1
|
Odimegwu CL, Uwaezuoke SN, Chikani UN, Mbanefo NR, Adiele KD, Nwolisa CE, Eneh CI, Ndiokwelu CO, Okpala SC, Ogbuka FN, Odo KE, Ohuche IO, Obiora-Izuka CE. Targeting the Epigenetic Marks in Type 2 Diabetes Mellitus: Will Epigenetic Therapy Be a Valuable Adjunct to Pharmacotherapy? Diabetes Metab Syndr Obes 2024; 17:3557-3576. [PMID: 39323929 PMCID: PMC11423826 DOI: 10.2147/dmso.s479077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/03/2024] [Indexed: 09/27/2024] Open
Abstract
Although genetic, environmental, and lifestyle factors largely contribute to type 2 diabetes mellitus (T2DM) risk, the role of epigenetics in its pathogenesis is now well established. The epigenetic mechanisms in T2DM mainly consist of DNA methylation, histone modifications and regulation by noncoding RNAs (ncRNAs). For instance, DNA methylation at CpG islands in the promoter regions of specific genes encoding insulin signaling and glucose metabolism suppresses these genes. Modulating the enzyme mediators of these epigenetic marks aims to restore standard gene expression patterns and improve glycemic control. In targeting these epigenetic marks, using epigenetic drugs such as DNA methyltransferase (DNAMT), histone deacetylase (HDAC) and histone acetyltransferase (HAT) inhibitors has led to variable success in humans and experimental murine models. Specifically, the United States' Food and Drug Administration (US FDA) has approved DNAMT inhibitors like 5-azacytidine and 5-aza-2'-deoxycytidine for use in diabetic retinopathy: a T2DM microvascular complication. These DNAMT inhibitors block the genes for methylation of mitochondrial superoxide dismutase 2 (SOD2) and matrix metallopeptidase 9 (MMP-9): the epigenetic marks in diabetic retinopathy. Traditional pharmacotherapy with metformin also have epigenetic effects in T2DM and positively alter disease outcomes when combined with epigenetic drugs like DNAMT and HDAC inhibitors, raising the prospect of using epigenetic therapy as a valuable adjunct to pharmacotherapy. However, introducing small interfering RNAs (siRNAs) in cells to silence specific target genes remains in the exploratory phase. Future research should focus on regulating gene expression in T2DM using long noncoding RNA (lncRNA) molecules, another type of ncRNA. This review discusses the epigenetics of T2DM and that of its macro- and microvascular complications, and the potential benefits of combining epigenetic therapy with pharmacotherapy for optimal results.
Collapse
Affiliation(s)
- Chioma Laura Odimegwu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Samuel Nkachukwu Uwaezuoke
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ugo N Chikani
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ngozi Rita Mbanefo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ken Daberechi Adiele
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | - Chizoma Ihuarula Eneh
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Chibuzo Obiora Ndiokwelu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Somkenechi C Okpala
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Francis N Ogbuka
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Kenneth E Odo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | | |
Collapse
|
2
|
Madonna R, Biondi F, Alberti M, Ghelardoni S, Mattii L, D'Alleva A. Cardiovascular outcomes and molecular targets for the cardiac effects of Sodium-Glucose Cotransporter 2 Inhibitors: A systematic review. Biomed Pharmacother 2024; 175:116650. [PMID: 38678962 DOI: 10.1016/j.biopha.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new class of glucose-lowering drugs traditionally used to control blood glucose levels in patients with type 2 diabetes mellitus, have been proven to reduce major adverse cardiovascular events, including cardiovascular death, in patients with heart failure irrespective of ejection fraction and independently of the hypoglycemic effect. Because of their favorable effects on the kidney and cardiovascular outcomes, their use has been expanded in all patients with any combination of diabetes mellitus type 2, chronic kidney disease and heart failure. Although mechanisms explaining the effects of these drugs on the cardiovascular system are not well understood, their effectiveness in all these conditions suggests that they act at the intersection of the metabolic, renal and cardiac axes, thus disrupting maladaptive vicious cycles while contrasting direct organ damage. In this systematic review we provide a state of the art of the randomized controlled trials investigating the effect of SGLT2i on cardiovascular outcomes in patients with chronic kidney disease and/or heart failure irrespective of ejection fraction and diabetes. We also discuss the molecular targets and signaling pathways potentially explaining the cardiac effects of these pharmacological agents, from a clinical and experimental perspective.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy.
| | - Filippo Biondi
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Mattia Alberti
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Italy
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, Histology Division, University of Pisa, Pisa, Italy
| | - Alberto D'Alleva
- Cardiac Intensive Care and Interventional Cardiology Unit, Santo Spirito Hospital, Pescara, Italy
| |
Collapse
|
3
|
Lagarde CB, Kavalakatt J, Benz MC, Hawes ML, Arbogast CA, Cullen NM, McConnell EC, Rinderle C, Hebert KL, Khosla M, Belgodere JA, Hoang VT, Collins-Burow BM, Bunnell BA, Burow ME, Alahari SK. Obesity-associated epigenetic alterations and the obesity-breast cancer axis. Oncogene 2024; 43:763-775. [PMID: 38310162 DOI: 10.1038/s41388-024-02954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Both breast cancer and obesity can regulate epigenetic changes or be regulated by epigenetic changes. Due to the well-established link between obesity and an increased risk of developing breast cancer, understanding how obesity-mediated epigenetic changes affect breast cancer pathogenesis is critical. Researchers have described how obesity and breast cancer modulate the epigenome individually and synergistically. In this review, the epigenetic alterations that occur in obesity, including DNA methylation, histone, and chromatin modification, accelerated epigenetic age, carcinogenesis, metastasis, and tumor microenvironment modulation, are discussed. Delineating the relationship between obesity and epigenetic regulation is vital to furthering our understanding of breast cancer pathogenesis.
Collapse
Affiliation(s)
- Courtney B Lagarde
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Joachim Kavalakatt
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Megan C Benz
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mackenzie L Hawes
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Carter A Arbogast
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nicole M Cullen
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Emily C McConnell
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Caroline Rinderle
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Katherine L Hebert
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Maninder Khosla
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA
| | - Jorge A Belgodere
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Van T Hoang
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
- Stanley S. Scott Cancer Center, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Antiaging Strategies and Remedies: A Landscape of Research Progress and Promise. ACS Chem Neurosci 2024; 15:408-446. [PMID: 38214973 PMCID: PMC10853939 DOI: 10.1021/acschemneuro.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Aging is typified by a gradual loss of physiological fitness and accumulation of cellular damage, leading to deteriorated functions and enhanced vulnerability to diseases. Antiaging research has a long history throughout civilization, with many efforts put forth to understand and prevent the effects of aging. Multiple strategies aiming to promote healthy aging and extend the lifespan have been developed including lifestyle adjustments, medical treatments, and social programs. A multitude of antiaging medicines and remedies have also been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent research related to antiaging strategies and treatments. We review the recent advances and delineate trends in research headway of antiaging knowledge and practice across time, geography, and development pipelines. We further assess the state-of-the-art antiaging approaches and explore their correlations with age-related diseases. The landscape of antiaging drugs has been outlined and explored. Well-recognized and novel, currently evaluated antiaging agents have also been summarized. Finally, we review clinical applications of antiaging products with their development pipelines. The objective of this review is to summarize current knowledge on preventive strategies and treatment remedies in the field of aging, to outline challenges and evaluate growth opportunities, in order to further efforts to solve the problems that remain.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
6
|
Feng Q, Duan H, Zhou X, Wang Y, Zhang J, Zhang H, Chen G, Bao X. DNA Methyltransferase 3A: A Significant Target for the Discovery of Inhibitors as Potent Anticancer Drugs. Mini Rev Med Chem 2024; 24:507-520. [PMID: 37642180 DOI: 10.2174/1389557523666230825100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
DNA methyltransferase (DNMT) is a conserved family of Cytosine methylases, which plays a crucial role in the regulation of Epigenetics. They have been considered promising therapeutic targets for cancer. Among the DNMT family, mutations in the DNMT3A subtype are particularly important in hematologic malignancies. The development of specific DNMT3A subtype inhibitors to validate the therapeutic potential of DNMT3A in certain diseases is a significant task. In this review, we summarized the small molecule inhibitors of DNMT3A discovered in recent years and their inhibitory activities, and classified them based on their inhibitory mechanisms.
