungus' biocontrol activity. The aim of this study was to assess the effect of in vitro conditions of the sheep's main gastrointestinal segments on the concentration, viability and nematode predatory ability of D. flagrans chlamydospores. The segments evaluated separately in vitro were the oral cavity, rumen, abomasum, and small intestine. The results showed that chlamydospores concentration was not affected by exposure to the different segments. The viability of the chlamydospores after exposure to the oral cavity (2.53 × 106 CFU/mL) and small intestine (1.24 × 105 CFU/mL) was significantly lower than its control treatment, with values of 6.67 × 106 CFU/mL and 2.31 × 105 CFU/mL respectively. Nematode predatory ability after rumen exposure was reduced by 7% compared to the control treatment, by 25% after abomasum exposure and by 17% after small intestine. This study revealed the individual in vitro effect of each segment of ovine gastrointestinal tract on the integrity of this strain of the fungus D. flagrans affecting its viability and nematode predatory ability under the evaluated conditions. Delivery systems could be designed to protect chlamydospores considering the impact of each gastrointestinal segment.
Collapse
|
37
|
Knoll S, Dessì G, Tamponi C, Meloni L, Cavallo L, Mehmood N, Jacquiet P, Scala A, Cappai MG, Varcasia A. Practical guide for microscopic identification of infectious gastrointestinal nematode larvae in sheep from Sardinia, Italy, backed by molecular analysis. Parasit Vectors 2021; 14:505. [PMID: 34583765 PMCID: PMC8477562 DOI: 10.1186/s13071-021-05013-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Gastrointestinal nematodes (GIN) are ubiquitous in small ruminant farming, representing a major health and production concern. Given their differences in pathogenicity and the current problems regarding anthelmintic resistance, specific diagnosis of GIN is of significant importance. At present, the most widely applied method for this entails culture and microscopic analysis of third-stage larvae, allowing for identification at least to the genus level. Overall, a variety of keys for microscopic analysis have been published, showing substantial variation. Given this fact, this study aimed to produce a practical and updated guide for the identification of infective ovine GIN larvae. Methods Using existing keys and protocols, a total of 173larvae of the most common species/genera of ovine GIN from pooled faecal samples from Sardinia (Italy) were identified and extracted, and further individual molecular identification was performed. Morphometric and morphological data as well as high-quality photographs were collected and combined to produce the final guide. Results GIN microscopically and molecularly identified during this research include Trichostrongylus spp., Teladorsagia circumcincta, Haemonchus contortus, Cooperia curticei, and Chabertia ovina. Based on microscopic analysis, 73.5% of the larvae were correctly identified. Based on sheathed tail length, 91.8% were correctly classified into their respective preliminary groups. Conclusions It is crucial for the microscopic identification of infectious GIN larvae to examine each larva in its entirety and thus to take multiple characteristics into account to obtain an accurate diagnosis. However, a preliminary classification based on sheathed tail length (resulting in three groups: A, short; B, medium; C, long) was found to be effective. Further identification within group A can be achieved based on the presence of a cranial inflexion, caudal tubercles and full body measurements (Trichostrongylus spp. < 720 µm, T. circumcincta ≥ 720 µm). Larvae within group B can be differentiated based on sheathed tail morphometry (H. contortus > 65 µm, C. curticei ≤ 65 µm), the presence of cranial refractile bodies, total body length measurements (H. contortus ≤ 790 µm, C. curticei > 790 µm) and shape of the cranial extremity. Finally, all characteristics proposed for the differentiation between Oesophagostomum spp. and C. ovina larvae (group C) were found to have considerable restrictions. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05013-9.