Collapse
Affiliation(s)
- Qixun Feng
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Honggao Duan
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinglong Zhou
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuning Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinda Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Haoge Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Gupta MK, Peng H, Li Y, Xu CJ. The role of DNA methylation in personalized medicine for immune-related diseases. Pharmacol Ther 2023; 250:108508. [PMID: 37567513 DOI: 10.1016/j.pharmthera.2023.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Epigenetics functions as a bridge between host genetic & environmental factors, aiding in human health and diseases. Many immune-related diseases, including infectious and allergic diseases, have been linked to epigenetic mechanisms, particularly DNA methylation. In this review, we summarized an updated overview of DNA methylation and its importance in personalized medicine, and demonstrated that DNA methylation has excellent potential for disease prevention, diagnosis, and treatment in a personalized manner. The future implications and limitations of the DNA methylation study have also been well-discussed.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Cuciureanu M, Caratașu CC, Gabrielian L, Frăsinariu OE, Checheriță LE, Trandafir LM, Stanciu GD, Szilagyi A, Pogonea I, Bordeianu G, Soroceanu RP, Andrițoiu CV, Anghel MM, Munteanu D, Cernescu IT, Tamba BI. 360-Degree Perspectives on Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1119. [PMID: 37374323 PMCID: PMC10304508 DOI: 10.3390/medicina59061119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Alarming statistics show that the number of people affected by excessive weight has surpassed 2 billion, representing approximately 30% of the world's population. The aim of this review is to provide a comprehensive overview of one of the most serious public health problems, considering that obesity requires an integrative approach that takes into account its complex etiology, including genetic, environmental, and lifestyle factors. Only an understanding of the connections between the many contributors to obesity and the synergy between treatment interventions can ensure satisfactory outcomes in reducing obesity. Mechanisms such as oxidative stress, chronic inflammation, and dysbiosis play a crucial role in the pathogenesis of obesity and its associated complications. Compounding factors such as the deleterious effects of stress, the novel challenge posed by the obesogenic digital (food) environment, and the stigma associated with obesity should not be overlooked. Preclinical research in animal models has been instrumental in elucidating these mechanisms, and translation into clinical practice has provided promising therapeutic options, including epigenetic approaches, pharmacotherapy, and bariatric surgery. However, more studies are necessary to discover new compounds that target key metabolic pathways, innovative ways to deliver the drugs, the optimal combinations of lifestyle interventions with allopathic treatments, and, last but not least, emerging biological markers for effective monitoring. With each passing day, the obesity crisis tightens its grip, threatening not only individual lives but also burdening healthcare systems and societies at large. It is high time we took action as we confront the urgent imperative to address this escalating global health challenge head-on.
Collapse
Affiliation(s)
- Magdalena Cuciureanu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Cătălin-Cezar Caratașu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Levon Gabrielian
- Department of Anatomy and Pathology, The University of Adelaide, Adelaide 5000, Australia;
| | - Otilia Elena Frăsinariu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Laura Elisabeta Checheriță
- 2nd Dental Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Andrei Szilagyi
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Ina Pogonea
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Gabriela Bordeianu
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Radu Petru Soroceanu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Specialization of Nutrition and Dietetics, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Maria Mihalache Anghel
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Diana Munteanu
- Institute of Mother and Child, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2062 Chisinau, Moldova;
| | - Irina Teodora Cernescu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Bogdan Ionel Tamba
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| |
Collapse
|
9
|
Kaimala S, Ansari SA, Emerald BS. DNA methylation in the pathogenesis of type 2 diabetes. VITAMINS AND HORMONES 2023; 122:147-169. [PMID: 36863792 DOI: 10.1016/bs.vh.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by the development of β-cell dysfunction with hepatic, muscular and adipose tissue insulin resistance. Although the molecular mechanisms leading to its development are not entirely known, investigations of its causes reveal a multifactorial contribution to its development and progression in most cases. In addition, regulatory interactions mediated by epigenetic modifications such as DNA methylation, histone tail modifications and regulatory RNAs have been found to play a significant role in the etiology of T2D. In this chapter, we discuss the role of DNA methylation and its dynamics in the development of the pathological features of T2D.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
10
|
Suárez R, Chapela SP, Álvarez-Córdova L, Bautista-Valarezo E, Sarmiento-Andrade Y, Verde L, Frias-Toral E, Sarno G. Epigenetics in Obesity and Diabetes Mellitus: New Insights. Nutrients 2023; 15:nu15040811. [PMID: 36839169 PMCID: PMC9963127 DOI: 10.3390/nu15040811] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
A long-term complication of obesity is the development of type 2 diabetes (T2D). Patients with T2D have been described as having epigenetic modifications. Epigenetics is the post-transcriptional modification of DNA or associated factors containing genetic information. These environmentally-influenced modifications, maintained during cell division, cause stable changes in gene expression. Epigenetic modifications of T2D are DNA methylation, acetylation, ubiquitylation, SUMOylation, and phosphorylation at the lysine residue at the amino terminus of histones, affecting DNA, histones, and non-coding RNA. DNA methylation has been shown in pancreatic islets, adipose tissue, skeletal muscle, and the liver. Furthermore, epigenetic changes have been observed in chronic complications of T2D, such as diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. Recently, a new drug has been developed which acts on bromodomains and extraterminal (BET) domain proteins, which operate like epigenetic readers and communicate with chromatin to make DNA accessible for transcription by inhibiting them. This drug (apabetalone) is being studied to prevent major adverse cardiovascular events in people with T2D, low HDL cholesterol, chronic kidney failure, and recent coronary events. This review aims to describe the relationship between obesity, long-term complications such as T2D, and epigenetic modifications and their possible treatments.
Collapse
Affiliation(s)
- Rosario Suárez
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Sebastián P. Chapela
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABE, Argentina
- Hospital Británico de Buenos Aires, Equipo de Soporte Nutricional, Buenos Aires C1280AEB, Argentina
- Correspondence: ; Tel.: +54-91168188308
| | - Ludwig Álvarez-Córdova
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
- Carrera de Nutrición y Dietética, Facultad de Ciencias Médicas, Universidad Católica De Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Estefanía Bautista-Valarezo
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Yoredy Sarmiento-Andrade
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Ludovica Verde
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Gerardo Sarno
- “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, Scuola Medica Salernitana, 84131 Salerno, Italy
| |
Collapse
|
11
|
Zhou R, Cao Y, Xiang Y, Fang P, Shang W. Emerging roles of histone deacetylases in adaptive thermogenesis. Front Endocrinol (Lausanne) 2023; 14:1124408. [PMID: 36875455 PMCID: PMC9978507 DOI: 10.3389/fendo.2023.1124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Brown and beige adipose tissues regulate body energy expenditure through adaptive thermogenesis, which converts energy into heat by oxidative phosphorylation uncoupling. Although promoting adaptive thermogenesis has been demonstrated to be a prospective strategy for obesity control, there are few methods for increasing adipose tissue thermogenesis in a safe and effective way. Histone deacetylase (HDAC) is a category of epigenetic modifying enzymes that catalyzes deacetylation on both histone and non-histone proteins. Recent studies illustrated that HDACs play an important role in adipose tissue thermogenesis through modulating gene transcription and chromatin structure as well as cellular signals transduction in both deacetylation dependent or independent manners. Given that different classes and subtypes of HDACs show diversity in the mechanisms of adaptive thermogenesis regulation, we systematically summarized the effects of different HDACs on adaptive thermogenesis and their underlying mechanisms in this review. We also emphasized the differences among HDACs in thermogenesis regulation, which will help to find new efficient anti-obesity drugs targeting specific HDAC subtypes.