Collapse
Affiliation(s)
- Stephane Knoll
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Giorgia Dessì
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Claudia Tamponi
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Luisa Meloni
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Lia Cavallo
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Naunain Mehmood
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Philippe Jacquiet
- Laboratoire de Parasitologie, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Antonio Scala
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | | | - Antonio Varcasia
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy.
| |
Collapse
|
38
|
da Silva GD, de Lima HG, de Sousa NB, de Jesus Genipapeiro IL, Uzêda RS, Branco A, Costa SL, Batatinha MJM, Botura MB. In vitro anthelmintic evaluation of three alkaloids against gastrointestinal nematodes of goats. Vet Parasitol 2021; 296:109505. [PMID: 34218173 DOI: 10.1016/j.vetpar.2021.109505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
This study assessed the in vitro anthelmintic activity of the alkaloids berberine, harmaline and piperine on gastrointestinal nematodes (GIN) of goat and their possible cytotoxic effects in Vero cells. The anthelmintic evaluation was performed using the egg hatch (EHA) and larval motility (LMA) assays. Cytotoxicity was determined using the 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl-tetrazolium bromide (MTT) assay. The alkaloids berberine and piperine inhibited the hatching of GIN eggs in more than 90 %. Piperine was the most active compound against goat GIN eggs with an EC50 (effective concentration 50 %) of 0.0074 mM (0.0021 mg/mL), while the EC50 of berberine was 1.32 mM (0.49 mg/mL). Harmaline (EC50 = 1.6 mM - 0.34 mg/mL) showed moderate ovicidal action (80.30 %). In LMA, piperine and harmaline reduced larval motility in 2.75 and 25.29 %, respectively. Larvicidal efficacy was evidenced only with the alkaloid berberine, which showed a percentage of inhibition of larval motility of 98.17 % (2.69 mM =1.0 mg/mL). In the MTT assay, all alkaloids showed low toxicity to Vero cells, with a percentage of cell viability greater than 50 % in all concentrations tested. These results suggest that berberine and piperine have anthelmintic potential on goat gastrointestinal nematodes with low toxicity to mammalian cells.
Collapse
Affiliation(s)
- Gisele Dias da Silva
- Laboratório de Toxicologia e Fitoterapia (LATOF), Hospital de Medicina Veterinária, Universidade Federal da Bahia, Av. Ademar de Barros, 500, Ondina, CEP: 40170-110, Salvador, BA, Brazil
| | - Hélimar Gonçalves de Lima
- Laboratório de Toxicologia e Fitoterapia (LATOF), Hospital de Medicina Veterinária, Universidade Federal da Bahia, Av. Ademar de Barros, 500, Ondina, CEP: 40170-110, Salvador, BA, Brazil
| | - Nilmara Borges de Sousa
- Laboratório de Toxicologia e Fitoterapia (LATOF), Hospital de Medicina Veterinária, Universidade Federal da Bahia, Av. Ademar de Barros, 500, Ondina, CEP: 40170-110, Salvador, BA, Brazil
| | - Igor Leonardo de Jesus Genipapeiro
- Laboratório de Toxicologia e Fitoterapia (LATOF), Hospital de Medicina Veterinária, Universidade Federal da Bahia, Av. Ademar de Barros, 500, Ondina, CEP: 40170-110, Salvador, BA, Brazil
| | - Rosângela Soares Uzêda
- Laboratório de Toxicologia e Fitoterapia (LATOF), Hospital de Medicina Veterinária, Universidade Federal da Bahia, Av. Ademar de Barros, 500, Ondina, CEP: 40170-110, Salvador, BA, Brazil; Laboratório de Doenças Parasitárias (LDPA), Universidade Federal da Bahia, Av. Ademar de Barros, 500, Ondina, CEP: 40170-110, Salvador, BA, Brazil
| | - Alexsandro Branco
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Av.Transnordestina s/n, 44036-900, Feira de Santana, BA, Brazil
| | - Silvia Lima Costa
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n, Vale do Canela, CEP: 40110-100, Salvador, BA, Brazil
| | - Maria José Moreira Batatinha
- Laboratório de Toxicologia e Fitoterapia (LATOF), Hospital de Medicina Veterinária, Universidade Federal da Bahia, Av. Ademar de Barros, 500, Ondina, CEP: 40170-110, Salvador, BA, Brazil
| | - Mariana Borges Botura
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Av.Transnordestina s/n, 44036-900, Feira de Santana, BA, Brazil.