Collapse
Affiliation(s)
- Ruonan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Cao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Xiang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Penghua Fang, ; Wenbin Shang,
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Penghua Fang, ; Wenbin Shang,
| |
Collapse
|
12
|
Wu Y, Tian H, Wang W, Li W, Duan H, Zhang D. DNA methylation and waist-to-hip ratio: an epigenome-wide association study in Chinese monozygotic twins. J Endocrinol Invest 2022; 45:2365-2376. [PMID: 35882828 DOI: 10.1007/s40618-022-01878-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Epigenetic signatures such as DNA methylation may be associated with specific obesity traits. We performed an epigenome-wide association study (EWAS) by combining with the waist-to-hip ratio (WHR)-discordant monozygotic (MZ) twin design in an attempt to identify genetically independent DNA methylation marks associated with abdominal obesity in Northern Han Chinese and to determine the causation underlying. METHODS A total of 60 WHR discordant MZ twin pairs were selected from the Qingdao Twin Registry, China. Generalized estimated equation (GEE) model was used to regress the methylation level of CpG sites on WHR. The Inference about Causation through Examination of FAmiliaL CONfounding (ICE FALCON) was used to assess the temporal relationship between methylation and WHR. Gene expression analysis was conducted to validate the results of differentially methylated analyses. RESULTS EWAS identified 92 CpG sites with the level of P < 10 - 4 which were annotated to 32 genes, especially CADPS2, TUSC5, ZCCHC14, CORO7, COL23A1, CACNA1C, CYP26B1, and BCAT1. ICE FALCON showed significant causality between DNA methylation of several genes and WHR (P < 0.05). In region-based analysis, 14 differentially methylated regions (DMRs) located at 15 genes (slk-corrected P < 0.05) were detected. The gene expression analysis identified the significant correlation between expression levels of 5 differentially methylated genes and WHR (P < 0.05). CONCLUSIONS Our study identifies the associations between specific epigenetic variations and WHR in Northern Han Chinese. These DNA methylation signatures may have value as diagnostic biomarkers and provide novel insights into the molecular mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Y Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, NO. 308 Ningxia Road, 266071, Qingdao, Shandong, China.
| | - H Tian
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, NO. 308 Ningxia Road, 266071, Qingdao, Shandong, China
| | - W Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, NO. 308 Ningxia Road, 266071, Qingdao, Shandong, China
| | - W Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - H Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - D Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, NO. 308 Ningxia Road, 266071, Qingdao, Shandong, China
| |
Collapse
|
13
|
Rajamoorthi A, LeDuc CA, Thaker VV. The metabolic conditioning of obesity: A review of the pathogenesis of obesity and the epigenetic pathways that "program" obesity from conception. Front Endocrinol (Lausanne) 2022; 13:1032491. [PMID: 36329895 PMCID: PMC9622759 DOI: 10.3389/fendo.2022.1032491] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the developmental origins of health and disease is integral to overcome the global tide of obesity and its metabolic consequences, including atherosclerotic cardiovascular disease, type 2 diabetes, hyperlipidemia, and nonalcoholic fatty liver disease. The rising prevalence of obesity has been attributed, in part, to environmental factors including the globalization of the western diet and unhealthy lifestyle choices. In this review we argue that how and when such exposures come into play from conception significantly impact overall risk of obesity and later health outcomes. While the laws of thermodynamics dictate that obesity is caused by an imbalance between caloric intake and energy expenditure, the drivers of each of these may be laid down before the manifestation of the phenotype. We present evidence over the last half-century that suggests that the temporospatial evolution of obesity from intrauterine life and beyond is, in part, due to the conditioning of physiological processes at critical developmental periods that results in maladaptive responses to obesogenic exposures later in life. We begin the review by introducing studies that describe an association between perinatal factors and later risk of obesity. After a brief discussion of the pathogenesis of obesity, including the systemic regulation of appetite, adiposity, and basal metabolic rate, we delve into the mechanics of how intrauterine, postnatal and early childhood metabolic environments may contribute to adult obesity risk through the process of metabolic conditioning. Finally, we detail the specific epigenetic pathways identified both in preclinical and clinical studies that synergistically "program" obesity.
Collapse
Affiliation(s)
- Ananthi Rajamoorthi
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Charles A. LeDuc
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
- The Naomi Berrie Diabetes Center, Columbia University IRVING Medical Center, New York, NY, United States
| | - Vidhu V. Thaker
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
- The Naomi Berrie Diabetes Center, Columbia University IRVING Medical Center, New York, NY, United States
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
14
|
Dibekoğlu C, Erbaş O. Histone deacetylase inhibitor givinostat has ameliorative effect in the colitis model. Acta Cir Bras 2022; 37:e370503. [PMID: 35894303 PMCID: PMC9323301 DOI: 10.1590/acb370503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: To investigate the effect of givinostat treatment in acetic acid-induced ulcerative colitis model in rats. Methods: Thirty male Wistar albino rats were used. Rats were randomly divided into three equal groups, and colitis was induced on 20 rats by rectal administration of %4 solutions of acetic acid. Twenty rats with colitis were randomly divided into two groups. %0.9 NaCl (saline) solution was administered intraperitoneally to the first group of rats (saline group, n=10) at the dose of 1 mL/kg/day. Givinostat was administered intraperitoneally to the second group rats (Givinostat group, n=10) at the dose of 5 mg/kg/day. Samples were collected for biochemical analysis. Colon was removed for histopathological and biochemical examinations. Results: Plasma tumor necrosis factor-α (TNF-α), pentraxin-3 (PTX-3), and malondialdehyde levels were significantly decreased in the givinostat group compared to the saline group (p<0.05, p<0.001, and p<0.001 respectively; p<0.001, p<0.001, and p<0.001, respectively). Colon TNF-α and prostaglandin F2 alpha (PGF-2) levels were significantly decreased (p<0.05, and p<0.001, respectively). The givinostat group had a significantly lower histologic score than saline group (p<0.001, and p<0.001, respectively). Conclusions: Givinostat, a good protector and regenerator of tissue and an anti-inflammatory agent, may be involved in the treatment of colitis in the future.
Collapse
Affiliation(s)
- Cengiz Dibekoğlu
- MD. İstanbul Florence Nightingale Hospital - Department of General Surgery - İstanbul, Turkey
| | - Oytun Erbaş
- MD. Demiroğlu Bilim University - Faculty of Medicine - Department of Physiology - İstanbul, Turkey
| |
Collapse
|
15
|
Zatterale F, Raciti GA, Prevenzano I, Leone A, Campitelli M, De Rosa V, Beguinot F, Parrillo L. Epigenetic Reprogramming of the Inflammatory Response in Obesity and Type 2 Diabetes. Biomolecules 2022; 12:biom12070982. [PMID: 35883538 PMCID: PMC9313117 DOI: 10.3390/biom12070982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
For the past several decades, the prevalence of obesity and type 2 diabetes (T2D) has continued to rise on a global level. The risk contributing to this pandemic implicates both genetic and environmental factors, which are functionally integrated by epigenetic mechanisms. While these conditions are accompanied by major abnormalities in fuel metabolism, evidence indicates that altered immune cell functions also play an important role in shaping of obesity and T2D phenotypes. Interestingly, these events have been shown to be determined by epigenetic mechanisms. Consistently, recent epigenome-wide association studies have demonstrated that immune cells from obese and T2D individuals feature specific epigenetic profiles when compared to those from healthy subjects. In this work, we have reviewed recent literature reporting epigenetic changes affecting the immune cell phenotype and function in obesity and T2D. We will further discuss therapeutic strategies targeting epigenetic marks for treating obesity and T2D-associated inflammation.