| |
Collapse
|
39
|
Valderas-García E, de la Vega J, Álvarez Bardón M, Castilla Gómez de Agüero V, Escarcena R, López-Pérez JL, Rojo-Vázquez FA, San Feliciano A, Del Olmo E, Balaña-Fouce R, Martínez-Valladares M. Anthelmintic activity of aminoalcohol and diamine derivatives against the gastrointestinal nematode Teladorsagia circumcincta. Vet Parasitol 2021; 296:109496. [PMID: 34147018 DOI: 10.1016/j.vetpar.2021.109496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023]
Abstract
Gastrointestinal nematodes (GIN) infections are a serious problem in livestock production due to the great economic losses they cause. Their control is increasingly difficult because of the rapid development of drug resistance and the limited number of available drugs. Therefore, this study evaluated 18 aminoalcohol and 16 diamine derivatives against eggs, first and third stage larvae from a susceptible and a resistant isolate of Teladorsagia circumcincta collected from sheep. The effectiveness of the in vitro anthelmintic activity of the compounds was evaluated using three different procedures: Egg Hatch Test (EHT), Larval Mortality Test (LMT) and Larval Migration Inhibition Test (LMIT). Those compounds with activities higher than 90 % in the initial screening at 50 μM were selected to determine their half maximal effective concentration (EC50). In parallel, cytotoxicity assays were conducted on Caco2 and HepG2 cell lines to calculate Selectivity Indexes (SI) for each compound. The diamine 30 presented the best results in preventing egg hatching, displaying the lowest EC50 value (1.01 ± 0.04 μM) of all compounds tested and the highest SI (21.21 vs. Caco-2 cells). For the LMIT, the diamine 34 showed the highest efficacy, with EC50 values of 2.67 ± 0.08 and 3.02 ± 0.09 μM on the susceptible and resistant isolate of the parasite, respectively.
Collapse
Affiliation(s)
- Elora Valderas-García
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, 24346, Grulleros, León, Spain; Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Jennifer de la Vega
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain
| | - María Álvarez Bardón
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Verónica Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, 24346, Grulleros, León, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Ricardo Escarcena
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain
| | - José Luis López-Pérez
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain; Facultad de Medicina, Universidad de Panamá, Panamá, R. de Panamá
| | - Francisco A Rojo-Vázquez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain; Programa de Pós-graduaçao em Ciências Farmacêuticas, Universida de do Vale do Itajaí, UNIVALI, Itajaí, SC, Brazil
| | - Esther Del Olmo
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain.
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071, León, Spain.
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, 24346, Grulleros, León, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain.
| |
Collapse
|
40
|
An epidemiological study of gastrointestinal nematode and Eimeria coccidia infections in different populations of Kazakh sheep. PLoS One 2021; 16:e0251307. [PMID: 34010315 PMCID: PMC8133398 DOI: 10.1371/journal.pone.0251307] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/25/2021] [Indexed: 12/02/2022] Open
Abstract
This is an epidemiological study on the gastrointestinal nematode (GIN) and Eimeria coccidia infections in Kazakh sheep and the F1 and F2 generations of Kazakh × Texel sheep crosses. A total of 7599 sheep fecal samples were collected from the Zhaosu County and Nilka County in Ili Kazakh Autonomous Prefecture in the four seasons-spring, summer, autumn, and winter of 2019. The parasite causing the infection was identified by the saturated saline floating method, and the infection intensity was calculated by the modified McMaster method. SPSS19.0 was used to evaluate the differences in the fecal egg count (FEC) of for GIN and the fecal oocyst count (FOC) value of for coccidia per sample. The results showed that there were nine types of sheep GIN infections and Eimeria coccidia in these two counties of Ililocations, with the dominant parasite species of Haemonchus contortus, Trichostrongylus spp., and Ostertagia spp as the predominant parasites in the sheep. Most of the GIN and coccidia infections in these two regions were mild and moderate. The mean log (FEC) of GIN infection in the Zhaosu area was significantly higher than that in the Nilka area, whereas the mean log (FOC) of coccidia infection in Zhaosu was significantly lower than that of Nilka. The mean log (FEC) of GIN infection in the four seasons was the highest in spring, followed by in summer, then in autumn, and the lowest in winter. The mean log (FOC) of coccidia infection was the highest in spring, followed by in autumn, and was the lowest in summer and winter. The mean log (FEC) of GIN infection and log (FOC) of coccidia infection of Kazakh sheep was significantly higher than the F1 generation, which was then significantly higher than the F2 generation of summer. A positive correlation was found between the EPG and OPG levels in the sheep. These results showed that the GIN and coccidia infection intensities of the F1 generation sheep of Kazakh ×Texel crosses were significantly lower than that of Kazakh sheep paving the way for marker-based resistance selection.
Collapse
|
41
|
Medrado BD, Pedrosa VB, Pinto LFB. Meta-analysis of genetic parameters for economic traits in sheep. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Abstract
Anemia is a clinically important syndrome in small ruminants. Anemia can be divided into regenerative and nonregenerative forms. Differentials for regenerative anemia include hemorrhage owing to gastrointestinal or external parasitism or hemostatic disorders, and hemolysis owing to infectious, osmotic, toxic, and nutritional causes. Differentials for nonregenerative anemia include inflammatory and chronic diseases, renal failure, pancytopenia, copper deficiency, and heavy metal toxicosis. Iron deficiency anemia can be caused by chronic gastrointestinal and external hemorrhage or nutritional deficiency and may be mildly regenerative or nonregenerative. Appropriate diagnostic tests are described along with treatments, including blood transfusion, parasite control, and prevention.
Collapse
Affiliation(s)
- Jennifer Johns
- Department of Biomedical Sciences, Oregon State University Carlson College of Veterinary Medicine, 700 Southwest 30th Street, Corvallis, OR 97331, USA.
| | - Meera Heller
- Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, One Garrod Drive, Davis, CA 95616, USA
| |
Collapse
|
43
|
Torres-Fajardo RA, González-Pech PG, Sandoval-Castro CA, Torres-Acosta JFDJ. Small Ruminant Production Based on Rangelands to Optimize Animal Nutrition and Health: Building an Interdisciplinary Approach to Evaluate Nutraceutical Plants. Animals (Basel) 2020; 10:E1799. [PMID: 33023017 PMCID: PMC7601357 DOI: 10.3390/ani10101799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
The plant kingdom can influence the productivity and health of herbivores at different levels. However, demonstrating this process in a scientific manner entails substantial endeavors from different disciplines. In the present review, we will describe the features of a native vegetation system traditionally used by small ruminants and use its particularities to build an interdisciplinary approach to evaluate the nutraceutical properties of plants. Initially, we will establish the context of the low deciduous forest (LDF), considering some botanical and nutritional aspects, as well as the presence of plant secondary compounds (PSC) and gastrointestinal nematodes (GIN). Furthermore, we will focus on coevolutionary aspects that undoubtedly shaped the plants-nutrients-PSC-GIN-herbivore relationship. In addition, the concept of nutraceutical will be discussed to provide clarity and aspects to be considered for their evaluation. Then, ethological, agronomical, nutritional, PSC, parasitological and animal species issues are deepened placing emphasis on methodological approaches. Special focus is given to condensed tannins, as they are the fourth largest group of PSCs and the most studied in livestock sciences. Validation of the nutraceutical properties of plants from native vegetation systems should be seen as a process derived from many scientific disciplines that feed into each other in a cyclic manner.
Collapse
Affiliation(s)
| | | | - Carlos Alfredo Sandoval-Castro
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida 97000, Yucatán, Mexico; (R.A.T.-F.); (P.G.G.-P.); (J.F.d.J.T.-A.)
| | | |
Collapse
|