Collapse
Affiliation(s)
- Federica Zatterale
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Gregory Alexander Raciti
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Immacolata Prevenzano
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Alessia Leone
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Michele Campitelli
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Veronica De Rosa
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Francesco Beguinot
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| | - Luca Parrillo
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| |
Collapse
|
16
|
Sagvekar P, Shinde G, Mangoli V, Desai SK, Mukherjee S. Evidence for TET-mediated DNA demethylation as an epigenetic alteration in cumulus granulosa cells of women with polycystic ovary syndrome. Mol Hum Reprod 2022; 28:6595033. [PMID: 35640568 DOI: 10.1093/molehr/gaac019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral and tissue-specific alterations in global DNA methylation (5mC) and hydroxymethylation (5hmC) profiles have been charted as biomarkers for disease prediction and as hallmarks of dysregulated localized gene networks. Global and gene-specific epigenetic alterations in the 5mC profiles have shown widespread implications in etiology of polycystic ovary syndrome (PCOS). However, there has been no study in PCOS that integrates the quantification of 5mC and 5hmC signatures alongside the expression levels of DNA methylating and demethylating enzymes as respective indicators of methylation and demethylation pathways. Having previously shown that the 5mC signatures are not greatly altered in PCOS, we assessed the global 5hmC levels in peripheral blood leukocytes (PBLs) and cumulus granulosa cells (CGCs) of 40 controls and 40 women with PCOS. This analysis revealed higher 5hmC levels in CGCs of PCOS women, indicating a more dominant demethylation pathway. Further, we assessed the transcript and protein expression levels of DNA demethylating and methylating enzymes, i.e. ten-eleven translocation methylcytosine dioxygenases (TET1, TET2, TET3) and DNA methyltransferases (DNMT1, DNMT3A and DNMT3B), respectively, in CGCs. The relative transcript and protein expression levels of all three TETs were found to be higher in women with PCOS; and the TET mRNA expression profiles were positively correlated with 5hmC levels in CGCs. Also, all three DNMT genes showed altered transcript expression in PCOS, although only the downregulated DNMT3A transcript was correlated with decreasing 5mC levels. At the protein level, the expression of DNMT1 (maintenance methylation enzyme) was higher, while that of DNMT3A (denovo methylation enzyme) was found to be lower in PCOS compared to controls. Overall, these results indicate that DNA methylation changes in CGCs of PCOS women may arise partly due to intrinsic alterations in the transcriptional regulation of TETs and DNMT3A.
Collapse
Affiliation(s)
- Pooja Sagvekar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| | - Gayatri Shinde
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| | - Vijay Mangoli
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai-, 400007, Maharashtra, India
| | - Sadhana K Desai
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai-, 400007, Maharashtra, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| |
Collapse
|
17
|
Ding Q, Gao Z, Chen K, Zhang Q, Hu S, Zhao L. Inflammation-Related Epigenetic Modification: The Bridge Between Immune and Metabolism in Type 2 Diabetes. Front Immunol 2022; 13:883410. [PMID: 35603204 PMCID: PMC9120428 DOI: 10.3389/fimmu.2022.883410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
T2DM, as a typical metabolic inflammatory disease, is under the joint regulation of environmental factors and genetics, combining with a variety of epigenetic changes. Apart from epigenetic changes of islet β cells and glycometabolic tissues or organs, the inflammation-related epigenetics is also the core pathomechanism leading to β-cell dysfunction and insulin resistance. In this review, we focus on the epigenetic modification of immune cells’ proliferation, recruitment, differentiation and function, providing an overview of the key genes which regulated by DNA methylation, histone modifications, and non-coding RNA in the respect of T2DM. Meanwhile, we further summarize the present situation of T2DM epigenetic research and elucidate its prospect in T2DM clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Qiyou Ding
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keyu Chen
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiqi Zhang
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiwan Hu
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Linhua Zhao,
| |
Collapse
|
18
|
7-Aminoalkoxy-Quinazolines from Epigenetic Focused Libraries Are Potent and Selective Inhibitors of DNA Methyltransferase 1. Molecules 2022; 27:molecules27092892. [PMID: 35566242 PMCID: PMC9102847 DOI: 10.3390/molecules27092892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Inhibitors of epigenetic writers such as DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug and probe discovery. To advance epigenetic probes and drug discovery, chemical companies are developing focused libraries for epigenetic targets. Based on a knowledge-based approach, herein we report the identification of two quinazoline-based derivatives identified in focused libraries with sub-micromolar inhibition of DNMT1 (30 and 81 nM), more potent than S-adenosylhomocysteine. Also, both compounds had a low micromolar affinity of DNMT3A and did not inhibit DNMT3B. The enzymatic inhibitory activity of DNMT1 and DNMT3A was rationalized with molecular modeling. The quinazolines reported in this work are known to have low cell toxicity and be potent inhibitors of the epigenetic target G9a. Therefore, the quinazoline-based compounds presented are attractive not only as novel potent inhibitors of DNMTs but also as dual and selective epigenetic agents targeting two families of epigenetic writers.
Collapse
|
19
|
Mahmoud AM. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms23031341. [PMID: 35163268 PMCID: PMC8836029 DOI: 10.3390/ijms23031341] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity has become a global epidemic that has a negative impact on population health and the economy of nations. Genetic predispositions have been demonstrated to have a substantial role in the unbalanced energy metabolism seen in obesity. However, these genetic variations cannot entirely explain the massive growth in obesity over the last few decades. Accumulating evidence suggests that modern lifestyle characteristics such as the intake of energy-dense foods, adopting sedentary behavior, or exposure to environmental factors such as industrial endocrine disruptors all contribute to the rising obesity epidemic. Recent advances in the study of DNA and its alterations have considerably increased our understanding of the function of epigenetics in regulating energy metabolism and expenditure in obesity and metabolic diseases. These epigenetic modifications influence how DNA is transcribed without altering its sequence. They are dynamic, reflecting the interplay between the body and its surroundings. Notably, these epigenetic changes are reversible, making them appealing targets for therapeutic and corrective interventions. In this review, I discuss how these epigenetic modifications contribute to the disordered energy metabolism in obesity and to what degree lifestyle and weight reduction strategies and pharmacological drugs can restore energy balance by restoring normal epigenetic profiles.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Rautenberg EK, Hamzaoui Y, Coletta DK. Mini-review: Mitochondrial DNA methylation in type 2 diabetes and obesity. Front Endocrinol (Lausanne) 2022; 13:968268. [PMID: 36093112 PMCID: PMC9453027 DOI: 10.3389/fendo.2022.968268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes (T2D) and obesity are two of the most challenging public health problems of our time. Therefore, understanding the molecular mechanisms that contribute to these complex metabolic disorders is essential. An underlying pathophysiological condition of T2D and obesity is insulin resistance (IR), a reduced biological response to insulin in peripheral tissues such as the liver, adipose tissue, and skeletal muscle. Many factors contribute to IR, including lifestyle variables such as a high-fat diet and physical inactivity, genetics, and impaired mitochondrial function. It is well established that impaired mitochondria structure and function occur in insulin-resistant skeletal muscle volunteers with T2D or obesity. Therefore, it could be hypothesized that the mitochondrial abnormalities are due to epigenetic regulation of mitochondrial and nuclear-encoded genes that code for mitochondrial structure and function. In this review, we describe the normal function and structure of mitochondria and highlight some of the key studies that demonstrate mitochondrial abnormalities in skeletal muscle of volunteers with T2D and obesity. Additionally, we describe epigenetic modifications in the context of IR and mitochondrial abnormalities, emphasizing mitochondria DNA (mtDNA) methylation, an emerging area of research.
Collapse
Affiliation(s)
- Emma K. Rautenberg
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - Yassin Hamzaoui
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - Dawn K. Coletta
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Dawn K. Coletta,
| |
Collapse
|
21
|
Matuszewski W, Baranowska-Jurkun A, Stefanowicz-Rutkowska MM, Gontarz-Nowak K, Gątarska E, Bandurska-Stankiewicz E. The Safety of Pharmacological and Surgical Treatment of Diabetes in Patients with Diabetic Retinopathy-A Review. J Clin Med 2021; 10:705. [PMID: 33670143 PMCID: PMC7916896 DOI: 10.3390/jcm10040705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a non-infectious pandemic of the modern world; it is estimated that in 2045 it will affect 10% of the world's population. As the prevalence of diabetes increases, the problem of its complications, including diabetic retinopathy (DR), grows. DR is a highly specific neurovascular complication of diabetes that occurs in more than one third of DM patients and accounts for 80% of complete vision loss cases in the diabetic population. We are currently witnessing many groundbreaking studies on new pharmacological and surgical methods of treating diabetes. AIM The aim of the study is to assess the safety of pharmacological and surgical treatment of DM in patients with DR. MATERIAL AND METHODS An analysis of the data on diabetes treatment methods currently available in the world literature and their impact on the occurrence and progression of DR. RESULTS A rapid decrease in glycaemia leads to an increased occurrence and progression of DR. Its greatest risk accompanies insulin therapy and sulfonylurea therapy. The lowest risk of DR occurs with the use of SGLT2 inhibitors; the use of DPP-4 inhibitors and GLP-1 analogues is also safe. Patients undergoing pancreatic islet transplants or bariatric surgeries require intensive monitoring of the state of the eye, both in the perioperative and postoperative period. CONCLUSIONS It is of utmost importance to individualize therapy in diabetic patients, in order to gradually achieve treatment goals with the use of safe methods and minimize the risk of development and progression of DR.
Collapse
Affiliation(s)
- Wojciech Matuszewski
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Angelika Baranowska-Jurkun
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Magdalena Maria Stefanowicz-Rutkowska
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Katarzyna Gontarz-Nowak
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Ewa Gątarska
- Nephrology, Transplantology and Internal Medicine Clinic, Pomeranian Medicine University in Szczecin, 70-204 Szczecin, Poland;
| | - Elżbieta Bandurska-Stankiewicz
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| |
Collapse
|
22
|
Lin X, Li H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne) 2021; 12:706978. [PMID: 34552557 PMCID: PMC8450866 DOI: 10.3389/fendo.2021.706978] [Citation(s) in RCA: 420] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is a complex multifactorial disease that accumulated excess body fat leads to negative effects on health. Obesity continues to accelerate resulting in an unprecedented epidemic that shows no significant signs of slowing down any time soon. Raised body mass index (BMI) is a risk factor for noncommunicable diseases such as diabetes, cardiovascular diseases, and musculoskeletal disorders, resulting in dramatic decrease of life quality and expectancy. The main cause of obesity is long-term energy imbalance between consumed calories and expended calories. Here, we explore the biological mechanisms of obesity with the aim of providing actionable treatment strategies to achieve a healthy body weight from nature to nurture. This review summarizes the global trends in obesity with a special focus on the pathogenesis of obesity from genetic factors to epigenetic factors, from social environmental factors to microenvironment factors. Against this background, we discuss several possible intervention strategies to minimize BMI.
Collapse
|
23
|
Juárez-Mercado KE, Prieto-Martínez FD, Sánchez-Cruz N, Peña-Castillo A, Prada-Gracia D, Medina-Franco JL. Expanding the Structural Diversity of DNA Methyltransferase Inhibitors. Pharmaceuticals (Basel) 2020; 14:ph14010017. [PMID: 33375520 PMCID: PMC7824300 DOI: 10.3390/ph14010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibitors of DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug discovery. They are also chemical tools to understand the biochemistry of epigenetic processes. Herein, we report five distinct inhibitors of DNMT1 characterized in enzymatic inhibition assays that did not show activity with DNMT3B. It was concluded that the dietary component theaflavin is an inhibitor of DNMT1. Two additional novel inhibitors of DNMT1 are the approved drugs glyburide and panobinostat. The DNMT1 enzymatic inhibitory activity of panobinostat, a known pan inhibitor of histone deacetylases, agrees with experimental reports of its ability to reduce DNMT1 activity in liver cancer cell lines. Molecular docking of the active compounds with DNMT1, and re-scoring with the recently developed extended connectivity interaction features approach, led to an excellent agreement between the experimental IC50 values and docking scores.
Collapse
Affiliation(s)
- K. Eurídice Juárez-Mercado
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Fernando D. Prieto-Martínez
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Norberto Sánchez-Cruz
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Andrea Peña-Castillo
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Diego Prada-Gracia
- Research Unit on Computational Biology and Drug Design, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico;
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
- Correspondence:
| |
Collapse
|
24
|
Singh R, Chandel S, Dey D, Ghosh A, Roy S, Ravichandiran V, Ghosh D. Epigenetic modification and therapeutic targets of diabetes mellitus. Biosci Rep 2020; 40:BSR20202160. [PMID: 32815547 PMCID: PMC7494983 DOI: 10.1042/bsr20202160] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of diabetes and its related complications are increasing significantly globally. Collected evidence suggested that several genetic and environmental factors contribute to diabetes mellitus. Associated complications such as retinopathy, neuropathy, nephropathy and other cardiovascular complications are a direct result of diabetes. Epigenetic factors include deoxyribonucleic acid (DNA) methylation and histone post-translational modifications. These factors are directly related with pathological factors such as oxidative stress, generation of inflammatory mediators and hyperglycemia. These result in altered gene expression and targets cells in the pathology of diabetes mellitus without specific changes in a DNA sequence. Environmental factors and malnutrition are equally responsible for epigenetic states. Accumulated evidence suggested that environmental stimuli alter the gene expression that result in epigenetic changes in chromatin. Recent studies proposed that epigenetics may include the occurrence of 'metabolic memory' found in animal studies. Further study into epigenetic mechanism might give us new vision into the pathogenesis of diabetes mellitus and related complication thus leading to the discovery of new therapeutic targets. In this review, we discuss the possible epigenetic changes and mechanism that happen in diabetes mellitus type 1 and type 2 separately. We highlight the important epigenetic and non-epigenetic therapeutic targets involved in the management of diabetes and associated complications.
Collapse
Affiliation(s)
- Rajveer Singh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Shivani Chandel
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dhritiman Dey
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Syamal Roy
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| |
Collapse
|
25
|
Malignant fibrous histiocytoma amplified sequence 1 alleviates inflammation and renal fibrosis in diabetic nephropathy by inhibiting TLR4. Biosci Rep 2020; 39:220858. [PMID: 31696221 PMCID: PMC6851511 DOI: 10.1042/bsr20190617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the most common complication of diabetes mellitus (DM). The signal pathway and molecular mechanism of renal fibrosis are not fully understood. In the present study, we aimed to explore the function of malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) in DN. METHOD Mouse mesangial cells (MMCs) were treated with low glucose (LG) or high glucose (HG). TAK242 or short hairpin TLR4 (shTLR4) were employed to down-regulate Toll-like receptor 4 (TLR4). The effect of MFHAS1 knockdown or overexpression on fibrosis-related factors, inflammatory factors and TLR4 in MMCs were examined after transfecting with short hairpin RNA (shRNA) or MFHAS1 overexpressed plasmid, respectively. The expression levels of MFHAS1, inflammatory factors, fibrosis factors and TLR4 in db/db or streptozotocin (STZ) mice tissues and MMCs were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. The effect of MFHAS1 overexpression in vivo was also evaluated. RESULTS The expression of MFHAS1 in db/db or STZ mice and HG-treated MMCs were significantly increased compared with normal control mice and LG-treated MMCs. Overexpression of MFHAS1 inhibited the expression of inflammatory and fibrotic factors, while knockdown of MFHAS1 promoted them. MFHAS1 suppressed the activation of TLR4 pathway via inhibiting the expression of TLR4, and then alleviating inflammation and fibrosis in DN. MFHAS1 overexpression in vivo improved the symptoms of STZ-induced DN mice. CONCLUSION The current study demonstrated that MFHAS1 relieved inflammation and renal fibrosis in DN mice via inhibiting TLR4. The results revealed that the MFHAS1 may be a molecular target in DN therapy.
Collapse
|
26
|
Cronjé HT, Elliott HR, Nienaber-Rousseau C, Pieters M. Leveraging the urban-rural divide for epigenetic research. Epigenomics 2020; 12:1071-1081. [PMID: 32657149 DOI: 10.2217/epi-2020-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Urbanization coincides with a complex change in environmental exposure and a rapid increase in noncommunicable diseases (NCDs). Epigenetics, including DNA methylation (DNAm), is thought to mediate part of the association between genetic/environmental exposure and NCDs. The urban-rural divide provides a unique opportunity to investigate the effect of the combined presence of multiple forms of environmental exposure on DNAm and the related increase in disease risk. This review evaluates the ability of three epidemiological study designs (migration, income-comparative and urban-rural designs) to investigate the role of DNAm in the association between urbanization and the rise in NCD prevalence. We also discuss the ability of each study design to address the gaps in the current literature, including the complex methylation-mediated risk attributable to the cluster of forms of exposure characterizing urban and rural living, while providing a platform for developing countries to leverage their demographic discrepancies in future research ventures.
Collapse
Affiliation(s)
- Héléne T Cronjé
- Centre of Excellence for Nutrition, North-West University, Potchefstroom Campus, Potchefstroom, 2520, North-West Province, South Africa
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Cornelie Nienaber-Rousseau
- Centre of Excellence for Nutrition, North-West University, Potchefstroom Campus, Potchefstroom, 2520, North-West Province, South Africa
| | - Marlien Pieters
- Centre of Excellence for Nutrition, North-West University, Potchefstroom Campus, Potchefstroom, 2520, North-West Province, South Africa
| |
Collapse
|
27
|
Cartron PF, Cheray M, Bretaudeau L. Epigenetic protein complexes: the adequate candidates for the use of a new generation of epidrugs in personalized and precision medicine in cancer. Epigenomics 2020; 12:171-177. [DOI: 10.2217/epi-2019-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Until recently, drug development in oncology was focused on treating most patients for a specific cancer type without taking in account the heterogeneity between these patients in term of response to treatment. Therefore, this type of broad treatment approach excludes the treatment of patient not responding to disease-specific common drugs. In this review, we focus on the different types of epigenetic drugs currently used as DNA methylation inhibitor agents and their limits in patient care due to their lack of specificity. We also highlight the emergence of a new type of epidrug with higher target specificity due to their original mechanism of action: the disruption of protein complexes involved in the epigenetic modifications.
Collapse
Affiliation(s)
- Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors’ Network, Cancéropôle Grand Ouest, Nantes, France
- EpiSAVMEN Consortium, Région Pays de la Loire, Nantes, France
- LabEX IGO, Université de Nantes, Nantes, France
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm 17177, Sweden
| | | |
Collapse
|
28
|
vanLieshout TL, Ljubicic V. The emergence of protein arginine methyltransferases in skeletal muscle and metabolic disease. Am J Physiol Endocrinol Metab 2019; 317:E1070-E1080. [PMID: 31593503 DOI: 10.1152/ajpendo.00251.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins and thus alter the stability, localization, or activity of the substrate. In doing so, PRMTs mediate a variety of intracellular functions that are essential for survival. Additionally, PRMT dysregulation is involved in a number of the most prevalent health disorders, including cancer and neurodegenerative and cardiovascular diseases, as well as in the aging process. Investigations of PRMT biology in skeletal muscle cells began in 2002, and since then these enzymes have emerged as regulators of skeletal muscle phenotype determination, maintenance, and remodeling. Specifically, more recent in vivo studies have revealed that PRMTs impact multiple aspects of skeletal muscle biology, including satellite cell function and phenotypic plasticity in response to exercise and disuse. Skeletal muscle plays critically important roles in regulating whole body metabolism, and recent investigations have also begun elucidating PRMT expression and function under conditions of metabolic dysfunction. The goals of this review are to 1) summarize the literature on PRMT biology in skeletal muscle with a particular emphasis on the in vivo evidence and 2) survey PRMTs in metabolic disorders, namely, obesity and type 2 diabetes mellitus. We also identify notable knowledge gaps therein and present opportunities to further expand our understanding of these enzymes so critical to health and disease.
Collapse
Affiliation(s)
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Yoon GE, Jung JK, Lee YH, Jang BC, In Kim J. Histone deacetylase inhibitor CG200745 ameliorates high-fat diet-induced hypertension via inhibition of angiotensin II production. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:491-500. [PMID: 31655853 PMCID: PMC7280340 DOI: 10.1007/s00210-019-01749-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Obesity is growing rapidly worldwide due to consumption of westernized diet and lack of exercise. Obesity is one of the major risk factors of hypertension. The novel histone deacetylase (HDAC) inhibitor CG200745 was originally developed to treat various cancers. Previous studies showed that CG200745 attenuated hypertension through inhibition of cardiac hypertrophy and fibrosis in deoxycorticosterone acetate-induced hypertensive rat. The purpose of this study is to investigate the role and underlying mechanism of CG200745 in high-fat diet (HFD)-induced hypertension. Nine-week old C57BL/6 mice were fed a normal diet (ND) or HFD for 17 weeks. Each group of mice was treated with vehicle or CG200745 by intraperitoneal injection for 9 days. HFD group showed higher body weight, blood pressure (BP), HDAC activities, angiotensinogen and renin expressions in kidney, angiotensin-converting enzyme (ACE) expression in the lung, serum angiotensin II (Ang II) concentration, and myosin light chain20 (MLC20) phosphorylation in mesenteric artery compared with ND group. CG200745 lowered BP, HDAC activity, renin and angiotensinogen in the kidney, ACE in the lung, serum Ang II level, and phosphorylation of MLC20 in HFD group. In conclusion, CG200745 ameliorated HFD-induced hypertension through inhibition of HDAC/Ang II/vascular contraction axis. Our results offer CG200745 as a novel therapeutic option for HFD-induced hypertension.
Collapse
Affiliation(s)
- Ga-Eun Yoon
- Department of Molecular Medicine and Medical Research Center, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Jin Ki Jung
- Department of Molecular Medicine and Medical Research Center, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Yun-Han Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine and Medical Research Center, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
30
|
Yu J, Xie T, Wang Z, Wang X, Zeng S, Kang Y, Hou T. DNA methyltransferases: emerging targets for the discovery of inhibitors as potent anticancer drugs. Drug Discov Today 2019; 24:2323-2331. [PMID: 31494187 DOI: 10.1016/j.drudis.2019.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
Abstract
DNA methyltransferases (DNMTs) are a conserved family of cytosine methylases with crucial roles in epigenetic regulation. They have been considered as promising therapeutic targets for the epigenetic treatment of cancer. Therefore, DNMT inhibitors (DNMTis) have attracted considerable interest in recent years for the modulation of the aberrant DNA methylation pattern in a reversible way. In this review, we provide a structure-based overview of the therapeutic importance of DNMTs against different cancer types, and then summarize recently investigated DNMTis as well as their inhibitory mechanisms, focusing on recent advances in the development of DNMTis with specificity and/or selectivity using computational approaches.
Collapse
Affiliation(s)
- Jie Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tianli Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhe Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuwen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
31
|
Ash GI, Kim D, Choudhury M. Promises of Nanotherapeutics in Obesity. Trends Endocrinol Metab 2019; 30:369-383. [PMID: 31126754 PMCID: PMC6716370 DOI: 10.1016/j.tem.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
The application of nanotechnology to medicine promises a wide range of new tools and possibilities, from earlier diagnostics and improved imaging, to better, more efficient, and more targeted therapies. This emerging field could help address obesity, with advances in drug delivery, nutraceuticals, and genetic and epigenetic therapeutics. Its application to obesity is still largely in the development phase. Here, we review the novel angle of nanotech applied to human consumable products and their specific applications to addressing obesity through nutraceuticals, with respect to benefits and limitations of current nanotechnology methods. Further, we review potential future applications to deliver genetic and epigenetic miRNA therapeutics. Finally, we discuss future directions, including theranostics, combinatory therapy, and personalized medicine.
Collapse
Affiliation(s)
- Garrett I Ash
- School of Nursing, Yale University, West Haven, CT, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
32
|
Zhang J, Chen Q, Du D, Wu T, Wen J, Wu M, Zhang Y, Yan W, Zhou S, Li Y, Jin Y, Luo A, Wang S. Can ovarian aging be delayed by pharmacological strategies? Aging (Albany NY) 2019; 11:817-832. [PMID: 30674710 PMCID: PMC6366956 DOI: 10.18632/aging.101784] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
Abstract
Aging has been regarded as a treatable condition, and delaying aging could prevent some diseases. Ovarian aging, a special type of organ senescence, is the earliest-aging organ, as ovaries exhibit an accelerated rate of aging with characteristics of gradual declines in ovarian follicle quantity and quality since birth, compared to other organs. Ovarian aging is considered as the pacemaker of female body aging, which drives the aging of multiple organs of the body. Hence, anti-ovarian aging has become a research topic broadly interesting to both biomedical scientists and pharmaceutical industry. A marked progress has been made in exploration of possible anti-ovarian agents or approaches, such as calorie restriction mimetics, antioxidants, autophagy inducers etc., over the past years. This review is attempted to discuss recent advances in the area of anti-ovarian aging pharmacology and to offer new insights into our better understanding of molecular mechanisms underlying ovarian aging, which might be informative for future prevention and treatment of ovarian aging and its related diseases.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dingfu Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Jin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
33
|
Yuliana A, Jheng HF, Kawarasaki S, Nomura W, Takahashi H, Ara T, Kawada T, Goto T. β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte. Int J Mol Sci 2018; 19:ijms19082436. [PMID: 30126161 PMCID: PMC6121552 DOI: 10.3390/ijms19082436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Browning of adipose tissue has been prescribed as a potential way to treat obesity, marked by the upregulation of uncoupling protein 1 (Ucp1). Several reports have suggested that histone deacetylase (HDAC) might regulate Ucp1 by remodelling chromatin structure, although the mechanism remains unclear. Herein, we investigate the effect of β-adrenergic receptor (β-AR) activation on the chromatin state of beige adipocyte. β-AR-stimulated Ucp1 expression via cold (in vivo) and isoproterenol (in vitro) resulted in acetylation of histone activation mark H3K27. H3K27 acetylation was also seen within Ucp1 promoter upon isoproterenol addition, favouring open chromatin for Ucp1 transcriptional activation. This result was found to be associated with the downregulation of class I HDAC mRNA, particularly Hdac3 and Hdac8. Further investigation showed that although HDAC8 activity decreased, Ucp1 expression was not altered when HDAC8 was activated or inhibited. In contrast, HDAC3 mRNA and protein levels were simultaneously downregulated upon isoproterenol addition, resulting in reduced recruitment of HDAC3 to the Ucp1 enhancer region, causing an increased H3K27 acetylation for Ucp1 upregulation. The importance of HDAC3 inhibition was confirmed through the enhanced Ucp1 expression when the cells were treated with HDAC3 inhibitor. This study highlights the novel mechanism of HDAC3-regulated Ucp1 expression during β-AR stimulation.
Collapse
Affiliation(s)
- Ana Yuliana
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Satoko Kawarasaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Takeshi Ara
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
34
|
Epigenetic Modifications Linked to T2D, the Heritability Gap, and Potential Therapeutic Targets. Biochem Genet 2018; 56:553-574. [DOI: 10.1007/s10528-018-9863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
|
35
|
Qin K, Zhang N, Zhang Z, Nipper M, Zhu Z, Leighton J, Xu K, Musi N, Wang P. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice. Diabetologia 2018; 61:906-918. [PMID: 29322219 PMCID: PMC6203439 DOI: 10.1007/s00125-017-4542-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. METHODS Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. RESULTS Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. CONCLUSIONS/INTERPRETATION Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability. DATA AVAILABILITY Sequence data have been deposited in the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) with the accession code GSE104161.
Collapse
Affiliation(s)
- Kunhua Qin
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Ning Zhang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Michael Nipper
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Zhenxin Zhu
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jake Leighton
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
36
|
Naveja JJ, Medina-Franco JL. Insights from pharmacological similarity of epigenetic targets in epipolypharmacology. Drug Discov Today 2018; 23:141-150. [DOI: 10.1016/j.drudis.2017.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/05/2017] [Accepted: 10/05/2017] [Indexed: 01/10/2023]
|
37
|
Budzyński MA, Crul T, Himanen SV, Toth N, Otvos F, Sistonen L, Vigh L. Chaperone co-inducer BGP-15 inhibits histone deacetylases and enhances the heat shock response through increased chromatin accessibility. Cell Stress Chaperones 2017; 22:717-728. [PMID: 28474205 PMCID: PMC5573690 DOI: 10.1007/s12192-017-0798-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 01/20/2023] Open
Abstract
Defects in cellular protein homeostasis are associated with many severe and prevalent pathological conditions such as neurodegenerative diseases, muscle dystrophies, and metabolic disorders. One way to counteract these defects is to improve the protein homeostasis capacity through induction of the heat shock response. Despite numerous attempts to develop strategies for chemical activation of the heat shock response by heat shock transcription factor 1 (HSF1), the underlying mechanisms of drug candidates' mode of action are poorly understood. To lower the threshold for the heat shock response activation, we used the chaperone co-inducer BGP-15 that was previously shown to have beneficial effects on several proteinopathic disease models. We found that BGP-15 treatment combined with heat stress caused a substantial increase in HSF1-dependent heat shock protein 70 (HSPA1A/B) expression already at a febrile range of temperatures. Moreover, BGP-15 alone inhibited the activity of histone deacetylases (HDACs), thereby increasing chromatin accessibility at multiple genomic loci including the stress-inducible HSPA1A. Intriguingly, treatment with well-known potent HDAC inhibitors trichostatin A and valproic acid enhanced the heat shock response and improved cytoprotection. These results present a new pharmacological strategy for restoring protein homeostasis by inhibiting HDACs, increasing chromatin accessibility, and lowering the threshold for heat shock response activation.
Collapse
Affiliation(s)
- Marek A Budzyński
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - Tim Crul
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - Noemi Toth
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Ferenc Otvos
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland.
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland.
| | - Laszlo Vigh
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary.
| |
Collapse
|
38
|
Role of the histone deacetylase inhibitor valproic acid in high-fat diet-induced hypertension via inhibition of HDAC1/angiotensin II axis. Int J Obes (Lond) 2017; 41:1702-1709. [PMID: 28720877 DOI: 10.1038/ijo.2017.166] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obesity is known as an epidemic worldwide because of consumption of westernized high-fat diets and one of the major risk factors of hypertension. Histone deacetylases (HDACs) control gene expression by regulating histone/non-histone protein deacetylation. HDAC inhibitors exert anti-cancer and anti-inflammatory effects and play a protective role in cardiovascular diseases. In the present study, we tested the effect of an FDA-approved pan-HDAC inhibitor valproic acid (VPA) on high-fat diet (HFD)-induced hypertension in mice. Furthermore, we examined the mechanism of VPA-induced prevention of hypertension. METHODS Nine-week-old male C57BL/6 mice were fed either a normal diet (ND) or HFD. When the HFD group reached a pre-hypertensive phase (130-140 mm Hg systolic blood pressure), VPA was administered for 6 days (300 mg kg-1 per day). Body weights and blood pressure (BP), expression of renin-angiotensin system (RAS) components and HDAC1 were determined. The direct role of HDAC1 in the expression of RAS components was investigated using gene silencing. RESULTS HFD accelerated the increase in body weight from 22.4±1.3 to 31.9±3.0 compared to in the ND group from 22.7±0.9 to 26.0±1.7 (P=0.0134 ND vs HFD), systolic BP from 118.5±5.7 to 145.0±3.0 (P<0.001), and diastolic BP from 91.0±13.6 to 121.0±5.0 (P=0.006); BP was not altered in the ND group. HFD increased RAS components and HDAC1 in the kidneys as well as leptin in the plasma. VPA administration prevented the progression of hypertension and inhibited the increase in expression of HDAC1 and RAS components. VPA did not affect plasma leptin level. Knockdown of HDAC1 in MDCK cells decreased the expression of angiotensinogen and type 1 angiotensin II receptor. CONCLUSIONS VPA prevented HFD-induced hypertension by downregulating angiotensin II and its receptor via inhibition of HDAC1, offering a novel therapeutic option for HFD-induced hypertension.
Collapse
|
39
|
|
40
|
Sommese L, Zullo A, Mancini FP, Fabbricini R, Soricelli A, Napoli C. Clinical relevance of epigenetics in the onset and management of type 2 diabetes mellitus. Epigenetics 2017; 12:401-415. [PMID: 28059593 DOI: 10.1080/15592294.2016.1278097] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetics is involved in the altered expression of gene networks that underlie insulin resistance and insufficiency. Major genes controlling β-cell differentiation and function, such as PAX4, PDX1, and GLP1 receptor, are epigenetically controlled. Epigenetics can cause insulin resistance through immunomediated pro-inflammatory actions related to several factors, such as NF-kB, osteopontin, and Toll-like receptors. Hereafter, we provide a critical and comprehensive summary on this topic with a particular emphasis on translational and clinical aspects. We discuss the effect of epigenetics on β-cell regeneration for cell replacement therapy, the emerging bioinformatics approaches for analyzing the epigenetic contribution to type 2 diabetes mellitus (T2DM), the epigenetic core of the transgenerational inheritance hypothesis in T2DM, and the epigenetic clinical trials on T2DM. Therefore, prevention or reversion of the epigenetic changes occurring during T2DM development may reduce the individual and societal burden of the disease.
Collapse
Affiliation(s)
- Linda Sommese
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy.,b Department of Experimental Medicine , Second University of Naples , Italy
| | - Alberto Zullo
- c Department of Sciences and Technologies , University of Sannio , Benevento , Italy.,d CEINGE-Advanced Biotechnologies , Naples , Italy
| | | | - Rossella Fabbricini
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy
| | - Andrea Soricelli
- e IRCCS Research Institute SDN , Naples , Italy.,f Department of Studies of Institutions and Territorial Systems , University of Naples Parthenope , Naples , Italy
| | - Claudio Napoli
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy.,e IRCCS Research Institute SDN , Naples , Italy.,g Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences , Second University of Naples , Italy
| |
Collapse
|
41
|
García-Sánchez MO, Cruz-Monteagudo M, Medina-Franco JL. Quantitative Structure-Epigenetic Activity Relationships. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2017. [DOI: 10.1007/978-3-319-56850-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Vaiserman AM, Lushchak OV, Koliada AK. Anti-aging pharmacology: Promises and pitfalls. Ageing Res Rev 2016; 31:9-35. [PMID: 27524412 DOI: 10.1016/j.arr.2016.08.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Life expectancy has grown dramatically in modern times. This increase, however, is not accompanied by the same increase in healthspan. Efforts to extend healthspan through pharmacological agents targeting aging-related pathological changes are now in the spotlight of geroscience, the main idea of which is that delaying of aging is far more effective than preventing the particular chronic disorders. Currently, anti-aging pharmacology is a rapidly developing discipline. It is a preventive field of health care, as opposed to conventional medicine which focuses on treating symptoms rather than root causes of illness. A number of pharmacological agents targeting basic aging pathways (i.e., calorie restriction mimetics, autophagy inducers, senolytics etc.) are now under investigation. This review summarizes the literature related to advances, perspectives and challenges in the field of anti-aging pharmacology.
Collapse
Affiliation(s)
| | - Oleh V Lushchak
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | |
Collapse
|
43
|
Molecular Modeling and Chemoinformatics to Advance the Development of Modulators of Epigenetic Targets: A Focus on DNA Methyltransferases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:1-26. [PMID: 27567482 DOI: 10.1016/bs.apcsb.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In light of the emerging field of Epi-informatics, ie, computational methods applied to epigenetic research, molecular docking, and dynamics, pharmacophore and activity landscape modeling and QSAR play a key role in the development of modulators of DNA methyltransferases (DNMTs), one of the major epigenetic target families. The increased chemical information available for modulators of DNMTs has opened up the avenue to explore the epigenetic relevant chemical space (ERCS). Herein, we discuss recent progress on the identification and development of inhibitors of DNMTs as potential epi-drugs and epi-probes that have been driven by molecular modeling and chemoinformatics methods. We also survey advances on the elucidation of their structure-activity relationships and exploration of ERCS. Finally, it is illustrated how computational approaches can be applied to identify modulators of DNMTs in food chemicals.
Collapse
|
44
|
Zhang Y, Ren J. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management. Pharmacol Ther 2016; 161:52-66. [PMID: 27013344 DOI: 10.1016/j.pharmthera.2016.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uncorrected obesity has been associated with cardiac hypertrophy and contractile dysfunction. Several mechanisms for this cardiomyopathy have been identified, including oxidative stress, autophagy, adrenergic and renin-angiotensin aldosterone overflow. Another process that may regulate effects of obesity is epigenetics, which refers to the heritable alterations in gene expression or cellular phenotype that are not encoded on the DNA sequence. Advances in epigenome profiling have greatly improved the understanding of the epigenome in obesity, where environmental exposures during early life result in an increased health risk later on in life. Several mechanisms, including histone modification, DNA methylation and non-coding RNAs, have been reported in obesity and can cause transcriptional suppression or activation, depending on the location within the gene, contributing to obesity-induced complications. Through epigenetic modifications, the fetus may be prone to detrimental insults, leading to cardiac sequelae later in life. Important links between epigenetics and obesity include nutrition, exercise, adiposity, inflammation, insulin sensitivity and hepatic steatosis. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissues from obese subjects compared with non-obese controls. In addition, aging and intrauterine environment are associated with differential DNA methylation. Given the intense research on the molecular mechanisms of the etiology of obesity and its complications, this review will provide insights into the current understanding of epigenetics and pharmacological and non-pharmacological (such as exercise) interventions targeting epigenetics as they relate to treatment of obesity and its complications. Particular focus will be on DNA methylation, histone modification and non-coding RNAs.
Collapse
Affiliation(s)
- Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
45
|
Prieto-Martínez FD, Gortari EFD, Méndez-Lucio O, Medina-Franco JL. A chemical space odyssey of inhibitors of histone deacetylases and bromodomains. RSC Adv 2016. [DOI: 10.1039/c6ra07224k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interest in epigenetic drug and probe discovery is growing as reflected in the large amount of structure-epigenetic activity information available.
Collapse
Affiliation(s)
| | - Eli Fernández-de Gortari
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Mexico City 04510
- Mexico
| | - Oscar Méndez-Lucio
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Mexico City 04510
- Mexico
| | - José L. Medina-Franco
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Mexico City 04510
- Mexico
| |
Collapse
|